Ph.D. Qualifying Exam, Real Analysis Fall 2010, part I

Do all five problems. Write your solution for each problem in a separate blue book.

- 1 Suppose $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ are Banach spaces, and Y is a subspace of X with the inclusion ι : $Y \to X$ is continuous in the respective Banach space topologies. Suppose that $T_n \in \mathcal{L}(X)$ for $n \in \mathbb{N}$. Suppose moreover that for each $x \in X$ and $n \in \mathbb{N}$ one has $T_n x \in Y$, and in addition that for each $x \in X$ there exists C (independent of n) such that $||T_n x||_Y \leq C$. Show that for all $n, T_n \in \mathcal{L}(X, Y)$, and show that there exists C such that for all n one has $||T_n||_{\mathcal{L}(X,Y)} \leq C$.
- 2 Consider the spaces $L^p([0,1])$, $1 \leq p < \infty$. For which p is the unit ball, $\{f \in L^p : ||f||_{L^p} \leq 1\}$, weakly sequentially compact, i.e. for which p is it true that if $\{f_n\}_{n=1}^{\infty}$ is a sequence in the unit ball in L^p then it has a weakly convergent subsequence? For each p, either prove or disprove weak sequential compactness.
- 3
- **a.** Let f be a measurable real-valued function on a finite measure space (X, \mathcal{B}, μ) . Define

$$
m_n(f) = \mu\left(\{x : 2^n \le |f(x)| < 2^{n+1}\}\right),
$$

for $n \in \mathbb{Z}$. Give and prove a (non-trivial) upper and lower estimate of the L^p norm of $f, 1 \leq p < \infty$, purely in terms of the quantities $m_n(f)$.

b. Suppose that (X, \mathcal{B}, μ) is a σ -finite measure space, K is a measurable function on $X \times X$, and

$$
\int |K(x,y)| d\mu(y) \le C, \int |K(x,y)| d\mu(x) \le C
$$

 μ -a.e. Show that the integral operator $A: L^2(X) \to L^2(X)$ defined by

$$
(Af)(x) = \int K(x, y) f(y) d\mu(y)
$$

is well-defined and bounded, and its norm is bounded by C.

4 Suppose that X is a complex Banach space and T is its weak topology.

a. Suppose that (X, \mathcal{T}) is first countable. Show that there are linear functionals $f_j \in X^*$, $j =$ 1, 2, ..., such that every $f \in X^*$ is a *finite* linear combination of the f_j . That is, if $f \in X^*$ then there exists $N > 0$ and $a_j \in \mathbb{C}$, $j = 1, ..., N$, such that $f = \sum_{j=1}^{N} a_j f_j$.

- **b.** Suppose that X is infinite dimensional. Show that (X, \mathcal{T}) is not metrizable.
- 5 We define a bounded operator $A: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ by

$$
(Ax)_k = x_{k-1} - 2x_k + x_{k+1}.
$$

- **a.** Show that A is a bounded symmetric operator.
- **b.** Let $T: \ell^2(\mathbb{Z}) \to L^2([-\pi, \pi])$ be defined by

$$
(Tx)(t) = \frac{1}{\sqrt{2\pi}} \sum_{k \in \mathbb{Z}} x_k e^{ikt}.
$$

Show that the operator $TAT^{-1}: L^2([-\pi,\pi]) \to L^2([-\pi,\pi)]$ is a multiplication operator; that is, $(TAT^{-1}f)(t) = \mu(t) f(t)$

for some function $\mu(t)$.

- c. Determine the spectrum of A.
- **d.** Find the eigenvalues of A .

Ph.D. Qualifying Exam, Real Analysis Fall 2010, part II

Do all five problems. Write your solution for each problem in a separate blue book.

