Curves in \mathbb{R}^2 : Graphs vs Level Sets

Graphs $(y = f(x))$: The graph of $f : \mathbb{R} \to \mathbb{R}$ is

$$
\{(x,y)\in\mathbb{R}^2\mid y=f(x)\}.
$$

Example: When we say "the curve $y = x^2$," we really mean: "The graph of the function $f(x) = x^2$." That is, we mean the set $\{(x, y) \in \mathbb{R}^2 \mid y = x^2\}.$

Level Sets $(F(x, y) = c)$: The **level set** of $F: \mathbb{R}^2 \to \mathbb{R}$ at height c is

$$
\{(x,y)\in\mathbb{R}^2\mid F(x,y)=c\}.
$$

Example: When we say "the curve $x^2 + y^2 = 1$," we really mean: "The level set of the function $F(x, y) = x^2 + y^2$ at height 1." That is, we mean the set $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$

Note: Every graph is a level set (why?). But not every level set is a graph.

Graphs must pass the vertical line test. (Level sets may or may not.)

Surfaces in \mathbb{R}^3 : Graphs vs Level Sets

Graphs $(z = f(x, y))$: The graph of $f: \mathbb{R}^2 \to \mathbb{R}$ is

$$
\{(x, y, z) \in \mathbb{R}^3 \mid z = f(x, y)\}.
$$

Example: When we say "the surface $z = x^2 + y^2$," we really mean: "The graph of the function $f(x,y) = x^2 + y^2$." That is, we mean the set $\{(x,y,z) \in \mathbb{R}^3 \mid z = x^2 + y^2\}$.

Level Sets $(F(x, y, z) = c)$: The **level set** of $F: \mathbb{R}^3 \to \mathbb{R}$ at height c is

$$
\{(x, y, z) \in \mathbb{R}^3 \mid F(x, y, z) = c\}.
$$

Example: When we say "the surface $x^2 + y^2 + z^2 = 1$," we really mean: "The level set of the function $F(x, y, z) = x^2 + y^2 + z^2$ at height 1." That is, $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}.$

Again: Every graph is a level set (why?). But not every level set is a graph.

Graphs must pass the vertical line test. (Level sets may or may not.)

Q: Do you see the patterns here? For example, suppose $G: \mathbb{R}^7 \to \mathbb{R}$.

 \circ What does the graph of G look like? (A: 7-dimensional object in \mathbb{R}^8 . That is, $\{(x_1, \ldots, x_7, x_8) \in \mathbb{R}^8 \mid x_8 = G(x_1, \ldots, x_7)\}.$

 \circ What do the level sets of G look like? (A: They are (generically) 6-dim objects in \mathbb{R}^7 . That is, $\{(x_1, ..., x_7) \in \mathbb{R}^7 \mid G(x_1, ..., x_7) = c\}$.

Curves in \mathbb{R}^2 : Examples of Graphs

 $\{(x, y) \in \mathbb{R}^2 \mid y = ax + b\}$: Line (not vertical) $\{(x, y) \in \mathbb{R}^2 \mid y = ax^2 + bx + c\}$: Parabola

Curves in \mathbb{R}^2 : Examples of Level Sets

$$
\{(x, y) \in \mathbb{R}^2 \mid ax + by = c\}:\text{Line}
$$

$$
\left\{ (x, y) \in \mathbb{R}^2 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \right\}: \text{Ellipse}
$$

$$
\left\{ (x, y) \in \mathbb{R}^2 \mid \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \right\}: \text{Hyperbola}
$$

$$
\left\{ (x, y) \in \mathbb{R}^2 \mid -\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \right\}: \text{Hyperbola}
$$

Surfaces in \mathbb{R}^3 : Examples of Graphs

$$
\left\{ (x, y, z) \in \mathbb{R}^3 \mid z = ax + by \right\}: \text{ Plane (not containing a vertical line)}
$$
\n
$$
\left\{ (x, y, z) \in \mathbb{R}^3 \mid z = \frac{x^2}{a^2} + \frac{y^2}{b^2} \right\}: \text{Elliptic Paraboloid}
$$
\n
$$
\left\{ (x, y, z) \in \mathbb{R}^3 \mid z = -\frac{x^2}{a^2} - \frac{y^2}{b^2} \right\}: \text{Elliptic Paraboloid}
$$
\n
$$
\left\{ (x, y, z) \in \mathbb{R}^3 \mid z = \frac{x^2}{a^2} - \frac{y^2}{b^2} \right\}: \text{Hyperbolic Paraboloid ("saddle")}
$$
\n
$$
\left\{ (x, y, z) \in \mathbb{R}^3 \mid z = -\frac{x^2}{a^2} + \frac{y^2}{b^2} \right\}: \text{Hyperbolic Paraboloid ("saddle")}
$$

Surfaces in \mathbb{R}^3 : Examples of Level Sets

$$
\begin{aligned}\n\left\{(x,y,z)\in\mathbb{R}^3 \Big| \ ax + by + cz = d\right\}: \text{ Plane} \\
\left\{(x,y,z)\in\mathbb{R}^3 \Big| \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1\right\}: \text{Ellipsoid} \\
\left\{(x,y,z)\in\mathbb{R}^3 \Big| \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1\right\}: \text{Hyperboloid of 1 Sheet} \\
\left\{(x,y,z)\in\mathbb{R}^3 \Big| \frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1\right\}: \text{Hyperboloid of 2 sheets}\n\end{aligned}
$$

Two Model Examples

Example 1A (Elliptic Paraboloid): Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$
f(x,y) = x^2 + y^2.
$$

The level sets of f are curves in \mathbb{R}^2 . Level sets are $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = c\}$. The graph of f is a surface in \mathbb{R}^3 . Graph is $\{(x, y, z) \in \mathbb{R}^3 \mid z = x^2 + y^2\}$.

