
Transpose & Dot Product

Def: The transpose of an m × n matrix A is the n ×m matrix AT whose
columns are the rows of A.

So: The columns of AT are the rows of A. The rows of AT are the columns
of A.

Example: If A =

[
1 2 3
4 5 6

]
, then AT =

1 4
2 5
3 6

.
Convention: From now on, vectors v ∈ Rn will be regarded as “columns”
(i.e.: n× 1 matrices). Therefore, vT is a “row vector” (a 1× n matrix).

Observation: Let v,w ∈ Rn. Then vTw = v ·w. This is because:

vTw =
[
v1 · · · vn

] w1
...
wn

 = v1w1 + · · ·+ vnwn = v ·w.

Where theory is concerned, the key property of transposes is the following:

Prop 18.2: Let A be an m× n matrix. Then for x ∈ Rn and y ∈ Rm:

(Ax) · y = x · (ATy).

Here, · is the dot product of vectors.

Extended Example

Let A be a 5× 3 matrix, so A : R3 → R5.
◦ N(A) is a subspace of R3

◦ C(A) is a subspace of R5.

The transpose AT is a 5× 3 matrix, so AT : R5 → R3

◦ C(AT ) is a subspace of R3

◦ N(AT ) is a subspace of R5

Observation: Both C(AT ) and N(A) are subspaces of R3. Might there be
a geometric relationship between the two? (No, they’re not equal.) Hm...

Also: BothN(AT ) and C(A) are subspaces of R5. Might there be a geometric
relationship between the two? (Again, they’re not equal.) Hm...



Orthogonal Complements

Def: Let V ⊂ Rn be a subspace. The orthogonal complement of V is the
set

V ⊥ = {x ∈ Rn | x · v = 0 for every v ∈ V }.
So, V ⊥ consists of the vectors which are orthogonal to every vector in V .

Fact: If V ⊂ Rn is a subspace, then V ⊥ ⊂ Rn is a subspace.

Examples in R3:
◦ The orthogonal complement of V = {0} is V ⊥ = R3

◦ The orthogonal complement of V = {z-axis} is V ⊥ = {xy-plane}
◦ The orthogonal complement of V = {xy-plane} is V ⊥ = {z-axis}
◦ The orthogonal complement of V = R3 is V ⊥ = {0}

Examples in R4:
◦ The orthogonal complement of V = {0} is V ⊥ = R4

◦ The orthogonal complement of V = {w-axis} is V ⊥ = {xyz-space}
◦ The orthogonal complement of V = {zw-plane} is V ⊥ = {xy-plane}
◦ The orthogonal complement of V = {xyz-space} is V ⊥ = {w-axis}
◦ The orthogonal complement of V = R4 is V ⊥ = {0}

Prop 19.3-19.4-19.5: Let V ⊂ Rn be a subspace. Then:
(a) dim(V ) + dim(V ⊥) = n

(b) (V ⊥)⊥ = V

(c) V ∩ V ⊥ = {0}
(d) V + V ⊥ = Rn.

Part (d) means: “Every vector x ∈ Rn can be written as a sum x = v +w
where v ∈ V and w ∈ V ⊥.”

Also, it turns out that the expression x = v + w is unique: that is, there
is only one way to write x as a sum of a vector in V and a vector in V ⊥.



Meaning of C(AT ) and N(AT )

Q: What does C(AT ) mean? Well, the columns of AT are the rows of A. So:

C(AT ) = column space of AT

= span of columns of AT

= span of rows of A.

For this reason: We call C(AT ) the row space of A.

Q: What does N(AT ) mean? Well:

x ∈ N(AT ) ⇐⇒ ATx = 0

⇐⇒ (ATx)T = 0T

⇐⇒ xTA = 0T .

So, for an m× n matrix A, we see that: N(AT ) = {x ∈ Rm | xTA = 0T}.
For this reason: We call N(AT ) the left null space of A.

Relationships among the Subspaces

Theorem: Let A be an m× n matrix. Then:
◦ C(AT ) = N(A)⊥

◦ N(AT ) = C(A)⊥

Corollary: Let A be an m× n matrix. Then:
◦ C(A) = N(AT )⊥

◦ N(A) = C(AT )⊥

Prop 18.3: Let A be an m× n matrix. Then rank(A) = rank(AT ).

