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Abstract

National governments can only tax the economic activity they either directly
observe or that is reported by municipal authorities. In this paper we investigate
how illegal mining, a very common phenomenon in Colombia, changed with a tax
reform that reduced the share of revenue transferred back to mining municipalities.
To overcome the challenge of measuring illegal activity, we construct a novel dataset
using machine learning predictions on satellite imagery features. Theoretically we
expect illegal mining to increase because the amount required to bribe the local
authority is smaller after the reform. Using a difference-in-differences strategy, with
Peru as the control, we find that illegal mining increased by 4.47 percentage points
as share of the mining area. In addition, we provide suggestive evidence that il-
legal mines have more harmful health effects on the surrounding population than
legal mines. These results illustrate unintended effects of tax revenue redistribution.
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1 Introduction

There is a growing trend in developing countries towards decentralizing spending. How-

ever, the tax revenue sources remain unchanged. The share of tax revenue transferred

back for the locality where the economic activity is located could affect the incentives of

local authorities to curb tax evasion. In this paper, we document that a reduction in the

share of mining royalties transferred back to the mining municipalities in Colombia led

to an increase in illegal mining. Although tax evasion might not have a welfare costs if it

is just a transfer of resources, we show that illegal mining causes worse health outcomes

for newborn children.

Illegal mining is very common around the world: The origin of the minerals used in

their supply chain could not be identified by 67% of the companies in the United States

(GAO, 2016). Illegal mining has both environmental and fiscal impacts for host countries.

On the environmental side, illegal mining is associated with greater levels of pollution

(TGIATOC, 2016). On the fiscal side, illegal mines typically evade taxes.

Throughout the literature on illegal activity, the main challenge is measuring its extent

(Banerjee, Mullainathan, & Hanna, 2012). To overcome this obstacle, we construct a

novel dataset using machine learning predictions on satellite imagery features to detect

illegal mining activity. We measure illegal mining following the definition of Colombia’s

national government as “mining activity without a mining title registered with the Na-

tional Mining Registry” (Ministerio de Minas y Energia, 2003, p. 108). We predict mining

activity using the satellite images, and assess its legality with the map of legal titles pro-

duced by the National Government. Not holding a mining title is highly correlated with

evading royalty taxes.1

In order to study how evasion responds to the share of taxes transferred back to the local

municipality, we exploit a reform that changed the formula for tax revenue distribution.

The reform sharply reduced the share of taxes transferred back to the municipality where

the mine is located, while the remaining revenue is distributed among all municipalities

according to socioeconomic indicators. The reform altered the income local authorities

receive from legal mining and consequently their incentives to monitor miners’ compliance

with national regulations.

119% of mines without a title report paying royalty taxes on production. This will be discussed further
in the context section.
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We formalize our intuition regarding how incentives for local authorities are affected by

the reform with a simple theoretical framework in which a miner decides whether to op-

erate legally or illegally. The local authority observes mining activity in its municipality.

Therefore to operate illegally, the miner pays a bribe determined by bargaining with the

local authority. The reform does not affect the cost of operating legally. However, since

the reform causes the municipality to receive less of the tax revenue paid by legal miners,

it changes the payout for the local authority if the mine is in compliance with regulations.

Consequently the bribe a miner would pay to operate illegally is smaller after the reform,

and therefore mines are more likely to operate illegally. We also predict that this effect of

the reform is amplified in areas of the country where the national government’s presence

is weak. The model delivers two main predictions: (i) illegal mining increases after the

reform; (ii) this effect is greater in municipalities where the national government’s pres-

ence is weak.

To conduct this study, we need to obtain a precise observation of the mined area that is

not registered with the national government. To this end, we first apply machine learn-

ing algorithms to satellite imagery to detect the presence of mining activity. We train a

prediction model using the geographical location of legal and illegal mines reported in the

2010 Mining Census. Specifically, we calibrate a random forest model using the informa-

tion from different layers of Landsat satellite images to predict whether each 30x30m pixel

of the country is being mined. We split the sample, allocating 75% of the observations

for training (learning) and 25% for testing. The model is accurate: For every 100 pixels

it labels as mined, 79% are actually mined according to the testing sub-sample. We

use this model to predict which pixels were mined, year by year, for the period 2004 to

2014. Finally we check whether the pixels predicted as mined are inside the boundaries of

legal titles registered with the National Government. The predicted mined area outside

active mining titles enables us to identify illegally mined areas. We also apply the mining

prediction model to the neighbor country of Peru to estimate the effect of the reform in

a difference-in-differences framework.

The simple difference (event study) and the difference-in-differences estimates suggest

that the reform, which took place amidst a mining boom, increased the share of the total

mined area that is mined illegally. The challenge of using time variation is that other

events affecting illegal mining happened at the same time as the reform. In our case:

The system to register legal titles was closed at the time of the reform and there was an

increase on the stringency of prosecution. In order to address the first concern, we define
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illegal mining as activity outside the legal titles at the end of the study period. That is,

if a miner could not register the title while the office was closed it will not count as illegal

mining. The second event was a change in the law that allow destruction of illegal mining

machinery on site, instead of being confiscated and processed in court. This law applies

both in Colombia and Peru, and probably deters illegal activity. Consequently our event

study coefficient will be underestimating the effect of the reform.

We find that after the reform, illegal mining as share of the mined area increased in

Colombia by 1.63 percentage points. As predicted in the theoretical framework, the ef-

fect of the reform is greater in municipalities where the national government’s presence is

weak. Besides changing the share of local royalties kept locally, the reform also changed

the size of the local budget: Some “gained” from the reform (they received more from

the redistribution than what they lost in local royalties) and some “lost” with the re-

form. Theoretically, the relationship between municipal budget size and illegal mining is

ambiguous: Mayors with smaller budgets may have less incentives to curb illegal mining

because they can appropriate less public resources. Comparing the effects of the reform

on “loser” municipalities with respect to that of “winner” municipalities, we find evidence

that illegal mining increases more when the local budget shrinks. Our results indicate

that a 10-percentage-point decrease in the budget is associated with an additional 0.7 -

percentage-point increase in the share of total mined area that is mined illegally. In order

to alleviate concerns that “winner” and “loser” municipalities are inherently different, we

exploit a sharp poverty cutoff for the lump sum transfer after the reform.

These results are economically significant. We estimate that approximately USD 45-138

million in potential government revenue was lost as a result of the increase of illegal mining

with the reform. This is equivalent to 7-21% of the USD 660 million in mining royalties

in 2015. These results illustrate the importance of thinking beyond efficient spending to

avoid perverse incentives when redistributing resources.

It is possible that, besides evasion on area mined, there is also evasion on the quantity

reported for royalties taxes by legal mines. However, we do not find an effect of the re-

form, be it overall or specifically for “losers”, on the reported production of legal mines

in Colombia. In other words, evasion through under-reporting of production does not

seem to be a margin of adjustment after the reform. Since it is more difficult for local

authorities to observe production than mining area, it is not surprising that the latter

responds more to the reform.
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Besides the lost tax revenue, illegal mining could have differential environmental impacts

for two main reasons. First, given that the machinery of illegal mines would be destroyed

if found, illegal mines may have less efficient machinery. This machinery requires using

more variable inputs that potentially pollute the environment to a greater degree. Second,

legal mines have to present an environmental management plan. To test this hypothesis

we study the effect of legal and illegal gold mines on newborns’ health, using the data on

mines we detected. We instrument the presence of illegal mines with the heterogeneous

effect of the reform. We find evidence that, as predicted, babies born downstream from

illegal mines have a lower probability of being born with high APGAR (an indicator of

good health).

Related Literature

To the best of our knowledge, this is the first paper that quantifies the response of tax

evasion to the formula that distributes the tax revenue across municipalities. Cai and

Treisman (2004) provide examples of cases where regional governments help firms evade

national taxes and regulations. A closely related paper by Khan, Khwaja, and Olken

(2016) presents experimental evidence that performance pay for tax collection increased

both tax revenue and reported bribes. Although local authorities in our context are not

direct “tax collectors”, the royalties reform reduces their incentives to monitor the legality

of mines. We also contribute to the developing body of literature on natural resources

and political economy. Similar to Burgess, Hansen, Olken, Potapov, and Sieber (2012);

Lipscomb and Mobarak (2013) we study a national interest resource whose regulation

depends on local authorities. Those papers find that greater decentralization increased

deforestation and water pollution, respectively. Our setting is different since mining op-

erations cannot be moved to a different municipality, in contrast to the logging firms or

industrial plants studied in those papers. In addition we show that the associated envi-

ronmental damage has an impact on human capital. In a related setting, Eynde (2015)

studied a reform in India that increased royalty rates, thereby boosting local government

incentives to control illegal mines, which led to a rise in state violence. Unlike local gov-

ernments in Colombia, Indian states are in charge of military operations and therefore

can directly control illegal mines.

Methodologically this paper is among the first, together with Burlig, Knittel, Rapson,

Reguant, and Wolfram (2016), to use machine learning both for prediction of the depen-

dent variable and to estimate causal effects. We use applications of machine learning
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techniques for causal inference (Belloni, Chernozhukov, & Hansen, 2014; Athey & Im-

bens, 2016) and join the growing body of literature that uses satellite observations to

study economic outcomes including Foster, Gutierrez, and Kumar (2009); Jayachandran

(2009); Henderson, Storeygard, and Weil (2012); Guiteras, Jina, and Mobarak (2015);

Faber and Gaubert (2016). Previous papers studying illegal mining used static measures

in their analysis (Idrobo, Mejia, & Tribin, 2014; Romero & Saavedra, 2015). Thus, our

panel dataset on illegal mining by municipality is a contribution in itself, as are the codes

used to create the dataset, which could potentially be used to create similar datasets for

other countries.

