Curves in \mathbb{R}^2 : Graphs vs Level Sets

Graphs (y = f(x)): The graph of $f : \mathbb{R} \to \mathbb{R}$ is

$$\{(x,y) \in \mathbb{R}^2 \mid y = f(x)\}.$$

Example: When we say "the curve $y = x^2$," we really mean: "The graph of the function $f(x) = x^2$." That is, we mean the set $\{(x, y) \in \mathbb{R}^2 \mid y = x^2\}$.

Level Sets (F(x, y) = c): The level set of $F \colon \mathbb{R}^2 \to \mathbb{R}$ at height c is

$$\{(x,y) \in \mathbb{R}^2 \mid F(x,y) = c\}.$$

Example: When we say "the curve $x^2 + y^2 = 1$," we really mean: "The level set of the function $F(x, y) = x^2 + y^2$ at height 1." That is, we mean the set $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$.

Note: Every graph is a level set (why?). But not every level set is a graph.

Graphs must pass the vertical line test. (Level sets may or may not.)

Surfaces in \mathbb{R}^3 : Graphs vs Level Sets

Graphs (z = f(x, y)): The graph of $f : \mathbb{R}^2 \to \mathbb{R}$ is

$$\{(x, y, z) \in \mathbb{R}^3 \mid z = f(x, y)\}$$

Example: When we say "the surface $z = x^2 + y^2$," we really mean: "The graph of the function $f(x, y) = x^2 + y^2$." That is, we mean the set $\{(x, y, z) \in \mathbb{R}^3 \mid z = x^2 + y^2\}$.

Level Sets (F(x, y, z) = c): The level set of $F \colon \mathbb{R}^3 \to \mathbb{R}$ at height c is

$$\{(x, y, z) \in \mathbb{R}^3 \mid F(x, y, z) = c\}.$$

Example: When we say "the surface $x^2 + y^2 + z^2 = 1$," we really mean: "The level set of the function $F(x, y, z) = x^2 + y^2 + z^2$ at height 1." That is, $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$.

Again: Every graph is a level set (why?). But not every level set is a graph.

Graphs must pass the vertical line test. (Level sets may or may not.)

Q: Do you see the patterns here? For example, suppose $G: \mathbb{R}^7 \to \mathbb{R}$.

• What does the graph of G look like? (A: 7-dimensional object in \mathbb{R}^8 . That is, $\{(x_1, \ldots, x_7, x_8) \in \mathbb{R}^8 \mid x_8 = G(x_1, \ldots, x_7)\}$.)

• What do the level sets of G look like? (A: They are (generically) 6-dim objects in \mathbb{R}^7 . That is, $\{(x_1, \ldots, x_7) \in \mathbb{R}^7 \mid G(x_1, \ldots, x_7) = c\}$.)

Curves in \mathbb{R}^2 : Examples of Graphs

 $\begin{array}{l|l} \{(x,y) \in \mathbb{R}^2 & y = ax + b\}: \text{ Line (not vertical)} \\ \{(x,y) \in \mathbb{R}^2 & y = ax^2 + bx + c\}: \text{ Parabola} \end{array}$

Curves in \mathbb{R}^2 : Examples of Level Sets

$$\{ (x,y) \in \mathbb{R}^2 \mid ax + by = c \}: \text{ Line} \\ \left\{ (x,y) \in \mathbb{R}^2 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \right\}: \text{ Ellipse} \\ \left\{ (x,y) \in \mathbb{R}^2 \mid \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \right\}: \text{ Hyperbola} \\ \left\{ (x,y) \in \mathbb{R}^2 \mid -\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \right\}: \text{ Hyperbola}$$

Surfaces in \mathbb{R}^3 : Examples of Graphs

$$\begin{cases} (x, y, z) \in \mathbb{R}^3 \mid z = ax + by \\ \{(x, y, z) \in \mathbb{R}^3 \mid z = \frac{x^2}{a^2} + \frac{y^2}{b^2} \\ \}: \text{ Elliptic Paraboloid} \\ \{(x, y, z) \in \mathbb{R}^3 \mid z = -\frac{x^2}{a^2} - \frac{y^2}{b^2} \\ \}: \text{ Elliptic Paraboloid} \\ \{(x, y, z) \in \mathbb{R}^3 \mid z = \frac{x^2}{a^2} - \frac{y^2}{b^2} \\ \}: \text{ Hyperbolic Paraboloid ("saddle")} \\ \{(x, y, z) \in \mathbb{R}^3 \mid z = -\frac{x^2}{a^2} + \frac{y^2}{b^2} \\ \}: \text{ Hyperbolic Paraboloid ("saddle")} \end{cases}$$

Surfaces in \mathbb{R}^3 : Examples of Level Sets

$$\begin{cases} (x, y, z) \in \mathbb{R}^3 \mid ax + by + cz = d \\ \{ (x, y, z) \in \mathbb{R}^3 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \\ \{ (x, y, z) \in \mathbb{R}^3 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \\ \{ (x, y, z) \in \mathbb{R}^3 \mid \frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \\ \} : \text{ Hyperboloid of 1 Sheet} \\ \\ \{ (x, y, z) \in \mathbb{R}^3 \mid \frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \\ \} : \text{ Hyperboloid of 2 Sheets} \end{cases}$$

Two Model Examples

Example 1A (Elliptic Paraboloid): Consider $f : \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = x^2 + y^2.$$

The level sets of f are curves in \mathbb{R}^2 . Level sets are $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = c\}$. The graph of f is a surface in \mathbb{R}^3 . Graph is $\{(x, y, z) \in \mathbb{R}^3 \mid z = x^2 + y^2\}$.

