Algebra - Spring 2012

Daren Cheng Jesse Madnick

Last updated: September 2013

Acknowledgments & Disclaimers

Some of the solutions contained herein are my own, but many are not. I am indebted to Daren Cheng for sharing with me his solutions to several full-length exams. I'd also like to acknowledge Zev Chonoles, Fernando Shao, and my algebra professors Dan Bump and Akshay Venkatesh, all of whom patiently tolerated my many questions.

I am not exactly an algebraist. My writing style tends towards the wordy side, and my preferred proofs are rarely the most elegant ones. Still, I hope to keep these solutions free of any substantial errors. For this reason: if you notice any errors (typographical or logical), please let me know so I can fix it! Your speaking up would be a kindness for future students who may be struggling to make sense of an incorrect expression. I can be reached at jmadnick@math.stanford.edu.

1. Let R be a finite-dimensional algebra over a field k .

(a) Prove that if R is a commutative integral domain, then R is a field.

Solution: Let $r \in R$, $r \neq 0$. Let

$$
m_r: R \to R
$$

$$
x \mapsto rx.
$$

Note that m_r is k-linear. Since R is an integral domain, m_r is injective. Thus, since R is a finite-dimensional k-vector space, m_r is surjective. Therefore, there exists $x \in R$ with $rx = 1$, which shows that $r \in R^{\times}$. Hence, R is a field.

Alternate Solution: Let $r \in R$, $r \neq 0$. Since R is a finite-dimensional k-algebra, Problem 8(a) implies that the ring extension $k \subset R$ is integral. Therefore, $r \in R$ satisfies a monic polynomial, say

$$
r^{n} + a_{n-1}r^{n-1} + \ldots + a_{1}r + a_{0} = 0, \ \ a_{i} \in k.
$$

Suppose this polynomial is of minimal degree. Since R is an integral domain, we have $a_0 \neq 0$. (If $a_0 = 0$, then we'd contradict minimality.) Subtracting a_0 from both sides, we have $r(r^{n-1} + a_{n-1}r^{n-2} + \ldots + a_1) = -a_0$, so

$$
r \cdot -a_0^{-1}(r^{n-1} + a_{n-1}r^{n-2} + \ldots + a_1) = 1.
$$

This shows that $s = -a_0^{-1}(r^{n-1} + a_{n-1}r^{n-2} + ... + a_1) \in R$ is an inverse for r.

(b) Suppose R is not commutative. Prove that $rs = 1$ implies $sr = 1$.

Solution: Let $r \in R$ have $rs = 1$. Let

$$
m_r: R \to R
$$

$$
x \mapsto rx.
$$

Note that m_r is k-linear. Note that for any $y \in R$, we have $m_r(sy) = rsy = y$, so m_r is surjective. Thus, since R is a finite-dimensional k-vector space, m_r is injective. By injectivity, $m_r(sr) = rsr = r = m_r(1)$ implies that $sr = 1$.

2. Suppose A is a (commutative) ring, and M is an A -module.

(a) If $M_m = 0$ for all maximal ideals **m** of A, must $M = 0$? Prove or disprove.

Solution: Yes. We prove the contrapositive: Suppose $M \neq 0$. Let $x \in M$, $x \neq 0$. Consider the ideal Ann(x) := { $a \in A$: $ax = 0$ }. Since Ann(x) \neq (1), there exists a maximal ideal $\mathfrak{m} \supset \text{Ann}(x)$. We claim that $M_{\mathfrak{m}} \neq 0$.

Otherwise, if $M_{\mathfrak{m}} = 0$, then $x/1 = 0$, so there would exist $s \in A - \mathfrak{m}$ with $sx = 0$. That is, there would exist an $s \notin \mathfrak{m}$ with $s \in Ann(x) \subset \mathfrak{m}$ – which is impossible. Thus, $M_{\mathfrak{m}} \neq 0.$

(b) If M is finitely generated and $M_{\rm m}/\mathfrak{m}M_{\rm m} = 0$ for all maximal ideals \mathfrak{m} of A, prove that $M = 0$. Give a counterexample if M is not finitely generated.

Solution: Since M is finitely generated as an A-module, it follows that $M_{\mathfrak{m}}$ is finitely generated as an A_m -module. Since A_m is a local ring, it has only one maximal ideal, namely $Jac(A_m) = m$. Our hypothesis is that $mM_m = M_m$. Thus, by Nakayama's Lemma, we have $M_{\mathfrak{m}} = 0$. By part (i), $M = 0$.

