Transpose & Dot Product

Def: The **transpose** of an $m \times n$ matrix A is the $n \times m$ matrix A^T whose columns are the rows of A.

So: The columns of A^T are the rows of A. The rows of A^T are the columns of A. п.

Example: If
$$
A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}
$$
, then $A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$.

Convention: From now on, vectors $\mathbf{v} \in \mathbb{R}^n$ will be regarded as "columns" (i.e.: $n \times 1$ matrices). Therefore, \mathbf{v}^T is a "row vector" (a $1 \times n$ matrix).

Observation: Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. Then $\mathbf{v}^T \mathbf{w} = \mathbf{v} \cdot \mathbf{w}$. This is because:

$$
\mathbf{v}^T \mathbf{w} = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix} = v_1 w_1 + \cdots + v_n w_n = \mathbf{v} \cdot \mathbf{w}.
$$

Where theory is concerned, the key property of transposes is the following:

Prop 18.2: Let A be an $m \times n$ matrix. Then for $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$:

$$
(A\mathbf{x}) \cdot \mathbf{y} = \mathbf{x} \cdot (A^T \mathbf{y}).
$$

Here, \cdot is the dot product of vectors.

Extended Example

Let A be a 5×3 matrix, so $A: \mathbb{R}^3 \to \mathbb{R}^5$. \circ N(A) is a subspace of \mathbb{R}^3 \circ $C(A)$ is a subspace of \mathbb{R}^5 .

The transpose A^T is a 5×3 matrix, so $A^T: \mathbb{R}^5 \to \mathbb{R}^3$ \circ $C(A^T)$ is a subspace of \mathbb{R}^3 \circ $N(A^T)$ is a subspace of \mathbb{R}^5

Observation: Both $C(A^T)$ and $N(A)$ are subspaces of \mathbb{R}^3 . Might there be a geometric relationship between the two? (No, they're not equal.) Hm...

Also: Both $N(A^T)$ and $C(A)$ are subspaces of \mathbb{R}^5 . Might there be a geometric relationship between the two? (Again, they're not equal.) Hm...

Orthogonal Complements

Def: Let $V \subset \mathbb{R}^n$ be a subspace. The **orthogonal complement** of V is the set

$$
V^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \cdot \mathbf{v} = 0 \text{ for every } \mathbf{v} \in V \}.
$$

So, V^{\perp} consists of the vectors which are orthogonal to every vector in V.

Fact: If $V \subset \mathbb{R}^n$ is a subspace, then $V^{\perp} \subset \mathbb{R}^n$ is a subspace.

Examples in \mathbb{R}^3 :

- \circ The orthogonal complement of $V = \{0\}$ is $V^{\perp} = \mathbb{R}^3$
- \circ The orthogonal complement of $V = \{z\text{-axis}\}\$ is $V^{\perp} = \{xy\text{-plane}\}\$
- \circ The orthogonal complement of $V = \{xy\}$ -plane is $V^{\perp} = \{z\}$ -axis
- \circ The orthogonal complement of $V = \mathbb{R}^3$ is $V^{\perp} = \{0\}$

Examples in \mathbb{R}^4 :

- \circ The orthogonal complement of $V = \{0\}$ is $V^{\perp} = \mathbb{R}^4$
- \circ The orthogonal complement of $V = \{w\text{-axis}\}\$ is $V^{\perp} = \{xyz\text{-space}\}\$
- \circ The orthogonal complement of $V = \{zw\text{-plane}\}\$ is $V^{\perp} = \{xy\text{-plane}\}\$
- \circ The orthogonal complement of $V = \{xyz\text{-space}\}\$ is $V^{\perp} = \{w\text{-axis}\}\$
- \circ The orthogonal complement of $V = \mathbb{R}^4$ is $V^{\perp} = \{0\}$

Prop 19.3-19.4-19.5: Let $V \subset \mathbb{R}^n$ be a subspace. Then:

- (a) dim(V) + dim(V^{\perp}) = n
- (b) $(V^{\perp})^{\perp} = V$
- (c) $V \cap V^{\perp} = \{0\}$
- (d) $V + V^{\perp} = \mathbb{R}^n$.

