
Preliminaries: Sets

Notation: Let’s set some standard notation.
We let Z be the set of integers: Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
We let Q be the set of rational numbers: Q =

{
p
q | p, q ∈ Z and q 6= 0

}
.

We let R be the set of real numbers.

More Notation:
The symbol ∈ means “is an element of.”
The symbol /∈ means “is not an element of.”
The symbol ⊂ means “is a subset of.”
In the context of a set, the symbol | means “such that.”

Example 1: Let A = {2, 3,Drake}.
Notice that 2 ∈ A and Drake ∈ A, but 4 /∈ A.
Notice that {2,Drake} ⊂ A.

Example 2: Evaluate the following statements as True or False.
(a) The statement

√
2 ∈ R is: True

(b) The statement
√

2 ∈ Z is: False
(c) The statement Yeezy ∈ Z is: False
(d) The statement Z ⊂ R is: True.

Example 3:
(a)
{
x ∈ Z | x2 = 25

}
= {5,−5}

(b)
{
x ∈ Z | x2 = −1

}
= Ø

(c)
{
x2 + 3 | x ∈ {−1, 1, 2}

}
= {4, 7}



Preliminaries: Functions

Informally speaking, a function is an input-output rule, with the require-
ment that: For every input, there exists exactly one output.
◦ Domain of a function: The set of inputs.
◦ Codomain of a function: The set of possible outputs.
◦ Range of a function: The set of actual outputs.

Note: The range is a subset of the codomain.

Notation: We write f : A → B to indicate that A is the domain of f , and
B is the codomain of f .

Example 1: Consider the following “birth year” function:

B : {Jesse, T-Swizzle} → Z
B(person) = year that “person” was born.

◦ The domain is: {Jesse, T-Swizzle}
◦ The codomain is: Z
◦ The range is: {1990, 1989}

Example 2: Consider the function

h : Z→ R
h(x) = x2.

◦ The domain is: Z
◦ The codomain is: R
◦ The range is: {0, 1, 4, 9, 16, . . .}

Example 3: The function

F : R→ R
F (x) = ln(x)

is not well-defined! Functions need to be able to have exactly one output for
every element in the domain. But here, F (x) = ln(x) is undefined for x ≤ 0.

However, the function

G : (0,∞)→ R
G(x) = ln(x)

is well-defined.



Vectors

Def: A scalar is an element of R. i.e.: A scalar is literally just a real number.
A vector is an element of Rn.

Rn =


x1

...
xn

 ∣∣∣∣∣∣ x1, . . . , xn ∈ R

.
i.e.: A vector is an ordered n-tuple of real numbers.

Operations:
◦ Addition (of vectors with vectors)
◦ Subtraction (of vectors with vectors)
◦ Scaling (of a scalar with a vector)

Remarks:
◦ Each of these three operations has a geometric interpretation.
◦ It does not make sense (for example) to add a scalar to a vector. Vectors

can be added/subtracted to other vectors.

Def: A linear combination of vectors v1, . . . ,vk ∈ Rn is any vector of the
form

c1v1 + · · ·+ ckvk,

where c1, . . . , ck ∈ R are scalars.

Example: Let a,b, c ∈ R17 be three vectors in R17. Here are some linear
combinations of a,b, c:

2a + b + 3c, 0 = 0a + 0b + 0c, a− b.

Span & Linear Independence

The basic notions in linear algebra arise from the twin concepts of “span”
and “linear independence.” Today, we’ll just define span.

Def: The span of a set of vectors {v1, . . . ,vk} is the set of all linear combi-
nations of v1, . . . ,vk. That is:

span(v1, . . . ,vk) = {c1v1 + · · ·+ ckvk | c1, . . . , ck ∈ R}.



Span

Rough Idea: The span of a set of vectors {v1, . . . ,vk} is the “smallest”
“subspace” of Rn containing v1, . . . ,vk.

This is not very precise as stated (e.g., what is meant by “subspace”?).
Here is the precise definition:

Def: The span of a set of vectors {v1, . . . ,vk} is the set of all linear combi-
nations of v1, . . . ,vk. That is:

span(v1, . . . ,vk) = {c1v1 + · · ·+ ckvk | c1, . . . , ck ∈ R}.

