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ABSTRACT

A scientific earth satellite which is guided in a drag-free
orbit by a shielded, free~falling proof-mass has been proposed by a number
of investigators. The outer satellite, which completely encloses the
proof-mass, has a jet-activated translation-control system that causes it
to pursue the proof-mass such that the two never touch. This thesis

examines the feasibility and some of the applications of this scheme.

The complete system equations of motion are derived, and the
various special cases which apply for different missions and types of
attitude control are delineated. 1In addition, a set of linear equations
for both translation and libration of a satellite in orbit are derived.

These represent a combinec version of the linear form of Hill's Lunar

Equations and Lagrange's Libration Equations.
D oERee e s

The control and guidance system is analyzed with respect to
system performance and gas usage requirements, and an exact solution of
the fuel consumption integrals is presented in closed form for a linear

pressure-scale-height model of the atmosphere.

A linear-feedback control-synthesis method is developed for a
class of even-ordered dynamical plants which possess a property that is
defined as "frequency symmetry." This method allows a simple linear-
feedback law to be computed which is stable for all positive values of
the contrecl gain so that it is useful for the synthesis of contactor

control systems.

The principal trajectory errors which are due to vehicle gravity,
stray electric and magnetic fields, and sensor forces are investigated. It
is found that drag and solar radiation pressure forces may be effectively
reduced by three to five orders of magnitude for 100 to 500 statute mile
orbits, and that the deviation from a purély-gravitational orbit may be
made as small as one meter per year. Such a satellite may be used to make

precise measurements in geodesy and aeronomy.
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Finally, if a spherical proof-mass is spun as a gyroscope, its

T — -

random drift rate would be very small because all.the drift-producing

Egﬁggggwwglpp_are associated with the support forces are eliminated. The
sources of gyroscope drift which are not associated with support forces
are analyzed, and it is found that the random drift would probably be
less than 0.1 second of arc per year. Such a gyroscope could be used to
measure the effects which would ultimately limit the performance of the
best terrestrial or satellite-borne gyroscopes, and it might also be good
enough to perform the experiment proposed by G. E. Pugh and L. I. Schiff

to test general relativity.
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INTRODUJCTION

A. STATEMENT OF THE PROBLEM

The term "drag-free satellite” as used in this thesis will refer to
a system consisting of a small, spherical proof-mass or ball inside of a
completely enclosed cavity in a larger satellite. The outer satellite
has a jet-activated translation-control system that causes it to pursue
the proof-mass such that the two never tcuch. Since the cavity is closed,
the ball is shielded from gas drag and solar-radiation pressure; and, in
the ideal case when the effects of other disturbing forces are negligible,
the orbit of the proof-mass will be determined only by the forces of
gravity. The only disturbing forces which can act on the proof-mass will
arise from the satellite itself or from any interactions which can pene-
trate the shield. Forces due to the satellite can arise from vehicle
gravity, stray electric and magnetic fields, gas in the satellite cavity,
and the interaction of the position sensor.

Several possible uses or missions for such aisatellite have been

proposed.

1. GEODESY

The departure of the figure of the earth from a perfect sphere intro-
duces higher harmonics in the earth's gravitational pqtential. These
harmonics perturb the orbit of an garth satellite, and it is possible to
measure the harmonics of the earth's gravitational field by observing the
changes in a satellite's orbit elements. However, the atmosphere alsc
perturbs the satellite orbit, and this effect must be corrected for in
accurate geodetic calculaticns based on measurements of satellite orbits.
The rather elaborate techniques for making these corrections are explained
in detail by Kaula (1). A drag-free satellite would remove the necessity
of correcting for the uncertainties of atmospheric drag and soiar-radiation
pressure in satellite observations of the higher harmecnics of the earth's
gravitational field. 1In addition, sustained operation wculd be possible
at lower altitudes where the effecfs of higher harmonics are stronger and

where the orbits of conventional satellites are quickly dissipated.
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2. AERONOMY

Conventionally, upper-atmosphere density determinations (2)
are made by observing the change in the satellite period over several
orbits and essentially determining the average density over the entire
time and altitude range. This type of data is not as useful in studies
of the upper atmosphere as instantaneous density measurements. By
contrast, the proof-mass in the zero-g satellite essentially constitutes
a very sensitive accelerometer which could be used to measure the in-
stantaneous atmospheric drag (plus radiation pressure) at any altitude.

For a spherically-shaped satellite, the drag coefficient,

CD’ is 2 in free molecular flow at high Mach numbers, regardless of
the accommodation ccoefficient; andvthe calibration of the instrument
would not depend on knowing the accommodation coefficient as does, for
example, Sharp's density gauge (3). The actual drag forces may be
inferred from the jet-plenum-chamber temperatures and pressures, or
even more precisely from the relative motion between the proof-mass
and the satellite, or from strain-gage measurement of the forces
between the jets and the satellite. The latter technique is feasible
because the jet forces are typically one to three orders—-of-magnitude
larger than the drag force, due to the fact that the jets are on for

only a small fraction of the total time.

3. PRECISION GYROSCOPES

If the spherical proof-mass is spun at a very rapid rate,
it becomes a gyroscope. Since there are no support forces, only ex-
tremely small disturbing torques are present. These will arise from
gravity-gradient effects, electromagnetic interactions, relativity
effects, and read-out torques. It appears possible to construct in
this way a gyroscope whose random drift rates would be as low as 0.1
second oanrc per year. Such an instrument would be very useful to
study all the effects, not connected with the support forces, which
would ultimately become important in the construction of extremely
low-drift gyroscopes, and it would be possible to do this many years in
advance of the time when it might be possible to construct such instru-
ments on earth.
SEL-64-067



4. THE PUGH-SCHIFF GYROSCOPE EXPERIMENT

L. I. Schiff (4) has shown that, while Newtonian theory
predicts no precession of the spin axis of a spherically-symmetric
gyroscope in free-fall about the earth, General Relativity predicts
a geodetic precession arising from motion through the earth's gravi-
tational field, and a Lense~Thirring precession due to the difference
between the gravitational field of a rotating and nonrotating earth.
The geodetic precession of a gyro in a satellite is about 7 seconds
of arc/year and the Lense-Thirring precession is about 0.1 second of
arc/year. The design and preliminary development of this experiment
in a satellite has been under way at Stanford University for about

two years, and is described by Cannon in (5).

5. TIME DEPENDENCE OF GRAVITY

R, H, Dicke (6) has suggested that such a satellite could
be used as a clock whose rate would depend on the universal constant
of gravity, G. Such a clock could be compared to precision atomic
clocks on earth. Any change in the rate of the gravitational clock
could be interpreted as a change in the "constant" G. The value of
G as a function of time has important consequences in the theories
of relativity. The tracking accuracies necessary for this experiment
are dictated by the very small size of the effect (about one part in
1010 per year), which yields an accumulated lag in the satellité's
position of about 0.2 second of arc/year. This is discussed in (7)

in detail.

6. ORBIT SUSTAINING

For certain missions, it is desirable to operate a satellite
at very low altitudes. Such a satellite would quickly re-enter if
its drag were not counteracted in some manner. Rider (8), Bruce (9),
and Roberson (10) have discussed various ways of doing this. The
free~falling ball could be used to control thrust such that the satel-

lite would remain in a purely=-gravitational orbit until the gas supply
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is exhausted. This technique would also be especially useful to con-
trol precisely the entry points of satellites and of large, potentially-
dangerous, spent booster stages. It could also be used to establish a
true equiperidd orbit (where the orbit dips very low into the atmosphere)

for rendezvous practice,

7. ZERO-G LABORATORIES

It has been proposed that the central parts of manned space
stations be used as zero-g laboratories. For experiments of long
duration, such a drag cancellation scheme would be necessary tolprevent
the apparatus from contacting the laboratory walls.

The problem which this thesis will consider is the analysis and
design of suitable control systems for the various drag-free satellite
missions, and the analysis of the performance of the drag-free satellite

in its various applications.

B. PREVIOUS RESULTS

A system similar to the drag-free satellite was first used by
researchers who investigated the state of weightlessness (11). Air-
planes were flown in weightless trajectories by keeping a small object
centered in free space in the cabin. The same system has also been
suggested as a guidance scheme to cause ballistic missiles to re-enter
along a path which is undisturbed by aerodynamic forces. Ericke (12)
also has suggested launching a half-airplane half-satellite which would
fly at altitudes between 90 km and 180 km and use some thrust to cancel
drag. He calls such a vehicle a "satelloid" and points out that it may
also fly at sub=circular velocities using aerodynamic 1ift to sustain

it,

The first suggestions of this scheme, purely in connection with a
satellite; apparently were made independently from 1959 to 1961 by a
number of investigators. Martin Schwarzschild (6) at Princeton, R.A,
Ferrell (in an unpublished report), G. E. Pugh (13), and Gordon J. F,
MacDonald (14) at U.C.L.A., have proposed various formé of the drag-free
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satellite. It was also suggested independently by C. W, Sherwin of
Aerospace and by the author at the Stanford Conference on Experimental
Tests of Theories of Relativity in July 1961 (15).

There has been no previous attempt to write the equations of
motion of the drag-free satellite system, but the analysis of these
equations rests in part on the recent efforts to apply the linearized
version of Hill's lunar equations to orbit mechanics and on the use of
a complex variable formalism in the theory of symmetric rigid bodies.

In 1878, G. W, Hill wrote the equations of motion of the moon in
a rectangular coordinate system centered at the earth and rotating at
the sun's mean orbital rate. Hill's equations included the nonlinear
gravitational attraction between the earth and the moon, and it was
not until 1957 that Wheelon (16) (and independently Geyling (17) in
1959) realized that the linear version without the gravitational terms
was a very useful way to calculate 6rbit'partials and perturbations.
This approach has also been applied by Eggleston (18) and Tempelman (19)
to the problems of rendezvous and guidance. These linearized equations
are used to analyze the effect of acceleration errors in Chapter 1V,

One of the most important modes of operation of the drag-free
satellite is as a symmetric spin=-stabilized vehicle. It has been known
for a long time that Euler's equations and the small-angle attitude
equations for a symmetric body were most conveniently represented in
complex form. This method has been applied to spinning missiles in .the
atmosphere by Nelson (20) and Kanno(2l) and to space vehicles by
Leon (22) and Freed (23). Freed has worked out the basic attitude~-
control equations for strapped-down inertial guidance of a spinning
space vehicle including the basic requirement of filters tuned to the
spin speed, and this work has been extended by Reeves® to a space
station whose equations of motion include cross product of inertia

terms and which uses a control-moment gyro to apply control torques.

%
Reeves, E. 1., Space Technology Laboratories, Inc., Redondo Beach,
Calif. Stanford University Flight Control Seminar, 1963,
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MacDonald (14) has made a few numerical calculations of the fuel
lifetime of a drag-free satellite. These results are tied to specific
booster and launch configurations. Bruce (9) has computed the fuel
lifetime for a circular orbit, and Roberson (10) has presented a tech-
nique for computing the jet firing or equivalently, the control switch-
ing times for a different kind of orbit-sustaining technique.

Since the drag-free satellite tarwnslation+centrol sysiem oper=-
ates in a limit cycle at the origin most of the time, it is important
to analyze this mode of behavior. Gaylord (24) and Dahl (25) have
published calculations of limit-cycle behavior for l/s2 type plants.
Gaylord presents a control synthesis based on the use of minimum impulse-
bit, logically-controlled pulses, and Dahl considers the effects of very
specially~-shaped switching surfaces at the origin on fuel consumption
in the presence of external torques.

Precision spherical-rotor gyroscopes have been under development
for several years in a number of university and industrial laboratories,
most notably Minneapolis-Honeywell, Autonetics, University of Illinois,
Jet Propulsion Laboratories, General Electric, and General Motors.
These researchers were interested in gyroscopes with random drift rates
of the order of 10-2 to 10-4 degrees per hour; and consequently,
they were concerned primarily with torques caused by rotor imbalance,
magnetic eddy-currents, electric or magnetic support fields acting on
a nonspherical rotor, and poor vacuum. The unsupported mode of opera-
tion of a spherical free-rotor gyroscope in the vacuum of outer space
leaps over the above difficulties and brings into importance a host of
much smaller torque-producing effects., Of these only the effects of
gravity-gradient and magnetic eddy-current torques on spherical rotors
have been previously discussed in the literature. Cannon (5) derives
the magnitude of the drift rate caused by gravity-gradient torque on
an almost-spherical-rotor gyroscope. Smythe (26) has given the basic
equations for magnetic eddy-currents in sphericﬁl shells and solid
spheres, and Houston (27) and Alers (28) have computed this torque in
detail for a solid spherical rotor. However, they did not include the
term which is the dominant cause of eddy-current drift for a silicon
free-rotor gyroscope.

SEL-64-067
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C. OUTLINE OF NEW RESULTS

In Chapter 1 the author derives the basic 9-degree—of~freedom
dynamical equations of the drag-free satellite system and delineates
the various special cases of these equations which apply to different
kinds of satellite mission and attitude control. The equations of
motion take into account the important fact that the center of mass,
the center of gravity, the point where the proof-mass position sensor
reads zero, and the point where the gravitational attraction of the
vehicle is zero are not coincident. In addition, the linearized orbit-
perturbation equations of Hill (29) and Wheelon (16) and the small~-
amplitude attitude equations of Lagrange (30) Roberson (31), and
DeBra(32) are combined and extended to include the complete 6-degree-
of-freedom, small-amplitude linearized equations of motion of a librat-
ing rigid body in orbit. These equations exhibit the coupling between
orbit and attitude motions in an explicit manner and allow a quantitative
evaluation of the effect of the attitude motions on the orbit. It is
necessary to analyze the effects of the attitude motions on the orbit
because the close proximity of the satellite and proof—-mass might make
even small motions important. It turns out, however, that these effects
are negligible even for this application except for certain very special
resonance conditions,

In Chapter I1I the author analyzes the basic problems associated
with contactor control of a drag-free satellite with perfect attitude
control to an inertial reference. The drag force on the satellite is
computed from the linear-scale-height model proposed by Groves (33),
Jacchia (34), and Smelt (35). An analytic technique is presented which
makes it possible to solve the fuel-lifetime integrals in closed form,
and the fuel lifetime is calculated for a typical drag-free satellite.
It is shown that the dynamics of the plant do not affect the minimum fix
fuel consumption as long as the control force always opposes the drag
force. Typical 1limit cycles are presented for various orbits, and a
rather interesting control is discussed which employs adaptive limit-

cycle-size.
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In Chapter 1I1 the author attacks the problem of the translation
control of a drag-free satellite in the complete absence of attitude
control. The intuitive concept of considering the plant in an inertially-
nonrotating reference frame leads to a simple synthesis of a linear,
time-varying control law. This concept can be generalized to arbitrary
2nth-order plants which are derived from ntﬁ:brder plants by a
transformation which is analogous to the transformation into an inertial
reference frame. In the special case that the new 2nth-order plant
has constant coefficients, it is possible to plot the locus of the roots
of its characteristic equation by shifting the root locus of the cor-
responding n}p:order prlant along the plus and minus j axis in the
s plane. This technique is then applied to the attitude control of a
symmetric, spinning, rigid body as an example. The symmetric rigid
body is described by a fourth-order plant and the corresponding second-
order plant is the harmonic oscillator. There appears to be no intuitive
interpretation of the transformation between these two plants as was
possible with the drag-free satellite translation control.

In Chapter IV are analyzed the effects on the trajectory of the
drag-free satellite of the perturbations which act on the proof-mass.
The basic technique is to extend the results of Wheelon (16) and
Tempelman (19) to include two interesting types of forced motion. The
advantage of this approach is that it presents the results of linear
perturbation analysis in a very simple and intuitive manner. Every
force which could perturb the motion of the proof-mass is listed, and
an expression for its magnitude is derived. The numerical values of
these perturbations are presented for a typical drag-free satellite.

In Chapter V the author considers the sources of random drift for
an unsupported gyroscope and concludes that drift rates less than 0.1
second of arc/year are possible. An exhaustive list of torques is com-
puted based on the approximation that the rotor is not a perfect sphere,
but rather is slightly ellipsoidal in shape. In addition, all of the

torques which depend on atomic or crystalline anisotropy are computed.

SEL-64-067 -8 -



CHAPTER 1
DERIVATION OF THE DYNAMICAL EQUATIONS

The object of this chapter is to derive the relevant equations
of motion which will be used
1) In the analysis and synthesis of the control system,
and
2) In the computation of the magnitude and effects of
the system errors.

A particle moving in empty space under the influence of gravity
alone is dynamically in balance between gravitational and inertial
forces. Thus a reference frame whose origin is at the particle is
"locally inertial” at its origin in the sense that an accelerometer
located exactly at the origin would read zero. If, in addition, the
reference frame is nonrotating with respect to inertial space, it is
reasonable to expect that in this frame the equations of motion of a
particle which is "close"” to the origin would be very close to the
form that Newton's laws assume when they are written in an inertial
reference.

The above concept provides the intuitive framework into which the
exact equations of motion of the drag-free satellite will be cast.
Conceptually, the center of the spherical proof=-mass or ''ball’ would
correspond to the origin of the "locally inertial" frame if there
were no nongravitational forces acting on the ball. Since, however,
there are important nongravitational forces which act on the ball,
the approach‘of this chapter will be to derive the relative equations
of motion between the ball and the satellite. The attitude motions
of a perfect spherical proof-mass are completely ignorable (except in
the case of the unsupported gyroscope, which is treated in Chapter V).
Thus, the complete drag-free satellite dynamical system has six trans-
lational and three rotational degrees-of-freedom. By deriving the
differénce or relative equations of motion, it is possible to reduce

the entire system to that of a point mass in either a rotating or
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nonratoting reference frame with unaccelerated origin., 1In keeping with
this viewpoint, certain small terms are included on the right-hand side
of the equations as perturbing forces, even though they are not inde-

pendent terms.

A. GENERAL EQUATIONS OF MOTION

Figure 1~-1 shows the geometry for a drag~free satellite with a
proof-mass in free-fall and with three-axis position control. The
center of mass and the center of gravity of the satellite do not coin-
cide in general; and, in addition, the center of gravity is not even
fixed in the body but is a function of body orientation. Furthermore,
although the design objective would be to obtain coincidence of the
control center (the point at which the position indicator reads zero
or, equivalently, the point to which the control system tries to drive
the ball), the center of mass, and the point of zero self—gravity,*
due to various uncertainties in manufacture these points will not be
the same and the variations cannot be neglected.

The equation of motion of the proof mass is™*

(1-1)

=]
M
|
+
+
5]

B B~ FeB* FsB * Faswg

*

A point of zero self-gravity or Z.S.,G. point is a point where all
of the gravitational forces due to the satellite alone sum to zero.
See Chapter 1V,

%

Notation:

1) Position Vectors: Fig. 1-1 shows the position vectors used in
this analysis., The first subscript indicates where the vector begins,
and the second subscript shows where the vector terminates. The various
points are labeled in Fig. 1-1 and are defined in the list of sub-
scripts. The vectors r__, r.., and r will be abbreviated to
T ; and ; respec%gvelysbecause tggy occur so often.

B’ °s! C

2) Forces: The definition of each force is given in the list of
symbols. The first subscript indicates the source or cause of the
force, and the second indicates the objﬁct the force acts upon or the
position where it acts, For example, F B is the force of gravity act-
ing on the ball, and F is the control force applied to the satellite.
The first subscript is omitted if the source of the force is unspecified.

3) Differentiation: The symbol * =d'/dt and © = d/dt will
denote the time derivatives of a vector as seen by an observer in the
primed (i.e., inertially fixed or nonrotating) coordinate system and the
time derivative of a vector as seen by an observer in the rotating (i.e.,
body fixed) coordinate system.

SEL-64-067 - 10 -
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FIG. 1-1. DRAG-FREE SATELLITE GEOMETRY

- 11 - SEL-64-067



where the subscripts B,G,S,P, and C stand for ball, gravity, satel-
lite, perturbation, and control respectively; and the equation of

motion of the center of mass of the satellite is

gs ¥ Fps * Fos " Fsp - (1-2)

A - -
Since rB =r

the equation of motion of the ball with respect to a reference frame

st ;sB’ Egs. (1-1) and (1-2) may be combined to yield

fixed in the vehicle:

my Fop =<_F’GB - ;E—Fbcs>+(l ¥ ?\)_F’SB

S S

* <-§PB B ;E-F'ps\) - I?;'?cs :

(1-3)

Notice that when.the equation is written in this form any forces applied
to the satellite appear to be applied to the proof-mass through the
scale factor (-mB/mS). It will often be convenient to speak of "apply-
ing a force to the proof-mass," and this terminology will mean ‘>
-GmB/ms)fg whenever the force is actually applied to the satellite.
While the vector T

SB
respect to the satellite mass center, the position-sensing apparatus

describes the position of the ball with

- - e -
. . - +
in the satellite actually measures the vector T where Tsp Tgeo Tor

i.e., it measures the position of the ball with respect to the control
center. The vector ?SC will be assumed to be fixed in the satellite;
or, equivalently, it will be assumed that the relative motion between
the center of mass, S, and the control center, C, during the expul-
sion of gas, will be so slow and so small that it may be neglected in
the present study of dynamic behavior.
With this assumption, the equations of motion now become
> Eg'i = <?- g, O - )

.
- ¥ - B3 2
mg(Fgot To) = &g + (1 + mg /) 'se Y \'m T m  'ps) T g

¥ (1-4)
S cs
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where

AFG"C?GB- E;ch>'

of the satellite,*

s!
::' ' O—i -] .
- - - - - - - - - - .
Tgo + Yo = T * 2ws X rg + Wg x.(rc + rSC) + W X [wS X (rc+ rSC)], (1-5)
and the relative translation equations written in terms of the vector,
;é, measured by the position sensor are
?; [ - . .
- - - - - ->
mpl To + 20X Tt wgX T + Bgx (WX T)) = {mB[— Iﬁsx 'r’sc- ZSSx(T»’Sx ?SC)]
- i) - - g .,
+ — - — - —— -
+ AF . + <1 ~ sg ¥ (Fpg = FPS)} — Fog - (1-6)
] ] S .
For convenience a single symbol, ?D’ defined to be equal to the sum

of the terms in the braces will be used when this equation is used
later.

