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1. Let k be a finite field of size q.

(a) Prove that the number of 2 x 2 matrices over k satisfying 7% = 0 is ¢*.

Sketch: One can use a method analogous to the solution in (b). Alternatively, a direct
elementary counting argument also works (really).

(b) Prove that the number of 3 x 3 matrices over k satisfying T3 = 0 is ¢>.

Solution: Let T be a 3 x 3 matrix with 7% = 0. Let my(z) € F [z] denote the minimal
polynomial of T'. Since T? = 0, we have mrp(z) | 23, so we have three cases.

Case One: mp(z) = . In this case, we have T' = 0, so there is 1 possibility.

Case Two: mr(z) = 2%, Every such matrix T is similar to the Jordan form

A= 0
0

Thus, we have to compute the number of matrices that are similar to A.

Consider the action of GL3(F,) on the set M;3(F,) of 3 x 3 matrices by conjugation. The
orbit of A is precisely the set of matrices that are similar to A. By the Orbit-Stabilizer
Theorem,

. |GLs(Fy)|
bit(A)| = —— .
Orbit(A)] = 1sn )
Note that |GL3(F,)| = (¢* — 1)(¢* — q¢)(¢* — ¢*) and Stab(A) = {P € GL3(F,): PA = AP}.
It
a b c
P=1|d e f € GLg(]Fq),

g hj

then the condition PA = AP forcesa = eand d = f = g = 0, so that [Stab(A)| = ¢3(¢—1).
Thus, [Orbit(A)| = (¢* = 1)(¢+1) =¢" +¢ —q— 1.

Case Three: my(x) = 2°. Every such matrix T is similar to the Jordan form

0 1
B = 01
0
Thus, we have to compute the number of matrices that are similar to B.
If P is as above, then the condition PB = BP forcesa=e=jand b= f and d = g =
h = 0, so that |Stab(B)| = ¢*(¢—1). Thus, |Orbit(B)| = q(¢* —1)(¢*—1) = ¢®* —¢* - ¢* +q.

Conclusion: Thus, the total number of 3 x 3 matrices T with 7% = 0 is

1+ (" +—q—-1)+ (" —¢"—*+q) =




2. (a) Prove that if K is a field of finite degree over Q and 1, ..., z, are finitely many elements
of K, then the subring Z[z1, ..., z,] they generate over Z is not equal to K. (Hint: Show they
all lie in Ok[1/a] for a suitable nonzero a in Ok, where Ok denotes the integral closure of Z
in K.)

Solution: Let K/Q be a finite extension. For each z; € K, there exists an integer a; € Z
such that a;x; € Og. Then

1 1 1
$1,...,$n60K|:—,...,—:|:OK|:—:|,
a an a
where a = lem[ay, . .., a,]. Thus, Z[z1,...,z,] C Ok [L].

Let p € Z be a prime number with ged(p,a) = 1. Then 1/p € K but 1/p € Ok [1].
Thus, Ok [1] € K.

a

(b) Let m be a maximal ideal of Z[zy,...,x,] and F' = Z[xy,...,x,]/m. Use (a) and the
Nullstellensatz to show that F' cannot have characteristic 0, and then deduce that for p =
char(F) that F' is of finite degree over F,, (so F' is actually finite).

Solution: Suppose for the sake of contradiction that F' has characteristic 0. On the one
hand, note that F' = Z[ay,...,a,] for some aq,...,a, € F. On the other hand, F' is a
finitely-generated Z-algebra that contains @, hence is a finitely-generated QQ-algebra. By
the Nullstellensatz, F'/Q is a finite extension. These two facts contradict part (a).

Thus, F' has characteristic p. Let ¢ denote the composition Z < Zlxy, ..., x,] > F.
Since char(F') = p, we have (p) = Ker(yp) = ¢ }(m), so pZ[zi,...,z,] C m. Therefore,
Zlzy,...,x,) — F descends to a surjective map F,[xy,...,z,] — F, so that F is a finitely-
generated [F,-algebra.

Since I is a field and a finitely-generated IF,-algebra, the Nullstellensatz implies that
F/F, is a finite extension.




3. Let E be the splitting field of f(z) = =t = 2% + 2% + 2* + 23 + 22 + 2 + 1 over Q. Let ¢

z—1
be a zero of f(x), i.e. a primitive seventh root of 1.

(a) Show that f(z) is irreducible over Q. (Hint: Consider f(y+1) and use Eisenstein’s criterion.)

