
Almond: The Architecture of an Open, Crowdsourced,
Privacy-Preserving, Programmable Virtual Assistant

Giovanni Campagna Rakesh Ramesh Silei Xu Michael Fischer Monica S. Lam
Computer Science Department

Stanford University
Stanford, CA 94305

{gcampagn, rakeshr, silei, mfischer, lam}@cs.stanford.edu

ABSTRACT
This paper presents the architecture of Almond, an open,
crowdsourced, privacy-preserving and programmable virtual
assistant for online services and the Internet of Things (IoT).
Included in Almond is Thingpedia, a crowdsourced public
knowledge base of open APIs and their natural language
interfaces. Our proposal addresses four challenges in vir-
tual assistant technology: generality, interoperability, pri-
vacy, and usability. Generality is addressed by crowdsourc-
ing Thingpedia, while interoperability is provided by Thing-
Talk, a high-level domain-specific language that connects
multiple devices or services via open APIs. For privacy,
user credentials and user data are managed by our open-
source ThingSystem, which can be run on personal phones
or home servers. Finally, we create a natural language in-
terface, whose capability can be extended via training with
the help of a menu-driven interface.

We have created a fully working prototype, and crowd-
sourced a set of 187 functions across 45 different kinds of
devices. Almond is the first virtual assistant that lets users
specify trigger-action tasks in natural language. Despite the
lack of real usage data, our experiment suggests that Al-
mond can understand about 40% of the complex tasks when
uttered by a user familiar with its capability.

1. INTRODUCTION
Virtual assistants can greatly simplify and enhance our

lives. Today, a two-year old can play her favorite song by
just saying “Alexa, play the happy song”, before she learns
how to use a computer. As the world gets wired up, we can
simply use natural language to ask our virtual assistant to
interact with social media, purchase movie tickets, and even
manage our financial and medical records.

A virtual assistant may ultimately be our interface to all
digital services. As an intermediary, the virtual assistant will
see all our personal data and have control over the vendors
we interact with. It is thus not a surprise that all the major
companies, from Amazon, Apple, Facebook, Google, to Mi-

©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052562

.

User’s accounts and devices

accesses

User

Natural Language

ThingTalk

Virtual Assistant

ThingSystem

Thingpedia

describes

Developers

collaborate

Figure 1: The architecture of Almond.

crosoft, are competing to create the best virtual assistant.
Just as there is a dominant search engine today, will there
be a single proprietary company that provides the world’s
dominant virtual assistant? This raises a lot of questions,
including privacy, interoperability, and generality.

To answer these questions, we propose the architecture for
Almond, shown in Figure 1, an open, crowdsourced, privacy-
preserving and programmable virtual assistant. Users can
ask Almond in natural language to perform any of the func-
tions in the Thingpedia knowledge base. Thingpedia is a
crowdsourced repository containing natural language inter-
faces and open APIs for any device or service. For privacy,
all the personal data and credentials are stored in the Thing-
System, whose code is open-source and can be run on per-
sonal phones or home servers. The ThingSystem runs pro-
grams written in ThinkTalk, a high-level language we devel-
oped to connect open APIs from different services together.
This high-level abstraction makes it feasible to automati-
cally translate natural language to ThingTalk code.

As far as we know, Almond is the only virtual assistant
that lets users specify trigger-action commands in natural
language. For example, the user can instruct Almond to
“notify him if motion is detected by the security camera,
when the alarm is on”. Almond is programmable: it can
translate such a sentence into ThingTalk code, as long as
the functions “notify”, “detect motion on the security cam-

era”, and “is alarm on” are available in Thingpedia. The
closest available system is If This Then That (IFTTT) [14]
which provides users with a web interface to connect two
APIs together. However IFTTT does not have a natural
language interface, nor a formal language like ThingTalk,
and it cannot handle conditions like “when the alarm is on”.

1.1 Why Open & Crowdsourced?
We advocate openness and crowdsourcing so all internet

of things can interoperate, developers can compete and in-
novate openly, and users can have their data privacy. Tech-
nically, crowdsourcing is also necessary to generate sufficient
natural language training data.

Privacy. For virtual assistants to comprehensively serve
the user, they need to handle all their personal information
and be given permission to interact on their behalf. How-
ever, data like bank accounts or medical records are highly
sensitive. It is inappropriate to use virtual assistants on ser-
vices like Facebook Messenger that own their users’ data.
ThingSystem, on the other hand, is open-source and can be
run locally on the phone, on a home server, or as a web
service. As open source, ThingSystem can be code reviewed
and checked for malicious behavior.

Interoperability. Keeping the system open also im-
proves interoperability. Having multiple proprietary stan-
dards, such as Google Weave [10] and Apple Homekit [2],
serves neither the device makers nor the consumers. Owners
of the standards have too much control over their partners,
and consumers are locked into specific brands. In contrast,
an open system like ThingTalk is designed to be modular
to enable interoperability across many different discovery,
configuration and communication protocols. In ThingTalk,
the same commands can be applied to a Jawbone wristband
tracker or a Fitbit, and the different details are handled
transparently. Additionally, because Almond is open-source,
multiple competing virtual assistants can be developed on
top of a shared codebase.

Generality. Significant research and development is still
needed to create a truly usable virtual assistant. Inspired
by the open-source BSD Unix and Linux efforts, we make
Almond open-source as an attempt to bring researchers and
developers together to create an open system competitive
to proprietary systems. Similarly, Thingpedia is inspired
by the same values that power Wikipedia including commu-
nity, openness, and ease of use. Besides Wikipedia, crowd-
sourcing has proven successful for building large knowledge
bases in a multitude of different areas like structured con-
tent (DBpedia [3]), mathematics (Wolfram Mathworld [29]),
genomics (UCSC Genome Browser [17]), etc. By support-
ing device interoperability and making the entire virtual as-
sistant code base available, we hope that Thingpedia can
attract all service providers, device makers, and hobbyists
to help create the largest encyclopedia of things. Having
all this knowledge in the public domain can promote open
competition and thus fuel innovation.