Notice that $(0, 0, 0)$ is a <u>local minimum</u> of f. Note that $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$. Also, $\frac{\partial^2 f}{\partial x^2}(0,0) > 0$ and $\frac{\partial^2 f}{\partial y^2}(0,0) > 0$. Sketch the level sets of f and the graph of f :

Example 1B (Elliptic Paraboloid): Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$
f(x,y) = -x^2 - y^2.
$$

The level sets of f are curves in \mathbb{R}^2 . Level sets are $\{(x, y) \in \mathbb{R}^2 \mid -x^2-y^2=c\}$. The graph of f is a surface in \mathbb{R}^3 . Graph is $\{(x, y, z) \in \mathbb{R}^3 \mid z = -x^2 - y^2\}$.

Notice that $(0, 0, 0)$ is a local maximum of f. Note that $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$. Also, $\frac{\partial^2 f}{\partial x^2}(0,0) < 0$ and $\frac{\partial^2 f}{\partial y^2}(0,0) < 0$. Sketch the level sets of f and the graph of f :

Example 2 (Hyperbolic Paraboloid): Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$
f(x,y) = x^2 - y^2.
$$

The level sets of f are curves in \mathbb{R}^2 . Level sets are $\{(x, y) \in \mathbb{R}^2 \mid x^2 - y^2 = c\}$. The graph of f is a surface in \mathbb{R}^3 . Graph is $\{(x, y, z) \in \mathbb{R}^3 \mid z = x^2 - y^2\}$.

Notice that $(0, 0, 0)$ is a saddle point of the graph of f. Note that $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$. Also, $\frac{\partial^2 f}{\partial x^2}(0,0) > 0$ while $\frac{\partial^2 f}{\partial y^2}(0,0) < 0$. Sketch the level sets of f and the graph of f :

$\textbf{Introduction: Derivatives of Functions } \mathbb{R}^n \rightarrow \mathbb{R}^m$

Def: Let $F: \mathbb{R}^n \to \mathbb{R}^m$ be a function, say

$$
F(x_1,\ldots,x_n)=(F_1(x_1,\ldots,x_n),\ldots,F_m(x_1,\ldots,x_n)).
$$

Its derivative at the point (x_1, \ldots, x_n) is the linear transformation $DF(x_1, \ldots, x_n) \colon \mathbb{R}^n \to \mathbb{R}^m$ whose $(m \times n)$ matrix is

$$
DF(x_1, \ldots, x_n) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial F_m}{\partial x_1} & \cdots & \frac{\partial F_m}{\partial x_n} \end{bmatrix}.
$$

Note: The columns are the partial derivatives with respect to x_1 , then to x_2 , etc. The rows are the gradients of the component functions F^1 , F^2 , etc.

$$
DF(x_1,\ldots,x_n) = \begin{bmatrix} \frac{1}{\partial F} & \cdots & \frac{1}{\partial F} \\ \frac{1}{\partial x_1} & \cdots & \frac{1}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \nabla F_1 & \cdots \\ \vdots & \ddots \\ \nabla F_m & \cdots \end{bmatrix}.
$$

Example: Let $F: \mathbb{R}^2 \to \mathbb{R}^3$ be the function

$$
F(x, y) = (x + 2y, \sin(x), e^y) = (F_1(x, y), F_2(x, y), F_3(x, y)).
$$

Its derivative at (x, y) is a linear transformation $DF(x, y)$: $\mathbb{R}^2 \to \mathbb{R}^3$. The matrix of the linear transformation $DF(x, y)$ is:

$$
DF(x,y) = \begin{bmatrix} \frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} \\ \frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} \\ \frac{\partial F_3}{\partial x} & \frac{\partial F_3}{\partial y} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ \cos(x) & 0 \\ 0 & e^y \end{bmatrix}.
$$

Notice that (for instance) $DF(1, 1)$ is a linear transformation, as is $DF(2, 3)$, etc. That is, each $DF(x, y)$ is a linear transformation $\mathbb{R}^2 \to \mathbb{R}^3$.

Goals: We will:

 \circ Interpret the derivative of F as the "best linear approximation to F."

◦ State a Chain Rule for multivariable derivatives.

Introduction: Gradient of Functions $\mathbb{R}^n \to \mathbb{R}$

Def: Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function.