1)" -1
Solution: Note that f(y+1) = u =% + (Z) v+ <I) Since we have
Y

7| (Z) forall 1 <k <6 and 7% ¢ (D, Eisenstein’s Criterion applies.

(b) Show that the Galois group of E/Q is cyclic, and find an explicit generator.

Solution: Note that £ = Q((). Consider the homomorphism

¥ (Z)T2)" — Gal(Q(()/Q)
a(mod 7) — g4: [¢ — (9

Note that ¢ is injective. Since |Gal(Q(¢)/Q)| = [Q(¢): Q] = ¢(7) = 6 and [(Z/TZ)*| = 6,
we see that 1 is an isomorphism. Thus, Gal(E/Q) = (Z/TZ)* = Z/6Z.
The automorphism o3 (or o5) is a generator of Gal(Q(¢)/Q).

(c) Let B = ¢ + ¢* + ¢* Show that the intermediate field Q(3) is actually Q(v/—7). (Hint:
First show that [Q(5): Q] = 2 by finding a linear dependence over Q among {1, 3, 5°}.

Solution: Note that

F+B+2=(C++C+2C+C+O)N+(C+C+ ) +2
LT+¢+C+C++C+ )

=2
=0

Since 3 is a root of 22 + z + 2 = 0, we see that = —5 + g Thus, Q(8) = Q(v/-7).

(d) Let v, = ¢+ (% Find (with proof) a ¢ such that Q(v,) is a degree 3 extension of Q. (Hint:
use (b)). Is this extension Galois?

Solution: Consider 75 = ¢ + 5. Since Gal(F/Q) is abelian, every intermediate field is
Galois over Q, so Q(v)/Q is Galois. Let’s determine Gal(E/Q(7s)) < {o1,...,06}.

Clearly 01,06 € Gal(E/Q(~)). Conversely, suppose o, € Gal(E/Q(76)). Then o,7 =
Y6, 50 (¥4 (74 = ( +(C. If a # 1,6, then this gives a linear dependence among the distinct
basis elements ¢, %, (% (7%, which is impossible. Thus, Gal(E/Q(vs)) = {01, 06}

Therefore,
CallQ09/ = Ty > Toner] > 2/

Hence, [Q(7): Q] = |Gal(Q(16)/Q)| = 3.




4. Let G be a nontrivial finite group and p be the smallest prime dividing the order of GG. Let
H be a subgroup of index p. Show that H is normal. (Hint: If H isn’t normal, consider the
action of G on the conjugates of H.)

Solution: Since H < Ng(H) < G and |G: H| = p, we have either Ng(H) = G or
N¢(H) = H. In the first case, H is normal, and we're done.

Suppose, then, for the sake of contradiction, that Ng(H) = H. In this case, the number
of conjugates of G is equal to |G: Ng(H)| = |G: H| =p. Let T = {g:Hg; ", ..., g,Hg, "}
denote the set of conjugates of H, where we set ¢g; as the identity element.

Consider the action by conjugation of G on the set T". This gives a map

m: G — Perm(T) = 5,
g lg:Hg ' = g99:Hg; 'g™"]
Note that the stabilizer of an element gHg™! € T is
Stab(gHg™") = gStab(H) g~ = gNe(H)g™" = gHg™",

so that ) )
Ker(m) = mStab(gngi’l) = (]gng;1 C H.
i=1 i=1
Therefore, |G: Ker(r)| = |G: H||H: Ker(r)| = p|H: Ker(n)|. Since we also have
|G: Ker(m)| = [Im(m)| | p!, it follows that

|H: Ker(m)] | (p - 1)!

Since all prime divisors of (p—1)! are strictly less than p, it follows that any prime divisor
of |H: Ker(m)| must be strictly less than p. On the other hand, since |H: Ker(w)| | |G],
the minimality of p forces any prime divisor of |H: Ker(w)| to be greater than or equal
to p. Thus, |H: Ker(m)| lacks prime divisors, hence is equal to 1. But this implies that
H = Ker(n), which is normal in G. Contradiction.




5. Let G be a finite group and 7: G — GL(V) a finite-dimensional complex representation.
Let x be the character of w. Show that the characters of the representations on V ® V,

Sym?(V) and A\*(V) are x(9)°, (x(9)* +x(9°))/2 and (x(9)* —x(9%))/2. (Hint: Express x(g)*,
(x(9)* + x(¢%))/2 and (x(9)*> — x(¢*))/2 in terms of the eigenvalues of 7(g).)

