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Outline of Notes
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Introduction

The goal of these notes is to prove:

Cartan-Janet (1927): Let (Mn, g) be a real-analytic Riemannian manifold, N = 1
2n(n + 1).

Every point of M has a neighborhood which has a real-analytic isometric embedding into RN .

We will prove the Cartan-Janet Theorem in the case n = 2, N = 3. The general case is almost
exactly analogous to this one, but is much more notationally cumbersome, and requires an addi-
tional algebraic lemma.

To place this theorem in a broader context, we compare and contrast it with the better-known
Nash Embedding Theorem, a global result:

Nash Embedding (1956): Let (Mn, g) be a Ck Riemannian manifold, where 3 ≤ k ≤ ∞ or k = ω.
Then there exists a global Ck isometric embedding of M into some RN , where N ≤ 1

2n(3n+ 11) if
M compact, and N ≤ 1

2n(3n2 + 7n+ 11) + (2n+ 1) if M is non-compact.

Note: As far as I know, local C∞ embedding of Mn into RN with N = 1
2n(n+ 1) is open!

Remark on the Isometric Embedding PDE

Let u : Mn → RN . Saying that u is an isometric embedding amounts to a system of fully non-
linear 1st-order PDE for u. Namely, if (x1, . . . , xn) are local coordinates for M and g = gij dx

i◦dxj ,
then u is an isometric embedding if and only if

gij =
∂u
∂xi
· ∂u
∂xj

.

This is a system of 1
2n(n+ 1) equations for the N unknown components of u = (u1, . . . , uN ).
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EDS Basics

Def: An exterior differential system (EDS) is a pair (M, I), where M is a smooth manifold, and
I ⊂ Ω∗(M) is a differential ideal.

A differential ideal is a graded ideal of Ω∗(M) that is closed under exterior differentiation.

Typically, differential ideals are described in terms of generators.

Def: Let φ1, . . . , φs ∈ Ω∗(M).
The algebraic ideal generated by φ1, . . . , φs is defined by

{φ1, . . . , φs}alg := {α1 ∧ φ1 + · · ·+ αs ∧ φs : αi ∈ Ω∗(M)}

The differential ideal generated by φ1, . . . , φs is defined by

〈φ1, . . . , φs〉 := {φ1, . . . , φs, dφ1, . . . , dφs}alg

= {α1 ∧ φ1 + · · ·+ αs ∧ φs + β1 ∧ dφ1 + · · ·+ βs ∧ dφs : αi, βi ∈ Ω∗(M)}

Def: Let (M, I) be an EDS.
An integral manifold of (M, I) is a submanifold F : N →M such that F ∗φ = 0 ∀φ ∈ I.

Why might EDS arise in differential geometry? Essentially, if one approaches a problem with
the language of moving frames, then relevant geometric quantities can typically be encoded as
differential forms.

Remark: Nearly every (system of) PDE can be encoded as an EDS (with independence condition)
in such a way that integral manifolds of the EDS are locally the (jet-)graphs of solutions to the
PDE. In fact, there may be many ways to encode a PDE as an EDS. Heuristically, the space of EDS
contains the space of PDE, and the problem of finding integral manifolds is much more general
than that of finding local solutions to a system of PDE.

The central problem of the theory of EDS is to investigate the existence of integral manifolds.
In analogy with how the Frobenius Theorem determines the existence of integral manifolds from
a condition on tangent planes, we too wish to determine which “infinitesimal integral manifolds”
can be sewn together to a bona fide integral manifold. Thus, we require a notion of “infinitesimal
integral manifold”:

Def: Let (M, I) be an EDS.
A k-dim integral element of I is a k-plane E ⊂ TxM such that φ|E = 0 for all φ ∈ I.
We let Vk(I) ⊂ Gk(TM) denote the space of k-dim integral elements of I.

That this definition captures the idea of “infinitesimal integral manifold” is explained by:

Fact: Let F : N → M be a submanifold. Then F : N → M is an integral manifold of I iff each
F∗(TxN) is an integral element of I.