Part (d) means: "Every vector $\mathbf{x} \in \mathbb{R}^n$ can be written as a sum $\mathbf{x} = \mathbf{v} + \mathbf{w}$ where $\mathbf{v} \in V$ and $\mathbf{w} \in V^{\perp}$."

Also, it turns out that the expression $\mathbf{x} = \mathbf{v} + \mathbf{w}$ is unique: that is, there is only one way to write **x** as a sum of a vector in V and a vector in V^{\perp} .

Meaning of $C(A^T)$ and $N(A^T)$

Q: What does $C(A^T)$ mean? Well, the columns of A^T are the rows of A. So:

 $C(A^T) = \text{column space of } A^T$

 $=$ span of columns of A^T

 $=$ span of rows of A .

For this reason: We call $C(A^T)$ the row space of A.

Q: What does $N(A^T)$ mean? Well:

$$
\mathbf{x} \in N(A^T) \iff A^T \mathbf{x} = \mathbf{0}
$$

$$
\iff (A^T \mathbf{x})^T = \mathbf{0}^T
$$

$$
\iff \mathbf{x}^T A = \mathbf{0}^T.
$$

So, for an $m \times n$ matrix A, we see that: $N(A^T) = {\mathbf{x} \in \mathbb{R}^m | \mathbf{x}^T A = \mathbf{0}^T}.$ For this reason: We call $N(A^T)$ the **left null space** of A.

Relationships among the Subspaces

Theorem: Let A be an $m \times n$ matrix. Then: $\circ \ C(A^T) = N(A)^{\perp}$ $\circ N(A^T) = C(A)^{\perp}$

Corollary: Let A be an $m \times n$ matrix. Then: $\circ \ C(A) = N(A^T)^{\perp}$ $\circ N(A) = C(A^T)^{\perp}$

Prop 18.3: Let A be an $m \times n$ matrix. Then $\text{rank}(A) = \text{rank}(A^T)$.

Motivating Questions for Reading

Problem 1: Let $\mathbf{b} \in C(A)$. So, the system of equations $A\mathbf{x} = \mathbf{b}$ does have solutions, possibly infinitely many.

Q: What is the solution **x** of A **x** = **b** with $\|\mathbf{x}\|$ the smallest?

Problem 2: Let $b \notin C(A)$. So, the system of equations $A\mathbf{x} = \mathbf{b}$ does not have any solutions. In other words, $A\mathbf{x} - \mathbf{b} \neq \mathbf{0}$.

Q: What is the vector **x** that minimizes the error $||A\mathbf{x}-\mathbf{b}||$? That is, what is the vector **x** that comes closest to being a solution to $A\mathbf{x} = \mathbf{b}$?

Orthogonal Projection

Def: Let $V \subset \mathbb{R}^n$ be a subspace. Then every vector $\mathbf{x} \in \mathbb{R}^n$ can be written uniquely as

 $\mathbf{x} = \mathbf{v} + \mathbf{w}$, where $\mathbf{v} \in V$ and $\mathbf{w} \in V^{\perp}$.

The **orthogonal projection** onto V is the function $\text{Proj}_V \colon \mathbb{R}^n \to \mathbb{R}^n$ given by: $\text{Proj}_V(\mathbf{x}) = \mathbf{v}$. (Note that $\text{Proj}_{V^{\perp}}(\mathbf{x}) = \mathbf{w}$.)

Prop 20.1: Let $V \subset \mathbb{R}^n$ be a subspace. Then:

$$
\text{Proj}_V + \text{Proj}_{V^{\perp}} = I_n.
$$

Of course, we already knew this: We have $\mathbf{x} = \mathbf{v} + \mathbf{w} = \text{Proj}_V(\mathbf{x}) + \text{Proj}_{V^{\perp}}(\mathbf{x})$.

