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1. Let R be a finite-dimensional algebra over a field k.

(a) Prove that if R is a commutative integral domain, then R is a field.

Solution: Let r ∈ R, r 6= 0. Let

mr : R→ R

x 7→ rx.

Note that mr is k-linear. Since R is an integral domain, mr is injective. Thus, since R is
a finite-dimensional k-vector space, mr is surjective. Therefore, there exists x ∈ R with
rx = 1, which shows that r ∈ R×. Hence, R is a field.

Alternate Solution: Let r ∈ R, r 6= 0. Since R is a finite-dimensional k-algebra,
Problem 8(a) implies that the ring extension k ⊂ R is integral. Therefore, r ∈ R satisfies
a monic polynomial, say

rn + an−1r
n−1 + . . .+ a1r + a0 = 0, ai ∈ k.

Suppose this polynomial is of minimal degree. Since R is an integral domain, we have
a0 6= 0. (If a0 = 0, then we’d contradict minimality.) Subtracting a0 from both sides, we
have r(rn−1 + an−1r

n−2 + . . .+ a1) = −a0, so

r · −a−1
0 (rn−1 + an−1r

n−2 + . . .+ a1) = 1.

This shows that s = −a−1
0 (rn−1 + an−1r

n−2 + . . .+ a1) ∈ R is an inverse for r.

(b) Suppose R is not commutative. Prove that rs = 1 implies sr = 1.

Solution: Let r ∈ R have rs = 1. Let

mr : R→ R

x 7→ rx.

Note that mr is k-linear. Note that for any y ∈ R, we have mr(sy) = rsy = y, so mr

is surjective. Thus, since R is a finite-dimensional k-vector space, mr is injective. By
injectivity, mr(sr) = rsr = r = mr(1) implies that sr = 1.



2. Suppose A is a (commutative) ring, and M is an A-module.

(a) If Mm = 0 for all maximal ideals m of A, must M = 0? Prove or disprove.

Solution: Yes. We prove the contrapositive: Suppose M 6= 0. Let x ∈ M , x 6= 0.
Consider the ideal Ann(x) := {a ∈ A : ax = 0}. Since Ann(x) 6= (1), there exists a
maximal ideal m ⊃ Ann(x). We claim that Mm 6= 0.

Otherwise, if Mm = 0, then x/1 = 0, so there would exist s ∈ A − m with sx = 0.
That is, there would exist an s /∈ m with s ∈ Ann(x) ⊂ m – which is impossible. Thus,
Mm 6= 0.

(b) If M is finitely generated and Mm/mMm = 0 for all maximal ideals m of A, prove that
M = 0. Give a counterexample if M is not finitely generated.

Solution: Since M is finitely generated as an A-module, it follows that Mm is finitely
generated as an Am-module. Since Am is a local ring, it has only one maximal ideal,
namely Jac(Am) = m. Our hypothesis is that mMm = Mm. Thus, by Nakayama’s
Lemma, we have Mm = 0. By part (i), M = 0.

Counter-example: Take A = Z and M = Q. Note that Q is not a finitely-generated
Z-module. Note also that Qm = Q for all maximal ideals m ⊂ Z, so Qm/mQm = 0.
Despite this, Q 6= 0.



3. Let E/k be a finite-degree extension of fields.

(a) Prove that Aut(E/k) has at most [E : k] elements.

Solution: Let Aut(E/k) = {σ1, . . . , σm} and [E : k] = n. We have to show that
m ≤ n.

Suppose for the sake of contradiction that m > n. Let {α1, . . . , αn} be a k-basis for
E. Then the system

(∗)


σ1(α1)x1 + . . .+ σm(α1)xm = 0

· · ·
σ1(αn)x1 + . . .+ σm(αn)xm = 0

of n equations in m variables (m > n) must have a nontrivial solution β1, . . . , βm ∈ E.
Let c1, . . . , cn ∈ k be arbitrary. Multiplying the ith equation of (∗) by ci gives

σ1(c1α1)β1 + . . .+ σm(c1α1)βm = 0

· · ·
σ1(cnαn)β1 + . . .+ σm(cnαn)βm = 0

Adding these equations, we observe that there exist β1, . . . , βn ∈ E, not all zero, such
that

σ1

(
n∑
i=1

ciαi

)
β1 + . . .+ σm

(
n∑
i=1

ciαi

)
βm = 0 for all c1, . . . , cn ∈ k.