Equations (1-1) and (1-6) are the basic equations of motion of
the drag-free satellite. Equation (1-1) is the only one that is needed
to compute the satellite trajectory since it will be assumed that the
translation-control system constrains the satellite to follow the béll.
It will be discussed in Chapter 1IV. Equation (1-6) is the dynamical
plant which the translation-control system must control, It deter-
mines the control-system requirements and will be discussed in
Chapters II and 111,

*
See footnote on page 10. Note also that ' = ° + w_. X.
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B. THE FORCING TERMS AND THEIR RELATIVE MAGNITUDES

Since the satellite is constrained by the translation control
system to follow the proof-mass, the orbit of the satellite will be
determined solely by Eq. (1-1). The proof-mass will be disturbed
from a purely-gravitational orbit only by the forces ?SB and ?PB'

These are shown in Table 4-1, page 136, to correspond to accelerations

~11
which are less than 10 1 ge.*

The terms on the right-hand side of Eq. (1~6) determine the rela-~
tive motion between the satellite and the ball, and their magnitudes
are important only in determining the requirements on the translation-
control system,

If one considers only the gravitational attraction of a spherical

earth
A oy BK Tes*TEB ~ TBK
A?G = ?GB - Eg Fog = Gupmy 3 - 3 — (1-7)
TEB EB
Gm r
o, - EmBsBK (1-8)
TEB
'3

It is not correct to conclude immediately from these numbers
that the drag is only cancelled to 10-11g ~ since the effect of
FSB and ?PB on the ball's orbit are notethe same as the drag.
This is true because the drag always acts along the velocity vector.
See the section on System Errors (pp. 126 to 1Z8&).
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>
&
[#]
H
w
x
1

10 -1
10 to 10 1 . (1-9)

|
|

g"‘l

Ze
ge ge

o

Likewise, from Table 4—1,* page 13Q, since mB/'mS << 1 and since it

is assumed that the control system can maintain Iy < 0.1 dl’
1 "B -11
—— + — F -
n_ 1 ng > SB « 10 g, - (1-10)
Finally,
-F
1 | = "8 = DRAG -4 -8
_ F - — F x ——— =2 10 to 10 g . (1-11)
me PB mg PS mg e
Thus, for low orbits the aerodynamic drag force, FDRAG’ is the

dominant translation disturbance; and in order that the control keep

the ball centered, the average control force must equal the average

F ' F (
cs = DRAG ' 1-12)
av av

=

may be measured by observing cha

drag force,

so that ?DRAG

C. TRANSLATION CONTROL EQUATIONS FOR VARIOUS TYPES OF ATTITUDE CONTROL

1. THREE-AXIS ATTITUDE CONTROL TO AN INERTIAL REFERENCE

If the drag~free satellite possessed perfect attitude con-

trol to an inertial reference, Z% and :% would be identically

zero; and Egq. (1-6) would become

*
The expressions in Table '4-1 are derived in Chapter IV,
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PB mg PS mg (o]

o9 - mB - -
mTo = OF, + (1 — ) Fop + (F . B3 ) S BF . (1-1®)
Equation (1-13) is equivalent to three scalar equations of the form

F
e 1 Iy Ug CSx
Xc = mg [%FGx +( 1+ ) FSBx + (FPBx - = FPij} - = fDx+ fcx.(1-14)

fg S S

In order for these equations to be valid, the attitude control must act

L d

such that the neglected terms in w_ and B are much smaller than ; . To

] ]

investigate the conditions under which this is true, assume, for sSmplicity,
that the control acts such that the position and attitude responses are
second-order critically damped, with time constants Tr and Tw respectively.
Then it turns out that the above assumptions will be satisfied if
Tw > Tr and if an equivalent impulsive disturbance in attitude, é

max
satisfies

nax T (1-15)

The control associated with the plant represented by Eq. (1-13)
will be discussed in order to illustrate the basic problems; but, in
general, it is more convenient (and for geodetic missions more desirable)

not to control attitude at all. -

2., OONSTANT SPIN ABOUT A PREFERRED AXIS

If the satellite is symmetric such that I, = I2 # 13, and if

1
the satellite is stably oriented with respect to the orbit plane (36),

and if the other disturbing torques are negligible, then Bé = E; is
constant and Eq. (1-6) is

N 3 - -+ -

- - - -> -

r, + 2w, Xr, B +w, X (w,xr) = £ + £ . (1-16)
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In a reference frame with the z axis parallel to the spin axis, this

becomes

.e 2 .
Xo T Wg Xg T 2wg Vo = £+ £

. . 2
+ 2weX, + Yo " Wg Yo = fp, *+ £ (1-17)

3. ATTITUDE UNCONTROLLED, ARBITRARY SPIN

For

-
We = | W , (1-18)

equation (1-6) becomes

. 2 2 . . . .
- + -2 + - + + + =
Xq (wy w, )xC WY (wxwy wz)yC 2u>yzC (wxwz wy)zC £ +fo
20 x +(w W +& )x + ; -{w 2+w 2) y - 20 z +(ww -0 )z, = f_ +f
zC xy z'°C C z X c xC yz x'°C Dy "cy (1-19)
20 % +(w © =0 )%, + 2074w w o)y, + 25 = (w20 Dz = £ +f
y C zx y C x C zy x°C c X y C bz "Cz

It will be shown in Chapter III that it is possible to build
a translation-control system in which the satellite attitude is un-
controlled and is allowed to ''run free.' However, not all drag-free
satellites will be flown with no attitude control. For the geodesy
and aeronomy vehicles and for the satellites which carry low-precision
unsupported gyroscopes, it is desirable to ﬁse a spin-stabilized
attitude-control system; and for existing vehicles which already have

an attitude control system or for carriers of high-precision unsupported
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gyroscopes, a three-axis attitude-control system is desirable. There-
fore, a brief discussion of the satellite attitude equations will be

included in this chapter.

D. GENERAL ATTITUDE EQUATIONS (A SHORT REVIEW OF CLASSICAL RIGID-BODY
DYNAMICS)

The orientation of a set of arbitrarily rotated axes (x,y,z)
with respect to a reference frame (x',y',z') in terms of the non-
classical Euler angles, ¢, 6, and V¢ is depicted in Fig. 1-2.% The

components of the vector T will be denoted by the 3 X 1 column

matrix
x
A
r={y (1-20)
z
with a similar notation for _5'. The components of r and r' are

related by the 3 X 3 direction cosine matrix

r=Ar'. (1-21)

The components of A may be written in terms of @, ©, and V¥ by
multiplying together the matrices which correspond to the three ordered

rotations about x', n', and ¢.

.cych AVce + c(dbds 4V48 - c\ldbcg
A= | ~gjcd cycy = S\dddp clas + ,.4V4Bcg (1-22)
AB - c84g cBcg .

*Reference frames (x',y',z'), (x,y,z) and a general vector T
will be used'in this section to maintain generality. (x',y',z') cor-
responds to a nonrotating reference frame at the satellite center of
mass and (x,y,z) corresponds to (xs,ys,zs).
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By differentiating the inverse of Eq. (1-21),

' T

i~
[
1>

r,

and premultiplying by A, one obtains

A

Direct comparison of Eq.

shows that

in which

1o

is an antisymmetric matrix of body angular rates which yields the

N

T

d .
L m——
=A—7 Az +r.

{1-24) with the Coriolis law

5
r

Hjo

0 o w
z Y

é’ (] (0] -W
zZ X

-wy Wy 0

(1-23)

(1-24)

(1-25)

(1-26)

(1-27)

- -
components of ww, X r resolved in the (x,y,z) reference frame when

S

postmultiplied by r. Equation (1-26) is one form of the differential

equations of the satellite orientation.

-

> .
By resolving the 3 vectors g, 6, and ¥ in the (x,y,z) frame,

it may be shown that

SE1-64-067
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where

8
A
¢ = (1-29)
13
and
— —_—
cycb aV 0
A
R = |-_ych cy o |- (1-30)
- 4° 0 1 .
Thus, another form of the orientation differential equation is
— —
cy =4\ 0
o =RL = = 6 9 0 (1-31)
=2 Y =g | #Ve cye Wy - 1-31
~c b PAV LS ch
| _
In this same notation Euler's equations become
e = IV QI W, + 173 + M.+ M) (1-32)
=S - —==5 - MPS -GS =CS

where 1 is a matrix of the body components of the moment of inertia
tensor. Equation (1-32) combined with Eq. (1-31) or (1-26) are the

general satellite-attitude equations of motion. The attitude equations
-

are coupled to the trajectory equations through the terms A?G, FPS’
- -> - . :

Fes» Mps: cs’
this coupling is rather weak.

ﬁés, and but with the exception of the control jets,

It is not necessary to consider the most general form of the

attitude equations for most vehicles, since the equations may be

written in simpler form for various satellite types.
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E. ATTITUDE CONTROL EQUATIONS

1. THREE-AXIS ATTITUDE CONTROL TO AN INERTIAL REFERENCE

In this case, the well known small-amplitude linear form of

Eqs. (1-31) and (1-32) is adequate

- -
18 =M,  +H  +¥, . (1-33)

Equation (1-33) has been extensively studied in the controls literature
(38) and will not be considered in this thesis except in Chapter Il
where the translation control equations for the case of no rotation

have the same form,

2. SYMMETRIC RIGID BODY SPINNING ABOUT ITS SYMMETRY AXIS

Leon (22) and Freed (23) show how to reduce the equations
of motion of a spinning, symmetric rigid body to a more convenient

complex form. This procedure is briefly reviewed here.

If I1 = 12 # 13, Euler's equations become
I. -1 M
O - -1—1-—3 w W = ™ (1-34)
x 1 Y 1
I. -1 M
W+ 1—1—2 ww o= TX (1-35)
y 1 z X 1
M
o = ==
z 13
1f q§w+'w me(l -13)’1 n‘-é- 1.1 wéﬁ and
x Y y’ 1 1’ 3717 Tz !
Q & Mx/Il + j My/Il, Eqs. (1-34) and (1-35) reduce to
é + jm B q= Q. (1-36)
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Since eV = cy + j 4y, the first two lines of Eq. (1-28)

may also be written in the complex form

q= (5 co + jd)e IV . (1-37)
When 8 << 1, Eq. (1-37) becomes
g+ 38 =qe’ =qe (1-38)

if ¢ 1is chosen to be zero when t = 0,

Now define the complex attitude angle, ¢,

g+ jo . (1-39)

Figure 1-3 shows the interpretation of Q. The angles ¢ and 6
give the orientation of the symmetry axis in the inertial reference
frame (x',y',z").. By differentiating Eq. (1-39) and substituting in
Eq. (1-38),

a=q e‘jBt . (1-40)

Equations (1-36) and (1-40) are one form of the attitude equations of
a symmetric rigid body. They may be combined to form a single equa-

tion in Q.

&-jnﬁézQeJBt. (1-41)

Figures 1=-4 and 1-5 show block diagrams of these equations in both
real and complex form. The control of these equations is discussed

in Chapter III.
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SYMMETRIC
SPINNING BODY

WHEN @ AND ¢ ARE SMALL,

i@ AXIS a MAY BE INTERPRETED AS THE
PROJECTION OF THE TIP OF THE

z AXIS IN THE x,y PLANE,

THE EQUATIONS OF MOTION, HOWEVER,
ARE VALID FOR ARBITRARILY LARGE ¢.

FIG, 1-3. INTERPRETATION OF THE COMPLEX ATTITUDE ANGLE, ¢ é‘ng + j9
3. ISOINERTIAL SATELLITE WITH SPIN DIRECTION CONTROL

It is desirable to point the spin vector normal to the orbit
plane to minimize various trajectory disturbances (cf. Chapter IV), and
the satellite with the least amount of internal vehicle gravity will also

be isoinertial. If Il= I = 13, the attitude-control-equations are simply

2
1ug = Mpg + Ugg * Yes (1-42)

and will not be discussed.
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4, ATTITUDE UNCONTROLLED, EXPECTED SPIN RATE FROM TRANSLATION JET
MISALIGNMENT

For the purpose of an order of magnitude estimate assume

that:

1)

2)

3)

4)

5)

6)

the drag-free satellite consists of a hollow spherical

shell of radius, [/, and mass, m with a single

ss’
gas jet of 'effective' length, h, and assume that the
center of mass of the satellite does not shift as gas

is expelled,

the thrust line of this jet makes an angle, eML’ with
a line drawn from the jet to the center of mass of the

satellite,

the jet runs continuously at a thrust level equal to
the average drag force acting on the satellite so that

mo, = m

+ +mt
s Mo ¥ Ot

SS
the velocity field of the control gas is zero with
respect to the satellite everywhere except where it
passes through the jet and that it is parallel to the
jet axis of symmetry and equal to ve everywhere inside
the jet,

effects due to centrifugal acceleration and &S may

be neglected in comparison with the Coriolis accelera=-

tion,

the only external moment acting on the satellite arises
from eddy-current damping in the earth's magnetic field

(26) given by - [2/3 B_ £ 0, cos (wg, B)] wg.

Under these conditions, the gas stream exerts a lateral force, 2wSmSh,

on the jet wall due to the Coriolis acceleration of the moving fluid in

the rotating satellite,.
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Under these conditions, the attitude equation of the satellite

may be approximated by

d . .
—_— (1 = = . -
It (Iw) b wg + 2 mg 4 h wg * mg Ve 2 eML (1-43)
where
2 .2 4 - -
=3 Be 2 Oa cos(ws, Be) . (1-44)
mv 6
2 2 - . 2 Sh b g e ML
—_ + = - - —_— - —_— = -
(mgg + 3 B T3 mgt)ws + 5 Oy ( 7 1) + 2 ]ws 7 . (1-45)
The solution of Eq. (1-45) is
™ 5h 5b n
2 . 7 "1 3
SVeGML/ZE 5 mg t 2mg£
ws = EE .. 5b 1l + _ . E . -1 . (1-46)
2 zﬁgzz SS S go

Since the total mass of control gas would be typically only

about one tenth of the total vehicle mass, |m t|<<|m., + 2. and
"8 SS 5 "go
- 2
wg % =t Mf - DR;G ML = 6.6 10 T eee (1D
S§ go me L+ 2m_ £°/5
ss go

for a drag-free satellite in a 400 km circular orbit (cf. pages 43 and
44 ) with a misalignment angle of one degree, In one year, wg can

typically build up to about 20 rad/sec ® 200 RPM. Thus, for some
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missions, the uncontrolled rates will not be excessive; but for long
lifetimes or low altitudes, a rate-limiting control system may be
necessary even in those cases where attitude control is unnecessary or

where spin is desirable.

F. SMALL-AMPLITUDE LINEAR MOTION OF A SATELLITE INCLUDING GRAVITY-
GRADIENT EFFECTS

The librations of a satellite will in general couple into the
center-of-mass motion, and the center-of-mass motions will couple into
the attitude motions. The latter effect is well known and has been
studied extensively (32), and the former is, in general, quite small,
For the drag-free satellite, however, any motions of the center of mass
in which the proof-mass does not share are important. In order to deter-
mine their exact size, these motions will be investigated by analyzing
the six coupled center-of-mass and attitude equations after they have
been linearized about a nominal circular orbit. Thesé equations may be
derived in two ways: 1) from Lagrange's equations, or 2) directly from
Newton's Laws. Furthermore, the resulting equations must reduce to the
linearized form of Hill's equations for a point mass (29) and to
Lagrange's attitude equations (30) for a circular orbit. (See page 36

and see the discussion beginning on page 110.)

1. DERIVATION OF THE COMBINED SIX-DEGREE-OF-FREEDOM TRANSLATION AND
ATTITUDE EQUATIONS ’

For the coordinates as shown in Fig. 1-6, the Lagrangian of the

satellite is given by

. km
L=T-V=>mnm_r + = Ww I -w, +=—— = —==——=r I -
= 5 = S
2 S'ES 2 S = S Tpg 2 rES ES E
(1-48)
1 k Trace l
+-2- 3
TEs
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where k Q’GmE is the earth's gravitational constant and I is the
L}
satellite moment-of-inertia dyadic. (Dyadics will be denoted by a

double underscore.) Clearly, when the linearization is about a nominal

. . - 2 . .
circular orbit, 1/2 mS rES + kms/rES must yield the linearized form

of Hill's equations(since these terms deal only with the center—of=-
mass motions as do Hill's equations); and 1/2 aé . ; -'GS must yield
the inertial terms in the Lagrange attitude equations (since they deal
only with the attitude motions). Hence, the terms of interaction in

the equations of motion may be obtained by differentiating only

V' = 3k 2 1. 2 . 1k Trace 1
2z 5 Tes " = " Tms 2 = . (1-49)
) ES TEs

If the vehicle attitude angles ®,8, and V¥ are called

91,92 and 93, then (when they are small enough that their products

may be neglected) the direction cosine matrix (Eq. (1-22)) becomes

1 63 -0
A= -93 1 el (1-50)
62 -61 1 .
In addition, if
reg = Ty * dr (1-51)
where
3
dr £ ul (1-52)

then Eq. (1-49) may be expanded to second order in the independent
variables g,n,g,el,ez, and 63.
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V! =

niw
H
z NIOEM

r 2 2 .2°
N 2 2 5 (4 ==
{Il[rN+ g - — (0, + 650+ 6,0 ezg] [rN- 4+ 3 <—§-—¥;—£—)

r
N, .2 .2 12 2
2—(62 + 63)+ 651 - ezg] + 12 [Tl - rNGSJ + 13 [g + rNezJ } (1-53)

2
_“’O(Il"'lz"'ls) 1_25_-2 ‘4§2+H2+§2>
‘9 rN 2 2 ‘

™N

The interaction terms are then given by:

2 > 3w2 2G2- G2- G2

2 £ - (] 1 2 3 (1-54)
2 2 r

N .

w N

2
1 ov' 6 o2 26, -
mg ot “o

2 2
Lo 3ug [, 4G - 3G
m_. On 2

wn

2
-G GZ -G
2~ 3 2 /71 2
5 >n + 3ug < - >63 (1-55)
N

2 2 2 2
. 3w 4G%- G2 -3G G2 -G
A 12 3 )p,32 (2—2L)e, -s6)
m 0o 2

0

(1-57)
ov? 2 2 _t -
= 3u, (13 - 11)62 + 3ws (1 1) (1-58)

2 .
= 3wS (I, -1)6_ + 3w, (I, - 1) . (1-59)
36, 2 173 o 1" "2’ Try
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To obtain these results directly from Newton's Laws, it is necessary
to sum all the forces and torques acting on the ith mass element

and then to integrate these over the entire body.

-k m, r,
_ i i . = ud} -
?GSi = ———:};———— where T, ry t &r + Sri (1-60)
i
and

s -

—_ L
Mg, = 8r] X ?GSi . (1-61)

Expanding l/r? to the third order, and neglecting terms
2 3
in (3r)~ and (Sri) and higher, and noting that

SS:n.(S?!)z = 1 Trace 1 , (1-62)
i 1 i 2 =
and
- Trace 1
ES m, dr' Brf =-1+ U — (1-63)
3 i 1 = = 2

(where the symbol SS has the meaning of sum or integral as the case
1
may require and U 1is the unit dyadic), the following expression, for

the force and torque terms are obtained by integrating ?hSi and
-

t dy.
MGSi over the body
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- = - - - - —> -
*1I°- o S &
15 (5r+rN) 1 (5r+rN) . 105 (5r rN)(rN i rN) -
2 7] 2 6 N
™N ™
- -
. . 2 Trace ; 15 rN i * Ty R
st 2 p) 2 ) T
™ ™
31 - (8T + 1) 8T - Ty
+ — > [1 -5 — (1-64)
I'N rN
and
2
- Sub R S;-;k ; 3w§ - - - -
M. = 5~ (rgX1° rN)<1 -5 3 )+ > (drx 1-ry+r X 1°86r).
ry - TN Ty = -

(1-65)

When coordinatized as in Fig. 1-6, the interaction terms in Eqs. (1-64)
and (1-65) reduce to Eqs. (1-54) through (1-59). The complete coupled

set is shown below.
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Equations (1-66), (1-67), and (1-68) reduce to Hill's equa-
tions (without the nonlinear gravitational terms) when the satellite
becomes a point mass; and Eqs. (1-69), (1-70), and (1-71) become the

Lagrange attitude equations when E,7 and { are zero.

(& - 3uf - 205 (1-72)*

I}
la

Hill's equations
describing the
linearized motions
of a point mass <
with respect to a
nominal circular
orbit

(1-73)*

i
o]

Zubé + ﬁ

(7o
+

£ .
v

"

h

(1-74)*

Lagrange's / Ilél + (I_-I oo, - b (I.+I_-I) (1-78)

attitude 3 227071 021 "2 73 1
equations . .. 2
descr%blng ub61(11+12-13) + 1262 + 4(13-Il)ub62 9
the lin- <
earized . 2
libratory 1.6, + 3w (I
. 373 (6]
motions of
a satellite
in a circular
orbit

(1-79)

)6 (1-80)

|
=3

2711785 = Mg

*
It is important to note that the correspondence

E N

nq—brN¢
leads to a set of equations like (1-72), (1-73), and (1-74) in c¢ylindri-
cal coordinates

L1 2 .

o= 30y T 2ugry® = £, (1-75)
20y f + 1@ = £, (1-76)
E+t = £y (1-77)

Equations (1-75), (1-76), and (1=77) may be derived directly from the
orbit equations written in cylindrical form. When this is done ¢ may be
arbitrarily large (in Eq. (1-72). and (1-73), ¢ and n must be small),

but ¢ and # must be small (in Eq. (1-72) and (1-73), ¢ and n may be
arbitrarily large). The cylindrical coordinate (or with planar motion,
the polar coordinate) interpretation is much more accurate when the solu-
tion of Hill's equations contain large terms in 7. See Ref. (19).
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In order to analyze completely the effects of the disturbing
forces on the ball, the form of Egs. {(1-72), (1-73), and (1-74) with
the second-order nonlinearities included will be needed in Chapter IV,

These will be derived next.

2. DERIVATION OF THE HIGHER~ORDER NONLINEARITIES IN HILL'S ORBIT
EQUATIONS

Hill's equations may also be derived by substituting

T =87 + T (1-81)

directly into the orbit equaticn

k—>
IYY r
> ES -2 .
Teg + —5 = f. (1~82)
r
ES
The equation in ;N is assumed to satisfy
k—)
e r
- N
= -83
ry * 3 o, (1 )
N
and
2 2T Ty - :
. r - —
-3 -3 (dr) N 2
= 1-84
oo = ry <1+ X . . ) (1-84)
N N

is expanded as a power series in Br/rN. If Eq. (1-84) is carried to

third order, Hill's orbit egquations become

- = - - - > 2
- - L] 2
. ke o OTeTy 2,2 rs Br.ry - 3 5(5r ry) _ o’
dr + —g =38y Iy I+ 2 o "3 a 2z |
rN I‘N rN N N

- 37 - (1-85)
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Equation (1-85) may be written in scalar form

2 2 2 2
Y - 30 - — _3 2 2 -7 -t 2 4E - En 38 -
E - 3wy E - 2wy M = f§ 5 Y% Ty + Wy > (1-86)
r
N
2w E + 7 =f +32 81 _3,2 st - - (1-87)
0 n - 0 ry 2 “0 2
r
N
2 2 3
Y el - 2 _3 2 48t -n76-C"
E + Wy ¢ = f§ + 3wy = 5 Y 2 (1-88)
N

Equation (1-88) will be needed to compute the effect of the
disturbing forces when the satellite spin vector is normal to the

orbit plane.
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CHAPTER 11

TRANSLATION CONTROL WITH PERFECT THREE-AXIS ATTITUDE CONTROL

The object of this chapter is to discuss the basic translation=-
control problem (including fuel consumption) associated with the opera-
tion of a nonrotating drag-free satellite. The case where the satellite
does not rotate with respect to an inertial reference is of interest
for precision-gyroscope experiments where the gyroscope spin axis must
be compared with a fixed direction in inertial space. In addition,
omitting the satellite rotation makes it easier tec present the basic
properties of the translation control without the added complexity due
to the rotation.

The control must accomplish two things:

—
1) keep the vector o

the presence of the disturbing forces, and

within some specified bound in

2) do this with a minimum expenditure of fuel.

The bound on T will be dictated by the type of mission. For example,

C
in the case of an aeronomy mission, it is merely necessary that the
proof-mass not contact the cavity walls very much; and for geodesy
experiments, it is desirable that the proof-mass be controlled in
such a manner that the force interactions between it and the satellite
are as small as possible. For precision-gyroscope experiments, how-
ever, it is necessary that the rotor never contact the cavity walls;

and for some readout schemes, it is necessary that the rotor be very

stationary with respect to the sateliite during the readout period.

A, TRANSLATION-CONTROL SYSTEM DESIGN FOR MINIMUM-FUEL CONSUMPTION

In order to consider the fuel consumption, it is necessary to
examine the nature of the control system disturbances given in Eq.