Formula: Let $\{v_1, \ldots, v_k\}$ be a basis of $V \subset \mathbb{R}^n$. Let A be the $n \times k$ matrix

$$
A = \begin{bmatrix} | & & | \\ \mathbf{v}_1 & \cdots & \mathbf{v}_k \\ | & & | \end{bmatrix}.
$$

Then:

$$
\text{Proj}_V = A(A^T A)^{-1} A^T. \tag{*}
$$

Geometry Observations: Let $V \subset \mathbb{R}^n$ be a subspace, and $\mathbf{x} \in \mathbb{R}^n$ a vector.

- (1) The distance from **x** to V is: $\|\text{Proj}_{V^{\perp}}(\mathbf{x})\| = \|\mathbf{x} \text{Proj}_{V}(\mathbf{x})\|.$
- (2) The vector in V that is closest to **x** is: $\text{Proj}_V(\mathbf{x})$.

Derivation of (*): Notice $\text{Proj}_V(\mathbf{x})$ is a vector in $V = \text{span}(\mathbf{v}_1, \dots, \mathbf{v}_k) = C(A) = \text{Range}(A)$, and therefore $\text{Proj}_V(\mathbf{x}) = A\mathbf{y}$ for some vector $\mathbf{y} \in \mathbb{R}^k$.

Now notice that $\mathbf{x} - \text{Proj}_V(\mathbf{x}) = \mathbf{x} - A\mathbf{y}$ is a vector in $V^{\perp} = C(A)^{\perp} = N(A^T)$, which means that $A^T(\mathbf{x} - A\mathbf{y}) = \mathbf{0}$, which means $A^T \mathbf{x} = A^T A \mathbf{y}$.

Now, it turns out that our matrix $A^T A$ is invertible (proof in L20), so we get $\mathbf{y} = (A^T A)^{-1} A^T \mathbf{x}$. Thus, $\text{Proj}_V(\mathbf{x}) = A\mathbf{y} = A(A^T A)^{-1} A^T \mathbf{x}.$ \diamondsuit

Minimum Magnitude Solution

Prop 19.6: Let $\mathbf{b} \in C(A)$ (so $A\mathbf{x} = \mathbf{b}$ has solutions). Then there exists exactly one vector $\mathbf{x}_0 \in C(A^T)$ with $A\mathbf{x}_0 = \mathbf{b}$.

And: Among all solutions of $A\mathbf{x} = \mathbf{b}$, the vector \mathbf{x}_0 has the smallest length.

In other words: There is exactly one vector x_0 in the row space of A which solves $A\mathbf{x} = \mathbf{b}$ – and this vector is the solution of smallest length.

To Find x_0 **:** Start with any solution **x** of $Ax = b$. Then

$$
\mathbf{x}_0 = \text{Proj}_{C(A^T)}(\mathbf{x}).
$$

Least Squares Approximation

Idea: Suppose $\mathbf{b} \notin C(A)$. So, $A\mathbf{x} = \mathbf{b}$ has no solutions, so $A\mathbf{x} - \mathbf{b} \neq \mathbf{0}$.

We want to find the vector \mathbf{x}^* which minimizes the error $||A\mathbf{x}^* - \mathbf{b}||$. That is, we want the vector \mathbf{x}^* for which $A\mathbf{x}^*$ is the closest vector in $C(A)$ to **b**.

