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1. Let R be a finite-dimensional algebra over a field k.

(a) Prove that if R is a commutative integral domain, then R is a field.

Solution: Let r € R, r # 0. Let

m,: R— R

r = Trr.

Note that m,. is k-linear. Since R is an integral domain, m,. is injective. Thus, since R is
a finite-dimensional k-vector space, m,. is surjective. Therefore, there exists € R with
ro = 1, which shows that » € R*. Hence, R is a field.

Alternate Solution: Let r € R, r # 0. Since R is a finite-dimensional k-algebra,
Problem 8(a) implies that the ring extension & C R is integral. Therefore, r € R satisfies
a monic polynomial, say

"4 "+ ar+ay=0, a; €k.

Suppose this polynomial is of minimal degree. Since R is an integral domain, we have
ap # 0. (If ag = 0, then we’d contradict minimality.) Subtracting ag from both sides, we
have r(r"™' + a, 17" 2+ ... +a;) = —ay, S0

re—ag (P a1 " ) =1

This shows that s = —agl(r”_l +a,_ 14+ + a;) € R is an inverse for r.

(b) Suppose R is not commutative. Prove that rs = 1 implies sr = 1.

Solution: Let r € R have rs = 1. Let

m,: R — R

T —Tx.

Note that m, is k-linear. Note that for any y € R, we have m,.(sy) = rsy = y, so m,
is surjective. Thus, since R is a finite-dimensional k-vector space, m,. is injective. By
injectivity, m,(sr) = rsr = r = m,(1) implies that sr = 1.




2. Suppose A is a (commutative) ring, and M is an A-module.

(a) If My, = 0 for all maximal ideals m of A, must M = 0?7 Prove or disprove.

Solution: Yes. We prove the contrapositive: Suppose M # 0. Let x € M, x # 0.
Consider the ideal Ann(x) := {a € A: ax = 0}. Since Ann(x) # (1), there exists a
maximal ideal m D Ann(z). We claim that M, # 0.

Otherwise, if My, = 0, then x/1 = 0, so there would exist s € A — m with sz = 0.
That is, there would exist an s ¢ m with s € Ann(x) C m — which is impossible. Thus,
My, # 0.

(b) If M is finitely generated and My,/mM,, = 0 for all maximal ideals m of A, prove that
M = 0. Give a counterexample if M is not finitely generated.

Solution: Since M is finitely generated as an A-module, it follows that M, is finitely
generated as an Ag,-module. Since A, is a local ring, it has only one maximal ideal,
namely Jac(Ay,) = m. Our hypothesis is that mM,, = M,. Thus, by Nakayama’s
Lemma, we have M, = 0. By part (i), M = 0.

Counter-example: Take A = 7Z and M = Q. Note that Q is not a finitely-generated
Z-module. Note also that Q, = Q for all maximal ideals m C Z, so Q,/mQ, = 0.
Despite this, Q # 0.




3. Let E'/k be a finite-degree extension of fields.

(a) Prove that Aut(E/k) has at most [E: k] elements.

Solution: Let Aut(E/k) = {o1,...,0n} and [E: k] = n. We have to show that
m < n.

Suppose for the sake of contradiction that m > n. Let {aq,...,a,} be a k-basis for
E. Then the system

or(a))xr + ...+ opm(aq) T, =0
(*)

or(an)ry + ...+ op(an)r, =0

of n equations in m variables (m > n) must have a nontrivial solution i, ..., 3, € E.
Let ¢1,...,¢, € k be arbitrary. Multiplying the ith equation of (%) by ¢; gives

oi(ciar)fr + ...+ op(cron)Bm =0

o1 (cna‘n)ﬁl +...F O-m(cnan)ﬁm =0

Adding these equations, we observe that there exist 3;,...,0, € E, not all zero, such
that
o1 (ZQ‘%‘) Gi+...+0om (anz) Om =0 forall ¢q,...,¢c, € k.
i=1 i=1
Since {ay,...,a,} is a basis of E, this means that

o1(W)Br + ...+ om(w)p, forallwe E.

But this implies that the distinct automorphisms oy, ..., 0, are k-linearly dependent,
contradicting the linear independence of characters.

Remark: There is at least one other (completely different) way of solving this problem.
If you know a simpler solution, please let me know and I'll include it (and credit you).




