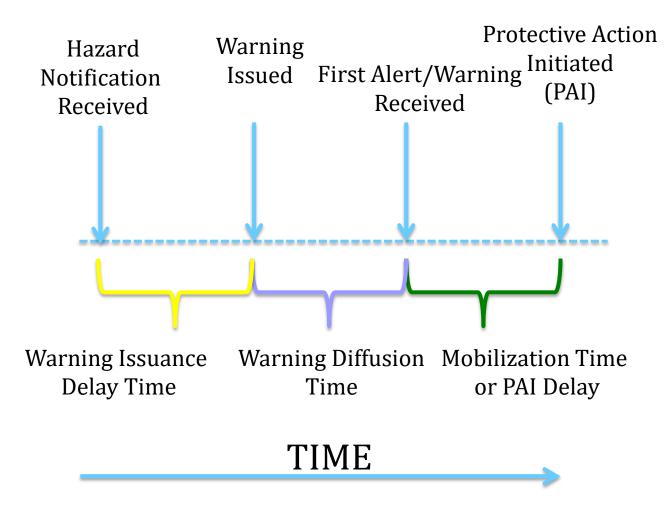
MODELLING WARNING HUMAN BEHAVIOR

For Use with Engineering Life Loss Estimation Models in Dam and Levee Emergencies

> Dennis S. Mileti, Ph.D. Professor Emeritus University of Colorado Boulder

Presented to Stanford University Risk Symposium 24 May 2017


WARNING BEHAVIOR

Public alerts and warnings involve the behavior of people who

Detect threat Scientists & engineers Manage/communicate threat to the public Emergency managers Take protective actions Members of diverse publics

Social scientists study all of them

TIME SEQUENCE CHART

OBJECTIVES

Integrate social science & engineering for USACE to

Estimate of human behavior for life loss estimation

To develop methods & procedures

To measure/classify local community behavior time estimates for warning issuance, diffusion & PAI for Dam breaches & controlled releases Levee breaches or overtopping

Prepare a local community guidebook

APPROACH

Synthesis of hazards research literature

Behavior & timing of actions - officials and public Factors that influence warning behavior the same across hazards

Prepare influence factors catalogues

For issuance, diffusion & PAI Include factor's relative influence weights

Interview questions for community measurement

Pre-tested, revised, pre-tested again

Measure synthesis for classifying communities

Likely future issuance, diffusion & PAI delay

External review & revision as needed

ALL HAZARDS OBSERVATION

Hazard types differ regarding

Physical propertiesAlert & warning lead timesAppropriate public protective action(s)


Human warning behavior predictors

Are the *same* across hazard types Because people stay people Apply to dam & levee warning events

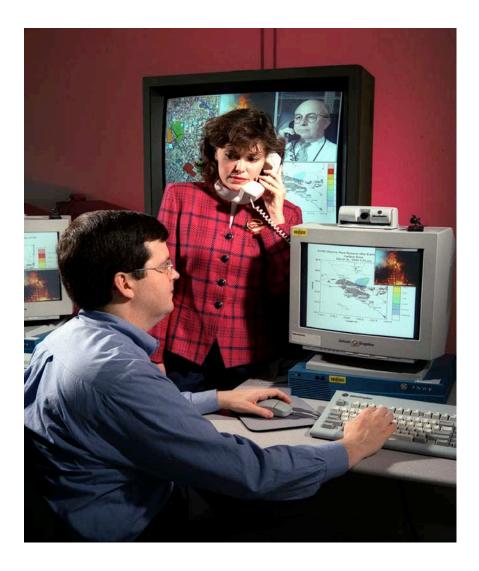
CURVE DEVELOPMENT FOR ISSUANCE, DIFFISUION & PAI

- Reviewed quantitative research findings on warning timing/delay for all 3 stages
- Identified data from empirical studies
 Point observations
 Distributions
 - **Developed model equations**
- Fitted equations to historical events
 - Developed parameters for planning curves

WHAT QUANTITATIVE SOCIAL SCIENCE DATA LOOKS LIKE

MODEL ESTIMATES

Endogenous Variable*	Beta	Estimate	SE	R ²
X ₄ Knowledge	β ₄₁	.22	.02	.22
	β ₄₂	.27	.01	
	β_{43}	.10	.02	
X ₅ Perceived Effectiveness	β_{51}	.12	.02	.06
	β_{53}	.18	.02	
X ₆ Milling	β ₆₁	.14	.04	.27
	β ₆₂	.22	.03	
	β_{63}	.08	.04	
	β_{64}	.24	.06	
X ₇ Preparedness Actions Taken	β ₇₁	.17	.02	.38
	β ₇₃	.33	.02	
	β ₇₄	.14	.03	
	β_{75}	.18	.02	
	β ₇₆	.09	.01	


Robust Maximum Likelihood Estimation

Satorra-Bentler χ^2 = 8.58, df = 4, p = .07; CFI = .998; RMSEA = .020, 90% CI (.000 - .039)

All paths and equations significant at p < .001; N = 2,811

 X_1 = content of information received, X_2 =density of information received, and X_3 =information observed

WARNING ISSUANCE DELAY

PROCESS & DEFINITIONS

Warning issuance is both

<u>Formal</u>: from the official system <u>Informal</u>: from friends & relatives