Motivating Questions for Reading

Problem 1: Let b ∈ C(A). So, the system of equations Ax = b does have
solutions, possibly infinitely many.

Q: What is the solution x of Ax = b with ‖x‖ the smallest?

Problem 2: Let b /∈ C(A). So, the system of equations Ax = b does not
have any solutions. In other words, Ax− b 6= 0.

Q: What is the vector x that minimizes the error ‖Ax−b‖? That is, what
is the vector x that comes closest to being a solution to Ax = b?



Orthogonal Projection

Def: Let V ⊂ Rn be a subspace. Then every vector x ∈ Rn can be written
uniquely as

x = v + w, where v ∈ V and w ∈ V ⊥.
The orthogonal projection onto V is the function ProjV : Rn → Rn

given by: ProjV (x) = v. (Note that ProjV ⊥(x) = w.)

Prop 20.1: Let V ⊂ Rn be a subspace. Then:

ProjV + ProjV ⊥ = In.

Of course, we already knew this: We have x = v+w = ProjV (x)+ProjV ⊥(x).

Formula: Let {v1, . . . ,vk} be a basis of V ⊂ Rn. Let A be the n× k matrix

A =

v1 · · · vk

.
Then:

ProjV = A(ATA)−1AT . (∗)

Geometry Observations: Let V ⊂ Rn be a subspace, and x ∈ Rn a vector.
(1) The distance from x to V is: ‖ProjV ⊥(x)‖ = ‖x− ProjV (x)‖.
(2) The vector in V that is closest to x is: ProjV (x).

Derivation of (∗): Notice ProjV (x) is a vector in V = span(v1, . . . ,vk) = C(A) = Range(A), and

therefore ProjV (x) = Ay for some vector y ∈ Rk.

Now notice that x − ProjV (x) = x − Ay is a vector in V ⊥ = C(A)⊥ = N(AT ), which means

that AT (x−Ay) = 0, which means ATx = AT Ay.

Now, it turns out that our matrix AT A is invertible (proof in L20), so we get y = (AT A)−1ATx.

Thus, ProjV (x) = Ay = A(AT A)−1ATx. ♦



Minimum Magnitude Solution

Prop 19.6: Let b ∈ C(A) (so Ax = b has solutions). Then there exists
exactly one vector x0 ∈ C(AT ) with Ax0 = b.

And: Among all solutions of Ax = b, the vector x0 has the smallest length.

In other words: There is exactly one vector x0 in the row space of A which
solves Ax = b – and this vector is the solution of smallest length.

To Find x0: Start with any solution x of Ax = b. Then

x0 = ProjC(AT )(x).

Least Squares Approximation

Idea: Suppose b /∈ C(A). So, Ax = b has no solutions, so Ax− b 6= 0.
We want to find the vector x∗ which minimizes the error ‖Ax∗−b‖. That

is, we want the vector x∗ for which Ax∗ is the closest vector in C(A) to b.

In other words, we want the vector x∗ for which Ax∗ − b is orthogonal to
C(A). So, Ax∗ − b ∈ C(A)⊥ = N(AT ), meaning that AT (Ax∗ − b) = 0, i.e.:

ATAx∗ = ATb.

In terms of projections, this means solving Ax∗ = ProjC(A)(b).



Orthonormal Bases

Def: A basis {w1, . . . ,wk} for a subspace V is an orthonormal basis if:
(1) The basis vectors are mutually orthogonal: wi ·wj = 0 (for i 6= j);
(2) The basis vectors are unit vectors: wi ·wi = 1. (i.e.: ‖wi‖ = 1)

Orthonormal bases are nice for (at least) two reasons:
(a) It is much easier to find the B-coordinates [v]B of a vector when the

basis B is orthonormal;
(b) It is much easier to find the projection matrix onto a subspace V

when we have an orthonormal basis for V .

Prop: Let {w1, . . . ,wk} be an orthonormal basis for a subspace V ⊂ Rn.
(a) Every vector v ∈ V can be written

v = (v ·w1)w1 + · · ·+ (v ·wk)wk.

(b) For all x ∈ Rn:

ProjV (x) = (x ·w1)w1 + · · ·+ (x ·wk)wk.

(c) Let A be the matrix with columns {w1, . . . ,wk}. Then ATA = Ik, so:

ProjV = A(ATA)−1AT = AAT .