3. Let E'/k be a finite-degree extension of fields.

(b) If E is a finite field, prove that Aut(£/k) is cyclic and the norm E* — k* is surjective.

Solution: Write E = Fgn, k =F, and [E: k| = n, where ¢ is a prime power. Then £
is the splitting field of 7" — z € k[x], so that E/k is Galois, so |Gal(E/k)| = [E: k] = n.
Since E is finite, the (injective) Frobenius endomorphism

(O Fqn — Fqn

Gl

is an automorphism over Fy, so (¢) < Gal(E/k). Since 39" = 3 for all 3 € E, we have
0" = Idg. If we had o' = Idg for some i < n, then % = § for all § € E, which is
impossible since 7 = x has only ¢’ roots. Thus, o has order n, so Gal(E/k) = (o).

If x € E, we have

Ng/(x) = r(@)=x-0(x) 0" z)=ax-27 29 =2t
T€Gal(E/k)

where we set
¢" —1
q—1

Since E* is cyclic, we can write E* = («) for some a € E, so that E = k(«). Since
lqg—{ =q"—1, we have a/* = 4" 7! =1, 50 a?* = of. Thus, (a/)? = o/ forall j € N
and so o/ € F, for all j € N. Therefore,

(=1+q+...+q¢" ' =

_ X — ¢ 2 —2)¢
E=F; ={l,a", L ali2h
Since Ngi(a’) = o, it follows that Ng: E* — k* is surjective.

(Alternatively: Regard Ng/; as a group homomorphism E* — k*. Note that
Ker(Ngj) = {x € EX: 2* =1}, so |Ker(Ng/i)| < ¢. Therefore,

Im(N, = > =qg—1=|k*|,

which shows that N/, is surjective.)

(c) Give an example of a finite cyclic extension such that the norm is not surjective.

Example: Q(i)/Q. The Galois group is Z/27Z and the norm is N(a + bi) = a® + b*.




4. Let G be a finite group, F' a field, and V' a nonzero finite-dimensional F-linear represen-
tation of G.

(a) Give an example of G, F, and V such that V does not decompose as a direct sum of
irreducible F-linear representations of G.

Example 1: Take G = Z/pZ = (g), F = F,. We claim that the regular representation
of G over [F,, does not decompose as a direct sum of irreducible representations. To see
this, we show that every irreducible representation of G' over I, is trivial.

Let ¢: G — GL(V) be an irreducible representation. Since p(g)? = Id, we see that
the minimal polynomial m € F,[z] of ¢(g) has m(x) | 2 —1 = (z — 1)P. In particular, 1
is an eigenvalue of p(g), so its eigenspace E = {v € V': ¢(g)v = v} is a nonzero G-stable
subspace. Since ¢ is irreducible, this implies that £ = V| so ¢(g) = Idy. This means
that ¢ is the direct sum of dim(V') trivial representations. Again by the irreducibility of
v, it follows that dim(V') = 1, so ¢ is trivial.

Therefore, since the regular representation of G over F, is not the direct sum of trivial
representations, it is not a direct sum of irreducible representations.

Example 2: Take G = Z/pZ = (g), F = F,. Let V be a 2-dimensional F,-vector
space and fix a basis {ej, e2}. Define a representation ¢: G = (g) — GL(V) via

w(9) = (é D

Since ¢(g) is not diagonalizable, it follows that ¢ cannot decompose as a direct sum of
two non-trivial G-invariant subspaces. Thus, the only possible decomposition of V' as a
direct sum of irreducible sub-representations is V' = V| meaning that V is irreducible.
But since V' has a nontrivial proper G-invariant subspace (namely span{e; }), we see that
V' is not irreducible.




4. Let G be a finite group, F' a field, and V' a nonzero finite-dimensional F-linear represen-
tation of G.

(b) Suppose that the order of G is not zero in F'. Prove that V' is a direct sum of irreducible
F-linear representations of G.

Solution: Let p: G — GL(V) be a nonzero finite-dimensional F-linear representation
of G. We proceed by induction on dimg(V).

If V is irreducible, we’re done. Assume, then, that V' is reducible, so V' has a nontrivial
G-stable subspace W C V. Let W’ be an F-vector space complement of W in V' (which
exists because dimp (V) < 00), and let m: V' — W denote the corresponding projection
(i.e.: Ker(m) = W'). Consider the averaged map

O'V—>V

|Zp h

teG

Since : V' — W and p(t) preserves W, we have 7°: V' — W. Moreover, since z € W
implies p(t)~'z € W, we see that z € W implies p(t) - 7 - p(t) "'z = x, which shows that
70w = Idy. Thus, 7°: V — W is a projection map.