Since {α1, . . . , αn} is a basis of E, this means that

σ1(ω)β1 + . . .+ σm(ω)βn for all ω ∈ E.

But this implies that the distinct automorphisms σ1, . . . , σm are k-linearly dependent,
contradicting the linear independence of characters.

Remark: There is at least one other (completely different) way of solving this problem.
If you know a simpler solution, please let me know and I’ll include it (and credit you).



3. Let E/k be a finite-degree extension of fields.

(b) If E is a finite field, prove that Aut(E/k) is cyclic and the norm E× → k× is surjective.

Solution: Write E = Fqn , k = Fq and [E : k] = n, where q is a prime power. Then E
is the splitting field of xq

n −x ∈ k[x], so that E/k is Galois, so |Gal(E/k)| = [E : k] = n.
Since E is finite, the (injective) Frobenius endomorphism

σ : Fqn → Fqn

β 7→ βq

is an automorphism over Fq, so 〈σ〉 ≤ Gal(E/k). Since βq
n

= β for all β ∈ E, we have

σn = IdE. If we had σi = IdE for some i < n, then βq
i

= β for all β ∈ E, which is
impossible since xq

i
= x has only qi roots. Thus, σ has order n, so Gal(E/k) = 〈σ〉.

If x ∈ E, we have

NE/k(x) =
∏

τ∈Gal(E/k)

τ(x) = x · σ(x) · · ·σn−1(x) = x · xq · · ·xqn−1

= x`,

where we set

` = 1 + q + . . .+ qn−1 =
qn − 1

q − 1
.

Since E× is cyclic, we can write E× = 〈α〉 for some α ∈ E, so that E = k(α). Since
`q− ` = qn− 1, we have α`q−` = αq

n−1 = 1, so αq` = α`. Thus, (αj`)q = αj` for all j ∈ N
and so αj` ∈ Fq for all j ∈ N. Therefore,

k× = F×q = {1, α`, α2`, . . . , α(q−2)`}.

Since NE/k(α
j) = αj`, it follows that NE/k : E× → k× is surjective.

(Alternatively: Regard NE/k as a group homomorphism E× → k×. Note that
Ker(NE/k) = {x ∈ E× : x` = 1}, so |Ker(NE/k)| ≤ `. Therefore,

|Im(NE/k)| =
|E×|

|Ker(NE/k)|
≥ qn − 1

`
= q − 1 = |k×|,

which shows that NE/k is surjective.)

(c) Give an example of a finite cyclic extension such that the norm is not surjective.

Example: Q(i)/Q. The Galois group is Z/2Z and the norm is N(a+ bi) = a2 + b2.



4. Let G be a finite group, F a field, and V a nonzero finite-dimensional F -linear represen-
tation of G.

(a) Give an example of G, F , and V such that V does not decompose as a direct sum of
irreducible F -linear representations of G.

Example 1: Take G = Z/pZ = 〈g〉, F = Fp. We claim that the regular representation
of G over Fp does not decompose as a direct sum of irreducible representations. To see
this, we show that every irreducible representation of G over Fp is trivial.

Let ϕ : G → GL(V ) be an irreducible representation. Since ϕ(g)p = Id, we see that
the minimal polynomial m ∈ Fp[x] of ϕ(g) has m(x) | xp − 1 = (x− 1)p. In particular, 1
is an eigenvalue of ϕ(g), so its eigenspace E = {v ∈ V : ϕ(g)v = v} is a nonzero G-stable
subspace. Since ϕ is irreducible, this implies that E = V , so ϕ(g) = IdV . This means
that ϕ is the direct sum of dim(V ) trivial representations. Again by the irreducibility of
ϕ, it follows that dim(V ) = 1, so ϕ is trivial.

Therefore, since the regular representation of G over Fp is not the direct sum of trivial
representations, it is not a direct sum of irreducible representations.