Recall: The derivative of $f: \mathbb{R}^n \to \mathbb{R}$ at the point $\mathbf{x} = (x_1, \dots, x_n)$ is the $1 \times n$ matrix

$$
Df(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}.
$$

The **gradient** of $f: \mathbb{R}^n \to \mathbb{R}$ at the point $\mathbf{x} = (x_1, \dots, x_n)$ is the vector

$$
\nabla f(\mathbf{x}) = \left[\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}\right].
$$

The **directional derivative** of $f: \mathbb{R}^n \to \mathbb{R}$ at the point $\mathbf{x} = (x_1, \dots, x_n)$ in the direction $\mathbf{v} \in \mathbb{R}^n$ is the dot product of the vectors $\nabla f(\mathbf{x})$ and \mathbf{v} :

$$
D_{\mathbf{v}}f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{v}.
$$

We will give geometric interpretations of these concepts later in the course.

Introduction: Hessian of Functions $\mathbb{R}^n \to \mathbb{R}$

Theorem: Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function whose second partial derivatives are all continuous. Then:

$$
\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}.
$$

In brief: "Second partials commute."

Def: Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function.

The **Hessian** of $f: \mathbb{R}^n \to \mathbb{R}$ at the point $\mathbf{x} = (x_1, \dots, x_n)$ is the $n \times n$ matrix

$$
Hf(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}.
$$

The directional second derivative of $f: \mathbb{R}^n \to \mathbb{R}$ at the point $x =$ (x_1, \ldots, x_n) in the direction $\mathbf{v} \in \mathbb{R}^n$ is

$$
\mathbf{v}^T Hf(\mathbf{x})\,\mathbf{v}.
$$

Again, we will give geometric interpretations of these concepts later on.

Linear Approximation: Single-Variable Calculus

Review: In single-variable calc, we look at functions $f: \mathbb{R} \to \mathbb{R}$. We write $y = f(x)$, and at a point $(a, f(a))$ write:

 $\Delta y \approx dy$.

Here, $\Delta y = f(x) - f(a)$, while $dy = f'(a)\Delta x = f'(a)(x - a)$. So:

$$
f(x) - f(a) \approx f'(a)(x - a).
$$

Therefore:

$$
f(x) \approx f(a) + f'(a)(x - a).
$$

The right-hand side $f(a) + f'(a)(x - a)$ can be interpreted as follows:

- \circ It is the **best linear approximation** to $f(x)$ at $x = a$.
- \circ It is the 1st Taylor polynomial to $f(x)$ at $x = a$.
- \circ The line $y = f(a) + f'(a)(x a)$ is the **tangent line** at $(a, f(a))$.

Linear Approximation: Multivariable Calculus

Now consider functions $f: \mathbb{R}^n \to \mathbb{R}^m$. At a point $(a, f(a))$, we have exactly the same thing:

$$
\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a}) \approx D\mathbf{f}(\mathbf{a})(\mathbf{x} - \mathbf{a}).
$$

That is:

$$
\mathbf{f}(\mathbf{x}) \approx \mathbf{f}(\mathbf{a}) + D\mathbf{f}(\mathbf{a})(\mathbf{x} - \mathbf{a}). \tag{*}
$$

Note: The object $Df(a)$ is a *matrix*, while $(x - a)$ is a *vector*. That is, $Df(\mathbf{a})(\mathbf{x}-\mathbf{a})$ is matrix-vector multiplication.

Example: Let $f: \mathbb{R}^2 \to \mathbb{R}$. Let's write $\mathbf{x} = (x_1, x_2)$ and $\mathbf{a} = (a_1, a_2)$. Then (∗) reads:

$$
f(x_1, x_2) \approx f(a_1, a_2) + \left[\frac{\partial f}{\partial x_1}(a_1, a_2) \frac{\partial f}{\partial x_2}(a_1, a_2)\right] \begin{bmatrix} x_1 - a_1 \\ x_2 - a_2 \end{bmatrix}
$$

= $f(a_1, a_2) + \frac{\partial f}{\partial x_1}(a_1, a_2)(x_1 - a_1) + \frac{\partial f}{\partial x_2}(a_1, a_2)(x_2 - a_2).$

Review: Taylor Polynomials in Single-Variable Calculus

Review: In single-variable calculus, we look at functions $f: \mathbb{R} \to \mathbb{R}$.

At a point $a \in \mathbb{R}$, the linear approximation (1st-deg Taylor polynomial) to f is:

$$
f(x) \approx f(a) + f'(a)(x - a).
$$

More accurate is the quadratic approximation (2nd-deg Taylor polynomial)

$$
f(x) \approx f(a) + f'(a)(x - a) + \frac{1}{2!}f''(a)(x - a)^2.
$$

We would like to have similar ideas for multivariable functions.

Linear Approximation: 1st-Deg Taylor Polynomials

Let $f: \mathbb{R}^n \to \mathbb{R}^m$. The linear approximation of f at the point $a \in \mathbb{R}^n$ is:

$$
\mathbf{f}(\mathbf{x}) \approx \mathbf{f}(\mathbf{a}) + D\mathbf{f}(\mathbf{a})(\mathbf{x} - \mathbf{a}). \tag{1}
$$

Note that $Df(\mathbf{a})$ is a *matrix*, while $(\mathbf{x} - \mathbf{a})$ is a *vector*. That is, $Df(\mathbf{a})(\mathbf{x} - \mathbf{a})$ is matrix-vector multiplication.