Notice that (0,0,0) is a <u>local minimum</u> of f. Note that $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$. Also, $\frac{\partial^2 f}{\partial x^2}(0,0) > 0$ and $\frac{\partial^2 f}{\partial y^2}(0,0) > 0$. Sketch the level sets of f and the graph of f:

Example 1B (Elliptic Paraboloid): Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = -x^2 - y^2.$$

The level sets of f are curves in \mathbb{R}^2 . Level sets are $\{(x, y) \in \mathbb{R}^2 \mid -x^2 - y^2 = c\}$. The graph of f is a surface in \mathbb{R}^3 . Graph is $\{(x, y, z) \in \mathbb{R}^3 \mid z = -x^2 - y^2\}$.

Notice that (0,0,0) is a <u>local maximum</u> of f. Note that $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$. Also, $\frac{\partial^2 f}{\partial x^2}(0,0) < 0$ and $\frac{\partial^2 f}{\partial y^2}(0,0) < 0$. Sketch the level sets of f and the graph of f:

Example 2 (Hyperbolic Paraboloid): Consider $f : \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = x^2 - y^2.$$

The level sets of f are curves in \mathbb{R}^2 . Level sets are $\{(x, y) \in \mathbb{R}^2 \mid x^2 - y^2 = c\}$. The graph of f is a surface in \mathbb{R}^3 . Graph is $\{(x, y, z) \in \mathbb{R}^3 \mid z = x^2 - y^2\}$.

Notice that (0,0,0) is a saddle point of the graph of f. Note that $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(\overline{0,0}) = 0$. Also, $\frac{\partial^2 f}{\partial x^2}(0,0) > 0$ while $\frac{\partial^2 f}{\partial y^2}(0,0) < 0$. Sketch the level sets of f and the graph of f:

Introduction: Derivatives of Functions $\mathbb{R}^n \to \mathbb{R}^m$

Def: Let $F : \mathbb{R}^n \to \mathbb{R}^m$ be a function, say

$$F(x_1,\ldots,x_n)=(F_1(x_1,\ldots,x_n),\ldots,F_m(x_1,\ldots,x_n)).$$

Its **derivative** at the point (x_1, \ldots, x_n) is the linear transformation $DF(x_1, \ldots, x_n) : \mathbb{R}^n \to \mathbb{R}^m$ whose $(m \times n)$ matrix is

$$DF(x_1,\ldots,x_n) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial F_m}{\partial x_1} & \cdots & \frac{\partial F_m}{\partial x_n} \end{bmatrix}$$

Note: The columns are the partial derivatives with respect to x_1 , then to x_2 , etc. The rows are the gradients of the component functions F^1 , F^2 , etc.

$$DF(x_1,\ldots,x_n) = \begin{bmatrix} \frac{\partial F}{\partial x_1} & \cdots & \frac{\partial F}{\partial x_n} \\ | & & | \end{bmatrix} = \begin{bmatrix} \dots & \nabla F_1 & \dots \\ & \vdots & \\ \dots & \nabla F_m & \dots \end{bmatrix}.$$

Example: Let $F \colon \mathbb{R}^2 \to \mathbb{R}^3$ be the function

$$F(x,y) = (x + 2y, \sin(x), e^y) = (F_1(x,y), F_2(x,y), F_3(x,y)).$$

Its **derivative** at (x, y) is a linear transformation $DF(x, y) \colon \mathbb{R}^2 \to \mathbb{R}^3$. The matrix of the linear transformation DF(x, y) is:

$$DF(x,y) = \begin{bmatrix} \frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} \\ \frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} \\ \frac{\partial F_3}{\partial x} & \frac{\partial F_3}{\partial y} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ \cos(x) & 0 \\ 0 & e^y \end{bmatrix}.$$

Notice that (for instance) DF(1,1) is a linear transformation, as is DF(2,3), etc. That is, each DF(x,y) is a linear transformation $\mathbb{R}^2 \to \mathbb{R}^3$.

Goals: We will:

- \circ Interpret the derivative of F as the "best linear approximation to F."
- State a Chain Rule for multivariable derivatives.

Introduction: Gradient of Functions $\mathbb{R}^n \to \mathbb{R}$

Def: Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function.

Recall: The derivative of $f : \mathbb{R}^n \to \mathbb{R}$ at the point $\mathbf{x} = (x_1, \dots, x_n)$ is the $1 \times n$ matrix

$$Df(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}.$$

The gradient of $f: \mathbb{R}^n \to \mathbb{R}$ at the point $\mathbf{x} = (x_1, \ldots, x_n)$ is the vector

$$abla f(\mathbf{x}) = \left[\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}\right].$$

The **directional derivative** of $f : \mathbb{R}^n \to \mathbb{R}$ at the point $\mathbf{x} = (x_1, \dots, x_n)$ in the direction $\mathbf{v} \in \mathbb{R}^n$ is the dot product of the vectors $\nabla f(\mathbf{x})$ and \mathbf{v} :

$$D_{\mathbf{v}}f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{v}.$$

We will give geometric interpretations of these concepts later in the course.