Counter-example: Take $A = \mathbb{Z}$ and $M = \mathbb{Q}$. Note that \mathbb{Q} is not a finitely-generated Z-module. Note also that $\mathbb{Q}_m = \mathbb{Q}$ for all maximal ideals $m \subset \mathbb{Z}$, so $\mathbb{Q}_m/m\mathbb{Q}_m = 0$. Despite this, $\mathbb{Q} \neq 0$.

3. Let E/k be a finite-degree extension of fields.

(a) Prove that $\text{Aut}(E/k)$ has at most $[E: k]$ elements.

Solution: Let $\text{Aut}(E/k) = {\sigma_1, \ldots, \sigma_m}$ and $[E : k] = n$. We have to show that $m \leq n$.

Suppose for the sake of contradiction that $m > n$. Let $\{\alpha_1, \ldots, \alpha_n\}$ be a k-basis for E. Then the system

$$
(*)\begin{cases} \sigma_1(\alpha_1)x_1 + \ldots + \sigma_m(\alpha_1)x_m = 0 \\ \ldots \\ \sigma_1(\alpha_n)x_1 + \ldots + \sigma_m(\alpha_n)x_m = 0 \end{cases}
$$

of n equations in m variables $(m > n)$ must have a nontrivial solution $\beta_1, \ldots, \beta_m \in E$. Let $c_1, \ldots, c_n \in k$ be arbitrary. Multiplying the *i*th equation of $(*)$ by c_i gives

$$
\begin{cases}\n\sigma_1(c_1\alpha_1)\beta_1 + \ldots + \sigma_m(c_1\alpha_1)\beta_m = 0 \\
\ldots \\
\sigma_1(c_n\alpha_n)\beta_1 + \ldots + \sigma_m(c_n\alpha_n)\beta_m = 0\n\end{cases}
$$

Adding these equations, we observe that there exist $\beta_1, \ldots, \beta_n \in E$, not all zero, such that

$$
\sigma_1\left(\sum_{i=1}^n c_i\alpha_i\right)\beta_1+\ldots+\sigma_m\left(\sum_{i=1}^n c_i\alpha_i\right)\beta_m=0 \text{ for all } c_1,\ldots,c_n\in k.
$$

Since $\{\alpha_1, \ldots, \alpha_n\}$ is a basis of E, this means that

 $\sigma_1(\omega)\beta_1 + \ldots + \sigma_m(\omega)\beta_n$ for all $\omega \in E$.

But this implies that the distinct automorphisms $\sigma_1, \ldots, \sigma_m$ are k-linearly dependent, contradicting the linear independence of characters.

Remark: There is at least one other (completely different) way of solving this problem. If you know a simpler solution, please let me know and I'll include it (and credit you).

(b) If E is a finite field, prove that $Aut(E/k)$ is cyclic and the norm $E^{\times} \to k^{\times}$ is surjective.

Solution: Write $E = \mathbb{F}_{q^n}$, $k = \mathbb{F}_q$ and $[E : k] = n$, where q is a prime power. Then E is the splitting field of $x^{q^n} - x \in k[x]$, so that E/k is Galois, so $|\text{Gal}(E/k)| = |E:k| = n$. Since E is finite, the (injective) Frobenius endomorphism

$$
\sigma \colon \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}
$$

$$
\beta \mapsto \beta^q
$$

is an automorphism over \mathbb{F}_q , so $\langle \sigma \rangle \leq \text{Gal}(E/k)$. Since $\beta^{q^n} = \beta$ for all $\beta \in E$, we have $\sigma^n = \text{Id}_E$. If we had $\sigma^i = \text{Id}_E$ for some $i < n$, then $\beta^{q^i} = \beta$ for all $\beta \in E$, which is impossible since $x^{q^i} = x$ has only q^i roots. Thus, σ has order n, so $Gal(E/k) = \langle \sigma \rangle$.

