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Abstract

Today, there is growing interest in computer surgical simulation to enhance sur-
geons’ training. This paper presents a simulation system based on novel algorithms
for animating instruments interacting with deformable tissue in real-time. The focus
is on computing the deformation of a tissue subject to external forces, and detecting
collisions among deformable and rigid objects. To achieve real-time performance, the
algorithms take advantage of several characteristics of surgical training: (1) visual
realism is more important than accurate, patient-specific simulation; (2) most tissue
deformations are local; (3) human-body tissues are well damped; and (4) surgical
instruments have relatively slow motions. Each key algorithm is described in detail
and quantitative performance-evaluation results are given. The specific application
considered in this paper is microsurgery, in which the user repairs a virtual severed
blood vessel using forceps and a suture (micro-anastomosis). Microsurgery makes
it possible to demonstrate several facets of the simulation algorithms, including the
deformations of the blood vessel and the suture, and the collisions and interactions
between the vessel, the forceps, and the suture. Validation of the overall micro-
surgery system is based on subjective analysis of the simulation’s visual realism by
different users.

1 Introduction

As computer power and graphics capabilities continue to increase, there is
growing interest in surgical simulation as a technique to enhance surgeons’
training. Such training currently requires cadavers or laboratory animals. A
computer simulation option could reduce costs and allay ethical concerns,
while possibly decreasing training time and providing better feedback to the
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trainees. However, for surgical simulation to be useful it must be realistic with
respect to tissue deformation, tool interactions, visual rendering, and real-
time response. This paper describes a microsurgery training system based on
novel computer simulation techniques. The system allows a user to interact
with models of deformable tissues using real surgical instruments mounted
on trackers. It generates a graphic rendering of the tissue deformations in
real-time.

Real-time simulation of deformable objects is needed in many areas of graphic
animation, for example to generate cloth motions in animated movies or video
games, to provide realistic facial animation for digital actors, and to deform
soft tissues in surgical simulations. Deformable objects raise a complex com-
bination of issues ranging from estimating mechanical parameters, to solving
large systems of differential equations, to detecting collisions, to modeling re-
sponses to collisions. See [3] for problems and techniques in cloth modeling
and [4] for issues arising in surgical simulation. Many issues still lack adequate
solutions, especially when simulation must be real-time.

Here we focus on fast and realistic simulation of tissue and suture, and detect-
ing and processing collisions among rigid and deformable objects. Our main
goal is to develop efficient data structures and algorithms that can process
large models at a rate compatible with real-time graphic animation (30 Hz).
To achieve this goal, we exploit the fact that many deformations are local.
By propagating forces in a carefully ordered fashion through an elastic mass-
spring mesh, we effectively limit the computations to the portions of objects
that undergo significant deformations. To accelerate collision detection, we
pre-compute hierarchical representations for all objects in the scene; when ob-
jects are being deformed, we only update those parts of the hierarchies that
need to be modified.

We have used these algorithms, along with other techniques, to build a system
aimed toward microsurgical training. Microsurgery is a well-established sur-
gical field which involves the repair of approximately 1lmm vessels and nerves
under an operating microscope. It is a necessity in many reconstructive proce-
dures, including the successful reattachment of severed digits. Using a forceps,
the surgeon maneuvers a suture (needle and thread) through the two ends of
a severed vessel and ties several knots to stitch the two ends together. The
two parts of the vessel undergo deformations caused by their interactions with
the suture and the forceps. The surgeon receives only visual feedback, as the
vessel is too small to produce any perceptible reaction force. Microsurgeons
typically acquire their initial skills through months of practice in an animal
lab, at which point they still require months of supervision in the operating
room. Without practice, these skills can quickly degrade. The need for such a
suturing simulation has been previously addressed in [4], and a performance
study in [5] discusses the validity of using such a simulator to develop surgical



skill, although it does not provide technical details of the actual simulation.
Other aspects of suture simulation are discussed in [6].

The main contributions of this paper are the algorithmic tools that we propose
for simulating deformable tissue in real-time. We provide extensive quantita-
tive analysis of the performance of these tools. On the other hand, the experi-
mental microsurgery system has only been validated through subjective visual
analysis by several users.

