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1. Let k be a finite field of size q.

(a) Prove that the number of 2× 2 matrices over k satisfying T 2 = 0 is q2.

Sketch: One can use a method analogous to the solution in (b). Alternatively, a direct
elementary counting argument also works (really).

(b) Prove that the number of 3× 3 matrices over k satisfying T 3 = 0 is q3.

Solution: Let T be a 3× 3 matrix with T 3 = 0. Let mT (x) ∈ Fq[x] denote the minimal
polynomial of T . Since T 3 = 0, we have mT (x) | x3, so we have three cases.

Case One: mT (x) = x. In this case, we have T = 0, so there is 1 possibility.

Case Two: mT (x) = x2. Every such matrix T is similar to the Jordan form

A =

0 1
0

0


Thus, we have to compute the number of matrices that are similar to A.

Consider the action of GL3(Fq) on the set M3(Fq) of 3×3 matrices by conjugation. The
orbit of A is precisely the set of matrices that are similar to A. By the Orbit-Stabilizer
Theorem,

|Orbit(A)| = |GL3(Fq)|
|Stab(A)|

.

Note that |GL3(Fq)| = (q3− 1)(q3− q)(q3− q2) and Stab(A) = {P ∈ GL3(Fq) : PA = AP}.
If

P =

a b c
d e f
g h j

 ∈ GL3(Fq),

then the condition PA = AP forces a = e and d = f = g = 0, so that |Stab(A)| = q3(q−1)2.
Thus, |Orbit(A)| = (q3 − 1)(q + 1) = q4 + q3 − q − 1.

Case Three: mT (x) = x3. Every such matrix T is similar to the Jordan form

B =

0 1
0 1

0


Thus, we have to compute the number of matrices that are similar to B.

If P is as above, then the condition PB = BP forces a = e = j and b = f and d = g =
h = 0, so that |Stab(B)| = q2(q−1). Thus, |Orbit(B)| = q(q3−1)(q2−1) = q6−q4−q3 +q.

Conclusion: Thus, the total number of 3× 3 matrices T with T 3 = 0 is

1 + (q4 + q3 − q − 1) + (q6 − q4 − q3 + q) = q6.



2. (a) Prove that if K is a field of finite degree over Q and x1, . . . , xn are finitely many elements
of K, then the subring Z[x1, . . . , xn] they generate over Z is not equal to K. (Hint: Show they
all lie in OK [1/a] for a suitable nonzero a in OK , where OK denotes the integral closure of Z
in K.)

Solution: Let K/Q be a finite extension. For each xi ∈ K, there exists an integer ai ∈ Z
such that aixi ∈ OK . Then

x1, . . . , xn ∈ OK
[

1

a1

, . . . ,
1

an

]
= OK

[
1

a

]
,

where a = lcm[a1, . . . , an]. Thus, Z[x1, . . . , xn] ⊂ OK
[

1
a

]
.

Let p ∈ Z be a prime number with gcd(p, a) = 1. Then 1/p ∈ K but 1/p 6∈ OK
[

1
a

]
.

Thus, OK
[

1
a

]
( K.

(b) Let m be a maximal ideal of Z[x1, . . . , xn] and F = Z[x1, . . . , xn]/m. Use (a) and the
Nullstellensatz to show that F cannot have characteristic 0, and then deduce that for p =
char(F ) that F is of finite degree over Fp (so F is actually finite).

Solution: Suppose for the sake of contradiction that F has characteristic 0. On the one
hand, note that F = Z[α1, . . . , αn] for some α1, . . . , αn ∈ F . On the other hand, F is a
finitely-generated Z-algebra that contains Q, hence is a finitely-generated Q-algebra. By
the Nullstellensatz, F/Q is a finite extension. These two facts contradict part (a).

Thus, F has characteristic p. Let ϕ denote the composition Z ι
↪→ Z[x1, . . . , xn] � F .

Since char(F ) = p, we have (p) = Ker(ϕ) = ι−1(m), so pZ[x1, . . . , xn] ⊂ m. Therefore,
Z[x1, . . . , xn] � F descends to a surjective map Fp[x1, . . . , xn] � F , so that F is a finitely-
generated Fp-algebra.

Since F is a field and a finitely-generated Fp-algebra, the Nullstellensatz implies that
F/Fp is a finite extension.



3. Let E be the splitting field of f(x) = x7−1
x−1

= x6 + x5 + x4 + x3 + x2 + x + 1 over Q. Let ζ
be a zero of f(x), i.e. a primitive seventh root of 1.

