Algebra - Fall 2009

Daren Cheng Jesse Madnick

Last updated: September 2013

Acknowledgments & Disclaimers

Some of the solutions contained herein are my own, but many are not. I am indebted to Daren Cheng for sharing with me his solutions to several full-length exams. I'd also like to acknowledge Zev Chonoles, Fernando Shao, and my algebra professors Dan Bump and Akshay Venkatesh, all of whom patiently tolerated my many questions.

I am not exactly an algebraist. My writing style tends towards the wordy side, and my preferred proofs are rarely the most elegant ones. Still, I hope to keep these solutions free of any substantial errors. For this reason: if you notice any errors (typographical or logical), *please* let me know so I can fix it! Your speaking up would be a kindness for future students who may be struggling to make sense of an incorrect expression. I can be reached at jmadnick@math.stanford.edu. **1.** Let k be a finite field of size q.

(a) Prove that the number of 2×2 matrices over k satisfying $T^2 = 0$ is q^2 .

Sketch: One can use a method analogous to the solution in (b). Alternatively, a direct elementary counting argument also works (really).

(b) Prove that the number of 3×3 matrices over k satisfying $T^3 = 0$ is q^3 .

Solution: Let T be a 3×3 matrix with $T^3 = 0$. Let $m_T(x) \in \mathbb{F}_q[x]$ denote the minimal polynomial of T. Since $T^3 = 0$, we have $m_T(x) \mid x^3$, so we have three cases.

Case One: $m_T(x) = x$. In this case, we have T = 0, so there is 1 possibility.

Case Two: $m_T(x) = x^2$. Every such matrix T is similar to the Jordan form

$$A = \begin{pmatrix} 0 & 1 \\ & 0 \\ & & 0 \end{pmatrix}$$

Thus, we have to compute the number of matrices that are similar to A.

Consider the action of $\operatorname{GL}_3(\mathbb{F}_q)$ on the set $M_3(\mathbb{F}_q)$ of 3×3 matrices by conjugation. The orbit of A is precisely the set of matrices that are similar to A. By the Orbit-Stabilizer Theorem,

$$|\operatorname{Orbit}(A)| = \frac{|\operatorname{GL}_3(\mathbb{F}_q)|}{|\operatorname{Stab}(A)|}.$$

Note that $|GL_3(\mathbb{F}_q)| = (q^3 - 1)(q^3 - q)(q^3 - q^2)$ and $Stab(A) = \{P \in GL_3(\mathbb{F}_q) \colon PA = AP\}.$ If

$$P = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & j \end{pmatrix} \in \operatorname{GL}_3(\mathbb{F}_q),$$

then the condition PA = AP forces a = e and d = f = g = 0, so that $|\operatorname{Stab}(A)| = q^3(q-1)^2$. Thus, $|\operatorname{Orbit}(A)| = (q^3 - 1)(q+1) = q^4 + q^3 - q - 1$.

Case Three: $m_T(x) = x^3$. Every such matrix T is similar to the Jordan form

$$B = \begin{pmatrix} 0 & 1 \\ & 0 & 1 \\ & & 0 \end{pmatrix}$$

Thus, we have to compute the number of matrices that are similar to B.

If P is as above, then the condition PB = BP forces a = e = j and b = f and d = g = h = 0, so that $|\operatorname{Stab}(B)| = q^2(q-1)$. Thus, $|\operatorname{Orbit}(B)| = q(q^3-1)(q^2-1) = q^6 - q^4 - q^3 + q$.

Conclusion: Thus, the total number of 3×3 matrices T with $T^3 = 0$ is

$$1 + (q^4 + q^3 - q - 1) + (q^6 - q^4 - q^3 + q) = q^6$$

2. (a) Prove that if K is a field of finite degree over \mathbb{Q} and x_1, \ldots, x_n are finitely many elements of K, then the subring $\mathbb{Z}[x_1, \ldots, x_n]$ they generate over \mathbb{Z} is not equal to K. (Hint: Show they all lie in $\mathcal{O}_K[1/a]$ for a suitable nonzero a in \mathcal{O}_K , where \mathcal{O}_K denotes the integral closure of \mathbb{Z} in K.)

Solution: Let K/\mathbb{Q} be a finite extension. For each $x_i \in K$, there exists an integer $a_i \in \mathbb{Z}$ such that $a_i x_i \in \mathcal{O}_K$. Then

$$x_1, \ldots, x_n \in \mathcal{O}_K\left[\frac{1}{a_1}, \ldots, \frac{1}{a_n}\right] = \mathcal{O}_K\left[\frac{1}{a}\right],$$

where $a = \operatorname{lcm}[a_1, \ldots, a_n]$. Thus, $\mathbb{Z}[x_1, \ldots, x_n] \subset \mathcal{O}_K\left[\frac{1}{a}\right]$. Let $p \in \mathbb{Z}$ be a prime number with $\operatorname{gcd}(p, a) = 1$. Then $1/p \in K$ but $1/p \notin \mathcal{O}_K\left[\frac{1}{a}\right]$. Thus, $\mathcal{O}_K\left[\frac{1}{a}\right] \subsetneq K$.

