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1. (a) Prove that if G is a finite group and H is a proper subgroup, then G is not a union
of conjugates of H. (Hint: the conjugates all contain the identity.)

Solution: Let H < G be a proper subgroup. Note that the number of conjugates of
H is |G: Ng(H)|. Note also that each conjugate contains |H| elements, and that each
conjugate contains the identity. Therefore, each conjugate can contain at most |H| — 1
elements that belong to no other conjugate. Thus,
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We conclude that the union of conjugates of H is a proper subset of G.

(b) Suppose G is a (finite) transitive group of permutations of a finite set X of n objects,
n > 1. Prove that there exists g € G with no fixed points of X. (Hint: use part (a).)

Solution: Let x € X be arbitrary. If Stab(x) = G, then every g € G fixes z, so we're
done.

Otherwise, Stab(x) < G is a proper subgroup. Since G acts transitively on X, we
can write X = {g1x, ..., gpx} for some g1, ..., g, € G. By part (a), we have

Ugi Stab(z)g; ' € G.

i=1

Since g; Stab(z) g; ' = Stab(g;r), we have
U Stab(g;z) € G.
i=1

Thus, there exists g € G such that g ¢ Stab(g;z) for any i« = 1,...,n. That is, g ¢
Stab(y) for any y € X, so g has no fixed points.




2. (a) Let ¢ denote a complex primitive 25th root of unity. Show that z° — 5 has no roots

in Q[¢].

Solution: Note that Q(¢)/Q is Galois, with Galois group Gal(Q(¢)/Q) = (Z/25Z)* =
Z/20Z. Since Z/20Z has only one subgroup of order 4, it follows that Q(¢) has only one
subfield of degree 5 over Q.

Suppose, then, for the sake of contradiction, that z° — 5 has a root in Q(¢). Since
Q(¢)/Q is normal and x° — 5 € Q[z] is irreducible (by Eisenstein’s criterion), it follows
that 2° — 5 has all of its roots in Q(¢). In particular, both v/5, v/5ws € Q((), where ws
is a primitive 5th root of unity. Thus, Q(+v/5) and Q(v/5ws) are (distinct) subfields of
Q(¢) of degree 5 over Q, which contradicts the preceding paragraph.

(b) If «® = 5, show that « is not a 5th power in Q[(, a].

Solution: Let F' = Q((). Let m,/p € F|x] denote the minimal polynomial of o. We
claim that deg(m,/r) = [F(a): F] = 5.

To see this, note that F'(«)/F is Galois (by virtue of being the splitting field of 2°—5 €
F[x]). For any ¢ € Gal(F(a)/F), we have ¢(v/5) = v/5wk for some k € {0,...,4}. This

gives an injective homomorphism
Gal(F(«)/F) — {bth roots of unity} = Z/5Z
5
Thus, [F(a): F] = |Gal(F(a)/F)|| 5. Since a € F by part (a), we have [F(a): F] # 1,

so that deg(mqa/p) = [F(a): F] = 5.
Thus, ma/r(z) = 2° — 5. Therefore, Ny, p(a) = (—1)>(=5) = 5.

Suppose for the sake of contradiction that o were a 5th power in Q[(, o] = F(«), say
o = [3° for some (§ € F(a). Let v = Np(),r(8) € F. Then

v° = Np@)/r(8)° = Np@y/r(8°) = Ny p(a) = 5.

Thus, there exists an element v € F with v° = 5, which contradicts part (a).




3. (a) Let ¢ = p", p prime, and let F, denote a finite field of ¢ elements. How many
monic irreducible polynomials of degree 2 are there over F,? How many monic irreducible
polynomials of degree 3 are there over IF,? (Hint: Think about elements of Fj and [Fs.)

Solution: Note that every monic irreducible quadratic over F, is the minimal poly-
nomial of either of its two roots. Conversely, any element of F,: — F, has as its minimal
polynomial a monic irreducible quadratic over F,. Therefore,

1
# of irreducible degree 2 polynomials over F, = §(q2 —q).

A completely analogous argument shows that

1
# of irreducible degree 3 polynomials over [, = §(q3 —q).