Introduction: Hessian of Functions $\mathbb{R}^n \to \mathbb{R}$

Theorem: Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function whose second partial derivatives are all continuous. Then:

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

In brief: "Second partials commute."

Def: Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function.

The **Hessian** of $f: \mathbb{R}^n \to \mathbb{R}$ at the point $\mathbf{x} = (x_1, \dots, x_n)$ is the $n \times n$ matrix

$$Hf(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}.$$

The **directional second derivative** of $f \colon \mathbb{R}^n \to \mathbb{R}$ at the point $\mathbf{x} = (x_1, \ldots, x_n)$ in the direction $\mathbf{v} \in \mathbb{R}^n$ is

$$\mathbf{v}^T H f(\mathbf{x}) \mathbf{v}.$$

Again, we will give geometric interpretations of these concepts later on.

Linear Approximation: Single-Variable Calculus

Review: In single-variable calc, we look at functions $f \colon \mathbb{R} \to \mathbb{R}$. We write y = f(x), and at a point (a, f(a)) write:

 $\Delta y \approx dy.$

Here, $\Delta y = f(x) - f(a)$, while $dy = f'(a)\Delta x = f'(a)(x - a)$. So:

$$f(x) - f(a) \approx f'(a)(x - a).$$

Therefore:

$$f(x) \approx f(a) + f'(a)(x-a)$$

The right-hand side f(a) + f'(a)(x - a) can be interpreted as follows:

- It is the **best linear approximation** to f(x) at x = a.
- It is the **1st Taylor polynomial** to f(x) at x = a.
- The line y = f(a) + f'(a)(x a) is the **tangent line** at (a, f(a)).

Linear Approximation: Multivariable Calculus

Now consider functions $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m$. At a point $(\mathbf{a}, \mathbf{f}(\mathbf{a}))$, we have exactly the same thing:

$$\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a}) \approx D\mathbf{f}(\mathbf{a})(\mathbf{x} - \mathbf{a}).$$

That is:

$$\mathbf{f}(\mathbf{x}) \approx \mathbf{f}(\mathbf{a}) + D\mathbf{f}(\mathbf{a})(\mathbf{x} - \mathbf{a}).$$
 (*)

Note: The object $D\mathbf{f}(\mathbf{a})$ is a *matrix*, while $(\mathbf{x} - \mathbf{a})$ is a *vector*. That is, $D\mathbf{f}(\mathbf{a})(\mathbf{x} - \mathbf{a})$ is matrix-vector multiplication.

Example: Let $f : \mathbb{R}^2 \to \mathbb{R}$. Let's write $\mathbf{x} = (x_1, x_2)$ and $\mathbf{a} = (a_1, a_2)$. Then (*) reads:

$$f(x_1, x_2) \approx f(a_1, a_2) + \begin{bmatrix} \frac{\partial f}{\partial x_1}(a_1, a_2) & \frac{\partial f}{\partial x_2}(a_1, a_2) \end{bmatrix} \begin{bmatrix} x_1 - a_1 \\ x_2 - a_2 \end{bmatrix}$$

= $f(a_1, a_2) + \frac{\partial f}{\partial x_1}(a_1, a_2)(x_1 - a_1) + \frac{\partial f}{\partial x_2}(a_1, a_2)(x_2 - a_2).$

Review: Taylor Polynomials in Single-Variable Calculus

Review: In single-variable calculus, we look at functions $f : \mathbb{R} \to \mathbb{R}$.

At a point $a \in \mathbb{R}$, the linear approximation (1st-deg Taylor polynomial) to f is:

$$f(x) \approx f(a) + f'(a)(x-a)$$

More accurate is the quadratic approximation (2nd-deg Taylor polynomial)

$$f(x) \approx f(a) + f'(a)(x-a) + \frac{1}{2!}f''(a)(x-a)^2.$$

We would like to have similar ideas for multivariable functions.

Linear Approximation: 1st-Deg Taylor Polynomials

Let $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m$. The linear approximation of \mathbf{f} at the point $\mathbf{a} \in \mathbb{R}^n$ is:

$$\mathbf{f}(\mathbf{x}) \approx \mathbf{f}(\mathbf{a}) + D\mathbf{f}(\mathbf{a})(\mathbf{x} - \mathbf{a}). \tag{1}$$

Note that $D\mathbf{f}(\mathbf{a})$ is a *matrix*, while $(\mathbf{x} - \mathbf{a})$ is a *vector*. That is, $D\mathbf{f}(\mathbf{a})(\mathbf{x} - \mathbf{a})$ is matrix-vector multiplication.

Note that (1) is the best linear approximation to $\mathbf{f}(\mathbf{x})$ for points \mathbf{x} near \mathbf{a} . It is the 1st-degree Taylor polynomial to $\mathbf{f}(\mathbf{x})$ at \mathbf{a} .