Note that (1) is the best linear approximation to $f(x)$ for points x near a. It is the 1st-degree Taylor polynomial to $f(x)$ at a.

Quadratic Approximation: 2nd-Deg Taylor Polynomials

Let $f: \mathbb{R}^n \to \mathbb{R}$. The **quadratic approximation** of **f** at the point $\mathbf{a} \in \mathbb{R}^n$ is:

$$
f(\mathbf{x}) \approx f(\mathbf{a}) + Df(\mathbf{a})(\mathbf{x} - \mathbf{a}) + \frac{1}{2!}(\mathbf{x} - \mathbf{a})^T H f(\mathbf{a})(\mathbf{x} - \mathbf{a}).
$$
 (2)

Note that $(x - a)^T$ is a row vector, while $(x - a)$ is a column vector, while $Hf(\mathbf{a})$ is a matrix. So, $\frac{1}{2!}(\mathbf{x}-\mathbf{a})^T Hf(\mathbf{a})(\mathbf{x}-\mathbf{a})$ is of the form $\mathbf{v}^T A \mathbf{v}$.

Note that (2) is the best quadratic approximation to $f(\mathbf{x})$ for points **x** near **a**. It is the 2nd-degree Taylor polynomial to $f(\mathbf{x})$ at **a**.

Example: Let
$$
f: \mathbb{R}^2 \to \mathbb{R}
$$
 be $f(x, y) = x^3 \sin(y)$. For (x, y) near $\mathbf{a} = (2, \frac{\pi}{2})$:
\n $f(x, y) \approx f(2, \frac{\pi}{2}) + Df(2, \frac{\pi}{2}) \left[\frac{x-2}{y-\frac{\pi}{2}} \right] + \frac{1}{2!} \left[x-2 \ y-\frac{\pi}{2} \right] Hf(2, \frac{\pi}{2}) \left[\frac{x-2}{y-\frac{\pi}{2}} \right]$
\n $= 8 + \left[12 \ 0 \right] \left[\frac{x-2}{y-\frac{\pi}{2}} \right] + \frac{1}{2} \left[x-2 \ y-\frac{\pi}{2} \right] \left[\begin{array}{cc} 12 & 0 \\ 0 & -8 \end{array} \right] \left[\begin{array}{cc} x-2 \\ y-\frac{\pi}{2} \end{array} \right]$
\n $= 8 + 12(x-2) + 6(x-2)^2 - 4(y-\frac{\pi}{2})^2$.

Tangent Lines/Planes to Graphs

Fact: Suppose a curve in \mathbb{R}^2 is given as a graph $y = f(x)$. The equation of the tangent line at $(a, f(a))$ is:

$$
y = f(a) + f'(a)(x - a).
$$

Okay, you knew this from single-variable calculus. How does the multivariable case work? Well:

Fact: Suppose a surface in \mathbb{R}^3 is given as a graph $z = f(x, y)$. The equation of the tangent plane at $(a, b, f(a, b))$ is:

$$
z = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b).
$$

Notice the similarity between this and the linear approximation to f at (a, b) .

Tangent Lines/Planes to Level Sets

Def: For a function $F: \mathbb{R}^n \to \mathbb{R}$, its **gradient** is the vector in \mathbb{R}^n given by:

$$
\nabla F = \left[\frac{\partial F}{\partial x_1}, \frac{\partial F}{\partial x_2}, \dots, \frac{\partial F}{\partial x_n}\right].
$$

Theorem: Consider a level set $F(x_1, \ldots, x_n) = c$ of a function $F: \mathbb{R}^n \to \mathbb{R}$. If (a_1, \ldots, a_n) is a point on the level set, then $\nabla F(a_1, \ldots, a_n)$ is normal to the level set.

Corollary 1: Suppose a curve in \mathbb{R}^2 is given as a level curve $F(x, y) = c$. The equation of the tangent line at a point (x_0, y_0) on the level curve is:

$$
\frac{\partial F}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial F}{\partial y}(x_0, y_0)(y - y_0) = 0.
$$

Corollary 2: Suppose a surface in \mathbb{R}^3 is given as a level surface $F(x, y, z) = c$. The equation of the tangent plane at a point (x_0, y_0, z_0) on the level surface is:

$$
\frac{\partial F}{\partial x}(x_0, y_0, z_0)(x - x_0) + \frac{\partial F}{\partial y}(x_0, y_0, z_0)(y - y_0) + \frac{\partial F}{\partial z}(x_0, y_0, z_0)(z - z_0) = 0.
$$

Q: Do you see why Cor 1 and Cor 2 follow from the Theorem?

Composition and Matrix Multiplication

Recall: Let $f: X \to Y$ and $q: Y \to Z$ be functions. Their **composition** is the function $q \circ f : X \to Z$ defined by

$$
(g \circ f)(x) = g(f(x)).
$$

Observations:

(1) For this to make sense, we must have: co-domain $(f) = \text{domain}(g)$.