(b) Let \mathfrak{m} be a maximal ideal of $\mathbb{Z}[x_1, \ldots, x_n]$ and $F = \mathbb{Z}[x_1, \ldots, x_n]/\mathfrak{m}$. Use (a) and the Nullstellensatz to show that F cannot have characteristic 0, and then deduce that for $p = \operatorname{char}(F)$ that F is of finite degree over \mathbb{F}_p (so F is actually finite).

Solution: Suppose for the sake of contradiction that F has characteristic 0. On the one hand, note that $F = \mathbb{Z}[\alpha_1, \ldots, \alpha_n]$ for some $\alpha_1, \ldots, \alpha_n \in F$. On the other hand, F is a finitely-generated \mathbb{Z} -algebra that contains \mathbb{Q} , hence is a finitely-generated \mathbb{Q} -algebra. By the Nullstellensatz, F/\mathbb{Q} is a finite extension. These two facts contradict part (a).

Thus, F has characteristic p. Let φ denote the composition $\mathbb{Z} \stackrel{\iota}{\hookrightarrow} \mathbb{Z}[x_1, \ldots, x_n] \twoheadrightarrow F$. Since char(F) = p, we have $(p) = \operatorname{Ker}(\varphi) = \iota^{-1}(\mathfrak{m})$, so $p\mathbb{Z}[x_1, \ldots, x_n] \subset \mathfrak{m}$. Therefore, $\mathbb{Z}[x_1, \ldots, x_n] \twoheadrightarrow F$ descends to a surjective map $\mathbb{F}_p[x_1, \ldots, x_n] \twoheadrightarrow F$, so that F is a finitelygenerated \mathbb{F}_p -algebra.

Since F is a field and a finitely-generated \mathbb{F}_p -algebra, the Nullstellensatz implies that F/\mathbb{F}_p is a finite extension.

3. Let *E* be the splitting field of $f(x) = \frac{x^7-1}{x-1} = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ over \mathbb{Q} . Let ζ be a zero of f(x), i.e. a primitive seventh root of 1.

(a) Show that f(x) is irreducible over \mathbb{Q} . (Hint: Consider f(y+1) and use Eisenstein's criterion.)

Solution: Note that $f(y+1) = \frac{(y+1)^7 - 1}{y} = y^6 + \binom{7}{6}y^5 + \ldots + \binom{7}{1}$. Since we have $7 \mid \binom{7}{k}$ for all $1 \le k \le 6$ and $7^2 \nmid \binom{7}{1}$, Eisenstein's Criterion applies.

(b) Show that the Galois group of E/\mathbb{Q} is cyclic, and find an explicit generator.

Solution: Note that $E = \mathbb{Q}(\zeta)$. Consider the homomorphism

$$\psi \colon (\mathbb{Z}/7\mathbb{Z})^{\times} \to \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$$
$$a \pmod{7} \mapsto \sigma_a \colon [\zeta \mapsto \zeta^a]$$

Note that ψ is injective. Since $|\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})| = [\mathbb{Q}(\zeta):\mathbb{Q}] = \varphi(7) = 6$ and $|(\mathbb{Z}/7\mathbb{Z})^{\times}| = 6$, we see that ψ is an isomorphism. Thus, $\operatorname{Gal}(E/\mathbb{Q}) \cong (\mathbb{Z}/7\mathbb{Z})^{\times} \cong \mathbb{Z}/6\mathbb{Z}$. The automorphism σ_3 (or σ_5) is a generator of $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$.

(c) Let $\beta = \zeta + \zeta^2 + \zeta^4$. Show that the intermediate field $\mathbb{Q}(\beta)$ is actually $\mathbb{Q}(\sqrt{-7})$. (Hint: First show that $[\mathbb{Q}(\beta):\mathbb{Q}] = 2$ by finding a linear dependence over \mathbb{Q} among $\{1, \beta, \beta^2\}$.

Solution: Note that

$$\beta^{2} + \beta + 2 = (\zeta^{2} + \zeta^{4} + \zeta + 2(\zeta^{3} + \zeta^{5} + \zeta^{6})) + (\zeta + \zeta^{2} + \zeta^{4}) + 2$$

= 2(1 + ζ + $\zeta^{2} + \zeta^{3} + \zeta^{4} + \zeta^{5} + \zeta^{6})$
= 0.