(a) Show that f(x) is irreducible over Q. (Hint: Consider f(y+1) and use Eisenstein’s criterion.)

Solution: Note that f(y + 1) =
(y + 1)7 − 1

y
= y6 +

(
7

6

)
y5 + . . .+

(
7

1

)
. Since we have

7 |
(

7
k

)
for all 1 ≤ k ≤ 6 and 72 -

(
7
1

)
, Eisenstein’s Criterion applies.

(b) Show that the Galois group of E/Q is cyclic, and find an explicit generator.

Solution: Note that E = Q(ζ). Consider the homomorphism

ψ : (Z/7Z)× → Gal(Q(ζ)/Q)

a (mod 7) 7→ σa : [ζ 7→ ζa]

Note that ψ is injective. Since |Gal(Q(ζ)/Q)| = [Q(ζ) : Q] = ϕ(7) = 6 and |(Z/7Z)×| = 6,
we see that ψ is an isomorphism. Thus, Gal(E/Q) ∼= (Z/7Z)× ∼= Z/6Z.

The automorphism σ3 (or σ5) is a generator of Gal(Q(ζ)/Q).

(c) Let β = ζ + ζ2 + ζ4. Show that the intermediate field Q(β) is actually Q(
√
−7). (Hint:

First show that [Q(β) : Q] = 2 by finding a linear dependence over Q among {1, β, β2}.

Solution: Note that

β2 + β + 2 = (ζ2 + ζ4 + ζ + 2(ζ3 + ζ5 + ζ6)) + (ζ + ζ2 + ζ4) + 2

= 2(1 + ζ + ζ2 + ζ3 + ζ4 + ζ5 + ζ6)

= 0.

Since β is a root of x2 + x+ 2 = 0, we see that β = −1
2
±
√
−7
2

. Thus, Q(β) = Q(
√
−7).

(d) Let γq = ζ + ζq. Find (with proof) a q such that Q(γq) is a degree 3 extension of Q. (Hint:
use (b)). Is this extension Galois?

Solution: Consider γ6 = ζ + ζ6. Since Gal(E/Q) is abelian, every intermediate field is
Galois over Q, so Q(γ6)/Q is Galois. Let’s determine Gal(E/Q(γ6)) ≤ {σ1, . . . , σ6}.

Clearly σ1, σ6 ∈ Gal(E/Q(γ6)). Conversely, suppose σa ∈ Gal(E/Q(γ6)). Then σaγ6 =
γ6, so ζa + ζ−a = ζ + ζ6. If a 6= 1, 6, then this gives a linear dependence among the distinct
basis elements ζ, ζ6, ζa, ζ−a, which is impossible. Thus, Gal(E/Q(γ6)) = {σ1, σ6}.

Therefore,

Gal(Q(γ6)/Q) ∼=
Gal(E/Q)

Gal(E/Q(γ6))
∼=

Z/6Z
{σ1, σ6}

∼= Z/3Z.

Hence, [Q(γ6) : Q] = |Gal(Q(γ6)/Q)| = 3.



4. Let G be a nontrivial finite group and p be the smallest prime dividing the order of G. Let
H be a subgroup of index p. Show that H is normal. (Hint: If H isn’t normal, consider the
action of G on the conjugates of H.)

Solution: Since H ≤ NG(H) ≤ G and |G : H| = p, we have either NG(H) = G or
NG(H) = H. In the first case, H is normal, and we’re done.

Suppose, then, for the sake of contradiction, that NG(H) = H. In this case, the number
of conjugates of G is equal to |G : NG(H)| = |G : H| = p. Let T = {g1Hg

−1
1 , . . . , gpHg

−1
p }

denote the set of conjugates of H, where we set g1 as the identity element.
Consider the action by conjugation of G on the set T . This gives a map

π : G→ Perm(T ) ∼= Sp

g 7→ [giHg
−1
i 7→ ggiHg

−1
i g−1]

Note that the stabilizer of an element gHg−1 ∈ T is

Stab(gHg−1) = g Stab(H) g−1 = gNG(H)g−1 = gHg−1,

so that

Ker(π) =

p⋂
i=1

Stab(giHg
−1
i ) =

p⋂
i=1

giHg
−1
i ⊂ H.

Therefore, |G : Ker(π)| = |G : H||H : Ker(π)| = p |H : Ker(π)|. Since we also have
|G : Ker(π)| = |Im(π)| | p!, it follows that

|H : Ker(π)| | (p− 1)!