Usability. Ideally, we wish to specify the desired inter-
action in natural language, and have such input be auto-
matically translated into code. Natural language parsing is
typically based on machine learning, which requires a large
volume of annotated user data. The SEMPRE system is a
semantic parser that addresses the lack of sufficient user data
by leveraging crowdsourcing [28]. Although SEMPRE was
originally designed to handle semantic queries, the Almond

semantic parser extends SEMPRE to handle trigger-action
commands to generate executable programs. Further, Al-
mond has the only semantic parser that can generate trigger-
action commands that requires composition, i.e. parameters
be passed from the triggers to the action. Nonetheless, Al-
mond today is not accurate enough to handle all inputs, and
we have created a menu-driven interface that lets users train
Almond with relative ease. Over time, the crowdsourced
training information can feed into machine-learning algo-
rithms to further improve Almond’s natural language capa-
bility.

1.2 Contributions
Architecture of an open virtual assistant. Almond

is a conversational agent built on top of a system with three
main components:

1. Thingpedia: a public knowledge base of natural lan-
guage interfaces and open APIs to services and devices.

2. ThingTalk: a high-level language that can connect web
services and Internet of Things in a single line of code.

3. ThingSystem: an open-source system that manages
users’ credentials and data and executes ThingTalk
programs. It can be run on users’ devices to preserve
privacy.

Methodology to acquire training data for virtual
assistants. We extended the technique introduced by Wang
et al. [28] to generate training samples for trigger-action
commands from Thingpedia entries for new devices.

The first virtual assistant that understands
trigger-action commands in natural language. We
have created and released Almond, which currently has a
repertoire of 45 devices and 187 functions. With a training
set consisting of over 7000 sentences, Almond is found to re-
turn the desired program among the top 5 choices for 53% of
the valid inputs written by users familiar with its capability.

1.3 Paper Organization
In Section 2, we describe what the virtual assistant Al-

mond can do and its user interface. We describe an overview
of the underlying system architecture in Section 3. We
present an overview of our algorithm to crowdsource natural
language training in Section 4. We describe the results of
crowdsourcing Thingpedia in Section 5, and the experimen-
tation of Almond in Section 6. Finally, we present related
work and conclude.

2. ALMOND VIRTUAL ASSISTANT
This section describes what Almond can do and how users

interact with Almond. Almond is unique in that it can per-
form trigger-action tasks based on natural language com-
mands. Furthermore, it is fully extensible: its capabilities
grow as Thingpedia grows.

2.1 Generality
Almond derives its generality from Thingpedia, a reposi-

tory designed to capture interfaces to all the different web
services and IoT devices. While Almond can access pub-
licly available services like the weather channel or Uber,
its strength is in managing and interfacing with personal
web accounts and devices with privacy1. For example, Al-
1In the rest of the paper, we use the term devices to refer
to physical devices and web services.

mond can notify a user of low bank balances without having
the user disclose his credentials to a third party. Almond
prompts the user for the credential just once, when a user
initiates the action, and stores the credential on, for ex-
ample, the user’s phone. Almond can also handle physical
devices, irrespective of whether they use Bluetooth, WiFi,
etc. The user tells Almond to initiate discovery of devices,
and Almond prompts the user for the credentials to each
device found.

2.2 Expressiveness
At the basic level, Almond lets users access a wide collec-

tion of devices from a single text-based user interface. Users
can simply tell Almond to “tweet a message” or “turn on
the light”, thus avoiding the need to navigate different in-
terfaces in different apps. Almond can be “programmed” to
connect functions from different devices together to create
trigger-action tasks.

We categorize the commands that Almond accepts into
primitive and compound operations. The most basic prim-
itive command is a direct action or query to a device. Al-
mond also supports standing queries or monitors to notify
the user when an event of interest is triggered. Users can add
one or more comparisons to filter the result of the queries or
monitors.

Compound commands involve two or more functions. For
example, as shown in Figure 2, one can email the daily
weather update by saying “every day at 6am get latest
weather and send it via email to bob”, where “every day
at 6am” is a trigger, “get latest weather” is a query, and
“send email to bob” is an action.

Class Type Examples

primitive

action send email to bob
query get my latest email
monitor notify me when I receive an

email
filtered
monitor/query

notify me when I receive an
email if the subject contains
deadline

compound

trigger+query every day at 6am get latest
weather

trigger+action every day at 6am send email
to bob

query+action get latest weather and send
it via email to bob

trigger+query
+action

every day at 6am get lat-
est weather and send it via
email to bob

Figure 2: Categories of commands accepted by Almond

2.3 User Interface
Almond appears to the user as a conversational agent with

a chat-based interface, where users can input their com-
mands in natural language. There are 3 key challenges we
addressed when designing Almond: (1) novice users do not
know what can be done on Almond, (2) users find it dif-
ficult to express complex compound commands in natural
language, and (3) users get frustrated when the natural lan-
guage fails.

Discovery. To show novice users the scope of Almond’s

Figure 3: Example cheat sheet for 4 devices

(a) List of commands for Twit-
ter

(b) Interactive creation of com-
pound commands

Figure 4: Two screenshots of the Almond user interface

capability, we developed a “cheat sheet” of Almond com-
mands. The cheat sheet lists entries by interfaces along with
a small icon so users can visually scan the entire document
at a glance. Under each interface is a list of commands
sorted by triggers, queries, actions listed in their natural
form through the keywords when, get, do, respectively.
Additionally, we also added a list of popular commands to
show how Almond could be used. An example cheat sheet
with 4 devices is shown in Figure 3.

Besides the cheat sheet, users can also explore the appli-
cation by clicking the help button, whereupon Almond lists
the supported devices by categories in the form of a menu.
Then, they can simply navigate the menu by selecting the
device and choosing the command from the list of popular
commands sorted by device (Figure 4a). After selecting the
command, they are prompted to fill in the blanks or answer
slot filling questions to complete them.