In other words, we want the vector \mathbf{x}^* for which $A\mathbf{x}^* - \mathbf{b}$ is orthogonal to $C(A)$. So, $A\mathbf{x}^* - \mathbf{b} \in C(A)^{\perp} = N(A^T)$, meaning that $A^T(A\mathbf{x}^* - \mathbf{b}) = \mathbf{0}$, i.e.:

$$
A^T A \mathbf{x}^* = A^T \mathbf{b}.
$$

In terms of projections, this means solving $A\mathbf{x}^* = \text{Proj}_{C(A)}(\mathbf{b}).$

Orthonormal Bases

Def: A basis $\{w_1, \ldots, w_k\}$ for a subspace V is an **orthonormal basis** if:

(1) The basis vectors are mutually orthogonal: $\mathbf{w}_i \cdot \mathbf{w}_j = 0$ (for $i \neq j$);

(2) The basis vectors are unit vectors: $\mathbf{w}_i \cdot \mathbf{w}_i = 1$. (i.e.: $\|\mathbf{w}_i\| = 1$)

Orthonormal bases are nice for (at least) two reasons:

(a) It is much easier to find the **B-coordinates** $[v]_B$ of a vector when the basis β is orthonormal;

(b) It is much easier to find the **projection matrix** onto a subspace V when we have an orthonormal basis for V.

Prop: Let $\{w_1, \ldots, w_k\}$ be an orthonormal basis for a subspace $V \subset \mathbb{R}^n$.

(a) Every vector $\mathbf{v} \in V$ can be written

$$
\mathbf{v} = (\mathbf{v} \cdot \mathbf{w}_1)\mathbf{w}_1 + \cdots + (\mathbf{v} \cdot \mathbf{w}_k)\mathbf{w}_k.
$$

(b) For all $\mathbf{x} \in \mathbb{R}^n$:

$$
Proj_V(\mathbf{x}) = (\mathbf{x} \cdot \mathbf{w}_1)\mathbf{w}_1 + \cdots + (\mathbf{x} \cdot \mathbf{w}_k)\mathbf{w}_k.
$$

(c) Let A be the matrix with columns $\{w_1, \ldots, w_k\}$. Then $A^T A = I_k$, so:

$$
\text{Proj}_V = A(A^T A)^{-1} A^T = A A^T.
$$

Orthogonal Matrices

Def: An orthogonal matrix is an invertible matrix C such that

$$
C^{-1} = C^T.
$$

Example: Let $\{v_1, \ldots, v_n\}$ be an orthonormal basis for \mathbb{R}^n . Then the matrix

$$
C = \begin{bmatrix} | & & | \\ \mathbf{v}_1 & \cdots & \mathbf{v}_n \\ | & & | \end{bmatrix}
$$

is an orthogonal matrix.

In fact, every orthogonal matrix C looks like this: the columns of any orthogonal matrix form an orthonormal basis of \mathbb{R}^n .

Where theory is concerned, the key property of orthogonal matrices is:

Prop 22.4: Let C be an orthogonal matrix. Then for $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$:

$$
C\mathbf{v}\cdot C\mathbf{w}=\mathbf{v}\cdot\mathbf{w}.
$$

Gram-Schmidt Process

Since orthonormal bases have so many nice properties, it would be great if we had a way of actually manufacturing orthonormal bases. That is:

Goal: We are given a basis $\{v_1, \ldots, v_k\}$ for a subspace $V \subset \mathbb{R}^n$. We would like an *orthonormal* basis $\{w_1, \ldots, w_k\}$ for our subspace V.

Notation: We will let

$$
V_1 = \text{span}(\mathbf{v}_1)
$$

\n
$$
V_2 = \text{span}(\mathbf{v}_1, \mathbf{v}_2)
$$

\n
$$
\vdots
$$

\n
$$
V_k = \text{span}(\mathbf{v}_1, \dots, \mathbf{v}_k) = V.
$$

Idea: Build an orthonormal basis for V_1 , then for $V_2, \ldots,$ up to $V_k = V$.

Gram-Schmidt Algorithm: Let $\{v_1, \ldots, v_k\}$ be a basis for $V \subset \mathbb{R}^n$.