Since all prime divisors of (p−1)! are strictly less than p, it follows that any prime divisor
of |H : Ker(π)| must be strictly less than p. On the other hand, since |H : Ker(π)| | |G|,
the minimality of p forces any prime divisor of |H : Ker(π)| to be greater than or equal
to p. Thus, |H : Ker(π)| lacks prime divisors, hence is equal to 1. But this implies that
H = Ker(π), which is normal in G. Contradiction.



5. Let G be a finite group and π : G → GL(V ) a finite-dimensional complex representation.
Let χ be the character of π. Show that the characters of the representations on V ⊗ V ,
Sym2(V ) and

∧2(V ) are χ(g)2, (χ(g)2 +χ(g2))/2 and (χ(g)2−χ(g2))/2. (Hint: Express χ(g)2,
(χ(g)2 + χ(g2))/2 and (χ(g)2 − χ(g2))/2 in terms of the eigenvalues of π(g).)

Solution: Since π(g) is a unitary matrix, we can choose (by the Spectral Theorem) a
basis {e1, . . . , en} of V consisting of eigenvectors for π(g), say

π(g)(ei) = λiei.

By definition, χ(g) = tr(π(g)) =
∑n

i=1 λi.

Note that {ei ⊗ ej : i, j = 1, . . . , n} is a basis for V ⊗ V . Note also that

πV⊗V (g)(ei ⊗ ej) = π(g)(ei)⊗ π(g)(ej)

= λiei ⊗ λjej
= λiλj(ei ⊗ ej).

Therefore,

χV⊗V (g) = tr(πV⊗V (g)) =
n∑
i=1

n∑
j=1

λiλj =
n∑
i=1

λ2
i + 2

∑
i 6=j

λiλj =

(
n∑
i=1

λi

)2

= χ(g)2

Note that {ei ⊗ ej + ej ⊗ ei : i ≤ j} is a basis for Sym2(V ). Note also that πSym2(V ) =
πV⊗V |Sym2(V ), so that

πSym2(V )(g)(ei ⊗ ej + ej ⊗ ei) = πV⊗V (g)(ei ⊗ ej + ej ⊗ ei)
= λiλj(ei ⊗ ej) + λjλi(ej ⊗ ei)
= λiλj(ei ⊗ ej + ej ⊗ ei).

Therefore,

χSym2(V )(g) = tr(πSym2(V )(g)) =
∑
i≤j

λiλj =
n∑
i=1

λ2
i +

∑
i<j

λiλj

=
1

2

( n∑
i=1

λi

)2

+
n∑
i=1

λ2
i


=

1

2

[
χ(g)2 + χ(g2)

]
,

where we have used the fact that χ(g2) = tr(π(g2)) = tr(π(g)2) =
∑
λ2
i .

Note that {ei ⊗ ej − ej ⊗ ei : i < j} is a basis for
∧2(V ). Note also that πV2(V ) =

πV⊗V |V2(V ). Thus, by a similar calculation as above, we find

πV2(V )(g)(ei ⊗ ej − ej ⊗ ej) = λiλj(ei ⊗ ej − ej ⊗ ei),
so that

χV2(V )(g) = tr(πV2(V )(g)) =
∑
i<j

λiλj =
1

2

( n∑
i=1

λi

)2

−
n∑
i=1

λ2
i

 =
1

2

[
χ(g)2 − χ(g2)

]
.



6. Let V be a vector space over a field F , and let B : V ×V → F be a symmetric bilinear form.
This means that B is bilinear and B(x, y) = B(y, x). Let q(v) = B(v, v).

(a) Show that if the characteristic of F is not 2, then B(v, w) = 1
2
(q(v + w) − q(v) − q(w)).

(This obviously implies that if q = 0, then B = 0.)

Solution: Note that

q(v + w) = B(v + w, v + w) = B(v, v) +B(w, v) +B(v, w) +B(w,w)

= q(v) + 2B(v, w) + q(w),

so q(v + w)− q(v)− q(w) = 2B(v, w). Since char(F ) 6= 2, we may divide by 2 to conclude.

(b) Give an example where the characteristic of F is 2 and q = 0 but B 6= 0.

Solution: Take V = F4. Let {v, w} be an F2-basis for F4. Note that F4 = {0, v, w, z},
where z = v + w. Define B : F4 × F4 → F2 via

B(av + bw, cv + dw) = ad+ bc.