Since β is a root of $x^2 + x + 2 = 0$, we see that $\beta = -\frac{1}{2} \pm \frac{\sqrt{-7}}{2}$. Thus, $\mathbb{Q}(\beta) = \mathbb{Q}(\sqrt{-7})$.

(d) Let $\gamma_q = \zeta + \zeta^q$. Find (with proof) a q such that $\mathbb{Q}(\gamma_q)$ is a degree 3 extension of \mathbb{Q} . (Hint: use (b)). Is this extension Galois?

Solution: Consider $\gamma_6 = \zeta + \zeta^6$. Since $\operatorname{Gal}(E/\mathbb{Q})$ is abelian, every intermediate field is Galois over \mathbb{Q} , so $\mathbb{Q}(\gamma_6)/\mathbb{Q}$ is Galois. Let's determine $\operatorname{Gal}(E/\mathbb{Q}(\gamma_6)) \leq \{\sigma_1, \ldots, \sigma_6\}$.

Clearly $\sigma_1, \sigma_6 \in \operatorname{Gal}(E/\mathbb{Q}(\gamma_6))$. Conversely, suppose $\sigma_a \in \operatorname{Gal}(E/\mathbb{Q}(\gamma_6))$. Then $\sigma_a \gamma_6 = \gamma_6$, so $\zeta^a + \zeta^{-a} = \zeta + \zeta^6$. If $a \neq 1, 6$, then this gives a linear dependence among the distinct basis elements $\zeta, \zeta^6, \zeta^a, \zeta^{-a}$, which is impossible. Thus, $\operatorname{Gal}(E/\mathbb{Q}(\gamma_6)) = \{\sigma_1, \sigma_6\}$. Therefore,

$$\operatorname{Gal}(\mathbb{Q}(\gamma_6)/\mathbb{Q}) \cong \frac{\operatorname{Gal}(E/\mathbb{Q})}{\operatorname{Gal}(E/\mathbb{Q}(\gamma_6))} \cong \frac{\mathbb{Z}/6\mathbb{Z}}{\{\sigma_1, \sigma_6\}} \cong \mathbb{Z}/3\mathbb{Z}$$

Hence, $[\mathbb{Q}(\gamma_6):\mathbb{Q}] = |\operatorname{Gal}(\mathbb{Q}(\gamma_6)/\mathbb{Q})| = 3.$

4. Let G be a nontrivial finite group and p be the smallest prime dividing the order of G. Let H be a subgroup of index p. Show that H is normal. (Hint: If H isn't normal, consider the action of G on the conjugates of H.)

Solution: Since $H \leq N_G(H) \leq G$ and |G:H| = p, we have either $N_G(H) = G$ or $N_G(H) = H$. In the first case, H is normal, and we're done.

Suppose, then, for the sake of contradiction, that $N_G(H) = H$. In this case, the number of conjugates of G is equal to $|G: N_G(H)| = |G: H| = p$. Let $T = \{g_1 H g_1^{-1}, \ldots, g_p H g_p^{-1}\}$ denote the set of conjugates of H, where we set g_1 as the identity element.

Consider the action by conjugation of G on the set T. This gives a map

$$\pi \colon G \to \operatorname{Perm}(T) \cong S_p$$
$$g \mapsto [g_i H g_i^{-1} \mapsto g g_i H g_i^{-1} g^{-1}]$$

Note that the stabilizer of an element $gHg^{-1} \in T$ is

$$\operatorname{Stab}(gHg^{-1}) = g\operatorname{Stab}(H) g^{-1} = gN_G(H)g^{-1} = gHg^{-1},$$

so that

$$\operatorname{Ker}(\pi) = \bigcap_{i=1}^{p} \operatorname{Stab}(g_i H g_i^{-1}) = \bigcap_{i=1}^{p} g_i H g_i^{-1} \subset H.$$

Therefore, $|G: \operatorname{Ker}(\pi)| = |G: H| |H: \operatorname{Ker}(\pi)| = p |H: \operatorname{Ker}(\pi)|$. Since we also have $|G: \operatorname{Ker}(\pi)| = |\operatorname{Im}(\pi)| | p!$, it follows that