Section 2 describes an overview of our simulation system. Sections 3, 4, and
5 present our simulation and collision-detection algorithms, with specific ref-
erences to the microsurgery simulator. Section 6 discusses current and future
work.

2 System Overview

Our software system includes a deformable object simulator, a tool simulator,
and a collision detection module. A graphics display allows multiple objects
to be rendered from a 3D virtual world onto the screen at 60 Hz or higher.
The user has complete control of the view, and may use stereo glasses for true
binocular depth perception (rendered at 30 Hz or higher per eye). The posi-
tions of the objects are read from the deformable object and tool simulators
before each screen refresh.

Deformable object simulation is described in detail in the following two sec-
tions. Tool simulation synchronizes virtual surgical tools with real tools that
are connected to external tracking devices. Virtual tools consist of one or
more rigid parts modeled as triangulated surfaces. Their positions and orien-
tations are controlled by the external devices at high update rates (typically
100 Hz), and other information from the devices may control relative rotations
or translations of the parts that make up one tool. Interactions between tools
and deformable objects, such as grabbing, poking, and cutting, are dependent
on the collision detection module described in Section 5.

The setup for microsurgery includes two real surgical forceps instrumented
to detect closure and attached to electromagnetic trackers (miniBIRD of As-
cension Technology Corporation). The user’s translation, rotation, opening,
and closing of these forceps directly controls forceps models in the simulation.
Using the forceps, models of blood vessels can be grabbed and deformed. A
suture can be manipulated to pierce through and realistically interact with the
vessels and the forceps. Stereo glasses allow the necessary depth perception to
complete the task. Figure 1 shows a user of the simulator.



Fig. 1. Setup for microsurgery

The system also supports parallel processing using multithreading. Our imple-
mentation on a dual-processor machine (Sun Ultra 60, two 450 MHz proces-
sors) can use two threads of execution to separate the simulation and collision
detection from the graphical rendering. In this way, visual updates occur at a
guaranteed rate while the simulation continues uninterrupted.

3 Computation of Object Deformations

3.1 Relation to Previous Work

Research on modeling deformable objects has increased dramatically in the
past few years. Most proposed 3D models/techniques fall into two broad cat-
egories, mass-spring meshes and finite elements.

A mass-spring mesh is a set of point masses connected by elastic links. It repre-
sents the tissue geometry and is used to discretize the equations of motion. At
each node NV an equation defines the force exerted on N by the nodes to which
N is connected. Mass-spring models have been used in facial animation [7],
cloth motion [8], and surgical simulation [9], to cite only a few works. They
are relatively fast and easy to implement, and allow realistic simulation for a
wide range of objects, including viscoelastic tissues encountered in surgery.

Finite element methods (FEMs) use a mesh to decompose the domain over
which the differential equations of motion are solved. The mesh represents the
domain initially occupied by the object and the FEM technique computes a
vector field representing the displacement of each point in this domain. For
example, FEMs have been used to model facial tissue and predict surgical



Fig. 2. Mesh example

outcomes [10-12]. They may be more accurate than mass-spring models, but
they are also more computationally intensive, especially for complex geome-
tries and large deformations. Some systems use either mass-spring or FEM
techniques depending on the situation [6]. Others use preprocessing steps to
reduce FEM computation [13,14], and [15] extends the “tensor-mass” model
of [14] to non-linear elasticicty.

Other examples of mass-spring models, FEMs, and alternate models are too
numerous to cite here, but are cited in [4] and [16].

Mass-spring meshes seem better suited for surgical training — the application
domain considered in this paper — which relies more on visual realism than ex-
act, patient-specific deformation, but requires that simulations be performed
in real-time. In contrast, FEMs may address better the needs of other ap-
plications (e.g., pre-operative surgical planning and predicting the long-term
outcome of a surgery), where computations can be done off-line, but must
provide accurate, patient-specific results.

3.2 Mass-spring elastic mesh

We represent the geometry of a deformable object by a 3D mesh M of n nodes
N; (i = 1,...,n) connected by links L;;, i, € [1,n],i # j. Each node maps to
a specific point of the object, so that the displacements of the nodes describe
the deformation of the object. The nodes and links on the object’s surface are
triangulated, whereas the other nodes and links are unrestricted, though it is
often convenient to arrange them in a tetrahedral lattice. Figure 2 shows the
surface and underlying links of a mesh representing a severed blood vessel; this
mesh contains 98 nodes and 581 links. The more complex mesh in Figure 3a
consists of 40,889 nodes and 212,206 links forming a tetrahedral lattice.