Alternate Solution: Let 1(n) = # of irreducible polynomials of degree n in F,[z].
Note that z¢° — z € [F,[z] is the product of all irreducible linear and quadratic poly-
nomials in F,[z]. Counting degrees shows that ¢* = (1) + 2¢(2) = ¢ + 2¢(2), so that

P(2) = %((f —q).

Similarly, z7° —z € [F,[2] is the product of all irreducible linear and cubic polynomials
in F,[z]. Counting degrees shows that ¢* = (1) 4+ 3¢¥(3) = ¢ + 3¢(3), so that

P(3) = %(q?’ —q).




3. (b) Determine the number of conjugacy classes in the group GL3(F,). (Hint: Use canonical
forms of modules over a principal ideal domain. One canonical form would use part (a), but
you can also solve part (b) without using part (a).)

Solution via Rational Canonical Form: Note that every conjugacy class in GL3(F,) is
represented by a unique matrix in rational canonical form. Thus, we count the number
of rational canonical forms that lie in GL3(F,). Three types can occur. Namely:

0 0 —b() 0 —aobo 0 —bo 0 0
Al = 1 0 _bl Ag = 1 —(ao + b()) 0 Ag = 0 —b() 0 s
0 1 —b2 0 0 —Q 0 0 —b[)

corresponding to the F,[z]-modules

Fy[z]
(l’g + bgl’Q + bll' —I— bo)’

Fy[z] Fy[z]

Vi= (x4 ao) ~ (z+ap)(z+ b))’
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We now note that

det(A;) = —by = There are ¢°(q — 1) invertible matrices of form A;.
det(Ag) =
det(As) = —bj == There are (¢ — 1) invertible matrices of form As.

—agby = There are (¢ — 1) invertible matrices of form A,.

Therefore,

# of conjugacy classes in GL3(F,) = ¢*(¢— 1)+ (¢ — 1)* + (¢ — 1)
=q(g+1)(¢—1)




3. (b) Determine the number of conjugacy classes in the group GL3(F,). (Hint: Use canonical
forms of modules over a principal ideal domain. One canonical form would use part (a), but
you can also solve part (b) without using part (a).)

Solution via Jordan Canonical Form: Note that every conjugacy class in GL3(IF,) de-
termines a unique F,[x]-module structure on the F,-vector space V = (F,)%. Thus,
we count the number of F,[z]-module structures on (F,)* that have invertible Jordan
canonical forms. Five main types can occur:

Type Canonical form type Number of such invertible forms
: (irredulsz[ﬂ cubic) 56 —q)
? (f ‘{ﬂ\) © (irreducilliqe[xq]uadratic) @ —q)(g—1)
F F F
4 v i[gi\]ll)F [:E](x i[si%ﬁ‘ [x](x ibi») (4= +@-Da-2)+ (%)
’ <$i/\1> (x—qA2)2 (¢—1)+(@—-1)(g—2)

The count for Type 1 and Type 2 follows from part (a).
The count for Type 3 is clear.

The count for Type 4 follows by distinguishing three cases:
(i) Ay = Ay = A3: There are ¢ — 1 forms.
(ii) Exactly two \; are the same: There are (¢ — 1)(¢ — 2) forms.
(iii) A1, A2, A3 all distinct: There are (g —1)(¢ — 2)(¢g — 3) forms.

The count for Type 5 follows by distinguishing two cases:
(i) Ay = Ag: There are g — 1 forms.
(ii) Ay # Ao There are (¢ — 1)(¢ — 2) forms.

Thus, in total, we have that

1 1
# of conjugacy classes in GL3(F,) = g(q3 —q)+ 5((]2 —q)(g—1)

n (q_1)+(q—1)(q—2)+(q;1ﬂ

+(q@—1)+[(g—1)+ (g —1)(qg —2)]
=q(g+1)(g—1).




4. (a) Let K be an algebraically closed field. Suppose S C K™ is the set of common zeros
of a family of polynomials {f;} C Klz1,...,z,], and assume S is non-empty. Suppose
T:g € K(zy,...,z,)
d
is a rational function such that the polynomial d is non-zero at all points of S. Thus r
defines a K-valued function on S. Prove that there is a polynomial h € Klzy,...,z,]| so
that h(z) = r(z) for all x € S. (Hint: Consider the ideal generated by the f; and d.)