$$|H: \operatorname{Ker}(\pi)| | (p-1)!$$

Since all prime divisors of (p-1)! are strictly less than p, it follows that any prime divisor of $|H: \operatorname{Ker}(\pi)|$ must be strictly less than p. On the other hand, since $|H: \operatorname{Ker}(\pi)| ||G|$, the minimality of p forces any prime divisor of $|H: \operatorname{Ker}(\pi)|$ to be greater than or equal to p. Thus, $|H: \operatorname{Ker}(\pi)|$ lacks prime divisors, hence is equal to 1. But this implies that $H = \operatorname{Ker}(\pi)$, which is normal in G. Contradiction. 5. Let G be a finite group and $\pi: G \to \operatorname{GL}(V)$ a finite-dimensional complex representation. Let χ be the character of π . Show that the characters of the representations on $V \otimes V$, $\operatorname{Sym}^2(V)$ and $\bigwedge^2(V)$ are $\chi(g)^2$, $(\chi(g)^2 + \chi(g^2))/2$ and $(\chi(g)^2 - \chi(g^2))/2$. (Hint: Express $\chi(g)^2$, $(\chi(g)^2 + \chi(g^2))/2$ and $(\chi(g)^2 - \chi(g^2))/2$ in terms of the eigenvalues of $\pi(g)$.)

Solution: Since $\pi(g)$ is a unitary matrix, we can choose (by the Spectral Theorem) a basis $\{e_1, \ldots, e_n\}$ of V consisting of eigenvectors for $\pi(g)$, say

$$\pi(g)(e_i) = \lambda_i e_i.$$

By definition, $\chi(g) = \operatorname{tr}(\pi(g)) = \sum_{i=1}^{n} \lambda_i$.

Note that $\{e_i \otimes e_j : i, j = 1, ..., n\}$ is a basis for $V \otimes V$. Note also that

$$\pi_{V\otimes V}(g)(e_i\otimes e_j) = \pi(g)(e_i)\otimes \pi(g)(e_j) \ = \lambda_i e_i\otimes \lambda_j e_j \ = \lambda_i\lambda_j(e_i\otimes e_j).$$

Therefore,

$$\chi_{V\otimes V}(g) = \operatorname{tr}(\pi_{V\otimes V}(g)) = \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \lambda_j = \sum_{i=1}^{n} \lambda_i^2 + 2\sum_{i\neq j} \lambda_i \lambda_j = \left(\sum_{i=1}^{n} \lambda_i\right)^2 = \chi(g)^2$$

Note that $\{e_i \otimes e_j + e_j \otimes e_i : i \leq j\}$ is a basis for $\operatorname{Sym}^2(V)$. Note also that $\pi_{\operatorname{Sym}^2(V)} = \pi_{V \otimes V}|_{\operatorname{Sym}^2(V)}$, so that

$$\pi_{\operatorname{Sym}^{2}(V)}(g)(e_{i} \otimes e_{j} + e_{j} \otimes e_{i}) = \pi_{V \otimes V}(g)(e_{i} \otimes e_{j} + e_{j} \otimes e_{i})$$
$$= \lambda_{i}\lambda_{j}(e_{i} \otimes e_{j}) + \lambda_{j}\lambda_{i}(e_{j} \otimes e_{i})$$
$$= \lambda_{i}\lambda_{j}(e_{i} \otimes e_{j} + e_{j} \otimes e_{i}).$$

Therefore,

$$\chi_{\mathrm{Sym}^{2}(V)}(g) = \mathrm{tr}(\pi_{\mathrm{Sym}^{2}(V)}(g)) = \sum_{i \leq j} \lambda_{i}\lambda_{j} = \sum_{i=1}^{n} \lambda_{i}^{2} + \sum_{i < j} \lambda_{i}\lambda_{j}$$
$$= \frac{1}{2} \left[\left(\sum_{i=1}^{n} \lambda_{i} \right)^{2} + \sum_{i=1}^{n} \lambda_{i}^{2} \right]$$
$$= \frac{1}{2} \left[\chi(g)^{2} + \chi(g^{2}) \right],$$

where we have used the fact that $\chi(g^2) = \operatorname{tr}(\pi(g^2)) = \operatorname{tr}(\pi(g)^2) = \sum \lambda_i^2$.

Note that $\{e_i \otimes e_j - e_j \otimes e_i : i < j\}$ is a basis for $\bigwedge^2(V)$. Note also that $\pi_{\bigwedge^2(V)} = \pi_{V \otimes V}|_{\bigwedge^2(V)}$. Thus, by a similar calculation as above, we find

$$\pi_{\bigwedge^2(V)}(g)(e_i\otimes e_j-e_j\otimes e_j)=\lambda_i\lambda_j(e_i\otimes e_j-e_j\otimes e_i),$$

so that

$$\chi_{\bigwedge^2(V)}(g) = \operatorname{tr}(\pi_{\bigwedge^2(V)}(g)) = \sum_{i < j} \lambda_i \lambda_j = \frac{1}{2} \left[\left(\sum_{i=1}^n \lambda_i \right)^2 - \sum_{i=1}^n \lambda_i^2 \right] = \frac{1}{2} \left[\chi(g)^2 - \chi(g^2) \right].$$

6. Let V be a vector space over a field F, and let $B: V \times V \to F$ be a symmetric bilinear form. This means that B is bilinear and B(x, y) = B(y, x). Let q(v) = B(v, v).