Creation. To help power users maximize the capabilities
of Almond, we provided a simple menu-based approach to
create compound commands. Users can choose the primitive
commands that make up the compound command by click-
ing on the corresponding when, get, do buttons. Almond
then prompts the user for the composition (Figure 4b) and
asks follow up questions to fill in the rest of the blanks.

Training. To improve the natural language, Almond pro-
vides an alternative way to be corrected when it makes a
mistake. By clicking the train button, users can pick the
right command from an exhaustive list of candidates when
Almond fails to match in the top 3 choices. The correct
match is then stored in Thingpedia and Almond can learn
from it. If there is still no correct match, users will be asked
to rephrase the sentence.

2.4 Use Case Scenarios
To give the readers a sense of Almond’s capability, we

describe four use case scenarios assembled from the various
rules our beta users have created.

Simple, universal interface. Alice likes Almond be-
cause it provides a uniform interface across many devices.
When she wakes up, she tells Almond to“Turn on the lights”
and asks “What is the weather?”, “What’s the Uber price to
work?”. Once she arrives at work she asks Almond to “Set
my phone to silent when an event on my calendar begins”.

Quantified self. Bob uses Almond to monitor his habits,
knowing full well that he can switch devices while maintain-
ing a common interface. He currently uses Almond as an in-
terface with his Jawbone UP to find “How much did I sleep
last night?”, “How many steps have I taken today?”. Because
health data is sensitive, Bob cares about privacy and likes
that the data is stored only on this phone. Additionally, by
using Almond, Bob can switch to Fitbit whenever he wants
without having to learn a new interface.

Media Filtering. Carol is a software developer who
saves time by using Almond to stream all her social ac-
counts customized to her preferences. For example, she tells
Almond to “Monitor @justinbieber on Twitter” so she will
only be notified when @justinbieber tweets. Almond lets
Carol focus on what she is interested on, across all social
media. She also use Almond for work by setting “Monitor
pushes to Github” and “Monitor Slack updates on channel
#urgent”.

Home Automation. Dan likes to use Almond to con-
nect his gadgets easily. To save energy, he asks Almond to
“Turn off my HVAC if the temperature is below 70 F.” His
wife Eve is a bird lover. So, he sets up a hummingbird feeder
and points a camera at it, and asks Almond to “Send the
video to @eve via the Omlet chat if there is motion on my
camera”.

Summary. Via a simple and uniform chat-based inter-
face, Almond can help users with many tasks, from sim-
ple commands, to customizing interfaces, and programming
connections across different devices, all while preserving pri-
vacy. If the service or device of interest is not in Almond’s
repertoire, an average programmer can extend Almond by
adding the interfaces of interest into Thingpedia with a rea-
sonable effort.

3. SYSTEM ARCHITECTURE
In this section, we provide an overview of Almond’s un-

derlying system architecture.

3.1 Thingpedia
Thingpedia is an encyclopedia of applications for the In-

ternet of Things. Just like how Wikipedia stores knowledge
about the world, Thingpedia stores knowledge about devices
in the world. Wikipedia is organized around articles; Thing-
pedia is organized around devices, such as Twitter, a light

bulb, or a thermostat. Each device has a entry on Thing-
pedia. A Thingpedia entry stores the natural language inter-
face that represent how humans refer to and interact with
the device, and the executable specification corresponding
to the device API.

A full list of attributes of the entry is shown in Figure 5.
Each entry includes information such as a version number,
package name, communication protocols, and discovery in-
formation. In addition, it has one or more functions, which
can be triggers (which listen to events), queries (which re-
trieve data) and actions (which change state). These func-
tions are implemented by wrapping the low-level device API
in a JavaScript package, which can be downloaded by Thing-
System on demand. For each function, the manufacturer
also provides the parameter specification, some natural lan-
guage annotations, which we describe in Figure 6, and a few
example sentences to activate it.

Thingpedia also hosts the anonymized natural-language
commands crowdsourced from the users, which are used to
provide suggestions for other users and to train the assistant.

3.2 ThingTalk
ThingTalk is a high-level language we developed to con-

nect the Internet of Things. It connects APIs of devices
together, while hiding the details of configuration and com-
munication of the devices.

For example, here is a ThingTalk program that posts In-
stagram pictures with hashtags containing “cat” as pictures
on Facebook:

@instagram.new picture(picture url , caption, hashtags),
Contains(hashtags,“cat”)

⇒ @facebook.post picture(text , url),
text = caption, url = picture url

The above code reads as “if I upload a picture on Insta-
gram with certain picture url, caption and hashtags, and the
hashtags array contains the value ‘cat’, then post a picture
to Facebook, setting the text from the caption and the url
from the picture url”.

A ThingTalk program is a rule of the form:

trigger [,filter]∗ [⇒ query [,filter]∗]
∗ ⇒ action

where each of trigger, query, action is an invocation of a
Thingpedia function.

The trigger denotes when the rule is evaluated, the query
retrieves data and the action produces the output. The trig-
ger and the query can be filtered with equality, containment
and comparison operators. Composition occurs by binding
the trigger or query parameters to a variable name and using
them to set the action parameters.

Primitive Almond commands are expressed in ThingTalk
using degenerate rules with the builtin trigger now, which
indicates that the rule is to be executed now, and the builtin
action notify, which indicates that the result is to be re-
ported to the user. Figure 7 summarizes the correspondence
between Almond commands and ThingTalk forms.

For now, devices can only be referred to by their type. If
the user has multiple devices of the same type, Almond asks
the user to choose the one to operate on. In the future, we
plan to extend ThingTalk to name devices by location, by
user-defined labels, or by using contextual information.