Formal warnings across communities

Warning point is diverse Decision process to issue warning varies Definition of issuance "time" differs

RESEARCH BASED FACTORS THAT REDUCE WARNING ISSUANCE DELAY

PLANS & PROCEDURES

	<u>RANK</u>	<u>WEIGHT</u>
Written Warning Plan	HIGH	.2025
Written Standard Operating Procedures (SOPs)	HIGH	.2530
Warning Thresholds In Place	HIGH	.1520
Succession Planning Detailed in SOPs	LOW	.0105
Warning Responsibilities Identified	MEDIUM	.1015
Clearly Defined Authority To Issue Warnings	MEDIUM	.1015
Interagency Communication Rules/Procedures	HIGH	.1117
Two-Way Communication Among Organizations	LOW	.0105
Threat Verification Procedures Defined	LOW	.0103

PERFORMANCE & INTER-PERSONAL RELATIONS

	<u>RANK</u>	<u>WEIGHT</u>
SOP Practice Is Conducted (Drills or Exercises)	MEDIUM	.1316
Knowledge Of Communicating Personnel	LOW	.0103
Frequency Of Interaction	LOW	.0103
Ability To Improvise	LOW	.0204

SYSTEM PERFORMANCE FACTORS

Failsafe Communication Mechanisms In Place	LOW	.0607
Redundancies In Communications In Place	LOW	.0607

SITUATIONAL FACTORS

	<u>RANK</u>	<u>WEIGHT</u>
Day Or Night	MEDIUM	.1013
Power Availability (Electricity)	LOW	.0103
Damage To Infrastructure	LOW	.0103
Environmental Cues	LOW	.0103
Time To Impact	MEDIUM	.0509
Number Of People Involved	MEDIUM	.1216
Experience of Community	LOW	.0204

LINKS TO INTERVIEW SCHEDULE 15 ISSUANCE QUESTIONS (Example: Responsibilities Identified)

Q 8. Is a particular person or position responsible for getting a first alert or warning out to the public? YES/NO

(IF YES) What is their name and title?

Do they have legal authority to do so? YES/NO

(IF NO) What is the name and title of who does? _____

Is the responsible person or position written down? YES/NO

(IF YES) Where? _____

COMMUNITY CLASSIFICATION (warning issuance delay)

Formalization Of Planning And Implementation Procedures

Standard Warning Plan Is Written Down Standard Operating Procedures (SOP) Are Written Down Warning Thresholds Are In Place (Matrix) Succession Planning Is Detailed Within SOPS Responsibilities Are Identified Clearly Defined Authority To Issue Warnings Interagency Communication Follows Rules And Procedures There Is Two-Way Communication Among Organizations Threat Verification Procedures Are Defined

Performance And Interpersonal Relations

SOP Practice Is Conducted (Drills or Exercises) Personal Knowledge Of Communicating Personnel Frequency Of Interaction Ability To Improvise

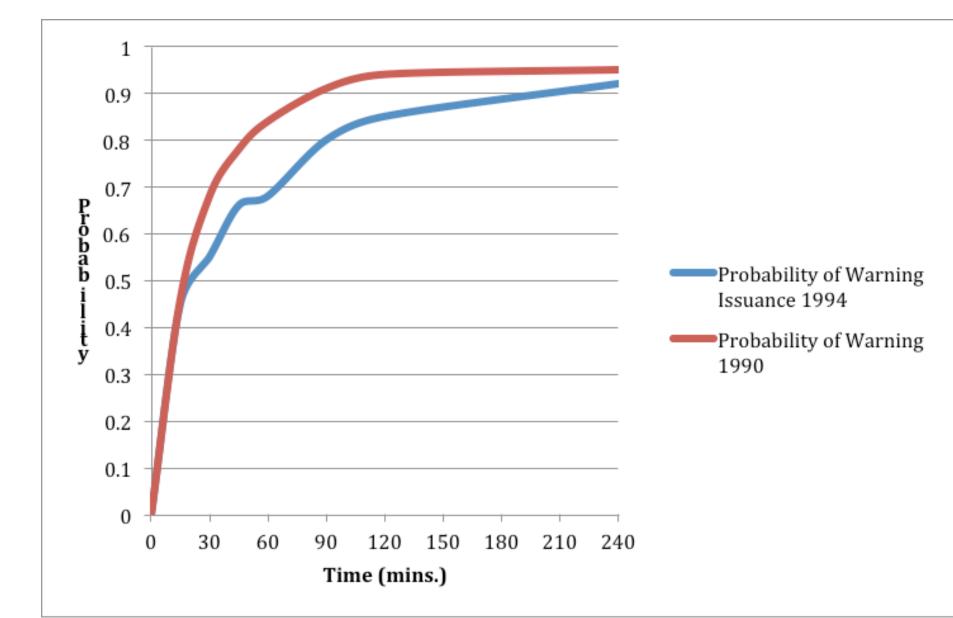
System Performance Factors

Redundancies In Communications Are In Place

Situational Factors

Day Or Night Power Availability (Electricity) Damage To Infrastructure Time To Impact Number Of People Involved Experience of Community