Quadratic Approximation: 2nd-Deg Taylor Polynomials

Let $f : \mathbb{R}^n \to \mathbb{R}$. The quadratic approximation of **f** at the point $\mathbf{a} \in \mathbb{R}^n$ is:

$$f(\mathbf{x}) \approx f(\mathbf{a}) + Df(\mathbf{a})(\mathbf{x} - \mathbf{a}) + \frac{1}{2!}(\mathbf{x} - \mathbf{a})^T H f(\mathbf{a})(\mathbf{x} - \mathbf{a}).$$
(2)

Note that $(\mathbf{x} - \mathbf{a})^T$ is a row vector, while $(\mathbf{x} - \mathbf{a})$ is a column vector, while $Hf(\mathbf{a})$ is a matrix. So, $\frac{1}{2!}(\mathbf{x} - \mathbf{a})^T Hf(\mathbf{a})(\mathbf{x} - \mathbf{a})$ is of the form $\mathbf{v}^T A \mathbf{v}$.

Note that (2) is the best quadratic approximation to $f(\mathbf{x})$ for points \mathbf{x} near \mathbf{a} . It is the 2nd-degree Taylor polynomial to $f(\mathbf{x})$ at \mathbf{a} .

Example: Let
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 be $f(x, y) = x^3 \sin(y)$. For (x, y) near $\mathbf{a} = (2, \frac{\pi}{2})$:
 $f(x, y) \approx f(2, \frac{\pi}{2}) + Df(2, \frac{\pi}{2}) \begin{bmatrix} x-2\\ y-\frac{\pi}{2} \end{bmatrix} + \frac{1}{2!} \begin{bmatrix} x-2 & y-\frac{\pi}{2} \end{bmatrix} Hf(2, \frac{\pi}{2}) \begin{bmatrix} x-2\\ y-\frac{\pi}{2} \end{bmatrix}$

$$= 8 + \begin{bmatrix} 12 & 0 \end{bmatrix} \begin{bmatrix} x-2\\ y-\frac{\pi}{2} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} x-2 & y-\frac{\pi}{2} \end{bmatrix} \begin{bmatrix} 12 & 0\\ 0 & -8 \end{bmatrix} \begin{bmatrix} x-2\\ y-\frac{\pi}{2} \end{bmatrix}$$

$$= 8 + 12(x-2) + 6(x-2)^2 - 4(y-\frac{\pi}{2})^2.$$

Tangent Lines/Planes to Graphs

Fact: Suppose a curve in \mathbb{R}^2 is given as a graph y = f(x). The equation of the tangent line at (a, f(a)) is:

$$y = f(a) + f'(a)(x - a).$$

Okay, you knew this from single-variable calculus. How does the multivariable case work? Well:

Fact: Suppose a surface in \mathbb{R}^3 is given as a graph z = f(x, y). The equation of the tangent plane at (a, b, f(a, b)) is:

$$z = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b).$$

Notice the similarity between this and the linear approximation to f at (a, b).

Tangent Lines/Planes to Level Sets

Def: For a function $F \colon \mathbb{R}^n \to \mathbb{R}$, its **gradient** is the vector in \mathbb{R}^n given by:

$$\nabla F = \left[\frac{\partial F}{\partial x_1}, \frac{\partial F}{\partial x_2}, \dots, \frac{\partial F}{\partial x_n}\right].$$

Theorem: Consider a level set $F(x_1, \ldots, x_n) = c$ of a function $F \colon \mathbb{R}^n \to \mathbb{R}$. If (a_1, \ldots, a_n) is a point on the level set, then $\nabla F(a_1, \ldots, a_n)$ is normal to the level set.

Corollary 1: Suppose a curve in \mathbb{R}^2 is given as a level curve F(x, y) = c. The equation of the tangent line at a point (x_0, y_0) on the level curve is:

$$\frac{\partial F}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial F}{\partial y}(x_0, y_0)(y - y_0) = 0.$$

Corollary 2: Suppose a surface in \mathbb{R}^3 is given as a level surface F(x, y, z) = c. The equation of the tangent plane at a point (x_0, y_0, z_0) on the level surface is:

$$\frac{\partial F}{\partial x}(x_0, y_0, z_0)(x - x_0) + \frac{\partial F}{\partial y}(x_0, y_0, z_0)(y - y_0) + \frac{\partial F}{\partial z}(x_0, y_0, z_0)(z - z_0) = 0.$$

Q: Do you see why Cor 1 and Cor 2 follow from the Theorem?

Composition and Matrix Multiplication

Recall: Let $f: X \to Y$ and $g: Y \to Z$ be functions. Their **composition** is the function $g \circ f: X \to Z$ defined by

$$(g \circ f)(x) = g(f(x)).$$

Observations:

(1) For this to make sense, we must have: co-domain(f) = domain(g).

(2) Composition is <u>not</u> generally commutative: that is, $f \circ g$ and $g \circ f$ are usually different.

(3) Composition is always associative: $(h \circ g) \circ f = h \circ (g \circ f)$.