The rest of the article is organized as follows: Section 2 describes the context of min-

ing in Colombia and details of the reform. Section 3 presents the theoretical framework.

Section 4 describes the data, in particular the construction of the illegal mining panel.

We then present the identification strategy, and in Section 6 the main results. Section 7

presents the estimation of differential health effects from legal and illegal mines, and the

final section concludes.

2 Colombian context and details of the reform

The mining and hydrocarbon industry is important for the Colombian economy, rep-

resenting 8-11% of Colombian GDP over the last five years.2 Although mineral mining

represents a small portion (20%) of royalty revenue (compared to hydrocarbon extraction,

which amounts to 80%), it has a large footprint – large enough that its environmental im-

pacts can be tracked from space (Asner, Llactayo, Tupayachi, and Luna (2013)). Within

mineral mining, 77% of the royalties come from coal, 12% from nickel, 10% from precious

metals (e.g., gold and silver) and the remaining fraction from salt, emeralds and con-

struction materials. While only one-tenth of mining royalties come from precious metals,

over half of the total area of mining titles held is devoted to precious metals extraction

(Agencia Nacional Minera, 2013).

According to Colombia’s Constitution, subsoil and mineral resources are owned by the

national government. This is different from other countries, such as the United States,

where the owner of the land is entitled to its mineral resources. Colombia’s national

government allocates mining permits and sets royalty taxes for mineral extraction. The

2The share was 11% in 2012 but has fallen in recent years due to the reduction in commodity prices.
http://www.banrep.gov.co/es/pib
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title holder pays a fee that depends on the size of the mine and is equivalent to a legal

daily minimum wage per hectare per year.3 Additionally, mining companies pay royalties

based on the gross value and type of minerals extracted.4

Before 2012, a municipality would receive around 55% of the royalties paid by mining

companies operating in its territory, while the rest was allocated to a National Fund.5

Legislative Act 05 of 2011 changed the allocation formula dramatically, such that only

10% of the royalties are transferred directly to the mining municipality and 40% are

earmarked for regional funds, while the rest of the royalties revenue must be used for

savings.6 The resources allocated to the regional funds are distributed according to popu-

lation, poverty and unemployment; thus, the net impact of the reform in each municipality

varies depending on these characteristics. The reform also reduced the resources received

by regional environmental authorities by 80%, since their funding is directly linked to the

royalties transferred (directly) to municipalities.

When the Colombian national government introduced the reform, it stated that its main

objectives were to reduce poverty and regional inequality, save part of the expected in-

crease in mining revenue and improve the management of royalties resources.7 Illegal

mining was neither mentioned as a motivation for the reform nor were the impacts of the

reform on illegal mining contemplated.8

During 2010 the government conducted a census of all mines, regardless of whether they

held a mining title, in half of the municipalities in Colombia. The census found that 62%

of the surveyed mines did not have a title. There have been three attempts to legalize

illegal mines, but with very little success.9 Government attempts to provide favorable

3If the title area is between 2,000 and 5,000 hectares, the title holder pays the equivalent of two times
the legal minimum wage per hectare and holders of title to areas larger than 5,000 hectares pay three
times the minimum wage per hectare (Agencia Nacional Minera, 2013).

4The price used to calculate the gross value is the average monthly price on the London Metal Ex-
change. Colombia is considered a price taker in all of these markets given the size of its production
(Fedesarrollo, 2014b). The royalties tax varies across minerals and depends on the quantity extracted.
For example, construction materials are taxed at a 1% rate, gold and silver at a 4% rate, and large oil
fields are taxed at a 25% rate.

5The amount varied across minerals. For example, before 2012 the fraction transferred to a munici-
pality with a gold mine was 87%.

610% of royalties must be allocated to a science, technology and innovation fund; 10 % go to under-
budgeted pensions and (up to) 30% are placed in a savings and stabilization fund.

7See https://www.sgr.gov.co/LinkClick.aspx?fileticket=bsf8qrvGVOg%3D&tabid=181
8The reform was approved six months before it was implemented, so we cannot rule out some antici-

pation by local governments of its effects.
9The Mining Code of 2001 contained difficult requirements for legalization and of the 2,845 legalization

requests received only 23 were approved. Similarly, the Mining Code of 2010 generated 700 requests, but
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conditions to illegal miners (“carrots”) have also been accompanied by an increase in

“sticks”. For example, at the end of 2012 the Andean Community of Nations (which

includes Colombia and Peru) signed a decree that allows the destruction of all machinery

used in mines that do not have a registered title.10

In the model, and as reported in some cases,11 the local authorities know of the existence

of the mines and receive side payments. Also, when we model the miners’ decisions to

extract illegally, we assume they simultaneously decide to operate while evading both title

fees and production taxes. However, it is important to note that some illegal producers

pay production taxes. According to the Mining Census, 19% of the mines without a title

paid royalties to “legalize production” and in the national government’s official production

data, 30% of the production takes place in municipalities without any registered mining

titles. The reported production in municipalities without mining titles is usually the re-

sult of collusion between miners and local authorities in which the former “launders” its

illegal production and the latter obtains additional funds from royalties revenue (Masse

& Camargo, 2012). More importantly, there is evidence of production that does not pay

royalties: between 2009 and 2011, an excess of 28.6 tons of gold were found in export

records over the reported amount on which royalties were paid; this “excess” production

amounts to 20 % of the value of gold royalties value (Rudas & Espitia, 2013).

3 Theoretical framework

3.1 Setup

We present a framework for understanding a miner’s decision to operate illegally depend-

ing on the cost of operating legally (e.g., title fees and taxes), probability of being detected

by the National Government and side-payment to the local authority if operating illegally.

The framework illustrates how the side-payment depends on the share of revenue the local

municipality receives from taxes paid by the firm and consequently, the response of illegal

mining to the 2012 reform.

only one title legalization was approved. Finally, a pilot legalization program that started with 150
mining operations in 2012 only has 25 still in the process after three years, and none have complied with
all the requisites (TGIATOC, 2016)

10Before the decree the machinery was supposed to be confiscated, which was difficult to implement in
remote regions.

11See, for example, (Giraldo, 2013) http://www.elpais.com.co/elpais/colombia/noticias/informe-
exclusivo-denuncian-mafia-detras-mina-san-antonio-santander-quilichao
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Consider a miner with capital K who must decide whether to operate legally. If he

operates legally (L), he has to pay the associated royalties α and title fees T (Area(K))

to the national government. But if he decides to operate illegally (I) he makes a side-

payment b(K, .) to the local authority12 and faces a probability of the illegal mine being

detected by the National Police Pr(K). This probability is increasing in the size of the

mine. The expected profits, in each case, can be expressed as:

ΠL = pq(K)(1− α)− C(q(K))− T

ΠI = pq(K)− C(q(K))− Pr(K)pKK − b

where p is the international price of the mineral, q(K) the quantity extracted as a function

of K, α is the production tax paid by the firm, C(·) the associated cost of extraction,

and pK the price of capital. Note that when an illegal firm is detected its capital is

destroyed, in accordance with the law (see Section 2). The side-payment is determined

endogenously by bargaining with the local authority depending on the payoffs for both

when legal/illegal.13 We model the local authority as a single agent14 that values the

budget of the municipality, the local externalities from mining and the bribe it can obtain.

The local authority’s payouts in each case are

GL = f(pqαβ +B)− γq

GI = f(B)− γq − Pr(K)V + b

where β is the share of royalty taxes allocated to the mining municipality, B is the

municipality’s budget aside from mining royalties, γ is the local environmental damage

associated with mining, and V is the cost to the local authority if the national government

discovers the illegal mine and confirms the existence of collusion in a trial. This cost would

be a monetary sanction or a prison sentence, if evidence of the local authority receiving

12We are assuming the local authority observes all mining activity in its municipality without cost.
Empirically this is supported by a survey of 18 local authorities, where all of them confirmed that they
were aware of the presence of illegal mining within their jurisdictions (Fedesarrollo, 2014a). Theoretically,
in a model with endogenous effort the level of illegal mining is higher but the change in illegal mining
with the reform is of similar magnitude.

13The predictions on the surplus of illegal mining increasing do not require assumptions on the bar-
gaining model. In the plots in the Appendix we are assuming Nash bargaining with constant bargaining
power before and after the reform.

14If the bribe was paid to an agent whose payoff does not depend on the municipal budget then the
reform would not have an effect on illegal mining under this framework.
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a bribe is found.15 The function f(·) reflects the valuation of the local municipality’s

budget by the local authority. We assume f ′(B) > 0, either because the local authority

gets a share of the contracts or because it altruistically cares more about investing in local

projects than in projects outside the municipality. The shape of f will play an important

role when studying the income effect of the reform in the next sub-section.

The “surplus” of illegal mining is the difference between the payoffs for the miner and the

local authority when legal/illegal:

S(K) = ΠI − ΠL +GI −GL =

T + pq(K)α︸ ︷︷ ︸
Legality fees

+ f(B)− f(pq(K)αβ +B)︸ ︷︷ ︸
Foregone revenue

−Pr(K)(pKK + V )︸ ︷︷ ︸
Expected punishment

Denote by K∗ the value of capital such that S(K∗) = 0. Any firm with capital K such

that S(K) ≥ 0 will pay the bribe and operate illegally. Given the punishment (destruction

capital) if caught operating illegally, any firm with K > K∗ will operate legally.