Linear Independence

The definition in the textbook is:

Def: Let {v1, . . . ,vk} be a set of at least two vectors.
The set {v1, . . . ,vk} is linearly independent if none of the vectors in

the set is a linear combination of the others.
The set {v1, . . . ,vk} is linearly dependent if at least one of the vectors

in the set is a linear combination of the others.

Def: Let {v1} be a set of just one vector.
It is linearly independent if v1 6= 0. It is linearly dependent if v1 = 0.

There is also an equivalent definition, which is somewhat more standard:

Def: Let {v1, . . . ,vk} be a set of (any number of) vectors.
The set {v1, . . . ,vk} is linearly independent if the only linear com-

bination c1v1 + · · · + ckvk = 0 equal to the zero vector is the one with
c1 = · · · = ck = 0.

The set {v1, . . . ,vk} is linearly dependent if there is a linear combina-
tion c1v1 + · · ·+ ckvk = 0 equal to the zero vector, where not all the scalars
c1, . . . , ck are zero.

Point: Linear independence of {v1, . . . ,vk} means:

If c1v1 + · · ·+ ckvk = 0, then c1 = · · · = ck = 0.

This way of phrasing linear independence is very useful for proofs.



Linear Independence: Intuition

Why is “linear independence” a concept one would want to define? What
does it mean intuitively? The following examples may help explain.

Example 1: The set span(v) is one of the following:
(i) A line through 0.
(ii) The origin itself.

Further: The first case (i) holds if and only if {v} is linearly independent.
Otherwise, the other case holds.

Example 2: The set span(v1,v2) is one of the following:
(i) A plane through 0.
(ii) A line through 0.
(iii) The origin itself.

Further: The first case (i) holds if and only if {v1,v2} is linearly independent.
Otherwise, one of the other cases holds.

Example 3: The set span(v1,v2,v3) is one of the following:
(i) A “3-dimensional space” through 0.
(ii) A plane through 0.
(iii) A line through 0.
(iv) The origin itself.

Further: The first case (i) holds if and only if {v1,v2,v3} is linearly indepen-
dent. Otherwise, one of the other cases holds.

Q: Do you see the pattern here? What are the possibilities for the span of
four vectors {v1,v2,v3,v4}? Seven vectors {v1, . . . ,v7}?

Q: Looking at Example 3, what happens if the vectors v1,v2,v3 are in R2?
Can possibility (i) occur in that case? What does this tell you about sets of
three vectors in R2?



Lines and Planes: Parametric Descriptions

Parametric form of a Line in Rn: The parametric form of a line in Rn

passing through p with direction v is

L = {p + tv | t ∈ R}

=


p1

...
pn

+ t

v1
...
vn

 ∣∣∣∣∣∣ t ∈ R


We call t the parameter.

Equivalently: 
x1 = p1 + tv1
...

xn = pn + tvn.

Parametric form of a Plane in Rn: The parametric form of a plane in Rn

passing through p and parallel to span(v,w) is

P = {p + sv + tw | s, t ∈ R}

=


p1

...
pn

+ s

v1
...
vn

+ t

w1
...
wn

 ∣∣∣∣∣∣ s, t ∈ R


We call s and t the parameters.

Q: Do you see the pattern here? How might one describe the parametric
form of a 3-dim space in Rn passing through p and parallel to span(u,v,w)?

Level Set form of a Plane in R3: The equation for a plane in R3 passing
through x0 = (x0, y0, z0) with normal vector n = (n1, n2, n3) is:

n · (x− x0) = 0. (∗)

(Q: Why does this describe a plane?)
In other words:

n1(x− x0) + n2(y − y0) + n3(z − z0) = 0.

(Q: How is this the same as the formula (∗)?)



Dot Products: Algebra

Def: The dot product of two vectors v,w ∈ Rn is

v ·w =

v1
...
vn

 ·
w1

...
wn

 = v1w1 + · · ·+ vnwn.