The mechanical properties (viscoelastic, in most surgical simulation applica-



tions) of the object are described by data stored in the nodes and links of M.
A mass m; and a damping coefficient ¢; are associated with each node IV;, and
a stiffness k;; is associated with each link L;;. The internal force between two
nodes N; and N; is Fj; = —k;jAjju;5, where A;; = [;; — rl;; is the current
length of the link minus its resting length, and u,;; is the unit vector pointing
from N; toward N;. The stiffness k;; may be constant or function of A;;. In
either case, F';; is a function of the coordinate vectors ; and x; of N; and N;.
This representation can describe objects that are nonlinear, non-homogeneous,
and anisotropic.

At any time ¢, the motion/deformation of M is described by a system of n
differential equations, each expressing the motion of a node N;:

m;a; + ¢;v; + Z Fij(cc,-, wj) = m;qg + ngt (1)
je€o(i)

where @; is the coordinate vector of V;, v; and a; are its velocity and accel-
eration vectors, respectively, m;g is the gravitational force, and F$™ is the
total external force applied to N;. o(i) denotes the set of indices of the nodes
adjacent (connected by a link) to N; in M.

3.3  Simulation algorithm

We have developed a “dynamic” and a “quasi-static” simulator. The dynamic
simulator uses classical numerical integration techniques such as fourth order
Runge-Kutta to solve Eq. 1. However, in many situations encountered in sur-
gical simulation, a simpler algorithm based on quasi-static assumptions gives
realistic results at a much faster rate. We describe this quasi-static simulator
below.

Assumptions. We refer to the nodes of M that are subject to external forces
as the control nodes. We assume that the position of each such node is given
at any time. In our surgical simulation system, the control nodes correspond
to the portions of tissue that are pulled or pushed by surgical instruments
or held fixed by bone structures or clamping tools. The positions of the dis-
placed control nodes are obtained online by reading the positions/orientations
of tracking devices. We also assume that the velocity of the control nodes is
small enough so that the mesh achieves static equilibrium at each instant.
This is a reasonable assumption for soft objects with relatively high damp-
ing parameters, which is the case for most human-body tissues. When these
assumptions do not hold, the dynamic simulator must be used.

Quasi-static algorithm. Under the above assumptions, we neglect dynamic
inertial and damping forces. The shape of M is defined by a system of equa-



tions expressing that each non-control node N; is in static equilibrium:

> Fij(mi, z;) —mg =0. (2)
jeo(i)

Let I be the set of indices of all the non-control nodes of M, and let § be a
constant time step (in our implementation 0 is set to 1/30 s). At each time
t =ko, k =1,2,..., the quasi-static simulator solves Eq. 2 for the positions
of all the non-control nodes. To achieve real-time animation, it returns these
positions within time §. The algorithm is the following:

Algorithm QSS:
1. Acquire the positions of all the control nodes
2. Repeat until time ¢ has elapsed
For every 1 € 1
(@) fi ¢ Zjeow) Fij — mug
(b) z; + z; + af,;

Step 2 computes the residual force applied to each node and displaces the
node along this force. A conjugate-gradient-style method can also be used by
moving the node along a combination of the old and the new forces. Ideally,
the value of the scaling factor o should be chosen as large as possible such
that the iteration converges. This choice typically requires experimental trials.

The timeout condition of Step 2 guarantees that QSS operates in real-time
even as the size of the mesh M increases. Hence, Step 2 is not guaranteed to
reach exact equilibrium at every step, that is, some N;’s will have a non-zero
force f, acting on them after  amount of time. As mesh size increases, each
iteration of Step 2 will take longer, and thus fewer loops will be possible in
the allowed time. By comparing the positions computed by QSS to the actual
equilibrium positions (computed without timeout), we can measure how the
accuracy of the simulation degrades as the mesh complexity increases.