3.2 The effect of the reform on illegal mining

Consider the possible effects of the royalties reform. First, the reform did not change the

“legality fees”: neither the cost of the title fee nor the royalties paid by the firm changed.

Second, the reform did change the allocation of royalties directly transferred to the mu-

nicipalities and their budgets by redistributing the royalties according to socioeconomic

criteria. Finally, the reform might have changed the “expected punishment” through

the probability of detection. The national government might have a greater incentive to

monitor illegal mining, but the regional environmental authority has fewer resources and

incentives to monitor (since its budget is directly proportional to the royalties assigned

directly to the municipality). Thus, the effect of the reform on the probability of detection

may be ambiguous.

Regarding the “Foregone Revenue” term: irrespective of the shape of f(·), a reduction

in the share of royalties transferred back to the mining municipality (β1 < β0) reduces

the payout from legal mining to the local authority and therefore increases the surplus of

illegal mining for every level of capital. In particular, the average size of illegal mines in-

creases (K∗(β1) > K∗(β0)) and illegal mining increases (as a proportion of total mining).

15In most cases the National Police destroy the machinery but do not conduct further investigation.
Thus, we model V as zero.
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This reasoning leads to the following prediction:

Prediction 1. The reform increases the share of mined area that is mined illegally.

Note that this model applies to the decision of a new mine and existing illegal mines to

legalize each year. Consequently in the empirical section we will test this hypothesis both

in the stock of mined area and the new mines each year. For a legal mine the titles are

allocated for 30 years, so the decision to evade legislation will take the form of under-

reporting of quantity produced.

This simple model has some limitations. The first one is that we do not consider the

location decision of the miner, because the mineral resources are fixed in the subsoil.

However, one could imagine a miner moving his capital to a neighboring municipality

where conditions are more favorable a la Burgess et al. (2012). Second, we are modeling

the decisions to obtain a legal title and pay royalty taxes as a single decision. But it is

possible that some legal mines evade a certain percentage of the production taxes. Finally,

we abstract away from any possible interactions with a local authority receiving bribes

from multiple miners.

The effect of the reform in municipalities with lower national oversight

The probability of the national government detecting an illegal mine and destroying

its capital is smaller in municipalities where armed groups (AG) provide protection for

illegal miners (PrAG() < Pr()).16 Note that in our model, this is equivalent to small

probability of detection because of weak presence of the national government. Given the

smaller probability of detection, the surplus of illegal mining is higher in these munic-

ipalities for a given size K. So when the reform reduces the payoff when the mine is

legal, the average size of illegal mines is larger and we see a larger effect of the reform on

illegal mining. In the extreme case that armed groups have total control and the national

government is unable to destroy illegal mine machinery in those places, then all the mines

should be illegal (SAG(K) ≥ 0,∀K), no royalties would be paid in those places and the

national government reform should have no effect. This, however, is not what we observe

in the data: There are legal mines and royalties taxes paid in municipalities with armed

groups.

Prediction 2. The increase in illegal mining is larger in municipalities with lower prob-

ability of detecting illegal mines.

16We abstract from an endogenous response of armed groups. Tables 29 - 32 in the online Appendix
show that there is no evidence of armed group relocation in response to the reform.
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The income effect of the reform The effect of the reform on the revenue lost

depends on the lump sum transfer (B1), which is based on socioeconomic criteria. The

change in illegal mining surplus due to revenue lost with the reform can be written as:

∆S = (f(B +B1)− f(pqαβ1 +B +B1))− (f(B)− f(pqαβ0 +B))

The above expression has the form of increasing differences so its sign will depend on the

concavity of f(·). We separate f(·) in two components: f(B) = δ(B)B+ g((1− δ(B))B),

where the first term is the share of the budget that the local authority captures for itself

and the second term is the valuation of the budget actually invested in public goods. If

we assume that the local authority captures a constant share of the budget δ(B) = δ

and g(·) is linear, then f(·) is linear. In that case, ∆S = pqα(β0 − β1), which does not

depend on B1. Consequently the effect of the reform on illegal mining is the same for all

municipalities regardless of whether they win or lose in net with the reform, i.e. there is

no income effect.

However, when the local authority has a convex function, the surplus of illegal mining

for a given mine size K is now larger for those negatively affected by the reform.17 Con-

sequently, the average size of illegal mines is larger for municipalities negatively affected

by the reform and we should observe a larger increase in illegal mining in these munic-

ipalities. The function f(·) can be convex either because local authorities capture an

increasing share of the budget (Brollo, Nannicini, Perotti, & Tabellini, 2013), or because

g(·) is convex. An illustration of this last point is the case of discrete investments: For

example, with a small budget only a vaccination campaign could be funded, while with

a large budget a hospital could be built which is politically more visible. In the data for

Colombia we have that the median municipality spent 86 % of the revenue on “lumpy”

projects like construction of a hospital or a bridge. Figure 4 in the Appendix illustrates

the predictions regarding the shape of f and the differential effect on the reform depend-

ing on the size of the budget transfer. In short, we have that the income effect of the

reform depends on the concavity of f .

Before turning to the data section recall the three predictions from this simple framework.

First, illegal mining increases after the reform. Second, the reform is larger in municipal-

17The same happens with a function with a reference point based on what the municipality received
before the reform.
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ities with low probability of detection. Finally, the income effect of the reform depends

on the shape of the function the local authorities use to value the municipality budget.

4 Data

We rely on three main sources of data for our analysis. The first source is the panel of

illegal mining by municipality we constructed, whose details will be explained in the next

subsection. The second data is from Colombia’s governments mineral information system

SIMCO18 on reported production and prices. Finally, we use a municipality panel from

the Center for Studies of Economic Development (CEDE) at Universidad de los Andes

(Acevedo & Bornacelly, 2014) with information on royalties, municipal budgets, homi-

cides committed by armed groups, and other characteristics of Colombian municipalities.

Note that we construct the illegal mining panel for Peruvian municipalities, but do not

have socio-economic characteristics for them.

Summary statistics for the Colombian municipalities are presented in Table 1. We ex-

clude from the analysis municipalities without mining potential in the subsoil, because,

tautologically, there can be no mining in those municipalities. We observe that of the 927

municipalities with minerals in the subsoil, 84% had a net increase in budget (“winners”)

due to the reform. Losers tend to be bigger and more populous, as well as more likely to

receive royalties from oil and gas. Most of the mines are open pit and therefore can, in

principle, be observed from space. Finally, note that 40 % of the municipalities had some

presence of armed groups before the reform.

18http://www.simco.gov.co/
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Table 1: Summary statistics for municipalities used in the analysis

All Winners Losers Difference

Change in royalties as percentage of budget 4.03 8.11 -16.8 -24.9∗∗∗

(11.6) (3.80) (15.1) (0.62)
Royalties from precious metals 0.32 0.31 0.37 0.059

(0.47) (0.46) (0.48) (0.042)
Royalties from oil-gas 0.14 0.060 0.56 0.50∗∗∗

(0.35) (0.23) (0.50) (0.026)
% open pit mines (Census) 0.78 0.77 0.80 0.021

(0.35) (0.35) (0.35) (0.040)
Armed group presence before reform 0.40 0.39 0.44 0.047

(0.49) (0.49) (0.50) (0.044)
Population 25280.0 22539.8 39252.9 16713.1∗∗∗

(40628.4) (35257.3) (59297.3) (3575.7)
Area (km2) of municipality in raster 631.7 597.5 1198.2 600.7∗∗∗

(1535.4) (1495.9) (2007.6) (128.2)

An observation is a Colombian municipality. There are 927 municipalities, of which 148 are negatively
affected. There are 1,123 municipalities in Colombia but we exclude those without minerals in the subsoil.
All data comes from CEDE’s municipalities panel, except the row that indicates the presence of open pit
mining, which is from the 2010 Mining Census. Calculations: Authors.

4.1 Constructing the illegal mining panel

There are three main steps taken to construct the panel of illegal mining by municipality.

First, we prepare the satellite data so it can be used in the prediction model. Second,

we construct a model to predict whether a certain pixel is mined. And finally, we predict

mining presence in all pixels for the years 2004 to 2014. We then assess the legality of

each mined pixel with the map of legal titles, and collapse the results at the municipality

level for the regression analysis.

We use data from NASA’s LANDSAT 7 satellite19 for the years 2004-2014 at a resolution

of 30m × 30m pixels (squares). The area of Colombia and Peru combined is 2.42 million

square kilometers, so we have a total of 2.7 × 1010 pixels to analyze for illegal mining.

The satellite captures every point on the earth’s surface every two weeks, but due to the

presence of clouds we need to create cloudless composites at the year level.20 We exclude

from the analysis pixels with forests using Hansen’s deforestation data (Hansen et al.,

2013).

19These data are distributed by the Land Processes Distributed Active Archive Center (LP DAAC),
located at USGS/EROS, Sioux Falls, SD. http://lpdaac.usgs.gov

20We use Alex Zvoleff’s open source algorithms http://azvoleff.com/teamlucc.html, which also apply
topographic correction to each image to adjust for the relative position of the satellite.
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Figure 1: Image of a mine in the municipality of Remedios

2/23/2016 Remedios, Antioquia - Google Maps

https://www.google.com/maps/place/Remedios,+Antioquia,+Colombia/@7.8144796,-74.7820452,586m/data=!3m1!1e3!4m2!3m1!1s0x8e431244df00b443:0xc4f... 1/1

Google Maps

Imagery ©2016 DigitalGlobe, Map data ©2016 Google 200 ft 

Remedios, Antioquia

Mine

River

Vegetation

The white portion of the image is the mine footprint, in contrast to the river (brown) and vegetation
(green). Source: Digital Globe-Google Maps.