(a) Show that if the characteristic of F is not 2, then $B(v,w) = \frac{1}{2}(q(v+w) - q(v) - q(w))$. (This obviously implies that if q = 0, then B = 0.)

Solution: Note that $\begin{aligned} q(v+w) &= B(v+w,v+w) = B(v,v) + B(w,v) + B(v,w) + B(w,w) \\ &= q(v) + 2B(v,w) + q(w), \end{aligned}$ so q(v+w) - q(v) - q(w) = 2B(v,w). Since char $(F) \neq 2$, we may divide by 2 to conclude.

(b) Give an example where the characteristic of F is 2 and q = 0 but $B \neq 0$.

Solution: Take $V = \mathbb{F}_4$. Let $\{v, w\}$ be an \mathbb{F}_2 -basis for \mathbb{F}_4 . Note that $\mathbb{F}_4 = \{0, v, w, z\}$, where z = v + w. Define $B \colon \mathbb{F}_4 \times \mathbb{F}_4 \to \mathbb{F}_2$ via

$$B(av + bw, cv + dw) = ad + bc.$$

It is clear that B is bilinear and symmetric. One can check that B(0,0) = B(v,v) = B(w,w) = B(z,z) = 0, so that q = 0. However, $B \neq 0$ since $B(v,w) = 1 \neq 0$.

(c) Show that if the characteristic of F is not 2 or 3 and if B(u, v, w) is a symmetric trilinear form, and if r(v) = B(v, v, v), then r = 0 implies B = 0.

Solution: Note that

$$\begin{split} r(v+w) &= B(v+w,v+w,v+w) \\ &= B(v,v,v) + B(v,v,w) + B(v,w,v) + B(v,w,w) \\ &+ B(w,v,v) + B(w,v,w) + B(w,w,v) + B(w,w,w) \\ &= r(v) + r(w) + 3B(v,v,w) + 3B(v,w,w), \end{split}$$

so that

$$r(v+w) - r(v) - r(w) = 3(B(v, v, w) + B(v, w, w)).$$

Replacing w with -w gives

$$r(v - w) - r(v) + r(w) = 3(-B(v, v, w) + B(v, w, w))$$

Therefore, r = 0 implies both that B(v, v, w) = -B(v, w, w) and B(v, v, w) = B(v, w, w). Hence,

$$B(v, v, w) = 0 \quad \forall v, w \in V.$$

For $w \in V$, define $b_w(v_1, v_2) := B(v_1, v_2, w)$. Then b_w is a symmetric bilinear form with $q_w = 0$. By part (a), we have $b_w = 0$ for all $w \in V$. This means that B = 0.

7. Let G be a finite group.

(a) Let $\pi: G \to \operatorname{GL}(V)$ be an irreducible complex representation, and let χ be its character. If $g \in G$, show that $|\chi(g)| = \dim(V)$ if and only if there is a scalar $c \in \mathbb{C}$ such that $\pi(g)v = cv$ for all $v \in V$.

Solution:

(\Leftarrow) Suppose there exists $c \in \mathbb{C}$ such that $\pi(g)v = cv$ for all $v \in V$. Then every $g \in G$ has $\pi(g) = c \cdot \operatorname{Id}_V$. Since $\pi(g)$ is a unitary matrix, we have $|\det(\pi(g))| = 1$, so |c| = 1. Therefore,

$$|\chi(g)| = |\operatorname{tr}(\pi(g))| = |\operatorname{tr}(c \cdot \operatorname{Id}_V)| = |c \cdot \dim(V)| = \dim(V).$$

 (\Longrightarrow) Suppose $g \in G$ has $|\chi(g)| = \dim(V)$. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of $\pi(g)$. Note that

$$|\chi(g)| = |\operatorname{tr}(\pi(g))| = \left|\sum_{i=1}^{n} \lambda_i\right| \le \sum_{i=1}^{n} |\lambda_i| = n = \dim(V).$$

By hypothesis, equality holds, so that each $\lambda_i = r_i \lambda_1$ for some $r_i > 0$. Since

$$1 = |\lambda_i| = r_i |\lambda_1| = r_i$$

we see that $\lambda_1 = \cdots = \lambda_n$. Since $\pi(g)$ is diagonalizable (Spectral Theorem), it is similar to the matrix diag $\{\lambda_1, \ldots, \lambda_1\}$. Hence, $\pi(g)v = \lambda_1 v$ for all $v \in V$.