If $x \in E$, we have

$$
N_{E/k}(x) = \prod_{\tau \in \text{Gal}(E/k)} \tau(x) = x \cdot \sigma(x) \cdots \sigma^{n-1}(x) = x \cdot x^q \cdots x^{q^{n-1}} = x^{\ell},
$$

where we set

$$
\ell = 1 + q + \ldots + q^{n-1} = \frac{q^n - 1}{q - 1}.
$$

Since E^{\times} is cyclic, we can write $E^{\times} = \langle \alpha \rangle$ for some $\alpha \in E$, so that $E = k(\alpha)$. Since $\ell q - \ell = q^n - 1$, we have $\alpha^{\ell q - \ell} = \alpha^{q^n - 1} = 1$, so $\alpha^{q\ell} = \alpha^{\ell}$. Thus, $(\alpha^{j\ell})^q = \alpha^{j\ell}$ for all $j \in \mathbb{N}$ and so $\alpha^{j\ell} \in \mathbb{F}_q$ for all $j \in \mathbb{N}$. Therefore,

$$
k^{\times} = \mathbb{F}_q^{\times} = \{1, \alpha^{\ell}, \alpha^{2\ell}, \dots, \alpha^{(q-2)\ell}\}.
$$

Since $N_{E/k}(\alpha^j) = \alpha^{j\ell}$, it follows that $N_{E/k}: E^{\times} \to k^{\times}$ is surjective.

(Alternatively: Regard $N_{E/k}$ as a group homomorphism $E^{\times} \to k^{\times}$. Note that $\text{Ker}(N_{E/k}) = \{x \in E^{\times} : x^{\ell} = 1\},\text{ so } |\text{Ker}(N_{E/k})| \leq \ell.\text{ Therefore, }$

$$
|\text{Im}(N_{E/k})| = \frac{|E^{\times}|}{|\text{Ker}(N_{E/k})|} \ge \frac{q^n - 1}{\ell} = q - 1 = |k^{\times}|,
$$

which shows that $N_{E/k}$ is surjective.)

(c) Give an example of a finite cyclic extension such that the norm is not surjective.

Example: $\mathbb{Q}(i)/\mathbb{Q}$. The Galois group is $\mathbb{Z}/2\mathbb{Z}$ and the norm is $N(a + bi) = a^2 + b^2$.

4. Let G be a finite group, F a field, and V a nonzero finite-dimensional F-linear representation of G.

(a) Give an example of G, F , and V such that V does not decompose as a direct sum of irreducible F-linear representations of G.

Example 1: Take $G = \mathbb{Z}/p\mathbb{Z} = \langle g \rangle$, $F = \mathbb{F}_p$. We claim that the regular representation of G over \mathbb{F}_p does not decompose as a direct sum of irreducible representations. To see this, we show that every irreducible representation of G over \mathbb{F}_p is trivial.

Let $\varphi: G \to GL(V)$ be an irreducible representation. Since $\varphi(g)^p = \text{Id}$, we see that the minimal polynomial $m \in \mathbb{F}_p[x]$ of $\varphi(g)$ has $m(x) | x^p - 1 = (x - 1)^p$. In particular, 1 is an eigenvalue of $\varphi(g)$, so its eigenspace $E = \{v \in V : \varphi(g)v = v\}$ is a nonzero G-stable subspace. Since φ is irreducible, this implies that $E = V$, so $\varphi(q) = \text{Id}_V$. This means that φ is the direct sum of dim(V) trivial representations. Again by the irreducibility of φ , it follows that $\dim(V) = 1$, so φ is trivial.

Therefore, since the regular representation of G over \mathbb{F}_p is not the direct sum of trivial representations, it is not a direct sum of irreducible representations.

Example 2: Take $G = \mathbb{Z}/p\mathbb{Z} = \langle g \rangle$, $F = \mathbb{F}_p$. Let V be a 2-dimensional \mathbb{F}_p -vector space and fix a basis $\{e_1, e_2\}$. Define a representation $\varphi: G = \langle g \rangle \to GL(V)$ via

$$
\varphi(g) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
$$

Since $\varphi(g)$ is not diagonalizable, it follows that φ cannot decompose as a direct sum of two non-trivial G -invariant subspaces. Thus, the only possible decomposition of V as a direct sum of irreducible sub-representations is $V = V$, meaning that V is irreducible. But since V has a nontrivial proper G-invariant subspace (namely span $\{e_1\}$), we see that V is not irreducible.

4. Let G be a finite group, F a field, and V a nonzero finite-dimensional F-linear representation of G.

(b) Suppose that the order of G is not zero in F . Prove that V is a direct sum of irreducible F-linear representations of G.

Solution: Let $\rho: G \to GL(V)$ be a nonzero finite-dimensional F-linear representation of G. We proceed by induction on $\dim_F (V)$.