(1-6) and also on page 15. They are
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1) AFG/mB (the difference between the acceleration of
gravity acting on the ball and that acting on the

satellite) = 10 20 to 1073g

-—p
2) (1 + mB/mS)FSB/mB (the acceleration due to the force
interactions between the ball and the satellite)

-11
~ 10 ""g . (See Table 4-1, page 139.)
e

3) (?PB - mB/mS ¥PS>/mB (the acceleration due to outside

perturbations).

(§PB - mB/ms -fps)/mB arises from

a) Meteorite collisions with the satellite,

b) Motion of a charged satellite through the earth's
magnetic field,

c) Undesired expulsion of matter due to outgassing or
control gas leaks,

d) Solar radiation pressure, and

e) Atmospheric drag.
(1) and (2) are negligibly small but (3) must be considered in detail.
Each of these disturbances will be discussed below.
1. EXTERNAL PERTURBING ACCELERATIONS

a. Meteorite Collisions with the Satellite

From elementary momentum considerations, it can be
shown that a meteorite collision with a typical relative velocity of
40,000 ft/sec between a 45 kilogram satellite and a 0.2 milligram
meteorite* would impart a velocity change of lo-zcm/sec to the
satellite. (This velocity change is typical of the limit-cycle-size
for the control system. See Fig. 2-7, page 62 .) Data on the fre-
quency of meteorite collisions is still rather poor; but the indications
are that collisions with meteorites of this mass 6r larger are extremely

rare, occurring approximately every one to 1000 years (40).

* Y :
This mass was chosen as a worst-case example. A collision with

a much larger meteorite would probably do serious damage to the satellite.

SEL-64-067 = 40 -



b. Motion of a Charged Satellite Through the Earth's Maggetic Field

A charge will accumulate on a satellite moving through
the ionized upper atmcsphere because of the different mobilities of
the electrons and ions, and it can be shown theoretically that the
potential of this charge will not exceed a few volts (41). (However,
there is at least cne instance of a potential of several hundred volts
being measured on a satellite.) If one takes 100 velts as a reasonable
upper bound, the disturbing acceleration caused by moving this charge

through the earth's magnetic field will be of the order of 4 X 10-12ge.

c. Undesired Expulsion of Matter Due to Outgassing or Controcl Gas Leaks

Cold gas control valves have typical leakage rates which
vary between 10“3 and 10_5 standard cc/sec. By careful design and
quality control, it is reasonable to expect total gas leakages of the
order of about 10 standard liters per year. Such leakage values cor-
respond to flow rates which would cause negligible control-system dis-
turbance,

Gas leaks which result from system malfunctions or out-
gassing could result in sizable disturbing forces. There is no way to
analyze these in advance, but the disturbances will be relatively
constant. They will make the drag-free satellite uncontrollable if
their magnitudes exceed the control force, or they will only waste gas
while still allowing the control system to function if their magnitudes

are less than the control force.

d. Solar-Radiation Pressure

Solar-radiation pressure is about 1 dyne/meterz. This
causes a disturbing acceleration of about 10_8ge cn a 45 kilogram
satellite with an area of 0.5 metersz. This disturbance is constant
except for two times during the orbkit when the satellite enters or

leaves the earth's shadow.
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e. Atmospheric Drag

Consider again Eq. (1-14) (with some of the subscripts

dropped)

(2-1)

For most orbits the dominant contribution to fD is the atmospheric
drag, and it is instructive to compute the drag as a function of time
and orbit. The linear-scale-height model of the atmosphere, as pro-
posed by Groves (33), Jacchia (34),'and Smelt (35), provides a more
accurate representation than the conventional constant-scale-height
exponential model, and will be the one which is used in this calculation.

The drag force on a body moving at orbit speed v

0’
through a rarified atmosphere of density, p, is given by
F =1/2 p vZec A (2-2)
DRAG O D 'S
where AS = satellite reference area, and
CD = drag coefficient.

The atmospheric density, p, used in these calculations will be ob-
tained by integrating the equation of hydrostatic equilibrium using a

pressure-~scale-height, H, which varies linearly with altitude.
H=Hp + alh - hp) (2-3)

o

where R stands for '"reference™ and @ is the slope of the scale

height line versus h. The result is

H B,/r 2
- _R _ES > . (2-4)
P pR H rp
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where

">
[
R+

hR is the reference altitude about which the scale height is linearized,
and Tes and rp are the radii from the center of mass of the earth

to the satellite and to the reference altitude respectively. Equation
(2-4) is derived by Smelt (35).

Later in this chapter in the evaluation of the fuel-

. 2
lifetime integrals, it will be most convenient to have Tes and Vo
expressed in terms of the eccentric anomaly, E.*

Tpg = a(l - e c E) (2-5)
2
g R
v2 _ (w2 2) l+ecE e e l+eckE (2-6)
0~ Y? '1T-eckE 2 1-eckE"

If we define the normalized drag force, Dn’ as the drag divided by
- 3

the drag at the reference altitude (except for the factor Rga/rR),

then substituting Eqs. (2=-3) through (2-6) into Eq. (2-2) yields

2
D - FprAG _ /R 1-e? 2k (2-7)
n C - 3 a(a=-r_-ae c E) 1B * -
A D T 1+ R
TR*sPr8e \ 2 H

R
Equation (2-7) is plotted in Fig. 2-1 using constants interpolated from
the 1962 ARDC Model Atmosphere (42). The following values for the con-

" stants were assumed:

400 km

=3
]

250 sm

H, = 72 knm

45
R sm

]

*See Ref. (29) for a definition and discussion of eccentric anomaly.
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R.e = 6380 km = 3960 sm (2-8)
a = 1/7
-15
P = 6.5 X 10 gm/en® .
As an example, consider a satellite with C_ =2 and A_ = 0.5 m2 =

o D S
5.38 ft°, then

Re 2 b 5
roApog | — = 2,08 X 10 'ntns = 4,68 X 10 ~ 1lbs; (2-9)
R S"R%e Te

; = — . 2
and if msge = 445 ntns = 100 1lbs, then the nominal drag, rRASpRge(Re/rR) ’
expressed in ge's is

Re2

r A Pp —

fDRAG,R B R SR rR
ge mS

= 4.68 x 10" . (2-10)

Thus (Re/rR)? times Eq. (2-10) gives the drag acceleration, fDRAG/ge’
in a nominal circular orbit at the reference altitude of 400 km, and
Eq. (2-9) or (2-10) may be used in conjunction with Fig. 2-1 to deter-
mine the drag forces for other orbits,

From the preceding discussion, it can be seen that the

disturbing accelerations fall into five general classes:

1) Negligibly small,

2) Causing small step changes in velocity about once per
year (meteorite collisions),

3) Causing small step changes in a constant disturbing
acceleration about twice_per orbit (solar-radiation
pressure),

4) Relatively constant, but possibly not negligible (leaks
or outgassing), and

5) Periodic with period 2n/wo (atmospheric drag).
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Except for orbits with very large eccentricities, all of these distur-
bances are relatively constant during the period of one control-limit-
cycle (cf. Fig. 2-7) and thus the control system will spend most of its
life in limit cycies at the origin. The pfoblem of minimum-fuel con-

sumption will be discussed next based on this assumption.

2, CONTACTOR TRANSLATION CONTROL

Since leak-free valves for the control jets are most easily
built when they are the full-on or fpll-off type, it is convenient to
use on-off, or contactor, translation control in the satellite. The
general problem of using contactor control with linear switching is
discussed in a number of basic control-theory texts (see for example
Flugge-lotz (43)) and the 1/52 plant is covered in detail by Graham
and McRuer (38). The general state of the art of contactor control is

reviewed by Flligge-lotz in Ref. (44).

a. Justification of the Assumption of Constant Disturbances

The control of the nonrotating drag-free satellite is
the same as the classical control problem discussed in the references
above if the drag force is considered as a constant over one control-
limit-cycle. For most orbits this is a reasonable assumption. If

|fc + fDl>>lfD|, then the period of one limit cycle is approximately

8xg- xp) : -4 2
— | = 40 seconds for Xg = X = 0.1 cm and f = 5 X 10 “cm/sec ,
D

*
where xg and x; are defined by Fig. 2-2.

*See page: 64 for the reasons underlying the choice of the typical

numbers used in control examples in this chapter.
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As can be seen from Fig, 2-1, the number can vary from
one to several thousand seconds. For simplicity, it will be assumed in
the following sections that fD is approximately constant during this
time interval, although this is not true when

- 3
8(xS xL)

b

is of the same order as one orbit period.

b. Minimum-Fuel=Consumption Limit Cycles

When "on-off" or contactor control is used there is
nearly always the possibility of limit cycles near the origin due to
threshold, dead—-zone, and delay in the sensors and actuators. The
effect of these limit cycles on gas consumption is an important question.

Due to the presence of £ it is possible to find limit cycles which

D
consume no more fuel than that which is required to offset the effect

of £ Indeed within certain limits the amount of gas consumed is

D*
independent of the functional form of fD'

Since, for a gas jet, the control force, FC’ is given

by
F, = - gelspﬁg (2-11)
where
ISP = control gas specific impulse, and
mg = mass of control gas,
Eq. (2-1) becomes
m'B;C =- ;E FD + E;-geISPﬁg

or ' : (2-12)
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As long as the control always acts such that the sign of m is the
g

same as the sign of F (i.e., if the control always opposes the drag

D
force); then during any period of time when the sign of FD does not
change, lqg is either always + ﬁg or always -ﬁg- For definiteness,

assume that Fj > 0. Thenfi, > ) and |m] =m, so that the total

amount of fuel consumed in time t, mg(t), is given by

t t
é . - . . 1 . .
mg(t) = flngd'r = _‘/;’gd'r = gelsp JL‘/ﬂFDd'r + mS[xC(t) - xC(O)]} . (2-13)
) ) , )

Under these circumstances the value of mg(t) depends only on the right
side of Eq. (2-13) and not on the functional form of ﬁg. For the

case of a limit cycle of _period T, the gas consumed, mg(T), depends

only on the integral FDdt. Furthermore,
T
1 f
F_dt
D
&.1sp S

is the minimum amount of fuel needed during one period to hold the
system in a limit cycle near the origin, and the system must consume
this much fuel to balance out the effect of the drag force.

As an example, it is instructive to examine this in
detail for the case where FD is a constant. Figure 2-2 shows the
phase=plane plot of one possible limit cycle of period T bounded
by a maximum excursion (xR - xL). The control jet switches on when

xC = xs and xC = xT and switches off at xC = xs and xC = xB .

The gas used per cycle is

-FT, ~F T T, ~F T 1

m (T) = I = 1 T3 T T " 7z - (2-14)
& €esP €e'sP c*’p B'sp . D
Tc
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However, since the time TC or T is given by (iT - x_) divided bv

the acceleration

so that
T
D
T ——— (2-15)
c

and by substituting Eqg. {2-16) into Eq. (2-14), the gas consumed per

limit cycle is

FDT
m (T) = . (2-16)
g I

ge Sp

To reiterate, as long as the control force always opposes FD’ the
gas consumed does not depend on the shape of the control-force impulse
but only on its area, which must be equal to FDT. This very simple
but important result makes it possible to compute the total fuel con-

sumption by integrating the drag force over a complete orbit.

T
i T, ) 2
1
g 1 [ 0
= — F . dt = —— F . (1 -ec EM}E
7T
ORBIT g Isp J DRAG 2ng I, J ~DRAG
o 0
2n
m C\ z’aRz
g D

C s (To N/ p ( e \_1 " (1-ecE-e2c Et+e ¢ E)dE
orBIT ~ “R'sPR ‘\ISP/ \ 2) 3/ ean J aa-r ~ae c E) 1P
R 0 1+

A &

H
R

since from Kepler's equation E = 2n/[Tb(1 -ec E)].
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Surprisingly, this integral is fairly easy to evaluate by contour
integration. Figure 2-3 shows a series of fuel-lifetime plots obtained
by evaluating this integral. The next section will show how to evaluate

the integral in Eg. (2-17),

B. THE FUEL LIFETIME OF A DRAG-FREE SATELLITE

Bruce (9) has computed the fuel expenditure necessary to sustain
a satellite in a drag-free circular orbit. He compares continuous
correction with a series of discrete corrections in which the orbit is
allowed to decay for a fixed period of time and then is restored with
a Hohman transfer. He concludes that continuous correction requires
less fuel than the series of discrete corrections. This result also
follows from the conclusion of the previous section, since the control
force acts in the same direction as the drag force during the second
corrective impulse of a Hohman transfer, and since the discrete applica-
tion allows the orbit to decay into the denser atmosphere.

In order to evaluate Eq. (2-17), which gives the fuel consumption
for an arbitrary elliptic orbit using a linear pressure=scale-height

model of the atmosphere, define

A Qae

y = . -
HR + @(a rR)

(o)
Q e
- 1-e (2-19)

- T
P__
HR + a[l-e rR }

(2-18)

(2-20)

e
- [(B.-I)HR- rR]
1+ (1 -e)
Tp
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A typical plot of y versus e is shown in Fig, 2-4,

DRAWN FOR
(B - 1)Hg - rg
= -0.9
e

] 1 I\ 1

0.2 0.4 0.6 0.8 1.0

FIG, 2-4, TYPICAL PLOT OF y VERSUS e,

When Eq. (2-20) is substituted into Eg. (2-17), the fuel con-

sumed per orbit becomes

2n )
2 (1-ecE—e202E+e3c3E)dE
T c r R & B
m, —-rAp< O><__D_><Pe> 0 (1-ycE)
ORBIT R SR ISP 2 r3 [ Tp ~ Tp + erRl B
R 1+ i = o) | (1-e)
L R J
(2-21)
Since the average rate of fuel consumption is given by
L A D /ORBIT -
/mg\> = —E—,IT——, (2-22)
\\ av . (0]
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the fuel lifetime can be readily evaluated since

m

T, = —& (2-23)

- G

Now let
2n
2 3 3
1(y,e) é_ 21n f (L - ecE - ¢ czE g e c'E) 4E (2-24)
o (1 - ycE)
8 I(y) = el (y) - ’1,(y) + 1, (2-25)
where
21 .
Io(y) & % dE B (2-26)
o (1 - ycE)
27
- A
I,(y) = %{- f _CEdE 5 (2-27)
o (1 - ycE)
21 2
A
L(y) = 21,[ f c E dE 5 (2-28)
5 _(1 - ycE)
27 3
AN
Lo & & f CEE (2-29)
o (1 - ycE)

The integrals, I,, may be evaluated nhmerically; however, if
p is an integer, it is not difficult to compute them by contour
integration. The restriction of p to integer. values is not of
serious consequence, since the value of (@ varies with the choice

of hR due to the fact that HR is not constant versus altitude,.
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Thus, restricting P to integer values merely restricts the nominal
point about which the density model is linearized to a series of dis-

crete altitudes.

It is mathematically more convenient to evaluate the integral

2n
5 o ;. d/‘ cnE dE SOE E__ (2-30)
o (1 - ycE)

and then to compute Irl in terms uf-Jn from the trigonometric multiple
angle identities for the cosine function.

iE
Let =z & e’” so that CcE = z2+ 1/2z; (2-31)

then (since the integrals containing the sine ‘terms in the numerator

are zero)

s = 2P Jf it (2-32)
" 23 2] =1 (z-a)ﬁ(z-b)ﬁ

where

b= T\ /Ao (2-33)
y 2
y

a= La\[E .1, (2-34)
y y2

For 0< y < 1 Egs, (2-33) and (2-34) yield 0<a<1l and b>1

so that
R+p-1
J = (-2/y)B Residue z 5 5 (2-35)
n (z=a)" (z=b)

- . -
J_ = (-2/y)F Lim — = (2-36)
n z-a (-1): dz6 1 (z-b)B
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8 P P-1 n+ﬁ 1 B 1+i
Jo= (-2/y)" Lim 5 Z (b- > (2-37)
z—a (z-b)" (B-1)! ;
Jioz) 1 *
1 - - - —_—
( 1=y B-1 n+f-1 Pe=l+i [1_ 2 1
= 3 z C c 2 (2-38)
yl’( ,1_},2 ) 10 n+i i 2
where
n '
JAY n.
% ° WG -owo! (2-39)
The values of the integrals In(y,B) are tabulated in Table 2~1 and a
plot of Io(y,B) is shown in Fig, 2-5.
From Egqs. (2-21), (2-22), and {2-23),

3 ——r——
=1 <’ mg :>(/22> <'rR )
= 5 .
L SP rRASpR ‘CD rpRE

It is convenient to express T

orbit of radius r

Tic

so that

SEL-64-067

p
-r_+er
(1-e) |1+ PR R]

H_(1-e)

(2-40)
I(y,e)

L in terms of the lifetime cf a circular

For a circular orbit

e
m I‘P" I‘R B
= Tsp (—TE—> <c2 - s v L
Tr"sPr D rpRS R
B8
I‘ r_+erxr
L R\ €
= — = ; ; (2-42)
Lo o T, < Tp B
1+ m - I(y,e)
R
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TABLE

2~1

TABULATED VALUES OF THE FUEL~CONSUMPTION INTEGRALS
(2-26) TO (2-29)

(EQS.

v wiLlas .
0,0000000s00 1+0U0U0USe0D
5.,0000008- 1.082>828400
1.0000000=01  1.05123v8000
1.%0000 1elivadeseoo
2, 10000
2.%0000!
3,0000¢ 1.5784078400
3,5000000 1,0702308400
4,0000000=0 2.282676me090
€, 5000008=u1 2.8/63060400
3.0000000%y; d.T0)sb84000

lutrsott

1. 00
1.018v19¥600
1.077892 0
1.1828230400

1,5696380000
15450540400
2.4722860400
3. 2642010400
4. 0925988.00
[ l’!o?‘.-OO

1.2639099e00
1,5056240000
1,8822)00400
2.4013060000
3,36630)0000
4,4213199900
7.2527050400
1.1518av¥e0)

4)

1.0000008.00
1.03>4979400
i L720.00
1.354279%,400
1.7068028.00
2.2078050400
441705730400
40852620400
T,2601%80400
14197

3.9a31eswans

00

1.

1,0457 .00
1,1929290400
1,4702378400
1.9573)650000
2.7718139400
4,1688820000

00
l 0!7'45 o0
1.24885370400
1,811000%400
2.2073000400
34208089000
QnS?lZ are00

01
3.4114%00401
150vre0)

1.
1,0704500000
13024459400
1.7781480400
2.0087470400
42757720400

S.1290184400  9.82330) 1.9467100001 1. ).izll050~az
r. 4034926000 1.=uscsxo.ux 8.082825040) 43748250402 1,0)17900403
10110¢304001 2.7810819.03 1,8433050402 103050650403  3,517503040)
1,0518d7de0) 5.2980370401 4,8242090402 4.452008v40) 1.40J8800400
342873528001 1,156U0AR.07  4.1556760¢02  1,520854840) 2.1138v¥¥e04 TY36)0404
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¥.35000008°01  5.1320774903  1,422138#.0%  2,5587950008  4,6877840407 e iTOT9760e08 16325280410 3.0013)40441
1Y, 8ET4)

Y ttiam . s 4 7 [ v 10
0.000000840C  0.0ULOUC*400 O, no o, 00 0. 00 0. 00 0. 00 a, +00
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120Y,8E74)

Y otTas . s [ 1 '] v 10
[0 S. 01 . 01
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1,0000008=01  5,3861714=0) 1 1 t 8.8507268201  7,3002430201
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2.300000 T.823v064%01  9,5313000401  1,1820049000  1,48/5440400 1,8902120400 2.418992000  3.11851
3.0000008201  9.45v4109=01  1.2)48000.00 1,0438700+00  2,2224040400  3,0291168400 4, (581570000 5,727,
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4,000000#=01  1,5095116400  2.3072200400 3 3. 19400 0,9857549400  1.43J0y z.zea:z
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s 3.8Y9V399e00 3. .01 01 §.512506%002  3,2078180002

Y.8174130400 7.:rootri¢01 116908479402  4.0078190002  9,5046220402
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Figure 2-3 is a plot of Eq. (2-42) for a typical satellite where

ISP = 50 sec and mg = 10 kg.

C. CONTROL SYSTEM MECHANIZATION

1. CONTROL WITH LINEAR SWITCHING, THRESHOLD, AND DEADBAND

In the previous sections it was shown that any control, which
does not allow the proof-mass to touch the cavity walls and which
always acts such as to oppose the drag, will use the minimum amount of
fuel; and this minimum was computed using a linear pressure-scale-height
model of the atmosphere. The question arises how a control which has
or approximates these properties might be mechanized. This section will
consider one possible realization using linear switching, threshold,

and deadband.*

Figure 2-6 shows typical switching surfaces in the phase plane
with fD always acting to the right. The finite width of the switching
lines is due to contactor threshold which is built into the system as
a design parameter, 5. The loop time delay, TL’ which is due
primarily to the time required to operate the gas valves, is of the
order of 5 to 25 milliseconds and is negligible for most limit cycles.
When the time delay is not negligible, its effect is to alter the ’
vertical width of the switching line an amount fC TL and to alter
its slope by TL/kz. Thus, time delay limits the system only in that

it establishes a minimum width of the switching line.

*For other approaches see Gaylord and Keller (24) and Dahl,
Aldrich,::and Herman (25).
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DEAD ZONE SWITCHING LINE

FOR LEFT JET
(XC‘XS)""k ic= O
fc=-fc max

.2
l Xe = + (fc"‘ fD)(*c"‘R)

TYPICAL g

LIMIT
CYCLE

SWITCHING LINE
FOR RIGHT JET

(xc +xg)+kxc=0

fc = + fc mox

28
k

\ \

FIG, 2-6. ON-OFF CONTROL SWITCHING LINES

Table 2-2 and Fig. 2-7 show the size and period for typical
limit cycles versus f for three perigee altitudes, It is assumed in

all calculations that fD and fC + fD are constant over one limit

cycle., The minimum value of Xg = Xp

as 0,01 cm in this example.* The values for the drag acceleration at

occurs at perigee and is chosen

*Subscripts of x and x refer to quantities which are defined
by labels in Fig. 2-6.
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TABLE 2-2

TYPICAL LIMIT CYCLES FOR 1/s2 PLANT WITH DRAG

(Cf. Figs. 2-6, 2-7, and 2-8)
f_** o C, =X, X Kk -
hy, ¥ PeEL| xpxg* | Tp [[fctEp xp%s | Tc | Te/Tp
ge's cm cm/sec sec| ge's msec
-2 - - - -
161 km [0.73x10™4 1072 |0.76x10™ ] 1.10.93x1073 0. 78x1073| 82 7.8x10"2
- - - - - -
or [0.73x107°[ 107  |o.76x10”2| 11l0.99x10730.74x1073| 77 7.3x10™3
100 sm0.73x107%} 1 |o.7ex10”1! 110]1.00x1073 0.73x10">| 76 |7.2x107%
0 107 0.76x10™1 | 5.3(1.00x10™2 |0.73x10™3 | 150T|2.8x1073
-6 - - - - -
322 km [1.7X10 10721, 2¢1072 710.83x10™° |2.2x10™3 |1500 [2.2x107!
or |1.7x1077 107t |1.2x1072 70 [0.98x107° |1.0x10™2 1200 |1.7x1072
200 sm|1.7x10°8 | 1 Ji.2x1072 | 700}1.00x107% |1.8x10™% l1200 1.7x10°3
0 1071 |1, 2x1072 34 |1.00x107° [1.8x10™% 23007 |7.8x1072
483 xm |1.4x10°7 1072 |3.3x1073 24 [1.00x10™° |1.3x10™% | 330 {1.4x1072
or 1.4x107% [1071|3.3x10™° | 2401.00x10™° |1.3x107% | 330 |1.4ax1073
300 sm|1.4x10 "0 | 1 |3.3x10™° }2400]1.00x107° |1.3x10™% | 330 |1.ax107%
0 1071 [3.3x10™> | 1201.00x107% |1.3x107* 660 [5.5x10™°
* xp - xg is chosen to make xg - xp, = 1072 cm at perigee and is con-

stant over any given orbit.