3.3 ThingSystem

Attribute Definition Example
Class and version A namespaced identifier referring to a specific

implementation of the API
com.lg.tv.webos2, version 20

Global name A unique name that can be used to refer to
the device, to configure it or get help about it

“lg webos tv”

Types Generic category names that can be used to
refer to the device

“tv”, “powered device”

Configuration method How is the device discovered and configured,
such as OAuth, UPnP, Bluetooth, etc.

UPnP

Discovery descriptors Low-level identifiers, specific to a discovery
protocol, which are used to associate an en-
try with a physical device

UPnP serviceType:
“urn:lge-com:service:webos-second-screen:1”

Functions Triggers, Queries, Actions set power(power), play url(url),
set volume(percent), mute(), unmute()

Figure 5: Attributes describing a Thingpedia entry, with the example of a LG Smart TV.

Annotation Definition Example
Canonical form An English-like description of the function

with no parameters
“set power on lg webos tv”

Parameters The parameters to the function, each with
name and data type

power : Enum(on, off)

Follow up questions A question for each required parameter that
Almond will ask if it is missing

power : “Do you want to turn the TV on or
off?”

Example sentences Full sentence templates that activate the func-
tion immediately, with parameters to fill by
the user; these sentences are used to bootstrap
the natural language learning algorithm

“turn my lg tv $power”,“switch my tv $power”,
“set my tv to $power” (where $power is re-
placed by on or off depending on what the user
chooses)

Confirmation A richer English description of the function
which is presented to the user so he can con-
firm the command before it’s executed

“turn $power your LG WebOS TV”

Figure 6: The natural language entry for a Thingpedia function, with the example of set power on the LG Smart TV.

Class Type ThingTalk

primitive

action now ⇒ action
query now ⇒ query ⇒ notify
monitor trigger ⇒ notify

compound

trigger+query trigger ⇒ query ⇒ notify
trigger+action trigger ⇒ action
query+action now ⇒ query ⇒ action
trigger+query
+action

trigger ⇒ query ⇒ action

Figure 7: The different ThingTalk forms, and how they map
to Almond commands.

While Thingpedia contains all public information, each
user has their own ThingSystem to store information about
their configured devices and commands. ThingSystem is
portable and can run on the phone or in the cloud. Thing-
System has two main roles: to help the user configure and
manage his devices, and to execute the ThingTalk code cor-
responding to his commands.

Management of devices. ThingSystem maintains a list
of all devices that belong to the user. For each device, Thing-
System stores an instance identifier, the IP or Bluetooth
address and the credentials to access it. The list of devices
forms essentially a namespace for the user, where devices can
be recalled by type. The namespace is then used to map the

abstract name “twitter” to a specific Twitter account owned
by the user, or “tv” to a specific TV and its network address.

Devices are added to the list when the user configures
them. This happens explicitly when requested by the user
or on demand when used in a ThingTalk command. Config-
uration involves 4 steps: mapping, loading, authenticating
and saving. For example, to configure“twitter” the following
actions take place:

1. Mapping: “twitter” gets mapped to its Thingpedia en-
try (“com.twitter”, version: 22, config type: OAuth).

2. Loading: Code package “com.twitter-v22.zip” is down-
loaded from the Thingpedia server and loaded.

3. Authenticating: The user is directed to the OAuth
login page of Twitter and asked for credentials.

4. Saving: User ID and Access token are added to the
namespace and the entry is saved.

Physical devices can also be discovered using general-
purpose protocols, such as UPnP or Bluetooth. The Thing-
System listens to the broadcasts from visible devices, collects
the discovery descriptors and queries Thingpedia for the cor-
responding entry. Configuration then proceeds in the same
way as before.

ThingTalk execution. ThingSystem contains an eval-
uation loop that executes ThingTalk code on behalf of the
user. It polls the triggers, evaluates conditions and invokes
the corresponding queries and actions.

When the user gives a command, the corresponding

ThingTalk Synthethic sentence Paraphrase
@builtin.timer(interval), interval = 1day ⇒
@thecatapi.get(picture url) ⇒ notify

Every 1 day get a cat picture Send me a daily cat picture

@twitter.receive dm(author ,message) ⇒
@twitter.send dm(to,message), to = author

If I receive a new DM on Twitter
send a DM on Twitter to the author
saying something

Auto-reply to my Twitter DMs

@washington post.new article(title, link) ⇒
@yandex.translate(target , text , translated text),
target = “chinese”, text = title ⇒ notify

If a new article is posted on the
Washington Post then translate the
title to “chinese” with Yandex

Translate Washington Post to
“Chinese”

Figure 8: Three examples of ThingTalk programs, their associated synthethic sentence, and a possible paraphrase.

ThingTalk code is first compiled using the type information
in Thingpedia. Then the code is analyzed to map each trig-
ger, query and action to a specific pre-configured device in
the user namespace. The compiled code is connected to the
corresponding JavaScript implementation and then passed
to the evaluation loop.

ThingSystem also provides persistent storage of the user
programs and their state, so that it can be restarted at any
time without losing data or duplicating notifications.

4. LANGUAGE TO CODE
How do we build an extensible, rule-based virtual assistant

if no user data is available for training? This section presents
the methodology of how we crowdsource training data and
an overview of our machine learning algorithm.

4.1 Training Data Acquisition
Previous research to translate natural language into

trigger-action code is based on the dataset obtained from
the IFTTT website, which comprises over 114,000 trigger-
action programs, using over 200 different devices [9, 18, 22].
Unfortunately, associated with each program is only an im-
precise and incomplete English description that helps users
find useful recipes, and not a specification of the code. For
example, “Foursquare check-in archive” should map to “save
any new check-in to Foursquare in Evernote”, but this is not
immediately obvious. Information on the parameters is of-
ten simply unavailable. Dong et al. [9] reported an accuracy
of 40% to identify the correct function and 55% to identify
the correct device on the IFTTT dataset. None were able to
derive correctly the parameters for the trigger-action code,
which is clearly necessary for completeness.