QUESTION/RULE

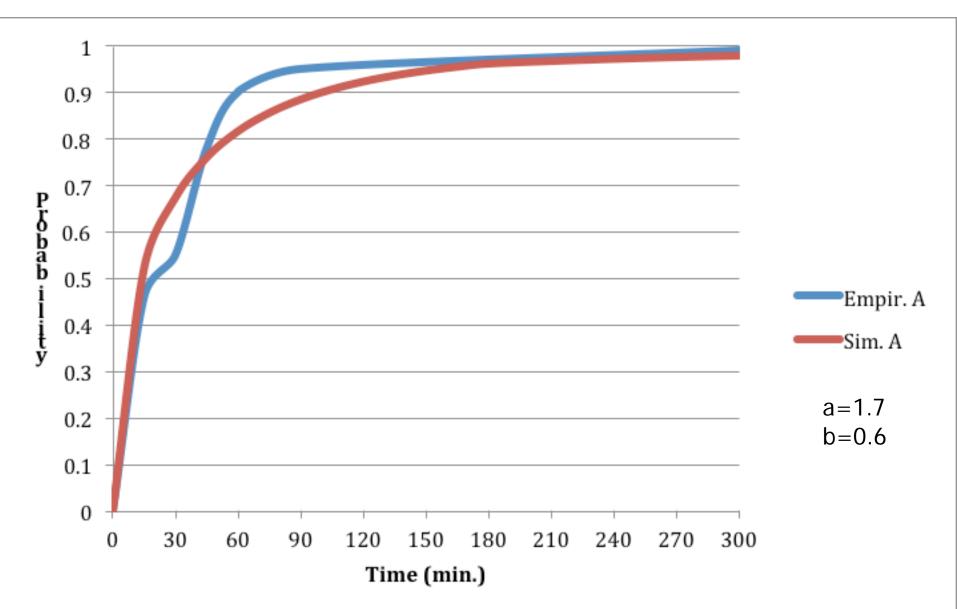

4, 6 (if either is yes)
5, 7 (if either is yes)
11 (if yes)
9 (if yes)
8 (if yes)
8-2nd sub (if yes)
14 -3rd sub (if written down)
15 (if yes)
13-sub (if written down)

21 (if yes) 17 (if yes) 17 (if 4 times/year+) 18 (if yes)

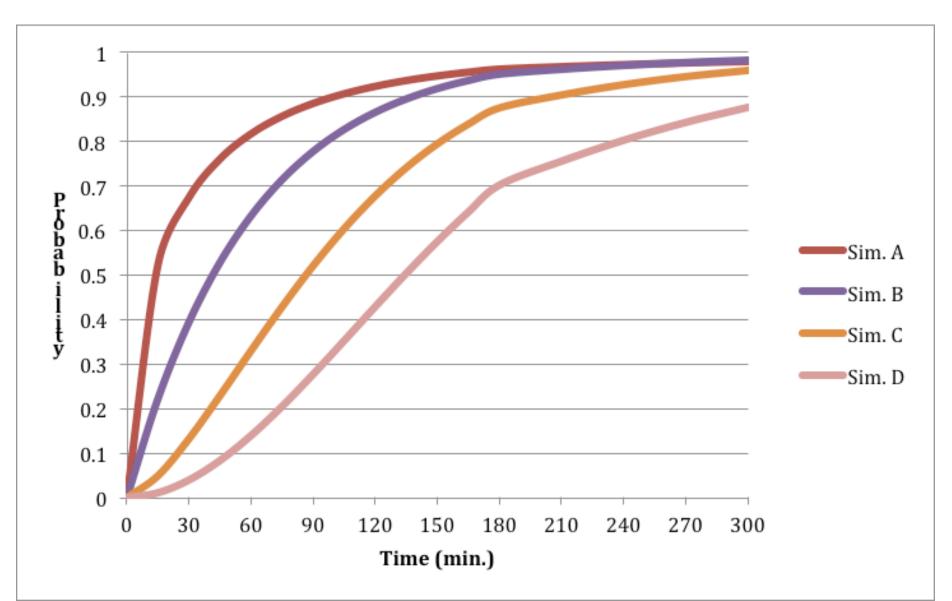
16 (if yes)

10 (if yes) 16-2nd sub (if yes) 16-3rd sub (if yes) 19 (if yes) 20 (if 3 or less) 48 (if yes)

HISTORICAL ISSUANCE TIMES



MODELING WARNING ISSUANCE


- $P_t = 1 exp(-at^b)$
- t = time
- a and b are constants

 fit simulated curves to empirically derived curves

COMPARISON

ISSUANCE PLANNING CURVES

MORE DETAILS IN

Sorensen, J., and D. Mileti (2014a). *First Alert* and/or Warning Issuance Time Estimation for Dam Breaches, Controlled Dam Releases, and Levee Breaches of Overtopping. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Risk Management Center.