Step 2(b) updates the position of each non-control node using the most re-
cently computed positions of the adjacent nodes, rather than those computed
at the previous iteration of Step 2. This scheme is most advantageous when
the nodes are processed in a wave-propagation order starting at the displaced
control nodes and expanding towards the nodes farthest away from any dis-
placed node. This ordering is computed by a breadth-first scan of the mesh
M:



Fig. 3. Simulation of cutting operations (Courtesy C. Bruyns)

Algorithm NODE-ORDERING:

1. Initialize I to the empty list

2. Mark the displaced control nodes in M to be at level 0

3. For £k =1,2,..., mark the unmarked nodes adjacent to a
node at level £ — 1 to be at level k, and store them in 7,
until all non-control nodes have been marked.

The displaced nodes may be arbitrarily distributed over the mesh. The out-
come of NODE-ORDERING is a list I of nodes such that if index i appears
before index j in I then the level of IV; is less than or equal to that of IV;. QSS
processes the nodes as they have been ordered in I.

Node ordering enables another major computational savings. During an iter-
ation of Step 2, if the positions of all the nodes at some level £ are modified
by less than a small pre-specified amount, then the algorithm stops propagat-
ing the deformation further. In this way, the number of levels treated at each
iteration adjusts automatically. This computation cutout is especially useful
when object deformations are local.

While QSS is being executed, any change in the set of displaced nodes only re-
quires re-invoking NODE-ORDERING to compute a new ordered set I. This
set normally changes rarely (when nodes are grabbed or released), and since
NODE-ORDERING is a simple breadth-first scan of the nodes, calling it adds
a negligible computational cost to the simulation. Similarly, the mesh’s topol-
ogy may change at any time. For example, in Figure 3 cutting operations are
being performed. Links are removed from the mesh as they are crossed by the
scalpel, so that the mesh used by QSS changes frequently. (In principle, such a
cutting operation violates assumptions made above, and a dynamic simulator
should be used. Nevertheless, QSS, which was used to produce Figure 3, gives
realistic results.)

Models. The vessels in our simulation are modeled as double-hulled cylin-
ders, with the inner and outer cylinders representing the thickness of the ves-
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Fig. 4. Forceps deforming severed vessel

sel. Each cylinder is modeled by several layers of nodes, with the layers evenly
spaced, and each layer consisting of several nodes evenly spaced around a
circle. Each node is connected by deformable links to its neighbors within a
layer and in neighboring layers. There are also connections between the inner
and outer cylinders, which provide torsional stability, preventing the vessel
from twisting excessively around its long axis. One end layer of each vessel is
fixed in space, representing the fact that the vessels are clamped down during
surgery, and only a portion of their length can be manipulated. We set all
masses m; = 1, and we used trial and error with subjective feedback about
the quality of deformations to set k = 50 for the stiffnesses of springs within a
layer and k£ = 100 for springs connecting adjacent layers. This trial and error
process was done under the direct supervision of a microsurgeon. Figure 2a
shows a smooth-shaded vessel and its underlying links. As the user displaces
individual nodes of the vessels, the quasi-static algorithm described above is
used to calculate the deformation. Figure 4 shows some examples of deforming
the vessels with forceps. Gravity is implemented as an external force that can
be either off or on, and in these figures it is off, because the most interesting
deformations are caused by the user displacements.

Performance evaluation. The above algorithms are written in C++ and
were tested on one 450 MHz processor of a Sun Ultra 60 workstation with
1 GB RAM. To address visual realism, we asked surgeons to verify that the
deformations were similar in shape and velocity to those encountered in clinical
operations. Figures 4, 7, and 8 show such deformations.

We did other experiments to quantitatively evaluate the performance of QSS.
In particular, we created a regular mesh whose nodes form a rectangular lat-
tice. Each node is linked to its neighbors in the x, y, and z directions. It is
also diagonally linked to neighbors in the zy, xz, and yz planes. All links are
given the same constant stiffness. Our meshes ranged from a 3x3x3 box (27
nodes and 64 links) to a 20x20x20 box (8000 nodes and 66120 links).
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Given one such lattice mesh, we fix the nodes of an arbitrarily chosen “bottom”
face, and displace the middle node of the top face upwards by one unit. We
then run QSS, but instead of running Step 2 for a fixed amount of time, we do
a fixed number k of iterations (k = 100, 50, 20, 10, or 5), where an iteration
involves updating f, and x; for all the non-control nodes. We repeat several
times this cycle of displacing the control node (by an additional unit) and
doing k iterations, and after each cycle we record the position of each node.
Errors are computed as the distances between these positions and the actual
equilibrium positions. The equilibrium positions are found by running QSS
until the force on each non-control node is zero.