It is clear that B is bilinear and symmetric. One can check that B(0, 0) = B(v, v) =
B(w,w) = B(z, z) = 0, so that q = 0. However, B 6= 0 since B(v, w) = 1 6= 0.

(c) Show that if the characteristic of F is not 2 or 3 and if B(u, v, w) is a symmetric trilinear
form, and if r(v) = B(v, v, v), then r = 0 implies B = 0.

Solution: Note that

r(v + w) = B(v + w, v + w, v + w)

= B(v, v, v) +B(v, v, w) +B(v, w, v) +B(v, w, w)

+B(w, v, v) +B(w, v, w) +B(w,w, v) +B(w,w,w)

= r(v) + r(w) + 3B(v, v, w) + 3B(v, w, w),

so that
r(v + w)− r(v)− r(w) = 3(B(v, v, w) +B(v, w, w)).

Replacing w with −w gives

r(v − w)− r(v) + r(w) = 3(−B(v, v, w) +B(v, w, w)).

Therefore, r = 0 implies both that B(v, v, w) = −B(v, w, w) and B(v, v, w) = B(v, w, w).
Hence,

B(v, v, w) = 0 ∀v, w ∈ V.

For w ∈ V , define bw(v1, v2) := B(v1, v2, w). Then bw is a symmetric bilinear form with
qw = 0. By part (a), we have bw = 0 for all w ∈ V . This means that B = 0.



7. Let G be a finite group.

(a) Let π : G→ GL(V ) be an irreducible complex representation, and let χ be its character. If
g ∈ G, show that |χ(g)| = dim(V ) if and only if there is a scalar c ∈ C such that π(g)v = cv
for all v ∈ V .

Solution:
(⇐=) Suppose there exists c ∈ C such that π(g)v = cv for all v ∈ V . Then every g ∈ G

has π(g) = c · IdV . Since π(g) is a unitary matrix, we have | det(π(g))| = 1, so |c| = 1.
Therefore,

|χ(g)| = |tr(π(g))| = |tr(c · IdV )| = |c · dim(V )| = dim(V ).

(=⇒) Suppose g ∈ G has |χ(g)| = dim(V ). Let λ1, . . . , λn be the eigenvalues of π(g).
Note that

|χ(g)| = |tr(π(g))| =

∣∣∣∣∣
n∑
i=1

λi

∣∣∣∣∣ ≤
n∑
i=1

|λi| = n = dim(V ).

By hypothesis, equality holds, so that each λi = riλ1 for some ri > 0. Since

1 = |λi| = ri|λ1| = ri

we see that λ1 = · · · = λn. Since π(g) is diagonalizable (Spectral Theorem), it is similar to
the matrix diag{λ1, . . . , λ1}. Hence, π(g)v = λ1v for all v ∈ V .

(b) Show that g is in the center Z(G) if and only if |χ(g)| = χ(1) for every irreducible character
χ of G.

Solution:
(=⇒) Suppose g ∈ Z(G). Let π : G → GL(V ) be an irreducible representation of G

with character χ. For every h ∈ G, we have

π(g)π(h) = π(gh) = π(hg) = π(g)π(h).

Thus, Schur’s Lemma implies that π(g) is a homothety: there exists c ∈ C such that
π(g)v = cv for all v ∈ V . By part (a), it follows that |χ(g)| = dim(V ) = tr(IdV ) = χ(1).

(⇐=) Let χ1, . . . , χh denote the irreducible characters of G. Let n1, . . . , nh denote their
respective degrees. By the Orthogonality Relations, every g ∈ G satisfies

1

|G|

h∑
i=1

|χi(g)|2 =
1

|Conj(g)|
,

where Conj(g) denotes the conjugacy class of g.
Suppose g ∈ G is such that each |χi(g)| = χi(1) = ni. Then

1

|Conj(g)|
=

1

|G|

h∑
i=1

n2
i = 1.

Thus, |Conj(g)| = 1, which means that g ∈ Z(G).



8. Let V be a vector space of dimension d ≥ 1 over a field k of arbitrary characteristic. Let V ∗

denote the dual space.

(a) For any n ≥ 1, prove that there is a unique bilinear pairing V ⊗n × (V ∗)⊗n → k satisfying

(v1 ⊗ · · · ⊗ vn, `1 ⊗ · · · ⊗ `n) 7→
n∏
i=1

`i(vi),

and by using bases show that it is a perfect pairing (i.e., identifies (V ∗)⊗n with (V ⊗n)∗).