(2) Composition is **not** generally commutative: that is, $f \circ q$ and $q \circ f$ are usually different.

(3) Composition is always associative: $(h \circ g) \circ f = h \circ (g \circ f)$.

Fact: If $T: \mathbb{R}^k \to \mathbb{R}^n$ and $S: \mathbb{R}^n \to \mathbb{R}^m$ are both linear transformations, then $S \circ T$ is also a linear transformation.

Question: How can we describe the matrix of the linear transformation $S \circ T$ in terms of the matrices of S and T?

Fact: Let $T: \mathbb{R}^n \to \mathbb{R}^n$ and $S: \mathbb{R}^n \to \mathbb{R}^m$ be linear transformations with matrices B and A, respectively. Then the matrix of $S \circ T$ is the product AB.

We can multiply an $m \times n$ matrix A by an $n \times k$ matrix B. The result, AB, will be an $m \times k$ matrix:

$$
(m \times n)(n \times k) \to (m \times k).
$$

Notice that n appears twice here to "cancel out." That is, we need the number of rows of A to equal the number of columns of B – otherwise, the product AB makes no sense.

Example 1: Let A be a (3×2) -matrix, and let B be a (2×4) -matrix. The product AB is then a (3×4) -matrix.

Example 2: Let A be a (2×3) -matrix, and let B be a (4×2) -matrix. Then AB is not defined. (But the product BA is defined: it is a (4×3) -matrix.)

Chain Rule

Chain Rule (Matrix Form): Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^p$ be any differentiable functions. Then

$$
D(\mathbf{g} \circ \mathbf{f})(\mathbf{x}) = D\mathbf{g}(\mathbf{f}(\mathbf{x})) \cdot D\mathbf{f}(\mathbf{x}).
$$

Here, the product on the right-hand side is a product of matrices.

Many texts describe the chain rule in the following more classical form. While there is a "classical" form in the general case of functions $\mathbf{g} \colon \mathbb{R}^m \to \mathbb{R}^p$, we will keep things simple and only state the case of functions $g: \mathbb{R}^m \to \mathbb{R}$ with codomain \mathbb{R} .

Chain Rule (Classical Form): Let $g = g(x_1, \ldots, x_m)$ and suppose each x_1, \ldots, x_m is a function of the variables t_1, \ldots, t_n . Then:

$$
\frac{\partial g}{\partial t_1} = \frac{\partial g}{\partial x_1} \frac{\partial x_1}{\partial t_1} + \frac{\partial g}{\partial x_2} \frac{\partial x_2}{\partial t_1} + \dots + \frac{\partial g}{\partial x_m} \frac{\partial x_m}{\partial t_1},
$$

\n
$$
\vdots
$$

\n
$$
\frac{\partial g}{\partial t_n} = \frac{\partial g}{\partial x_1} \frac{\partial x_1}{\partial t_n} + \frac{\partial g}{\partial x_2} \frac{\partial x_2}{\partial t_1} + \dots + \frac{\partial g}{\partial x_m} \frac{\partial x_m}{\partial t_n}.
$$

Example 1: Let $z = g(u, v)$, where $u = h(x, y)$ and $v = k(x, y)$. Then the chain rule reads:

$$
\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial z}{\partial v}\frac{\partial v}{\partial x}
$$

$$
\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u}\frac{\partial u}{\partial y} + \frac{\partial z}{\partial v}\frac{\partial v}{\partial y}.
$$

and

Example 2: Let
$$
z = g(u, v, w)
$$
, where $u = h(t)$, $v = k(t)$, $w = \ell(t)$. Then the chain rule reads:

$$
\frac{\partial z}{\partial t} = \frac{\partial z}{\partial u}\frac{\partial u}{\partial t} + \frac{\partial z}{\partial v}\frac{\partial v}{\partial t} + \frac{\partial z}{\partial w}\frac{\partial w}{\partial t}.
$$

Since u, v, w are functions of just a single variable t, we can also write this formula as:

$$
\frac{\partial z}{\partial t} = \frac{\partial z}{\partial u}\frac{du}{dt} + \frac{\partial z}{\partial v}\frac{dv}{dt} + \frac{\partial z}{\partial w}\frac{dw}{dt}.
$$

For Clarification: The Two Forms of the Chain Rule

Q: How exactly are the two forms of the chain rule the same?

A: If we completely expand the matrix form, writing out everything in components, we end up with the classical form. The following examples may clarify.