Remark: The set Vk(I) ⊂ Gk(TM) is a closed subset. In the real-analytic case, it is an analytic
variety. It can be very singular, and different strata may have different dimensions.

Note also that at any particular point of M , there many be no integral elements, exactly one, or
an entire family of integral elements. Also, simply having a single integral element at every point
is not in itself sufficient to guarantee the existence of integral manifolds.
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One of the main tools for finding integral manifolds is the Cartan-Kähler Theorem. This is a ge-
ometric generalization of the Cauchy-Kovalevskaya Theorem in PDE, which is why real-analyticity
is required. The idea is to build integral manifolds “successively,” proceeding “one dimension at a
time.” That is, having found an integral 1-manifold, we thicken it to an integral 2-manifold, etc.

From this perspective, we see that what we really care about is not individual integral elements
so much as nested sequences of integral elements. This leads to the following definition:

Def: Let (M, I) be an EDS.
An integral flag at x ∈ M is a sequence of subspaces (0) ⊂ E1 ⊂ · · · ⊂ En ⊂ TxM with

dim(Ek) = k such that En is an integral element of I (so all Ek are integral elements of I).

Which integral flags give rise to integral manifolds? The next definition will enable us to provide
a sufficient condition that can be checked purely algebraically:

Def: Let E ∈ Vk(I) be an integral element. Let {e1, . . . , ek} be a basis for E ⊂ TxM .
The space of polar equations of E is the vector space

E(E) := {(e1 ∧ · · · ∧ ek) yφ | φ ∈ I ∩ Ωk+1(M)} ⊂ T ∗xM.

Intuitively the 1-forms in the space of polar equations encode the “expected” conditions for a
k-plane to be an integral element. The Cartan-Kähler Theorem says that when these expected
conditions are realized, then integral manifolds exist:

Convention: From now on, all EDS under consideration will have no non-zero forms of degree 0.

Cartan-Kähler Theorem: Let (M, I) be a real-analytic EDS (where I contains no non-zero
forms of degree 0). Let 0 ⊂ E1 ⊂ · · · ⊂ En ⊂ TxM be an integral flag of I.

If in a neighborhood of En, the set Vn(I) is a smooth manifold of codimension

codim[Vn(I) ⊂ Gn(TM)] = dim E(0) + · · ·+ dim E(En−1),

then there exists a real-analytic integral n-manifold of I through x whose tangent space at x is En.

Def: For the purposes of this talk, we will make the following non-standard definition:
An integral flag 0 ⊂ E1 ⊂ · · · ⊂ En ⊂ TxM is ordinary En has a neighborhood on which Vn(I)

is a smooth manifold and codim[Vn(I) ⊂ Gn(TM)] = dim E(0) + · · ·+ dim E(En−1).

Strategy for Local Isometric Embedding

Phase 1: Define an EDS I0
◦ Prop 1: Locally: {Integral manifolds of I0} ↔ {Isometric embeddings}

Phase 2: Define a larger EDS I ⊃ I0
◦ Prop 2: Integral manifolds of I = Integral manifolds of I0

Phase 3: Find algebraic generators of I and determine certain compatibility conditions.

Phase 4: Use Cartan-Kähler to show: There exist integral manifolds of I.
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Phase 1: First Attempt at Defining the EDS

Setup: Fix a Riemannian 2-manifold (M2, g). Let K denote its Gaussian curvature.
We fix a local orthonormal framing {E1, E2} on M , with dual coframing {η1, η2}. Since our

results will be local, we can assume that this coframing is defined on all of M .

Recall: By the Fundamental Lemma of Riemannian Geometry, there exists a unique 1-form η12 =
−η21 ∈ Ω1(M) such that Cartan’s First Structure Equations hold:

dη1 = η21 ∧ η2

dη2 = η12 ∧ η1.

Moreover, Cartan’s Second Structure Equation also holds:

dη12 = K η1 ∧ η2.