Figure 5a shows maximum and average errors for the different mesh sizes for
5 consecutive cycles of unit displacement followed by k£ = 10 iterations. We
see that errors increase slightly as the box grows from 27 to 216 nodes, but
then minimally as size increases to 8,000 nodes. The larger boxes have many
nodes which may be moving hardly at all, which contribute to lowering the
average error. However, the maximum error follows the same pattern at about
twice the average error, and remains at most about 10% of the magnitude of
the displacement of the control node for all mesh sizes.

Figure 5b shows maximum error after one unit displacement for different num-
bers k of iterations. It compares QSS with and without the computation cutout
described previously. The plots for two different boxes are shown together, and
we can see that errors are quite low in all cases, even for the largest box and
the lowest number of iterations. When using the cutout, errors do not strictly
drop off to 0 as the number of iterations increases, but the more important
difference is the sharp decrease in the time required per iteration. Table 1
displays the number of iterations that QSS performs while maintaining a 30
Hz update rate, without and with cutout.
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Table 1
Effect of computation cutout on simulation rate

Mesh | Nodes | Edges | Iterations at 30 Hz | Iterations at 30 Hz
without cutout with cutout
6x6x6 216 | 1440 24 24
8x8x8 512 | 3696 9.5 13
10x10x10 | 1000 | 7560 4.6 8
15x15x15 | 3375 | 27090 1.2 7
20x20x20 | 8000 | 66120 0.4 6

These experiments demonstrate that for the objects given, we can reasonably
maintain a small relative error given only 10 or fewer iterations of QSS Step 2
per time interval. Furthermore, the cutout method can complete these itera-
tions in the appropriate 1/30 second, and scale to meshes containing thousands
of nodes with no significant performance penalty.

4 Simulation of the Suture

The suture is deformable but not elastic, so the above deformation techniques
based on mass-spring models are not applicable. Instead, the suture behaves as
a needle and thread, which can stretch minimally if at all, and has a free-form
shape which is affected by gravity and direct contacts. To achieve realistic
deformation, we model the suture as an articulated object: 200 short straight
links are sequentially connected at nodes which act as spherical joints. The
joints allow two degrees of rotational freedom, while the links are rigid and
short enough that the suture shape appears smooth. By keeping the angles
between the first few links fixed, we can model a rigid needle at one end of
the suture.

To model the motion of the suture, constraint-based techniques are used. Any
node of the suture may be constrained by another object in the system. For
example, one node might be grasped by a forceps, and thus its position is
constrained by the forceps. If the suture has pierced through a vessel, a node
will be constrained by the position of the vessel. Finally, if the suture is draped
over another object, nodes will be constrained by that object.

The motion is then calculated in a “follow-the-leader” manner as follows: a
constrained node NV; is moved by the constraining object from Z; 54 t0 T pew.
We then compute the new position ;1 e Of its neighbor N;,; as the point a
distance d along the line from Z; e 10 Zit1.014, Where d is the (fixed) length of
the link connecting V; and N, . The same is done for node N;_;. This motion
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Fig. 7. (a) Suture pulling vessel down, (b) Suture pulling two vessels together

is propagated up and down the suture to N;y1, N;y9, ... and N;_y, N;_o, ...
until the next constrained node or one end of the suture is reached. Figure
6 demonstrates this technique for four links of a suture. For nodes between
two constrained nodes N; and N;, the preceding algorithm will compute two
preliminary results, propagating from N; to N;, and from N; to N;. These
results are averaged to give the final position.