If V is irreducible, we're done. Assume, then, that V is reducible, so V has a nontrivial G-stable subspace $W \subset V$. Let W' be an F-vector space complement of W in V (which exists because $\dim_F(V) < \infty$, and let $\pi: V \to W$ denote the corresponding projection (i.e.: $\text{Ker}(\pi) = W'$). Consider the averaged map

$$
\pi^{0}: V \to V
$$

$$
\pi^{0} := \frac{1}{|G|} \sum_{t \in G} \rho(t) \cdot \pi \cdot \rho(t)^{-1}
$$

Since $\pi: V \to W$ and $\rho(t)$ preserves W, we have $\pi^0: V \to W$. Moreover, since $x \in W$ implies $\rho(t)^{-1}x \in W$, we see that $x \in W$ implies $\rho(t) \cdot \pi \cdot \rho(t)^{-1}x = x$, which shows that $\pi^0|_W = \text{Id}_W$. Thus, $\pi^0: V \to W$ is a projection map.

Let $W^0 := \text{Ker}(\pi^0)$, so that $V = W \oplus W^0$ as F-vector spaces. We claim that W^0 is G-stable. To see this, note that for all $s \in G$

$$
\rho(s) \cdot \pi^0 \cdot \rho(s)^{-1} = \frac{1}{|G|} \sum_{t \in G} \rho(s) \cdot \rho(t) \cdot \pi \cdot \rho(t)^{-1} \cdot \rho(s)^{-1} = \frac{1}{|G|} \sum_{t \in G} \rho(st) \cdot \pi \cdot \rho(st)^{-1} = \pi^0,
$$

so that $\rho(s) \cdot \pi^0 = \pi^0 \cdot \rho(s)$. Thus, if $x \in W^0 = \text{Ker}(\pi^0)$, then $\pi^0 \cdot \rho(s)x = \rho(s) \cdot \pi^0 x = 0$, so $\rho(s)x \in \text{Ker}(\pi^0) = W^0$. Thus, W^0 is *G*-stable.

Therefore, $V = W \oplus W^0$ as representations. By induction hypothesis, both W and $W⁰$ are direct sums of irreducible representations, so the same is true of V.

5. Let C_* be a complex of free abelian groups, with differential lowering the degree by 1. Let A be an abelian group.

(a) Construct a short exact sequence

$$
0 \to H_n(C_*) \otimes_{\mathbb{Z}} A \to H_n(C_* \otimes_{\mathbb{Z}} A) \to \operatorname{Tor}_1^{\mathbb{Z}}(H_{n-1}(C_*), A) \to 0.
$$

(Hint: use a short free abelian group resolution of A.)

Solution: Write $C_* \colon \cdots \to C_{n+1} \stackrel{d_{n+1}}{\to} C_n \stackrel{d_n}{\to} \cdots$ Let $Z_n := \text{Ker}(d_n) \leq C_n$, $B_n := \text{Im}(d_{n+1}) \leq C_n$. Note that both Z_n and B_n are free Z-modules, and $H_n(C_*) = Z_n/B_n$.

Consider the short exact sequence $0 \to B_n \stackrel{\iota_n}{\hookrightarrow} Z_n \to H_n(C_*) \to 0$. Applying the long exact Tor sequence, and noting that Z_n is free (hence flat), we obtain an exact sequence

$$
0 \to \operatorname{Tor}^{\mathbb{Z}}_1(H_n(C_*), A) \to B_n \otimes_{\mathbb{Z}} A \stackrel{\iota_n \otimes 1}{\to} Z_n \otimes A \to H_n(C_*) \otimes_{\mathbb{Z}} A \to 0.
$$

From this, we observe that

$$
\operatorname{Tor}_{1}^{\mathbb{Z}}(H_{n}(C_{*}), A) \cong \operatorname{Ker}(\iota_{n} \otimes 1), \tag{*}
$$

$$
H_n(C_*) \otimes_{\mathbb{Z}} A \cong \mathrm{Coker}(\iota_n \otimes 1). \tag{**}
$$

Consider now the short exact sequence $0 \to Z_n \hookrightarrow C_n \stackrel{d_n}{\to} B_{n-1} \to 0$. Let $Z_* :=$ $\cdots \stackrel{0}{\rightarrow} Z_{n+1} \stackrel{0}{\rightarrow} Z_n \stackrel{0}{\rightarrow} \cdots$ denote the chain complex of Z_n 's with differential 0. Define B_* similarly. By the long exact sequence on homology, we obtain an exact sequence

 $\cdots \longrightarrow H_n(Z_* \otimes_{\mathbb{Z}} A) \stackrel{\varphi}{\longrightarrow} H_n(C_* \otimes_{\mathbb{Z}} A) \stackrel{\psi}{\longrightarrow} H_n(B_{*-1} \otimes_{\mathbb{Z}} A) \longrightarrow \cdots$