Orthogonal Matrices

Def: An orthogonal matrix is an invertible matrix C such that

C−1 = CT .

Example: Let {v1, . . . ,vn} be an orthonormal basis for Rn. Then the matrix

C =

v1 · · · vn


is an orthogonal matrix.

In fact, every orthogonal matrix C looks like this: the columns of any
orthogonal matrix form an orthonormal basis of Rn.

Where theory is concerned, the key property of orthogonal matrices is:

Prop 22.4: Let C be an orthogonal matrix. Then for v,w ∈ Rn:

Cv · Cw = v ·w.



Gram-Schmidt Process

Since orthonormal bases have so many nice properties, it would be great
if we had a way of actually manufacturing orthonormal bases. That is:

Goal: We are given a basis {v1, . . . ,vk} for a subspace V ⊂ Rn. We would
like an orthonormal basis {w1, . . . ,wk} for our subspace V .

Notation: We will let

V1 = span(v1)

V2 = span(v1,v2)
...

Vk = span(v1, . . . ,vk) = V.

Idea: Build an orthonormal basis for V1, then for V2, . . . , up to Vk = V .

Gram-Schmidt Algorithm: Let {v1, . . . ,vk} be a basis for V ⊂ Rn.
(1) Define w1 = v1

‖v1‖ .

(2) Having defined {w1, . . . ,wj}, let

yj+1 = vj+1 − ProjVj
(vj+1)

= vj+1 − (vj+1 ·w1)w1 − (vj+1 ·w2)w2 − · · · − (vj+1 ·wj)wj,

and define wj+1 =
yj+1

‖yj+1‖ .

Then {w1, . . . ,wk} is an orthonormal basis for V .

Quadratic Forms (Intro)

Given an m × n matrix A, we can regard it as a linear transformation
T : Rn → Rm. In the special case where the matrix A is a symmetric matrix,
we can also regard A as defining a “quadratic form”:

Def: Let A be a symmetric n× n matrix. The quadratic form associated
to A is the function QA : Rn → R given by:

QA(x) = x · Ax = xTAx =
[
x1 · · · xn

]
A

x1
...
xn


Notice that quadratic forms are not linear transformations!



Definiteness

Def: Let Q : Rn → R be a quadratic form.
We say Q is positive definite if Q(x) > 0 for all x 6= 0.
We say Q is positive semi-definite if Q(x) ≥ 0 for all x 6= 0.

We say Q is negative definite if Q(x) < 0 for all x 6= 0.
We say Q is negative semi-definite if Q(x) ≤ 0 for all x 6= 0.

We say Q is indefinite if there are vectors x for which Q(x) > 0, and also
vectors x for which Q(x) < 0.

Def: Let A be a symmetric matrix.
We say A is positive definite if QA(x) = xTAx > 0 for all x 6= 0.
We say A is negative definite if QA(x) = xTAx < 0 for all x 6= 0.
We say A is indefinite if there are vectors x for which xTAx > 0, and

also vectors x for which xTAx < 0.
(Similarly for positive semi-definite and negative semi-definite.)

In other words:
◦ A is positive definite ⇐⇒ QA is positive definite.
◦ A is negative definite ⇐⇒ QA is negative definite.
◦ A is indefinite ⇐⇒ QA is indefinite.

The Hessian

Def: Let f : Rn → R be a function. Its Hessian at a ∈ Rn is the symmetric
matrix:

Hf(a) =

fx1x1
(a) · · · fx1xn

(a)
... . . . ...

fxnx1
(a) · · · fxnxn

(a)

.
Note that the Hessian is a symmetric matrix. Therefore, we can also

regard Hf(a) as a quadratic form:

QHf(a)(x) = xTHf(a) x =
[
x1 · · ·xn

] fx1x1
(a) · · · fx1xn

(a)
... . . . ...

fxnx1
(a) · · · fxnxn

(a)

x1
...
xn

.
In particular, it makes sense to ask whether the Hessian is positive definite,
negative definite, or indefinite.



Single-Variable Calculus Review

Recall: In calculus, you learned:
◦ For a function f : R→ R, a critical point is a point a ∈ R where f ′(a) = 0

or f ′(a) does not exist.
◦ If f(x) has a local min/max at x = a, then x = a is a critical point.