Notation: For a subset S C K™, we let Z(S) = {f € K[z1,...,z,]: f(p) =0Vp e S}.

Solution: Consider the ideal (f;,d). Since d is non-zero at all points of S, we have
Z{fi},d) :={x € K": fi(x) =0Viand d(z) =0} = Q.
Thus, by the Nullstellensatz,

I‘ad<{fi}ad) = I(Z({f1}7d)) :I<®) = K[xlu S >xn]7

and so ({fi},d) = Klz1,...,x,].
In particular, g € ({f;},d), so there exist polynomials py,...,ps,h € Klxy,...,z,]
such that g = p1f;, + ...+ pefi, + hd, so that
g f’il fi[

r d p1d+ +ped+

Since f,(z) = 0 and d(z) # 0 for all z € S, we have r(z) = h(z) for all z € S.

(b) Give a counterexample to part (a) if K is not algebraically closed, by taking K = Q,
n=2, fi=2>+y?>—1,and r = 1/(y — ), and showing that there is no h € Q[z,y] with
h(z,y) =r(z,y) on S = {(z,y) € Q*: 2* + y* = 1}. (Hint: You may use without proof the
fact that any polynomial g € Q[z,y| that vanishes on S must be a multiple of 22 + y* — 1.)

Solution: Suppose for the sake of contradiction that there exists an h € Q|x, y] with
h(z,y) = y—% on S. Then h(x,y)(y —x) —1=0on S, so by the Hint:

Wz, y)(y —z) =1 =p(z,y)(2* +y*—1) on S (%)

for some p € Q|x, y.
Let g(z) = p(z, ). Setting x = y in (x) gives —1 = q(x)(22* — 1), so

q(x)(22° = 1) +1=0 Vr € Q.

But this is impossible since polynomials of one variable have at most finitely many roots.
Contradiction.




5. Find, with proof, all algebraic integers in the field Q[v/6]. For which of the integer primes
p=2,3,57,11 is there exactly one prime ideal in the ring of integers lying over the prime
ideal (p) C Z?

Notation: Let O = {algebraic integers in Q[v/6]}. Also, for a prime ideal (p) C Z, we
let (p)¢ = pOk denote the ideal generated by p in Ok.

Solution: We claim that O = Z[\/6].

One inclusion is simple: since v/6 is a root of 22 — 6 € Z[z], we have v/6 € Ok, so
Z[\/6] C Ok. Tt remains to show the reverse inclusion.

Let ¢ = a+bV6 € Ox C Q[v6]. Let m¢ € Q[z] denote the minimal polynomial of ¢
over Q. Note that

me(z) = (x — (a 4+ bV6))(z — (a — bV6)) = 2% — 2az + (a® — 6b7).

Since ¢ € Ok, we have m¢ € Z[z], so that 2a € Z and a* — 60> € Z. Thus,
6 - (20)* = 4(a® — 6b*) — (2a)* € Z. Since 6 is square-free, it follows that 2b € Z.

Write a = x/2 and b = y/2 for some z,y € Z. Since a® — 6b? € Z, it follows that
2? — 6y* = 0 (mod 4). This implies (after short casework) that z and y must be even,
and so a,b € Z. This proves that ¢ € Z[\/6).

By definition, a prime q C Z[v/6] lies above the prime (p) C Z iff N Z = (p). One
can check that this is equivalent to saying that the prime q has g D (p)¢. Moreover, the
primes containing (p)¢ are in bijection with the prime ideals of Z[v/6]/(p)¢. That is:

{Primes q C Z[\V6] above (p)} = {Primes q C Z[V6] containing (p)e}
28 . Zli] Tyl }

(e (p22—6) (2% —6)

We now claim that for p = 2,3,7, 11, there is only one prime ideal above (p).