Fact: If $T : \mathbb{R}^k \to \mathbb{R}^n$ and $S : \mathbb{R}^n \to \mathbb{R}^m$ are both linear transformations, then $S \circ T$ is also a linear transformation.

Question: How can we describe the matrix of the linear transformation $S \circ T$ in terms of the matrices of S and T?

Fact: Let $T: \mathbb{R}^n \to \mathbb{R}^n$ and $S: \mathbb{R}^n \to \mathbb{R}^m$ be linear transformations with matrices B and A, respectively. Then the matrix of $S \circ T$ is the product AB.

We can multiply an $m \times n$ matrix A by an $n \times k$ matrix B. The result, AB, will be an $m \times k$ matrix:

$$(m \times n)(n \times k) \to (m \times k).$$

Notice that n appears twice here to "cancel out." That is, we need the number of rows of A to equal the number of columns of B – otherwise, the product AB makes no sense.

Example 1: Let A be a (3×2) -matrix, and let B be a (2×4) -matrix. The product AB is then a (3×4) -matrix.

Example 2: Let A be a (2×3) -matrix, and let B be a (4×2) -matrix. Then AB is not defined. (But the product BA is defined: it is a (4×3) -matrix.)

Chain Rule

Chain Rule (Matrix Form): Let $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbf{g} \colon \mathbb{R}^m \to \mathbb{R}^p$ be any differentiable functions. Then

$$D(\mathbf{g} \circ \mathbf{f})(\mathbf{x}) = D\mathbf{g}(\mathbf{f}(\mathbf{x})) \cdot D\mathbf{f}(\mathbf{x}).$$

Here, the product on the right-hand side is a product of matrices.

Many texts describe the chain rule in the following more classical form. While there is a "classical" form in the general case of functions $\mathbf{g} \colon \mathbb{R}^m \to \mathbb{R}^p$, we will keep things simple and only state the case of functions $g \colon \mathbb{R}^m \to \mathbb{R}$ with codomain \mathbb{R} .

Chain Rule (Classical Form): Let $g = g(x_1, \ldots, x_m)$ and suppose each x_1, \ldots, x_m is a function of the variables t_1, \ldots, t_n . Then:

$$\frac{\partial g}{\partial t_1} = \frac{\partial g}{\partial x_1} \frac{\partial x_1}{\partial t_1} + \frac{\partial g}{\partial x_2} \frac{\partial x_2}{\partial t_1} + \dots + \frac{\partial g}{\partial x_m} \frac{\partial x_m}{\partial t_1},$$

$$\vdots$$

$$\frac{\partial g}{\partial t_n} = \frac{\partial g}{\partial x_1} \frac{\partial x_1}{\partial t_n} + \frac{\partial g}{\partial x_2} \frac{\partial x_2}{\partial t_1} + \dots + \frac{\partial g}{\partial x_m} \frac{\partial x_m}{\partial t_n}.$$

Example 1: Let z = g(u, v), where u = h(x, y) and v = k(x, y). Then the chain rule reads:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial z}{\partial v}\frac{\partial v}{\partial x}$$
$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u}\frac{\partial u}{\partial y} + \frac{\partial z}{\partial v}\frac{\partial v}{\partial y}.$$

and

Example 2: Let
$$z = g(u, v, w)$$
, where $u = h(t)$, $v = k(t)$, $w = \ell(t)$. Then the chain rule reads:

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial u}\frac{\partial u}{\partial t} + \frac{\partial z}{\partial v}\frac{\partial v}{\partial t} + \frac{\partial z}{\partial w}\frac{\partial w}{\partial t}.$$

Since u, v, w are functions of just a single variable t, we can also write this formula as:

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial u}\frac{du}{dt} + \frac{\partial z}{\partial v}\frac{dv}{dt} + \frac{\partial z}{\partial w}\frac{dw}{dt}$$

For Clarification: The Two Forms of the Chain Rule

Q: How exactly are the two forms of the chain rule the same?

A: If we completely expand the matrix form, writing out everything in components, we end up with the classical form. The following examples may clarify.

Example 1: Suppose z = g(u, v), where u = h(x, y) and v = k(x, y). This setup means we essentially have two functions:

$$g: \mathbb{R}^2 \to \mathbb{R} \quad \text{and} \quad f: \mathbb{R}^2 \to \mathbb{R}^2$$
$$g(u, v) = z \quad f(x, y) = (h(x, y), k(x, y)) = (u, v).$$

The matrix form of the Chain Rule reads:

$$D(g \circ f)(x, y) = Dg(f(x, y)) \cdot Df(x, y)$$
$$\left[\frac{\partial(g \circ f)}{\partial x}, \frac{\partial(g \circ f)}{\partial y}\right] = \left[\frac{\partial g}{\partial u}, \frac{\partial g}{\partial v}\right] \left[\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y}\right]$$
$$\left[\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right] = \left[\frac{\partial g}{\partial u}\frac{\partial h}{\partial x} + \frac{\partial g}{\partial v}\frac{\partial k}{\partial x}, \frac{\partial g}{\partial u}\frac{\partial h}{\partial y} + \frac{\partial g}{\partial v}\frac{\partial k}{\partial y}\right]$$