By our construction of Z_* and B_* , we have $H_n(Z_* \otimes_{\mathbb{Z}} A) \cong Z_n \otimes_{\mathbb{Z}} A$ and $H_n(B_{*-1} \otimes_{\mathbb{Z}} A) \cong$ $B_{n-1} \otimes_{\mathbb{Z}} A$, thereby yielding

$$
\cdots \stackrel{\iota_n \otimes 1}{\rightarrow} Z_n \otimes_{\mathbb{Z}} A \stackrel{\varphi}{\rightarrow} H_n(C_* \otimes_{\mathbb{Z}} A) \stackrel{\psi}{\rightarrow} B_{n-1} \otimes_{\mathbb{Z}} A \stackrel{\iota_{n-1} \otimes 1}{\rightarrow} \cdots
$$

Breaking this long exact sequence into short exact sequences gives

$$
0 \to \mathrm{Im}(\varphi) \hookrightarrow H_n(C_* \otimes_{\mathbb{Z}} A) \twoheadrightarrow \mathrm{Coker}(\varphi) \to 0.
$$

We now note that

$$
\operatorname{Im}(\varphi) \cong \frac{Z_n \otimes A}{\operatorname{Ker}(\varphi)} \cong \frac{Z_n \otimes A}{\operatorname{Im}(\iota_n \otimes 1)} \cong \operatorname{Coker}(\iota_n \otimes 1),
$$

$$
U_n(G, \otimes A) = U_n(G, \otimes A)
$$

$$
Coker(\varphi) \cong \frac{H_n(C_* \otimes A)}{Im(\varphi)} \cong \frac{H_n(C_* \otimes A)}{Ker(\psi)} \cong Im(\psi) \cong Ker(\iota_{n-1} \otimes 1).
$$

Thus, from the isomorphisms $(*), (*),$ we thereby obtain the exact sequence

$$
0 \to H_n(C_*) \otimes_{\mathbb{Z}} A \to H_n(C_* \otimes_{\mathbb{Z}} A) \to \operatorname{Tor}_1^{\mathbb{Z}}(H_{n-1}(C_*), A) \to 0.
$$

5. Let C_* be a complex of free abelian groups, with differential lowering the degree by 1. Let A be an abelian group.

(b) Suppose that $H_n(C_*) = 0$ except for $n = 0$, and $H_0(C_*) \cong \mathbb{Z}_{(5)} \oplus \mathbb{Z}/5\mathbb{Z}$. Here, $\mathbb{Z}_{(5)}$ is the localization of Z at the prime (5). Compute the homology groups of $C_* \otimes_{\mathbb{Z}} (\mathbb{Q}/\mathbb{Z})$.

Solution: We claim that

$$
H_n(C_* \otimes_{\mathbb{Z}} (\mathbb{Q}/\mathbb{Z})) = \begin{cases} \mathbb{Z}_{(5)} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z} & \text{if } n = 0 \\ \mathbb{Z}/5\mathbb{Z} & \text{if } n = 1 \\ 0 & \text{else} \end{cases}
$$

For each case, we will use the short exact sequence of (a):

$$
0 \to H_n(C_*) \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z} \to H_n(C_* \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}) \to \text{Tor}_1^{\mathbb{Z}}(H_{n-1}(C_*), \mathbb{Q}/\mathbb{Z}) \to 0. \tag{*}
$$

 $n = 0$: The short exact sequence (*) reads:

$$
0 \to (\mathbb{Z}_{(5)} \oplus \mathbb{Z}/5\mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z} \to H_0(C_* \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}) \to 0 \to 0.
$$

Thus,

$$
H_0(C_* \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}) \cong (\mathbb{Z}_{(5)} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}) \oplus (\mathbb{Z}/5\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}))
$$

$$
\cong \mathbb{Z}_{(5)} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z},
$$

where we have used the fact that $\mathbb{Z}/5\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z} = 0$.