— {Prime ideals of

p = 2: Since 2% — 6 = 2% in Fy[x], we have 2([2\)/56] = (ffkcé) = Ii;[f)], which has only one

prime ideal. Thus, there is only one prime q C Z[v/6] above (2). (Namely, q = (2,v/6).)
p = 3: Analogous to the case p = 2.

p=>5: Since 22 —6 =2? — 1= (z + 1)(z — 1) in F;[z], we have that
Z|V6] ., Fslz]  Fafa]  TFsla]

=} = X
Gy  (@*=6) (z+1) (z-1)

is a product of two fields, hence has two prime ideals. Thus, there are two prime ideals

q1,q2 above (5). (In general, a product of n fields will have n prime ideals.)

p = T: Since 22 —6 = x?+1 is irreducible in F;[z], we have that Z([;@ = (fgﬁ”é) = (;Fiﬂ)
is a field, hence has one prime ideal. Thus, there is only one prime q C Z[v/6] above (7),

namely q = (7). (In other words: Z([;)/eé]

p = 11: Analogous to the case p = 7.

is a field, so (7)° is maximal.)




6. Let V be a nonzero finite-dimensional vector space over an algebraically closed field k,
and let T: V' — V be a linear endomorphism.

(a) What does the theorem on Jordan canonical form say about 7" acting on V7 Prove it

(including the uniqueness aspects) using the structure theorem for finitely generated modules
over a PID.

Theorem: There exists a basis for V' with respect to which the matrix of 7" is a block
diagonal matrix whose blocks are the Jordan blocks of the elementary divisors of V.
Moreover, this form is unique up to permutation of the Jordan blocks.

Proof: Regard V' as a k[x]-module, where x € k[x] acts on V as the linear map 7'. Since
k[x] is a PID and V is finitely generated as a k[x]-module, the structure theorem implies
that

~ i e Kl kla]
VERE G O Gy
for some primes p; € k[x] (not necessarily distinct) and some r > 0 and a; > 1.
Since dimg (V) < oo whereas dimg(k[z]) = oo, we must have r = 0. Since k is
algebraically closed, every prime p; is linear: p;(z) = x — A; for some \; € k. Thus,

SN e WrTe (+)

Note that {1, (Z—N\;), ..., (T—\;)* '} is a basis for the k-vector space k[z]/(x—\;)*:.
(I omit the proof of this.) With respect to this basis, multiplication by x € k[z] acts as:

=

(

I

5

(T—X)% 2 = N(T = N2 (T — \)v !
(@ = 2)"7 = M@= )™

Thus, with respect to this basis of k[x]/(z — \;)*, the linear transformation T has the
form of an «; X a; Jordan block:

Applying this to each of the direct summands k[z]/(z — \;)* of V, we obtain a
k-vector space basis of V' with respect to which the matrix of T" takes the desired form.

By the uniqueness part of the structure theorem for finitely generated modules over
a PID, the primes p;(x) = z — \; and the powers «; are uniquely determined by 7.
Thus, the decomposition () is unique up to permutation of direct summands, so that
the Jordan form of 7" is unique up to permutation of the Jordan blocks.




6. Let V be a nonzero finite-dimensional vector space over an algebraically closed field k,
and let T: V' — V be a linear endomorphism.

(b) Using the Jordan canonical form, prove that 7" is diagonalizable if and only if its minimal
polynomial has no repeated roots.

Solution: Let my(x) denote the minimal polynomial of T

(=) Suppose T is diagonalizable. Then there exists a basis of V' with respect
to which the matrix of 7" is diagonal. Let D be this diagonal matrix, and let mp(z)
denote its minimal polynomial. Since minimal polynomials are invariant under change
of basis, we have mr(xz) = mp(z). Since the minimal polynomial of diagonal matrix has
as its roots the distinct elements on the diagonal, it follows mp(x) has no repeated roots.

(<=) Suppose that mr(x) has no repeated roots. Let J denote the Jordan form
(matrix) of T, and let m(z) denote the minimal polynomial of J. Since minimal poly-
nomials are invariant under change of basis, we have mr(x) = my(x), and so m;(z) has
no repeated roots.

Suppose that J has the block diagonal form

Ji
J =
Jy

where each J; is a Jordan block of size a; with eigenvalue );.