Solution: Since 7(g) is a unitary matrix, we can choose (by the Spectral Theorem) a
basis {e1,...,e,} of V consisting of eigenvectors for m(g), say

7(g)(e;) = Ne;.
By definition, x(g) = tr(7(g)) = > A

Note that {e; ® e;: 4,7 =1,...,n} is a basis for V@ V. Note also that
Tvev(g)(e; ® ;) = m(g)(e:) @ 7(g)(e;)
= /\iei X /\jej
= /\1)\](61 & 6]').

Therefore,

Xvev(g) = tr(tyev(g ZZ)\A —ZA2+22/\)\ = <Z)\> = x(g)?

=1 j=1 i#£]
Note that {e; ® e; +e; ® ¢;: i < j} is a basis for Sym*(V). Note also that 7gy,2qy =
TVeV |sym2(v), so that
Toym2(vy(9) (€ ® €5 + €5 ® e;) = mygv(g)(e: ®ej + €5 @ e;)
= )\1)\J(61 & €j) + )\in(ej & 61‘)
=6, ®ej+e; ®e;).

Therefore,

Xsym2(1)(9) = 1 (Tsgm2) (9)) = D Ay = Z A+ A

1<j 1<J
= % (i Ai> + i A
=1 =1

= 2 [0 + x(6)]

where we have used the fact that x(g*) = tr(w(g?)) = tr(7(g)?) = > 2.
Note that {e; ® ¢; —¢; ® e;: i < j} is a basis for A*(V). Note also that Ta2) =
VeV Az(vy- Thus, by a similar calculation as above, we find
Trzan(9)(ei @ ej —e; @ej) = Ndj(e; ®e; — e ®e;),
so that

1 “ 1
Xp2)(9) = tr(Tp2y (9) = DAk = 5 (Z&-) Zv =5 [x(9)” = x(g")]-
=1

1<j




6. Let V be a vector space over a field F', and let B: V xV — F be a symmetric bilinear form.
This means that B is bilinear and B(z,y) = B(y, z). Let ¢(v) = B(v,v).

(a) Show that if the characteristic of F' is not 2, then B(v,w) = 1(q(v + w) — q(v) — gq(w)).
(This obviously implies that if ¢ = 0, then B = 0.)

Solution: Note that

q(v+w) = B(v+w,v+w) = B(v,v) + Bw,v) + B(v,w) + B(w, w)
=q(v) + 2B(v,w) + q(w),

so q(v +w) — q(v) — q(w) = 2B(v,w). Since char(F) # 2, we may divide by 2 to conclude.

(b) Give an example where the characteristic of F'is 2 and ¢ = 0 but B # 0.

Solution: Take V = TF,. Let {v,w} be an Fy-basis for F,. Note that Fy = {0, v, w, 2},
where z = v + w. Define B: F, x F; — [F, via

B(av 4 bw, cv + dw) = ad + be.

It is clear that B is bilinear and symmetric. One can check that B(0,0) = B(v,v) =
B(w,w) = B(z,z) =0, so that ¢ = 0. However, B # 0 since B(v,w) =1 # 0.

(c) Show that if the characteristic of I is not 2 or 3 and if B(u,v,w) is a symmetric trilinear
form, and if r(v) = B(v,v,v), then r = 0 implies B = 0.

Solution: Note that

r(v+w)=Bv+w,v+w,v+w)
= B(v,v,v) + B(v,v,w) + B(v,w,v) + B(v,w,w)
+ B(w,v,v) + B(w,v,w) + B(w,w,v) + B(w,w,w)
=7r() +r(w) + 3B(v,v,w) + 3B(v,w,w),
so that
r(v+w) —r(v) —r(w) = 3(B(v,v,w) + B(v,w,w)).

Replacing w with —w gives
r(v—w) —rv)+r(w) =3(—B(v,v,w) + B(v,w,w)).

Therefore, 7 = 0 implies both that B(v,v,w) = —B(v,w,w) and B(v,v,w) = B(v,w,w).
Hence,

B(v,v,w) =0 Yv,we V.

For w € V, define b, (v1,v2) := B(v1, v, w). Then b, is a symmetric bilinear form with
¢w = 0. By part (a), we have b,, = 0 for all w € V. This means that B = 0.




7. Let G be a finite group.

(a) Let m: G — GL(V) be an irreducible complex representation, and let y be its character. If
g € G, show that |x(g)| = dim(V) if and only if there is a scalar ¢ € C such that m(g)v = cv
forallveV.