The converse is false: critical points don’t have to be local minima or local
maxima (e.g., they could be inflection points.)
◦ The “second derivative test”: If x = a is a critical point for f(x), then

f ′′(a) > 0 tells us that x = a is a local min, whereas f ′′(a) < 0 tells us that
x = a is a local max.

It would be nice to have similar statements in higher dimensions:

Critical Points & Second Derivative Test

Def: A critical point of f : Rn → R is a point a ∈ Rn at which Df(a) = 0T

or Df(a) is undefined.
In other words, each partial derivative ∂f

∂xi
(a) is zero or undefined.

Theorem: If f : Rn → R has a local max / local min at a ∈ Rn, then a is a
critical point of f .

N.B.: The converse of this theorem is false! Critical points do not have to
be a local max or local min (e.g., they could be saddle points).

Def: A saddle point of f : Rn → R is a critical point of f that is not a local
max or local min.

Second Derivative Test: Let f : Rn → R be a function, and a ∈ Rn be a
critical point of f .

(a) If Hf(a) is positive definite, then a is a local min of f .
(a′) If Hf(a) is positive semi-definite, then a is a local min or saddle point.

(b) If Hf(a) is negative definite, then a is a local max of f .
(b′) IfHf(a) is negative semi-definite, then a is a local max or saddle point.

(c) If Hf(a) is indefinite, then a is a saddle point of f .



Local Extrema vs Global Extrema

Finding Local Extrema: We want to find the local extrema of a function
f : Rn → R.

(i) Find the critical points of f .
(ii) Use the Second Derivative Test to decide if the critical points are local

maxima / minima / saddle points.

Theorem: Let f : Rn → R be a continuous function. If R ⊂ Rn is a closed
and bounded region, then f has a global max and a global min on R.

Finding Global Extrema: We want to find the global extrema of a func-
tion f : Rn → R on a region R ⊂ Rn.

(1) Find the critical points of f on the interior of R.
(2) Find the extreme values of f on the boundary of R. (Lagrange mult.)

Then:
◦ The largest value from Steps (1)-(2) is a global max value.
◦ The smallest value from Steps (1)-(2) is a global min value.

Lagrange Multipliers (Constrained Optimization)

Notation: Let f : Rn → Rm be a function, and S ⊂ Rn be a subset.
The restricted function f |S : S → Rm is the same exact function as f , but

where the domain is restricted to S.

Theorem: Suppose we want to optimize a function f(x1, . . . , xn) constrained
to a level set S = {g(x1, . . . , xn) = c}.

If a is an extreme value of f |S on the level set S = {g(x1, . . . , xn) = c},
and if ∇g(a) 6= 0, then

∇f(a) = λ∇g(a)

for some constant λ.

Reason: If a is an extreme value of f |S on the level set S, then Dvf(a) = 0
for all vectors v that are tangent to the level set S. Therefore, ∇f(a) ·v = 0
for all vectors v that are tangent to S.

This means that ∇f(a) is orthogonal to the level set S, so ∇f(a) must be
a scalar multiple of the normal vector ∇g(a). That is, ∇f(a) = λ∇g(a). �



Motivation for Eigenvalues & Eigenvectors

We want to understand a quadratic form QA(x), which might be ugly and
complicated.

Idea: Maybe there’s an orthonormal basis B = {w1, . . . ,wn} of Rn that
is somehow “best suited to A” – so that with respect to the basis B, the
quadratic form QA looks simple.

What do we mean by “basis suited to A”? And does such a basis always
exist? Well:

Spectral Theorem: Let A be a symmetric n×n matrix. Then there exists
an orthonormal basis B = {w1, . . . ,wn} of Rn such that each w1, . . . ,wn is
an eigenvector of A.

i.e.: There is an orthonormal basis of Rn consisting of eigenvectors of A.

Why is this good? Well, since B is a basis, every w ∈ Rn can be written
w = u1w1 + · · · + unwn. (That is: the B-coordinates of w are (u1, . . . , un).)
It then turns out that:

QA(w) = QA(u1w1 + · · ·+ unwn)

= (u1w1 + · · ·+ unwn) · A(u1w1 + · · ·+ unwn)

= λ1(u1)
2 + λ2(u2)

2 + · · ·+ λn(un)2. (yay!)

In other words: the quadratic form QA is in diagonal form with respect to
the basis B. We have made QA look as simple as possible!