The length (or norm) of a vector v ∈ Rn is:

‖v‖ =
√
v2

1 + · · ·+ v2
n.

(Q: Why is this a reasonable definition of length?)

Observation: Notice that
v · v = ‖v‖2.

Inequalities: For any non-zero vectors v,w ∈ Rn, we have:

‖v + w‖ ≤ ‖v‖+ ‖w‖ (Triangle Inequality)

|v ·w| ≤ ‖v‖‖w‖. (Cauchy-Schwarz Inequality)

In both, equality holds if and only if w = cv for some non-zero scalar c.

Dot Products: Geometry

Prop: Let v,w ∈ Rn be non-zero vectors. Then:

v ·w = ‖v‖‖w‖ cos θ,

where θ is the angle between v and w.
Therefore, v and w are perpendicular if and only if v ·w = 0.

Def: We say that two vectors v,w are orthogonal if v ·w = 0.

Pythagorean Theorem: If v and w are orthogonal, then

‖v + w‖2 = ‖v‖2 + ‖w‖2.

(Q: How exactly is this the “Pythagorean Theorem” about right triangles?)



Cross Products (Optional but Useful)

Def: The cross product of two vectors v,w ∈ R3 is

v ×w =

v1

v2

v3

×
w1

w2

w3

 =

v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1

.
Note: Dot products make sense in Rn for any dimension n.

But: Cross products only make sense in R3.

Prop: Let v,w ∈ R3. Then:

v · (v ×w) = 0

w · (v ×w) = 0.

In other words: v ×w is orthogonal to both v and w.

Prop: Let v,w ∈ R3 be non-zero vectors. Then

‖v ×w‖ = ‖v‖‖w‖ sin θ,

where θ is the angle between v and w.

Prop: Let v,w ∈ R3. Then:

Area(Parallelogram formed by v and w) = ‖v ×w‖.



Linear Systems as Matrix-Vector Products

A linear system of m equations in n unknowns is of the form:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2 (∗)
...

am1x1 + am2x2 + · · ·+ amnxn = bm.

We can write a linear system as a single vector equation:
a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
...

am1x1 + am2x2 + · · ·+ amnxn

 =


b1
b2
...
bm

.
The coefficient matrix of the system is the m× n matrix

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn


The matrix-vector product of the m×n matrix A with the vector x ∈ Rn

is the vector Ax ∈ Rm given by:

Ax =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn



x1

x2
...
xn

 =


a11x1 + · · ·+ a1nxn

a21x1 + · · ·+ a2nxn
...

am1x1 + · · ·+ amnxn

.
We can now write the system (∗) as:

Ax = b.

Homogeneous vs Inhomogeneous

Def: A linear system of the form Ax = 0 is called homogeneous.
A linear system of the form Ax = b with b 6= 0 is called inhomogeneous.

Fact: Every homogeneous system Ax = 0 has at least one solution (why?).
∴ For homogeneous systems: only cases (B) and (C) of Prop 6.2 can occur.



Reduced Row Echelon Form; Solutions of Systems

Row Operations:
(1) Multiply/divide a row by a non-zero scalar.
(2) Add/subtract a scalar multiple of one row from another row.
(3) Exchange two rows.

Facts:
(a) Row operations do not change the set of solutions of a linear system.
(b) Using row operations, every matrix can be put in reduced row ech-

elon form.

Def: A matrix is in reduced row echelon form if:
(1) The first non-zero entry in each row is 1. (These 1’s are called pivots.)
(2) Each pivot is further to the right than the pivot of the row above it.
(3) In the column of a pivot, all other entries are zero.
(4) Rows containing all zeros are at the very bottom.

Def: Given a linear system of equations (whose augmented matrix is) in
reduced row echelon form.

The variables whose corresponding column contains a pivot are called
pivot variables. The other variables are called free variables.

Note: For an m× n matrix (i.e., m rows and n columns), we have:

(# of pivot variables) + (# of free variables) = n.

This basic fact is surprisingly important!