Solution: By the universal property of tensor products, the multilinear map

V × · · · × V × V ∗ × · · · × V ∗ → k

(v1, . . . , vn, `1, . . . , `n) 7→
∏

`i(vi)

descends to a linear map

V ⊗ · · · ⊗ V ⊗ V ∗ ⊗ · · · ⊗ V ∗ → k

with v1 ⊗ · · · ⊗ vn ⊗ `1 ⊗ · · · ⊗ `n 7→
∏

`i(vi)

on simple tensors. Again by the universal property, this in turn induces a bilinear map

Φ: (V ⊗ · · · ⊗ V )× (V ∗ ⊗ · · · ⊗ V ∗)→ k

with (v1 ⊗ · · · ⊗ vn, `1 ⊗ · · · ⊗ `n) 7→
∏

`i(vi)

on ordered pairs of simple tensors. Since this map is specified on generators, it is unique.

We therefore obtain a linear map

ϕ : (V ∗)⊗n → (V ⊗n)∗

η 7→ Φ(·, η)

We claim that ϕ is an isomorphism.
Let {e1, . . . , ed} be a basis for V , and let {ε1, . . . , εd} denote the dual basis for V ∗. Note

that {ei1 ⊗ · · · ⊗ ein} and {εj1 ⊗ · · · ⊗ εjn} are then bases for V ⊗n and (V ∗)⊗n, respectively.
We then have

ϕ(εj1 ⊗ · · · ⊗ εjn)(ei1 ⊗ · · · ⊗ ein) = Φ(ei1 ⊗ · · · ⊗ ein , εj1 ⊗ · · · ⊗ εjn) =
n∏
k=1

εjk(eik) =
n∏
k=1

δjkik ,

where δji is the Kronecker delta. On the other hand, if {αj1···jn} denotes the basis of (V ⊗n)∗

that is dual to {ei1 ⊗ · · · ⊗ ein}, we have

αj1···jn(ei1 ⊗ · · · ⊗ ein) =
n∏
k=1

δjkik .

Therefore: ϕ(εj1 ⊗ · · · ⊗ εjn) = αj1···jn .
Since ϕ maps a basis of (V ∗)⊗n to a basis of (V ⊗n)∗, it is an isomorphism.



8. Let V be a vector space of dimension d ≥ 1 over a field k of arbitrary characteristic. Let V ∗

denote the dual space.

(b) For any 1 ≤ n ≤ d, do similarly with
∧n(V ) and

∧n(V ∗) using the requirement

(v1 ∧ · · · ∧ vn, `1 ∧ · · · ∧ `n) 7→ det(`i(vj)).

Solution: For v = (v1, . . . , vn) ∈ V n, define a map

fv : V ∗ × · · · × V ∗ → k

(`1, . . . , `n) 7→ det(`i(vj))

Since fv is multilinear and alternating, it descends to a linear map

Fv :
∧n

V ∗ → k

with Fv(`1 ∧ · · · ∧ `n) = fv(`1, . . . , `n) on simple wedge products.
For θ ∈

∧n V ∗, define a map

gθ : V× · · · × V → k

gθ(v) = Fv(θ)

Since gθ is multilinear and alternating, it descends to a linear map

Gθ :
∧n

V → k

with Gθ(v1 ∧ · · · ∧ vn) = gθ(v1, . . . , vn) on simple wedge products.
Finally, define the bilinear map

H :
∧n

V ×
∧n

V ∗ → k

H(η, θ) = Gθ(η).

Note that if η = v1 ∧ · · · ∧ vn and θ = `1 ∧ · · · ∧ `n are simple wedge products, then

H(η, θ) = Gθ(η) = gθ(v) = Fv(θ) = fv(`1, . . . , `n) = det(`i(vj)),

where v = (v1, . . . , vn).



9. Let K/k be a finite extension of fields with α ∈ K as a primitive element over k. Let
f ∈ k[x] be the minimal polynomial of α over k.

(a) Explain why K ∼= k[x]/(f) as k-algebras, and use this to relate the local factor rings of
K ⊗k F to the irreducible factors of f in F [x], with F/k a field extension.

Solution: Let K/k be a finite extension of fields with α ∈ K as a primitive element. Let
f ∈ k[x] be the minimal polynomial of α over k. Note that the k-algebra homomorphism

ϕ : k[x]→ k(α) = K

p(x) 7→ p(α)

is surjective and Ker(ϕ) = {p ∈ k[x] : p(α) = 0} = (f). Thus, we have an induced k-algebra
isomorphism k[x]/(f)→ K.