An extensible virtual assistant needs to provide a natural
language interface for new devices, before any user data is
available. Our solution is to derive a training set by crowd-
sourcing, with the help of the natural language entries sup-
plied along with each Thingpedia function, as shown in Fig-
ure 6. This training set will give Almond rudimentary natu-
ral language understanding to allow it to further learn from
users.

It is unreasonable to ask a Mechanical Turk worker to
create a correct training sample, as it entails creating (1) a
ThingTalk program, complete with parameters, and (2) its
complete specification in natural language. Borrowing from
the methodology proposed by Wang et al. [28], our approach
is to use information in each Thingpedia entry to create a
sample of ThingTalk programs and their corresponding de-
scriptions in natural language; we then crowdsource para-
phrases to arrive at more natural-sounding sentences.

First, we generate a set of random candidate programs

using the ThingTalk grammar, sampling uniformly pairs
of supported functions and assigning the parameters ran-
domly. Every entry in the Thingpedia contains a confirma-
tion string, with which the virtual assistant asks the user
before performing any action. We combine the confirmation
strings associated with each of the functions in the generated
program to create a synthetic sentence. Note that such sen-
tences are typically very clunky and hard to understand; we
use a set of heuristics to make them more understandable.

Next, we ask the workers to provide three paraphrases for
each synthetic sentence. Using 3 different paraphrases en-
sures variability in the training set and expands the vocabu-
lary that the machine learning can observe during training.
In addition, because these programs are randomly gener-
ated, they may not be meaningful. Thus, we allow workers
to answer “no idea” when the sentence is hard to understand
and we drop these programs from the training set.

Figure 8 shows 3 ThingTalk programs, their corresponding
synthetic sentence, and a possible paraphrase. As seen from
these examples, having just a parameter is already hard to
understand. We sample programs in a way such that it
is exponentially less likely to have many parameters, and
we rely on machine learning to handle more complicated
programs. Furthermore, we introduced heuristics to ensure
that parameters have meaningful values. For example, the
target parameter for @yandex.translate is given strings like
“Italian” and “Chinese”, even though it is of generic String
type.

4.2 Machine Learning Algorithm
Once we acquired the training data, we use a semantic

parser built upon the SEMPRE 2.0 framework [21], which
uses the generation-without-alignment algorithm introduced
by Berant et al. [5].

Like the training-set generation algorithm, our parser uses
the ThingTalk grammar to generate many candidate pro-
grams. It uses the canonical form in the Thingpedia entries
to generate a canonical sentence for each program. It then
uses the model learned from the training to find the top
5 matches between the input and the canonical sentences,
returning the corresponding ThingTalk programs as the re-
sult. Details of our algorithm are out of the scope of this
paper.

5. CROWDSOURCING THINGPEDIA
Thingpedia is hosted as a web service at

https://thingpedia.stanford.edu. Developers
can open an account on Thingpedia and submit entries
for their devices. Once an entry has been reviewed by an
administrator, it is publicly available. Users can also go to

https://thingpedia.stanford.edu

Domain In this category # of devices # of functions # of sentences
Media Newspapers, web comics, public data feeds 13 38 100
Social Networks Facebook, Instagram, Twitter, etc. 7 26 70
Home Automation Light bulbs, security cameras, etc. 6 38 54
Communication E-mail, calling, messaging 5 29 57
Data management Cloud storage, calendar, contacts 4 19 38
Health & Fitness Wearables, smart medical sensors 2 10 26
Miscellaneous Weather, time, Uber, Bing, etc. 8 27 59
Total 45 187 404

Figure 9: Categories of devices available in Thingpedia.

Thingpedia to build commands by typing sentences and
choosing the correct interpretation.

Can developers contribute to Thingpedia? We
asked 60 students in a class to contribute entries to Thing-
pedia. These are mostly computer science graduate level
students, with a few undergraduates. We provided a list of
suggested devices for students to choose from but students
also came up with some on their own. They wrote a total of
57 entries, of which 45 were found working. These devices
span across a wide variety of domains, from media, social
networks, home automation, communication, data manage-
ment, health, and other miscellaneous services. Figure 9
shows the categories of devices submitted, and the number
of devices, functions and sentences in each category.

The number of primitive commands supported for each
device varies, ranging from 1 to 10, with an average of 4.2
commands per device. The Nest thermostat [20] provides
a relatively large set of APIs from reading the temperature
to making changes to different settings, whereas a scale can
only measure weight. Sportradar [24], an app that provides
updates for various sports, has the largest number of com-
mands to access results of different sports and teams.

Each Thingpedia entry has 1 to 26 example sentences,
with an average of 9 sentences per entry. Monitors use more
sentences because they can be constructed by applying mul-
tiple filters (for example, @gmail.receive email can filter by
subject, author, label or snippet, which results in different
commands) and by paraphrasing (e.g. “notify me when I
receive a new email on gmail”, “notify me when there is a
new email in my inbox”, “monitor my emails”).

How hard is it to write a Thingpedia entry? Most
of the work lies in finding the documentation, choosing the
right APIs and mapping them to useful sentences. This pro-
cess can be greatly aided by the varied expertise of different
people by crowdsourcing.

For the majority of devices, the Thingpedia functions map
easily to the device APIs. Most of the complexity is in the
discovery and configuration code especially for physical de-
vices that use non-standard authentication protocols. In
addition, triggers are challenging because they can use dif-
ferent notification styles, such as polling, streaming or web
hooks.

On the whole, it takes about 42 to 1198 lines of code
to write a Thingpedia entry, not counting comments and
metadata, with an average of 195 LOC per entry and 47
LOC per function.

6. VIRTUAL ASSISTANT EXPERIMENT
The Almond Virtual Assistant app, which we recently re-

leased in the Google Play Store, has all the functionality

described in this paper. It helps users discover their local
devices and lets them supply personal accounts information,
which are then stored on their personal devices. Everything
runs locally on the phone except for the language-to-text
translation, which is provided as an anonymous web service
to overcome the memory limitations on mobile devices. The
Android app is built with a mix of Java and JavaScript. The
entire code base is open source and is available on Github2.