Prop 6.2: For a linear system of equations (whose augmented matrix is) in
reduced row echelon form, there are three possibilities:

(A) No solutions. One of the equations is 0 = 1.
(B) Exactly one solution. There’s no 0 = 1, and no free variables.
(C) Infinitely many solutions. There’s no 0 = 1, but there’s at least

one free variable.

Geometrically: The solution set looks like one of:
(A) The empty set. (i.e.: The set {} with nothing inside it.)
(B) A single vector.
(C) A line, or a plane, or a 3-dimensional space, or... etc.



Null Space

Def: Let A be an m× n matrix, so A : Rn → Rm.
The null space of A is:

N(A) = {x ∈ Rn | Ax = 0}.

So: N(A) is the set of solutions to the linear system Ax = 0.

Fact: Either Ax = b has no solutions, or at least one solution (logic!).
If Ax = b has at least one solution, then the solution set of Ax = b is a

translation of N(A). Therefore, in this case:
◦ Ax = 0 has exactly one solution ⇐⇒ Ax = b has exactly one solution.
◦ Ax = 0 has infinitely many solutions ⇐⇒ Ax = b has infinitely many

solutions.
? Careful: This fact assumes Ax = b has at least one solution. If Ax = b

has no solutions, then we cannot draw these conclusions!

Column Space

There are two equivalent definitions of the column space.

Def 1: Let A be an m× n matrix. Let A have columns [v1 · · ·vn].
The column space of A is

C(A) = span(v1, . . . ,vn).

So: the column space is the span of the columns of A.

Def 2: Let A be an m× n matrix, so A : Rn → Rm.
The column space of A is

C(A) = {Ax | x ∈ Rn}.

So: the column space is just the range of A. (i.e., the set of all actual outputs.)

Therefore: The linear system Ax = b has a solution ⇐⇒ b ∈ C(A).

Important:
◦ N(A) is a subspace of the domain of A.
◦ C(A) is a subspace of the codomain of A.



Two Crucial Facts

Fact 1 (Prop 8.3): Let A be an m×n matrix. The following are equivalent:
(i) N(A) = {0}.
(ii) The columns of A are linearly independent.
(iii) rref(A) has a pivot in each column.

Further: If any of these hold, then n ≤ m.

Fact 2 (Prop 9.2): Let A be an m×n matrix. The following are equivalent:
(i) C(A) = Rm.
(ii) The columns of A span Rm.
(iii) rref(A) has a pivot in each row.

Further: If any of these hold, then n ≥ m.

Subspaces

Def: A (linear) subspace of Rn is a subset V ⊂ Rn such that:
(1) 0 ∈ V.
(2) If v,w ∈ V , then v + w ∈ V.
(3) If v ∈ V , then cv ∈ V for all scalars c ∈ R.

N.B.: For a subset V ⊂ Rn to be a (linear) subspace, all three properties
must hold. If any one fails, then the subset V is not a (linear) subspace!

Fact: For any m× n matrix A:
(a) N(A) is a subspace of Rn.
(b) C(A) is a subspace of Rm.

So, the set of solutions to Ax = 0 is a linear subspace. But what about the
set of solutions to Ax = b? Assuming there are solutions to Ax = b, then
the set of solutions is an affine subspace.

Def: An affine subspace of Rn is a translation of a (linear) subspace.

Important: In this class, when we say “subspace,” we mean linear subspace.
This is more specific than the broader concept of “affine subspace.”



Solutions of Linear Systems (again)

For a linear system Ax = b, there are three possibilities:

No solutions There is a 0 = 1 equation b /∈ C(A)

Exactly one solution No 0 = 1 equation, and b ∈ C(A) and
No free variables N(A) = {0}

Infinitely many solutions No 0 = 1 equation, and b ∈ C(A) and
At least one free variable N(A) 6= {0}

Basis & Dimension

Def: A (linear) subspace of Rn is a subset V ⊂ Rn such that:
(i) 0 ∈ V.
(ii) If v,w ∈ V , then v + w ∈ V.
(iii) If v ∈ V , then cv ∈ V for all scalars c ∈ R.