% %k

of fD and hence the required value of fg.
shown for smaller values of fD which occur later in the orbit with-

out giving the times or altitudes at which they occur.

For a given orbit the drag at perigee determines the maximum value
Limit cycles are also

+When fp is zero, the control acts at both ends of the limit cycle
and hence, TC is longer.

perigee were obtained from Eq.
the required control acceleration and the size of Xp < Xp and, hence,

the value of ® since & = (1/2)k(xT - xB). A value of fD’

10

(2-10) and Fig. 2-1, and they determine

which is

-2 of that at perigee, would bang against the left switching line; but

the values corresponding to the full unsaturated limit cycle are plotted

for comparison.
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FIG, 2=-7., LIMIT CYCLE SIZE AND PERIOD VERSUS f
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FIG. 2-8. SATURATED LIMIT CYCLE (TYPICAL NUMERICAL VALUES ARE SHOWN IN
THE LAST LINE OF EACH BLOCK IN TABLE 2-2)

Table 2~2 alsc shows the values for saturated limit cycles
where fD is taken as zero. This limit cycle has the form shown in
Fig. 2-8, and, of course, wastes gas. Here 2xs is taken as 0.1 cm, and
TC is the total time the control acts during the cycle. For the 300 mile
orbit, it is assumed that fC can be no smaiéer than 10-2 cm/secz. This
corresponds to a typical lower limit of 10 lbs thrust on a 100 1b

vehicle.
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It has been suggested to the author a number of times that
the required thrusts would be much too small, or equivalently, the jet-
nozzle areas or chamber pressures required would be much too small to
make cold-gas-jet control of a drag-free satellite feasible. This is

*

not so. Commercial cold-gas thrust systems are available ''off-the-shelf’
with thrusts in the 10-'4 to 10-2 pound range, with rise and fall times
on the order of a few milliseconds, and with leakage rates less than
10-4 standard cc/sec. The ratio TC/TD is equivalent to an effective
thrust attenuation factor, and is the basic reason that very small jets
are not required. Thus, it is seen from Fig. 2-7 and Table 2-2 that the
control requirements are reasonable.

To summarize, the basic design procedure is to:

1) Choose the size of the deadband, 2x for mission reasons.

,

This choice is dictated by: °

a) maintaining the nominal position of the ball to
minimize the forces from the satellite which act on
the ball (see Table 4-1 and the accompanying dis=-
cussion),

b) the fact that the position sensor errors may depend
on the nominal gap between the ball and the cavity
(see pages 138 to 141), and

c) avoiding difficulties associated with the design of
a special recovery system which would have to be
employed for initial acquisition or in the event that

the ball went cutside the linear range of the sensor,

2) Choose the control acceleration, f This should be as

CO
small as possible, but it should also be several times
the drag acceleration at the nominal perigee altitude.

The safety factor used in the numerical examples is to

select f_. approximately 10 times f at perigee. For

C
orbits with high perigees, £

DRAG

c cannot be chosen arbitrarily

small, but it is limited by the fact that the thrust
levels of the control jets cannot be set much smaller than
1073 1bs.
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3) Select Xp = iB =[8 fDRAG(xS - xL)]i to avoid saturating
at apogee. (This may not always be possible due to the

amount of noise present in the x signal (see pages 138

C
to 142 ) and the time delay in the control loop.) For
illustration, Xg ~ Xp, was set at 0.01 cm in the numerical
examples, and *T - *B calculated for this choice. (See

Table 2-2,)

4) Select k based on the desired initial condition or ‘'dead-

beat" response to large initial conditions. See Ref.(38),

5) BSelect b = % k(x, - iB).

2. GAS CONSUMED BY A NONIDEAL CONTROL SYSTEM

In the examples shown, when the drag acceleration falls below
one tenth of its value at perigee, the jet for the left switching line
begins to fire and gas is wasted. In general, it is impossible to avoid
wasting some gas in high orbits; since as fD approaches zero, the limit
cycle becomes so long that iT - iB cannot be made small enough, because
of the noise in the x signal and time delay. It is instructive to com-
pute an upper bound on this wasted gas.

let t B be the time in orbit after passing perigee at which

D
the limit cycle begins to touch the left line, and assume that from time

tDB to time Tb - tDB that fD is exactly zero. Then,
T0 - ZtDB total time that thrust
—_— T = is on during this period (2-43)
T Cw -
w of gas wasting
where
T0 = period of one orbit,
Tw = period of one limit cycle while fD = 0, and
Tcw = total time coptrol is on during Tw.
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The weight of gas wasted per orbit is bounded by

W T -
gw__ < ( o ~ 2tpp) Tew P (2-14)
ORBIT . -
RBI Iop Ty c

Equation (2-44) may be compared with the minimum possible gas used per

orbit which is obtained from Fig. 2-3 using

- T .
in /70 N
= F.9 ) -
ORBIT - "g total ! T (2-45)

W _/ORBIT
The ratio W ‘in/ORBIT is given in Table 2-3 for an eccentricity of

e = 0.,02. The amount of wasted gas decreases monotonically as iT - iB

decreases.

TABLE 2-3
TYPICAL UPPER BOUNDS ON WASTED GAS FOR e = 0,02
hP W /ORBIT W . /ORBIT v NN
gw gmin gw  gmin
(statute miles) (pounds) (pounds)

100 0.15 0.23 0.65

-3 -3
200 2,7 X 10 8.2 X 10 0.22

-4 -4
300 2.2 X 10 7.6 X 10 0.29

In a practical satellite, the gas consumption rate must be
multiplied by an additional factor which is never larger than‘JET due to
the fact that the control force must be resolved along three mutually-
perpendicular axes.

Finally, over the course of the lifétime of the satellite,
some control gas will leak out and this must be considered in the final
lifetime caléulation. In conclusion, if hP is greater than 100 sm,

Fig. 2-3 is right, within a factor of two, for realistic vehicle design.
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3. ADAPTIVE CONTROL —— THRESHOLD FEEDBACK

The size of the limit cycle is given by

X, ~ X, = = . (2-46)

d cannot be made arbitrarily small but is limited by the accuracy with
which x can be measured and by the amount of time delay in the control
loop. It may not be desirable, however, to make & as small as possible
even though such a choice would waste the least fuel {(since the limit
cycle would not saturate as soon). The reason for this is that it may
be desirable to maintain the average value of x, the position of the
proof-mass, fixed during the orbit in order to minimize the force inter-
actions with the satellite, since these interactions generally depend on
the position of the proof-mass. This may be accomplished by measuring

2
X during one limit cycle and adjusting & to achieve the desired

s~ *L
value of Xg = X xL)i

during the following limit cycle. If S, & (xS -
and 6? are the values of S and 82 during the ith limit cycle, then one

2
way to do this is to select 8i+ such that

1
67, = - K (a5) +8° (2-47)
where
55, s, -5, (2-48)
and S, is the desired value of x_, - x.. A block diagram of this discrete

d S L
process is shown in Fig. 2-9,

The transfer function is given, by z-transform analysis, as

-1
) K =z S.(z)
S(z) = —r d (2-49)

-1
1+ (KT - 1)z

where
& fa (2-50
K =3 fp k2 =50)
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VARIABLE LIMIT CYCLE

e

Lf

s 'l SLOPE = 1 /k

ADAPTIVE SYSTEM BLOCK D1AGRAM

2 . . 2
6i+] = Ka(As|) + 6|

(Ka)ie) = 46;/T;

e ST 21 S

ADAPTIVE SYSTEM FLOW GRAPH

2=

FIG, 2-9, LIMIT~CYCLE-SIZE CONTROL
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This carries Si into Sd in one cycle if KT = 1 or, equivalently, if
K =2¢ k“ . (2-51)

The solution of Eq. (2-49) for a step input in Sd such that

S
s,(2) = do (2-52)
-1
l -2
is
-— - - i -
s, =8, [1-Q-kp']. (2-53)

If 0 <K, < 2, then Si - Sdo as i =» o0; if K. = 2, Si alternates between

T T
0 and ZSdo; and if KT > 2, the system is unstable.

Thus, it is necessary that 0 < KT < 2. Since fD varies

(although it was considered as constant in the above analysis), it is

desirable in a practical system to make Ka time-varying so that KT

remains constant. This may be done approximately by measuring 51 and

Ti and setting

4 51
(Ka)i+1 = T, ¢ (2-54)

1

since the fractional variation of f_ will not be very great from ane

D
limit cycle to the next.

This system will saturate if fD becomes too small and ® reaches

Smin: and will remain in saturation until fD again falls within the

linear range as the satellite approaches perigee.*

*Since the force interactions between the ball and satellite are
not a serious problem (see Chapter IV), it is doubtful that it would
ever be necessary to implement the above scheme in a practical drag-free
satellite. The previous system was presented merely as an example of
what might be done if the problem ever became important,
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CHAPTER 11I

TRANSLATION CONTROL WITH PARTIAL OR NO ATTITUDE CONTROL
WITH APPLICATIONS TO THE CONTROL OF SPINNING VEHICLES
AND OTHER DYNAMICALLY SIMILAR PLANTS

In this chapter the author will discuss the modifications in the
translation control of a drag-free satellite which are necessary if the
satellite rotates or tumbles. The linear control-synthesis techniques
developed here to handle this special case will be shown to have a much
wider applicability than the translation control of the rotating drag-
free satellite. Therefore in this chapter will also be discussed the
applications of these methods to the synthesis of linear and contactor
control for other dynamically-similar plants such as, for example, the
attitude control of the symmetry axis of a symmetric, spinning space
vehicle.

In Chapter I it was shown that the translation-control equations
for the drag-free satellite reduce to Eq. (1-6) when the vehicle is
tumbling with an arbitrary angular velocity ZE. The simplest case of
tumbling motion consists of a symmetric body with attitude control to
keep it spinning at a constant rate about its symmetry axis. When the

body =z axis is chosen parallel to the spin axis, Eqs. (1-6) reduce

C
to Egs. (1-17)

. 2 .
Xc < ws X, = 2w Yo = f + f

C S Dx Cx

+ 20 % (1-17)

. 2
s ¥¢ ¥ Yo T W V¢ = Ipy * Igy

This special case will be discussed first because it provides a simple
example of the basic method. Control for the general case of arbitrary
Z% will be discussed at the end of the chapter (pages 102.-to 157).
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The equation in ZC is uncoupled from the ’(C and y,. equations

and is identical to the equation discussed in Chapter II. This leaves

the fourth-order coupled set

(13 2 .
Xc ws Xc - 2ws Yo = fDx + fo

. 2 (3-1)
2ws xC + Yo ~ ws yc = ny + ny ,

and the first problem of the present chapter will be tc synthesize a
linear control for this set.

Within the context of the drag-free satellite application, there
are a number of practical ccnstraints which apply tc any control iaw
for Eqs. (3-1). First, the most desirabie control is still of the
"on-off" or "bang-bang’ type discussed in Chap“er II because of the
practical difficulties c¢f corstructing proportional gas jets. Seccnd,
it would be highly desirable if the 1limit cycles at the origin con-
sumed, as nearly as possible, only the amount of fuel necessary to
oppose the drag. (This minimum-fuei ccocnsumption cannot be completely
realized unless very short pulses are used bzcause the spinning jet
will precisely orpose the drag force only at one instant during its
entire time of firing.) Third, and possibly most important, the con-
troller must be of the simpiest possible form (consistent with the
other requirements), since it must operate reliably on orbit, un-
attended for pericds of the order of a year.

The synthesis approach, which will be employed in this chapter,
will be first to find a linear, constart-coefficient, feed-back centrol
law which makes the system stable for all peositive values of the con-
trol gain, and then to replace the linear gain eiement with a relay

control to operate the jet valves.* Synthesis methods, which cptimize

*This procedure was first suggested by Aizerman (45), who conjec-
tured that if a linear system with a constant-gain element in its
feed-back contrcl loop were stable for all positive values of that
gain, then it would also be stahle if the gain element were replaced by
a relay contrecller.

(An alternate approach is to employ the pulse-width, pulse-repeti-
tion rate-modulation system used cn the Discoverer space-craft series
as an approximation of the linear centrel.)
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the initial condition or 'dead-beat" response for some integral criterion,
are not as useful here as in other applications; because (just as in
Chapter II) the nature of the disturbances is such that the drag-free
satellite translation-control system will spend almost all of its life

in 1limit cycles at the origin.

The problem of finding a linear, constant-coefficient, feed=-back
control law for a dual-input, fourth-order dynamical plant which results
in a stable system is not entirely straightforward (at least not when
compared with the second- or third-order, single-input case); and once
such a control law has been found, the analysis of the system perform-

-ance may involve tedious algebraic calculations. A synthesis method
will be developed here which is straightforward and easy to apply,
which guarantees stability for all positive values of the control gain,
and which yields a system whose controlled performance is very easy to
analyze. In addition, switching surfaces for the corresponding con-
tactor control system constructed on the basis of Aizerman's conjecture
will be shown to be two planes in three-dimensional sub-spaces of the

states.

A, LINEAR CONSTANT-COEFFICIENT CONTROL OF THE l/s2 PLANT 1IN A
ROTATING REFERENCE FRAME

1. TRANSFORMATION TO COMPLEX COORDINATES

The substitution

A
+ j y 3 '2

v
]

and

>

£ 4+ jf (3-3)
x y

transforms Eqs. (3-1) into the complex form

£+ 25 ug £ - wg E =f . (3-4)
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This step is desirable because it greatly reduces the amount of algebra
involved in the solutions of Eq. (3-4) and because these solutions are
much easier to interpret in complex form. The coupling between the
first and second of Egs. (3-1), or the real and imaginary parts of

Eq. (3-4), is due to the fact that the equations have been written

down in a rotating reference frame. The equations were cast in this
form because it is necessary to mechanize the final form of any control
law in this reference frame. This is true because the control gas jets
are fixed in the satellite body and because the ball-position sensor
reads X and yc. It is not necessary, however, to work in the xc,
Yo reference frame during the conceptual process of control synthesis.
Thus, in the next section, Eq. (3-4) will be written in a nonrotating

reference frame where the corresponding complex equation represents

two uncoupled l/s2 plants.

2, TRANSFORMATION TO A REFERENCE FRAME WHICH IS NONROTATING WITH
RESPECT TO AN INERTIAL REFERENCE

The transformation

ijt
n=Ete (3-5)
with first and second derivatives
. . jwst
n= (g + 3 wggle “ (3-6)
" (" 21w . wz , stt 5o
=€ *r2) ¢ s &e
changes Eq. (3-4) into
.o stt
=1 e . (3"8)

If xé and yé are defined to be the real and imaginary

parts of. 1 (vhich means that they are simply the in-plane components

-

of r in a nonrotating reference frame), then Eqg. (3-8) can be

C
: 2
written as the equations of motion of two uncoupled 1/s plants in
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the nonrotating reference frame xé , yé .

]
Xg fx c wst fyAlet

(3-9)

1
Ye

fx"wst + fy c wst .

Equations (3=9), of course, are obvious physically and this discussion
could have begun with them rather than with Eq. (3~1) or (3-4), but
the method of presentation used here was chosen to illustrate the more
general method which will be developed later in this chapter. A
control law may be found for each of the uncoupled secohd—order equa-
tions represented by Eqs. (3-9), and that control law may then be

transformed into the x reference frame which is fixed in the

c’ Yc
satellite.

3. THE CONTROL SYNTHESIS METHOD

A standard, constant-coefficient, linear feed-back control
system using position feedback (with constant "position" gain, Kp)
to return an initial disturbance to zero and rate feedback (with
constant 'velocity” gain, Kv) for damping may be synthesized for
Eq. (3-8).

The input acceleration, £, can be divided into two parts,

a control acceleration, f and a disturbing acceleration, f

c’ D’

H
]

H
+
H

or

Ju t
. fe S

]
~
&)

(@

+

s
=

o’

m .

. (3-10)

If this is done, the control acceleration in the nonrotating reference,
Jugt :

f. e , can then be chosen as

C
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£t e ° _ (3-11)

Then, Eq. (3-8) becomes

. . Jjw.t
n+K, n+K n=1=1 e 5, (3-12)

Kv and KP may be chosen in the usual manner to obtain any desired
performance of Eq. (3-12). From the root locus of the characteristic

equation of Eq. (3-12),

s'2 4+ Kvs' + KP = 0, (3-13)

shown in Fig. 3-1, it may be seen that Eq. (3-12) is asymptotically
stable for all positive Kv and KP.

joot
180° LOCUS 0° LocusS

B s! PLANE

FIG. 3-1. LOCUS OF THE ROOTS OF s'2 + Kys' + Kp VS. Ky
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When written in terms of §, the control law, Eq. (3-11),

becomes
stt
fo e = (3~11)
. (A
= - Kv(g + (3-14)
so that
=—K.— i -
fq v 3 (KP + Jug Kv)g . (3-15)
The complete controlled form of Eq. (3-4) is given by
. . 2
+ + - j = -
3 (Kv Zst)g + ( wg” + Ky + jug Kv)g £ . (3-16)
Equation (3~15) corresponds to the pair of real control equations
fo = - Kv (xc - g yc) - kp Xa
(3-17)*

foy = = Ky g+ wg xg) - Kp v

*Notice that the signal multiplied by each of the rate gains,
Kv, is obtained from the velocity of the plant as measured by an
observer in the nonrotating reference by using the components of that
velocity resolved in the rotating reference frame, That is, the form
of the control in the rotating reference frame is identical to the
form of the control in the nohrotating reference frame, but the damp-
ing is obtained from the rates in a nonrotating reference frame.
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and Eq, (3-16) takes the real form,

[ 2 .
+ K - - - =
X v ¢t (KP us)xC 2ws Yo Wy Yo fDx
(3-18)
L ) - o 2
X, + ) + - =
Xe Kvu. Xe yC+Kv Vo * (lﬁ) wS>yC ny.
4. TRANSFORMATION OF THE ROOT LOCUS
Since
jgt
A, V'S
nage ' (3-5)
the roots of the characteristic equation of Eqe (3-16) -
2
s + (K + 2jug ) + (KP - u + jw, Kv) =0
or
s2 + Kys+ Ky = w2 + 2j6, (s + —) =0 | (3-19)
Kys+ Kp = ug s 2 =0, :
are related to the roots of the characteristic Eq. (3-13) by the
substitution
s = s' - ju, . (3=-20)

S

This may also be seen by inserting Eg. (3=20) directly into
Eq. (3-13) since this substitution yields Ey, (3=19). Thus, the root
locus of Ey., (3-19) plotted versus KV may be obtained by merely
shifting the root locus of Eq, (3-13) down the jw axis by an amount

_J‘w

S This is shown in Fig,., 3-2,
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w
180° LoCus 0° LoCuS s PLANE

-jug +J ke

Y|

“VKp - g

-kes - i VK

2 . 2
FIG. 3-2. LOCUS SF THE ROOgS OF s +(Kv+23ws)s+(KP-wS+JwSKV)
OR (s +Kps+KP-ws)+23wS(s+Kv/2) =0 VS Kv

It is clear, either from Eq. (3-5) or from Fig. 3-2, that Eq. (3-16)

is asymptotically stable for all positive values of KP and Kv.

5. ROOT LOCUS OF THE CORRESPONDING REAL SYSTEM (A SPECIAL CASE WHERE
THE GAIN PARAMETERS ENTER BOTH AS LINEAR AND AS SQUARED TERMS)

Since
*
£ + £* E - &
- &2+ 5 - &5 -5 3-2
Xq > and y, 23 , (3-21)

where §* = Xo - J Yo and n* = xé - J yé, the roots of the character-
istic equation of the corresponding real system are given by
—_ t e 5
s =5 J wg

and (3-22)

s =s'+juwg .
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180° tocus | 0° Locus

+iws + 5/%p

A}

s PLANE

+jw

+iog - Jy/kp

~Jwg + 5y/%p

]

~jwg - iy/kp

2
FIG. 3-3. LOCUS OF THE ROOTS OF (s2 + K,s + K = w2)
VERSUS K,

P S

- 79 =

2 2
+ 4ws(s + KV/Z) =0
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COMPLEX PLANT

COMPLEX CONTROL

FIG., 3-4. BLOCK DIAGRAM OF COMPLEX CONTROL SYSTEM

This implies that the characteristic equation of Eqs. (3-18) is given by
the magnitude squared of Eq. (3-19).
K 2

2 2.2 2 v
(s + Kys + Kp = ws) + 4ws (s + E;-) = 0, (3-23)

The root locus of Eq. (3-23) versus Kv is shown in Fig. 2-3. Notice that
KV enters Eq. (3-23) both as KV and as Ki’ and notice that there is no
locus on the real axis. The system represented by Eqs. (3-18) is also
asymptotically stable for all positive values of KP and KV.

A block diagram of the feedhack control for the complex system
Eq. (3-16) 1is shown in Fig. 3-4 and of the real system Eq. (3-18)

in Fig. 3-5.
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1
t
|
|
[
|
i
{
]
o
K {
wgkKy ‘
|
|
wsKy ]
|
|
|
|
|
|
|
|
|
-—)

p REAL PLANT

P [=®
Ky

FIG. 3-5. BLOCK DIAGRAM OF REAL CONTROL SYSTEM

B. CONTACTOR CONTROL OF THE 1/s2 PLANT IN A ROTATING REFERENCE FRAME
USING LINEAR SWITCHING

If Eqs. (3-17) are written with Ky as a multiplying factor and if
k & Kp/Ky, then Egs. (3-17) become

>

f

£, = - (fcy/Kv)

-'(fcx/KV) =X, " Wg Vo + k x
(3-24)

>
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Since the system Eq. (3-18) is asymptotically stable for all positive

KV, Ajizerman's conjecture suggests that the linear constant gain Kv

may be replaced with a relay controller., When this is done, fl and

fz play the role of linear switching functions. The plane switching

surfaces fl = 0 and f2 = 0 are shown in Fig. 3-6,

SURFACE fl =0 SURFACE f2 =0
XC 90

ic = -kxg fx ==fumax )70 ==-kyg fy = 'fymax

Xc )’C

Xe = (ws/k)yC y¢ = (wS/k)(")’C)

yo = (I/ws)xc -xg = (1 jwg)ye

’e ¢ f,= +f

x = TTiymax y ymax

FIG; 3-6. LINEAR SWITCHING SURFACES SUGGESTED BY AIZERMAN'S CONJECTURE

A contactor control system using the switching surfaces given by
Eqs. (3-24) for the dynamical plant represented by Eqs. (3-1) has been
mechanized on a TR-48 Analog Computer, and the system is asymptotically

. . . . . b 3
stable for "reasonable" initial conditions,

*
An initial condition for the system Egqs. (3-1) which corresponds

to a large velocity as seen from a nonrotating reference frame would
carry the system outside the linear range of the computer, even though
the controller could ultimately return the states to zero if saturation
did not occur.
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C. THE ATTITUDE CONTROL OF A SPINNING, SYMMETRIC RIGID BODY

The dynamical plant represented by Egs. (3-1) is very special in

the sense that there is coupling between the x_ and Yo equations only

because of the rotation of the satellite. Witiin this context, it is
of fourth order only because of the choice of coordinate system, and
the method of the previous sections was based on writing the equations
in a reference frame where they assumed their simplest form., It might
be supposed these techniques represent an ad hoc approach which would
be limited to the previous example. This is not the case. The methods
of the previous section generalize to a wide class of dynamical plants,
and included in these are a number of fourth-order, dual-input plants
of interest in space-vehicle system design.