Example 1: Suppose $z = g(u, v)$, where $u = h(x, y)$ and $v = k(x, y)$. This setup means we essentially have two functions:

$$
g: \mathbb{R}^2 \to \mathbb{R}
$$
 and $f: \mathbb{R}^2 \to \mathbb{R}^2$
\n $g(u, v) = z$ $f(x, y) = (h(x, y), k(x, y)) = (u, v).$

The matrix form of the Chain Rule reads:

$$
D(g \circ f)(x, y) = Dg(f(x, y)) \cdot Df(x, y)
$$

$$
\left[\frac{\partial (g \circ f)}{\partial x}, \frac{\partial (g \circ f)}{\partial y}\right] = \left[\frac{\partial g}{\partial u}, \frac{\partial g}{\partial v}\right] \left[\frac{\frac{\partial h}{\partial x}}{\frac{\partial k}{\partial x}} \frac{\frac{\partial h}{\partial y}}{\frac{\partial k}{\partial y}}\right]
$$

$$
\left[\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right] = \left[\frac{\partial g}{\partial u}\frac{\partial h}{\partial x} + \frac{\partial g}{\partial v}\frac{\partial k}{\partial x}, \frac{\partial g}{\partial u}\frac{\partial h}{\partial y} + \frac{\partial g}{\partial v}\frac{\partial k}{\partial y}\right]
$$

Setting components equal to each other, we conclude that

$$
\frac{\partial z}{\partial x} = \frac{\partial g}{\partial u} \frac{\partial h}{\partial x} + \frac{\partial g}{\partial v} \frac{\partial k}{\partial x}
$$

and

$$
\frac{\partial z}{\partial y} = \frac{\partial g}{\partial u} \frac{\partial h}{\partial y} + \frac{\partial g}{\partial v} \frac{\partial k}{\partial y}.
$$

This is exactly the classical form of the Chain Rule. \Box

Example 2: Suppose $z = g(u, v, w)$, where $u = h(t)$, $v = k(t)$, $w = \ell(t)$. This setup means we essentially have two functions:

$$
g: \mathbb{R}^3 \to \mathbb{R}
$$
 and $f: \mathbb{R} \to \mathbb{R}^3$
 $g(u, v, w) = z$ $f(t) = (h(t), k(t), \ell(t)) = (u, v, w).$

The matrix form of the Chain Rule reads:

$$
D(g \circ f)(t) = Dg(f(t)) \cdot Df(t)
$$

$$
\left[\frac{\partial(g \circ f)}{\partial t}\right] = \left[\frac{\partial g}{\partial u}, \frac{\partial g}{\partial v}, \frac{\partial g}{\partial w}\right] \begin{bmatrix} \frac{\partial h}{\partial t} \\ \frac{\partial k}{\partial t} \\ \frac{\partial \ell}{\partial t} \end{bmatrix}
$$

$$
\frac{\partial z}{\partial t} = \frac{\partial g}{\partial u}\frac{\partial h}{\partial t} + \frac{\partial g}{\partial v}\frac{\partial k}{\partial t} + \frac{\partial g}{\partial w}\frac{\partial \ell}{\partial t}.
$$

Again, we recovered the classical form of the Chain Rule. \Box

Inverses: Abstract Theory

Def: A function $f: X \to Y$ is **invertible** if there is a function $f^{-1}: Y \to X$ satisfying:

$$
f^{-1}(f(x)) = x, \text{ for all } x \in X, \text{ and}
$$

$$
f(f^{-1}(y)) = y, \text{ for all } y \in Y.
$$

In such a case, f^{-1} is called an **inverse function** for f.

In other words, the function f^{-1} "undoes" the function f. For example, an inverse function of $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$ is $f^{-1}: \mathbb{R} \to \mathbb{R}$, $f^{-1}(x) = \sqrt[3]{x}$. An inverse of $g: \mathbb{R} \to (0, \infty), g(x) = 2^x$ is $g^{-1}: (0, \infty) \to \mathbb{R}, g^{-1}(x) = \log_2(x)$.

Whenever a new concept is defined, a mathematician asks two questions:

(1) **Uniqueness:** Are inverses unique? That is, must a function f have at most one inverse f^{-1} , or is it possible for f to have several different inverses?

Answer: Yes.

Prop 16.1: If $f: X \to Y$ is invertible (that is, f has an inverse), then the inverse function f^{-1} is unique (that is, there is only one inverse function).

(2) **Existence:** Do inverses always exist? That is, does every function f have an inverse function f^{-1} ?

Answer: No. Some functions have inverses, but others don't.

New question: Which functions have inverses?

Prop 16.3: A function $f: X \to Y$ is invertible if and only if f is both "oneto-one" and "onto."

Despite their fundamental importance, there's no time to talk about "oneto-one" and "onto," so you don't have to learn these terms. This is sad :-(

Question: If inverse functions "undo" our original functions, can they help us solve equations? Yes! That's the entire point:

Prop 16.2: A function $f: X \to Y$ is invertible if and only if for every $b \in Y$, the equation $f(x) = b$ has exactly one solution $x \in X$.

In this case, the solution to the equation $f(x) = b$ is given by $x = f^{-1}(b)$.

Inverses of Linear Transformations

Question: Which linear transformations $T: \mathbb{R}^n \to \mathbb{R}^m$ are invertible? (Equiv: Which $m \times n$ matrices A are invertible?)

Fact: If $T: \mathbb{R}^n \to \mathbb{R}^m$ is invertible, then $m = n$. So: If an $m \times n$ matrix A is invertible, then $m = n$.