 $n = 1$: The short exact sequence $(*)$ reads:

$$
0 \to 0 \to H_1(C_* \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}) \to \text{Tor}_1^{\mathbb{Z}}(\mathbb{Z}_{(5)} \oplus \mathbb{Z}/5\mathbb{Z}, \mathbb{Q}/\mathbb{Z}) \to 0.
$$

Thus, since $\mathbb{Z}_{(5)}$ is a flat $\mathbb{Z}\text{-module}$ (by virtue of being a localization), we have

$$
H_1(C_* \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}) \cong \text{Tor}_1^{\mathbb{Z}}(\mathbb{Z}_{(5)}, \mathbb{Q}/\mathbb{Z}) \oplus \text{Tor}_1^{\mathbb{Z}}(\mathbb{Z}/5\mathbb{Z}, \mathbb{Q}/\mathbb{Z})
$$

$$
\cong \text{Tor}_1^{\mathbb{Z}}(\mathbb{Z}/5\mathbb{Z}, \mathbb{Q}/\mathbb{Z}).
$$

To compute $\text{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z}/5\mathbb{Z},\mathbb{Q}/\mathbb{Z})$, we apply the Tor long exact sequence to the short exact sequence $0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$, obtaining

$$
\text{Tor}_1(\mathbb{Z}/5\mathbb{Z},\mathbb{Q}) \to \text{Tor}_1(\mathbb{Z}/5\mathbb{Z},\mathbb{Q}/\mathbb{Z}) \to \mathbb{Z}/5\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} \to \mathbb{Z}/5\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}.
$$

Noting that $\text{Tor}_1(\mathbb{Z}/5\mathbb{Z}, \mathbb{Q}) = 0$ and $\mathbb{Z}/5\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q} = 0$, we have $\text{Tor}_1(\mathbb{Z}/5\mathbb{Z}, \mathbb{Q}/\mathbb{Z}) \cong \mathbb{Z}/5\mathbb{Z}$.

(Alternatively: One can compute $Tor_1(\mathbb{Z}/5\mathbb{Z},\mathbb{Q}/\mathbb{Z})$ by taking the projective resolution $0 \to \mathbb{Z} \stackrel{5}{\to} \mathbb{Z} \to \mathbb{Z}/5\mathbb{Z} \to 0$ and applying $-\otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}$. One finds that $Tor_1(\mathbb{Z}/5\mathbb{Z},\mathbb{Q}/\mathbb{Z})\cong Ker[\mathbb{Q}/\mathbb{Z}\stackrel{5}{\rightarrow}\mathbb{Q}/\mathbb{Z}]=\{0,1/5,\ldots,4/5\}\cong\mathbb{Z}/5\mathbb{Z}.$

 $n \neq 0, 1$: The short exact sequence (*) reads

$$
0 \to 0 \to H_n(C_* \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}) \to 0 \to 0,
$$

which gives $H_n(C_* \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}) \cong 0$.

Statement: If A is a Noetherian ring, then $A[x]$ is a Noetherian ring.

Proof: Let $\mathfrak{a} \subset A[x]$ be an ideal. We will show that \mathfrak{a} is finitely generated.

Let $I = \{c \in A : cx^n + (lower terms) \in \mathfrak{a}\}\subset A$ be the ideal of leading coefficients of the polynomials in **a**. Since A is Noetherian, I is finitely generated, say $I = (c_1, \ldots, c_n)$. Thus, for each $1 \leq i \leq n$, there is a polynomial $f_i \in \mathfrak{a}$ with $f_i(x) = c_i x^{r_i} +$ (lower terms). Note that the polynomials f_i generate an ideal $(f_1, \ldots, f_n) \subset \mathfrak{a}$ in $A[x]$.

Let $r = \max\{r_1, \ldots, r_n\}$, where $r_i := \deg(f_i)$. We claim that every element $f \in \mathfrak{a}$ can be written

$$
f = g + h,
$$

where $g \in \mathfrak{a}$, $deg(g) < r$ and $h \in (f_1, \ldots, f_r)$.

Proof of Claim: Let $f \in \mathfrak{a}$. Write $f = cx^m +$ (lower). If $m < r$, we're done, so suppose $m \geq r$. Since $c \in I = (c_1, \ldots, c_n)$, we can write $c = u_1 c_1 + \ldots + u_n c_n$, where $u_i \in A$, so that $f = (u_1c_1 + ... + u_nc_n)x^m + (lower)$.

Note that $u_i x^{m-r_i} f_i = u_i c_i x^m + \text{(lower)}$. Therefore, $f - \sum_{i=1}^n u_i x^{m-r_i} f_i \in \mathfrak{a}$ (since $f \in \mathfrak{a}$ and $f_i \in \mathfrak{a}$) and has degree $\lt m$. Continuing in this way, we can go on subtracting elements of (f_1, \ldots, f_n) from f until we get a polynomial of degree $\lt r$, which we call g.