The attitude control of the symmetry axis of a spinning, symmetric
space vehicle is an example of a control problem which may also be
solved by the previous techniques. It is of interest in this thesis
because it represents another example, and also because this is the

attitude~control system currently planned for some of the early drag-

free satellites.

1. EQUATIONS OF MOTION OF THE SYMMETRY AXIS OF A SPINNING VEHICLE

In Chapter 1 it was "shown that the equation for the direction

of the symmetry axis of a spinning rigid body could be written in the

form
. .o ipt
a-jnpa=(@Q, +Q) eJB (3-25)
C D
where
n 9'13/11, the vehicle moment of inertia ratio,
B é'wz, the constant z axis angular velocity,
(3-26)
Cte¢+j9, and y
A M M
Q= Ix + J Iy , the complex torque.
1
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a gives the Euler angles ¢ and 6 as a single complex number, and
Eq. (3-25) is the second-order complex form in @ of the fourth-order

coupled set in g and 6,

(X} . M M
g + npd = ﬁcﬁt- Tl,‘at
1
(3-27)
. . e M M
-m8p + 8= =Bt + L cpt .
1 1

2. SYNTHESIS OF LINEAR FEED-BACK CONTROL

The approach of the previous sections essentially amounts to
choosing a complex rotation transformation which eliminates the term
with a j multiplier in Eq. (3-25). This is done because that term
is the source of the coupling between the real and imaginary parts of
Eq. (3-25).

The choice

oo It

L= Qe 2 (3-28)

with derivatives
. ' B8 Y 'n_zﬁ' t '
o= (@ - j 52— Q)e (3-29)

and
. . nZ? -j n—g- t

h=(a-jnBa- — e (3-30)

does just this. This result may be seen by writing Eq. (3-30) in the

form

jng 2,2 B . .
" J‘Z't.;. Q—Ea=a-jnﬁa=Qe‘]Bt (3-31)
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or

2 2 jQ- %)Bt j(1- %)Bt
——p=Qe = (g + Qe ) (3-32)

If u 1is separated into its real and imaginary parts
JAY .
H = Hp + j Ky » : (3-33)

then Eq., (3-32) takes the form of two uncoupled harmonic oscillators

of frequency nB/2.

2.2
hg * 5—5—- Hg = Q c(1- —;-)Bt - QyA'(l— -;—);:Bt

2.2 (3-34)
B 2B = qe(-Dpt + q ci- Dipt
H1 gz M1 T % 2 y 2Pt
If a control law of a form similar to that used in Eq. (3-11),
3= Bt .
Qc © ==K, p-Kyp, (3-35)
is selected; then in terms of (@ and &
Bt _ _ < _ . ng _ _
Q, = - K, (a i o) K, o . (3-36)

The constants K, and K, are again "velocity' and '"position” gains.

Equation (3-32) then becomes

. : X 3= Ppt
no+ KV TR (Kp + 2 p = QD e ) (3-37)
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and Eq. (3-25) becomes
a - o - 4B = Bt -
a + (Kv jnBla + (KP 33 Kv)a = Qpe . (3-38)

Equation (3-38) corresponds to the set of fourth-order real equations

. M M
B oK g+ npd s BT K0 = P cpt - Lap:

(3-39)

M M
-na¢-%1g,¢+e+lg,e+xpe II)SXABt+ %"Xcﬁt.

The characteristic equations of Eqs. (3-37) and (3-38) are

respectively
2.2
s2+ K, s'+ 2B sk =0 (3-40)
and
s% 4 (g, - gmds + (K, - 3 k) =0
or (3-41)

(52 + Kvs + KP) - jnB(s + f} ) =0 .

The root loci of Egs. (3-40) and (3-41) versus Kv are shown in Figs.
3-7 and 3-8 respectively.
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jw'

180° LOCUS 0° LoCUS

(73 s' PLANE
JVRB/Y + kp

_1‘- @
VnZgZ/y + K

. 2,2
-j np p

FIG., 3-7. LOCUS OF THE ROOTS OF s'2 4 Kvs' + n232/4 + Kp = 0 VS. Kv

jw

;‘(nﬁ/z +VKp + nzpzlu)

) %-———eb——-q( S
-VKp + n2p2/4 + j(np/2) j(np/2) /
a
Kv + 3nﬁ

-i(nf/2)

i(nBr2 - Vkp + aZg? /8
\ (opr2 - Vip + 24 )

FIG. 3-8. LOCUS OF THE ROOTS OF (52 + Kvs + KP) - jnp(s + KV/Z) =0

VS. K. DRAWN FOR THE SPECIAL CASE X = 3n2p%/4
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Again, since

- 112_5 ¢
H = qe , (3-28)
s'=s - j 529 ; (3-42)

and the locus in Fig. 3-8 is obtained by shifting the locus of Fig. 3-7
up a distance jnB/2 on the jw axis.

Also, since

g = a;’ and 0 = a_zs-_a*’ (3~43) and (3-44)

the characteristic equation of Eqs. (3-38) is the magnitude squared

of the characteristic equation of Eq. (3-38).

K
(52 + Kys + 1&,)2 + n252(s + 7" )2 = 0. (3-45)

The root locus of this equation is shown in Fig. 3-9. The case

KP = 3 n252/4 was selected because it illustrates what happens with
pole-zero cancellation. It is interesting to note that the choice
Kv ='J§-n6 yields an example of a system which can slew the Symmetry

axis without exciting wx and wy, i.e., without wobbling.

Ag;ln, notice that KP and Kv enter both as KP’ KV
and Kﬁ , Kv and that there is no locus on the real axis except

at isolated points.
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jw

j(nﬁ/Z + VKp + n2(32/l4>

-j(nﬁ/Z + VK + nzpz/l4>

FIG. 3-9. LOCUS OF THE ROOTS OF (sz+l'{vs+KP)2 + n2f32 (s+KV/2)2 =0
VS. Kv DRAWN FOR THE SPECIAL CASE KP = 3n252/4
3. MECHANIZATION OF THE CONTROL LAW
The linear control law given by Eq. (3-36)
gt _ _ © _ . DB _
QC e = KVOL (KP i 3 Kv)a (3-36)
is not in a form which can be easily mechanized. However,
. _w A mdBt _ i mB -jpt -
QQ = Ka e (KP J 2Kv)cxe ) (3-46)
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can be easily treated since

&=q Pt (1-40)
where q = wx + jwy. Equation (3-46) may then be written as
Q=-Ka- -3 LK)y, (3-47)
The new symbol, Y, which will be referred to as ''the star-tracker"
variable or complex angle, is defined as
- L (3-48)

The additional quantity, 7T, is introduced because it simplifies the
form of Eq. (3-47) and (later) the presentation of the switching sur-
faces, and because it is very easy to obtain a signal proportional
to 7Y from a star-tracker or sun sensor or from the gimbal angles of
a three—axis stable platform.

The control law, Eq. (3-47), may be mechanized in either of

two ways.

a. Mechanization with an External Reference for «

If it is desired to point the symmetry axis at the sun
or at a bright star, then the quantity ae-jat may be read directly
from an optical sensor if la] is small. q Q wx + jwy may be obtained
from body mounted rate gyros, 6r -KV q may be obtained from a spin

damper if 1 < n < 2, The real form of Eq. (3~47) is

JAN MCSx ng
QCx = I1 =- KV(wx + 2 Y&) - KP Yk
(3-49)
Q "ic—sl'=~ (w - By - Y
Cy - I1 KV y 2 'x Kf y
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or, in terms of g and 6,

M
cs
le = - K, [wx + %? (-gept + eth)} - Kp(geBt + 64B1)
(3-50)
M f K
LSy Lk e -D8 - K (-
Il = KV Lwy 5 (gcBt + 648t) J KP( g<4Bt + BcBRt).

The complete-system block diagram for the controlled complex plant is
shown in Fig. 3-10, and the real plant is shown in Fig. 3-11. (See
also page 22 and Fig. 1-4.)

a(s)

Ky fsn
RATE GYROS OR SPIN SHIFTER
DAMPER IF: | < n <2 nBK .
Ko - _ﬁ_l - e Bt L
p-J 2
ELECTRONICS OPTICAL
SENSOR

a(s + iB) 2Y(s)

FIG. 3-10. SPINNING VEHICLE CONTROL WITH EXTERNAL REFERENCE -
COMPLEX FORM
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_________ e e e e e e o o o . e )
SPINNING PLANT OPTICAL SENSOR
Ky e (STAR-TRACKER, SUN SENSOR,
y RATE GYRO OR OR 3-AXIS PLATFORM)
SPIN DAMPER
Kp
| A RELAY CONTROLLER MAY BE {NSERTED AT THE ASTERISKS FOR THE CONTACTOR SYSTEM WITH LINEAR
| switcHing.

FIG, 3=~11, SPINNING VEHICLE CONTROL WITH EXTERNAL REFERENCE — REAL
FORM



b. Mechanization with a Strapped-Down Inertial Reference System

If no external reference for & is available, it is
possible in principle to mechanize an all-inertial attitude-reference
system. Such a system is difficult to realize in practice because it
requires lossless filters accurately tuned to the spin frequency, pB.

Stable control may be accomplished if the quantity
T = ce t can be computed from measurements of q(t). Since

C.t = q(‘t)e‘jBt , (1-40)

t
a(t)e-‘jBt = aoe-jat + e-jﬁtv/h ejBT q(1)dr. (3-51)
0

Taking the Laplace transform of Eq. (3-51),

. q(s) + «
=gt} _ = o -
L{a(t)e ] = L(s) = s * 36 (3-52)
The control law then becomes
nBK
&p - 3 "é!)
Q(s) =-K als) [a(s) + a ]. (3-53)
s + jp °
The quantity
Q(S? _ s q(s; - jg q(s) (3-54)
s + jb 2 +p
has the corresponding real form
s w(s)- B w (s)
Real part = X 5 5 L (3-55)
s+ 8
s w(s) -p wxgs)
Imag. part= J 3 ; (3-56)

s° + 52
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and, hence, requires the synthesis of the filters

H(s) = L (3-57)
s2 + p2
and
s
sH(s) = > > (3-58)
s +B

to mechanize the control,
The synthesis of the filters represented by Egs. (3-57)
and (3-58) is best understood by considering the differential equation

which 71 obeys. If Bq. (3-51) is written in the form

t
att)e Pt = y(t) = roe'J'Bt + e‘JBtf ePT g (pdr; (3-59)
(o]

since Yb = GB, Eq. (3-59) is immediately recognizable as a solution

of the differential equation

T+ 3BY

=q
(3-60)
T, = Q)
or

7& = BY& + wx
(3-61)

= + W .

7& -Brk »
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Figure 3-12 shows the relatively simple form that the tuned filters
assume when mechanized from Eq. (3-61) with operational amplifiers.

In a practical system, the spin rate slowly decays; and the gains, B8,
must be maintained from some measurement of the spin speed such as a
Zz-axis rate gyro, sun sensor, or platform gimbal rate sensor. In
addition, some provision must be made to reset the integrators periodi-
cally to counteract the effects of drift and errors in the measurement

; d th ain .
of wx, uy, an e gai B

Y, £ dcpt + 0opt

z RATE GYRO

"~ ADJUSTS GAIN

Y, = - bopt + Ocpt

FIG. 3-12. OPERATIONAL AMPLIFIER MECHANIZATION OF THE TUNED
FILTERS TO COMPUTE Y

A block diagram of the complex form of the strapped-

down inertial reference system is shown in Fig., 3-13.
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elBt

SHIFTER

ELECTRONICS

FIG. 3-13. SPINNING VEHICLE CONTROL WITH A STRAPPED-DOWN
INERTIAL REFERENCE -~ COMPLEX FORM

D. CONTACTOR CONTROL OF THE ATTITUDE OF THE SYMMETRY AXIS OF A
SYMMETRIC, SPINNING SPACE VEHICLE USING LINEAR SWITCHING

Since the controlled form of Eq. (3-38) is stable for all positive
values of Kv and for all values of KP > -n262/4, stable switching
surfaces may be constructed from Eqs. (3-49) if Aizerman's conjecture
is true for this plant. Again, as was the case with Eqs. (3-24),
define k = KP/Kv so that

Q
& _ Cx _ ng
5= K, -T2 Ty R,
(3-62)
Q
6_ Ly _ ., -B8
fz— %_wy 2Yx+kry.
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The switching surfaces described by Eqs. (3-~62) are shown in Fig. 3-14.

SURFACE fl =0 SURFACE f2 =0
Wy
wy =-kY, % = ~Omax = ~Qymax
Yy Yy
Y, = (nB/2k)(-y,) Yy = (nB/2k)Y,
-Yy = (2/nBw, Y, = (Z/Hﬁ)u&
'Yy Y‘
Q= *+Qxmax Qy = +Qymax

FIG. 3-14. LINEAR SWITCHING SURFACES FOR THE SPINNING VEHICLE
SUGGESTED BY AIZERMAN'S CONJECTURE

A contactor control system using the switching surfaces shown
in Fig. 3-14 has been mechanized on a TR-48 Analog Computer, and the
system was always observed to be asymptotically stable for the initial
conditions which were tested. In fact, the g , 6 , w_, and w
(o} o) X0 yo
space was continuously searched using the computer "Rep Op" mode,

and no points of instability were observed.
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E. EXTENSION TO ARBITRARY, FREQUENCY-SYMMETRIC, LINEAR DYNAMICAL PLANTS

1. DEFINITION OF FREQUENCY SYMMETRY

Those even-ordered, linear, time-invariant dynamical systems
whose pole-zero configurations may be generated by translations of the
pole-zero configuration of some other linear-dynamical system (of one-
half the order of the first) by equal distances up and down the Jw
axis will be said to possess 'frequency symmetry.

As an example consider the third-order plant

.H + (2a + c)n + (a.2 + b2 + 2ac)ﬁ + (a2 + bz)cn = u eIVt (3-63)
with characteristic equation
(st + c)[(s"' + a)l + bz] = 0, (3-64)

Then the sixth—order dual-input plant, whose complex form may be genera-

ted by the substitution

E = ne , (3-65)

E + (3jV + 2a + c)E + [—3v2 + 2jv(2a+c) + a2 + b2 + 2ac]t

(3-66)
2 2
+[-jv3 -(2a+c)v2 + jv(a2 + b2 + 2ac) + (@° + b)eclt = u,
is frequency symmetric.
Equation (3-66) has characteristic equation given by the
substitution in Eq. (3-64) of s' = s + jV
2 2 .2 2
(s+c+3v)I (s+a+jv)2+b2 ]= {(s+c) [(s+a)® + b° =V ]-2v7(s+a) }
(3-67)

+ jv[(s+a)2 + b2 - vz + 2(s+a)(s+c)] = 0 .
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The characteristic equation of the real sixth~order plant which cor-

responds to Eq. (3-66) is given by the magnitude squared of Eq. (3-67)

2 2 A

( _
i‘s+c)[(s+a)2+b2—v ] -2v (s+a?f2+v2[(s+a)2 +b2-v2+ 2(s+a)(s+c)]2 = 0. (3-68)

2. LINEAR CONTROL SYNTHESIS

Any constant-coefficient, linear control equation which
stabilizes Eq. (3-63) in terms of ﬁ, ﬁ, and 11 will also stabilize
Eq. (3-66) with (E + 2jv é - v2§), (é + jyt), and ¢ -substituted
in the control law for h', ﬁ, and 7 respectively. I1f the control
law happens to be stable for all positive values of the control gain,
then the system will most likely be stable if the linear gain element

is replaced with a relay controller.

3. FREQUENCY-SYMMETRIC DYNAMICAL PLANTS WHOSE EQUATIONS OF MOTION
CANNOT BE IMMEDIATELY WRITTEN IN COMPLEX FORM

The linearized form of Hill's Lunar equations (1-72) and (1-73)

2, 2
with characteristic equation s (s

+ uﬁ) = 0 and the Lagrange attitude

Eqs. (1-78) and (1-79) with characteristic equation (52 + wf)(52+ wg) =0

(when stably oriented), provide examples of frequency-symmetric plants,

whose equations cannot be written as a single complex equation while

in their present form. '
However, in the case of Eqs. (1-78) and (1-79), a linear

transformation can be found which changes them into a symmetric form

which can be written as the single complex equation

w,ax = Q, (3-69)

Qa + J(wl + wz)a - ww,

which corresponds to the real fourth-order system
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g. - w w2¢1 - (wl + w2)¢2

1}
o

1 1

(3-70)
(wl + w2)¢1+¢2 -w

"
o

1Y2%2

A ) A .
where Q = ¢1 + J¢2 and Q = Ql + JQZ-

Since Egs. (3-70) and (1-78) and (1-79) have the same characteristic
roots (none of which are repeated), there exists an invertable linear
transformation from Eqs. (3-70) to Egs. (1-78) and (1-79), In practice,
this is found from the invertable linear transformations which change
Eqs. (3~70) and Eqs. (1-78) and (1-79) into normal coordinates.

When this procedure is carried out for the general case, a
rather strange complication arises. The control inputs to Egs. (1-78)
and (1-79) become distributed among all the states of Egs. (3~70),
rather than just among those states which correspond to the system
velocities as in the case of Eqs. (1-78) and (1-79). When the con-
trol equations are modified to take care of this situation, it turns
out that the control must be fed back through a linear filter instead
of merely a constant-coefficient linear combination.

On the other hand, Hill's linear orbit Eqs. (1~72) and (1-73)
are examples of a fourth-order, dual-input, frequency-symmetric, linear,
time—invariant, dynamical plant which cannot be treated by the methods
of this chapter. The characteristic equation 52(52 + ug) =0 is
frequency symmetric and can be shifted into an equation of the form
(s'? + u§/4) = 0, but the multiple root at zero causes a response
in the original system which grows as t, and the roots at + j qo/z
do not cause such a response in the shifted system. ‘

In general, if the Jordan form of a frequency-symmetric plant
has ones above its diagonal, the corresponding shifted, half-order
plant cannot duplicate the character of its response unless it has a
corresponding shifted, multiple root and also has corresponding ones
above the diagonal in its Jordan form. (This is precisely the case

for the 1/s2 plant in a rotating reference frame. It has a
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R . 2 2
characteristic equation (s” + ws)z = 0, and the corresponding shifted

2
1/s plant has a characteristic equation 5'2 = 0.)

F. EXTENSION TO TIME-VARYING LINEAR DYNAMICAL SYSTEMS

As an example of this extension, the transformation
t

Jg v(t)d=x
n==¢te (3-71)

changes the general second-order, linear, time-invariant equation

t
Jé v{t)drt
a + kv;] + kpﬂ = ue (3"7_2)

(where kv and kp are constants) into the time-varying, linear system

E + (kv + 2jv)é + (kp-v2+jb+jkv)g = u + u, . (3-73)

A control law of the form

t
3] vdt
us éo = - Kvn - Kpn (3-74)
or
u, = - Kv(é + jvk) - KP £, (3-75)

which stabilized Eq. (3-72), also stabilized Eq. (3-73). The concept
of a characteristic equation of Eq. (3-73), of course, has no meaning;
but the response of Eq. (3-73) may be easily computed from the response
of Eq. (3-72).
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The case where kv = kP = 0 1is of interest here, because it
represents the form of the drag-free satellite equations when the
spin about the symmetry axis is not constant in time. The results of
the previous analysis can be applied to this case in a straightforward

way and will not be discussed here.

0

G. EXTENSION TO THE SYNTHESIS OF LINEAR CONTROL FOR THE GENERAL
SIXTH-ORDER, THREE~DIMENSIONAL, TIME-VARYING EQUATIONS FOR
SATELLITE TRANSLATION CONTROL

When a drag-free satellite with arbitrary moments of inertia has
no attitude control but is allowed to tumble with arbitrary ‘BS’

Eq. (1-6) assumes the form

. 2 2 . . . .
Xc (wy W )xC - 2wzyC +(wxwy-wz)yc + 2wyzc+(wxwz+wy)zc = fDx + fo
20 x +(w w + )x ., + } -(w 2 + W 2) Vo - 2W z +(w W —Q Jz . = f + f (1-19)
z C xy z°C C z X C x C yz xC Dy Cy
20 x +(w w -0 )% + 2w ¥ 4w W +w_) +z ~(w 2 + w 2) z,.=f_ +f
vy %% Py ¥ e Ve 2y Y% Ye cC x y C ™ "Dz cz’®

The formidable nature of Eq. (1-19) gives a first impression that
to synthesize a linear control law, which would meet even the elemen-
tary requirement that it be stable, might be a very difficult task.

It turns out, however, that this is not the case. It is possible to
mechanize a very simple linear, time-varying, feed-back control law
which is stable and is closely related to the linear, constant-
coefficient feedback used in the previous sections of this chapter.
This linear control also suggests a possible control scheme using con-

tactor control.
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1. THE EQUATIONS OF MOTION IN MATRIX FORM

It is convenient to distinguish between the measured position
of the ball, ;é, viewed as a physical vector and Ic viewed as a
3 X1 column matrix. This is helpful because while ?C’ as a vector,
is invariant under a rotation of coordinates, its components are not,

but are variant scalars which transform according to the law

_r_c = _A_ I.é (3'76)

where A is a 3 X 3 direction cosine matrix which represents a

coordinate rotation. Let 5& denote the components of the vector,

-
Tes resolved in a reference frame which is nonrotating with respect
to inertial space, and r ‘'denote the components of T resolved in

=C (o]
a reference frame which is fixed in the satellite. Under these cir-~

cumstances éC (éé) will simply mean the 3 X 1 column matrix whose
elements are the time derivatives of EC(Eé)’ and this notation will
not imply from what frame vector differentiation is performed as in
the case of the dot and circle notation foF vectors. It is clear that
ic(éé) consists of the components of %é(;c) resolved in a reference
frame which is fixed in the satellite (which is nonrotating with res-
pect to inertial space).

In this notation, Eq. (1-6), or equivalently Eq. (1-19),

assumes the form

rh 25 + _é (3=-77)

in the nonrotating frame and

+ (3-78>

[o-
J;

Ic * # zg

in the rotating frame.
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The symbol

0 -W w
z y
ol 0
a= W —w (3-79)
- w 0
y X

represents an antisymmetric matrix of angular velocities, which yields
-
r

the components of Ve X in the satellite reference frame when post-

S C
multiplied by 1. Equation (3-78) is the matrix form of Eq. (1-19).
By differentiating Eq. (3-76) and comparing it, term by
term, with the Coriolis law, ° = ° + :%><, it may be shown that
A=-0aA (3-80)
and that
<, . _
é—C—£C+9-é£C—£C+9-£C' (3-81)

Equations (3-80) and (3-81) will be needed in the next section in

order to transform the control law.

2. TRANSLATION CONTROL WITH ARBITRARY 2%

Just as Eqs. (3-1) were complicated because of the reference
frame in which they were expressed, so also Eq. (3-78) takes on the
simple form of Eq. (3-77) when written in a nonrotating reference
frame. Because Eq. (3=77) is so simple, a control law will be found
which stabilizes it; and this control law will be transformed back
into the rotating reference fixed in the satellite. This is identical
to the procedure employed in the first part of this chapter, except

that now the full three-dimensional equations will be used.
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If, as in the previous cases, a control of the form

;é:.-xvl'-é-xpzé (3-82)

is selected for the nonrotating reference frame, the resulting equation

of motion obtained from Eq. (3-77) is

t T 1 -
Igtly o t¥pc=41 . (3-83)

This equation breaks into three independent, second-order, linear,
constant-coefficient, scalar equations, and the constant-control gains,
Kv and KP, may be chosen to give any desired second-order performance.