1 Two short problems.

a. Suppose that f is a compactly supported continuous function on \mathbb{R}^n (i.e. f vanishes outside a compact set), and suppose that its Fourier transform \hat{f} , given by $\hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-ix\cdot\xi} f(x) dx$, vanishes on a non-empty open set. Show that f is identically 0.

b. Let $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$, $1 < p < \infty$. Suppose that $h \in L^p(\mathbb{T})$, h is non-zero a.e., and let

 $V = \{Ph : P \text{ a trigonometric polynomial} \} \subset L^p(\mathbb{T}).$

Show that V is dense in $L^p(\mathbb{T})$.

- 2 Let X denote the vector space of all sequences $\{a_n : n \in \mathbb{N}\}\)$ with $\sum_{n=1}^{\infty} n |a_n|^2 < \infty$.
	- **a.** Prove or disprove: the set X is a dense subset of $\ell^2(\mathbb{N})$.
	- **b.** Prove or disprove: the set X is a dense subset of $\ell^{\infty}(\mathbb{N})$.
- 3 Write a real number $x \in [0, 1)$ in the usual decimal expansion (pick the representation ending in 0's if there are two representations), $x = 0.x_1x_2x_3...$ We let A be the set of $x \in [0,1)$ with the property that there are infinitely many $n \in \mathbb{N}$ such that each of the digits $0, \ldots, 9$ appears among the first $10n$ digits (i.e. $x_1, ..., x_{10n}$) exactly n times. Prove that the set A is Lebesgue measurable and find its measure.
- 4 Suppose that H is a Hilbert space, $T \in \mathcal{L}(\mathcal{H})$, and let T^* denote its adjoint.
	- **a.** Show that $\text{Ker}(T) \oplus \overline{\text{Ran}(T^*)} = \mathcal{H}$, where \oplus is orthogonal direct sum.

b. Suppose that there exists $C > 0$ such that for all $x \in H$, $||x|| \le C||Tx||$. Show that $\text{Ran}(T)$ is a closed subspace of H.

c. Show that if $TT^* = I = T^*T$, then $T - \lambda I \in \mathcal{L}(H)$ is invertible if $|\lambda| \neq 1$, and show that $||(T - \lambda I)^{-1}|| \leq |1 - |\lambda||^{-1}.$

5 Let $\Omega_+ = \{z \in \mathbb{C} : 0 < \text{Im } z < 1\}, \Omega_- = \{z \in \mathbb{C} : -1 < \text{Im } z < 0\}.$ Let $S(\mathbb{R})$ denote the space of Schwartz functions on $\mathbb R$, with seminorms $\rho_{k,l}(\phi) = \sup\{|x^l(\partial^k \phi)(x)| : x \in \mathbb R\}$, and $S'(\mathbb R)$ its topological dual, tempered distributions.

a. Suppose that $u_+ : \Omega_+ \to \mathbb{C}$ is an analytic function with $|u_+(z)| \leq C(|\operatorname{Im} z|^{-k} + |\operatorname{Re} z|^{\ell} + 1)$ for some C, k, ℓ . For $\epsilon \in (0, 1)$, let $u_{+,\epsilon} \in S'(\mathbb{R})$ with $u_{+,\epsilon}(\phi) = \int_{\mathbb{R}} u(x + i\epsilon) \phi(x) dx$. Show that $u_{+,0} = \lim_{\epsilon \to 0+} u_{\epsilon}$ exists in $S'(\mathbb{R})$. (Hint: consider the indefinite integral of u from e.g. $z_0 = i/2$, and integrate first parallel to the real axis then to the imaginary axis and obtain an estimate for $\int_{z_0}^{z} u(w) dw$. Define u_{-0} similarly, replacing Ω_+ by Ω_- .

b. For $u_{\pm}(z) = z^{-m}$, $z \in \Omega_{\pm}$, $m \ge 1$ integer, find $u_{+,0}(\phi) - u_{-,0}(\phi)$, $\phi \in S(\mathbb{R})$, in terms of $\partial^j \phi(0)$, $j \geq 0$.