Setting components equal to each other, we conclude that

$$\frac{\partial z}{\partial x} = \frac{\partial g}{\partial u}\frac{\partial h}{\partial x} + \frac{\partial g}{\partial v}\frac{\partial k}{\partial x}$$

and

$$\frac{\partial z}{\partial y} = \frac{\partial g}{\partial u} \frac{\partial h}{\partial y} + \frac{\partial g}{\partial v} \frac{\partial k}{\partial y}.$$

This is exactly the classical form of the Chain Rule. \Box

Example 2: Suppose z = g(u, v, w), where u = h(t), v = k(t), $w = \ell(t)$. This setup means we essentially have two functions:

$$g \colon \mathbb{R}^3 \to \mathbb{R} \quad \text{and} \quad f \colon \mathbb{R} \to \mathbb{R}^3$$
$$g(u, v, w) = z \quad f(t) = (h(t), k(t), \ell(t)) = (u, v, w).$$

The matrix form of the Chain Rule reads:

$$D(g \circ f)(t) = Dg(f(t)) \cdot Df(t)$$
$$\begin{bmatrix} \frac{\partial (g \circ f)}{\partial t} \end{bmatrix} = \begin{bmatrix} \frac{\partial g}{\partial u}, & \frac{\partial g}{\partial v}, & \frac{\partial g}{\partial w} \end{bmatrix} \begin{bmatrix} \frac{\partial h}{\partial t} \\ \frac{\partial k}{\partial t} \\ \frac{\partial \ell}{\partial t} \end{bmatrix}$$
$$\frac{\partial z}{\partial t} = \frac{\partial g}{\partial u} \frac{\partial h}{\partial t} + \frac{\partial g}{\partial v} \frac{\partial k}{\partial t} + \frac{\partial g}{\partial w} \frac{\partial \ell}{\partial t}$$

Again, we recovered the classical form of the Chain Rule. \Box

Inverses: Abstract Theory

Def: A function $f: X \to Y$ is **invertible** if there is a function $f^{-1}: Y \to X$ satisfying:

$$f^{-1}(f(x)) = x$$
, for all $x \in X$, and
 $f(f^{-1}(y)) = y$, for all $y \in Y$.

In such a case, f^{-1} is called an **inverse function** for f.

In other words, the function f^{-1} "undoes" the function f. For example, an inverse function of $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$ is $f^{-1}: \mathbb{R} \to \mathbb{R}$, $f^{-1}(x) = \sqrt[3]{x}$. An inverse of $g: \mathbb{R} \to (0, \infty)$, $g(x) = 2^x$ is $g^{-1}: (0, \infty) \to \mathbb{R}$, $g^{-1}(x) = \log_2(x)$.

Whenever a new concept is defined, a mathematician asks two questions:

(1) Uniqueness: Are inverses unique? That is, must a function f have at most one inverse f^{-1} , or is it possible for f to have several different inverses?

Answer: Yes.

Prop 16.1: If $f: X \to Y$ is invertible (that is, f has an inverse), then the inverse function f^{-1} is unique (that is, there is only one inverse function).

(2) **Existence:** Do inverses always exist? That is, does every function f have an inverse function f^{-1} ?

Answer: No. Some functions have inverses, but others don't.

New question: Which functions have inverses?

Prop 16.3: A function $f: X \to Y$ is invertible if and only if f is both "one-to-one" and "onto."

Despite their fundamental importance, there's no time to talk about "oneto-one" and "onto," so you don't have to learn these terms. This is sad :-(

Question: If inverse functions "undo" our original functions, can they help us solve equations? Yes! That's the entire point:

Prop 16.2: A function $f: X \to Y$ is invertible if and only if for every $b \in Y$, the equation f(x) = b has exactly one solution $x \in X$.

In this case, the solution to the equation f(x) = b is given by $x = f^{-1}(b)$.

Inverses of Linear Transformations

Question: Which linear transformations $T : \mathbb{R}^n \to \mathbb{R}^m$ are invertible? (Equiv: Which $m \times n$ matrices A are invertible?)

Fact: If $T: \mathbb{R}^n \to \mathbb{R}^m$ is invertible, then m = n. So: If an $m \times n$ matrix A is invertible, then m = n.

In other words, non-square matrices are never invertible. But square matrices may or may not be invertible. Which ones are invertible? Well:

Theorem: Let A be an $n \times n$ matrix. The following are equivalent:

(i) A is invertible (ii) $N(A) = \{\mathbf{0}\}$ (iii) $C(A) = \mathbb{R}^n$ (iv) $\operatorname{rref}(A) = I_n$ (v) $\det(A) \neq 0$.

To Repeat: An $n \times n$ matrix A is invertible if and only if for every $\mathbf{b} \in \mathbb{R}^n$, the equation $A\mathbf{x} = \mathbf{b}$ has exactly one solution $\mathbf{x} \in \mathbb{R}^n$.

In this case, the solution to the equation $A\mathbf{x} = \mathbf{b}$ is given by $\mathbf{x} = A^{-1}\mathbf{b}$.