Let $M = A1 + Ax + \ldots + Ax^{r-1}$ be the A-module generated by $\{1, x, \ldots, x^{r-1}\}$. Then $f = g + h$ implies that

$$
\mathfrak{a} = (\mathfrak{a} \cap M) + (f_1, \ldots, f_n).
$$

Since A is Noetherian and M is a finitely-generated A-module, M is Noetherian. Therefore, $\mathfrak{a} \cap M \subset M$ is a finitely-generated A-submodule, so that $a \cap M = Ag_1 + \ldots + Ag_m$ for some $g_j \in M$. Thus, $\mathfrak{a} = (g_1, \ldots, g_m, f_1, \ldots, f_n)$, so \mathfrak{a} is finitely generated.

(b) Let A be a Noetherian ring, and J an ideal of A. Define the ring $G_J(A) = A \oplus J \oplus J^2 \oplus \cdots$, in which the product of J^m and J^n is the usual product valued in the direct summand J^{n+m} . Prove that $G_J(A)$ is Noetherian.

Sketch: Since A is Noetherian, the ideal J is finitely generated, say $J = (r_1, \ldots, r_n)$. By Hilbert's Basis Theorem, $A[x_1, \ldots, x_n]$ is Noetherian. The idea now is to construct a surjective ring homomorphism

$$
A[x_1,\ldots,x_n]\twoheadrightarrow G_J(A).
$$

Doing so will show that $G_J(A)$ is Noetherian.

One such homomorphism can be constructed by decomposing polynomials in $A[x_1, \ldots, x_n]$ according to their degrees (that is, splitting polynomials into their homogeneous components) and evaluating at the point $(r_1, \ldots, r_n) \in A^n$.

8. Let $f: A \rightarrow B$ be a ring homomorphism.

(a) Define what it means to say that B is integral over A, and prove that this holds when B is finitely generated as an A-module.

Solution: We say that B is integral over A iff every $\beta \in B$ is integral over $f(A)$. That is, every $\beta \in B$ satisfies a monic polynomial with coefficients in $f(A)$.

Suppose B is a finitely-generated A-module, say $B = f(A)e_1 + \ldots + f(A)e_n$. Let $\beta \in B$. Write $\beta e_i = \sum_{j=1}^n a_{ij} e_j$ for $a_{ij} \in f(A)$, i.e. $\beta e_i - \sum_{j=1}^n a_{ij} e_j = 0$, so

$$
\sum_{j=1}^{n} (\delta_{ij}\beta - a_{ij})e_j = 0,
$$
 (*)

where δ_{ij} is the Kronecker delta.

Let $M = (\delta_{ij}\beta - a_{ij}) \in Mat_n(f(A)[\beta])$. Multiplying (*) by the adjugate Adj (M) gives

$$
\det(M)e_i = 0 \text{ for each } e_i.
$$

Since $1 \in B = f(A)e_1 + \ldots + f(A)e_n$, it follows that $\det(M) \cdot 1 = 0$, i.e.: $\det(\delta_{ij}\beta - a_{ij}) = 0$ in $f(A)[\beta]$. That is, β satisfies a monic polynomial with coefficients in $f(A)$.

(b) If B is finitely generated as an A-module, prove that $Spec(B) \to Spec(A)$ is a closed map. (Hint: reduce to the case where f is injective.)

Solution:

9. Let p be an odd prime. In this question, ζ_p denotes a primitive pth root of unity.

(a) Describe Gal $(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ and determine all primes p such that $\mathbb{Q}(\zeta_p)$ contains a subfield L whose Galois group over $\mathbb Q$ is isomorphic to $\mathbb Z/5\mathbb Z$.

Solution: Consider the homomorphism

$$
\psi \colon (\mathbb{Z}/p\mathbb{Z})^{\times} \to \text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})
$$

$$
a \text{ (mod } p \text{)} \mapsto \sigma_a \colon [\zeta_p \mapsto \zeta_p^a]
$$

Note that ψ is injective. Since $|\text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})| = [\mathbb{Q}(\zeta_p) : \mathbb{Q}] = \varphi(p) = p-1 = |(\mathbb{Z}/p\mathbb{Z})^{\times}|$, we see that ψ is an isomorphism. Thus, $Gal(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \cong (\mathbb{Z}/p\mathbb{Z})^{\times} \cong \mathbb{Z}/(p-1)\mathbb{Z}$.

Note that if $\mathbb{Q}(\zeta_p)$ contains a subfield L with Gal(L/ \mathbb{Q}) ≅ $\mathbb{Z}/5\mathbb{Z}$, then $5 = [L:\mathbb{Q}]$ $[\mathbb{Q}(\zeta_p): \mathbb{Q}] = p-1$, so $p \equiv 1 \pmod{5}$.