6.1 Training Almond
To train our machine learning algorithm, we use 3 data

sets: a Base set, a Paraphrase set and an Author set. All
together, 7488 sentences are collected, of which 3511 are
primitive and 3977 are compound.

The Base set is automatically generated from the Thing-
pedia example sentences, by replacing each parameter place-
holder with representative values (e.g., given the Thingpedia
example “turn $power my tv” we generate “turn on my tv”
and “turn off my tv”). The base set provides useful training
for primitive commands and guarantees a basic level of ex-
tensibility to new devices. The Base set for our 187 functions
consists of 2394 primitive sentences.

The Paraphrase set was generated by the Mechanical Turk
workers, as described in Section 4.1. The goal of the para-
phrase set is to provide coverage for filters and parameter
combinations, as well as learning the paraphrases of com-
pound commands. Our paraphrase set consists of 717 prim-
itive sentences and 3749 compound sentences.

The Author set was a small set of realistic commands writ-
ten by the authors of this paper to guide machine learning
towards useful programs. This also counterbalances the uni-
form sampling used in the Paraphrase set. This set consists
of 400 primitive sentences and 228 compound sentences.

Whenever Almond is not sure if it can understand the
natural language input, it returns multiple answers for the
users to pick from. Thus, to evaluate Almond, we measure
if the correct answer is among the top 1, 3, and 5 matches.

To provide a baseline for comparison, we measure how well
Almond can handle new unseen paraphrases. We collected
an additional test set of 1874 paraphrases, of which 301 are
primitive and 1573 are compound. As some of these sen-
tences map to the same code, the whole test suite contains
993 distinct ThingTalk programs.

The accuracy results for the paraphrase test set on our
trained parser is shown in Figure 10. Our parser obtains
a top 1 accuracy of 71%, top 3 of 88% and top 5 of 89%
for primitive sentences, and 51% at top 1, 61% at top 3
and 63% at top 5 for compound sentences. The parser per-
forms well for primitive sentences since the test sentences

2https://github.com/Stanford-Mobisocial-IoT-Lab

https://github.com/Stanford-Mobisocial-IoT-Lab

Prim. Comp. Prim. Comp. Prim. Comp.
0

20

40

60

80

100

Paraphrasing Scenarios Composition

Top 5
Top 3
Top 1

Figure 10: The accuracy of the natural language parser, on
our different testing sets.

have significant lexical overlap with the training sentences.
The compound commands are significantly harder to parse
since there are many more possible choices for parameter
compositions and values.

6.2 Scenario-Based Sentences
To gather a realistic test set, we create some real-life sce-

narios to inspire the Mechanical Turk workers to come up
with virtual assistant commands in their own words. First,
we provide workers with the context of the experiment by
showing them the cheat sheet. Next, we present them with
a scenario, describing one day in the life of a person, such as
a pet shop owner, an office worker, a dog walker, or restau-
rant manager. We ask them to envision that they are the
person in the scenario and to come up with a command that
would make their life easier. These scenario descriptions are
written in a way that does not bias the Mechanical Turk
workers towards words used in the cheat sheet.

Using this scenario method, we collected sentences that
are more natural but open-ended since the workers were not
given any sentences to paraphrase. We found that among
the 327 sentences obtained, 131 sentences are either unin-
telligible or irrelevant. Furthermore, 109 sentences refer to
operations outside the scope of the device APIs available.
Out-of-scope sentences will remain a problem for general-
purpose virtual assistants; we believe users will eventually
learn the capabilities of the virtual assistant through trial
and error. 16 of the sentences have the wrong format, such as
having strings that are not quoted; it may be possible in the
future to relax this constraint. In the end, we are left with
71 meaningful sentences, 35 primitive and 36 compound. We
manually translate these 71 sentences into their correspond-
ing ThingTalk programs. This illustrates how hard it is to
gather realistic training data for Almond.

The parser obtained a top 1 accuracy of 34%, top 3 of 54%
and top 5 of 65% on primitive sentences. On compound
sentences, it achieves a top 1 accuracy of 22%, top 3 of
31% and top 5 of 33%. The accuracy drops significantly
compared to the baseline accuracy obtained by testing with
paraphrases. This illustrates why it is inadequate to test the
parser on paraphrases and the need to obtain more organic

data for training. Our approach of providing a menu-driven
interface along with the natural language interface provides
a means to obtain more training data as time goes on.

6.3 Capable Users
In practice, we expect users to rely on menu-driven inter-

face until they learn what the virtual assistant can do and
adapt to its natural language capabilities. To approximate
the experience of a user familiar with the virtual assistant, in
our next experiment we first ask the workers to read through
the cheat sheet. We then remove the cheat sheet, and ask
them to pick two functions from their memory and combine
them in their own words to form a compound command. We
ask each worker to come up with five such sentences that use
different functions, assuming that he will remember less of
the exact wordings in the cheat sheet as he constructs more
sentences. Workers are not allowed to do this task more
than once.

In total, we collected 200 sentences, which we then anno-
tated with the corresponding programs manually whenever
possible. Of these 200 sentences, we found that 108 were out
of scope or unsupported. For the remaining 92 sentences,
mapping to 78 distinct programs, the parser obtained an
accuracy of 80% at top 1, 94% at top 3 and top 5 for prim-
itives, and 41% at top 1, 50% at top 3 and 53% at top 5
for compound commands. The results are also shown as the
composition experiment in Figure 10.

Although our parser is not accurate enough to satisfy an
end user today, it is nonetheless the first that can translate
any compound commands with complex parameters into ex-
ecutable code. The parser achieves a 40% accuracy despite
having no real user data; we are hopeful that better results
can be obtained as users experiment with our system and
generate more real data.