Also: The coefficients λ1, . . . , λn are exactly the eigenvalues of A.

Corollary: Let A be a symmetric n×n matrix, with eigenvalues λ1, . . . , λn.
(a) A is positive-definite ⇐⇒ all of λ1, . . . , λn are positive.
(b) A is negative-definite ⇐⇒ all of λ1, . . . , λn are negative.
(c) A is indefinite ⇐⇒ there is a positive eigenvalue λi > 0 and a negative

eigenvalue λj < 0.

Useful Fact: Let A be any n× n matrix, with eigenvalues λ1, . . . , λn. Then

tr(A) = λ1 + · · ·+ λn

det(A) = λ1λ2 · · ·λn.

Cor: If any one of the eigenvalues λj = 0 is zero, then det(A) = 0.



For Fun: What is a Closed Ball? What is a Sphere?

◦ The closed 1-ball (the “interval”) is B1 = {x ∈ R | x2 ≤ 1} = [−1, 1] ⊂ R.
◦ The closed 2-ball (the “disk”) is B2 = {(x, y) ∈ R2

∣∣ x2 + y2 ≤ 1} ⊂ R2.
◦ The closed 3-ball (the “ball”) is B3 = {(x, y, z) ∈ R3

∣∣ x2 + y2 + z2 ≤ 1}.

◦ The 1-sphere (the “circle”) is S1 = {(x, y) ∈ R2
∣∣ x2 + y2 = 1} ⊂ R2.

◦ The 2-sphere (the “sphere”) is S2 = {(x, y, z) ∈ R3
∣∣ x2+y2+z2 = 1} ⊂ R3.

◦ The 3-sphere is S3 = {(x, y, z, w) ∈ R4
∣∣ x2 + y2 + z2 + w2 = 1} ⊂ R4.

◦ The closed n-ball Bn is the set

Bn = {(x1, . . . , xn) ∈ Rn | (x1)
2 + · · ·+ (xn)2 ≤ 1}

= {x ∈ Rn | ‖x‖2 ≤ 1} ⊂ Rn.

◦ The (n− 1)-sphere Sn−1 is the boundary of Bn: it is the set

Sn−1 = {(x1, . . . , xn) ∈ Rn | (x1)
2 + · · ·+ (xn)2 = 1}

= {x ∈ Rn | ‖x‖2 = 1} ⊂ Rn.

In other words, Sn−1 consists of the unit vectors in Rn.

Optimizing Quadratic Forms on Spheres

Problem: Optimize a quadratic form QA : Rn → R on the sphere Sn−1 ⊂ Rn.
That is, what are the maxima and minima of QA(w) subject to the con-

straint that ‖w‖ = 1?

Solution: Let λmax and λmin be the largest and smallest eigenvalues of A.
◦ The maximum value of QA for unit vectors is λmax. Any unit vector wmax

which attains this maximum is an eigenvector of A with eigenvalue λmax.
◦ The minimum value of QA for unit vectors is λmin. Any unit vector wmin

which attains this minimum is an eigenvector of A with eigenvalue λmin.

Corollary: Let A be a symmetric n× n matrix.
(a) A is positive-definite ⇐⇒ the minimum value of QA restricted to unit

vector inputs is positive (i.e., iff λmin > 0).
(b) A is negative-definite ⇐⇒ the maximum value of QA restricted to

unit vector inputs is negative (i.e., iff λmax < 0).
(c) A is indefinite ⇐⇒ λmax > 0 and λmin < 0.



Directional First & Second Derivatives

Def: Let f : Rn → R be a function, a ∈ Rn be a point.
The directional derivative of f at a in the direction v is:

Dvf(a) = ∇f(a) · v.

The directional second derivative of f at a in the direction v is:

QHf(a)(v) = vTHf(a)v.

Q: What direction v increases the directional derivative the most?
What direction v decreases the directional derivative the most?

A: We’ve learned this: the gradient ∇f(a) is the direction of greatest in-
crease, whereas −∇f(a) is the direction of greatest decrease.

New Questions:
◦ What direction v increases the directional second derivative the most?
◦What direction v decreases the directional second derivative the most?

Answer: The (unit) directions of minimum and maximum second derivative
are (unitized) eigenvectors of Hf(a), and so they are mutually orthogonal.

The max/min values of the directional second derivative are the max/min
eigenvalues of Hf(a).