Conversely, suppose $p \equiv 1 \pmod{5}$. Then $5 | p - 1$, so $Gal(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \cong \mathbb{Z}/(p-1)\mathbb{Z}$ contains a subgroup H of order $|H| = \frac{p-1}{5}$ $\frac{-1}{5}$. Let $L = \mathbb{Q}(\zeta_p)^H$. Then

$$
\operatorname{Gal}(L/\mathbb{Q}) \cong \frac{\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})}{\operatorname{Gal}(\mathbb{Q}(\zeta_p)/L)} \cong \frac{\mathbb{Z}/(p-1)\mathbb{Z}}{H} \cong \mathbb{Z}/5\mathbb{Z}.
$$

(b) Prove that there is a finite Galois extension E of Q such that $Gal(E/\mathbb{Q}) \cong \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ by constructing E as a subfield of an explicit Galois extension F/\mathbb{Q} , and explicitly describe the subgroup $Gal(F/E) \subset Gal(F/\mathbb{Q})$.

Solution: Let $F = \mathbb{Q}(\zeta_{341})$, noting that $341 = 11 \cdot 31$. Note that

$$
\operatorname{Gal}(F/\mathbb{Q}) \cong (\mathbb{Z}/341\mathbb{Z})^{\times} \cong (\mathbb{Z}/11\mathbb{Z})^{\times} \times (\mathbb{Z}/31\mathbb{Z})^{\times} \cong \mathbb{Z}/10\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z}.
$$

Let $H_1 \leq \mathbb{Z}/10\mathbb{Z}$ have $|H_1| = 2$. Let $H_2 \leq \mathbb{Z}/30\mathbb{Z}$ have $|H_2| = 6$. By the above isomorphisms, we can regard $H_1 \times H_2 \leq \text{Gal}(F/\mathbb{Q})$. Let $E = F^{H_1 \times H_2}$. Then

$$
\operatorname{Gal}(F/E) \cong H_1 \times H_2 \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}
$$

and

$$
\operatorname{Gal}(E/\mathbb{Q}) \cong \frac{\operatorname{Gal}(F/\mathbb{Q})}{\operatorname{Gal}(F/E)} \cong \frac{\mathbb{Z}/10\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z}}{H_1 \times H_2} \cong \frac{\mathbb{Z}/10\mathbb{Z}}{H_1} \times \frac{\mathbb{Z}/30\mathbb{Z}}{H_2} \cong \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}.
$$

10. (a) Let G be a group and H a subgroup of finite index $n > 0$. Prove that G contains a normal subgroup of index at most n!. (Hint: think about homomorphisms from G to S_n .)

Solution: Consider the action of G on the set G/H by left multiplication. Let π denote the permutation representation of the action, i.e.,

$$
\pi: G \to \text{Perm}(G/H) \cong S_n
$$

$$
g \mapsto [g'H \mapsto gg'H].
$$

Let $N := \text{Ker}(\pi)$, so $N \trianglelefteq G$ and

$$
|G: N| = |G/\text{Ker}(\pi)| = |\text{Im}(\pi)| \le |\text{Perm}(G/H)| = n!
$$

(b) Let G be a group which is generated by two elements. Prove that G has at most 17 subgroups of index 3. (Hint: think about homomorphisms from G to S_3 .)

Sketch: Every index-3 subgroup determines two homomorphisms $\varphi: G \to S_3$ in which $\varphi(G)$ acts transitively on $\{1, 2, 3\}$. Conversely, every homomorphism $\varphi: G \to S_3$ in which $\varphi(G)$ acts transitively on $\{1, 2, 3\}$ determines one index-3 subgroup of G. Thus, we have

 $\#$ index 3 subgroups of $G =$ 1 $\frac{1}{2}$ #{ $\varphi: G \to S_3$: $\varphi(G)$ acts transitively on {1, 2, 3}}.

Since G is generated by 2 elements,

 $\#\{\varphi\colon G\to S_3\colon \varphi(G)\text{ acts transitively on }\{1,2,3\}\}\leq |\mathrm{Hom}(\mathrm{Free}(2),S_3)|-1,$

where Free(2) denotes the free group on 2 generators. Since $|Hom(Free(2), S_3)| = (3!)^2$ 36, we conclude that

index 3 subgroups of
$$
G \le \frac{1}{2}(36 - 1) = 17.5
$$
.