6.4 Language vs. Menu-Driven Interface
To understand if users prefer the natural language or the

menu-driven interface, we conducted a user study with 7
female and 6 male computer science students. Users in this
study are first given a description of how Almond works
and the when, get, do architecture. They are given 3 to
5 minutes to review the menu of possible functions as well
as a list of example commands. They are then shown a
list of fourteen scenarios (similar to the ones explained in
Section 6.2) and asked to choose three to come up with a
useful command for each. They are allowed to try a few
different sentences to get Almond to understand.

Almond translated 40% of the user input, including pa-
rameters, into correct ThingTalk programs. 24% of the in-
puts require capabilities outside the scope of Almond; 9%
the inputs cannot be understood because of missing quota-
tion marks, and for the remaining 27%, Almond got the
function right but did not identify the right parameters.
Notwithstanding that it is frustrating for users when they
try to issue unsupported commands, we observe that Al-
mond achieves a 60% accuracy for sentences that can be
understood.

Users find it easier to type what they want in English in-
stead of having to scroll through the menu to find the device
of interest. However, even though Almond asks the user to
confirm an action before it is taken, the confirmation sen-
tences are sometimes confusing and the user does not know
for sure if their natural language commands are fully under-

stood. Thus, they prefer to use natural language for “low
risk” situations such as setting reminders and notifications.
They prefer to use the menu-driven interface for “high risk”
commands, such as posting to social media or programming
their home security camera or locks.

7. RELATED WORK
Virtual Assistants. Virtual assistants have been de-

veloped for education [12], entertainment [11], and elder
care [16]. Each of these is domain specific though: a user
has to interact with a different assistant for each request.
Amazon’s Alexa is the only system that can interact with
third-party services through “skills” provided by the third-
parties themselves. The other commercial systems only re-
spond to a fixed number of queries defined by the company
that makes them.

In Alexa, commands are limited to the form “Tell/Ask
service name to ...”, with semantic parsing only for the “...”
part. The advantage of the fixed structure is that natural
language parsing only needs to recognize the intent among
a small set of service capabilities. The disadvantage is that
each command can involve only one service at a time and
there is no programmability.

IoT platforms. Dixon et al. [8] introduces HomeOS,
“an operating system for the home”. The goal of the project,
which has since been abandoned, was to build a collection of
interfaces to home automation smart devices. Unlike Thing-
pedia, HomeOS was not open source and did not allow open
contributions, limiting itself to the use case of research in
home automation.

Mayer et al. [19] make the interesting observation that
a rule or process based system is necessarily static, while
a home automation system should be dynamic. They pro-
pose a goal-oriented system based on an RDF model of the
different devices and an RDF solver to derive the right con-
nections.

On the commercial side, several companies have at-
tempted to build their own IoT stack, including Samsung
SmartThings [23], Google Weave [10] and Apple Home-
Kit [2]. These systems are vertically designed, together with
the virtual assistant and cloud stack, are closed and not in-
teroperable with each other.

Natural language parsing. The body of previous work
in semantic parsing is abundant [1, 7, 15, 30, 31]. Berant
et al. [4] introduce the SEMPRE framework as a question
answering system over the Freebase [6] database, and ex-
tend it by proposing the generation without alignment al-
gorithm [5]. Wang et al. [28] added the ability to build a
“semantic parser overnight”, and allowed extensions of SEM-
PRE to a new domain with minimal work.

Trigger-Action programming. The first notable at-
tempt to build a trigger-action programming system is
CAMP [25]. They include a limited “natural language” sys-
tem to describe the rules based on small sentence pieces that
are glued together in a visual way like fridge magnets.

More recently, IFTTT [14] is a website that lets the user
connect services in a pair-wise fashion, using a menu-driven
user interface. Ur et al. [26] did user testing by extending
IFTTT with filters, and found the trigger action metaphor
to be familiar to the users. Huang et al. [13] corroborates
their findings with an analysis of the pitfalls of trigger-action
programming, and investigate what triggers are understand-
able by humans.

Walch et al. [27] make the argument that while rules are
easy to understand, they are not appropriate in the home
automation domain because conditions become too complex.
They propose a process based system, and then use a graph-
ical user interface to configure the processes, but their user
testing does not show convincing results.

8. CONCLUSION
Virtual assistants are likely to revolutionize how we in-

teract with machines. Thus, major companies are vying to
become the dominant virtual assistant that sees all users’
data and intermediates all services. Almond is an attempt
to rally makers, developers, and users to contribute to cre-
ating the world’s first open and most general, interoperable
and powerful virtual assistant that encourages open compe-
tition and preserves user privacy.

This paper presents a fully functional prototype of Al-
mond. The key concepts presented include the open Thing-
pedia knowledge base, the open-source ThingSystem for
managing user data, the high-level ThingTalk language for
connecting devices, and finally a machine-learning based
translator that can convert natural language commands into
trigger-action code.

Almond, available on the Android play store, is the first
virtual assistant that can convert rules with parameters ex-
pressed in natural language into code. It has some basic
natural language understanding capability that is extensi-
ble to new devices added to Thingpedia. Based on just a
few sentences in the entry, Almond acquires training data
for such devices by generating trigger-action programs that
use these devices and crowdsources the corresponding para-
phrases.

With a combination of a language and menu-driven inter-
face, Almond is ready to be used by enthusiasts to automate
nontrivial tasks. Almond’s open and learning infrastructure
will hopefully attract enough contributions for it to grow to
serve a more general audience over time.

9. ACKNOWLEDGMENTS
The authors thank students who contributed the Thing-

pedia devices, and especially Yushi Wang, Sida Wang,
Panupong Pasupat and Prof. Percy Liang for their help
with SEMPRE. Support for this work was provided in part
by the Stanford MobiSocial Laboratory, sponsored by HTC
and Samsung, and a Siebel Scholar Fellowship for Giovanni
Campagna.

10. REFERENCES
[1] J. Andreas, A. Vlachos, and S. Clark. Semantic

parsing as machine translation. In ACL (2), pages
47–52, 2013.