Q: How can we find inverse matrices? This is accomplished via:

Prop 16.7: If A is an invertible matrix, then $\operatorname{rref}[A \mid I_n] = [I_n \mid A^{-1}].$

Useful Formula: Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a 2×2 matrix. If A is invertible (det(A) = $ad - bc \neq 0$), then:

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Prop 16.8: Let $f: X \to Y$ and $g: Y \to Z$ be invertible functions. Then: (a) f^{-1} is invertible and $(f^{-1})^{-1} = f$. (b) $g \circ f$ is invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Corollary: Let A, B be invertible $n \times n$ matrices. Then:

- (a) A^{-1} is invertible and $(A^{-1})^{-1} = A$.
- (b) *AB* is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

The Gradient: Two Interpretations

Recall: For a function $F \colon \mathbb{R}^n \to \mathbb{R}$, its **gradient** is the vector in \mathbb{R}^n given by:

$$\nabla F = \left[\frac{\partial F}{\partial x_1}, \frac{\partial F}{\partial x_2}, \dots, \frac{\partial F}{\partial x_n}\right].$$

There are two ways to think about the gradient. They are interrelated.

Gradient: Normal to Level Sets

Theorem: Consider a level set $F(x_1, \ldots, x_n) = c$ of a function $F \colon \mathbb{R}^n \to \mathbb{R}$. If (a_1, \ldots, a_n) is a point on the level set, then $\nabla F(a_1, \ldots, a_n)$ is normal to the level set.

Example: If we have a level curve F(x, y) = c in \mathbb{R}^2 , the gradient vector $\nabla F(x_0, y_0)$ is a normal vector to the level curve at the point (x_0, y_0) .

Example: If we have a level surface F(x, y, z) = c in \mathbb{R}^3 , the gradient vector $\nabla F(x_0, y_0, z_0)$ is a normal vector to the level surface at the point (x_0, y_0, z_0) .

Normal vectors help us find tangent planes to level sets (see the handout "Tangent Lines/Planes...") But there's another reason we like normal vectors.

Gradient: Direction of Steepest Ascent for Graphs

Observation: A normal vector to a level set $F(x_1, \ldots, x_n) = c$ in \mathbb{R}^n is the direction of steepest ascent for the graph $z = F(x_1, \ldots, x_n)$ in \mathbb{R}^{n+1} .

Example (Elliptic Paraboloid): Let $f: \mathbb{R}^2 \to \mathbb{R}$ be $f(x, y) = 2x^2 + 3y^2$. The level sets of f are the ellipses $2x^2 + 3y^2 = c$ in \mathbb{R}^2 . The graph of f is the elliptic paraboloid $z = 2x^2 + 3y^2$ in \mathbb{R}^3 .

At the point $(1,1) \in \mathbb{R}^2$, the gradient vector $\nabla f(1,1) = \begin{bmatrix} 4\\6 \end{bmatrix}$ is normal to the level curve $2x^2 + 3y^2 = 5$. So, if we were hiking on the surface $z = 2x^2 + 3y^2$ in \mathbb{R}^3 and were at the point (1,1,f(1,1)) = (1,1,5), to ascend the surface the fastest, we would hike in the direction of $\begin{bmatrix} 4\\6 \end{bmatrix}$. \Box

Warning: Note that ∇f is normal to the level sets of f. It is <u>not</u> a normal vector to the graph of f.

Directional Derivatives

Def: For a function $f: \mathbb{R}^n \to \mathbb{R}$, its **directional derivative** at the point $\mathbf{x} \in \mathbb{R}^n$ in the direction $\mathbf{v} \in \mathbb{R}^n$ is:

$$D_{\mathbf{v}}f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{v}.$$

Here, \cdot is the dot product of vectors. Therefore,

$$D_{\mathbf{v}}f(\mathbf{x}) = \|\nabla f(\mathbf{x})\| \|\mathbf{v}\| \cos \theta, \text{ where } \theta = \measuredangle (\nabla f(\mathbf{x}), \mathbf{v}).$$

Usually, we assume that \mathbf{v} is a unit vector, meaning $\|\mathbf{v}\| = 1$.

Example: Let
$$f : \mathbb{R}^2 \to \mathbb{R}$$
. Let $\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$. Then:
$$D_{\mathbf{v}}f(x,y) = \nabla f(x,y) \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} = a \frac{\partial f}{\partial x} + b \frac{\partial f}{\partial y}$$

In particular, we have two important special cases:

$$D_{\mathbf{e}_1}f(x,y) = \nabla f(x,y) \cdot \begin{bmatrix} 1\\ 0 \end{bmatrix} = \frac{\partial f}{\partial x}$$
$$D_{\mathbf{e}_2}f(x,y) = \nabla f(x,y) \cdot \begin{bmatrix} 0\\ 1 \end{bmatrix} = \frac{\partial f}{\partial y}.$$

Point: Partial derivatives are themselves examples of directional derivatives!

Namely, $\frac{\partial f}{\partial x}$ is the directional derivative of f in the \mathbf{e}_1 -direction, while $\frac{\partial f}{\partial y}$ is the directional derivative in the \mathbf{e}_2 -direction.