(b) Show that g is in the center Z(G) if and only if $|\chi(g)| = \chi(1)$ for every irreducible character χ of G.

Solution:

 (\Longrightarrow) Suppose $g \in Z(G)$. Let $\pi \colon G \to \operatorname{GL}(V)$ be an irreducible representation of G with character χ . For every $h \in G$, we have

$$\pi(g)\pi(h) = \pi(gh) = \pi(hg) = \pi(g)\pi(h).$$

Thus, Schur's Lemma implies that $\pi(g)$ is a homothety: there exists $c \in \mathbb{C}$ such that $\pi(g)v = cv$ for all $v \in V$. By part (a), it follows that $|\chi(g)| = \dim(V) = \operatorname{tr}(\operatorname{Id}_V) = \chi(1)$.

(\Leftarrow) Let χ_1, \ldots, χ_h denote the irreducible characters of G. Let n_1, \ldots, n_h denote their respective degrees. By the Orthogonality Relations, every $g \in G$ satisfies

$$\frac{1}{|G|} \sum_{i=1}^{h} |\chi_i(g)|^2 = \frac{1}{|\operatorname{Conj}(g)|},$$

where $\operatorname{Conj}(g)$ denotes the conjugacy class of g.

Suppose $g \in G$ is such that each $|\chi_i(g)| = \chi_i(1) = n_i$. Then

$$\frac{1}{|\operatorname{Conj}(g)|} = \frac{1}{|G|} \sum_{i=1}^{h} n_i^2 = 1.$$

Thus, $|\operatorname{Conj}(g)| = 1$, which means that $g \in Z(G)$.

8. Let V be a vector space of dimension $d \ge 1$ over a field k of arbitrary characteristic. Let V^* denote the dual space.

(a) For any $n \ge 1$, prove that there is a unique bilinear pairing $V^{\otimes n} \times (V^*)^{\otimes n} \to k$ satisfying

$$(v_1 \otimes \cdots \otimes v_n, \ell_1 \otimes \cdots \otimes \ell_n) \mapsto \prod_{i=1}^n \ell_i(v_i),$$

and by using bases show that it is a perfect pairing (i.e., identifies $(V^*)^{\otimes n}$ with $(V^{\otimes n})^*$).

Solution: By the universal property of tensor products, the multilinear map

$$V \times \dots \times V \times V^* \times \dots \times V^* \to k$$
$$(v_1, \dots, v_n, \ell_1, \dots, \ell_n) \mapsto \prod \ell_i(v_i)$$

descends to a linear map

$$V \otimes \cdots \otimes V \otimes V^* \otimes \cdots \otimes V^* \to k$$

with $v_1 \otimes \cdots \otimes v_n \otimes \ell_1 \otimes \cdots \otimes \ell_n \mapsto \prod \ell_i(v_i)$

on simple tensors. Again by the universal property, this in turn induces a bilinear map

$$\Phi \colon (V \otimes \cdots \otimes V) \times (V^* \otimes \cdots \otimes V^*) \to k$$

with $(v_1 \otimes \cdots \otimes v_n, \ell_1 \otimes \cdots \otimes \ell_n) \mapsto \prod \ell_i(v_i)$

on ordered pairs of simple tensors. Since this map is specified on generators, it is unique.

We therefore obtain a linear map

$$\varphi \colon (V^*)^{\otimes n} \to (V^{\otimes n})^*$$
$$\eta \mapsto \Phi(\cdot, \eta)$$

We claim that φ is an isomorphism.

Let $\{e_1, \ldots, e_d\}$ be a basis for V, and let $\{\epsilon^1, \ldots, \epsilon^d\}$ denote the dual basis for V^* . Note that $\{e_{i_1} \otimes \cdots \otimes e_{i_n}\}$ and $\{\epsilon^{j_1} \otimes \cdots \otimes \epsilon^{j_n}\}$ are then bases for $V^{\otimes n}$ and $(V^*)^{\otimes n}$, respectively. We then have

$$\varphi(\epsilon^{j_1} \otimes \cdots \otimes \epsilon^{j_n})(e_{i_1} \otimes \cdots \otimes e_{i_n}) = \Phi(e_{i_1} \otimes \cdots \otimes e_{i_n}, \epsilon^{j_1} \otimes \cdots \otimes \epsilon^{j_n}) = \prod_{k=1}^n \epsilon^{j_k}(e_{i_k}) = \prod_{k=1}^n \delta^{j_k}_{i_k},$$

where δ_i^j is the Kronecker delta. On the other hand, if $\{\alpha^{j_1\cdots j_n}\}$ denotes the basis of $(V^{\otimes n})^*$ that is dual to $\{e_{i_1}\otimes\cdots\otimes e_{i_n}\}$, we have

$$\alpha^{j_1\cdots j_n}(e_{i_1}\otimes\cdots\otimes e_{i_n})=\prod_{k=1}^n\delta_{i_k}^{j_k}$$

Therefore: $\varphi(\epsilon^{j_1} \otimes \cdots \otimes \epsilon^{j_n}) = \alpha^{j_1 \cdots j_n}$.