Certain constraints are designated as soft, such as where the suture is piercing
a vessel or draped over another object, whereas the forceps grabbing the suture
is a hard constraint. The distinction is that the suture can slide over and/or
through a soft constraint, changing which node of the suture is constrained. It
may be the case that two constraints move in opposing directions and cause
the suture to stretch between them. In that case, the suture will slide through
a soft constraint to decrease the stretch, but will break if between two hard
constraints (in real surgery, it is not difficult to break the suture by pulling
with both forceps in opposite directions). Additionally, if the suture is pierced
through a vessel and is pulled on both ends, the suture will pull the vessel,
causing it to deform as in Fig. 7a. Figure 7b shows the suture pulling together

12



Fig. 8. (a) Suture wrapped around forceps, (b) Suture colliding with self and vessel
end

the two vessels.

5 Collisions and Interactions

Interaction with virtual tools is a necessary component of any realistic simu-
lator, and has attracted recent attention [17]. Almost all object interactions
depend at some level on collision detection [18]. Grabbing is achieved by find-
ing nodes colliding with the tip of the grabbing object (e.g. forceps). Piercing
the vessel requires finding a collision between the needle edges and a vessel
face. Draping the suture around another object also involves edge to face col-
lisions (Figures 8a and 8b show the suture around forceps and vessel), and
draping it around itself requires edge to edge self-collisions. Other interactions
modeled by the system (although not specifically in the microsurgery simula-
tion) include prodding one object with another (face to face collisions), and
cutting one object with another (edge to face collisions). In the remainder of
this section, we present background on collision detection and a new algorithm
for collision detection among deformable objects.

5.1 Related Work

Research on collision detection between rigid objects has a long history in
robotics, graphics, and solid modeling. Two main families of methods have
been proposed: feature-based (e.g. [19-21]) and hierarchical (e.g. [22-26]). A
feature-based method exploits temporal and spatial coherence in the geometric
model to maintain the pair of closest features. A hierarchical method pre-
computes a hierarchy of bounding volumes for every object. During a collision
test, the hierarchies are used to quickly discard large subsets of the object

13



surfaces that are too far apart to possibly collide. Hierarchies using various
primitive volumes have been proposed. While some volumes allow closer-fit
approximation, they also yield more costly intersection checks. Spheres give
good results over a broad range of objects.

Although each approach has distinct advantages, the hierarchical approach is
better suited when objects are highly concave. The main issue in using it with
deformable objects is that pre-computed hierarchies may become invalid when
objects deform, while re-computing new ones at each collision query would be
too time consuming. Below, we propose an algorithm that does not modify
the topology of the hierarchy representing an object, but only updates the size
and location of the primitive volumes labeling the nodes of this hierarchy. Our
algorithm derives from the one proposed by Quinlan [26] for rigid objects.

Fewer works exist for deformable objects (e.g. [27,28,9,29,30]). The algorithm
in [28] is the closest to ours. It also builds a tree of fixed topological structure.
But this tree is not balanced (which may seriously increase the cost of collision
queries) and its nodes are axis-aligned boxes. The main difference, however,
is in the tree-maintenance algorithm. Unlike [28], our algorithm exploits the
locality of most deformations to minimize the number of node updates. The
algorithm in [30] is specifically aimed at detecting self-collisions of cloth-like
objects, an issue that we have not carefully studied so far.

5.2 Quinlan’s algorithm

Sphere tree of an object. Let A be a (rigid) object represented by its
triangulated surface S. Quinlan’s algorithm covers every triangle in S with
small spheres of predefined radius € and constructs an approximately balanced
binary tree T that has one leaf per sphere of radius €. Each other node N in
T is a sphere that encloses all the leaf spheres of the sub-tree rooted at N. T
is constructed by recursively partitioning the set E of leaf spheres contained
in a sub-tree (initially the set of all leaf spheres in 7) into two subsets FE;
and FE5 of equal cardinality, until each subset contains a single leaf sphere.
The partitioning operation tries to minimize the intersection and the radii of
the two spheres that respectively enclose the leaf spheres in F; and FE,. A
technique to partition the set E first computes the box that is aligned to the
object’s coordinate frame and contains the centers of the leaf spheres in F. It
then divides the leaf spheres along the longest side of this box.