Equation (3-83) is not very useful, however; since the jets
which apply £C are fixed in the satellite; and since the satellite
relative-position sensor measures Io and not Eé' That is, the
sensor measures the components of the ball's position in a reference
frame fixed in the satellite, not one which is nonrotating with respect
to inertial space. If, however, Eq. (3-82) is transformed into the
satellite reference frame, the expression for the jet forces may be
written in terms of the variables actually measured by the position
sensor. Since ?b is a | space . vector, its components transform in
the same manner as the components of ;b. So that from Egs. (3-765

and (3-82),

= t o b S t
Io=lf=-KAa, ~Kixg
= =K (xo + Q1) - Ko, (3-84)
or (in ordinary vector notation)
- S -> - ->
fc=-xv(‘r’c+ws><rc)-xprc. (3-85)
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Thus to mechanize a linear translation system for arbitrary
>

We s it is only necessary to measure ;S (for example with body-fixed

rate gyros) and to feed back control commands as dictated by Eq. (3~84)

or (3-85). For example, the x component of the control law would be
= - K [x - - -
fo v[xC + wy(t)zc wz(t)yc] X, Xo (3-86)

and the control is completely specified in terms of the state variables

EC and EC .

The complete equations of motion with the above linear con-~

trol law then are given by

.. . 2 .
It (Kv + 2Q)£C + Q7+ Q + Ky + KVQ)EC = £, (3-87)

or (in physical vector notation)

o

29 + (K +2-'> x)-°> [-> X-’
r v ms rC + (JJS O.)S

c (3-88)

X + jsx +Al&> + K, Tﬁsx];c = -fD .
Viewed in the light of the entire Eqs. (3-87) or (3-88) the previous
results are obvious, since Eq. (3-88) results from the transformation
of the vector form of Eq. (3-83) by the Coriolis law =~ = ° + ZEX.
The control may be obtained then, by merely separating out the terms
which are multiplied by KV or KP in Eq, (3-88).

Thus, it can be seen that the complete absence of attitude
control does not unduly complicate the mechanization of the drag-free
satellite translation-control system.

Equation (3-83) is asymptotically stable for all positive
KP and Kv and the choice KV = ZJE; yields three second-order,

critically-damped systems. Since

= é r' , (3—76)

I I
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the system of equations represented by Egs. (3-87) or (3-88) is also
asymptotically stable for all positive KP and KV. Furthermore,
although, strictly speaking, the concept of critical damping has no
meaning for the system (3-87) or (3-88), the choice Ky = ZJE; implies
that an interval of time equal to several multiples of I/JE; after an
initial disturbance will find r and r smaller in some sense than

~C ~C
any other choice of the value of KV as a function of KP.

H, CONCLUSION

It has been shown that for a certain class cf plants there exists
a rather simple time-varying transformation which reduces a 2nth-order
system to two uncoupled nth-order systems. Fcr the special case
where the resulting nth-order plant is time invariant, the methods of
classical control theory can synthesize an asymptotically stable control.
Furthermore,; if the original plant is also time invariant, then the
roots of its characteristic equation are obtained from the rocts of the
nth-order system by translation along the j axis in the s plane.
In the case of the translation contro} of the drag-free satellite, the
time-varying transformation which was used made very good intuitive
sense; since it corresponded simply to working in an inertial reference
frame. For the symmetric, spinning space vehiclie, however, the trans-
formation appears to have no intuitive meaning; since the frequency .
nB/2 corresponds to none of the physical parameters of the system; and
since the equation

. n
2.2 j1- E)Bt

o+ 2 i L=Qe (3-32)

describes the behavior of no related system.

All control problems which involve plants which may be generated
from a tractable one-half-order system by Eq. (3-65) are amenable to
this technique, and they have the common property that their character-

istic roots may be generated by the transformation

s=s'+ 3w, . (3-22)
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However, apparently not all plants whose roots have this property may
be treated by this method, since a similarity transformation designed
to reduce the differential equations to a symmetric form, where they
can be written as a single complex equation, may not be possible.

This is true because, while all similar matrices have the same charac-

teristic equation, not all matrices with the same characteristic equa-

tion are similar.
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CHAPTER 1V

SYSTEM TRAJECTORY ERRORS

The effects of various types of drag~free satellite system errors
fall into two general classes: those which cause the satellite orbit
to deviate from a truly drag-free trajectory and those which affect
the control-system requirements. In order to investigate those errors
which affect the trajectory, it is only necessary to consider Eq. (1-1)

which describes the motion of the proof-mass alone.

=P _+F_+F
M T3= *e8 ¥ Ysp 7 Fpp (1-1)

or

-—
£ + £ . (4~1)

It is not necessary to consider the equation of the satellite
itself, since it is assumed that the control system constrains the

A -
satellite to follow the ball. If £, + f. = f.. were zero, the

GB PB DB

satellite motion would be that of a satellite acted on only by gravity
so that the additional effect of ¥DB may be found by a perturbation
analysis. While it is not necessary to do so, the analysis is greatly
simplified if the actual motion is compared with a nominal circular
orbit about a spherically-symmetric earth. The results of this type
of analysis will be valid for orbits with eccentricities up to about
0.1 to 0.3.

As was pointed out in Chapter I in the derivation of Eqs. (1-72),
(1-73), and (1-74), & and 17 may be interpreted either in a rec-
tangular or in a cylindrical coordinate system. The latter is chosen
(although it will be convenient to represent the figures in rectangular
plots). . That is, to accommodate those results which contain large se-
cular terms in 1, & and 1 shall connote cylindrical coordinates,

which can be visualized by thinking of the 1 axis as being "wrapped

around’” the nominal circular orbit (19).
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A. FREE-RESPONSE OF HILL'S ORBIT EQUATIONS

The equations of motion of the satellite linearized about a nominal

circular orbit are

e 2 . _ _
E-3uwy & -2uw q= fDBg (1-72)
2w, E+ = fDBn (1-73)
E - E=£ (1-74)
o DB{
Equations (1-72) and (1-73) have the fundamental matrix*
Lugt - T
E(t) 4-3cujt = o . (1-cubt) ;o
(o] (0]
g(t) ;I Bugduyt cwyt o] 24u,t go
_ | : (4-2)
n(t) 6w t-w t) 2 (cw.t-1) 1 L (4 t-3u. t) ul
(0] (0] “ (0] ' o (o] (o] o
n(t) 6wy (cugt=1)  -28u,t 0 4cuw,t-3 | Ny | .
I —— — -— d

The responses of Eq. (4-2) are plotted in Fig. 4-1 for various

initial conditions.

* . .

Note that Eq. (1-74) which corresponds to orbit tilt is uncoupled
from Eqs. (1-72) and (1-73) and that its form is that of the well-
known simple harmonic oscillator.
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Either from Eq. (4-2) or Fig. 4-1 or by examination of the charac-
teristic equation of Eqs. (1-72) and (1-73), 52(52 + ug) = 0, it may
be seen that the free response of these equations consists of oscil-
lations at orbit frequency plus a secular response in 1 which grows
proportionally to t. Physically, it is obvious that if the satellite
were started in a higher or lower orbit with an initial velocity equal
to circular velocity at that altitude, the resulting motion would
correspond to excitation of the response which corresponds to the s2
term in the characteristic equation., It is also obvious that if the
satellite were in a slightly elliptical orbit with the same period as
that of the nominal orbit, the motion would contain no secular terms
in t; and that this motion would correspond to the 52 + wg term
in the characteristic equation. These results may be seen analytically
by inserting initial conditions which correspond to motion in a higher
or lower circular orbit or initial conditions which correspond to
elliptical motion with period, 2n/wo, into Eq. (4-2) and noting -
that only the terms corresponding to 52 or to s2 + ug, respectively,
appear,

These heuristic arguments may be made rigorous by considering the
normal modes of Eqs. (1-72) and (1-73), The pair of normal modes
corresponding to the s2 = 0 roots give the initial conditions for a
higher or lower circular orbit, and the pair of normal modes correspond-
ing to the roots, 52 + ug = 0, give initial conditions for slightly
elliptical motion with period, 2n/wo .

The transformation to normal coordinates is
a=TE¢ . (4-3)

or
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B l 2w 2 - 1 ] r- ]
a 0 “o £
a 6we 0 0 3 g
2 0 “o
= (4-4)
03 Sub 1 0 2 7
a4 Sub -1 0 2 n
. — | S——— —— S —l

Equation (4-4) changes the first-order form of the differential Egs.
(1-72) and (1-73) which is

£=Fg+Du (4-5)
or
nir T o1
£ 0 1 0 0 £ 0 0 DB
342 0 0o 2w £ 1 o f

§ “o o DB | '

= + (4-6)
1 0 0 0 1 1 0 0
1 0 -20; 0 0 1 0o 1
- - S RSN Ay Sy - b _J

into the form
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. D
a=F a+D u (4-7)

LT I7 0 ° 7
a 0 1 0 0 : '
a 0 0 0 0 '
2 (12 0 3w0 fDBn
= + (4-8)
a 0 0 0
3 ub a3 1l 2
a4 0 0 -ub 0 a4 -1 2
I S 1 T O _
where
D -
F =TFT 1 (4-9)
and
D
D =TD. (4-10)

The free responses of Eq. (4 -8) are

_ t -
O&O + Qyo (4-11)

al(t)
az(t) =q

20

which corresponds to circular motion in a higher or lower orbit, and
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a3(t)=a cwu.t + a, sw.t

3o 0 40 O
(4-12)
t =
a4( ) Q pupt +Q,  cugt,
which corresponds to an elliptic orbit with the same period as the
nominal orbit.
B. FORCED RESPONSE OF HILL'S ORBIT EQUATIONS
To analyze the effects of f on the ball's trajectory, it is

DB
necessary to consider the response of Egs. (1-72), (1-73), and (1-74)

to two cases.

1. 'f’DB CONSTANT IN THE &, n, { REFERENCE FRAME

If
fDBgo fgo
F_ = ¢ of ¢ (4-13)
DB DBo | "I “mo
fDBgo £, !
(o

then for ¢ = £ = n = ﬁ =0,

[o] [o] (o] (o]

£ 2f

£(t) = —%2 (1 = cugt) + —22 (uyt = Sut) (4-14)
wo wo ’
—2f,, o 3 2 2

n(t) = ———25-—(th -,wot) + —113 [4(1-cwot) -3 Yt (4-15)
“o “o
£

¢E(t) = —g—;- Q- cwyt). (4~-16)
“o
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If Wyt << 1; E(t) =1/2 £t
Eo
which is to be expected.
terms Abubt and cubt
are
£(t) = +
n(t) = -

The time can be eliminated between Eqs. (4-17) and

equation of the mean path

These results are plotted in Figs. 4-2 through 4-8.

2

0,

and 4-4 and Figs. 4-6, 4-7, and 4-8

merely in different scale.

,» n@t) =1/2 ¢ t2,
no

If the constant terms and the short period

3@02
81 <; ¥
no

yields the

1/2f t2,
o

and {(t)

are omitted, the remaining secular growth terms

(4-17)

(4-18)

(4-18) to yield the

(4~-19)

win

Fh
Sl
)

path equation

(4-20)

Figures 4-2, 4-3,

each show their respective cases

This is done to illustrate various features

of the motion that could not be brought out in a single drawing.

It is interesting to note that Eq. (4-16) has no secular

terms, but that the effect of

2
at an offset angle fgo/w0 Ty

£

to

If, however,

is merely to hold the orbit plane

the orbit is eccentric,

and one considers the full nonlinear Eqs. (1-86), (1-87), and (1-88),

secular terms occur which are proportional to the various powers of

e.
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FI1G, 4-2, RELATIVE PERTURBED MOTION, _fDB CONSTANT IN THE t,n FRAME,
DRAWN FOR f'éo = fﬂo (SCALE 20 TIMES THAT OF FIG, 4-3)
""(z)glfgo 2
2 2 f,
f,
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FIG, 4-3, RELATIVE PERTURBED MOTION, _fDB CONSTANT IN THE §,n FRAME,

DRAWN FOR fgo = f_qo (SCALE 1/20 THAT OF FIG. 4-2)
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FIG, 4-4, RELATIVE PERTURBED MOTION, -fDB CONSTANT IN THE ¢,n FRAME.

DRAWN FOR f; = f'r]o (NOTE THAT HORIZONTAL SCALE IS 1/20 OF THE
VERTICAL SC TO EXAGGERATE SHORT PERIOD EFFECTS)
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FIG. 4-5. RELATIVE PERTURBED MOTION, fpg CONSTANT IN THE £,n, FRAME —
DEGENERATE CASE, £, # 0, fo= 0
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FIG, 4-6. RELATIVE PERTURBED MOTION, _f>DB CONSTANT IN THE £,n FRAME —

DEGENERATE CASE, fgo =0, f'lo # 0 (SCALE 10 TIMES THAT OF FI1G. 4~=7)
2
woglf'qo
wln lw2¢ 2
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30 |
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FIG, 4-7. RELATIVE PERTURBED MOTION, fpp CONSTANT IN THE ¢,n FRAME —
DEGENERATE CASE, £, =0, f # 0 (SCALE 1/10 THAT OF FIG, 4-6)
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FIG. 4-8, RELATIVE PERTURBED MOTION, fpp CONSTANT IN THE ¢, FRAME —
DEGENERATE CASE, f, = 0 (NOTE THAT HORIZONTAL SCALE IS 1/20 OF THE
VERTICAL SCALE TO 5° EXAGGERATE SHORT PERIOD EFFECTS)
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FIG._4~9, RELATIVE PERTURBED MOTION, Tpg CONSTANT IN INERTIAL SPACE,
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3w, 2

¢+ w§§= e * 34 (4-21)

and

E(t) = £, cuyt (4-22)

have the additional secular term (to first order in e)

f, t
. .3 _to
t(e) = - 3 o cugt (4-23)

This corresponds to a slow rotation of the orbit plane at a rate,
3e fg /2worN Similar results also exist for the nonlinear terms in
Eqs. (1-76) and (1-77); however, for sufficiently small t, their

effect on the satellite orbit may be neglected.

2. T CONSTANT IN AN INERTIAL REFERENCE FRAME (ROTATING IN THE ¢E,1, ¢

FRAME)
TpBEI _ Ter
?DB = fDBqI = nt (4-24)
f f
DB;I Inertial ;I Inertial
gIcw t + f Anbt
= —fgrdw t + qu cwot (4-25)
f
g1 £,1, ¢
Then for g =0,
fSE 3 3 o1
E(t) = 2 2 Wotawyt - 2(1-cw t)] + 3 > [bwot-wot cwot] (4-26)
(JJO wo
Tpx In1
n(t) = 5 [3“bt - 6awgt + 3wot cwot} + =5 [3wotawot - 5(1—cwot) (4-27)
w L. w
(o} (0]
£ 1’
(et = -55 A - cugt). (4-16)
“o

. . _ 2 _ 2
Again, if wyt << 1, E(t) =1/2 fglt , and n(t) = 1/2 ntt
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The above results are shown in Figs. 4-9 and 4-~10 for motion
relative to the §¢,n frame; and in Fig. 4-11, the motion for several
orbits is shown from the point of view of an inertial reference frame

. 0 - .*
with fgI # and nt 0

*
It is rather interesting to note that in the case where f =0

and fny7 # 0, there is no first-order rotation of perigee (i.e.gI
the secular term 3uwgt is multiplied by Awwot; whereas with f;I
and f,; = 0 there is a secular term 3wgt, which corresponds to a
secular rotation of perigee at rate 3f /ﬂbrN. The intuitive or
"physical reason' for this is that when fDB begins parallel to the

£ axis, there is an initial component of force in the minus 1 direc-
tion for 180° of rotation; whereas when fDB begins parallel to the

N axis, the disturbing force is initially along plus 1 for only

90°. In the first case, an average velocity term along the positive

N axis builds up and is not cancelled by subsequent rotations, but
there is not sufficient time for this to happen in the latter case.
This can be seen mathematically by differentiating Eq. (4-27) to obtain
the n velocity,

™
o

3f £
ﬁ(t) = —Zil [(l-cubt) - 3ubtAwot] + —2% [aubtcubt - ZA&bt} (4-28)
which has the constant term 3f§1/ub.
(It is also interesting to note that an initial force acting for 180°
along the negative 1 axis causes a net velocity to build up along the
positive 17 axis. This is, of course, what would be expected from
classical orbit mechanics.)

The above situation is closely related to the motion of a point
mass under the influence of a constant rotating force. (This is the
model which is often used for the effect on the trajectory of a thrust
vector misalignment on a spinning rocket in vacuum.) Here the equations
of motion

x = fewyt and y = fu t (4-29).
integrate to
. Ayt . 1-cuw,yt .
x =1 and y = f ———, (4-30) and (4-31)
w W .
(0] (0]
and
: l-cw,t wLt=4w.t .
x=f ———2—0— , y=f -.—°-—2-2— (4-32) and (4-33)
“o “o

when the initial conditions are zero.-
(footnote continued on next page)
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FIG, 4-11, ORBIT PERTURBATION FOR .¥DB CONSTANT IN INERTIAL SPACE AND

INITIALLY ALONG ¢ . DRAWN IN AN INERTIAL REFERENCE FRAME
WITH THE EFFECT GREATLY EXAGGERATED. (NOTE INCREASING
ECCENTRICITY AND ROTATION OF THE LINE OF APSIDES.)

* (footnote continued from page 124)

There is a secular term in y so that the average motion pro-
ceeds in a direction 90 away from the point where the force was first
turned on. This happens because initially the force acts in the y
direction for 180° of rotation and in the x direction for only 90°
of rotation. A net velocity is initially built up along y which is
not cancelled by subsequent rotations, but there is not sufficient
time for this to happen along x.
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C. APPLICATION TO THE DRAG-FREE SATELLITE

The forces which give rise to ?hB

which are constant in the satellite reference frame (for a given relative

are of two basic types: those

position of the ball) and those which are essentially constant in an
inertial reference frame. Thus the effect of the disturbances depends

on the type of attitude control applied to the satellite.

1., SATELLITE ATTITUDE CONTROLLED TO A LOCALLY-LEVEL REFERENCE FRAME

When the satellite attitude control system keeps the vehicle
locally level, the disturbances do not rotate in the £, 7 frame and the

results of case one, page 115, apply. The dominant secular terms are

(4-17)

E(t) 2f t/w
no

0

-2f t/w. - (3/2)f_t
o O no

2
£ .

n(t) (4-18)

If £ and fno = lO'llge = lO"lom/secz*, t =1 year = 3 X 107 sec**  and
w. x 1073 rad/sec; then

2 5
f t7 =z 100 m = 300,000 feet ~ 60 miles {(4-34)

no
and

t = . -
2f§° /ub or anot/ub 6 mw 20 feet (4-35)

* See Table 4-~1.

** The length of time for which the results of the linear perturbation
analysis of the previous pages may be safely extrapolated depands on the
effects of the nonlinear terms which have been neglected. These neglecfed
terms will, in general, give rise to terms in the solution containing
powers of e w.t, and they may be neglected if e w.t << 1. For an exactly
circular initial orbit, e remains less than 10~6 “for the case of Eq.(4-35);
and a one year extrapolation appears reasonable. The results implied by
the circular-orbit linear analysis are not valid for one year however if
the initial conditions correspond to eccentricities of the order of 0.01l.
This does not imply that the results of this section are incorrect for
eccentricities of this order, but merely that they do not follow from the
previous considerations. If the satellite equations are linearized about
a nominal elliptical orbit (linear form of Encke's method) and integrated
numerically for one orbit period, the periodic part of the fundamental
matrix may be factored from the part which grows with time and the effect
of the perturbations for one year may be computed. When this is done, it
is now Ae which remains less than 10™® and the neglected terms are not
significant. The results of this type of analysis are essentially the
same as the circular orbit calculations.
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Since a sizable component of the disturbance is almost certain to appear
along 1, this is clearly the worst case and can result in very large

deviations from a drag-free orbit.

2, SATELLITE ATTITUDE CONTROLLED TO AN INERTIALLY~NONROTATING REFERENCE
FRAME (VERY PRECISE GYROSCOPE EXPERIMENTS)

Here case two, page. 12&, applies and since the dominant Secular

terms

£

f
-3 &I -~ 3
g(t) = 2 o tAwot > ) t cugt (4~36)
fe1 o1
n(t) = 3 —a— t(1+cwot) + 3 = t duyt (4-37)
) “o

only increase as t and nof as t2, the deviation from a drag-free
orbit can probably be limited to only a few meters per year, unless a
capacitive pick-up is used as the position sensor. With a capacitive
pick=up the disturbances are large enough that errors of several kilo~-

*
meters per year might develop.

3. SATELLITE SPINNING WITH THE SfIN VECTOR NORMAL TO THE ORBIT PLANE
(GEODESY, AERONOMY, AND LOW PRECISION GYROSCOPE EXPERIMENTS)

If the satellite spins with an angular velocity held normal
to the orbif plane with ub, the effects of those forces, which are
fixed in the satellite and which are not modulated at the spin rate,
average to zero éxcept along the spin axis.

Examples of forces which do not average to zero are provided

by any force whose magnitude depends on the ball's position relative

*
See Table 4-1.
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to the satellite (since r will not be zero and the force will be

sC
modulated at the satellite spin rate) and by the force due to the motion
of a charged ball through the earth's magnetic field and the electric
image attraction force (which are not fixed in the satellite). Never-
theless, with the exception of the capacitive pick=-up (which can be
replaced with an optical pick-up) and the non-spinning forces (which are
small), the effect of the dominant disturbing acceleration (which is
due to vehicle gravity) can either be attenuated by a factor of e
(since Eq. (4-21) applies when the spin is normal to the orbit*) or by
a factor equal to the percent modulation of the gravitational force at
spin frequency (whichever is larger) by spinning the satellite with the
spin vector normal to the orbit plane.

Under the above circumstances, the departure of the satellite
from an orbit which would be caused by gravity alone could possibly be

limited to only a meter/year or so, and this would truly be a drag-free

satellite.

D. CAUSES AND MAGNITUDES OF T

DB
The terms ¥SB and ¥PB act on the ball and perturb its orbit,
and each source of these errors must be examined.
fSB 1; due to:

1) gravitational attraction of the vehicle on the proof-
mass,

2) electromagnetic forces due to stray fields in the
satellite and due to stray and induced charge and
magnetic moment on the proof mass,

3) forces due to sensing the position of the proof -mass.
(these can arise from optical radiation pressure or

electric attraction from a capacitive pick-off} and

*
It should be noted that the accuracy of this alignment need only
be maintained to a factor of e.
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4) @gas in the satellite cavity.

-

fPB can only arise from electromagnetic

forces

or possibly very

energetic particle radiation since the cavity physically isolates the

proof-mass from other outside disturbances.
If the control system acts to center the

T T _#0, th lerati
fSB + PB s e acceleration error of the

For ease of comparison, all translation error

ball at a position where

satellite will be

forces

(4-38)

will be expressed

in terms of their corresponding accelerations of the proof-mass. The

relative accelerations between the vehicle and the proof-mass are un-

important except as they effect the mechanization of the control.

The sources and relative magnitudes of the various errors are

summarized in Table 4-1. Typical numbers are computed for a drag-free

satellite that could be used for a combined geodesy and aerocnomy mission.