Example 2: Take G = Z/pZ = 〈g〉, F = Fp. Let V be a 2-dimensional Fp-vector
space and fix a basis {e1, e2}. Define a representation ϕ : G = 〈g〉 → GL(V ) via

ϕ(g) =

(
1 1
0 1

)
Since ϕ(g) is not diagonalizable, it follows that ϕ cannot decompose as a direct sum of
two non-trivial G-invariant subspaces. Thus, the only possible decomposition of V as a
direct sum of irreducible sub-representations is V = V , meaning that V is irreducible.
But since V has a nontrivial proper G-invariant subspace (namely span{e1}), we see that
V is not irreducible.



4. Let G be a finite group, F a field, and V a nonzero finite-dimensional F -linear represen-
tation of G.

(b) Suppose that the order of G is not zero in F . Prove that V is a direct sum of irreducible
F -linear representations of G.

Solution: Let ρ : G→ GL(V ) be a nonzero finite-dimensional F -linear representation
of G. We proceed by induction on dimF (V ).

If V is irreducible, we’re done. Assume, then, that V is reducible, so V has a nontrivial
G-stable subspace W ⊂ V . Let W ′ be an F -vector space complement of W in V (which
exists because dimF (V ) < ∞), and let π : V � W denote the corresponding projection
(i.e.: Ker(π) = W ′). Consider the averaged map

π0 : V → V

π0 :=
1

|G|
∑
t∈G

ρ(t) · π · ρ(t)−1

Since π : V → W and ρ(t) preserves W , we have π0 : V → W . Moreover, since x ∈ W
implies ρ(t)−1x ∈ W , we see that x ∈ W implies ρ(t) · π · ρ(t)−1x = x, which shows that
π0|W = IdW . Thus, π0 : V → W is a projection map.

Let W 0 := Ker(π0), so that V = W ⊕W 0 as F -vector spaces. We claim that W 0 is
G-stable. To see this, note that for all s ∈ G

ρ(s) · π0 · ρ(s)−1 =
1

|G|
∑
t∈G

ρ(s) · ρ(t) · π · ρ(t)−1 · ρ(s)−1 =
1

|G|
∑
t∈G

ρ(st) · π · ρ(st)−1 = π0,

so that ρ(s) · π0 = π0 · ρ(s). Thus, if x ∈ W 0 = Ker(π0), then π0 · ρ(s)x = ρ(s) · π0x = 0,
so ρ(s)x ∈ Ker(π0) = W 0. Thus, W 0 is G-stable.

Therefore, V = W ⊕W 0 as representations. By induction hypothesis, both W and
W 0 are direct sums of irreducible representations, so the same is true of V .



5. Let C∗ be a complex of free abelian groups, with differential lowering the degree by 1.
Let A be an abelian group.

(a) Construct a short exact sequence

0→ Hn(C∗)⊗Z A→ Hn(C∗ ⊗Z A)→ TorZ
1 (Hn−1(C∗), A)→ 0.

(Hint: use a short free abelian group resolution of A.)

Solution: Write C∗ : · · · → Cn+1
dn+1→ Cn

dn→ · · · . Let Zn := Ker(dn) ≤ Cn,
Bn := Im(dn+1) ≤ Cn. Note that both Zn and Bn are free Z-modules, and
Hn(C∗) = Zn/Bn.

Consider the short exact sequence 0→ Bn
ιn
↪→ Zn � Hn(C∗)→ 0. Applying the long

exact Tor sequence, and noting that Zn is free (hence flat), we obtain an exact sequence

0→ TorZ
1 (Hn(C∗), A)→ Bn ⊗Z A

ιn⊗1→ Zn ⊗ A→ Hn(C∗)⊗Z A→ 0.

From this, we observe that

TorZ
1 (Hn(C∗), A) ∼= Ker(ιn ⊗ 1), (∗)

Hn(C∗)⊗Z A ∼= Coker(ιn ⊗ 1). (∗∗)

Consider now the short exact sequence 0 → Zn ↪→ Cn
dn

� Bn−1 → 0. Let Z∗ :=

· · · 0→ Zn+1
0→ Zn

0→ · · · denote the chain complex of Zn’s with differential 0. Define B∗
similarly. By the long exact sequence on homology, we obtain an exact sequence

· · · → Hn(Z∗ ⊗Z A)
ϕ→ Hn(C∗ ⊗Z A)