From the exact sequence 0→ (f)⊗k F → k[x]⊗k F → k[x]
(f)
⊗k F → 0, we see that

K ⊗k F ∼=
k[x]

(f)
⊗k F ∼=

k[x]⊗k F
(f)⊗k F

∼=
F [x]

(f)
,

where in the last step we used the isomorphisms k[x]⊗k F ∼= F [x] and (f)⊗k F ∼= (f)F .
Let f = f e11 · · · f er

r denote the factorization of f into irreducibles in F [x]. By the Chinese
Remainder Theorem,

K ⊗k F ∼=
F [x]

(f)
∼=

r∏
i=1

F [x]

(f ei
i )
.

Note that each factor F [x]/(f ei
i ) in the above product is a local ring.

(b) Assume K/k is Galois with Galois group G. Prove that the natural map K⊗kK →
∏

g∈GK
defined by a⊗ b 7→ (g(a)b) is an isomorphism.

Solution: Let a, b ∈ K, writing a = p(α) for some p ∈ k[x]. From the proof of part (a),
we have isomorphisms

K ⊗k K ∼=
k[x]

(f)
⊗k K ∼=

K[x]

(f)
(1)

a⊗ b 7→ p(x)⊗ b 7→ b p(x).

Note that f(x) =
∏

g∈G(x− g(α)) in K[x]. Therefore, by the Chinese Remainder Theorem,

K[x]

(f)
∼=
∏
g∈G

K[x]

(x− g(α))
∼=
∏
g∈G

K (2)

r(x) 7→ (r(x) mod(x− g(α)) 7→ (r(g(α))).

Composing the isomorphisms (1) and (2), and noting that r(g(α)) = g(r(α)), we have

K ⊗k K ∼=
∏
g∈G

K

a⊗ b 7→ (g(a)b).



10. Let G be a finite abelian group, ω : G×G→ R/Z a bilinear mapping such that
(i) ω(g, g) = 0 for all g ∈ G;
(ii) ω(x, g) = 0 for all g ∈ G if and only if x is the identity element.

Prove that the order of G is a square. Give an example of G of square order for which no such
ω exists.

(Hint: Consider a subgroup A of G which is maximal for the property that ω(x, y) = 0 for
all x, y in A. You may use the following fact without proof: any finite abelian group X admits
|X| distinct homomorphisms to R/Z.)

Solution: Consider the map

G→ Hom(G,R/Z)

x 7→ ω(x,−)

Property (ii) says exactly that this map is injective. Since |G| = |Hom(G,R/Z)| (by the
Hint), it follows that this map is surjective.

Consider the inclusion 0 → A ↪→ G. Since R/Z is an injective Z-module, the Hom
sequence Hom(G,R/Z)→ Hom(A,R/Z)→ 0 is exact. That is, the restriction map

Hom(G,R/Z)→ Hom(A,R/Z)

σ 7→ σ|A
is surjective.

Combining these two observations, we see that the composed map

ϕ : G→ Hom(A,R/Z)

x 7→ ω(x,−)|A
is surjective. We claim that A = Ker(ϕ).

By definition of A, we clearly have A ⊂ Ker(ϕ). Conversely, suppose x ∈ Ker(ϕ), so
that ω(x, a) = 0 for all a ∈ A. By (i), we have

0 = ω(x+ a, x+ a) = ω(x, x) + ω(x, a) + ω(a, x) + ω(a, a) = ω(a, x)

so that ω(a, x) = 0 for all a ∈ A. Suppose for the sake of contradiction that x /∈ A. Consider
the group A′ = 〈A, x〉 generated by A and x. If a+mx, a′ + nx ∈ A′, then

ω(a+mx, a+ nx) = ω(a, a) +mω(x, a) + nω(a, x) +mnω(x, x) = 0.

Thus, every y1, y2 ∈ A′ has ω(y1, y2) = 0, which contradicts the maximality of A.

Therefore, we have an isomorphism

G/A ∼= Hom(A,R/Z),

which implies that |G| = |A|2.

Example: Let G = Z/4Z. If ω : G × G → R/Z is a bilinear map satisfying (i), then
ω(1, 1) = 0. But this implies that ω(1, 3) = ω(1, 2) = ω(1, 1) = ω(1, 0) = 0, which means
that (ii) cannot hold.


