
Ph.D. Qualifying Exam, Real Analysis
Fall 2010, part I

Do all five problems. Write your solution for each problem in a separate blue book.

1 Suppose (X, ‖.‖X), (Y, ‖.‖Y ) are Banach spaces, and Y is a subspace of X with the inclusion ι :
Y → X is continuous in the respective Banach space topologies. Suppose that Tn ∈ L(X) for n ∈ N.
Suppose moreover that for each x ∈ X and n ∈ N one has Tnx ∈ Y , and in addition that for each
x ∈ X there exists C (independent of n) such that ‖Tnx‖Y ≤ C. Show that for all n, Tn ∈ L(X, Y ),
and show that there exists C such that for all n one has ‖Tn‖L(X,Y ) ≤ C.

2 Consider the spaces Lp([0, 1]), 1 ≤ p < ∞. For which p is the unit ball, {f ∈ Lp : ‖f‖Lp ≤ 1},
weakly sequentially compact, i.e. for which p is it true that if {fn}∞n=1 is a sequence in the unit ball in
Lp then it has a weakly convergent subsequence? For each p, either prove or disprove weak sequential
compactness.

3
a. Let f be a measurable real-valued function on a finite measure space (X,B, µ). Define

mn(f) = µ
(
{x : 2n ≤ |f(x)| < 2n+1}

)
,

for n ∈ Z. Give and prove a (non-trivial) upper and lower estimate of the Lp norm of f , 1 ≤ p < ∞,
purely in terms of the quantities mn(f).
b. Suppose that (X,B, µ) is a σ-finite measure space, K is a measurable function on X ×X , and∫

|K(x, y)| dµ(y) ≤ C,

∫
|K(x, y)| dµ(x) ≤ C

µ-a.e. Show that the integral operator A : L2(X) → L2(X) defined by

(Af)(x) =
∫

K(x, y) f(y) dµ(y)

is well-defined and bounded, and its norm is bounded by C.

4 Suppose that X is a complex Banach space and T is its weak topology.
a. Suppose that (X, T ) is first countable. Show that there are linear functionals fj ∈ X∗, j =
1, 2, . . ., such that every f ∈ X∗ is a finite linear combination of the fj . That is, if f ∈ X∗ then there
exists N > 0 and aj ∈ C, j = 1, . . . , N , such that f =

∑N
j=1 ajfj .

b. Suppose that X is infinite dimensional. Show that (X, T ) is not metrizable.

5 We define a bounded operator A : `2(Z) → `2(Z) by

(Ax)k = xk−1 − 2xk + xk+1.

a. Show that A is a bounded symmetric operator.
b. Let T : `2(Z) → L2([−π, π]) be defined by

(Tx)(t) =
1√
2π

∑
k∈Z

xk eikt.

Show that the operator TAT−1 : L2([−π, π]) → L2([−π, π)] is a multiplication operator; that is,

(TAT−1f)(t) = µ(t) f(t)

for some function µ(t).
c. Determine the spectrum of A.
d. Find the eigenvalues of A.
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Fall 2010, part II

Do all five problems. Write your solution for each problem in a separate blue book.

1 Two short problems.
a. Suppose that f is a compactly supported continuous function on Rn (i.e. f vanishes outside a
compact set), and suppose that its Fourier transform f̂ , given by f̂(ξ) =

∫
Rn e−ix·ξf(x) dx, vanishes on

a non-empty open set. Show that f is identically 0.
b. Let T = R/(2πZ), 1 < p < ∞. Suppose that h ∈ Lp(T), h is non-zero a.e., and let

V = {Ph : P a trigonometric polynomial} ⊂ Lp(T).

Show that V is dense in Lp(T).

2 Let X denote the vector space of all sequences {an : n ∈ N} with
∑∞

n=1 n |an|2 < ∞.
a. Prove or disprove: the set X is a dense subset of `2(N).
b. Prove or disprove: the set X is a dense subset of `∞(N).

3 Write a real number x ∈ [0, 1) in the usual decimal expansion (pick the representation ending in 0’s if
there are two representations), x = 0.x1x2x3 . . .. We let A be the set of x ∈ [0, 1) with the property that
there are infinitely many n ∈ N such that each of the digits 0, . . . , 9 appears among the first 10n digits
(i.e. x1, ..., x10n) exactly n times. Prove that the set A is Lebesgue measurable and find its measure.

4 Suppose that H is a Hilbert space, T ∈ L(H), and let T ∗ denote its adjoint.
a. Show that Ker(T )⊕ Ran(T ∗) = H, where ⊕ is orthogonal direct sum.
b. Suppose that there exists C > 0 such that for all x ∈ H, ‖x‖ ≤ C‖Tx‖. Show that Ran(T ) is a
closed subspace of H.
c. Show that if TT ∗ = I = T ∗T , then T − λI ∈ L(H) is invertible if |λ| 6= 1, and show that
‖(T − λI)−1‖ ≤ |1− |λ||−1.

5 Let Ω+ = {z ∈ C : 0 < Im z < 1}, Ω− = {z ∈ C : −1 < Im z < 0}. Let S(R) denote the
space of Schwartz functions on R, with seminorms ρk,l(φ) = sup{|xl(∂kφ)(x)| : x ∈ R}, and S′(R)
its topological dual, tempered distributions.
a. Suppose that u+ : Ω+ → C is an analytic function with |u+(z)| ≤ C(| Im z|−k + |Re z|` + 1)
for some C, k, `. For ε ∈ (0, 1), let u+,ε ∈ S′(R) with u+,ε(φ) =

∫
R u(x + iε)φ(x) dx. Show that

u+,0 = limε→0+ uε exists in S′(R). (Hint: consider the indefinite integral of u from e.g. z0 = i/2, and
integrate first parallel to the real axis then to the imaginary axis and obtain an estimate for

∫ z
z0

u(w) dw.)
Define u−,0 similarly, replacing Ω+ by Ω−.
b. For u±(z) = z−m, z ∈ Ω±, m ≥ 1 integer, find u+,0(φ)− u−,0(φ), φ ∈ S(R), in terms of ∂jφ(0),
j ≥ 0.