(1) Define $\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$ $\frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$. (2) Having defined $\{\mathbf{w}_1, \ldots, \mathbf{w}_i\}$, let $\mathbf{y}_{j+1} = \mathbf{v}_{j+1} - \text{Proj}_{V_j}(\mathbf{v}_{j+1})$ $=\textbf{v}_{j+1}-(\textbf{v}_{j+1}\cdot \textbf{w}_1)\textbf{w}_1-(\textbf{v}_{j+1}\cdot \textbf{w}_2)\textbf{w}_2-\cdots-(\textbf{v}_{j+1}\cdot \textbf{w}_j)\textbf{w}_j,$ and define $\mathbf{w}_{j+1} = \frac{\mathbf{y}_{j+1}}{\|\mathbf{y}_{j+1}\|}$ $\frac{\textbf{y}_{j+1}}{\|\textbf{y}_{j+1}\|}.$

Then ${\mathbf \{w}_1, \ldots, \mathbf{w}_k\}$ is an orthonormal basis for V.

Quadratic Forms (Intro)

Given an $m \times n$ matrix A, we can regard it as a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$. In the special case where the matrix A is a symmetric matrix, we can also regard A as defining a "quadratic form":

Def: Let A be a symmetric $n \times n$ matrix. The **quadratic form** associated to A is the function $Q_A: \mathbb{R}^n \to \mathbb{R}$ given by:

$$
Q_A(\mathbf{x}) = \mathbf{x} \cdot A\mathbf{x} = \mathbf{x}^T A\mathbf{x} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}
$$

Notice that quadratic forms are not linear transformations!

Definiteness

Def: Let $Q: \mathbb{R}^n \to \mathbb{R}$ be a quadratic form. We say Q is **positive definite** if $Q(\mathbf{x}) > 0$ for all $\mathbf{x} \neq 0$. We say Q is **positive semi-definite** if $Q(\mathbf{x}) \geq 0$ for all $\mathbf{x} \neq 0$.

We say Q is negative definite if $Q(\mathbf{x}) < 0$ for all $\mathbf{x} \neq 0$. We say Q is negative semi-definite if $Q(\mathbf{x}) \leq 0$ for all $\mathbf{x} \neq 0$.

We say Q is **indefinite** if there are vectors **x** for which $Q(\mathbf{x}) > 0$, and also vectors **x** for which $Q(\mathbf{x}) < 0$.

Def: Let A be a symmetric matrix.

We say A is **positive definite** if $Q_A(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq 0$.

We say A is **negative definite** if $Q_A(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} < 0$ for all $\mathbf{x} \neq 0$.

We say A is **indefinite** if there are vectors **x** for which $\mathbf{x}^T A \mathbf{x} > 0$, and also vectors **x** for which $\mathbf{x}^T A \mathbf{x} < 0$.

(Similarly for positive semi-definite and negative semi-definite.)

In other words:

- \circ A is positive definite \iff Q_A is positive definite.
- \circ A is negative definite \iff Q_A is negative definite.
- \circ A is indefinite \iff Q_A is indefinite.

The Hessian

Def: Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. Its **Hessian** at $\mathbf{a} \in \mathbb{R}^n$ is the symmetric matrix:

$$
Hf(\mathbf{a}) = \begin{bmatrix} f_{x_1x_1}(\mathbf{a}) & \cdots & f_{x_1x_n}(\mathbf{a}) \\ \vdots & \ddots & \vdots \\ f_{x_nx_1}(\mathbf{a}) & \cdots & f_{x_nx_n}(\mathbf{a}) \end{bmatrix}.
$$

Note that the Hessian is a symmetric matrix. Therefore, we can also regard $Hf(\mathbf{a})$ as a quadratic form:

$$
Q_{Hf(\mathbf{a})}(\mathbf{x}) = \mathbf{x}^{T} Hf(\mathbf{a}) \mathbf{x} = \begin{bmatrix} x_1 \cdots x_n \end{bmatrix} \begin{bmatrix} f_{x_1x_1}(\mathbf{a}) & \cdots & f_{x_1x_n}(\mathbf{a}) \\ \vdots & \ddots & \vdots \\ f_{x_nx_1}(\mathbf{a}) & \cdots & f_{x_nx_n}(\mathbf{a}) \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.
$$

In particular, it makes sense to ask whether the Hessian is positive definite, negative definite, or indefinite.