Since φ maps a basis of $(V^*)^{\otimes n}$ to a basis of $(V^{\otimes n})^*$, it is an isomorphism.

8. Let V be a vector space of dimension $d \ge 1$ over a field k of arbitrary characteristic. Let V^* denote the dual space.

(b) For any $1 \le n \le d$, do similarly with $\bigwedge^n(V)$ and $\bigwedge^n(V^*)$ using the requirement

 $(v_1 \wedge \cdots \wedge v_n, \ell_1 \wedge \cdots \wedge \ell_n) \mapsto \det(\ell_i(v_j)).$

Solution: For $v = (v_1, \ldots, v_n) \in V^n$, define a map

$$f_v \colon V^* \times \dots \times V^* \to k$$
$$(\ell_1, \dots, \ell_n) \mapsto \det(\ell_i(v_j))$$

Since f_v is multilinear and alternating, it descends to a linear map

$$F_v \colon \bigwedge^n V^* \to k$$

with $F_v(\ell_1 \wedge \cdots \wedge \ell_n) = f_v(\ell_1, \ldots, \ell_n)$ on simple wedge products. For $\theta \in \bigwedge^n V^*$, define a map

$$g^{\theta} \colon V \times \dots \times V \to k$$
$$g^{\theta}(v) = F_{v}(\theta)$$

Since g^{θ} is multilinear and alternating, it descends to a linear map

$$G^{\theta} \colon \bigwedge\nolimits^n V \to k$$

with $G^{\theta}(v_1 \wedge \cdots \wedge v_n) = g^{\theta}(v_1, \ldots, v_n)$ on simple wedge products. Finally, define the bilinear map

$$H: \bigwedge^{n} V \times \bigwedge^{n} V^{*} \to k$$
$$H(\eta, \theta) = G^{\theta}(\eta).$$

Note that if $\eta = v_1 \wedge \cdots \wedge v_n$ and $\theta = \ell_1 \wedge \cdots \wedge \ell_n$ are simple wedge products, then

$$H(\eta, \theta) = G^{\theta}(\eta) = g^{\theta}(v) = F_v(\theta) = f_v(\ell_1, \dots, \ell_n) = \det(\ell_i(v_j)),$$

where $v = (v_1, ..., v_n)$.

9. Let K/k be a finite extension of fields with $\alpha \in K$ as a primitive element over k. Let $f \in k[x]$ be the minimal polynomial of α over k.

(a) Explain why $K \cong k[x]/(f)$ as k-algebras, and use this to relate the local factor rings of $K \otimes_k F$ to the irreducible factors of f in F[x], with F/k a field extension.

Solution: Let K/k be a finite extension of fields with $\alpha \in K$ as a primitive element. Let $f \in k[x]$ be the minimal polynomial of α over k. Note that the k-algebra homomorphism

$$\varphi \colon k[x] \to k(\alpha) = K$$
$$p(x) \mapsto p(\alpha)$$

is surjective and $\operatorname{Ker}(\varphi) = \{p \in k[x] : p(\alpha) = 0\} = (f)$. Thus, we have an induced k-algebra isomorphism $k[x]/(f) \to K$.

From the exact sequence $0 \to (f) \otimes_k F \to k[x] \otimes_k F \to \frac{k[x]}{(f)} \otimes_k F \to 0$, we see that

$$K \otimes_k F \cong \frac{k[x]}{(f)} \otimes_k F \cong \frac{k[x] \otimes_k F}{(f) \otimes_k F} \cong \frac{F[x]}{(f)}$$

where in the last step we used the isomorphisms $k[x] \otimes_k F \cong F[x]$ and $(f) \otimes_k F \cong (f)F$.

Let $f = f_1^{e_1} \cdots f_r^{e_r}$ denote the factorization of f into irreducibles in F[x]. By the Chinese Remainder Theorem,

$$K \otimes_k F \cong \frac{F[x]}{(f)} \cong \prod_{i=1}^r \frac{F[x]}{(f_i^{e_i})}$$

Note that each factor $F[x]/(f_i^{e_i})$ in the above product is a local ring.