Def: Let F2(R3) → R3 denote the bundle over R3 whose elements consist of triples (x; e1, e2),
where x ∈ R3 and (e1, e2) is an orthonormal set of vectors in R3.

Note that F2(R3) is diffeomorphic to R3 × SO(3).
Let U ⊂ F2(R3) be an open set on which there exists a real-analytic function e3 : U → R3 with

the property that: for all f = (x; e1, e2) ∈ U , the vectors {e1, e2, e3(f)} form an orthonormal basis
of R3.

We will regard the components of f ∈ U as vector-valued functions x, e1, e2 : U → R3. In so
doing, we can define a set of 1-forms ωi, ωij ∈ Ω1(U) on U ⊂ F2(R3) via

ωi := ei · dx for 1 ≤ i ≤ 3,
ωij := ei · dej = −ωji for 1 ≤ i < j ≤ 3.

Note that of these nine 1-forms, the set {ω1, ω2, ω3, ω12, ω31, ω32} gives a coframing of U .

Consider the EDS (M2 × U6, I0), where I0 is the differential ideal generated by the 1-forms

I0 = 〈ω1 − η1, ω2 − η2, ω3〉.

Convention: From now on, we adopt the index ranges 1 ≤ i, j, k ≤ 2.
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Prop 1: If u : M → R3 is a local isometric embedding, then the graph of its lift ũ : M → U is an
integral 2-manifold of I0 on which ω1 ∧ ω2 is non-vanishing.

Conversely, every integral 2-manifold of I0 on which ω1∧ω2 is non-vanishing is locally the graph
of a function F : M → U for which x ◦ F : M → R3 is a local isometric embedding.

Proof: (=⇒) Let u : M → R3 be an isometric embedding. Let ũ : M → U be the lift of u – i.e.:
ũ(z) := (u(z); du(E1|z), du(E2|z)).

U ⊂ F2(R3)

M
u
>

eu >

R3

x
∨

Let Γeu := {(z, ũ(z)) : z ∈ M} ⊂ M × U . Let’s check that Γeu is an integral manifold of I0 on
which ω1 ∧ ω2 is non-vanishing.
◦ Since e3(ũ(z)) is normal to du(Ei|z), we have

ũ∗(ω3) = ũ∗e3 · ũ∗(dx) = (e3 ◦ ũ) · d(x ◦ ũ) = (e3 ◦ ũ) · du = 0.

◦ Since u is an isometric embedding, we have, for all v ∈ TzM ,

ũ∗(ωi)(v) = ũ∗ei · ũ∗(dx)(v) = (ei ◦ ũ) · du(v) = du(Ei|z) · du(v) = Ei|z · v = ηi(v).

◦ On Γeu, we have ω1 ∧ ω2 = η1 ∧ η2. Since η1 ∧ η2 is non-zero when projected onto the factor
M , it follows that ω1 ∧ ω2 is non-zero on Γeu.

(⇐=) Let X ⊂ M × U be an integral 2-manifold of I0 on which ω1 ∧ ω2 does not vanish. Let
π : X →M denote projection onto the first factor.

Since ωi = ηi on X, we see that η1 ∧ η2 does not vanish on X. Thus, TpX ∩Ker(Dπp) = 0, so
that Dπp : TpX → Tπ(p)M is an isomorphism, so π : X →M is locally a diffeomorphism. Therefore,
X is locally the graph of some function F : M → U .

Let u := x ◦F : M → R3. We claim that du(Ei) = ei ◦F , from which it follows that u is locally
an isometric embedding.

Using the hypothesis F ∗ω3 = 0, we have

0 = F ∗ω3 = F ∗(e3 · dx) = (e3 ◦ F ) · du.

Thus, e3(F (z)) is normal to du(Ei|z) for all z ∈ M , so that the vectors du(Ei|z) ∈ R3 are linear
combinations of only {e1(F (z)), e2(F (z))}.

Using the hypothesis F ∗ωi = ηi, we have, for all v ∈ TzM :

Ei|z · v = ηi(v) = F ∗(ωi)(v) = F ∗(ei · dx)(v) = F ∗ei · (F ∗dx)(v) = ei(F (z)) · du(v).