The Mining Census published by the Colombian Ministry of Mines shows one point

of the location of the mines in 2010 for half of the municipalities.21 We validate this

information using manual inspection of high-resolution images to draw the exact shape of

each mine. We also use the identified shape of mines in Open Street Map 22 to complement

the mining census. Our final dataset has the following information for each pixel: a label

denoting whether the pixel is mined, six satellite surface reflectance measures for different

bands 23, deforestation year and ecosystem type (Etter, 2006).

Given this dataset one could impose a rule for declaring a pixel as mined or allow the

machine to “learn” the optimal rule based on the characteristics of the known mines. For

example, we could impose a rule that every pixel with deforestation, not in a desert and

with a color close to white is a mine. Instead, we let the computer try different nested

binary decision rules (trees 24) and find one that accurately predicts mined pixels (i.e., it

labels true mined pixels as mined), but with a low false positives rate (i.e., it does not label

non-mined pixels as mined). We split the sample, allocating 75% of the observations for

21Although there might be a concern that the municipalities sampled by the Census were selected based
on certain characteristics, we show in the on-line appendix Table 26 this is not the case. Municipalities
included and not included in the Census are balanced in terms of change in royalties due to the reform,
production of different minerals and presence of armed groups.

22https://www.openstreetmap.org
23Different wavelengths are captured in different bands. Specifically we use Band 1 (blue), Band 2

(Green), Band 3 (Red), Band 4 (Near infrared), Band 5 (Shortwave infrared 1) and Band 7 (Shortwave
infrared 2)

24The name “tree” comes from the graphical representation of the nested binary decision rules.
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training (learning) and 25% for testing. We expect the relationship between the existence

of a mine and the satellite bands measurements to be highly non-linear and complex, and

use random forests which are suitable for this type of problem (James, Witten, Hastie, &

Tibshirani, 2014). A random forest, as its names indicates, is a collection of many binary

decision trees where in each node the candidate subset of explanatory variables to be used

in the binary partition is random.

The random forest prediction attaches to each pixel in each year a probability that it is

mined. We then need to determine the cutoff at which we declare a pixel to be mined.25

For each cutoff we plot in Figure 2 the associated true positive rate (TPR) and false

positive rate (FPR) in the testing sample. Ideally we want to have 100% TPR and 0%

FPR (upper left corner). As we lower the cutoff, we improve the TPR but also increase the

FPR. In the literature it is standard to choose the cutoff ρ such that TPR(ρ)− FPR(ρ)

is maximized (marked with a blue star in the Figure). There are two important aspects

of our analysis and data that make this standard cutoff inappropriate here. First, we

are using the predictions as dependent variables. Second, our sample includes many non-

mined pixels. We discuss these two issues in turn below. In a nutshell, the formula we

use to choose the optimal cutoff assigns more weight to a lower FPR, given that most

pixels in the country are not mined. Although we use this optimal cutoff in our main

regressions, we will present robustness of our results to using the standard cutoff.

25The downside of using the raw probabilities is that the measure of fraction of area mined will be
affected by the probability the model assigns to non-mined pixels. Nowadays, as a robustness we present
results using the raw probability.
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Figure 2: ROC curve for the mining prediction model.
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The receiver operating characteristic- ROC curve plots the performance of a binary classification model
when varying the cutoff threshold. The false positive rate (FPR)–the percentage of true no-mined pixels
incorrectly classified as mined pixels–is on the x-axis. The true positive rate (TPR)–the percentage of
correctly classified true mine pixel–is on the y-axis. As we decrease the cutoff to declare a mine, we
accurately classify more true mined pixels as mined, but also increase the number of no-mined pixels
incorrectly classified as mined.

4.2 Econometric analysis of the error term

It is important to analyze how the errors in the individual pixel prediction might affect our

estimation of the effect of the reform on illegal mining. In this subsection we explain how

errors at the pixel level aggregate to our measure of illegal mining area by municipality,

and in turn how this might affect the coefficient estimates in the regression. Our estimated

measure of mining area (ŷmt) in municipality m at time t can be expressed as the sum of

correctly identified true mined pixels plus the misclassified true no-mined pixels:

ŷmt =
∑

i∈Mines

(Pred(pixi) = 1) +
∑

i/∈Mines

(Pred(pixi) = 1)
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In each true mined pixel the probability of predicting a mine is equal to TPR and in

each pixel that is truly mine-free the probability of predicting a mine is the FPR, where

TPR and FPR are the true and false positive rates of the prediction model. In each

pixel the random variable can be modeled as a Bernoulli, and, assuming independence26

and identical distribution, their sum is binomial. As the number of pixels is large, we

can approximate the sum with a normal. Thus ŷmt = ymtTPR + yNmtFPR + εmt, where

ymt is the true number of mined pixels, yNmt the true number of no-mine pixels and

εmt ∼ N(0, ymtTPR(1− TPR) + yNmtFPR(1− FPR)). Finally, using the fact that the

total area of the municipality (Ym) is fixed ( yNmt = Ym− ymt) we can obtain the fraction

of the municipality’s area that is predicted to be mined as:

ŷmt
Ym

=
ymt
Ym

(TPR− FPR) + FPR + υmt (1)

Where

υmt ∼ N

(
0,
ymtTPR(1− TPR) + yNmtFPR(1− FPR)

Y 2
m

)
That is, the raw predicted fraction of the total municipality area that is mined under-

estimates the true fraction that is mined by a factor of (TPR-FPR) plus an additive error

term of FPR. When we use the predictions as the dependent variable in our regression

analysis, a constant FPR will be absorbed by the municipality fixed effects. To minimize

the sum of squared errors, using formula (1), the optimal cutoff is:

ρ∗ = arg min
ρ

∑
m

(
TPR(ρ)

ym,2010

Ym,2010

+ FPR(ρ)

(
1− ym,2010

Ym,2010

)
− ym,2010

Ym,2010

)2

since 2010 is our training year from the mining Census. Note that since the fraction of total

municipality area that is mined is around 1%, the error of our predictions is approximately

1%TPR+ 99%FPR. This is why our cutoff (shown as the big dot in figure 2) prioritizes

having a small FPR. For completeness in the results section we present regressions with

both the raw predictions and the adjusted predictions using formula (1).

Two more points to note: First, the variance is smaller for municipalities with larger

area, and, when we measure illegal mining as the fraction of the predicted mining area

(instead of total municipality area), we do not know exactly the behavior of the error

term because we are taking the ratio of two terms measured with error.

26We do not need to assume independence to prove a weaker version of the law of large numbers if we
assume that the correlation between pixels far apart decays geometrically with distance. See appendix
for details.
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In Table 2 we present the confusion matrix for the optimally chosen cutoff. This matrix

presents the number of correctly/incorrectly classified mined/non-mined pixels. The pre-

cision is 79% that is, of the pixels we predict as mined, almost four-fifths are truly mines

according to the testing data. Our model correctly classifies 32.45 % of true mine pixels

(TPR),27 and wrongly classifies as mines 0.29 % of pixels without a mine. The area under

the curve of our prediction model is 87%, much higher than the 50% of a random classifier

and close to the 95% of very good classifiers (James et al., 2014).

Table 2: Confusion matrix for optimal threshold

Non-Mined Mined
Predicted Non-Mined 131747 2972
Predicted Mined 382 1428

4.3 From pixel predictions to municipality panel

We also want to construct a panel of illegal mining by municipality for Peru to better

identify the coefficient of after the reform in a difference-in-differences framework. We

use the respective satellite images, and deforestation data, as we have done for Colombia.

Because we do not have data on location of mining activity to train or validate a model,

we use the same prediction model trained in Colombian data. This required inputing the

ecosystem type. See Appendix B for further details on our procedure.

We smooth our predictions over time to prevent having pixels that switch back and forth

from mined to not mined due to prediction error.28 After predicting whether each pixel is

mined, we compare with the map of legal titles to declare the pixel as legally or illegally

mined. Locations and exact shapes of Colombian legal mines were obtained from Tierra

Minada29, a nonprofit organization that digitized official records contained in the Catas-

tro Minero Colombiano (Colombian mining cadastre). The data for Peru was obtained

from the Peruvian Geology, Mining and Metallurgy Institute.30 Finally, we collapse the

predictions at the municipality level for use in the regression analysis.

27The TPR is similar (26%) when testing our model in the illegal gold mines manually identified by
(UNODC, 2016).

28We do this by calculating the monotonic sequence of 0’s (not-mined) and 1’s (mined) that is closer
to the vector of each pixel predictions through time.

29The full data set can be downloaded from https://sites.google.com/site/tierraminada/
30Accessed through Global Forest Watch on May 22nd 2016. www.globalforestwatch.org
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Table 3 presents the summary statistics of our predictions and a preview of our results.

Our estimates imply that 89 % of the mining area in Colombia is exploited without a title.

Although this number seems high, it is close to the 78% estimated for gold mining in 2014

by (UNODC, 2016). In Table 11 in the appendix we present the results of illegal mining

as fraction of total municipality area. We estimate that in the average municipality

in Colombia, less than 1 % of its total area is illegally mined. The portion of total

municipality area that is illegally mined in Peru seems high, but is in line with the 13.6%

reported in (Maldonado, 2014). Anyway, the year-to-year variation could reasonable be

used in a difference-in- differences framework, because the fixed effects will absorb the

areas constantly misclassified every year.