Single-Variable Calculus Review

Recall: In calculus, you learned:

 \circ For a function $f: \mathbb{R} \to \mathbb{R}$, a *critical point* is a point $a \in \mathbb{R}$ where $f'(a) = 0$ or $f'(a)$ does not exist.

• If $f(x)$ has a local min/max at $x = a$, then $x = a$ is a critical point. The converse is false: critical points don't have to be local minima or local maxima (e.g., they could be inflection points.)

 \circ The "second derivative test": If $x = a$ is a critical point for $f(x)$, then $f''(a) > 0$ tells us that $x = a$ is a local min, whereas $f''(a) < 0$ tells us that $x = a$ is a local max.

It would be nice to have similar statements in higher dimensions:

Critical Points & Second Derivative Test

Def: A critical point of $f: \mathbb{R}^n \to \mathbb{R}$ is a point $\mathbf{a} \in \mathbb{R}^n$ at which $Df(\mathbf{a}) = \mathbf{0}^T$ or $Df(\mathbf{a})$ is undefined.

In other words, each partial derivative $\frac{\partial f}{\partial x_i}(\mathbf{a})$ is zero or undefined.

Theorem: If $f: \mathbb{R}^n \to \mathbb{R}$ has a local max / local min at $\mathbf{a} \in \mathbb{R}^n$, then **a** is a critical point of f.

N.B.: The converse of this theorem is false! Critical points do not have to be a local max or local min (e.g., they could be saddle points).

Def: A saddle point of $f: \mathbb{R}^n \to \mathbb{R}$ is a critical point of f that is not a local max or local min.

Second Derivative Test: Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function, and $\mathbf{a} \in \mathbb{R}^n$ be a critical point of f.

(a) If $Hf(\mathbf{a})$ is positive definite, then \mathbf{a} is a local min of f.

(a') If $Hf(\mathbf{a})$ is positive semi-definite, then \mathbf{a} is a local min or saddle point.

(b) If $Hf(\mathbf{a})$ is negative definite, then \mathbf{a} is a local max of f.

(b') If $Hf(\mathbf{a})$ is negative semi-definite, then \mathbf{a} is a local max or saddle point.

(c) If $Hf(\mathbf{a})$ is indefinite, then \mathbf{a} is a saddle point of f.

Local Extrema vs Global Extrema

Finding Local Extrema: We want to find the local extrema of a function $f: \mathbb{R}^n \to \mathbb{R}.$

(i) Find the critical points of f .

(ii) Use the Second Derivative Test to decide if the critical points are local maxima / minima / saddle points.

Theorem: Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function. If $R \subset \mathbb{R}^n$ is a closed and bounded region, then f has a global max and a global min on R.

Finding Global Extrema: We want to find the global extrema of a function $f: \mathbb{R}^n \to \mathbb{R}$ on a region $R \subset \mathbb{R}^n$.

(1) Find the critical points of f on the interior of R.

(2) Find the extreme values of f on the boundary of R. (Lagrange mult.) Then:

◦ The largest value from Steps (1)-(2) is a global max value.

 \circ The smallest value from Steps $(1)-(2)$ is a global min value.

Lagrange Multipliers (Constrained Optimization)

Notation: Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function, and $S \subset \mathbb{R}^n$ be a subset.

The restricted function $f|_S : S \to \mathbb{R}^m$ is the same exact function as f, but where the domain is restricted to S.

Theorem: Suppose we want to optimize a function $f(x_1, \ldots, x_n)$ constrained to a level set $S = \{g(x_1, ..., x_n) = c\}.$

If **a** is an extreme value of $f|_S$ on the level set $S = \{g(x_1, \ldots, x_n) = c\},\$ and if $\nabla g(\mathbf{a}) \neq \mathbf{0}$, then

$$
\nabla f(\mathbf{a}) = \lambda \nabla g(\mathbf{a})
$$

for some constant λ .

