Ph.D. Qualifying Exam, Real Analysis Spring 2013, part I

Do all five problems. Write your solution for each problem in a separate blue book.

1 Two short problems.

a. Show that if X is a Banach space and $X^* = X^{***}$ (under the natural inclusion) then $X = X^{**}$.

b. Show that if $x_0 \in \mathbb{R}^n$ and $\epsilon > 0$ then there exists $\phi \in C_c^{\infty}(\mathbb{R}^n)$ (compactly supported infinitely differentiable function) such that $\phi(x_0) = 1$ and $\operatorname{supp} \phi \subset \{x \in \mathbb{R}^n : |x - x_0| < \epsilon\}$.

2

a. Suppose f, g are positive measurable functions on [0, 1] and $f(x)g(x) \ge 1$ for $x \in [0, 1]$. Show that

$$\int f(x) \, dx \int g(x) \, dx \ge 1.$$

b. Suppose that (X, \mathcal{B}, μ) is a σ -finite measure space, K is a measurable function on $X \times X$, and

$$\int |K(x,y)| \, d\mu(y) \le C, \ \int |K(x,y)| \, d\mu(x) \le C$$

 $\mu\text{-a.e.}$ Show that the integral operator $A:L^2(X)\to L^2(X)$ defined by

$$(Af)(x) = \int K(x,y) f(y) d\mu(y)$$

is well-defined and bounded, and its norm is bounded by C.

3 Let X be a complex vector space. Suppose that $\{\rho_{\alpha} : \alpha \in A\}$ is a collection of seminorms on X such that for each $x \in X \setminus \{0\}$ there is $\alpha \in A$ such that $\rho_{\alpha}(x) \neq 0$, and $B : X \times X \to \mathbb{C}$ is a (jointly) continuous bilinear map in the locally convex topology generated by the ρ_{α} . Show that there exist $\alpha_1, \ldots, \alpha_n \in A, C > 0$, such that for all $x, y \in X$,

$$|B(x,y)| \le C(\rho_{\alpha_1}(x) + \ldots + \rho_{\alpha_n}(x))(\rho_{\alpha_1}(y) + \ldots + \rho_{\alpha_n}(y)).$$

- 4 Suppose u is a distribution (an element of the dual of C^{∞}) on the circle $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$. Show that there exists a function $f \in C(\mathbb{T}), k \geq 0$ integer and $c \in \mathbb{C}$ such that $u = \frac{d^k}{dx^k}f + c$, where $\frac{d^k}{dx^k}$ is the kth distributional derivative. (As usual, $C(\mathbb{T})$ is regarded as a subset of the set $\mathcal{D}'(\mathbb{T})$ of distributions.)
- 5 For each of the following maps $f : \mathbb{R} \to X$, where X is a topological vector space, prove or disprove that the map is continuous, respectively differentiable. Here differentiability is the existence, for all $t \in \mathbb{R}$, of the limit $\lim_{h\to 0} \frac{f(t+h)-f(t)}{h}$ in the space X. We write $f(t) = f_t$ below.

a. $X = L^2(\mathbb{R})$, with standard norm, and $f_t(x) = \chi_{[t,t+1]}(x)$, $\chi_{[t,t+1]}$ the characteristic (or indicator) function of [t, t+1].

b. $X = L^2(\mathbb{R})$, with standard norm, and $f_t(x) = \sin(x-t)$ if $t \le x \le t + \pi$, $f_t(x) = 0$ otherwise. **c.** $X = S'(\mathbb{R})$ (tempered distributions, the dual of Schwartz functions, $S(\mathbb{R})$), with the weak-* topology, and $f_t = \delta_t$, the delta distribution at t.

Ph.D. Qualifying Exam, Real Analysis Spring 2013, part II

Do all five problems. Write your solution for each problem in a separate blue book.

- 1 Suppose F, F_n , $n \ge 1$ integer, are increasing functions from the interval [a, b], a < b, to \mathbb{R} such that for all $x \in [a, b]$, $F(x) = \sum_{n=1}^{\infty} F_n(x)$. Prove that $F'(x) = \sum_{n=1}^{\infty} F'_n(x)$ almost everywhere with respect to the Lebesgue measure.
- 2 Suppose that $1 , <math>f, f_n \in L^p([0,1])$, $n \in \mathbb{N}$, $||f_n||_{L^p} \leq 1$ for all n, and $f_n \to f$ almost everywhere. Show that $f_n \to f$ weakly and $||f||_{L^p} \leq 1$.
- **3** Suppose *X* is a separable Hilbert space.

a. Suppose $T \in \mathcal{L}(X)$ is compact and $T^* = T$. Show that there is a complete orthonormal set in X consisting of eigenvectors of T.

b. Give an example (with proof) of a non-selfadjoint $T \in \mathcal{L}(X)$ which is compact and which is such that the spectrum of T is $\{0\}$ but T has no eigenvectors.

4 Let X be an uncountable set equipped with the discrete topology. Let \hat{X} be the one point compactification of X, and let $C(\hat{X})$ be the Banach space of real-valued continuous functions on \hat{X} .

a. Find (with proof) the σ -algebra of Baire sets (generated by compact G_{δ} sets) and the σ -algebra of Borel sets (generated by open sets).

b. Find a σ -subalgebra \mathcal{B} of the Borel sets which contains the Baire sets and two distinct finite measures μ_1, μ_2 on \mathcal{B} such that $\int f d\mu_1 = \int f d\mu_2$ for all $f \in C(\hat{X})$. Explain why the existence of these does not contradict the Riesz representation theorem concerning the dual of $C(\hat{X})$.

5 Suppose that $P(\xi) = \sum_{|\alpha| \le m} a_{\alpha} \xi^{\alpha}$, $a_{\alpha} \in \mathbb{C}$, is a polynomial of degree m on \mathbb{R}^{n} ; here for $\alpha \in \mathbb{N}^{n}$, $|\alpha| = \sum_{j=1}^{n} \alpha_{j}$, and $\xi^{\alpha} = \xi_{1}^{\alpha_{1}} \dots \xi_{n}^{\alpha_{n}}$. Let P(D) be the corresponding differential operator, $P(D) = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha}$, $D_{j} = -i\partial_{j}$, $D^{\alpha} = D_{1}^{\alpha_{1}} \dots D_{n}^{\alpha_{n}}$. We say that P is elliptic of order m if $\mathbb{R}^{n} \ni \xi \neq 0$ implies $\sum_{|\alpha|=m} a_{\alpha} \xi^{\alpha} \neq 0$. Suppose that P is elliptic of order m.

Recall also that for $m \ge 0$, $H^m(\mathbb{T}^n)$ is the subset of $L^2(\mathbb{T}^n)$ consisting of functions whose Fourier coefficients satisfy $\sum_{k\in\mathbb{Z}^n}(1+|k|^2)^m|\hat{f}(k)|^2 < \infty$. Here $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$ and $\hat{f}(k) = (2\pi)^{-n/2}\int e^{-ix\cdot k} f(x) dx$, $k\in\mathbb{Z}^n$.

a. Show that with P considered as a map $P : H^m(\mathbb{T}^n) \to L^2(\mathbb{T}^n)$, the nullspace of P is finite dimensional and is a subset of $C^{\infty}(\mathbb{T}^n)$.

b. Show that *P* is invertible as such a map if and only if it is injective.