Let W0 := Ker(n), so that V =W @ W as F-vector spaces. We claim that W7 is
G-stable. To see this, note that for all s € G

p(s) -7 p(s) " = Zp Tp(t) - Zpst - p(st) ™

Jrre R
so that p(s) -7 = 7% p(s). Thus, if z € W° = Ker(x°), then 7° - p(s)z = p(s) - 7%z = 0,
so p(s)z € Ker(n®) = WP Thus, WY is G-stable.

Therefore, V = W @ W9 as representations. By induction hypothesis, both W and
WO are direct sums of irreducible representations, so the same is true of V.




5. Let C, be a complex of free abelian groups, with differential lowering the degree by 1.
Let A be an abelian group.

(a) Construct a short exact sequence
0 — H,(C,) ®z A — H,(C, ®z A) — Tor’(H,_,(C,), A) — 0.

(Hint: use a short free abelian group resolution of A.)

dn+1 dn

Solution: Write Cy: -+ — Cpyy — Cp, = ---. Let Z, = Ker(d,) < G,
B, := Im(d,+1) < C,. Note that both Z, and B, are free Z-modules, and
H,(C.) = Z,/B..

Consider the short exact sequence 0 — B,, < Z, —» H,(C.) — 0. Applying the long
exact Tor sequence, and noting that 7, is free (hence flat), we obtain an exact sequence

0 — Tor?(H,(C,), A) — B, @7 A8 Z,® A — H,(C.) ®7 A — 0.
From this, we observe that
Tor? (H,(C.), A) = Ker(, ® 1), (%)
H,(C,) ®z A = Coker (i, ® 1). (%)

Consider now the short exact sequence 0 — 7, — C, — B,_; — 0. Let Z, =

RN il A Zn 9 ... denote the chain complex of Z,,’s with differential 0. Define B,

similarly. By the long exact sequence on homology, we obtain an exact sequence
- Hy(Z. @5 A) 5 Hy(C. @5 A) 5 Hy(Booy @7 A) — -

By our construction of Z, and B, we have H,,(Z,®7A) = Z,®z A and H,(B,_1®zA) =
B, _1 ®z A, thereby yielding

8 7 @ AD Hy(Co @z A) S B @ AT
Breaking this long exact sequence into short exact sequences gives
0 — Im(y) — H,(Ci ®z A) — Coker(p) — 0.

We now note that

Zu0A . Z,®A

Im(p) = Rer(p) -~ Im(, ©1) = Coker(, ® 1),
Coker(p) = Hnﬁi?f; A) o Hn}gf:(ff)A> =~ Im(¢) = Ker(t,-1 ® 1).

Thus, from the isomorphisms (x), (#x), we thereby obtain the exact sequence

0 — H,(C,) ®z A — H,(C, ®z A) — Tor?(H,_,(C,), A) — 0.




5. Let C, be a complex of free abelian groups, with differential lowering the degree by 1.
Let A be an abelian group.

(b) Suppose that H,(C.) = 0 except for n = 0, and Hy(C.,) = Z) @ Z/5Z. Here, Zs) is the
localization of Z at the prime (5). Compute the homology groups of C, ®z (Q/Z).

Solution: We claim that

Z(5) K7z Q/Z ifn=20
H,(Ci ®z (Q/Z)) = { Z/5Z ifn=1
0 else

For each case, we will use the short exact sequence of (a):
0 — H,(C.) ®2 Q/Z — H,(C. @7 Q/Z) — Tor{(H,1(C.),Q/Z) = 0. ()
n = 0: The short exact sequence (x) reads:
0— (Zs) ®Z/5Z) ©z Q/Z — Hy(C, @7 Q/Z) — 0 — 0.
Thus,

Hy(C\, ®2Q/Z) = (Z¢sy) @2 Q/Z) & (Z/5Z ®7,Q/Z))
= Zi) ®2 Q/Z,

where we have used the fact that Z/5Z @z Q/Z = 0.

n = 1: The short exact sequence (x) reads:
0—0— H(C. ®zQ/Z) — Tor{(Ze & Z/5Z,Q/Z) — 0.
Thus, since Z) is a flat Z-module (by virtue of being a localization), we have
H,(C. ®7 Q/Z) = Tor{(Zs), Q/Z) & Tor{(Z/5Z,Q/Z)
~ Tor{(Z/5Z,Q/Z).