Collision detection. Let 77 and 75 be the respective sphere trees of two
(rigid) objects A; and As. A collision query is specified by the position and
orientation of A; relative to A,. Collision detection is performed by a depth-
first traversal of 77 and 75, during which pairs of spheres from the two trees
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are examined. If two intermediate spheres have null intersection, then the leaf
spheres they contain cannot possibly intersect, and the traversal is pruned;
otherwise the children of one of the two nodes are examined. If two leaf spheres
intersect, the two triangles tiled by these spheres are explicitly tested for
collision. For N; and N,, the root spheres of 7} and 75, respectively, the
following recursive algorithm either finds the colliding triangles and returns 1,
or returns 0 if there is no collision:

Algorithm COLLISION(N;, N,):
1. If N; and Ny have null intersection then return 0
2. Else
(a) If both Ny and N, are leaf spheres then test the corresponding
two triangles for collision; return 1 if they collide and 0 otherwise
(b) If N, is smaller than N; then switch N; and N
(¢) If COLLISION(Ny,left-child(/NV;)) = 1 then return 1
Else if COLLISION(Ny,right-child(N3)) = 1 then return 1
Else return 0

5.8 Application to deformable objects

To use COLLISION, we must maintain the sphere tree of every deforming ob-
ject. We propose a new sphere tree whose balanced structure is computed only
once. When an object deforms, the structure of its tree remains fixed, i.e., no
sphere is ever added or removed; only the radii and positions of some spheres
are adjusted. Moreover, the maintenance algorithm performs adjustments only
where they are needed.

Construction of a sphere tree. Let S be the triangulated surface of a
deformable object A in some initial shape. The pre-computed tree T for A
differs from the one in [26] in two ways:

(1) Instead of tiling the triangles of S with small equal-sized spheres, we assign
each triangle a single leaf sphere of T' — the smallest sphere enclosing the
triangle. Hence, when S undergoes a deformation, the number of leaf spheres
of T" remains constant. Moreover, updating the radius and position of the
sphere enclosing a deforming triangle is faster than computing a new tiling.

(2) The approximately balanced structure of 7" is generated in the same way, by
recursively partitioning the leaf spheres into two subsets of equal size. But the
radius and position of each non-leaf sphere is computed to enclose the sphere’s
two children. This yields a slightly bigger sphere than the one computed to
contain the descendant leaf spheres, but the computation is much faster.

Collision detection. COLLISION is used unchanged.
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Maintenance of a sphere tree. Each deformation of one triangle of S
requires adjusting the radius and position of the corresponding leaf sphere
and of all its ancestors up to the root of 7. Our algorithm performs those
changes only prior to processing a query. The operation is done bottom-up,
using a priority queue @ of spheres sorted by decreasing depths in 7T'. @ is
initialized to contain all the leaf spheres that enclose triangles that have been
deformed since the last update of T'. It is then used as follows:

Algorithm MAINTENANCE:
While () is not empty do
1. w <« extract(Q)
2. Adjust the radius and position of w
3. Insert(Q,parent(w))

The only spheres that are modified are those that contain at least one deformed
triangle. Each such sphere is modified only once, even if it contains several
deformed triangles.

Clearly, MAINTENANCE will perform better when deformations are local
than when they are scattered throughout S. More specifically, a local defor-
mation of S affecting £ < s triangles, where s is the total number of triangles
in S, results in a total update time of O(k + log s). Instead, if the k triangles
are spread over the leaves, this cost can be O(klogs). However, in the worst
case, if all triangles have changed shape, the maintenance operation only takes

time O(s).

5.4  Performance evaluation

The above algorithms were implemented in C++. We give results of exper-
imental performance tests on an Intel 400-MHz Pentium II processor, with
256-MB memory and running Windows 2000.

Sphere tree construction. The pre-computation of an object’s sphere tree
need not be particularly efficient, since it is done only once per object, prior
to any simulation. Our software runs in time proportional to the number of
triangles and takes on the order of 0.1 milliseconds per triangle.

Sphere tree maintenance. To evaluate MAINTENANCE we considered a
surface S initialized to a flat horizontal 100x100 grid, with each square split
into two triangles. Hence, S consists of 20,000 triangles. To create a local
deformation of S, we pick a vertex V', a radius p of deformation between 1
and 10, and a direction (upward or downward), all at random. Each vertex
within distance p of V' is translated by a distance inversely proportional to its
distance to V. To create scattered deformations of S, we repeat this process
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Fig. 9. Dark curve: query time vs. separating distance for non-colliding objects,
Light curve: query time vs. penetration distance for objects already in collision

several times. After computing the sphere tree for the flat surface, we ran
MAINTENANCE to update this tree after various deformations. We mea-
sured a running time for MAINTENANCE of 0.06 milliseconds per deformed

triangle.