Solution:

(<=) Suppose there exists ¢ € C such that 7(g)v = cv for all v € V. Then every g € G
has 7(g) = ¢ - Idy. Since 7(g) is a unitary matrix, we have |det(n(g))| = 1, so |¢| = 1.
Therefore,

X(9)] = ltr(m(g))] = [tr(c - Idy)| = |c- dim(V)] = dim(V").
(=) Suppose g € G has |x(g)| = dim(V). Let Ay,..., A\, be the eigenvalues of 7(g).

Note that
!
i=1

By hypothesis, equality holds, so that each \; = r;\; for some r; > 0. Since

Ix(9)| = [tr(m(g))| =

<> Al =n=dim(V).
=1

1= |)\z’ = TZ'|)\1| =T

we see that A\; = --- = \,. Since 7(g) is diagonalizable (Spectral Theorem), it is similar to
the matrix diag{A1,...,\1}. Hence, m(g)v = \jv for all v € V.

(b) Show that ¢ is in the center Z(G) if and only if |x(g)| = x(1) for every irreducible character
x of G.

Solution:
(=) Suppose g € Z(G). Let m: G — GL(V) be an irreducible representation of G
with character y. For every h € G, we have

m(g)w(h) = 7(gh) = w(hg) = 7(g)m(h).
Thus, Schur’s Lemma implies that 7(g) is a homothety: there exists ¢ € C such that
7(g)v = cv for all v € V. By part (a), it follows that |x(g)| = dim(V') = tr(Idy) = x(1).

(<) Let x1, ..., xn denote the irreducible characters of G. Let n1,...,n, denote their
respective degrees. By the Orthogonality Relations, every g € G satisfies

1 & 1
_ . 2 —_——_—

where Conj(g) denotes the conjugacy class of g.
Suppose ¢ € G is such that each |x;(g)| = xi(1) = n;. Then

1 :ianzl.

[Conj(g)] |G| =

Thus, |Conj(g)| = 1, which means that g € Z(G).




8. Let V be a vector space of dimension d > 1 over a field k of arbitrary characteristic. Let V*
denote the dual space.

n

(a) For any n > 1, prove that there is a unique bilinear pairing V" x (V*)®" — [ satisfying
(M ® QU 1 ® -+ ®y) H&'(Uz‘)?
i=1

and by using bases show that it is a perfect pairing (i.e., identifies (V*)®" with (V®")*).

Solution: By the universal property of tensor products, the multilinear map
VX xVxV x.--.xV"—=k
T S S o H&(vi)

descends to a linear map

VR VeV -V -k
with v1®-~-®vn®€1®~-®€n'—>H€z’(vz‘)

on simple tensors. Again by the universal property, this in turn induces a bilinear map
O (Vo V)x (Ve ---V") -k
with (U1®"'®Un,€1®"'®£n)'—>H€i(“i)

on ordered pairs of simple tensors. Since this map is specified on generators, it is unique.

We therefore obtain a linear map

o (V)" — (vony:
ne Q)(-’ 77)

We claim that ¢ is an isomorphism.

Let {e1,...,eq} be a basis for V, and let {e!, ..., e’} denote the dual basis for V*. Note
that {e;, ® - ®e;, } and {¢/' ® --- @ ¢/} are then bases for V" and (V*)®", respectively.
We then have
Pl @@ d)(e ©®e,) = Rlen @ Qe @ @) = [T e(en) =[] o

k=1 k=1

where 67 is the Kronecker delta. On the other hand, if {a/1"7»} denotes the basis of (V&")*
that is dual to {e;, ® --- ® ¢;, }, we have

n

Qe @@ e ) = H 5;’:_
k=1

Therefore: p(e' ® -+ @ /n) = qItn,
Since ¢ maps a basis of (V*)®" to a basis of (V®")*, it is an isomorphism.




8. Let V be a vector space of dimension d > 1 over a field k of arbitrary characteristic. Let V*
denote the dual space.

(b) For any 1 <n < d, do similarly with A"(V) and A"(V*) using the requirement

(VL A Ay €y A= Ay = det(£i(v;))).

Solution: For v = (vy,...,v,) € V", define a map

for Vix oo x V" =k
(61, e ,gn) — det(&(vj))

Since f, is multilinear and alternating, it descends to a linear map
n
Fp: NV =k

with F,(€1 A--- AN ly) = fo(ly,...,L,) on simple wedge products.
For §# € \" V*, define a map

¢ VX xV =k
9"(v) = F,(0)

Since ¢° is multilinear and alternating, it descends to a linear map
¢ NV —k

with G%(vy A+~ Av,) = ¢%(vy, ..., v,) on simple wedge products.
Finally, define the bilinear map

H: /\nVX /\nV*—>k
H(n,0) = G°(n).
Note that if n =v; A--- Av, and § = {1 A --- A4, are simple wedge products, then
H(n,0) = G°(n) = ¢"(v) = F,(0) = fu(ly, ..., ) = det(€;(vy)),

where v = (vy,...,v,).