Table 3: Summary statistics, illegal mining municipality panel

Peru Colombia Difference

% of mined area mined illegally, 2004-2011 87.7 90.0 2.32∗∗∗

(21.5) (22.1) (0.34)
% of mined area mined illegally, 2012-2014 77.2 85.5 8.25∗∗∗

(27.1) (23.3) (0.62)
Difference -10.43∗∗∗ - 4.49∗∗∗ 5.93∗∗∗

(0.39) (0.52) (0.58)

An observation is a municipality-year. There are 2,738 municipalities in both countries, 932 in Colombia.
Calculations: Authors.

5 Identification strategies

We want to identify how evasion responds to the share of taxes transfered back to the host

municipality. In an ideal experiment, we would randomize the levels of marginal change

and the net change in royalties returned to different municipalities. This is politically

infeasible, so we rely on differences and difference-in-differences strategies to approximate

the ideal experiment. Our estimating equation using only Colombian data is:

ŷmt = βAAftert + βPPriceIndexmt + γm + δ ∗ t + εmt, (2)

where ŷmt is our constructed measure of illegal mining in municipality m at time t. Aftert

is an indicator variables for after the reform. Pricemt is an index of the price of the

minerals available in the subsoil of that municipality. δ is the pre-reform linear trend and

γm are municipality fixed effects. The measure of illegal mining can be expressed as a

fraction of either total municipality area, or only municipality mining area. We report
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both for completeness, but we focus on the fraction of mined area which captures the

evolution of illegal compared to legal mining.

The identification for βA in the equation above comes from changes in illegal mining before

and after the reform, netting out the pre-reform trend. This identification method is not

well identified because of other national or international events, beyond the price changes

we control for, occurring at the same time as the reform. In particular, in Colombia

the system to register legal titles was closed at the time of the reform and there was an

increase on the stringency of illegal mining prosecution in both countries. The national

government’s system for receiving mining title requests was closed from the end of 2011 to

July 2013.31 Although one might expect that the firms that wanted to obtain a title would

wait or legalize once requests were being accepted again, we cannot fully separate these

two effects. In order to address this first concern, we conservatively define illegal mining

as mining areas outside the legal titles at the end of the study period, eighteen months

after the system reopened. That is, if a miner could not register the title while the office

was closed in it will not count as illegal mining in our data. The second event occurring

at the same time of the reform was a change in the law that allowed destruction of illegal

mining machinery on site, instead of being confiscated and processed in court. This law

applied to both Colombia and Peru, and likely deters illegal activity. Consequently our

event study coefficient would be underestimating the effect of the reform.

The coefficient for the increase of illegal mining after the reform can also be identified

in a difference-in-differences framework. Ideally we could use many countries but the

process of generating the illegal mining panel by municipality is extremely computing

time intensive. We decided to use Peru as the control for several reasons. It is a neighbor

country that is also mentioned in the media with regions highly affected by illegal mining.

Peru also has levels of gold production in the same order of magnitude as Colombia (see

Table 10 in the Appendix). Although Brazil was another candidate, it is not part of

the Andean Community of Nations, thus it is not affected by the mentioned law that

allows the destruction of illegal mining machinery. The estimating equation using also

the predictions of illegal mining in Peru is:

ŷmt = βAAftt × Colm + βUAftt × Perm + γm + δCt + δP t + εmt, (3)

31http://repository.urosario.edu.co/bitstream/handle/10336/8987/52378961-2014.pdf?sequence=1
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Or in the standard framework without the linear trends:

ŷmt = βAAftert × Colm + γm + γt + εmt, (4)

In Figure 5 in the Appendix we empirically check the parallel trend assumption.

6 Results

6.1 Main results

Before proceeding to the regression analysis we provide a visual representation of our

results. Figure 3 plots the evolution of illegal mining in Colombia and Peru. We observe

that illegal mining as a fraction of mined area was decreasing in both countries, but after

the reform in Colombia it increased slightly.

Figure 3: Evolution of illegal mining in Colombia and Peru
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The x-axis plots time in years, with a vertical line indicating when the reform happened. The y-axis
represents our estimate of percentage of area mined illegally as percentage of total mined area in the
municipality.

The results of estimating the effect of the reform on the share of mining area that is

mined illegally are presented in Table 4. The first column shows the results of estimating

equation (2) only with Colombian data. The last two columns incorporate the data from
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Peru and estimate equations (3) and (4), respectively. As expected , illegal mining in-

creased after the reform in Colombia. The magnitude is 1.63 percentage points as a share

of the mined area, using a before-after comparison controlling for the trend in Colombia

(Column 1). The increase is 4.47 in the differences-in-differences estimator using Peru

as the control (Column 3). We repeat this specification with municipalities closer to the

border in Table 13.

Another way of confirming our results is to estimate an analogous regression using titled

area as the dependent variable. This measure does not depend on our mining area pre-

dictions, and is calculated from the government’s data. Results are presented in Columns

4-6. They show a reduction in area titled in Colombia after the reform. However, we

cannot tell apart the effect of the reform from the closure of the mining system. Finally

in Table 12 we include the results when using as the dependent variable the fraction of

newly mined area that is illegally mined. The effect of the reform is larger, because this

measure excludes the stock of existing mines. There are less observations because we

need a cloud free image in consecutive years and we lose observations for the year 2004,

because we do not have satellite images for the previous year.

Table 4: Effect of the reform on illegal mining

Dependent variable: % mined area mined illegally Area mining titles (ha)
Colombia Peru (DD) Colombia Peru (DD)

(1) (2) (3) (4) (5) (6)

After x Colombia 1.63*** 1.84*** 4.47*** -6.02*** -8.88*** -1.22***
(0.45) (0.49) (0.62) (0.46) (0.48) (0.31)

Mineral price index 0.0058 -0.082***
(0.0071) (0.0074)

After x Peru -2.36*** -13.8***
(0.38) (0.38)

Time FE No No Yes No No Yes
Linear Trend Yes Yes No Yes Yes No
N. of obs. 8796 26355 26355 8796 26355 30021
Municipalities 927 2733 2733 927 2733 2748
Mean of Dep. Var. 93.7 92.7 85.1 82.9 82.0 4.70
R2 0.78 0.72 0.73 0.78 0.71 0.86

All regressions include municipality fixed effects. Standard errors, clustered by municipalities, are in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The measure of illegally mined area that we use in Table 4 is calculated using the

optimal threshold described in Sub-Section 4.2. We investigate whether the results are
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robust to using a different cutoff. In particular we use the point closest to the ideal of

100% TPR and 0% FPR. For our model it is a cutoff associated with a 80% TPR and

a 20% FPR. Results are presented in Table 14 with the same specifications by columns

as Table 4. Note that the magnitudes of the estimated coefficients are almost double the

coefficients with the optimal threshold. This fact is explained because the new cutoff has

almost double the difference between TPR and FPR compared to our conservative opti-

mal threshold (60% compared to 32%). The difference between the TPR and the FPR is

the factor that appears in equation (1). In Table 15 we present the results using the raw

probabilities that a pixel is mined. The magnitude of the coefficient is smaller, probably

because of the noise added by the probability of non-mined pixels.

We assess whether our results are robust when controlling for other covariates in the re-

gression. In our basic specification for Colombia we include the mineral price index, but

other variables could also affect the evolution of illegal mining. As the set of possible con-

trols is large, we rely on another machine learning technique to select the optimal controls.

We use a Lasso procedure that selects controls that are relevant from a statistical point of

view and are not chosen ad-hoc by the researcher. The Lasso procedure is like an ordinary

least squares regression where the sum of squared residuals is minimized, but there is also

a penalty for the number of controls used (James et al., 2014). In the set of possible

candidates we include the price index, population, homicides by armed groups and these

variables squared, lagged, interacted among them, interacted with a linear trend, and

interacted with a quadratic trend. We use the Stata program provided by (Belloni et

al., 2014) to implement their Double Lasso procedure (see Table 16 in the Appendix for

the results). The procedure selects only the lagged price index for the fraction of mined

area that is illegally mined. The coefficient of “After the reform” is fairly similar when

including this optimal control. Finally, to alleviate concerns that the results are driven

by unobservables we perform tests based on Altonji, Elder, and Taber (2005) using Oster

(2013)’s procedure. We impose the most stringent parameters of perfect prediction if

unobservables were observed (Rmax = 1) and equally important unobservables (|δ| = 1),

and find that zero is not in the identification set. The identified set for the coefficient of

βA, the coefficient of After the reform is (0.11 ,3.32 ) percentage points.

In Table 17, we present robustness of the results to adjusting the raw measure of fraction

of the municipality area that is mined, using the formula in equation (1). The coeffi-

cients are larger, because according to the formula our raw predictions underestimate the

true fraction by a factor of TPR − FPR. Note that we have less observations using the
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adjusted measure, because in some cases the adjusted formula gives negative values of

mined area: When the predicted mined area is not larger than the expected number of

false positives. Table 18 presents results using different measures of illegal mining: The

share of the total municipality area that is illegally mined, the area in square kilometers

illegally mined and the logarithm of area illegally mined. Finally, we present regressions

using as weights the fraction of the municipality area that is analyzed (Table 19), and

including state trends (Table 20). In both cases the results remain significant at 5%.