ψ→ Hn(B∗−1 ⊗Z A)→ · · ·

By our construction of Z∗ and B∗, we have Hn(Z∗⊗ZA) ∼= Zn⊗ZA and Hn(B∗−1⊗ZA) ∼=
Bn−1 ⊗Z A, thereby yielding

· · · ιn⊗1→ Zn ⊗Z A
ϕ→ Hn(C∗ ⊗Z A)

ψ→ Bn−1 ⊗Z A
ιn−1⊗1→ · · ·

Breaking this long exact sequence into short exact sequences gives

0→ Im(ϕ) ↪→ Hn(C∗ ⊗Z A)� Coker(ϕ)→ 0.

We now note that

Im(ϕ) ∼=
Zn ⊗ A
Ker(ϕ)

∼=
Zn ⊗ A

Im(ιn ⊗ 1)
∼= Coker(ιn ⊗ 1),

Coker(ϕ) ∼=
Hn(C∗ ⊗ A)

Im(ϕ)
∼=
Hn(C∗ ⊗ A)

Ker(ψ)
∼= Im(ψ) ∼= Ker(ιn−1 ⊗ 1).

Thus, from the isomorphisms (∗), (∗∗), we thereby obtain the exact sequence

0→ Hn(C∗)⊗Z A→ Hn(C∗ ⊗Z A)→ TorZ
1 (Hn−1(C∗), A)→ 0.



5. Let C∗ be a complex of free abelian groups, with differential lowering the degree by 1.
Let A be an abelian group.

(b) Suppose that Hn(C∗) = 0 except for n = 0, and H0(C∗) ∼= Z(5)⊕Z/5Z. Here, Z(5) is the
localization of Z at the prime (5). Compute the homology groups of C∗ ⊗Z (Q/Z).

Solution: We claim that

Hn(C∗ ⊗Z (Q/Z)) =


Z(5) ⊗Z Q/Z if n = 0

Z/5Z if n = 1

0 else

For each case, we will use the short exact sequence of (a):

0→ Hn(C∗)⊗Z Q/Z→ Hn(C∗ ⊗Z Q/Z)→ TorZ
1 (Hn−1(C∗),Q/Z)→ 0. (∗)

n = 0: The short exact sequence (∗) reads:

0→
(
Z(5) ⊕ Z/5Z

)
⊗Z Q/Z→ H0(C∗ ⊗Z Q/Z)→ 0→ 0.

Thus,

H0(C∗ ⊗Z Q/Z) ∼= (Z(5) ⊗Z Q/Z)⊕ (Z/5Z⊗Z Q/Z))
∼= Z(5) ⊗Z Q/Z,

where we have used the fact that Z/5Z⊗Z Q/Z = 0.

n = 1: The short exact sequence (∗) reads:

0→ 0→ H1(C∗ ⊗Z Q/Z)→ TorZ
1 (Z(5) ⊕ Z/5Z,Q/Z)→ 0.

Thus, since Z(5) is a flat Z-module (by virtue of being a localization), we have

H1(C∗ ⊗Z Q/Z) ∼= TorZ
1 (Z(5),Q/Z)⊕ TorZ

1 (Z/5Z,Q/Z)

∼= TorZ
1 (Z/5Z,Q/Z).

To compute TorZ
1 (Z/5Z,Q/Z), we apply the Tor long exact sequence to the short exact

sequence 0→ Z→ Q→ Q/Z→ 0, obtaining

Tor1(Z/5Z,Q)→ Tor1(Z/5Z,Q/Z)→ Z/5Z⊗Z Z→ Z/5Z⊗Z Q.

Noting that Tor1(Z/5Z,Q) = 0 and Z/5Z⊗Z Q = 0, we have Tor1(Z/5Z,Q/Z) ∼= Z/5Z.

(Alternatively: One can compute Tor1(Z/5Z,Q/Z) by taking the projective

resolution 0 → Z 5→ Z → Z/5Z → 0 and applying − ⊗Z Q/Z. One finds that

Tor1(Z/5Z,Q/Z) ∼= Ker[Q/Z 5→ Q/Z] = {0, 1/5, . . . , 4/5} ∼= Z/5Z.)

n 6= 0, 1: The short exact sequence (∗) reads

0→ 0→ Hn(C∗ ⊗Z Q/Z)→ 0→ 0,

which gives Hn(C∗ ⊗Z Q/Z) ∼= 0.