WARNING DIFFUSION DELAY

PROCESS & DEFINITIONS

- Direct warning (broadcast)
- Informal warning (contagion)
- Alert vs. notification
- First vs. multiple warnings
- Targeted vs. non-targeted warnings

RESEARCH BASED FACTORS THAT INFLUENCE DIFFUSION TIME

SENDING THE 1st ALERT/WARNING

	<u>RANK</u>	<u>WEIGHT</u>
Channels: Types Of Technologies	HIGH	.1720
Channels: Disruption To Infrastructure	LOW	.0005
Channels: Number & Mix Of Channels	HIGH	.2530
Frequency Of Distribution	HIGH	.2126
Informal Notification	MOD.	.1013
Environmental and Social Cues	LOW	.0105

RECEIVING THE 1st ALERT/WARNING

	<u>RANK</u>	<u>WEIGHT</u>
Activity – Task	MODERATE	.1016
Activity - Location And Proximity To The Hazard	MODERATE	.1218
Activity - Time Of Day	HIGH	.0525*
Impediments - Sensory (Hearing, Visual)	MODERATE	.0813
Impediments – Cognitive	LOW	.0102
Impediments - Linguistic And Cultural	LOW	.0306
Resources - Access To Technology	MODERATE	.0512
Social Media Participation	LOW	.0102
Socio-Economic Status	MODERATE	.0712

*NOTE: Weights should not to be used in assigning curves since separate curves exist.

LINKS TO INTERVIEW SCHEDULE 14 DIFFUSION QUESTIONS (Example: Message Consistency)

Q 28. Do you have ways to monitor what others might be telling the public to find rumors and incorrect information? YES/NO

(IF YES) How would that be done? _____

If rumors or incorrect information were detected, would

you issue subsequent messages to correct for

misinformation? YES/NO

(IF YES) How would it be done? _____

COMMUNITY CLASSIFICATION (Warning Diffusion Delay)

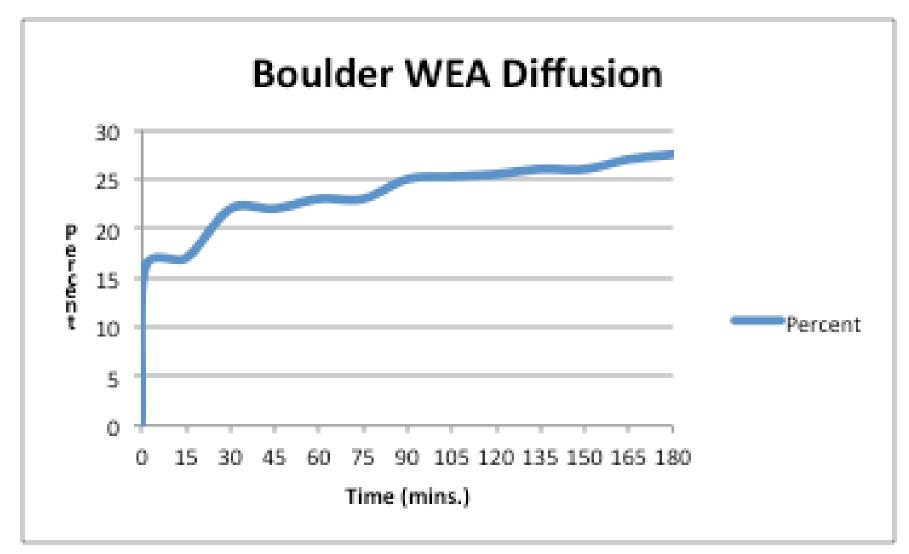
Sending The First Alert/Warning

Channels - Types Of Technologies Channels - Disruption To Infrastructure Channels - Number And Mix Of Channels Frequency Of Distribution Informal Notification

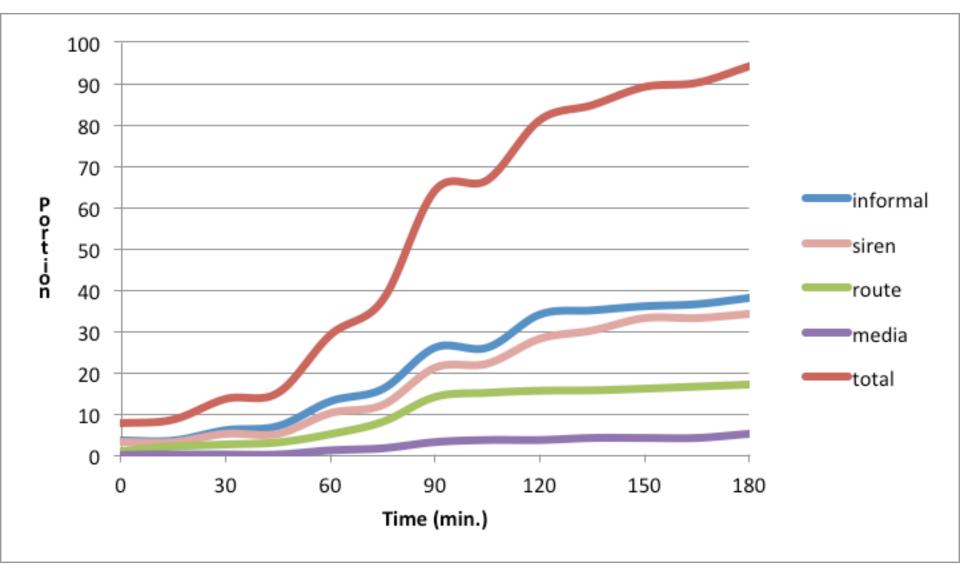
Receiving The First Alert/Warning

Activity – Task Activity – Location & Proximity To The Hazard Activity - Time Of Day Impediments - Sensory (Hearing, Visual) Age Impediments - Linguistic And Cultural Resources - Access To Technology Social Media Participation Socio-Economic Status