Analysis of evasion in reported quantity produced

So far we have looked at the extensive margin of evasion, but it is also possible that

evasion is also present on the intensive margin through under-reporting to the national

government of quantity produced. Consequently, we estimate the equivalent of equation

(2) using reported production per area32 as the dependent variable. Results are presented

in Table 5. We do not find a significant effect for any of the products analyzed, and

in fact for two of them the sign is positive. This could be explained by at least two

facts: First, compared to area mined, it is harder for the local government to monitor the

quantity extracted. Second, it is difficult to misreport production in oil and gas pipelines

monitoring systems. Although the magnitude of some coefficients is large relative to the

mean, we prefer to be conservative and assume there is no increase in under-reporting

when monetizing the increase in evasion with the reform.

Table 5: Effect of the reform on reported quantity

Dependent variable: Reported production by area
Coal Gas Oil Gold Silver Platinum
(1) (2) (3) (4) (5) (6)

After 0.64 -0.44 -0.036 4.52 -1.71 -1.08
(1.92) (0.37) (0.16) (10.4) (5.15) (1.33)

N. of obs. 733 714 772 1401 1191 401
Municipalities 105 80 84 228 196 63
Mean of Dep. Var. 4.26 2.22 1.88 15.4 6.12 1.34
R2 0.33 0.34 0.59 0.33 0.27 0.77

All regressions include municipality fixed effects and control for the price index. Standard errors, clustered
by municipalities, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

32For gas and oil we normalize production of each municipality to 100 in the first year of positive
production.
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The effect of the reform in municipalities with lower national oversight

The theoretical framework predicts a larger effect of the reform in municipalities with low

probability of detecting illegal mines. Empirically, municipalities with low probability of

detection could be those with presence of armed groups or those with weak institutional

presence of the national government. The former is measured with a dummy indicating

if there was an homicide committed by an armed group. We measure the later as the

number of institutions (e.g. tax collection or notary’s office) per capita (Acevedo &

Bornacelly, 2014). Although the two measures are correlated, the data indicates that

the effect of the reform is larger in municipalities with weak institutional presence of

the national government, but not in municipalities with armed groups (see Figure 6).33

These results could be explained by at least two different reasons. First, the National

Police has targeted its efforts against illegal mining to areas that finance armed groups.

Consequently the probability of detection might not be smaller in these municipalities.

Weak institutional presence would capture better the fact that the national government

does not monitor these municipalities that often.34 Another reason is that the measure

of homicides committed by armed groups is not a good measure of their presence. Where

armed groups have strong control, they do not need to resort to homicides to exert control.

Income effect of the reform

We can also study whether a larger or smaller municipal budget affects the extent of illegal

mining. The income effect of the reform is well identified; it relies on the assumption that,

after controlling for municipality fixed effects and trends, the extent of illegal mining is

only affected differentially by the impact of the reform on the municipality budget. In the

theoretical framework section we showed that the differential increase in illegal mining for

the municipalities that lost revenue depends on the concavity of the valuation of public

funds. In Table 6 column (1) we present results including the dummy of “After the

reform” interacted with the percentage of budget loss (negative if the budget increased).

We find that a 10-percentage-point decrease in the budget is associated with an additional

0.7 -percentage-point increase in the share of mined area that is illegally mined.

Through the lens of our model, these results suggest that the valuation of public funds

by local authorities is convex. Alternative explanations are that loser municipalities are

inherently different from winner municipalities, or that miners have less motivation to

pay taxes after the reform. This last point is based on the evidence presented in Gadenne

33We only have the data for the heterogeneity analysis for Colombian municipalities.
34We asked for data on National Police operations to study these conjectures, but were denied access.
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(2016) that grant revenue has no impact on local infrastructure, in contrast to tax revenue

that is spent more carefully. However, in Colombia more than 75% of the title owners are

from a different municipality than where the mine is located. Consequently the interest

of the miners on where the taxes are spent cannot explain our results in their entirety.

In addressing the possibility that the losers are inherently different from the winners, there

are three points to consider. First, our regressions include only Colombian municipalities

with mining potential in the subsoil. That is, there can be mining activity in any of

the municipalities studied because there are resources underground. Second, we show in

Table 1 that winners and losers have similar levels of mining activity. The main difference

is the presence of oil resources, which can be considered random. Finally, we can re-run

our main regression, exploiting a discontinuity in the post-reform formula for determining

the transfer based on socioeconomic indicators.

The formula to determine post-reform lump sum transfers gives access to a special fund

for municipality with poverty rates above 30%. Consequently a municipality with poverty

below 30% is more likely to be a net loser with the reform. We re-estimate the income

effect of the reform using only municipalities with poverty rates between 25 and 35%.

These municipalities are more similar and their winner/loser status is determined by the

sharp cutoff. The results are presented in Table 6 column (2). The magnitudes of the

coefficients are smaller and the results are not significative, so we cannot discard the

function f() is linear. In columns (3) and (4) we repeat the specifications used in (1) and

(2) respectively, but we use as the dependent variable the fraction of the total area of the

municipality that is illegally mined.
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Table 6: Results with percentage of budget loss

Dependent variable: % mined area mined illegally % total area illegally mined
All Poverty 25-35% All Poverty 25-35%
(1) (2) (3) (4)

After 1.88*** 1.11 0.20*** 0.16***
(0.43) (1.09) (0.032) (0.036)

After x % Budget Loss 0.066*** 0.043 0.0068* 0.014**
(0.024) (0.052) (0.0040) (0.0062)

N. of obs. 8796 1753 10204 2049
Municipalities 927 187 940 188
Mean of Dep. Var. 93.7 91.6 0.49 0.27
R2 0.78 0.75 0.74 0.81

Poverty 25-35%, refers to municipalities with a poverty rate in this range, centered around the sharp
cutoff of 30% for the post-reform transfer. All regressions include municipality fixed effects, linear time
trend and control for the price index. Standard errors, clustered by municipalities, are in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

7 Health externalities

Besides the lost tax revenue, illegal mining could have differential environmental impacts

for two main reasons. First, given that the capital of illegal mines would be destroyed if

detected, illegal mines will have less efficient machinery. This machinery requires using

more variable inputs that potentially pollute the environment. Second, legal mines are

required by law to present an environmental management plan. To test this hypothesis we

study the effect of legal and illegal gold mines on newborns’ health. Recall that half of the

total area of mining titles held is devoted to precious metals extraction. We use the data

on newborn’s health for the years 2004-2014 from the Vital Statistics database provided

by the government statistics department. We provide evidence that illegal mining has

worse health effects on surrounding population.

Gold mining is known to contaminate the environment with mercury used in the process of

amalgamation. The main channel of human exposure to mercury is through contaminated

fish consumption. Consequently we expect that the population living downstream from

mines are negatively affected by the pollution generated by the mines. In contrast, those

living in the vicinity of the mine may benefit from the mine presence through an income

effect. For each municipality and year we estimate whether the population lives within

20km of a mine (NearMinemt) and whether the population lives adjacent to a river
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that has a mine upstream ( DownstreamFromMinemt). Our dependent variable is an

indicator of whether a baby is born with high APGAR score, a measure of good health.

HighAPGARimt = β1NearMinemt + β2DownstreamFromMinemt

+Ximtα + γm + γt + λr(m) × t+ εimt (5)

In Table 7 we present the results of estimating equation (5). Column 1 uses only the

information on the location of legal mines titles from the Colombia’s mining cadastre.

In column 2 we recalculate the measures of near mine and downstream from a mine,

including the locations of illegal mines we found. For the next three columns we restrict

our attention only to the mines we detect with the prediction model. Those are open pit

mines detectable via satellite, and consequently exclude mining titles without evidences

of open pit mining. Column 3, presents the results of excluding mining titles without

evidence of open pit extraction. Column 4 separates the downstream measure by the

legality of the mine and in Column 5 we separate the near measure by legality of the

mine. Note that when we include the illegal mines, in Column 2, the magnitude of the

coefficient of downstream from mine almost doubles. When we separate by legality of the

mine the coefficients indicate that the impacts are larger in illegal mines: The p-value of

a test of equality is .028 . In Table 21 in the Appendix we repeat the specification in

Column 4 separating by size of the mines, and we find that for all sizes the magnitude

of the coefficients for illegal mines are at least five times larger. These results point to

another unintended effect of the reform: larger health effects.

It is possible that in the specification above the timing of an illegal mine opening

coincides with a reduction in the health of newborns for an alternative factor. Recall that

we include municipality fixed effects so it has to be a time varying factor. For example,

if an armed group took control of the municipality, reduced funding for the hospital and

started illegal mining operations. To alleviate this concerns, we instrument the opening

of an illegal mine upstream with the reform. Specifically we use as instrument “After X

Weak Institutions Municipality Upstream”. These variables predict an increase in illegal

mining as we showed in the previous section, and confirm in Column 1 of Table 8. In

Column 2, we invert the flow of the river to show this relationship is not driven by spatial

correlation.35 Table 9 present the results of the instrumental variable estimation. It shows

35There are less observations because the municipalities are not perfectly paired upstream/downstream,
but there are more municipalities downstream from a single municipality.
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Table 7: Differential health effects of legal and illegal mines

Dependent variable: High APGAR
(1) (2) (3) (4) (5)

Near Mine 0.49 0.63* 0.72 0.63
(0.36) (0.34) (0.48) (0.50)

Downstream from mine -0.30* -0.71* -0.56
(0.16) (0.38) (0.49)

Downstream from legal mine only 0.17 -0.17
(0.50) (0.60)

Downstream from illegal mine only -0.68 -0.64
(0.52) (0.48)

Downstream from both types of mines -0.71 -0.58
(0.55) (0.53)

Near legal mine only 1.30
(0.84)

Near illegal mine only 0.17
(0.46)

Near both types of mines -0.012
(0.51)

Mines Titles All Open pit Open pit Open pit
N. of observations (babies) 3632569 3632569 3129368 3129368 3129368
Mean of Dep. Var. 95.2 95.2 95.2 95.2 95.2
p-value (H0:Legal=Illegal) 0.028 0.17

p-values for tests of coefficients for downstream from illegal equal to downstream from legal are .028 and .166 , respectively.