6. (a) State and prove Hilbert’s Basis Theorem.

Statement: If A is a Noetherian ring, then A[x] is a Noetherian ring.

Proof: Let a ⊂ A[x] be an ideal. We will show that a is finitely generated.
Let I = {c ∈ A : cxn + (lower terms) ∈ a} ⊂ A be the ideal of leading coefficients of

the polynomials in a. Since A is Noetherian, I is finitely generated, say I = (c1, . . . , cn).
Thus, for each 1 ≤ i ≤ n, there is a polynomial fi ∈ a with fi(x) = cix

ri + (lower terms).
Note that the polynomials fi generate an ideal (f1, . . . , fn) ⊂ a in A[x].

Let r = max{r1, . . . , rn}, where ri := deg(fi). We claim that every element f ∈ a can
be written

f = g + h,

where g ∈ a, deg(g) < r and h ∈ (f1, . . . , fr).

Proof of Claim: Let f ∈ a. Write f = cxm + (lower). If m < r, we’re done, so suppose
m ≥ r. Since c ∈ I = (c1, . . . , cn), we can write c = u1c1 + . . . + uncn, where ui ∈ A, so
that f = (u1c1 + . . .+ uncn)xm + (lower).

Note that uix
m−rifi = uicix

m + (lower). Therefore, f −
∑n

i=1 uix
m−rifi ∈ a (since

f ∈ a and fi ∈ a) and has degree < m. Continuing in this way, we can go on subtracting
elements of (f1, . . . , fn) from f until we get a polynomial of degree < r, which we call g.

Let M = A1+Ax+ . . .+Axr−1 be the A-module generated by {1, x, . . . , xr−1}. Then
f = g + h implies that

a = (a ∩M) + (f1, . . . , fn).

Since A is Noetherian and M is a finitely-generated A-module, M is Noetherian. There-
fore, a ∩M ⊂M is a finitely-generated A-submodule, so that a ∩M = Ag1 + . . .+Agm
for some gj ∈M . Thus, a = (g1, . . . , gm, f1, . . . , fn), so a is finitely generated.

(b) Let A be a Noetherian ring, and J an ideal of A. Define the ring GJ(A) = A⊕J⊕J2⊕· · · ,
in which the product of Jm and Jn is the usual product valued in the direct summand Jn+m.
Prove that GJ(A) is Noetherian.

Sketch: Since A is Noetherian, the ideal J is finitely generated, say J = (r1, . . . , rn). By
Hilbert’s Basis Theorem, A[x1, . . . , xn] is Noetherian. The idea now is to construct a
surjective ring homomorphism

A[x1, . . . , xn]� GJ(A).

Doing so will show that GJ(A) is Noetherian.
One such homomorphism can be constructed by decomposing polynomials in

A[x1, . . . , xn] according to their degrees (that is, splitting polynomials into their ho-
mogeneous components) and evaluating at the point (r1, . . . , rn) ∈ An.



8. Let f : A→ B be a ring homomorphism.

(a) Define what it means to say that B is integral over A, and prove that this holds when B
is finitely generated as an A-module.

Solution: We say that B is integral over A iff every β ∈ B is integral over f(A).
That is, every β ∈ B satisfies a monic polynomial with coefficients in f(A).

Suppose B is a finitely-generated A-module, say B = f(A)e1 + . . . + f(A)en. Let
β ∈ B. Write βei =

∑n
j=1 aijej for aij ∈ f(A), i.e. βei −

∑n
j=1 aijej = 0, so

n∑
j=1

(δijβ − aij)ej = 0, (∗)

where δij is the Kronecker delta.
Let M = (δijβ−aij) ∈ Matn(f(A)[β]). Multiplying (∗) by the adjugate Adj(M) gives

det(M)ei = 0 for each ei.

Since 1 ∈ B = f(A)e1+. . .+f(A)en, it follows that det(M)·1 = 0, i.e.: det(δijβ−aij) = 0
in f(A)[β]. That is, β satisfies a monic polynomial with coefficients in f(A).