To compute Tor?(Z/5Z,Q/Z), we apply the Tor long exact sequence to the short exact
sequence 0 — Z — Q — Q/Z — 0, obtaining

Tory(Z/5Z, Q) — Tor,(Z/5Z,Q/Z) — L/5Z &3 T — T/5Z @7 Q.
Noting that Tor;(Z/5Z,Q) = 0 and Z/5Z ®7 Q = 0, we have Tor(Z/5Z,Q/Z) = Z/5Z.
(Alternatively: One can compute Tor(Z/5Z,Q/Z) by taking the projective

resolution 0 — 7 > 7 — Z/57Z — 0 and applying — ®z Q/Z. One finds that
Tor1(Z/5Z,Q/Z) = Ker[Q/Z > Q/Z] = {0,1/5,...,4/5} =2 Z/5Z.)

n # 0,1: The short exact sequence (x) reads
0—0— H,(C,®zQ/Z) — 0 — 0,
which gives H, (C, ®z Q/Z) = 0.




6. (a) State and prove Hilbert’s Basis Theorem.

Statement: If A is a Noetherian ring, then A[z] is a Noetherian ring.

Proof: Let a C Alx] be an ideal. We will show that a is finitely generated.

Let I = {c € A: ca”™ + (lower terms) € a} C A be the ideal of leading coefficients of
the polynomials in a. Since A is Noetherian, I is finitely generated, say I = (c1,...,¢y).
Thus, for each 1 < i < n, there is a polynomial f; € a with f;(z) = ¢;2™ + (lower terms).
Note that the polynomials f; generate an ideal (fi,..., f,) C a in A[z].

Let r = max{ry,...,r,}, where r; := deg(f;). We claim that every element f € a can
be written

f=g+h,
where g € a, deg(g) <7 and h € (f1,..., f).

Proof of Claim: Let f € a. Write f = cz™ + (lower). If m < r, we're done, so suppose
m > r. Since ¢ € [ = (¢1,...,¢,), we can write ¢ = ujcy + ... + u,c,, where u; € A, so
that f = (w1 + ... 4+ upcy)x™ + (lower).

Note that w;z™ " f; = w;c;a™ + (lower). Therefore, f — >~ w,z™ " f; € a (since
f € aand f; € a) and has degree < m. Continuing in this way, we can go on subtracting
elements of (f1,..., f,) from f until we get a polynomial of degree < r, which we call g.

Let M = A1+ Az +...+ Ax"~! be the A-module generated by {1,z,...,2""'}. Then
f = g+ h implies that
a=(@anNM)+(fi,..., fn)
Since A is Noetherian and M is a finitely-generated A-module, M is Noetherian. There-

fore, aNn M C M is a finitely-generated A-submodule, so that aN M = Ag; + ...+ Agp,
for some g; € M. Thus, a = (g1,. .., Gm, f1,---, fa), S0 a is finitely generated.

(b) Let A be a Noetherian ring, and J an ideal of A. Define the ring G;(A) = AQJDJ?D- - -,
in which the product of J™ and J" is the usual product valued in the direct summand J"*™.
Prove that G ;(A) is Noetherian.

Sketch: Since A is Noetherian, the ideal J is finitely generated, say J = (rq,...,7,). By
Hilbert’s Basis Theorem, A[zy,...,x,] is Noetherian. The idea now is to construct a
surjective ring homomorphism

A[[L’l, Ce ,In] - GJ(A)

Doing so will show that G ;(A) is Noetherian.

One such homomorphism can be constructed by decomposing polynomials in
Alxy,...,x,] according to their degrees (that is, splitting polynomials into their ho-
mogeneous components) and evaluating at the point (rq,...,r,) € A™




8. Let f: A — B be a ring homomorphism.

(a) Define what it means to say that B is integral over A, and prove that this holds when B
is finitely generated as an A-module.

Solution: We say that B is integral over A iff every f € B is integral over f(A).
That is, every 3 € B satisfies a monic polynomial with coefficients in f(A).