[2] Apple HomeKit.
http://www.apple.com/ios/home.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,
R. Cyganiak, and Z. Ives. Dbpedia: A nucleus for a
web of open data. In The semantic web, pages
722–735. Springer, 2007.

[4] J. Berant, A. Chou, R. Frostig, and P. Liang.
Semantic parsing on freebase from question-answer
pairs. In EMNLP, volume 2, page 6, 2013.

[5] J. Berant and P. Liang. Semantic parsing via
paraphrasing. In Proceedings of the 52nd Annual

http://www.apple.com/ios/home

Meeting of the Association for Computational
Linguistics (ACL-14), pages 1415–1425, 2014.

[6] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: a collaboratively created graph
database for structuring human knowledge. In
Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 1247–1250.
ACM, 2008.

[7] D. L. Chen and R. J. Mooney. Learning to interpret
natural language navigation instructions from
observations. In AAAI, volume 2, pages 1–2, 2011.

[8] C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee,
S. Saroiu, and P. Bahl. An operating system for the
home. In Presented as part of the 9th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 12), pages 337–352, 2012.

[9] L. Dong and M. Lapata. Language to logical form
with neural attention. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (ACL-16), pages 33–34, 2016.

[10] Google Weave.
https://developers.google.com/weave.

[11] M. Gordon and C. Breazeal. Designing a virtual
assistant for in-car child entertainment. In Proceedings
of the 14th International Conference on Interaction
Design and Children, pages 359–362. ACM, 2015.

[12] P. H. Harvey, E. Currie, P. Daryanani, and J. C.
Augusto. Enhancing student support with a virtual
assistant. In International Conference on E-Learning,
E-Education, and Online Training, pages 101–109.
Springer, 2015.

[13] J. Huang and M. Cakmak. Supporting mental model
accuracy in trigger-action programming. In
Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing,
pages 215–225. ACM, 2015.

[14] If This Then That. http://ifttt.com.

[15] R. J. Kate, Y. W. Wong, and R. J. Mooney. Learning
to transform natural to formal languages. In
Proceedings of the National Conference on Artificial
Intelligence, volume 20, page 1062, 2005.

[16] P. Kenny, T. Parsons, J. Gratch, and A. Rizzo.
Virtual humans for assisted health care. In Proceedings
of the 1st international conference on PErvasive
Technologies Related to Assistive Environments,
page 6. ACM, 2008.

[17] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin,
T. H. Pringle, A. M. Zahler, and D. Haussler. The
human genome browser at UCSC. Genome research,
12(6):996–1006, 2002.

[18] C. Liu, X. Chen, E. C. Shin, M. Chen, and D. Song.
Latent attention for if-then program synthesis. In
Advances in Neural Information Processing Systems,
pages 4574–4582, 2016.

[19] S. Mayer, N. Inhelder, R. Verborgh, R. Van de Walle,
and F. Mattern. Configuration of smart environments
made simple: Combining visual modeling with
semantic metadata and reasoning. In Internet of
Things (IOT), 2014 International Conference on the,
pages 61–66. IEEE, 2014.

[20] Nest. https://developer.nest.com.

[21] P. Pasupat and P. Liang. Compositional semantic
parsing on semi-structured tables. In Proceedings of
the 53nd Annual Meeting of the Association for
Computational Linguistics (ACL-15), pages
1470–1480, 2015.

[22] C. Quirk, R. Mooney, and M. Galley. Language to
code: Learning semantic parsers for if-this-then-that
recipes. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics
(ACL-15), pages 878–888, 2015.

[23] Samsung SmartThings.
http://www.smartthings.com.

[24] Sportradar. http://sportradar.us.

[25] K. N. Truong, E. M. Huang, and G. D. Abowd. Camp:
A magnetic poetry interface for end-user programming
of capture applications for the home. In International
Conference on Ubiquitous Computing, pages 143–160.
Springer, 2004.

[26] B. Ur, E. McManus, M. Pak Yong Ho, and M. L.
Littman. Practical trigger-action programming in the
smart home. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages
803–812. ACM, 2014.

[27] M. Walch, M. Rietzler, J. Greim, F. Schaub,
B. Wiedersheim, and M. Weber. homeblox: making
home automation usable. In Proceedings of the 2013
ACM conference on Pervasive and ubiquitous
computing adjunct publication, pages 295–298. ACM,
2013.

[28] Y. Wang, J. Berant, and P. Liang. Building a semantic
parser overnight. In Proceedings of the 53rd Annual
Meeting of the Association for Computational
Linguistics (ACL-15), pages 1332–1342, 2015.

[29] E. Weisstein et al. Wolfram mathworld, 2007.

[30] C. Xiao, M. Dymetman, and C. Gardent.
Sequence-based structured prediction for semantic
parsing. Proceedings Association For Computational
Linguistics, Berlin, pages 1341–1350, 2016.

[31] L. S. Zettlemoyer and M. Collins. Learning to map
sentences to logical form: structured classification
with probabilistic categorial grammars. In Proceedings
of the Twenty-First Conference on Uncertainty in
Artificial Intelligence, pages 658–666. AUAI Press,
2005.

https://developers.google.com/weave
http://ifttt.com
https://developer.nest.com
http://www.smartthings.com
http://sportradar.us

	Introduction
	Why Open & Crowdsourced?
	Contributions
	Paper Organization

	Almond Virtual Assistant
	Generality
	Expressiveness
	User Interface
	Use Case Scenarios

	System architecture
	Thingpedia
	ThingTalk
	ThingSystem

	Language to code
	Training Data Acquisition
	Machine Learning Algorithm

	Crowdsourcing Thingpedia
	Virtual Assistant Experiment
	Training Almond
	Scenario-Based Sentences
	Capable Users
	Language vs. Menu-Driven Interface

	Related Work
	Conclusion
	Acknowledgments
	References