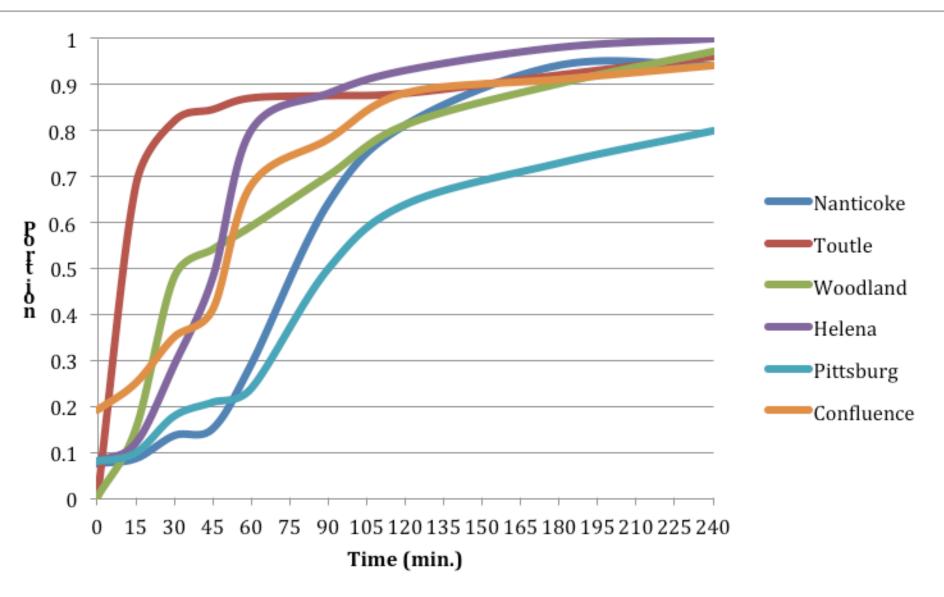
QUESTION/RULE


2 (if 2 or more of a certain type)
35 (if yes)
22 (if 5 or more)
25 (if yes)
27 (if yes)

29 (if yes - any special warning)
30 (if yes)
31 (if yes)*
32, 33 (if yes to either)
52 (if yes)
34 (if yes)
24 (if any of special type)
24 (if 50% or more)
53,54,55,57 (if none are yes)

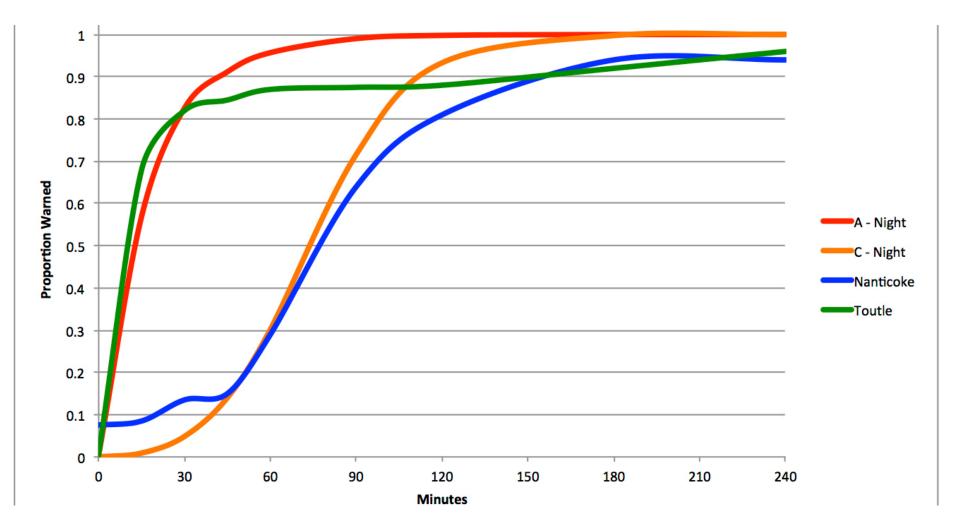

*NOTE: Weights should not to be used in assigning curves since separate curves exist.

WHAT DOES RAPID VS. SLOW DIFFUSION LOOK LIKE?