In other words, non-square matrices are never invertible. But square matrices may or may not be invertible. Which ones are invertible? Well:

Theorem: Let A be an $n \times n$ matrix. The following are equivalent:

 (i) A is invertible (ii) $N(A) = \{0\}$ (iii) $C(A) = \mathbb{R}^n$ $(iv) \text{ rref}(A) = I_n$ (v) det($A \neq 0$.

To Repeat: An $n \times n$ matrix A is invertible if and only if for every $\mathbf{b} \in \mathbb{R}^n$, the equation $A\mathbf{x} = \mathbf{b}$ has exactly one solution $\mathbf{x} \in \mathbb{R}^n$.

In this case, the solution to the equation $A\mathbf{x} = \mathbf{b}$ is given by $\mathbf{x} = A^{-1}\mathbf{b}$.

Q: How can we find inverse matrices? This is accomplished via:

Prop 16.7: If A is an invertible matrix, then $\text{rref}[A | I_n] = [I_n | A^{-1}]$.

Useful Formula: Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a 2×2 matrix. If A is invertible $(\det(A))$ $ad - bc \neq 0$, then:

$$
A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.
$$

Prop 16.8: Let $f: X \to Y$ and $g: Y \to Z$ be invertible functions. Then: (a) f^{-1} is invertible and $(f^{-1})^{-1} = f$. (b) $g \circ f$ is invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Corollary: Let A, B be invertible $n \times n$ matrices. Then:

- (a) A^{-1} is invertible and $(A^{-1})^{-1} = A$.
- (b) AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

The Gradient: Two Interpretations

Recall: For a function $F: \mathbb{R}^n \to \mathbb{R}$, its **gradient** is the vector in \mathbb{R}^n given by:

$$
\nabla F = \left[\frac{\partial F}{\partial x_1}, \frac{\partial F}{\partial x_2}, \dots, \frac{\partial F}{\partial x_n} \right].
$$

There are two ways to think about the gradient. They are interrelated.

Gradient: Normal to Level Sets

Theorem: Consider a level set $F(x_1, \ldots, x_n) = c$ of a function $F: \mathbb{R}^n \to \mathbb{R}$. If (a_1, \ldots, a_n) is a point on the level set, then $\nabla F(a_1, \ldots, a_n)$ is normal to the level set.

Example: If we have a level curve $F(x, y) = c$ in \mathbb{R}^2 , the gradient vector $\nabla F(x_0, y_0)$ is a normal vector to the level curve at the point (x_0, y_0) .

Example: If we have a level surface $F(x, y, z) = c$ in \mathbb{R}^3 , the gradient vector $\nabla F(x_0, y_0, z_0)$ is a normal vector to the level surface at the point (x_0, y_0, z_0) .

Normal vectors help us find tangent planes to level sets (see the handout "Tangent Lines/Planes...") But there's another reason we like normal vectors.

Gradient: Direction of Steepest Ascent for Graphs

Observation: A normal vector to a level set $F(x_1, \ldots, x_n) = c$ in \mathbb{R}^n is the direction of steepest ascent for the graph $z = F(x_1, \ldots, x_n)$ in \mathbb{R}^{n+1} .

Example (Elliptic Paraboloid): Let $f: \mathbb{R}^2 \to \mathbb{R}$ be $f(x, y) = 2x^2 + 3y^2$. The level sets of f are the ellipses $2x^2 + 3y^2 = c$ in \mathbb{R}^2 . The graph of f is the elliptic paraboloid $z = 2x^2 + 3y^2$ in \mathbb{R}^3 .

At the point $(1,1) \in \mathbb{R}^2$, the gradient vector $\nabla f(1,1) = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$ 6 1 is normal to the level curve $2x^2+3y^2=5$. So, if we were hiking on the surface $z=2x^2+3y^2$ in \mathbb{R}^3 and were at the point $(1,1,f(1,1)) = (1,1,5)$, to ascend the surface the fastest, we would hike in the direction of $\begin{bmatrix} 4 \\ 6 \end{bmatrix}$ 6 $].$ \Box

Warning: Note that ∇f is normal to the level sets of f. It is <u>not</u> a normal vector to the graph of f .

Directional Derivatives

Def: For a function $f: \mathbb{R}^n \to \mathbb{R}$, its **directional derivative** at the point $\mathbf{x} \in \mathbb{R}^n$ in the direction $\mathbf{v} \in \mathbb{R}^n$ is:

$$
D_{\mathbf{v}}f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{v}.
$$

Here, \cdot is the dot product of vectors. Therefore,

$$
D_{\mathbf{v}}f(\mathbf{x}) = \|\nabla f(\mathbf{x})\| \|\mathbf{v}\| \cos \theta
$$
, where $\theta = \measuredangle(\nabla f(\mathbf{x}), \mathbf{v})$.

Usually, we assume that **v** is a unit vector, meaning $||\mathbf{v}|| = 1$.