Reason: If **a** is an extreme value of $f|_S$ on the level set S, then $D_v f(\mathbf{a}) = 0$ for all vectors **v** that are tangent to the level set S. Therefore, $\nabla f(\mathbf{a}) \cdot \mathbf{v} = 0$ for all vectors v that are tangent to S.

This means that $\nabla f(\mathbf{a})$ is orthogonal to the level set S, so $\nabla f(\mathbf{a})$ must be a scalar multiple of the normal vector $\nabla g(\mathbf{a})$. That is, $\nabla f(\mathbf{a}) = \lambda \nabla g(\mathbf{a})$. \square

Motivation for Eigenvalues & Eigenvectors

We want to understand a quadratic form $Q_A(\mathbf{x})$, which might be ugly and complicated.

Idea: Maybe there's an orthonormal basis $\mathcal{B} = {\mathbf{w}_1, \dots, \mathbf{w}_n}$ of \mathbb{R}^n that is somehow "best suited to A " – so that with respect to the basis B , the quadratic form Q_A looks simple.

What do we mean by "basis suited to A "? And does such a basis always exist? Well:

Spectral Theorem: Let A be a symmetric $n \times n$ matrix. Then there exists an <u>orthonormal basis</u> $\mathcal{B} = {\mathbf{w}_1, \dots, \mathbf{w}_n}$ of \mathbb{R}^n such that each $\mathbf{w}_1, \dots, \mathbf{w}_n$ is an eigenvector of A.

i.e.: There is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A.

Why is this good? Well, since \mathcal{B} is a basis, every $\mathbf{w} \in \mathbb{R}^n$ can be written $\mathbf{w} = u_1 \mathbf{w}_1 + \cdots + u_n \mathbf{w}_n$. (That is: the *B*-coordinates of **w** are (u_1, \ldots, u_n) .) It then turns out that:

$$
Q_A(\mathbf{w}) = Q_A(u_1\mathbf{w}_1 + \dots + u_n\mathbf{w}_n)
$$

= $(u_1\mathbf{w}_1 + \dots + u_n\mathbf{w}_n) \cdot A(u_1\mathbf{w}_1 + \dots + u_n\mathbf{w}_n)$
= $\lambda_1(u_1)^2 + \lambda_2(u_2)^2 + \dots + \lambda_n(u_n)^2$. (yay!)

In other words: the quadratic form Q_A is in diagonal form with respect to the basis \mathcal{B} . We have made Q_A look as simple as possible!

Also: The coefficients $\lambda_1, \ldots, \lambda_n$ are exactly the eigenvalues of A.

Corollary: Let A be a symmetric $n \times n$ matrix, with eigenvalues $\lambda_1, \ldots, \lambda_n$.

(a) A is positive-definite \iff all of $\lambda_1, \ldots, \lambda_n$ are positive.

(b) A is negative-definite \iff all of $\lambda_1, \ldots, \lambda_n$ are negative.

(c) A is indefinite \iff there is a positive eigenvalue $\lambda_i > 0$ and a negative eigenvalue $\lambda_j < 0$.

Useful Fact: Let A be any $n \times n$ matrix, with eigenvalues $\lambda_1, \ldots, \lambda_n$. Then

$$
\operatorname{tr}(A) = \lambda_1 + \dots + \lambda_n
$$

$$
\operatorname{det}(A) = \lambda_1 \lambda_2 \dots \lambda_n.
$$

Cor: If any one of the eigenvalues $\lambda_j = 0$ is zero, then $\det(A) = 0$.