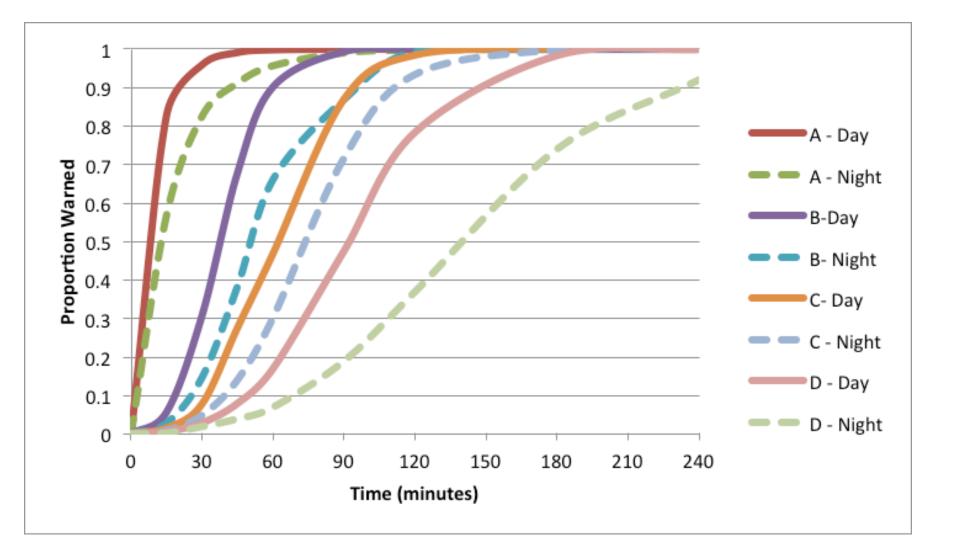

RAPID DIFFUSION Boulder (9/2013) CO Flood

SLOW DIFFUSION: Nanticoke, PA

HISTORIC DIFFUSION DATA



MODELING WARNING DIFFUSION


$\square \Delta W / \Delta t = PUt^* (Bt + Ct - Bt^* Ct)$

- Where:
- W = Alerted population
- t = time
- $\Delta W \Delta t$ = the rate of population being alerted per time step
- *PUt*=The population unwarned for time step t
- *Bt* = the effectiveness of the broadcast systems in time step t
- *Ct* = the effectiveness of the indirect warning in time step t

COMPARING SIMULATED AND EMPIRICAL

DIFFUSION CURVES

MORE DETAILS IN

Sorensen, J., and D. Mileti (2014b). *First Alert and* <u>*Warning Diffusion Time Estimation for Dam*</u> <u>*Breaches, Controlled Dam Releases, and Levee*</u> <u>*Breaches of Overtopping*</u>. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Risk Management Center.

PAI DELAY

PROCESS & DEFINITIONS

- Choice of actions
- When does initiation begin
- Area warned versus at risk
- What is compliance?

RESEARCH BASED FACTORS THAT INFLUENCE PAI TIME

MESSAGE CHARACTERISTICS

	<u>RANK</u>	<u>WEIGHT</u>
Appropriate Content	HIGH	.2530
Style	HIGH	.1722
Message Length Adequacy	MODERATE	.1216
Personal Channel	HIGH	.1318
Delivery (Frequency)	HIGH	.1215
Protective Action Type	MODERATE	.0510*

* NOTE: Not to be used in estimating vertical evacuation since separate curves exist

RECEIVER CHARACTERISTICS

	<u>RANK</u>	<u>WEIGHT</u>
Status Attributes	MODERATE	.0110
Role Characteristics	HIGH	.1017
Personal Preparedness	LOW	.0102
Pre Event Knowledge	LOW	.0102
Experience	MODERATE	.0114
Member Isolated Group	MODERATE	.0111

CONTEXT CHARACTERISTICS

Environmental Cues HIGH .05	28
Social Cues MODERATE .05	13
Location/Activity MODERATE .05	15
Day Versus Night LOW .01	05
Time To ImpactHIGH.10	17
Impact Intensity HIGH .10	17

LINKS TO INTERVIEW SCHEDULE 11 PAI QUESTIONS (Example: Guidance & Consequence Reduction)

Q 39. Would you recommend in alerts, warnings and press releases that the public take specific protective actions, for example, evacuate, move vertically, or check local media? YES/NO

Q 40. Would the alerts, warnings and emergency press releases you issue tell the public about any of the following?

The consequences of the flood and why taking the recommended

protective action(s) would reduce them? YES/NO

(IF YES) What would alerts and warnings say? _____

What would press releases say? _____

COMMUNITY CLASSIFICATION

(Protective Action Initiation Delay)

Message Characteristics

Appropriate Content Style Message Length Adequacy Personal Channel

Receiver Characteristics

Status Attributes Role Characteristics Personal Preparedness/Planning Pre Event Knowledge Experience Membership In A Socially Isolated Group

Context Characteristics

Environmental Cues Location/Activity Day Versus Night Time To Impact

QUESTION/RULE

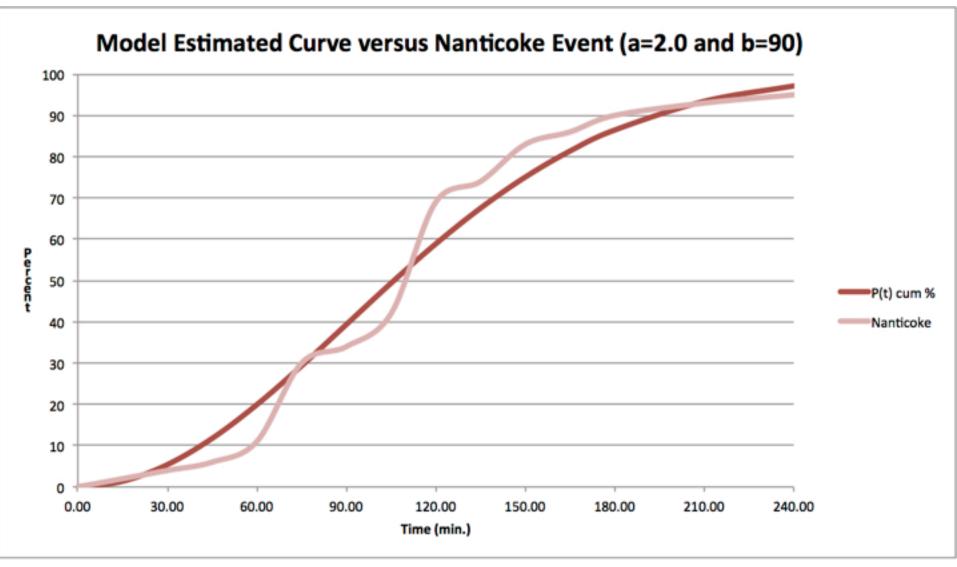
38,39,40a,40b,40c (if yes to 39 & 2 others) 41a,41b,44,28 (if yes to 2 or more) 38,39,40a,40b,40c,40d,40e,49f,40g (if yes to 5+) 22 (if yes to any of a special type)