Collision queries We considered two objects. One is modeled as a flat square
mesh of 8 by 8 units tessellated with 8,192 triangles. The other object is a
spherical ball, 2 units in diameter and tessellated with 1,024 triangles. We
moved the ball along a straight path though the center of the square mesh,
from 64 units separation to one unit penetration. The query times for different
relative positions of the objects are shown in Figure 9. When the objects are
far apart, each query is extremely fast and takes on the order of tenths of
a millisecond. When they get closer than 1 unit together, query time grows
quickly (dark curve) to an asymptote of just under 60 milliseconds, as more
spheres in the trees had to be examined to rule out a possible collision. Once
the objects are in collision, the query time drops sharply to under 10 millisec-
onds (light curve). This sharp drop suggests that a timeout could be imposed
on COLLISION, with a relatively minor risk of not detecting a collision once
in a while. We did similar experiments after deforming the two objects and
updating their sphere trees using MAINTENANCE. We observed no signif-
icant degradation of the query times, even for rather large deformations of
the objects. The unintuitive explanation of this result is that the topology of
the sphere tree is largely shaped by the adjacency relation between triangles,
which itself remains invariant under any deformation of the object.

Re-implementation After the above testing, the code was implemented
as one module in our overall system. One change allows a sphere to bound
features which are not triangles, such as the individual links of the suture.
Another change allows the reporting of all pairs of colliding features, rather
than just one.
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6 Conclusion and Future Work

We have designed new fast algorithms for simulating the deformations of soft
objects and detecting collisions among deforming and rigid objects. These al-
gorithms take advantage of several characteristics of surgical training: (1) vi-
sual realism is more important than accurate, patient-specific simulation; (2)
most deformations are local; (3) human-body tissues are well damped; and (4)
surgical instruments have relatively slow motions. Our simulator exploits these
characteristics to solve quasi-static equations using a “wave-propagation” tech-
nique that has an automatic computation cutout when deformations become
insignificant. The collision algorithm exploits deformation locality to minimize
the number of updates in the hierarchical representations of the deforming ob-
jects.

These algorithms have been integrated into a virtual-reality system for sim-
ulating the suturing of small blood vessels. This system has been used by
plastic and reconstructive surgeons in our lab and at various exhibits, and
subjective feedback in the form of questionnaires distributed at the year 2000
annual meeting of the American Society of Plastic and Reconstructive Sur-
geons deemed the simulation realistic and potentially very useful. One next
step would be experimental and clinical verification, by having surgeons who
are learning the procedure use this tool, and assessing the quality of their
virtual repairs through measurements such as angle and position of vessel
piercing. We could then try to establish quantitatively how practicing with
the simulator affects future quality of real vessel repairs. Another step would
be to quantitatively study the visual realism, by comparing the simulation
with video of real surgeries, using computer vision or other techniques.

We are also investigating other surgical applications. While force feedback is
irrelevant in microsurgery, it is critical in many other applications [4]. QSS can
compute the force applied to each displaced control node in an elastic mesh.
But it does not achieve an update rate compatible with haptic interaction
(roughly 1000 Hz). To connect our simulator to haptic devices, we are de-
veloping fast techniques to interpolate between forces computed by QSS [31].
The elastic mesh model does not allow the explicit representation of incom-
pressibility constraints often encountered in human-body tissues. A technique
proposed in [32] to overcome this limitation is to apply artificial corrective
forces to surface nodes to keep the object’s volume approximately constant.
Extending our collision-detection module to efficiently detect collisions of an
object with itself is another short-term goal.

There are many other issues to consider, such as the simulation of knot-

tying [33], the detection of mesh degeneracies (e.g., when one link crosses
another), and the modeling of collision responses. As more issues are ad-
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dressed in a simulation system, more algorithms will run concurrently, and
their efficiency will become even more critical.
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