All regressions include mother characteristics, municipality FE, week FE, year FE, and state trends. Standard errors,

clustered by municipalities, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 8: First stage predicting illegal mining upstream with the reform

Dependent variable: Downstream from illegal mining
(1)

After X Weak Institutions Municipality Upstream 0.14***
(0.051)

After X Weak Institutions Municipality Downstream -0.033
(0.030)

N. of observations 2861263 593096
Municipalities 572 121
Mean of Dep. Var. 0.79 0.92
R2 0.75 0.73
F-stat 7.57 1.21

All regressions include municipality FE, year FE, and state trends. Standard errors, clustered by municipalities, are in parentheses. ∗ p < 0.10,

∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 9: Instrumental variable estimation with the reform

Dependent variable: High APGAR
(1) (2)

Downstream from illegal mine -0.73* -2.46*
(0.39) (1.44)

Method OLS IV Inst
N. of observations 2861263 2861263
Municipalities 572 572
Mean of Dep. Var. 95.2 95.2
R2 0.012 0.012

All regressions include mother characteristics, municipality FE, week FE, year FE, and state trends. Standard errors, clustered by municipal-

ities, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

that the effect of illegal mining upstream is even larger than the ordinary least squares

coefficient from before.

8 Conclusions

In this paper, we studied a reform in Colombia that reduced the share of tax revenue

allocated to mining municipalities. The reform dramatically lowered the revenue local

governments receive from legal mining in their territory and consequently their incentives

to report illegal mining. Studying tax evasion and illegal activities is difficult as, almost

by definition, these activities are hard to observe and the data is often scant and unreli-

able. We overcome this obstacle by using machine learning algorithms applied to satellite
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data to measure illegal mining over time.

We find that illegal mining increased in Colombia by 4.47 percentage points as a share of

the mined area. This implies imply that of every dollar redistributed, 7-21 cents are lost

through evasion. We rationalize our results in a model of bribe bargaining between the

local authority and the miner. In addition, we document larger negative effects of illegal

gold mines on newborn’s health. These are equivalent to additional 4-13 cents on human

capital costs.

The increase in illegal mining illustrates the difficulties of redistributing resources. Given

the trend towards decentralized budgeting of local public goods, our results point to the

importance of connecting tax revenue and spending. Local authorities should have incen-

tives aligned with their tax revenue and the national government monitor the externalities.

Another straightforward recommendation is to increase monitoring of illegal activity, es-

pecially using the satellite techniques illustrated in this paper. For example, India recently

announced a policy along these lines.36 However, illegal miners could respond by resorting

to more underground mining, rendering monitoring more difficult.
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Appendix A Additional Figures and Tables

Figure 4: Theoretical predictions of the income effect of the reform

Change in percentage of area mined illegally before and after the reform, depending on the function the
local authority uses to value the local municipality budget.
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Table 10: Production of mineral commodities in 2013

Country Aluminum Copper Gold Iron ore Steel Lead Nickel Silver Tin
Brazil 34,171 271 79,573 386,270 34,163 19 105 – 16,830

Colombia – 1 55,745 710 1,297 – 70 14 –
Ecuador – – 2,800 – 562 – – 1 –
Panama – – 2,099 – – – – – –

Peru – 1,286 151,486 10,126 1,069 266 – 3,407 23,688
Venezuela 2,312 – 1,691 10,583 2,250 – 6 – –

Gold production in kilograms. Silver and Tin production in metric tons. Other minerals in thousand
metric tons. Source: USGS http://minerals.usgs.gov/minerals/pubs/country/sa.html.

Table 11: Summary statistics illegal mining as fraction of total municipality area
All Winners Losers Difference

Pct. of area illegal Colombia before 0.35 0.29 0.66 0.37∗∗∗

(1.24) (0.95) (2.15) (0.039)
Pct. of area illegal Colombia after 0.88 0.77 1.47 0.71∗∗∗

(2.47) (2.24) (3.37) (0.13)
Pct. of area illegal Peru before 16.4 16.4 . -16.4∗∗∗

(23.8) (23.8) (.) (0.20)
Pct. of area illegal Peru after 18.9 18.9 . -18.9∗∗∗

(24.4) (24.4) (.) (0.34)

An observation is a municipality-year. Calculations: Authors.

Figure 5: Visual representation of parallel trends assumption
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The x-axis plots time in years and the y-axis the coefficient of the indicator of Colombia interacted with
the respective year. 2010 is the excluded year.
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Figure 6: Heterogeneous effects of the reform by different municipal characteristics
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Regression results are presented in Table 27 and 28 in the online Appendix.

Table 12: Results selecting optimal controls with Lasso style procedure

Dependent variable: % of new mined area mined illegally
(1) (2) (3)

After x Colombia 2.29*** 2.00*** 5.35***
(0.61) (0.59) (0.75)

After x Peru -0.86
(0.64)

Time FE-Trend Trend Trend TimeFE
N. of obs. 5156 11568 11608
Municipalities 816 1549 1552
Mean of Dep. Var. 92.2 88.6 88.6
R2 0.67 0.72 0.72

All regressions include municipality fixed effects and linear trend. Standard errors, clustered by munici-
palities, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 13: Results municipalities closer to the Colombian-Peru border

Dependent variable: % of mined area mined illegally
All < 1, 000km < 500km
(1) (2) (3)

After x Colombia 1.48*** 1.29** 0.80
(0.51) (0.54) (0.85)

After x Peru -1.35*** -1.86*** -1.00
(0.39) (0.68) (1.67)

N. of obs. 26355 15609 2511
Municipalities 2733 1718 279
Mean of Dep. Var. 85.2 86.1 90.0
R2 0.73 0.73 0.72

All regressions include municipality fixed effects and country linear trends. Standard errors, clustered by
municipalities, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 14: Results using different cutoff for mining predictions

Dependent variable: % of mined area mined illegally
Only Colombia With Peru

(1) (2) (3)

After x Colombia 3.02*** 2.76*** 7.55***
(0.31) (0.29) (0.44)

After x Peru -0.95***
(0.29)

Time FE-Trend Trend Trend TimeFE
N. of obs. 10207 28904 28971
Municipalities 940 2748 2748
Mean of Dep. Var. 75.9 82.4 82.4
R2 0.79 0.77 0.77

The cutoff for declaring a pixel as mined in this regressions has a TPR of 80% and a FPR of 20%.
All regressions include municipality fixed effects. Standard errors, clustered by municipalities, are in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 15: Results using pixels mined probabilities

Dependent variable: % of mined area mined illegally
Mined: Dummy Probability

(1) (2)

After x Colombia 1.48*** 1.18**
(0.53) (0.49)

N. of obs. 8796 9952
Municipalities 927 940
Mean of Dep. Var. 86.2 84.1
R2 0.79 0.76

All regressions include municipality fixed effects and linear trend. Standard errors, clustered by munici-
palities, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 16: Results selecting optimal controls with Lasso style procedure

Dependent variable: % area illegal % mined illegal
(1) (2) (3) (4) (5) (6)

After 0.17*** 0.054* 0.16*** 1.88*** 1.13** 1.74***
(0.031) (0.030) (0.023) (0.49) (0.53) (0.49)

After x Pctg Budget Loss 0.0058 0.0046 0.0051 0.044* 0.033 0.036
(0.0038) (0.0037) (0.0037) (0.023) (0.022) (0.022)

Controls Main All DLasso Main All DLasso
N. of obs. 9342 9225 9225 8211 8103 8103
Municipalities 944 944 944 932 932 932
Mean of Dep. Var. 0.56 0.55 0.55 88.2 88.2 88.2
R2 0.79 0.78 0.78 0.81 0.81 0.81

“Basic” repeats the main specification controlling only for the price index, Columns 1 and 4 respectively.
The number of observations is different because when lagged variables are included, we lose the first year
in the sample. “All” includes the price index, population, armed groups homicides and all these variables
squared, lagged, interacted among them, interacted with linear trend, and interacted with quadratic
trend. “DLasso” includes the variables from the “All” selected from a Double Lasso procedure: in this
case the model only selects lagged price. Standard errors, clustered by municipalities, are in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 17: Results using the adjusted measure of illegal mining

Dependent variable: % of mined illegal adjusted
(1) (2) (3)

After x Colombia 3.20*** 3.31*** 6.59***
(0.54) (0.58) (0.70)

After x Peru -2.37***
(0.40)

N. of obs. 2801 17759 17759
Municipalities 495 2183 2183
Mean of Dep. Var. 92.2 92.2 83.7
R2 0.94 0.77 0.79

All regressions include municipality fixed effects and control for the price index. Standard errors, clustered
by municipalities, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 18: Results using other measures of illegal mining

Dependent variable: % municipality area Area illegal Log (Area+1)
(1) (2) (3)

After x Colombia 0.17*** 1.26*** 0.068***
(0.029) (0.33) (0.0099)