For Fun: What is a Closed Ball? What is a Sphere?

o The **closed 1-ball** (the "interval") is $\mathbb{B}^1 = \{x \in \mathbb{R} \mid x^2 \leq 1\} = [-1, 1] \subset \mathbb{R}$. o The closed 2-ball (the "disk") is $\mathbb{B}^2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\} \subset \mathbb{R}^2$. o The closed 3-ball (the "ball") is $\mathbb{B}^3 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 1\}.$

o The **1-sphere** (the "circle") is $\mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} \subset \mathbb{R}^2$. o The 2-sphere (the "sphere") is $\mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\} \subset \mathbb{R}^3$. o The **3-sphere** is $\mathbb{S}^3 = \{(x, y, z, w) \in \mathbb{R}^4 \mid x^2 + y^2 + z^2 + w^2 = 1\} \subset \mathbb{R}^4$.

 \circ The closed *n*-ball \mathbb{B}^n is the set

$$
\mathbb{B}^n = \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid (x_1)^2 + \dots + (x_n)^2 \le 1 \}
$$

= $\{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}||^2 \le 1 \} \subset \mathbb{R}^n$.

o The $(n-1)$ -sphere \mathbb{S}^{n-1} is the boundary of \mathbb{B}^n : it is the set

$$
\mathbb{S}^{n-1} = \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid (x_1)^2 + \dots + (x_n)^2 = 1 \}
$$

= $\{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}||^2 = 1 \} \subset \mathbb{R}^n$.

In other words, \mathbb{S}^{n-1} consists of the **unit vectors** in \mathbb{R}^n .

Optimizing Quadratic Forms on Spheres

Problem: Optimize a quadratic form $Q_A: \mathbb{R}^n \to \mathbb{R}$ on the sphere $\mathbb{S}^{n-1} \subset \mathbb{R}^n$.

That is, what are the maxima and minima of $Q_A(\mathbf{w})$ subject to the constraint that $\|\mathbf{w}\| = 1$?

Solution: Let λ_{max} and λ_{min} be the largest and smallest eigenvalues of A.

 \circ The maximum value of Q_A for unit vectors is λ_{max} . Any unit vector \mathbf{w}_{max} which attains this maximum is an eigenvector of A with eigenvalue λ_{max} .

 \circ The minimum value of Q_A for unit vectors is λ_{\min} . Any unit vector w_{\min} which attains this minimum is an eigenvector of A with eigenvalue λ_{\min} .

Corollary: Let A be a symmetric $n \times n$ matrix.

(a) A is positive-definite \iff the minimum value of Q_A restricted to unit vector inputs is positive (i.e., iff $\lambda_{\min} > 0$).

(b) A is negative-definite \iff the maximum value of Q_A restricted to unit vector inputs is negative (i.e., iff $\lambda_{\text{max}} < 0$).

(c) A is indefinite $\iff \lambda_{\max} > 0$ and $\lambda_{\min} < 0$.

Directional First & Second Derivatives

Def: Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function, $\mathbf{a} \in \mathbb{R}^n$ be a point. The **directional derivative** of f at a in the direction v is:

$$
D_{\mathbf{v}}f(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{v}.
$$

The directional second derivative of f at a in the direction \bf{v} is:

$$
Q_{Hf(\mathbf{a})}(\mathbf{v}) = \mathbf{v}^T Hf(\mathbf{a})\mathbf{v}.
$$

Q: What direction v increases the directional derivative the most? What direction **v** decreases the directional derivative the most?

A: We've learned this: the gradient $\nabla f(\mathbf{a})$ is the direction of greatest increase, whereas $-\nabla f(\mathbf{a})$ is the direction of greatest decrease.

New Questions:

- What direction v increases the directional second derivative the most?
- What direction v decreases the directional second derivative the most?

Answer: The (unit) directions of minimum and maximum second derivative are (unitized) eigenvectors of $Hf(\mathbf{a})$, and so they are *mutually orthogonal*.

The max/min values of the directional second derivative are the max/min eigenvalues of $Hf(\mathbf{a})$.