Question: At a point **a**, in which direction **v** will the function f grow the most? i.e.: At a given point **a**, for which unit vector **v** is $D_{\mathbf{v}}f(\mathbf{a})$ maximized?

Theorem 6.3: Fix a point $\mathbf{a} \in \mathbb{R}^n$.

(a) The directional derivative $D_{\mathbf{v}}f(\mathbf{a})$ is <u>maximized</u> when \mathbf{v} points in the same direction as $\nabla f(\mathbf{a})$.

(b) The directional derivative $D_{\mathbf{v}}f(\mathbf{a})$ is <u>minimized</u> when \mathbf{v} points in the opposite direction as $\nabla f(\mathbf{a})$.

In fact: The maximum and minimum values of $D_{\mathbf{v}}f(\mathbf{a})$ at the point $\mathbf{a} \in \mathbb{R}^n$ are $\|\nabla f(\mathbf{a})\|$ and $-\|\nabla f(\mathbf{a})\|$. (Assuming we only care about unit vectors \mathbf{v} .)

Determinants

There are two reasons why determinants are important:

- (1) Algebra: Determinants tell us whether a matrix is invertible or not.
- (2) Geometry: Determinants are related to area and volume.

Determinants: Algebra

Prop 17.3: An $n \times n$ matrix A is invertible $\iff \det(A) \neq 0$.

Moreover: if A is invertible, then

$$\det(A^{-1}) = \frac{1}{\det(A)}.$$

Properties of Determinants (17.2, 17.4):

(1) (Multiplicativity) det(AB) = det(A) det(B).

(2) (Alternation) Exchanging two rows of a matrix reverses the sign of the determinant.

(3) (Multilinearity): First:

	a_1	a_2	• • •	a_n		b_1	b_2		b_n		$a_1 + b_1$	$a_2 + b_2$		$a_n + b_n$
det	c_{21}	c_{22}	• • •	c_{2n}	$+ \det$	c_{21}	c_{22}	•••	c_{2n}	$= \det$	c_{21}	c_{22}	•••	c_{2n}
	:	÷	·	÷		:	÷	۰.	:		÷	÷	·	:
	$\lfloor c_{n1} \rfloor$	c_{n2}	• • •	c_{nn}		c_{n1}	c_{n2}	• • •	c_{nn}		c_{n1}	c_{n2}	• • •	c_{nn}

and similarly for the other rows; Second:

1.	ka_{11}	ka_{12}	•••	ka_{1n}		a_{11}	a_{12}	• • •	a_{1n}
	a_{21}	a_{22}	•••	a_{2n}		a_{21}	a_{22}	•••	a_{2n}
det	:	÷	·	÷	$= k \det$	÷	÷	۰.	:
	a_{n1}	a_{n2}	•••	a_{nn}		a_{n1}	a_{n2}	•••	a_{nn}

and similarly for the other rows. Here, $k \in \mathbb{R}$ is any scalar.

Warning! Multilinearity does <u>not</u> say that det(A + B) = det(A) + det(B). It also does <u>not</u> say det(kA) = k det(A). But: $det(kA) = k^n det(A)$ is true.

Determinants: Geometry

Prop 17.5: Let A be any 2×2 matrix. Then the area of the parallelogram generated by the columns of A is $|\det(A)|$.

Prop 17.6: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with matrix A. Let R be a region in \mathbb{R}^2 . Then:

$$\operatorname{Area}(T(R)) = |\det(A)| \cdot \operatorname{Area}(R).$$

Coordinate Systems

Def: Let V be a k-dim subspace of \mathbb{R}^n . Each basis $\mathcal{B} = {\mathbf{v}_1, \ldots, \mathbf{v}_k}$ determines a **coordinate system** on V.

That is: Every vector $\mathbf{v} \in V$ can be written uniquely as a linear combination of the basis vectors:

$$\mathbf{v} = c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k.$$

We then call c_1, \ldots, c_k the **coordinates** of **v** with respect to the basis \mathcal{B} . We then write

$$[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix}.$$

Note that $[\mathbf{v}]_{\mathcal{B}}$ has k components, even though $\mathbf{v} \in \mathbb{R}^n$.

Note: Levandosky (L21: p 145-149) explains all this very clearly, in much more depth than this review sheet provides. The examples are also quite good: make sure you understand all of them.

Def: Let $\mathcal{B} = {\mathbf{v}_1, \dots, \mathbf{v}_k}$ be a basis for a k-dim subspace V of \mathbb{R}^n . The **change-of-basis matrix** for the basis \mathcal{B} is:

$$C = \begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_k \\ | & | & | \end{bmatrix}.$$

Every vector $\mathbf{v} \in V$ in the subspace V can be written

$$\mathbf{v} = c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k.$$

In other words:

$$\mathbf{v} = C[\mathbf{v}]_{\mathcal{B}}$$

This formula tells us how to go between the standard coordinates for \mathbf{v} and the \mathcal{B} -coordinates of \mathbf{v} .

Special Case: If $V = \mathbb{R}^n$ and \mathcal{B} is a basis of \mathbb{R}^n , then the matrix C will be invertible, and therefore:

$$[\mathbf{v}]_{\mathcal{B}} = C^{-1}\mathbf{v}.$$