53,54,55,57 (if none is yes) 40e,40f (if yes to either) 46 (if yes) 46 (if yes) 48 (if yes) 58 (if yes)

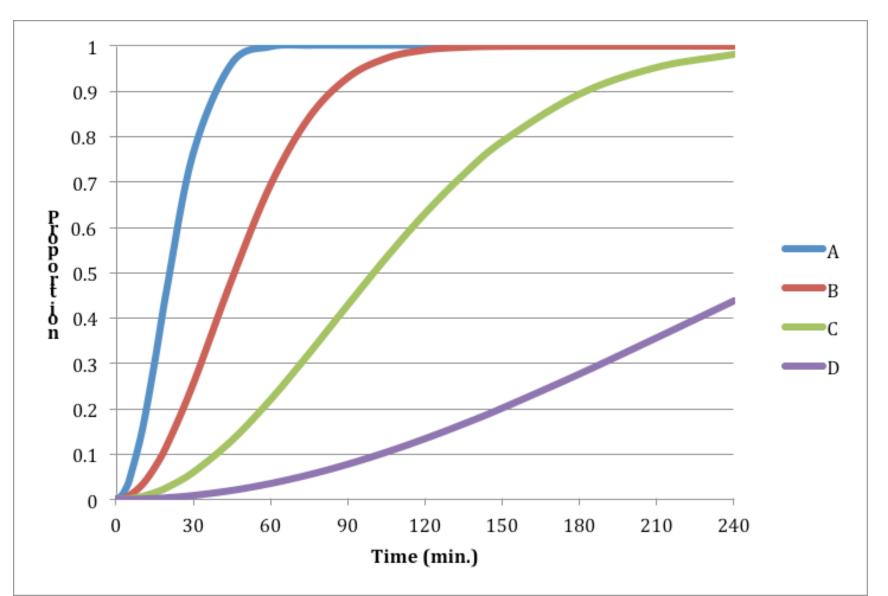
40g (if yes) 29 (if yes to 1 or more) 31 (if yes) 43 (if yes)

EVACUATION COMPLIANCE (% warned)

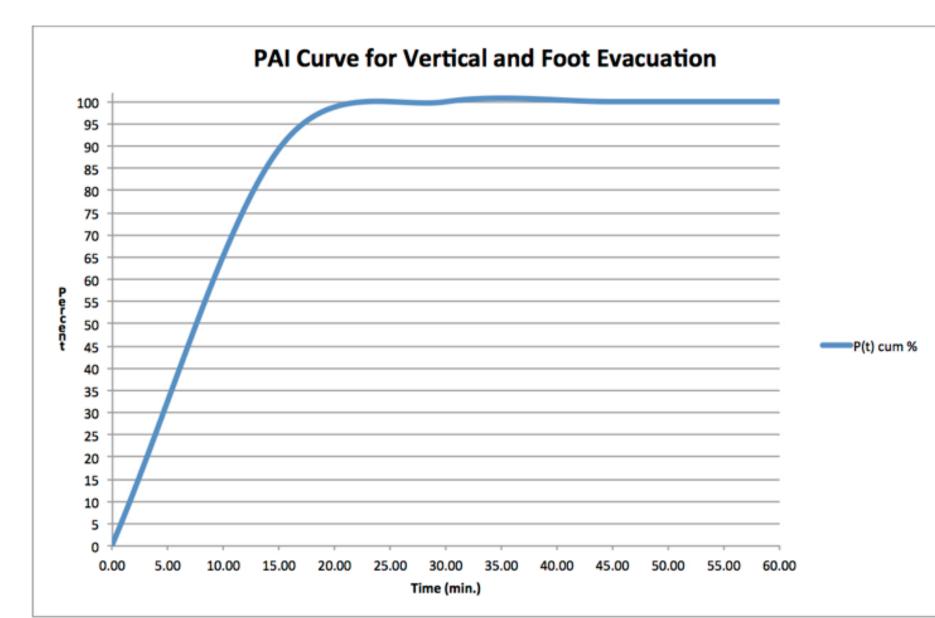
Table 6. Estimated compliance rates for dam breaches and levee flooding. (Based on Lindell and Prater, 2007 and Cutter et. al., 2011)