(b) Assume K/k is Galois with Galois group G. Prove that the natural map $K \otimes_k K \to \prod_{g \in G} K$ defined by $a \otimes b \mapsto (g(a)b)$ is an isomorphism.

Solution: Let $a, b \in K$, writing $a = p(\alpha)$ for some $p \in k[x]$. From the proof of part (a), we have isomorphisms

$$K \otimes_k K \cong \frac{k[x]}{(f)} \otimes_k K \cong \frac{K[x]}{(f)}$$

$$a \otimes b \mapsto \overline{p(x)} \otimes b \mapsto b \overline{p(x)}.$$
(1)

Note that $f(x) = \prod_{g \in G} (x - g(\alpha))$ in K[x]. Therefore, by the Chinese Remainder Theorem,

$$\frac{K[x]}{(f)} \cong \prod_{g \in G} \frac{K[x]}{(x - g(\alpha))} \cong \prod_{g \in G} K$$

$$r(x) \mapsto (r(x) \mod(x - g(\alpha))) \mapsto (r(g(\alpha))).$$
(2)

Composing the isomorphisms (1) and (2), and noting that $r(g(\alpha)) = g(r(\alpha))$, we have

$$K \otimes_k K \cong \prod_{g \in G} K$$
$$a \otimes b \mapsto (g(a)b).$$

10. Let G be a finite abelian group, $\omega: G \times G \to \mathbb{R}/\mathbb{Z}$ a bilinear mapping such that

(i)
$$\omega(g,g) = 0$$
 for all $g \in G$;

(ii) $\omega(x,g) = 0$ for all $g \in G$ if and only if x is the identity element.

Prove that the order of G is a square. Give an example of G of square order for which no such ω exists.

(Hint: Consider a subgroup A of G which is maximal for the property that $\omega(x, y) = 0$ for all x, y in A. You may use the following fact without proof: any finite abelian group X admits |X| distinct homomorphisms to \mathbb{R}/\mathbb{Z} .)

Solution: Consider the map

 $G \to \operatorname{Hom}(G, \mathbb{R}/\mathbb{Z})$ $x \mapsto \omega(x, -)$

Property (ii) says exactly that this map is injective. Since $|G| = |\text{Hom}(G, \mathbb{R}/\mathbb{Z})|$ (by the Hint), it follows that this map is surjective.

Consider the inclusion $0 \to A \hookrightarrow G$. Since \mathbb{R}/\mathbb{Z} is an injective \mathbb{Z} -module, the Hom sequence $\operatorname{Hom}(G, \mathbb{R}/\mathbb{Z}) \to \operatorname{Hom}(A, \mathbb{R}/\mathbb{Z}) \to 0$ is exact. That is, the restriction map

$$\operatorname{Hom}(G, \mathbb{R}/\mathbb{Z}) \to \operatorname{Hom}(A, \mathbb{R}/\mathbb{Z})$$
$$\sigma \mapsto \sigma|_A$$

is surjective.

Combining these two observations, we see that the composed map

$$\varphi \colon G \to \operatorname{Hom}(A, \mathbb{R}/\mathbb{Z})$$
$$x \mapsto \omega(x, -)|_A$$

is surjective. We claim that $A = \text{Ker}(\varphi)$.

By definition of A, we clearly have $A \subset \text{Ker}(\varphi)$. Conversely, suppose $x \in \text{Ker}(\varphi)$, so that $\omega(x, a) = 0$ for all $a \in A$. By (i), we have

$$0 = \omega(x + a, x + a) = \omega(x, x) + \omega(x, a) + \omega(a, x) + \omega(a, a) = \omega(a, x)$$

so that $\omega(a, x) = 0$ for all $a \in A$. Suppose for the sake of contradiction that $x \notin A$. Consider the group $A' = \langle A, x \rangle$ generated by A and x. If $a + mx, a' + nx \in A'$, then

$$\omega(a + mx, a + nx) = \omega(a, a) + m\,\omega(x, a) + n\,\omega(a, x) + mn\,\omega(x, x) = 0.$$

Thus, every $y_1, y_2 \in A'$ has $\omega(y_1, y_2) = 0$, which contradicts the maximality of A.

Therefore, we have an isomorphism

$$G/A \cong \operatorname{Hom}(A, \mathbb{R}/\mathbb{Z}),$$

which implies that $|G| = |A|^2$.

Example: Let $G = \mathbb{Z}/4\mathbb{Z}$. If $\omega: G \times G \to \mathbb{R}/\mathbb{Z}$ is a bilinear map satisfying (i), then $\omega(1,1) = 0$. But this implies that $\omega(1,3) = \omega(1,2) = \omega(1,1) = \omega(1,0) = 0$, which means that (ii) cannot hold.