Example: Let
$$
f: \mathbb{R}^2 \to \mathbb{R}
$$
. Let $\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$. Then:
\n
$$
D_{\mathbf{v}}f(x, y) = \nabla f(x, y) \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} = a \frac{\partial f}{\partial x} + b \frac{\partial f}{\partial y}.
$$

In particular, we have two important special cases:

$$
D_{\mathbf{e}_1} f(x, y) = \nabla f(x, y) \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{\partial f}{\partial x}
$$

$$
D_{\mathbf{e}_2} f(x, y) = \nabla f(x, y) \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{\partial f}{\partial y}.
$$

Point: Partial derivatives are themselves examples of directional derivatives!

Namely, $\frac{\partial f}{\partial x}$ is the directional derivative of f in the e₁-direction, while $\frac{\partial f}{\partial y}$ is the directional derivative in the e_2 -direction.

Question: At a point **a**, in which direction **v** will the function f grow the most? i.e.: At a given point **a**, for which unit vector **v** is $D_v f(a)$ maximized?

Theorem 6.3: Fix a point $\mathbf{a} \in \mathbb{R}^n$.

(a) The directional derivative $D_{\mathbf{v}}f(\mathbf{a})$ is <u>maximized</u> when **v** points in the same direction as $\nabla f(\mathbf{a})$.

(b) The directional derivative $D_{\mathbf{v}}f(\mathbf{a})$ is <u>minimized</u> when **v** points in the opposite direction as $\nabla f(\mathbf{a})$.

In fact: The maximum and minimum values of $D_{\mathbf{v}}f(\mathbf{a})$ at the point $\mathbf{a} \in \mathbb{R}^n$ are $\|\nabla f(\mathbf{a})\|$ and $-\|\nabla f(\mathbf{a})\|$. (Assuming we only care about unit vectors **v**.)

Determinants

There are two reasons why determinants are important:

- (1) Algebra: Determinants tell us whether a matrix is invertible or not.
- (2) Geometry: Determinants are related to area and volume.

Determinants: Algebra

Prop 17.3: An $n \times n$ matrix A is invertible \iff det(A) $\neq 0$.

Moreover: if A is invertible, then

$$
\det(A^{-1}) = \frac{1}{\det(A)}.
$$

Properties of Determinants (17.2, 17.4):

 (I) (Multiplicativity) $\det(AB) = \det(A) \det(B)$.

(2) (Alternation) Exchanging two rows of a matrix reverses the sign of the determinant.

(3) (Multilinearity): First:

$$
\det\begin{bmatrix} a_1 & a_2 & \cdots & a_n \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} + \det\begin{bmatrix} b_1 & b_2 & \cdots & b_n \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \det\begin{bmatrix} a_1 + b_1 & a_2 + b_2 & \cdots & a_n + b_n \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix}
$$

and similarly for the other rows; Second:

and similarly for the other rows. Here, $k \in \mathbb{R}$ is any scalar.

Warning! Multilinearity does not say that $\det(A + B) = \det(A) + \det(B)$. It also does <u>not</u> say $\det(kA) = k \det(A)$. But: $\det(kA) = k^n \det(A)$ is true.

Determinants: Geometry

Prop 17.5: Let A be any 2×2 matrix. Then the area of the parallelogram generated by the columns of A is $|\text{det}(A)|$.

Prop 17.6: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with matrix A. Let R be a region in \mathbb{R}^2 . Then:

$$
Area(T(R)) = |\det(A)| \cdot Area(R).
$$

Coordinate Systems

Def: Let V be a k-dim subspace of \mathbb{R}^n . Each basis $\mathcal{B} = {\mathbf{v}_1, \dots, \mathbf{v}_k}$ determines a coordinate system on V .

That is: Every vector $\mathbf{v} \in V$ can be written uniquely as a linear combination of the basis vectors:

$$
\mathbf{v}=c_1\mathbf{v}_1+\cdots+c_k\mathbf{v}_k.
$$

We then call c_1, \ldots, c_k the **coordinates** of **v** with respect to the basis \mathcal{B} . We then write

$$
[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix}.
$$

Note that $[v]_{\mathcal{B}}$ has k components, even though $v \in \mathbb{R}^n$.

Note: Levandosky (L21: p 145-149) explains all this very clearly, in much more depth than this review sheet provides. The examples are also quite good: make sure you understand all of them.

Def: Let $\mathcal{B} = {\mathbf{v}_1, \dots, \mathbf{v}_k}$ be a basis for a k-dim subspace V of \mathbb{R}^n . The change-of-basis matrix for the basis β is:

$$
C = \begin{bmatrix} | & | & & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_k \\ | & | & & | \end{bmatrix}.
$$

Every vector $\mathbf{v} \in V$ in the subspace V can be written

$$
\mathbf{v}=c_1\mathbf{v}_1+\cdots+c_k\mathbf{v}_k.
$$

In other words:

$$
\mathbf{v}=C[\mathbf{v}]_{\mathcal{B}}.
$$

This formula tells us how to go between the standard coordinates for v and the B -coordinates of v .

Special Case: If $V = \mathbb{R}^n$ and \mathcal{B} is a basis of \mathbb{R}^n , then the matrix C will be invertible, and therefore:

$$
[\mathbf{v}]_{\mathcal{B}} = C^{-1} \mathbf{v}.
$$