9. Let K/k be a finite extension of fields with @ € K as a primitive element over k. Let
f € klx] be the minimal polynomial of « over k.

(a) Explain why K = k[z]/(f) as k-algebras, and use this to relate the local factor rings of
K ®y, F to the irreducible factors of f in F[z|, with F'/k a field extension.

Solution: Let K/k be a finite extension of fields with o € K as a primitive element. Let
f € k[z] be the minimal polynomial of « over k. Note that the k-algebra homomorphism

p: klz] = k(o) = K
p(x) = p(a)

0}

e

is surjective and Ker(¢) = {p € k[z]: p(«a)
isomorphism k[z]/(f) — K.
From the exact sequence 0 — (f) ®; F — k[z] ®; F — lz[m)] Rk F — 0, we see that

(f). Thus, we have an induced k-algebra

Kewp =il g po M@, Fla]

(f) (Yo F — (f)

where in the last step we used the isomorphisms k[z] ®; F = F[z] and (f) @, F = (f)F.

Let f = f{* -+ f¢ denote the factorization of f into irreducibles in F[z]. By the Chinese
Remainder Theorem,

€5\

Flx Y Flx
K®kF%%%H

Note that each factor F[z|/(f;*) in the above product is a local ring.

(b) Assume K /k is Galois with Galois group G. Prove that the natural map K @, K — []

gGG
defined by a ® b — (g(a)b) is an isomorphism.

Solution: Let a,b € K, writing a = p(«) for some p € k[z]. From the proof of part (a),
we have isomorphisms

~ Kl ~ Klz]
K®kK—(f) Qp K = 7 (1)

a®@br— p(xr)@b — bp(z).
Note that f(z) =[] geG(x — g(a)) in K [x] Therefore, by the Chinese Remainder Theorem,

”H @—g NHK (2)

geG geG
T(I) — (r(z) mod(ﬂf - g(a)) — (r(g(a))).
Composing the isomorphisms (1) and (2), and noting that 7(g(«)) = g(r(«)), we have
KeyK=]]K

geqG

a®b— (gla)b).




10. Let G be a finite abelian group, w: G’ x G — R/Z a bilinear mapping such that
(i) w(g,g) =0 for all g € G;
(ii) w(z, g) = 0 for all g € G if and only if = is the identity element.

Prove that the order of GG is a square. Give an example of GG of square order for which no such
w exists.

(Hint: Consider a subgroup A of G which is maximal for the property that w(z,y) = 0 for
all z,y in A. You may use the following fact without proof: any finite abelian group X admits
| X| distinct homomorphisms to R/Z.)

Solution: Consider the map
G — Hom(G,R/Z)
x— w(x,—)

Property (ii) says exactly that this map is injective. Since |G| = |Hom(G,R/Z)| (by the
Hint), it follows that this map is surjective.

Consider the inclusion 0 — A — G. Since R/Z is an injective Z-module, the Hom
sequence Hom(G,R/Z) — Hom(A,R/Z) — 0 is exact. That is, the restriction map

Hom(G,R/Z) — Hom(A,R/Z)
o 0|a

is surjective.
Combining these two observations, we see that the composed map

¢: G — Hom(A,R/Z)
x— w(x,—)|a

is surjective. We claim that A = Ker(y).

By definition of A, we clearly have A C Ker(y). Conversely, suppose x € Ker(yp), so
that w(z,a) =0 for all a € A. By (i), we have

0=w+ar+a)=wz)+w(ra)+wax)+waa) =wa,z)

so that w(a,x) = 0 for all a € A. Suppose for the sake of contradiction that = ¢ A. Consider
the group A" = (A, z) generated by A and z. If a + mx,d’ + nx € A’, then

w(a 4+ mz,a+nx) = w(a,a) + mw(z,a) + nw(a,z) + mnw(z,x) = 0.

Thus, every y1,y2 € A’ has w(y1,y2) = 0, which contradicts the maximality of A.

Therefore, we have an isomorphism
G/A = Hom(A,R/Z),
which implies that |G| = |AJ2.
Example: Let G = Z/4Z. If w: G x G — R/Z is a bilinear map satisfying (i), then

w(1,1) = 0. But this implies that w(1,3) = w(1,2) = w(1,1) = w(1,0) = 0, which means
that (ii) cannot hold.