The satellite and proof-mass are assumed to have the following typical

parameters:

Nominal satellite size 2d =
Satellite mass = 45.5
Satellite weight = 445
Cavity radius d1 = 3 cn
Proof-mass radius RB = 2 cm
Proof-mass material Copper
Proof-mass mass = 0,30
Proof-mass weight = 2.9

0.61 meters

]

kg.

ntns

kg.

ntns

= 2 feet
3.12 slugs
100 1bs

0.66 1bs

The derivations of the equations in Table 4-1 and their underlying

assumptions will be discussed in this section.
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TABLE

4-1

ERROR SOURCES WHICH DISTURE THE ORBRIT OF THE PROOF-MASS

SOURCE OF ﬁiég‘;“*
fgsp OR fpp RELATION KEY MAGNITUDES ( 1 .
DISTURBANCE acceleration
in g s)
Vehicle -10({zB A 11%
Gravity f/ge = 0.7x10 a T = 0.1 10
1 1
Leakage BeOVEE Vp=1 volt 13
Electric Field [f/g_ = 5 qp=2.2x10"12¢coul | 10
i i = 1
in the Cavity gemeB E =0.1 volt/m
Image Attraction
fS i 3
o 'pherlcal 3¢ v2 r r
Cavity for B Q Q -14
f/g = e — = 0.1 10
Charged Ball d2 dl dl
with Zero gemeB 1
Stray Field
- - i
F (mHB \v k! X, = 1073
. 2
Induced Magnetic SXm Mo mHS/“o— lamp-m 10 12
Moment f/g = =
4 = 0.
b1 pod pmge d 0.2 m
Motion through
3
the Earth's eovaOBe -13
. f/g = 10
Magnetic e 2
Field** geRBpm
Electric Force € A K 2
. o C C g . . ~B*
from Capacitive f/ge = e mld o 2q See discussion 10
Pick-up Sensor gemB g X g
Radiation
Force from f/ge - W =10 o watts 10 18
Optical Sensor gemB
Gas in the Not directly comparable . .
. o See discussion
Cavity but negligible

*These terms appear to be of the same order as the drag at very high

their effects are not of the same order since the
drag always acts parallel to the velocity vector. See the section on th
effects of errors. Also the large error due to a capacitive pick=-off ca
be eliminated by using an optical pick-up.

**This term is in fact zero inside a closed conducting cavity.

altitudes;

however,

See discussion on page 141,
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1. ERRORS DUE TO VEHICLE GRAVITY

In the vehicle there is a set of points which may be called

the points of zero self-gravity or Z.S.G. points. They have the follow-

ing properties:

1

2)

3)

4)

The Z2.S.G. points are fixed in a rigid body, and they
are not the same as the center of mass or the center of

gravity,

In a region of free space, a Z.S.G. point is a saddle
point or a neutral point of the potential energy. This
follows by examining the proof of Earnshaw's Theorem

(see Jeans (48)).

The Z2.S.G. point is not a unique point but may be a
finite number of points, a countably infinite number
or an uncountably infinite number. This is evident
from the following simple examples: three point masses
in a line, a dumbell with solid spheres on each end,

a line mass ring, two coaxial line mass rings, a
circular cylindrical shell, a hollow cylindrical

body with wall of finite thickness, or a solid cylinder.

A Z.S.G. point is located at the center of mass of a

- ]

body if p @) = P (-1) where r is measured from the
m m

center of mass.

In the neighborhood of a Z.5.G. point, the acceleration error

from the vehicle gravity is given to first order by

Gm r
f =K S ( ZB) (4-39)
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where

d is a distance which is characteristic of the vehicle size,

is a numerical factor which depends on the vehicle geometry.

example,

homogeneous sphere of radius d,

estimate of the value of KG

in a hollow uniform spherical shell, K

the factor K = 1.

¢ =9

G

and K

(4-~40)

G

For
and in a solid
To obtain a rough

might reasonably be expected to assume in

a typical satellite configuration, consider a homogeneous circular

cylindrical body of inner radius d

2hs.
center is given by

1

, outer radius d

2’

Gm r 2
s / "ZB
g, = KG2 3 g ) P2 (polar angle)
1 1
where
AR 2 2\
hs d5 fs
1+ - +
d2 d2 d2
K _ 1 1 1
G2 2
d
2
—_— -1
d2
1
and P2 is the second Legendre polynomial. If, for example, d
d2 = 1 foot, and hS = 1 foot, then KG2 = 1/344. If Ty << dl
¢2 adequately represents the potential and

SEL-64-067
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1

b

and height

The second term in the series expansion of the potential at the

(4-41)

(4-42)

= 0.1 feet,

the term



5¢2 Gm r
£ = - ——a - 2K S ( ZB ) P_ (polar angle)
BVG
Sr G2 d2 d1 2
Gm r
_ S ZB
Tavomax = “He2 2 (d ) (4-43)
d 1
1
and
£ /g = 0.7x 1020 (r._sa)
BVGmax’ ®e : ZB" "1

if gems = 100 1bs.

The control system can easily keep the average value of
rC to 1 mm or less, but the error in centering the control center on
a Z.5.G. point could be of the order of a centimeter. In addition to
this, the Z2.S.G. point will shift as gas is expelled unless the loca-
tion of the gas tanks is symmetrical to this point with the appropriate

accuracy. Thus, under these conditions, /ge would probably

-11 fBVGma,x
be of the order of 10 .

There are only two possible ways to find the location of
the central Z.S.G. point in the satellite. It can either be calculated
from a knowledge of the mass position of each component in the satellite
structure and equipment, or it might be measured with some device such
as a torsion balance after the satellite is constructed. Both of
these approaches present great difficulties, but they do not appear
insurmountable. If, for example, the effect of a 10 gram mass located
10 cm from the central Z.S.G. point were neglected in the computation,
this would cause an error of about 10-8 cm/sec2 or about 10-11 -

This is equivalent to a 4.2 mm error in locating the Z.S.G. point,
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2. ERRORS DUE TO ELECTRIC AND MAGNETIC FIELDS

If the ball collects a small unknown residual charge, any
stray electric field will apply an unknown force to it. In addition,
if the ball is located in a shielded metal cavity, the charge on the
ball would be attracted to induced charges on the cavity walls. A
conducting ball inside a completely enclosed metal cavity could be
discharged merely by contacting the walls. The charge on the ball
would be exactly zero, and the static field inside the cavity would
be exactly zero. This is true even for a shield of finite conductivity.
It is not possible, however, to construct a completely enclosed cavity
because the position of the ball must be sensed. Furthermore, for
some applications a nonconducting or even a transparent ball might be
desirable; and therefore it is instructive to compute the minimum
charge on the ball which could be measured and the minimum electric

field in the cavity which could be detected.

a. Maximum Charge which Might Reasonably be Expected to Accumulate
an the Proof-Mass

The primary mechanisms by which the proof-mass may
become charged will be due to the differences in the average velocities
of electrons and ions from ionized air molecules and due to the photo-
electric effect from cavity illumination. At 400 km. altitude a large .
fraction of the air molecules are ionized, and the kinetic temperature
is about IOOOOK, but on the inside of the satellite cavity collisions
with the walls should quickly discharge the ions and reduce their
kinetic temperature to that of the satellite (about 300°K). Even if
as many as half the gas molecules were ionized, the ball would prob-
ably not accumulate a negative charge much greater than one volt.

W. M. Fairbank of Stanford University has suggested to
the author that if the proof-mass and the cavity walls are both coated
with a photoelectric material, and if the cavity is weakly illuminated
with a radiation whose wavelength is chosen to give a stopping potential

of about 0.1 volt or less, that the potential on the proof-mass will
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assume an equilibrium value of 0.1 volt or less. Thus it will be
assumed that, by this or some similar technique, the charge on the
proof-mass can be limited to no more than one volt, which corresponds

to a charge of

qg = 4n€o X 1 volt X 0,02 meter = 2,2 X 10-12 coul = 107 electrons,

b. Maximum Electric Field which Can Leak into the Cavity

The question of what stray electric fields other than
those due to a charge on the proof--mass might be present in‘the cavity
can be answered in the following way. If the proof-mass were un~
charged and if the cavity walls were a completely closed conductor,
there could be no static electric field present. As a practical
matter, however, the cavity walls will need to have small holes in
them to accommodate the position sensing apparatus; and any charge
which has accumulated on the outside of the satellite will cause a
residual electric field to leak through these holes. Furthermore,
the accumulated charge on the outside of the satellite may be fairly
large, corresponding to a potential of several (or in a few cases
several hundred) volts.

If a glosed conducting charged shell has an electric
field, En’ at some point on its surface; then there will be a-
field En/2 at this same point if a small hole is drilled thege.
Gauss's Law implies that the charge which is then inside the closed

conductor is given by

Znole (4=~44)

A Qoutside *
surface

1
9inside ~ 2

The electric field on the inside will depend on how the inner charge
is distributed, but generally it will be concentrated near the hole.

If additional shields are used, each one will attenuate the charge
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according to Eq. (4-44). For the purpose of a simple computation, it
will be assumed that the static electric field can be limited to less
than 0.1 volt/meter inside of the cavity containing the proof-mass

by a series of concentric shielded cavities or, equivalently, by
bringing in leads or light beams through tubes whose lengths are big

compared to their diameters.

c. Force on a Charged Ball Due to Leakage Electric Field

A stray electric field of 0.1 volt/meter would cause

an error acceleration on a 300 gram ball with a charge of 2.2 X 10_12

coul. which is given by

E 3€ov§E -13

q
B 10 . (4-45)

f/g = = —_— =
2
e gemB gemeB

d. Force on a Charged Ball Due to Image Attraction with Zero Leakage

Field
For a spherical cavity of radius dl’ the force on a
point charge inside the cavity is given by
-1 2
: 3e V 3
po _ao (LQ)" [1- (ice.)z] £ 2% (Y (e
- 2 d ' d v B 2 \d4d, , ,
4ﬂe°d1 1 1 e gemeBd1 1

where rQ is the distance of the point charge from the equilibrium
point at the center. The acceleration, which corresponds to this for
a 3cm. radius cavity and a potential of one volt and a position error
of 0.3 cm. is |

t/g = 1014 . (4-47)

SEL-64-067 - 136 -



e. Magnetic Force Due to Field Gradients

The force on the ball due to stray magnetic field is
-
F= (mg Y . (4-48)

If the ball is constructed of nonferromagnetic materials, there will
be no residual magnetic moment; and the only source of ;HB is a
moment induced by the stray magnetic field.

Stray magnetic fields can arise from two sources, those
in the satellite and those external to the satellite. The external
field will be primarily due to the earth's magnetism and is of the
order of 2 X 10-5 webers/meterz. Magnetic fields in the satellite
arise from current loops, ferromagnetism, and unexplained residual
magnetic moments. Bandeen and Manger (47) report apparent residual
values of mHs/po of 1 ampere meter2 in Tiros I, and this is consider-
ably larger than the magnetic moment expected from the electrical cir-
cuitry and is probably the largest value one might expect. The mag-
netic field in the gatellite which corresponds to a magnetic moment
of this size is of the order of the earth's field. However, its
gradient is much larger than the gradient of the earth's field, and
hence it can exert a much larger force on the ball. The maximum
acceleration of the ball due to a residual magnetic moment, mHS/“d’
of 1 ampere-meter2 located in the satellite a distance d = 0.2 meter
from the ball as computed from Eq. (4-48) is

S T -12
f = ——— 10 g . (4-49)

max 4Jt2 " d7p
o) m
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f. Force Due to the Motion of a Charged Ball Through the Earth's Field

Since the charge on the ball is in motion through the

earth's magnetic field, this field exerts a force on the ball given by

'15PB =qv.XB . (4-50)

For a 300 gram ball with a stray charge of 2.2 X 10-12 coul, this

corresponds to an acceleration

oBO
2
8.5p Py

~13

3¢ V_ v Be
—— =z 10 . (4-51)

f/ge =

The magnitude of this effect is computed for illustrative purposes

only, since it is actually zero inside of a closed conducting cavity.

3. ERRORS DUE TO SENSING THE POSITION OF THE PROOF~-MASS

a. Capacitive Pick-up Position Sensor

If a capacitive pick-up is used, it will exert an elec-
tric pressure on the ball given by eoE:/Z. The electric field is
proportional to the input voltage to the position circuitry, and the
input voltage required depends on the precision with which the position
of the ball must be resolved. Since the velocity of the ball with
respect to the satellite can be inferred only from the position measure-
ments, the minimum tolerable velocity error determines the necessary
precision of the position measurements. A rough estimate of typical
values for the minimum velocity error may be obtained from Table 2-2.
The worst case in the table occurs at 300 miles where a velocity measure-
ment of the order of 10'”3 cm/sec is necessary to mechanize the control.
It is assumed that the position measurement errors can be represented
by white noise which is averaged by a single time constant filter with
time constant T, = 2ﬂ/w1. It is further assumed that the velocity is

formed by a filter of the form
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) (4-52)

w W 2 1/2 w
O+ =0 <—12—> = g 1 (4-53)
- = — -
pYs x wl w,, p's >
if
w = Wy
Alternately,
-J?Tl
o, = o Ox = 0.225 Tloi . (4-54)

Thus to limit the velocity error to 10-3cm/sec, the
position must be measured to 2.25 X 10-5 cm if T1 = 100 msec. If
it is assumed that with a 100 volt input to the capacitive circuitry,
the pick=-up can resolve 10-4 times the nominal gap width, then it
is possible to compute the force from the electric pressure. A typical
capacitive pick-up would use a set of input plates to couple the input
voltage to the ball and three pairs of output plates to read position
in each axis. The computation of the force on the ball is rather in-

volved but if the departure from equilibrium is small, it may be

demB < > <2d > (4-s%)

where dg is the nominal gap width and AC is the area of the plates,

approximated by

f/ge =
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2
If AC =1 cm, dg = 0.2 cm, and Adg/ng = 0.1; then

t/g, = 3.76 ~ 1072 V2 (V. in volts RMS). (4-56)

If it is assumed further that the measurement noise is additive with
zero mean and is uncorrelated with position, then VC and oi are
related by an expression of the form

VC = KC/Oi o (4-57)

From Eq. (4-54) and the previous assumption of the pick-up sensitivity,

it follows that KC = 0.1 volt cm/sec.
Thus
2
t/g = R g (4-58)
Ee © g do 2d_ )
emB \ g X g
3.76 X 10-14 cmz/sec2 (4-59)
= 2 .
o.
X

For a given altitude the value of oi which can be tolerated may be
-2
inferred from Table 2-2 and is of the order of 10 "cm/sec for

hP = 100 miles and 10-3cm/sec for hP = 200 or 300 miles. It follows

that, for the various numerical assumptions made,

=10
~ 0
fSB/ge 4 <1 for h

p 100 miles

and

8

£p/8, = 4 X 10 ° for h 200 or 300 miles. (4-60)
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For a 300 mile orbit, such a capacitive pick=up would provide about as
much disturbance as the drag on the vehicle; and for missions in this
altitude range or for any mission where the capacitive pick=up causes
disturbances which are too large, it may be necessary to use an optical
pick-=up. On the other hand, for aeronomy or geodetic missions where

hP is less than 200 miles, a capacitive pick=-up may be quite satisfac-

tory.

b. Optical Position Sensor

One arrangement, which could sense the position of the
ball, uses a single light source and a single photomultiplier tube.

The light from the source is chopped by a vibrating reed or a linear
electro-optical device and then, with the aid of fixed mirrors, is
split into 6 rectangular beams, two for each axis. The chopper acts
such that only one beam at a time is on, so that the output signal is
time shared among the beams. To measure displacement on a given axis,
the beams are aimed such that when the ball is in its centered position
-it intercepts about half of each beam and such that displacement along
that axis covers one beam and uncovers the other. The signals from
beams on opposite sides of the ball are subtracted, and this difference
signal is proportional to the deviation of the ball from its centered
position.

It is necessary to use a single light source and a
single photomultiplier to reduce the effects of drift, and it is neces-
sary to chop the light source in order to distinguish the beams (by
time sharing), to avoid the drift problems inherent in D.C, amplifiers,
and to prevent the encoding of low frequency noise on the signal.

The minimum change in position which can be detected
depends on the photbmultiplier noise properties. Engstrom (48) quotes
minimum detectable powers of 10—14 watts with a bandwidth of 1.8 c/sec

for photomultiplier tubes.* For a bandwidth of 10 c/sec this

*
This noise level is reduced by about 100 times if the photo-
multiplier is operated at the temperature of liquid nitrogen at room

pressure.
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corresponds to approximately 5 X 10-14watts. The position error,

Gx’ is given by

O, = Ndb/ZW (4-61)

where db is the width of the beam, W is the power in the beanm,
and N is the noise equivalent power of the phototube. For example,

_14 -
if N=5 X 10 watts, db =4 mm, and W = 10 9 watts

g = 10 cm. (4-62)

The disturbing force (which is due to radiative pres—

sure) is given by

F = Wc

and

w -
t/g_ = ~ 10718 (4-63)

6.5

Thus for those applications where the capacitive pick-up would disturb
the ball excessively, the use of an optical pick-up can reduce the dis-.

turbance by 9 or 10 orders of magnitude.

4. BROWNIAN MOTION OF THE PROOF-MASS

The effect of gas in the cavity will be divided into two
parts, a macroscopic resistive force proportional to the velocity and
a microscopic force noise with zero mean which is due to individual
molecular collisions. This division of effect is to some extent

arbitrary, but it has proved quite successful in the classical theory
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of Brownian motion of colloidal particles. This gives the equation

of motion

. + L. -
c m *c IDgas (4-64)

If the molecular force noise is considered to be white and
if it is assumed that equipartition of energy eventually is obtained,
the Eq. (4-64) may be integrated by the technique described in

Aseltine (49) and Kennard (50). For zero initial conditions at t = O,

. -2pt/
<&x§> = kT 1 -e mB) (4-65)
av B

and

. (4-66)

-pt/ -2pt/
/2>=?£[t_2”’3 P¥"s,, B eme)J
av

\xc — (1 - e E}_)(l-

p depends on the surface properties of the sphere and may be evaluated
from kinetic theory. For an order of magnitude estimate,it will be

taken as

=12 ntns

. X
5.6 10 m/sec

133

. kT ;
p = 6pA; ( g (4-67)

300°K.

i}

for p = 6.5 X 10-15 gm/cms and T

The time constant mB/p is about 1700 years, so that

[ <2 2pkT
< xc) & 2 t (4-68)
av mB

and
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\ 3m°

After one year the RMS value of X would only be

’ 2 i
X ~ 61 microns

so that the effect of gas in the cavity is completely negligible.
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CHAPTER V

THE UNSUPPORTED GYROSCOPE

A, INTRODUCTION

Perhaps the most elegant application of the drag-free satellite is
as a carrier vehicle for the unsupported gyroscope. Since the proof-
mass never touches the satellite walls, and since it requires no forces
to support it against gravity, all of the causes of random drift of
terrestrial gyroscopes which are associated with the support forces are
eliminated. In this chapter the sources of random drift of the
direction of the angular momentum vector of the spinning ball acting as
a gyroscope will be discussed.

The very best terrestrial gyroscopes have random drift rates which
are somewhat better than 10'-3 degrees/hour. It seems possible that, by
very careful refinement of present designs and techniques, improvements
of a few orders of magnitude may some day be achieved. The random drifts
of the present instruments are caused primarily by torques which are
produced by the rotor support forces or by a lack of sphericity of the
rotor; but even if these two current difficulties were overcome, there
ﬁould still remain a host of reasons why perfect performance can never
be achieved.

The unsupported gyroscope, which consists of a spherical spinning
proof-mass in a drag-free satellite, would allow these other sources of
error to be accurately studied years in advance of the time that such
effects could be investigated on earth, It will be shown in this chapter
that there appears to be no physical effect which will cause a spherical
unsupported gyroscope to drift more than about 0.1 second of arc/year
(about 3 X 10-9 degree/hour)., 0.1 second of arc/year represents a
theoretical upper bound on the random drift rate. With very round balls
(about one part in 106) and with reasonable magnetic shielding, this
rate can probably be made one or two orders of magnitude smaller. The
limit of 0.1 second of arc/year is caused by gravity gradient torques
due to thé difficulty of making an exactly spherical rotor, and is

=5 C s
based on a sphericity of about 10 . Rotors with sphericities
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approaching 10-6 are presently available, but it may be difficult to
make a simple readout which does not use an optical flat for detecting
the spin axis of a rotor operating in a drag-free satellite, Such a
flat would limit the sphericity to about 10-6.

While the performance of terrestrial gyroscopes may be limited to
only a very few orders of magnitude better than 10-3 degrees/hour for a
number of years to come, this is by no means true for supported gyro-
scopes which are satellite borne, For example, the very low apparent
force of gravity in a satellite reduces the required support force to
the point that other effects may be the dominant sources of drift for
properly designed electrostatic gyroscopes in a satellite. Thus, it
seems reasonable to develop a whole new generation of gyroscopes for
satellite applications and the unsupported gyroscope would allow the
effects discussed in this chapter to be carefully studied.

The unsupported gyroscope offers some hope to perform a fundamental
experiment in physics proposed by G. E. Pugh (13) and L. I, Schiff (4).
Schiff has shown in (4) that the equations of general relativity predict
that an unsupported gyroscope in a satellite in a circular orbit will

have a precession of its spin axis given by

->
. R [3( R . 2% 3(8 ¢ Tgo) o 5-1)
=72 2\rgs 7/ 0 "5 \agg /| 2 ES e .
Tes Tes

The first term in equation (5-1) is a geodetic precession caused by

the curvature (due to the earth's matter) of the space around the earth,
and it is always in the direction of the orbit angular velocity vector,
It has a typical magnitude of about 7 seconds of arc/year which results
in the greatest effect when the gyro spin vector is placed in the orbit
plane.

The second term in Eq. (5-~1) is called the Lense=Thirring preces-
sion and is due to the difference between the gravitational field of a
rotating and a nonrotating earth. 2R2we/5rgs has a typical magnitude
of about 0.1 second of arc/year. The Lense-Thirring precession consists

of two parts,.one anti-parallel to the orbit radius vector and one
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parallel to the earth's spin vector, The part anti=-parallel to ;ES

averages to zero except along a vector which is coincident to ?ES at

the time when it is closest to 22, This component has an average value
3 3 .

of (2Rewe/5rES) (3/2) sin i where i is the inclination of the satellite

orbit. The magnitude of the total secular Lense-Thirring effect is

3 3 . 2
(2Rewe/5rES) (1 - 3/4 sin i)i and has a maximum value when i = O,
Unfortunately it is then in the same direction as W. so that it could

0
be masked somewhat by the much iarger gecdetic effect, In a polar orbit

with the gyro spin-axis perpendicular to both ZL and :B the geodetic and
Lense-Thirring precessions are at right angles to each other, and this
is one way that they might possibly be distinguished.,

Schiff explains that the geodetic precession is important because
although it does not provide a check on terms in the space-~time metric
higher than those which may be obtained from the equivalence principle
alone, it does 'involve the equation of motion of matter of finite rest
mass beyond the Newtonian approximation"; and that the Lense-Thirring
precession is important because the detection of this effect would infer
the existence of off-diagonal components of the space-time metric caused
by the earth's rotation. The only other experiment which involves the
‘equation of motion of matter of finite rest mass beyond the Newtonian
approximation is the excess precession of Mercury's perihelion. Thus,
general relativity rests on a weak experimental foundation.

There does not appear to be any theoretical reason why the random
drift rates of the unsupported gyroscope should not be low enough,’or a
simple optical flat read-out system accurate enough to detect the .
geodetic precession. Detection of the Lense-Thirring precession, how-
ever, will be much more difficult. While it is not unreasonable to
expect that unsupported gyroscopes can be constructed with random drift
rates of the order of 0.01 second of arc/year, the read-out and detection
of such a small angle will require the development of special equipment
and may be very difficult to accomplish.