Note that my(x) = lem[my, (z),...,my(z)]. Note also that my(z) = (z — \;)*.
Thus, since my(x) has no repeated roots, we must have each a; = 1. In other words,
every Jordan block has size 1, so J is a diagonal matrix.




7. Suppose 1 — N 5G4 K — 1is an exact sequence of groups, with G finite. Let P C G
be a p-Sylow subgroup.

(a) Show that j(P) is a p-Sylow subgroup of K.

Solution: Write |G| = p®m, |N| = p'¢, |K| = pn, where p t £, m,n. Since P C G is
a p-Sylow subgroup, we have |P| = p®. Note also that K = G//.(N), so |G| = |K||N|, so
a=pF+7.

Note that j(P) = PL(LJ(VA)[) = POI;(N). Since PN «(N) < P, we have |P N (N)| = p* for
some k. Since p* = [P No(N)| | [o(N)| = p?¢, we have k < v, so p* < p?. Thus,

_ |7
[P0 e(N)]

A
—EZ——Z?-

5(P)] =
Since j(P) < K is a p-group with |j(P)| > p?, it follows that |j(P)| = p?, meaning that
j(P) is a p-Sylow subgroup of K.

(b) If P, P, are two p-Sylow subgroups of G with j(P;) = j(F,), show that there exists
n € N with i(n)Pyi(n)~! = P,. (Hint: apply a Sylow theorem to a subgroup of G.)

Solution: Write |G| = p®m, |N| = p"¢, where p{ {,m. Since P;, P, C G are p-Sylow
subgroups, we have |Py| = |P,| = p°.
Consider ((N)P; < G. The argument in part (a) shows that [Py N «(N)| = p?, so

t(N)|| P 0 p©
|L(N)P1‘_ |( )|| 1| :p p _

— ay.
PN - p P

Thus, P; is a p-Sylow subgroup of ¢«(N)P;.
Note that Py < «(N)Py. (If py € Py, then j(p2) € j(P) = j(F1), so j(p2) = j(p1) for
some p; € Pp, s0 ps = 1(n)p; for some n € N.) Thus, P» is a Sylow subgroup of ¢(N)P;.
Therefore, by the Sylow Theorems, P; and P, are conjugate in ¢(/N)P;, so that

Py = u(n)py P («(n)p1) ™ = e(n) Pr(n)™!

for some n € N.




8. Let A be a commutative ring, and M an A-module.

(a) Define what it means to say that M is A-flat, and prove that Q is a flat Z-module that
is not projective.

Solution: An A-module M is A-flat iff the right-exact functor — ® 4 M is exact.
That is, every injective map ©: L' — L has Yy ® Id: L' ®4 M — L ®4 M injective.

Since Q = Z) is a localization of Z, it is a flat Z-module.

Suppose for the sake of contradiction that Q were a projective Z-module. Then
Q& M = F for some Z-module M and some free Z-module F'.

Let A C F be a Z-basis for F. Note that if f = ka; for k; € Z, a; € Ahas f € nF,
then n | k; for each k;. Thus, if f € () _, nF, then each k; has infinitely many divisors,
so each k; = 0, so f = 0. Therefore,

(n@oM)=(\nF=0.
n=1 n=1

But since (1,0) = n(1/n,0) € n(Q® M) for each n > 1, we have (1,0) € ()2, n(Q® M).
Contradiction.




8. Let A be a commutative ring, and M an A-module.

(b) Prove that M is flat if and only if Tor{!(M, N) = 0 for all A-modules N.

Solution: (=) Suppose M is flat. Let N be an A-module, and let P, — N — 0 be
a projective resolution of N. Since M is flat, the tensored sequence

= PLOaM - FPh®sM — Ny M—0

is exact, hence has zero homology. That is, Tor2 (M, N) = 0 for all n > 1.

(«<=) Suppose Tor{'(M, N) = 0 for all A-modules N. Let 0 — L' — L — L" — 0 be
a short exact sequence. Applying the Tor exact sequence gives

- Tor (ML) = M@, L - M®,L — Mo, L" — 0. (ast)

By hypothesis Tor{!(M, L") = 0, so the sequence (%) is short exact. Thus, the functor
M ®4 — is (left) exact, so M is flat.