Def: A basis for a subspace V ⊂ Rn is a set of vectors {v1, . . . ,vk} such
that:

(1) V = span(v1, . . . ,vk).
(2) {v1, . . . ,vk} is linearly independent.

◦ Condition (1) ensures that every vector v in the subspace V can be
written as a linear combination of the basis elements: v = x1v1 + · · ·+ xkvk.
◦ Condition (2) ensures that these coefficients are unique – that is, for a

given vector v, there is only one possible choice of x1, . . . , xk.

Def: The dimension of a subspace V ⊂ Rn is the number of elements in
any basis for V .

But what if one basis for V has (say) 5 elements, but another basis for
V had 7 elements? Then how could we make sense of the dimension of V ?
Fortunately, that can never happen, because:

Fact: For a given subspace, every basis has the same number of elements.

Rank-Nullity Theorem: Let A be an m×n matrix, so A : Rn → Rm. Then

dim(C(A)) + dim(N(A)) = n.

This is fantastic! (We call dim(C(A)) the rank, and dim(N(A)) the nullity.)



Finding Bases for Null Spaces & Column Spaces

Given a matrix A. How can we find a basis for the null space N(A)? How
can we find a basis for the column space C(A)?

Basis of N(A): Solve Ax = 0 for the pivot variables in terms of the free
variables. This will give a basis for N(A).

Basis of C(A): The pivot columns of rref(A) form a basis for C(rref(A)).
The corresponding columns of A form a basis for C(A).

Careful: For every matrix A, we have N(rref(A)) = N(A).
However, the column spaces C(rref(A)) and C(A) are usually different.

Rank-Nullity Theorem (revisited)

Fact: Let A be an m× n matrix. Then:

(# of free variables) = dim(N(A)).

(# of pivot variables) = dim(C(A)).

So: The rank-nullity theorem

dim(C(A)) + dim(N(A)) = n

is exactly the same as the statement

(# of pivot variables) + (# of free variables) = n.

Dimension (revisited): Linear Independence & Span

Fact: Let V ⊂ Rn be a k-dim subspace. Let S be a set of vectors in V .
(a) If S is linearly independent, then S has at most k elements.
(b) If S spans V , then S has at least k elements.
(c) If S is a basis of V , then S has exactly k elements.

Moral: We can think of a basis for a subspace V ⊂ Rn as a set of vectors
S = {v1, . . . ,vk} in V which is...

(1) A lin-indep set in V having the maximum possible number of vectors.
(2) A spanning set of V having the minimum possible number of vectors.
(3) Linearly independent and spans V . (This is the definition of “basis.”)



Linear Transformations

The two basic vector operations are addition and scaling. From this perspec-
tive, the nicest functions are those which “preserve” these operations:

Def: A linear transformation is a function T : Rn → Rm which satisfies:
(1) T (x + y) = T (x) + T (y) for all x,y ∈ Rn

(2) T (cx) = cT (x) for all x ∈ Rn and c ∈ R.

Fact: If T : Rn → Rm is a linear transformation, then T (0) = 0.

We’ve already met examples of linear transformations. Namely: if A is
any m × n matrix, then the function T : Rn → Rm which is matrix-vector
multiplication

T (x) = Ax

is a linear transformation.

(Wait: I thought matrices were functions? Technically, no. Matrices are lit-
erally just arrays of numbers. However, matrices define functions by matrix-
vector multiplication, and such functions are always linear transformations.)

Question: Are these all the linear transformations there are? That is, does
every linear transformation come from matrix-vector multiplication? Yes:

Prop 13.2: Let T : Rn → Rm be a linear transformation. Then the function
T is just matrix-vector multiplication: T (x) = Ax for some matrix A.

In fact, the m× n matrix A is

A =

T (e1) · · · T (en)

.
Terminology: For linear transformations T : Rn → Rm, we use the word
“kernel” to mean “nullspace.” We also say “image of T” to mean “range of
T .” So, for a linear transformation T : Rn → Rm:

ker(T ) = {x ∈ Rn | T (x) = 0} = T−1({0})
im(T ) = {T (x) | x ∈ Rn} = T (Rn).