In particular, du(Ej |z) · ei(F (z)) = Ei|z · Ej |z = δij .
Thus, du(Ei) = ei ◦ F , meaning that du|z takes the orthonormal basis {E1|z, E2|z} of TzM to

the orthonormal basis {e1(F (z)), e2(F (z))} of du(TzM). It follows that locally, u is an isometric
embedding. ♦
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Phase 2: A Better EDS

Let us now consider the EDS (M2 × U6, I), where I is generated by the 1-forms

I = 〈ω1 − η1, ω2 − η2, ω3, ω12 − η12〉.

We shall need the following structure equations:

dω1 = −ω12 ∧ ω2 − ω13 ∧ ω3

dω2 = −ω21 ∧ ω1 − ω23 ∧ ω3

dω3 = −ω31 ∧ ω1 − ω32 ∧ ω2

dω12 = −ω13 ∧ ω32.

Prop 2: Any integral 2-manifold of I0 on which ω1 ∧ ω2 does not vanish is an integral 2-manifold
of the larger system I.

Proof: Let X be an integral 2-manifold of I0 on which ω1∧ω2 does not vanish. On X, we compute:

0 = d(ω1 − η1) = −(ω12 − η12) ∧ η2

0 = d(ω2 − η2) = −(ω21 − η21) ∧ η1.

Since the forms {η1, η2} are linearly independent on X, we see that the 1-form ψ := ω12− η12 must
vanish on X. Thus, X is an integral manifold of I. ♦

Remark: The geometric meaning of Prop 2 is that the Levi-Civita connection of an abstract met-
ric is the same as the connection induced by any isometric embedding.
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Phase 3: Algebraic Properties of I

Algebraic Generators of I

We begin by finding algebraic generators for I. By definition, we have

I = {ωi − ηi, ω3, ω12 − η12, d(ωi − ηi), dω3, d(ω12 − η12)}alg .

We compute that

d(ωi − ηi) ≡ 0 mod I
dω3 ≡ −ω31 ∧ ω1 − ω32 ∧ ω2 mod I

d(ω12 − η12) ≡ ω31 ∧ ω32 −K ω1 ∧ ω2 mod I

Thus, I is generated algebraically as

I = {ω1 − η1, ω2 − η2, ω3, ω12 − η12,Φ,Ψ}alg ,

where

Φ := ω31 ∧ ω1 + ω32 ∧ ω2

Ψ := ω31 ∧ ω32 −K ω1 ∧ ω2.

Note that these are exactly the forms which appear in the Gauss and Codazzi Equations.

Conditions on 2-dim Integral Elements of I

Let E ⊂ T(x,f)(M × U) be a 2-dimensional integral element of I on which (ω1 ∧ ω2)|E 6= 0.
Since {ω1, ω2} is linearly independent on E, we can write

ω3i =
∑
j

hij ωj

for some numbers hij ∈ R (which depend on E). We observe the following:
◦ The condition that Φ|E = 0 is the condition that

h12 = h21.

Geometrically, this says that the second fundamental form of the embedding should be symmetric.
◦ The condition that Ψ|E = 0 is the condition

h11h22 − (h12)2 = K.

Geometrically, this is the Gauss equation: after being embedded in R3, the Gaussian curvature K
of the abstract Riemannian 2-manifold should equal the determinant of the shape operator.
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Phase 4: Proof of Cartan-Janet

Cartan-Janet Theorem: If the Riemannian metric g on M2 is real-analytic, then every point of
M has a neighborhood which has a real-analytic isometric embedding into R3.

Proof: By Prop 1 and Prop 2, integral 2-manifolds of (M ×U, I) on which ω1∧ω2 is non-vanishing
give rise to local isometric embeddings. Thus, the problem amounts to constructing integral 2-
manifolds of I.