(c) Prove that if 0 — M’ — M — M" — 0 is a short exact sequence of A-modules and M’
and M" are A-flat, then so is M.

Solution: Let N be an A-module. Applying the long exact Tor sequence gives
- — Tor}(M', N) — Tori(M, N) — Tor}(M",N) — ---

If M’ and M" are A-flat, then by part (b), we have Tor{(M’, N) = Tori'(M", N) = 0.
Thus, Tor{'(M, N) = 0. Since N is arbitrary, part (b) implies that M is A-flat.




10. Let m: G — GL(V) be a finite-dimensional complex representation of a finite group G.
On the respective spaces Bil(V') and Hom(V, V*) of bilinear forms (on V') and linear maps,
define left G-actions

(9B)(v,v") :== B(g~'v,g"'v) and  (¢T)(v) =T(g 'v)om(g™").

(a) Prove that the natural linear map Bil(V') — Hom(V, V*) defined by B — (v +— B(v,))
is an isomorphism as well as G-equivariant.

Solution: Let ¢: Bil(V) — Hom(V, V*) denote ¢(B) = [v + B(v,)].

Injective: If ¢(B) = 0, then B(v,-) =0 for allv € V, so B(v,w) = 0 for all v,w € V,
meaning that B = 0.

Surjective: Let A € Hom(V,V*). Define B € Bil(V) via B(v,w) := (Av)(w). Then
o(B)(v) = B(v,:) = Av for all v € V| so ¢(B) = A.

G-equivariant: Let B € Bil(V). Let v,w € V. Note that by definition,

©(9B)(v) = (9B)(v,) = B(g v, g7 ")
and
lgp(B)](v) = o(B)(g~'v)om(g™") = B(g 'v,-) om(g ™).
Thus,
¢(9B)(v)(w) = B(g~'v, g 'w) = B(g"v,") o (g~ ) (w) = [g(B)](v)(w),

which shows that ¢(gB) = gp(B).




10. Let m: G — GL(V) be a finite-dimensional complex representation of a finite group G.
On the respective spaces Bil(V') and Hom(V, V*) of bilinear forms (on V') and linear maps,
define left G-actions

(9B)(v,v) == B(g 'v,gv) and  (9T)(v) =T(g 'v)om(g™").
(b) Prove that Homgg)(V, V*) # 0 if and only if there exists a nonzero bilinear form B: V' x

V' — C satisfying B(g(v), g(v")) = B(v,v’) for all g € G and v,v’ € V, and deduce that if V/
is irreducible then such a nonzero B exists if and only if the character of 7 is R-valued.

Solution: We first show that Homgg (V, V*) # 0 iff there exists B € Bil(V), B # 0
with ¢B = B.

(=) Suppose Homcig(V,V*) # 0. Let A € Homgjg(V,V*), A # 0. Define B €
Bil(V) via B(v,w) := (Av)(w). Then

B(gv, gw) = [A(gv)](gw) = (9Av)(gw) = (Av)(w) = B(v,w).

(<=) Suppose there exists B € Bil(V) with B # 0 and ¢B = B. Define A: V. — V*
by (Av)(w) := B(v,w). Then

[A(gv)l(w) = B(gv,w) = B(v, g~ 'w) = (Av)(g™'w) = (94v)(w),

so we have A € Homgg(V, V™).

Suppose m: G — GL(V) is irreducible. Let x denote the character of m. We will
show that Homgg(V, V*) # 0 iff x is R-valued.

(=) Suppose Homgg(V,V*) # 0. By Schur’s Lemma, it follows that V' = V* as
representations. Since the character of V* is?, it follows that y = Y. Thus, x is R-valued.

(<=) Suppose x is R-valued. Since dim¢(Homeig(V,V*)) = (x,X), we have
HomC[G](V, V*) 7& 0 <~ dimC(Hom@[G](V, V*)) 75 0

= (X,X) #0
1 2
— @;X(g) #0

Since x is irreducible, the orthogonality relations imply that
1
[€] > Ix(g)l =1
geG

Since x is R-valued, we have

1

@ZX(QV =1#0.
geG

Thus, Homgg(V, V*) # 0.