Suppose B is a finitely-generated A-module, say B = f(A)e; + ...+ f(A)e,. Let
B € B. Write fe; = )7, a;je; for a;; € f(A), ie. Be;— >0 aie; =0, so

n

> (058 — ai)e; =0, (%)

j=1

where 9;; is the Kronecker delta.
Let M = (0;;8—a;;) € Mat,(f(A)[B]). Multiplying () by the adjugate Adj(M) gives

det(M)e; =0 for each e;.

Since 1 € B = f(A)e1+...+ f(A)e,, it follows that det(M)-1 = 0, i.e.: det(d;;8—a;;) =0
in f(A)[f]. That is, § satisfies a monic polynomial with coefficients in f(A).

(b) If B is finitely generated as an A-module, prove that Spec(B) — Spec(A) is a closed
map. (Hint: reduce to the case where f is injective.)

Solution:



9. Let p be an odd prime. In this question, ¢, denotes a primitive pth root of unity.

(a) Describe Gal(Q(¢,)/Q) and determine all primes p such that Q(¢,) contains a subfield L

whose Galois group over Q is isomorphic to Z/5Z.

Solution: Consider the homomorphism

Vi (Z/pZ)" — Gal(Q((,)/Q)
a (mod p) = 41 [¢p = (]
—1=|(Z/pZ)"|,

—1)Z.

p
Z/(p

[P

Note that 1 is injective. Since |Gal(Q((,)/Q)| = [Q((p): Q] = ¢(p)
we see that 1 is an isomorphism. Thus, Gal(Q((,)/Q) = (Z/pZ)*

Note that if Q((,) contains a subfield L with Gal(L/Q) = Z/5Z, then 5 = [L: Q] |

[Q(¢y): Q] =p—1,s0 p=1(mod 5).
contains a subgroup H of order |H| = 1%1. Let L = Q(¢,). Then
V2 o« 7/52.

Conversely, suppose p = 1 (mod 5). Then 5 | p — 1, so Gal(Q((,)/Q) = Z/(p — 1)Z

L Gal(QG)/Q) . 2/~ 12
Q= G~ &

(b) Prove that there is a finite Galois extension F of Q such that Gal(E/Q) = Z/5Z x Z/5Z
by constructing E as a subfield of an explicit Galois extension F'/Q, and explicitly describe

the subgroup Gal(F/FE) C Gal(F/Q).

Solution: Let F' = Q((341), noting that 341 = 11 - 31. Note that
Gal(F/Q) = (Z/341Z2)* = (ZJ11Z)* x (Z/31Z)* = Z/10Z x Z/30Z.

Let Hy < Z/10Z have |H;| = 2. Let Hy < Z/307Z have |Hy| = 6. By the above

isomorphisms, we can regard Hy x Hy < Gal(F/Q).
Let E = FH>H2 Then
Gal(F/E) = H, x Hy = 7,)27 x 7./67,

~ 7,/57. x 7./57.

Gal(F/Q) , Z/W0Z x Z/30Z , Z/WZ  Z/30Z
- H Hy

and

CallE/Q) = GlF/E) H, x Hy




10. (a) Let G be a group and H a subgroup of finite index n > 0. Prove that G contains a
normal subgroup of index at most n!. (Hint: think about homomorphisms from G to S,,.)

Solution: Consider the action of G on the set G/H by left multiplication. Let 7
denote the permutation representation of the action, i.e.,

7: G — Perm(G/H) = S,
g+ [g'H — gg'H].

Let N := Ker(m), so N < G and

|G: N| = |G/Ker(r)| = [Im(7)| < |Perm(G/H)| = n!

(b) Let G be a group which is generated by two elements. Prove that G has at most 17
subgroups of index 3. (Hint: think about homomorphisms from G to Ss.)

Sketch: Every index-3 subgroup determines two homomorphisms ¢: G — S3 in which
©(@) acts transitively on {1,2,3}. Conversely, every homomorphism ¢: G — S3 in which
©(@) acts transitively on {1,2,3} determines one index-3 subgroup of G. Thus, we have

1
# index 3 subgroups of G = 5 #{p: G — S3: ©(G) acts transitively on {1,2,3}}.
Since G is generated by 2 elements,
#{p: G — S3: ¢(G) acts transitively on {1,2,3}} < |Hom(Free(2),S;)| — 1,

where Free(2) denotes the free group on 2 generators. Since [Hom(Free(2), S3)| = (3!)2 =
36, we conclude that

1
# index 3 subgroups of G < 5(36 —1)=1725.