In this chapter the theorétical performance of the unsupported

gyroscope will be discussed.
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B. GYROSCOPE RANDOM DRIFT

The sources and magnitudes of the various torques which can cause
random drift rates are summarized in Table 5-1. Typical numbers are

computed for a spherical rotor with the following parameters:

Material Silicon
Radius, RB 2 cm
Mass, my 80 gms
Moment of Inertia, C 128 gm cm2 = 1,28 X 10._5 kg meters2
Spin Rate, wg 103 rad/sec = 104 R.P.M,
Angular Momentum, hB 1.28 X 105 dyne cm sec
= 1,28 X 10.-2 ntn m sec
Spericity Factors el and 62 10_5

C. DETAILS OF THE RANDOM~-DRIFT CALCULATIONS

The equations of the gyro rotor in its principal axis system are

given by
a - el) Wgye + <, mBy Wg, = MBx/C (5-2)
a - €2) “’By -6 W W = MBy/C (5-3)
wg, t (el - e2) Wy “By = MBZ/C (5-4)

where the principal moments of inertia are A =C (1 - 61), B=cC(1 - €2),
and C.
€. and e, are called the ellipticities and are of the order of

1 2

1072,
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TABLE 5-1
UNSUPPORTED G7RC DRIFT RATES
1 sec arc/year = 3.18 X 10“8 deg/hour = 1.5 X 10—.13 rad/sec
Formuia f i i
ormuia for Key Assumptions Typical Drift
Source of Torque @ eok and Magnitudes Rates
bess & (radian/sec)
3 “g € = 10_5; 14
Gravity Gradient = € .3 5 X 10
2 Wy wg= 10 rad/sec
By B, ¢ !3--2><10-5 ebe s/mz
Magnetic Eddy 4 . v TS 4 x 10—13*
Currents 4P, ¢ = 10 mhos/m
5 x H _
Barnett Effect S L H =25 amp turnsfg 107
Pn Bg (e/m)gH gy~ 25 Xy =10
Einstein - S x" H e | ogly due to -21
de Haas > motion through 10
/, [} .
Pn By (e/m)gHmB earth's field
- 15 € V_ B
B -16
Spinning Charge o > V, = 1 volt 7 X 10

4 Py Rg

Tolman Effect

[Neglected on tke gro
spinning charge

unds that it is smaller than

Induced Magnetic x2 B  H" ¢
. m O o -21
Moment in an > 10
Ellipsoid pm RB wB
. H " "0 4

Induced.Maggetlc 5B  H (x_ xm) . . -G 1 2%k
Moment in Single 3 Xp = Xp = 10 10
Crystal 2 pm RB Wy

Impurity
Ferromagnetism

Neglected on the gro
have obtained accura
important

unds that experimenters could not
te values of Xm if this were

- 149

SEL-64-067



*This number may be reduced to 4 X 10~
attenuation factor of 0.1 which is easily attained.

TABLE 5-1 (Continued)
F 3 .
S ormula for Key Assumptions Typical Drift
ource of Torque @ eak and Magnitudes Rates
p g (radian/sec)
Electric Moment 2
Induced in 15 eo Emax € -21
Ellipsoid by 4 > E = 0.1 volts/m{ 3 X 10
. max -
Nonuniform P RB wh
Electric Field
Charge on the 15e¢ VL, E ¢ _
Ellipsoid plus o g rax 7 x 10718
Leakage Field 2 Pp RB uwy
Charge on the 15 €ov§ € o 3 o -18
Ellipsoid plus - > 3 <E_ 3 - 0.1 10
Image Field 2pﬁ'RB dle 1 1
Surface Electric 15 €2 V2 €2
Eddy Currents B -10 -21
in an Ellipsoid 2t 3 o ti = 10 m 3 X 10
(Power i pm RB
Dissipation)
Surface Electric
5 V_ B
Eddy Currents 1 €0 'B € 7 % 10-21
(Magnetic 4 2
Moment) Pn RB
15 W
X . - -18
Sensor Radiation| g T W = 107 watts 5 x 10
ressure Pn RB Wy
Qaz) _2bET 3
av 2 <?2> =
g 5 v
Gas in Cavity 3 T = 300°K -13
b = & g} o (3KIY . 5 X 10 “rad
=sfeP\a /) in one year
15

by a magnetic shield with an

**In polycrystalline silicon this effect will be much smaller, and it
may also be reduced by magnetic shielding.
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If the terms involving el and e2 may be neglected, the equations of

—> —>
motion become wit =
O with wB ew uh

Ml=¢x0uB=E3'th (5-6)

where ﬁ” and EL are the components of the disturbing torque parallel to
-
and perpendicular to wB respectively. The magnitude of the drift rate
in this case is computed from equation (5-6).
The principal model which will be used for most of the torque
calculations is an almost-spherical rotor of ellipsoidal shape. The

shape eccentricities e1 and e2 are defined by

az & c2(1 + el) G-

2 2
b2 8cfa +ey ,
where a,b,c are the principal axis distances of the ellipsoid; and, for
a rotor of constant density, the eccentricities and the ellipticities

are related by

e1 = 2 el
(5-8)
e2 = 2 e2
so that
a=c(1+<-:1) :
(5-9)
b=c(+ ez) .
It will be assumed for definiteness that
a>b>c (5-10;
and
A<B<<C, (5-11)
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In some of the calculations (such as gravity gradient) and in the
presentation of the results (as in Table 5-1), it is convenient and
appropriate to ignore the difference between el and 62'

In each example below the maximum value of the drift rate will be
computed. In many cases, as for example with the gravity gradient
torque, the actual drift will be less since part of the total effect of

the torque will have zero time average.

1. GRAVITY-GRADIENT TORQUE

If it is assumed that the spinning rotor may be represented by
an oblate spheroid with moments of inertia A =B = C(1 - ¢) and C, the

peak drift rate is given by Cannon (5) as

¢peak

Oeto

3
= 2 . 5=
5 € (5-12)

“B

where ub is the satellite orbit angular velocity and mB is the rotor
spin angular velocity.
If the bulge in a homogeneous rotor is assumed to consist of a

permanent bulge plus one caused by the rotation, then

€ = €P + GR . (5"'13)

It is shown in Klein and Sommerfeld (51) that

2 2
15 pmmBR'B
E

€2 = 38 (5-14)
where E is Young's modulous for the material. Thus
2 2 2
. 45 Yo Pp Rp Y 3 %
# = + €p (5-15)
peak 76 E 2 mB P
If
E e, \2
“B = ( i: 2 z ) #'1.7X 103 ':—:% for silicon, (5-186)
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th * . . -
en ¢peak has its minimum valug of

¢peak min 3 ub

(5=17)

2
. 2(15 Rlapm‘zp)é

The expression for the precession given in Eq. (5-12) is only
the peak value. The time average of all the components of the precession
are zero except along an axis which is in the plane formed by 3 and :%

0
and which is perpendicular to Z%. Along this axis

O€ %)

<¢-s>av = —-Z-— g € sin ZEZ)B,(»O . (5-18)

Equation (5-18) neglects kinematic rectification drift which
would prevent the net drift rate from being exactly zero when Eq. (5-18)
is zero. But apart from kinematic rectification drift, the average
drift rate is very small when the gyro spin vector is either nearly
parallel to or nearly perpendicular to the orbit plane. This result is
not as useful as one might guess, however, since in any meaningful
experiment the direction of the spin axis must be compared with a pre-
chosen "fixed" star, since the orbit plane is partially determined by
the launch constraints, and since the orbit plane slowly rotates due to
various perturbations such as the earth's oblateness. By careful design
of the experiment, it may be possible to take advantage of this result
to improve.fhe gyro performance by about one order of magnitude.

One other condition which mitigates the problem of gravity
gradient drift is that it is not strictly random. While in experiments
of this nature it would be better not to have to calibrate out some
known effect, such a calibration could be done here so that the gravity

gradient drift could be included in any extremely precise experiments,

2. MAGNETIC EDDY-CURRENT TORQUE

The solution of the boundary value problem which calculates

the eddy currents in a rotating sphere is a classical problem, but most
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discussions in the literature are somewhat incomplete as applied to the
unsupported gyroscope. (See references (26), (27), (28), and (52).)
Smythe (26) has shown that if a rotating magnetic field of the form

B (t) = B eJuBt (5-19)

is assumed, then this field will induce a magnetic moment

my = 25 %iD (5-20)
in the sphere where

2
3 v I_é(v) -3 Ié(v) -v Ié(V)

..‘3’ = 5 (5-21)
RS )gm[v Iy - Ié(v)—J + V2 1w
A . 3 -
vE (Gu, ouw)® Ry (5-22)
and
2 : i (5-23)
I%(v) = < - v) sinh v -2
I, () =(—2 : osh (5-24)
_% v = v CcOS v

are spherical Bessel's functions with imaginary arguments. For non-
ferrous materials xm = 10'"5 and the term in Eq. (5-21) involving xm is

negligible when v is large. When v is small

1 2 3 3 v _
v I__é(v) - I%(v) S5 3 <,“V> [v + 10] (5-25)

and

3 5
v2 I§(V) e (\nzv > [v3 + ; ] (5-26)
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so that when v is small the xm term is also negligible. Thus

D 3
-1 - 5

RB v

cosh [#(1 + j) x]

3
+ -~ coth v (5-27)

w
]

coth v sinh (31 + 3) x] (5-28)
_ c9sh X + 'co§ X (5-29)
sinh x + j sin x
where
x£ @y o uB)J" R, . (5-30)
Thus

_ [1 _ .3 _sinh x ~ sin x 1 _ ,[;L sinh x + sin x

6 |
- L1 (5-3
X cosh x - cos x x cosh x - cos x 2] (5-31)

D
R
S_R-j1I (5-32)

so that

R é‘[l _ ii sinh x = sin x ] (5-33)
X cosh x - cos x

and

1 Al 3 _sinh x + sin x _ 6 . (5-34)
X cosh x ~ cos x %2

Equation (5-31) was first published without proof by Houston (27).
Equations (5-33) and (5-~34) are plotted in Fig. 5-1.

One of the most remarkable properties of Eq. (5-31) is the
accuracy with which its asymptotic expansions approximate its behavior

over most of its range. .
’ 4

X

o 5-35

R x —=> 0 630 ( )

R ————> 1 =~ —E— (5-36)
X —> o0 - X
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FIG., 5-1. REAL AND IMAGINARY COMPONENTS OF EDDY-CURRENT TORQUE ON A
ROTATING SOLID SPHERE
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X

I —_— -
x>0 30 (5-37)

I ———— 3 1l - 2 (5-38)
X —> X X

These curves are plotted in Fig. 5-2 and this figure shows that the
appropriate asymptotic expression is a very accurate apprcximation for
R or I except over the relatively narrow range, 2 < x < 5.

Thus the magnetic moment induced in the Sphere is given by

mH=-2nBlR§[R+J-1] (5~39)

and the eddy current torque on the sphere is given by

—

M= KH x (5-40)

Ho
Figure 5-3 shows the various components of these torques and the result-
ing precession rates. There are three basic effects:
3
1) A damping torque given by - 2 x gi RB I/uo,
5 . 3
2) A precession torque given by - 2 n %L By Ry R/uo, and
3) A precession torque given by -~ 2 =« B, BP Rg I/uou

Effects (1) and (2) were reported by Houston and Alers (28), but they
make no mention of (3) which is the dominant cause of the precession of
a silicon rotor.

It is instructive to compute the spin decay time constant and
the precession rate for both copper and silicon rotors. For a copper
sphere of radius Ry = 2 cm, x = [C2 Wy Mg o')é RB] = 7.7, and the time

constant is given by

' 4P 4
. . - In X -
Spin Decay Time Constant = 32 - <90(x92i> (5-41)
A

- 2
where %L is taken as 2 X 10 5 webers/m- {approximately the earth's field).
1f B” is assumed to be approximately equal to BL’ then ¢ due to I is

given by
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and ¢ due to R by

Bl BL 9 / 90(x - 2)
x4

4pm

0.75 X 10_'7 rad/sec

By B o (30(x - 3)
TP 2

=2 X 10-.7 rad/sec.
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To obtain performance in the neighborhood of only 10-13 rad/sec would
require a magnetic shield with an attenuation of 10-3. This is somewhat
difficult to obtain with present-day techniques.

On the other hand, the shielding requirements for a silicon
rotor are not nearly so stringent. For silicon, x = 2.8 X 10—3 and the

time constant is given by

4 pm

2

(5-44)

Spin Decay Time Constant

0.74 X 105 years.

Again for the case where B” and %L are taken as approximately equal, é

due toe I is

B, B, ©
6= —t (5-45)

4p,

13

4.3 X 10~ rad/sec

and @ due to R is

B“ B-L o} x2
g = 7 p 21 (5-46)
m

2 X 10-20 rad/sec.

Thus it is clear that for silicon, I makes the dominant contribution to
the precession, and that the shielding requirements to reduce the drift
below 10-15 rad/sec are moderate.
Finally, Tabakin (52) has calculated the torque on a spinning
ferromagnetic sphere caused by an alternating field. In every case he
shows that the high frequency torques are less than the corresponding

value at D.C,

3. THE BARNETT AND EINSTEIN-de HAAS EFFECTS

Because of the definitions of angular momentum and magnetic moment,
there is a unique relation between the mechanical angular momentumn and

the magnetic moment of a classical charged system. This relation is
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still true for atomic systems but it must be modified by an empirical

constant, the gyromagnetic ratio, For a classical system By = 1,

.g~.

H
for electron spin 8y = 2, and for a typical atom 8y is slightly 1less
than 2.

- 8y Mo (e/m)

mH = > h (56-47)

-
If a constant magnetic field, H, is applied to the charged system, the

equation of motion

-
an - - By My (e/m)

implies precession about the field at the Larmour frequency

By Mo (e/m)

W = H (5-49)
Wy = 2 y 49

Conversely rotation of a charged system induces a magnetic moment,

-
2V x_ w
- m £
R ey e S~
iy e e/ (5-50)
H
This effect has been observed experimentally (53) and is known as the
Barnett effect.
In a spinning gyro rotor this magnetic moment can interact
with the earth's field and cause an unwanted precession
. S X Hy
@ = > {5-51)
Py Rg (e/m) gy

5
1 rad/sec.

1.15 X 10

In addition, an applied field induces a magnetic moment in a
material body which in turn changes the net atomic angular momentum. A
time varying external field apprlies a torque to ponderable matter, This

effect has also been observed (53) and is known as the Einstein-deHaas

effect.
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The torque is given by

- dh 2 >
M= = (5-52)
dt Ko By (e/m) "H
2V xm H
- €y (e/m) - (5-53)

If the only time varying field is considered to be the earth's magnetic

field, then

4 wo
¢peak = ¢peak Barnett Wy > (5-54)

so that the Einstein~deHaas effect is generally quite small in comparison

with the Barnett effect.

4. ELECTROMAGNETIC TORQUES DUE TO ELLIPTIC GEOMETRY

The simplest model which takes into account the geometrical
imperfections of any practical "sphere" and which is still analytically
tractable is the ellipsoid. There are a number of electromagnetic torques

that arise from the ellipsoidal shape.

a. Induced Magnetic Moment

Stratton (54) computes the torques on an ellipsoid from a

constant external field in terms of the magnetization integrals

[- <]
Al A f dsz
0 (s + a”) RS
[+o]
A, 7 f dsz (5-55)
(s +b)R
0 s
[~]

>

ds
AS ‘[ﬂ (s + cz) R
0 . s
3

[(s + a2)(s + bD)(s + cD)]°.

>
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Equations (5-55) are elliptic integrals; but when the eccentricities are

small, they may be evaluated in powers of e. and €,; and all but the

1
first power may be neglected. When this is done

A, = —2 [1 - 3/10 (e, + e,.)] (5-56)
1 3 1 2
3c
AL = —2 [1 - 3/10 (e, + 3e.)] (5-57)
2 3 1 2
3c
A, = —2 [1 --3/10 (e, + e,.)] (5-58)
3 3 1 2
3c
and
2e2
AS - A2 = 3 (5-59)
5c
-2e1
Al - AS = 3 (5-60)
5c
2(e, ~ e_.)
A2 Al = 3 . (5-61)
Sc

The torque induced in an ellipsoid with susceptibility X
-pp
by a constant external field Ho can be computed from Eqs. (5-59), (5-60),
and (5-61). '

~ -
BoyHOZez
2 abc
M= v 3 -}3ozl-lc,xe1 (5-62)
Sc
H e_-e
i B B e 2’

Using prime, double prime, and e to represent those components of
Eqs. (5-62) which give the largest component of M, the peak precession

caused by this torque is given by

2 v oon
B H e
épeak = _X‘_m__o__éo__ =z 10 21 rad/sec. (5-63)
2pp Bgp

This source of drift is completely negligible.
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b. Torques From an Electric Field or From Excess Charge

The drift rate produced by induced electric moments and
by charge on an ellipsoid may be bounded by the following procedure,
The torque on an uncharged ellipsoid in a nonuniform

external electric field is given by

o~ €
M= 2 f E? ¥ x dS (5-64)

surface

since the electric field is normal to the surface.

For example, the y component of M is

€ , B B<— )dSB

M o= — ; (5-65)
y 2 2
surface zB
— — + —
4
c
2
€ E€ x ds
= - —g—2— BB B (5-66)
1 2c (1 + e.) x2 y2 2
1" surface B B zB
4 4 4
a b c

Since the ellipsoid is almost spherical, the radical in the denominator
may be replaced by 1/c. When this is done, only errors of the order of
e1 and e2 are introduced.
. Hence
e, €
~ 1l o 2 .
M \[‘ E Xp Zg dSB . (5-67)
surface
Since the maximum value of XpZp differs from 02/2 only by terms of order

e1 and e2,

M < ST e E° c e, . (5-68)
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épeak due to My is given by

¢peak < 15/4 >

Pn B

with similar relations for the other axes.

(5-69)

The bounds on the torque from excess charge and the other
electric phenomena listed in Table 5-1 may be computed in a similar
manner. In addition, the torques from the position sensor radiation

pressure and gas in the cavity were bounded in the same manner.

5. MAGNETIC TORQUES DUE TO CRYSTALLINE ANISTTROPY

If the rotor is constructed of a single crystal, xm will bhe
a tensor except in a few special cases. The results in Stratton are
easily extended to included this case.

If Eo is a 3 X 1 column matrix of components of the constant
external field and if H is the matrix of the internal field, then the

magnetic energy, U, is given by Stratton (55).

T
U=1/2 g/\ H (Ez - &1) Eo dv (5-70)
\%
where
1 0 0
}:L?_ é “o 0 1 ] (5-71)
0 0
and
A 1+ xmx 0
By = Mg 0 1+ Xy 0 (5-72)
0 1l + xmz
_T
U= ;/2 vV H (gz - El) Eo . (5-73)
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But from the boundary value problem of the sphere E_ and go are related

by a constant matrix

H =SH
- - —0
where
—
1 0 0
1+ 1/3 %
mx
A 1
S = 0 0
- 1 +1/3
. Xy
0 0 1
Thus,

T
U=1/2VH S (u, - p) B

and for a small variation in the field 6§c
SU=VH S (u, -p) H
=V 5= TR S
If 8H is caused by a small rotation 8P

8H =H x &b
-0 o -

and

U ==V §° X (EQ - gl)'s H -8

]
By comparison, the work done by the rotation is

8U=—h_l'8?i

so that the torque induced by the field is
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For example, the y component of this torque

xmx X’mz

M =VB H - -
y oz oy 1+ 1/3 ¢ 1+ 175 X, (5-82)

x Vv - _
Boz Hox (me sz) (5-83)

leads to a precession of
. SB H (x - )

¢ = oz ox “ms " Tme . (5-84)

2

2 py B Y

6. SURFACE ELECTRIC EDDY CURRENTS

The surface electric eddy currents are due to the fact that the
charge distribution of a charged ellipsoid in an electric field must vary
as the orientation of the ellipsoid varies. The results quoted in
Table 5-1 are estimates based on the approximation that a fraction €

or 62 of the total charge circulates around the ellipsoid at a frequency

uB/z.

7. GAS TORQUES

The gas in the cavity tends to slow down the rotation and to
precess the spin axis. The resistance is approximately proportional to
o and may be computed from kinetic theory. For the purposes of an

order of magnitude estimate b will be taken as

3
7 4 3kT - -16 | _ _
b--—g—RBp(m > % 1.8 X 10 joule-sec . (5-85)
av
The spin-down time-constant due to T can be computed from the equation
c[qB+buB=M” , (5-86)

and the result is

Spin-Down Time-Constant = C/b = 2200 years. (5-87)
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The random walk of the spin axis may be evaluated by the same
procedure as that outlined in Chapter IV, The RMS drift angle of the

spin axis is given by

2 _  _2bkT
<¢>av = ===t . (5-88)

Equation (5-88) predicts a drift of

3
<%€> £ 5.4 X 10 13radians (5-89)
av

in one year, which is entirely negligible.

D. GYROSCOPE READOUT

One of the most difficult questions, and one which will not be
discussed in this thesis, is the spin or angular momentum vector readout
technique., Stanford University, Minneapolis-Honeywell, and the
University of Illinois are all working on feasible readout schemes. It
is felt by the author that any description of the details of the various
systems should be given by these groups. It does appear, however, that
readout to this order of accuracy is quite possible and that it can be
done without causing excessive drift rates.

One complication which arises when one tries to read the direction
of the angular momentum vector of an almost iso=inertial gyro rotor is
that the preferred axis of rotation (i.e., the axis of maximum moment of
inertia) is difficult to identify in advance, This means that readout
schemes which depend on body=-fixed patterns are not quite as useful as
they are on rotors where one axis of inertia is much larger than the
other two. This is true because the angular velocity vector may move a
considerable distance in the rotor body=-fixed axis if the spin is not
started parallel to thé preferred axis, For an almost spherical rotor
with principal moment of inertia A = C(1 = el), B=cCcQ1 - ez), and C

(where € and €, are of the order of 10—5); it can be shown that the
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angle, |, between the angular momentum vector and the angular velocity

vector is given by

2 2 3
2 .
ve [ (B L (SR | oo cors cos®s |
(5-90)

- e sin 27 i _
=€ T3 if e, = ¢

Q, B, and v are the respective angles from the rotor Xg» Vg and zB
principle axes to the angular velocity vector. V¥ has a maximum value of
the order of el or €2,
the angular velocity vector rotates about the angular momentum vector at

and when viewed from an inertial reference frame,

a rate which is practically equal to the angular velocity. If el and €,
are of the order of 10-5, it would appear that any readout which does
not have a response time faster than Zﬁ/gB will tend to read the average
direction of Wy which, of course, is the direction of the angular
momentum. Thus, it seems at the present time that sufficiently accurate
feadout schemes can be developed. Further details on this subject will

have to await papers by the above groups.
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CONCLUSION

It has been shown that there appears to be no fundamental physical
or engineering reason why a drag-free satellite cannot be built at this
time, Such a vehicle would yield useful immediate results in geodesy
and aeronomy and would lay the foundations for the construction of very
good gyroscopes and possibly open the way to do the Pugh=-Schiff
Relativity Experiment. In addition, the actual mechanization of the
translation control would not be overly complex. For simple vehicles no
attitude control is necessary since three medium—quality rate gyros will
give sufficient attitude information to implement the control. The jet
thrust levels and attainable fuel lifetimes are quite reasonable and
should cause no difficulty.

A spinning drag-free satellite with its spin vector normal to the
orbit plane and with an optical position sensor would depart from a
purely=-gravitational orbit by only a meter per year. Distances this
small cannot be detected by any present or foreseeable tracking apparatus,

and such performance would be drag free in every practical sense,
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