(b) If B is finitely generated as an A-module, prove that Spec(B) → Spec(A) is a closed
map. (Hint: reduce to the case where f is injective.)

Solution:



9. Let p be an odd prime. In this question, ζp denotes a primitive pth root of unity.

(a) Describe Gal(Q(ζp)/Q) and determine all primes p such that Q(ζp) contains a subfield L
whose Galois group over Q is isomorphic to Z/5Z.

Solution: Consider the homomorphism

ψ : (Z/pZ)× → Gal(Q(ζp)/Q)

a (mod p) 7→ σa : [ζp 7→ ζap ]

Note that ψ is injective. Since |Gal(Q(ζp)/Q)| = [Q(ζp) : Q] = ϕ(p) = p−1 = |(Z/pZ)×|,
we see that ψ is an isomorphism. Thus, Gal(Q(ζp)/Q) ∼= (Z/pZ)× ∼= Z/(p− 1)Z.

Note that if Q(ζp) contains a subfield L with Gal(L/Q) ∼= Z/5Z, then 5 = [L : Q] |
[Q(ζp) : Q] = p− 1, so p ≡ 1 (mod 5).

Conversely, suppose p ≡ 1 (mod 5). Then 5 | p − 1, so Gal(Q(ζp)/Q) ∼= Z/(p − 1)Z
contains a subgroup H of order |H| = p−1

5
. Let L = Q(ζp)

H . Then

Gal(L/Q) ∼=
Gal(Q(ζp)/Q)

Gal(Q(ζp)/L)
∼=

Z/(p− 1)Z
H

∼= Z/5Z.

(b) Prove that there is a finite Galois extension E of Q such that Gal(E/Q) ∼= Z/5Z×Z/5Z
by constructing E as a subfield of an explicit Galois extension F/Q, and explicitly describe
the subgroup Gal(F/E) ⊂ Gal(F/Q).

Solution: Let F = Q(ζ341), noting that 341 = 11 · 31. Note that

Gal(F/Q) ∼= (Z/341Z)× ∼= (Z/11Z)× × (Z/31Z)× ∼= Z/10Z× Z/30Z.

Let H1 ≤ Z/10Z have |H1| = 2. Let H2 ≤ Z/30Z have |H2| = 6. By the above
isomorphisms, we can regard H1 ×H2 ≤ Gal(F/Q).

Let E = FH1×H2 . Then

Gal(F/E) ∼= H1 ×H2
∼= Z/2Z× Z/6Z

and

Gal(E/Q) ∼=
Gal(F/Q)

Gal(F/E)
∼=

Z/10Z× Z/30Z
H1 ×H2

∼=
Z/10Z
H1

× Z/30Z
H2

∼= Z/5Z× Z/5Z.



10. (a) Let G be a group and H a subgroup of finite index n > 0. Prove that G contains a
normal subgroup of index at most n!. (Hint: think about homomorphisms from G to Sn.)

Solution: Consider the action of G on the set G/H by left multiplication. Let π
denote the permutation representation of the action, i.e.,

π : G→ Perm(G/H) ∼= Sn

g 7→ [g′H 7→ gg′H].

Let N := Ker(π), so N E G and

|G : N | = |G/Ker(π)| = |Im(π)| ≤ |Perm(G/H)| = n!

(b) Let G be a group which is generated by two elements. Prove that G has at most 17
subgroups of index 3. (Hint: think about homomorphisms from G to S3.)

Sketch: Every index-3 subgroup determines two homomorphisms ϕ : G→ S3 in which
ϕ(G) acts transitively on {1, 2, 3}. Conversely, every homomorphism ϕ : G→ S3 in which
ϕ(G) acts transitively on {1, 2, 3} determines one index-3 subgroup of G. Thus, we have

# index 3 subgroups of G =
1

2
#{ϕ : G→ S3 : ϕ(G) acts transitively on {1, 2, 3}}.

Since G is generated by 2 elements,

#{ϕ : G→ S3 : ϕ(G) acts transitively on {1, 2, 3}} ≤ |Hom(Free(2), S3)| − 1,

where Free(2) denotes the free group on 2 generators. Since |Hom(Free(2), S3)| = (3!)2 =
36, we conclude that

# index 3 subgroups of G ≤ 1

2
(36− 1) = 17.5.