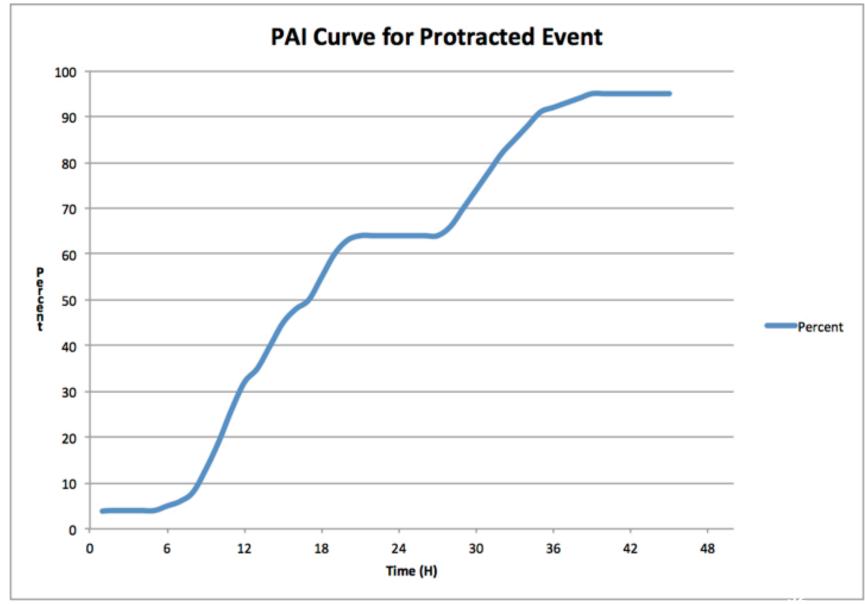

Zone	Event Intensity		
	Minor	Moderate	Major
Flood Area: Short Response Time	51-59	81-89	94-100
Flood Area: Long Response Time	28-34	70-76	83-89
Adjacent Zones	10-16	32-38	65-71

MODELING PROTECTIVE ACTION INITIATION


$$P_t = 1 - e^{[-(t^2)/ab^2]}$$

- t is time
- a and b constants
 - a: acceleration
 - b: overall timing (midpoint)


COMPARISION


PAI PLANNING CURVES

PAI PLANNING CURVES

PAI PLANNING CURVES

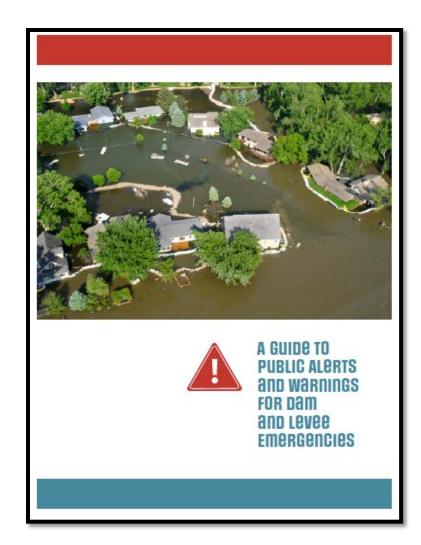
MORE DETAILS IN

Sorensen, J., and D. Mileti (2014c). <u>Protective</u> <u>Action Initiation Time Estimation for Dam Breaches,</u> <u>Controlled Dam Releases, and Levee Breaches of</u> <u>Overtopping</u>. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Risk Management Center.

BRINGING IT TOGETHER FOR LIFE LOSS ESTIMATION

RESEARCH FINDINGS, CURVES INTERVIEWS, LIFE LOSS ESTIMATES

58 interview questions


- **15 Issuance questions**
- **14 Diffusion question**
- **11 Protective action initiation questions**
- 18 Other questions (local threat type & more)

 USACE will use the rules we developed to combine question answers to assign issuance, diffusion and PAI curves to communities to estimate future life loss

MORE DETIALS IN

- Mileti, D., and J. Sorensen. (2015d). <u>Interview Schedule:</u> <u>Community Warning Issuance, Diffusion, and Protective</u> <u>Action Initiation Estimation</u>. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Risk Management Center.
- Sorensen, J., and D. Mileti (2015e). <u>Influence Weights and</u> <u>Measures for the Factors Shaping First Alert/Warning Delay,</u> <u>Diffusion and Protective Action Initiation Curves for Dam</u> <u>Breaches, Controlled Dam Releases, and Levee Breaches or</u> <u>Overtopping</u>. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Risk Management Center.

COMMUNITY PLANNING GUIDEBOOK

GUIDEBOOK PURPOSE

- Prepare a guidebook based on synthesized empirical social science quantitative evidence
- Provide emergency managers with practical ways to enhance future public alert & warning practices that could Reduce issuance time delay Minimize diffusion time Accelerate protective action initiation

GUIDEBOOK SYNTHESIS

How to minimize issuance delay Written plan beforehand & what should be in it

How to accelerate diffusion

Disseminate over mix of channels/technology

How to reduce PA initiation

Warning messages based on repetitive social behavioral science empirical evidence

MORE DETAILS IN

Mileti, Dennis. S., and John H. Sorensen (2015f). <u>A</u> <u>Guide to Public Alerts and Warnings for Dam</u> <u>and</u> <u>Levee Emergencies</u>. Davis CA: U.S. Army Corps of Engineers Risk Management Center.

Download at:

http://silverjackets.nfrmp.us/Portals/0/doc/WarningGuidebo ok_USACE.pdf?ver=2015-08-10-213008-520

OROVILLE DAM EVENT

New flood events research

Warning & evacuation provide first study case to update curves for life loss estimation

To generate

New data for new issuance, diffusion and PAI curves that capture the influence of new warning system types & technologies, e.g., wireless alerts & warnings, social media, etc.

THANK YOU