By the Cartan-Kähler Theorem, if at (x, f) ∈ M × U there is a 2-dimensional integral flag
0 ⊂ E1 ⊂ E2 ⊂ T(x,f)(M × U) that is ordinary, then there exists an integral 2-manifold of I
through (x, f) tangent to E2.

To this end, we will construct an open submanifold Λ(Z) ⊂ V2(I, ω) such that:
◦ At every (x, f) ∈M × U , there exist integral elements in Λ(Z) over (x, f)
◦ Every integral element in Λ(Z) is the terminus of an ordinary integral flag.

Let Z ⊂M × U × R3 denote the subset

Z = {(x, f, h) ∈M × U × R3 : h11h22 − (h12)2 = K(x) and h11 6= 0}.

By the Implicit Function Theorem, Z is a smooth submanifold of M × U × R3 of codimension 1,
so that

dim(Z) = dim(M2 × U6 × R3)− 1 = 10.

Define a map Λ: Z → V2(I, ω) via

Λ(x, f, h) := the 2-plane E ∈ V2(I, ω) at (x, f) s.t. ω3i =
∑

hij ωj .

= Ker
{
ωi − ηi, ω3, ω12 − η12, ω3i −

∑
hij ωj

}
.

It is clear that Λ is smooth and injective. One can check that, in fact, Λ is a smooth embedding.
Moreover, Λ(Z) ⊂ V2(I, ω) is an open subset.

Picture: V2(I, ω)→M × U is surjective, with fibers (real) quadric surfaces in R3.

We claim that every E ∈ Λ(Z) ⊂ V2(I, ω) is the terminus of an ordinary integral flag – i.e.: every
E ∈ Λ(Z) admits a filtration 0 ⊂ E1 ⊂ E such that near E, the subset V2(I, ω) ⊂ G2(T (M × U))
is a smooth manifold of codimension

codim[V2(I, ω) ⊂ G2(T (M × U))] = dim E(0) + dim E(E1).

Indeed, Λ(Z) is itself an open submanifold of V2(I, ω) containing E. That is, near E, we have
that V2(I, ω) is a smooth manifold of codimension

codim[V2(I, ω) ⊂ G2(T (M × U))] = 20− 10 = 10.

On the other hand, let E = Λ(x, f, h) ∈ Λ(Z), and let E1 ⊂ E denote the subspace annihilated
by ω2. We claim that dim E(0) + dim E(E1) = 10.
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Note that we have a coframing of M × U given by

{ω1, ω2, ω3, η1, η2, ω12, ω31, ω32}.

However, a coframing better suited to our problem is provided by

{ω1, ω2, ω3, ω1 − η1, ω2 − η2, ω12 − η12, π1, π2},

where
π1 := ω31 −

∑
h1j ωj and π2 := ω32 −

∑
h2j ωj .

Let’s express the forms in I in terms of this coframing. Since

I = {ω1 − η1, ω2 − η2, ω3, ω12 − η12,Φ,Ψ}alg ,

we only need to re-express Φ and Ψ. A straightforward calculation gives

Φ = π1 ∧ ω1 + π2 ∧ ω2

Ψ = (h12π1 − h11π2) ∧ ω1 + (h22π1 − h12π2) ∧ ω2 + π1 ∧ π2.

From this, it is easy to see that

E(0) = I ∩ Ω1(M × U) = {ω1 − η1, ω2 − η2, ω3, ω12 − η12}

and

E(E1) = {e1 yφ | φ ∈ Ω2(M × U)}
= {ω1 − η1, ω2 − η2, ω3, ω12 − η12, e1 yΦ, e1 yΨ}
= {ω1 − η1, ω2 − η2, ω3, ω12 − η12, π1, h12π1 − h11π2}.

Therefore,
dim E(0) + dim E(E1) = 4 + 6 = 10.

Thus, 0 ⊂ E1 ⊂ E is an ordinary integral flag.
By Cartan-Kähler, there exist integral 2-manifolds tangent to E on which ω1 ∧ ω2 is non-

vanishing. By Prop 1 and Prop 2, this implies the existence of local isometric embeddings. ♠
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