Preliminaries: Notation

Notation: Let's set some standard notation. We let \mathbb{Z} be the set of integers: $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$. We let \mathbb{Q} be the set of rational numbers: $\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z} \text{ and } q \neq 0 \right\}$. We let \mathbb{R} be the set of real numbers.

Notation:

The symbol \in means "is an element of." The symbol \notin means "is not an element of." In the context of a set, the symbol | means "such that."

Example 1: Let $A = \{2, 3, Drake\}$.

Notice that $2 \in A$ and Drake $\in A$, but $4 \notin A$.

Example 2:

(a) $\{x \in \mathbb{Z} \mid x^2 = 25\} = \{5, -5\}$ (b) $\{x \in \mathbb{Z} \mid x^2 = -1\} = \emptyset$

Example 3: Intervals

Open intervals: $(a, b) = \{x \in \mathbb{R} \mid a < x < b\}$ Closed intervals: $[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}$ Half-Open: $[a, b) = \{x \in \mathbb{R} \mid a \le x < b\}$ Half-Open: $(a, b] = \{x \in \mathbb{R} \mid a < x \le b\}$

Note: We use parentheses for $-\infty$ or $+\infty$. i.e.: We write $(-\infty, 5]$, but never $[-\infty, 5]$.

Notation:

The symbol \implies means "implies." ($A \implies B$ means "If A, then B.") The symbol \iff means "if and only if."

Example: Consider:

$$x^2 = 9 = x = \pm 3.$$

This statement is false! However, the following statement is true:

$$x^2 = 9 \implies x = \pm 3.$$

Preliminaries: Functions

A *function* is an input-output rule, with the requirement that: For every input, there exists exactly one output.

- Domain of a function: The set of inputs.
- Range of a function: The set of resulting outputs.
- **N.B.:** Some functions are described by formulas, but not all. Again: Not all functions are formulas.

Example: Consider the "age" function: i.e., the function which inputs a person and outputs their age in years. For example:

$$Age(Drake) = 30$$
 $Age(Yeezy) = 40.$

Exercise 1: Find the domains of the following functions:

 $f(x) = \sqrt[4]{2x+6},$ $g(x) = \frac{\sin x}{x^2 - x},$ $h(x) = \log_2(x-5).$

Exercise 2: Sketch the graph of the following function:

$$f(x) = \frac{x^3}{x}$$

Exercise 3: Sketch the graph of the following function:

$$g(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Z} \\ 0 & \text{if } x \notin \mathbb{Z}. \end{cases}$$

Such a function is called a *piecewise function*.

Example: The absolute value function is a piecewise function:

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0. \end{cases}$$

Transformations of Functions

1. Shifts

Vertical Shifts: y = f(x) + k (shift k units up) Horizontal Shifts: y = f(x - k) (shift k units right)

2. Dilations

Vertical Dilation: y = cf(x) (dilate in y-direction by factor of c) Horizontal Dilation: $y = f(\frac{x}{c})$ (dilate in x-direction by factor of c)

If 0 < c < 1, then the dilation is a "shrink." If c > 1, then the dilation is a "stretch."

3. Reflections

Reflect in x-axis: y = -f(x)Reflect in y-axis: y = f(-x).