N. of obs. 10204 10204 10204
Municipalities 940 940 940
Mean of Dep. Var. 0.49 2.90 0.49
R2 0.74 0.56 0.89

All regressions include municipality fixed effects, and control for the price index. Standard errors, clus-
tered by municipalities, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 19: Results using weights by fraction of municipality analyzed

Dependent variable: % mined area mined illegally
(1) (2) (3) (4)

After x Colombia 1.48*** 1.51*** 1.48*** 1.52***
(0.53) (0.49) (0.51) (0.48)

After x Peru -1.35*** -1.62***
(0.39) (0.34)

Weights Yes No Yes
N. of obs. 8796 704106 26355 1673601
Municipalities 927 927 2733 2732
Mean of Dep. Var. 86.2 86.0 85.2 85.1
R2 0.79 0.80 0.73 0.78

All regressions include municipality fixed effects and control for the price index. Standard errors, clustered
by municipalities, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 20: Results using state trends

Dependent variable: % mined area mined illegally
(1) (2) (3) (4)

After x Colombia 1.48*** 1.33** 1.48*** 1.47***
(0.53) (0.52) (0.51) (0.51)

After x Peru -1.35*** -1.35***
(0.39) (0.39)

State trends No Yes No Yes
N. of obs. 8796 8796 26355 26355
Municipalities 927 927 2733 2733
Mean of Dep. Var. 86.2 86.2 85.2 85.2
R2 0.79 0.79 0.73 0.73

All regressions include municipality fixed effects and control for the price index. Standard errors, clustered
by municipalities, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Appendix B Constructing the illegal mining data

As illegal mining is not observable in government records, we use satellite images and

a statistical model to detect the evolution of illegal mining through time. This requires

many steps and computing time, as described below:

• Identify images from the Landsat7 satellite that cover Colombia for the years 2004-

2014, on the web page of the U.S. Geological Survey http://earthexplorer.usgs.gov/
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Table 21: Differential health effects of legal and illegal mines

Dependent variable: High APGAR
(1) (2)

Near open pit mine 0.72 0.77
(0.60) (0.58)

Downstream from open pit mine q1 -0.42
(0.59)

Downstream from open pit mine q2 -0.55
(0.57)

Downstream from open pit mine q3 -0.39
(0.56)

Downstream from open pit mine q4 -0.20
(0.64)

Downstream from legal open pit mine q1 -0.10
(0.14)

Downstream from illegal open pit mine q1 -0.82
(0.56)

Downstream from legal open pit mine q2 -0.17
(0.17)

Downstream from illegal open pit mine q2 -0.97*
(0.53)

Downstream from legal open pit mine q3 -0.065
(0.26)

Downstream from illegal open pit mine q3 -0.64
(0.50)

Downstream from legal open pit mine q4 0.12
(0.41)

Downstream from illegal open pit mine q4 -0.63
(0.54)

N. of observations (babies) 2585545 2585545
Municipalities 614 614
Mean of Dep. Var. 95.5 95.5
R2 0.017 0.017

All regressions include mother characteristics, municipality FE, week FE, year FE, and state trends. Standard errors,

clustered by municipalities, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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. The satellite takes a picture of each square (“path-row”) of the earth every two

weeks.

Figure 7: Scenes (Path,row) from LANDSAT 7 covering Colombia

3, 57

3, 58

3, 59

4, 56

4, 57

4, 58

4, 59

4, 60

4, 61

4, 62

4, 63

5, 55

5, 56

5, 57

5, 58

5, 59

5, 60

5, 61

5, 62

6, 55

6, 56

6, 57

6, 58

6, 59

6, 60

6, 61

6, 62

7, 51

7, 52

7, 54

7, 55

7, 56

7, 57

7, 58

7, 59

7, 60

7, 61

8, 51

8, 52

8, 53

8, 54

8, 55

8, 56

8, 57

8, 58

8, 59

8, 60

9, 52

9, 53

9, 54

9, 55

9, 56

9, 57

9, 58

9, 59

9, 60

10, 53

10, 54

10, 55

10, 56

10, 57

10, 58

10, 59

11, 54

11, 55

11, 59

• Download the necessary surface reflectance images from http://espa.cr.usgs.gov/

using UTM-18 projection. There are on average 550 images per year, each one

around 230MB when compressed. That is a total of around 1.5TB of raw data.

• We use the program teamlucc (http://azvoleff.com/teamlucc.html), with slight mod-

ifications we encountered on the process, to remove clouds and adjust for topography

so that the data can be used in the prediction model.

• Given the presence of clouds, we need to construct a cloudless composite for every

year. That is we look for a cloudless image of each pixel and create a new image

with information from the image when the pixel was cloud free. This process takes

around 120 days of computer time.
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• The resolution of Landsat is 30x30m so we cannot use shape recognition. See below

for an illustration.

Figure 8:

Source: (Jensen, 2007)

• In order to train the prediction model we need to label pixels as mined or not mined.

For this we use the 2010 Mining Census that give us the location and area of all the
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mines in half the municipalities of the country. Before using the Census data we

have to remove mines whose coordinates are not inside the indicated municipality,

or have missing values, or have values for minutes or second not between 0 and 60.

We only include open pit mines, because those are the ones we expect to observe

evidence of mining using the satellite images.

• We validate the presence of mines on the coordinates stated on the Census by using

high-resolution images from Digital Globe (https://www.digitalglobe.com/). This

allows us to draw the exact shape of the mine.

• Our training data frame consist of a matrix with 9 columns (variables) and 168,000

rows (observations or pixels). The columns are the 6 bands of the satellite infor-

mation 37, the information on how long ago the pixel was deforested ((Hansen et

al., 2013)), ecosystem type (Etter, 2006) and an indicator of whether the pixel is a

mine or not (from the validated images of the Census).

Figure 9: Visual representation of transforming the satellite data into a data frame

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6
Loss 

year
Ecosystem

207 246 211.5 0 0 364 10 25

204 247 209 0 0 362.5 10 25

205.5 248.5 210.5 0 0 362 10 25

99 147 77.5 1227 495 197.5 0 25

• We split the sample into training and testing sets, by dividing the country into

40km×40km squares. We further subdivide each square into 4 squares and randomly

choose one for testing and the other three for training. We do not take a random

25% sample for testing because each pixel is fairly similar to its neighbors, so it is

better to stratify this way.

37Band 1 (blue), Band 2 (Green), Band 3 (Red), Band 4 (Near infrared), Band 5 (Shortwave infrared
1) and Band 7 (Shortwave infrared 2)
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Figure 10: Visual representation of training and testing data

band1 band2 band3 band4 band5 band6 lossy eco label

403 727 672 1459.5 2247 1159 0 13 1

372 686 617 1479.5 2342 1114 0 13 1

355 643 509 1214.5 1920 881 0 13 1

405 701 632 1434 2236 1112 0 13 1

405 701 632 1432 2232 1111 0 13 1

363 664 589 1391 2193 1027 0 13 1

327 625 553 1328 2103 969 0 13 1

335 618 556 1336 2116 995 0 13 1

360 634 524 1285.5 2047 895 0 13 1

394 676 594 1392 2190 1035 0 13 1

348 644 545 1286 2027 908 0 13 1

317 600 519 1208.5 1898 881 0 13 1

308 585 498 1231.5 1965 854 0 13 1

308 585 498 1231.5 1965 854 0 13 1

301 539 461 1154 1847 814 0 13 1

389 678 562 1369 2176 996 0 13 1

335 639 521 1259.5 1998 836 0 13 1

317 589 508 1182 1856 855 0 13 1

293 558 459 1132 1805 732 0 13 1

305 507 409 1072 1735 772 0 13 1

25% Testing
Precision 

79%

Mine

No Mine

No Mine

No Mine

• We try boosting, support vector machines with radial kernels and random forest

models in a small subsample of the data. For all three models we try down-sampling

and smote. The best parameters for each case where chosen by 10-fold cross vali-

dation. Based on the results in the subsample we decide to fit a random forest by

down-sampling in the whole dataset.

• The random forest consists of 100 trees so it is difficult to represent its structure.

However we can consider the “importance” of each variable for the prediction.
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Figure 11:

When we train the model using UNODC data only for gold mines the classification is

not good. Classifying some gold mined pixels as mines immediately miss-classifies non-

gold-mined pixels as mined. In other words the FPR is high, and the formula of optimal

cutoff obtains that is best not to do any prediction unless one assign less weight to the

FPR.
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Figure 12: ROC curve for the mining prediction model trained with UNODC data.
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The receiver operating characteristic- ROC curve plots the performance of a binary classification model
when varying the cutoff threshold. The false positive rate (FPR)–the percentage of true no-mined pixels
incorrectly classified as mined pixels–is on the x-axis. The true positive rate (TPR)–the percentage of
correctly classified true mine pixel–is on the y-axis. As we decrease the cutoff to declare a mine, we
accurately classify more true mined pixels as mined, but also increase the number of no-mined pixels
incorrectly classified as mined.

B.1 Weak law of large numbers for correlated Bernoulli’s ran-

dom variables among pixels

Let’s assume that |cov(Xi, Xj)| ≤ cdist(i,j). We need to find a bound for
∑n

j=1 cov(Xi, Xj).

The largest sum of covariances will be for a pixel right in the center, because it will have

the shortest distances to other pixels. For ease of exposition let’s assume n = (2k + 1)2,

and consider pixel i in the center. This pixel will have its 8 neighbors, the 16 pixels

surrounding them, and so on. The exact expression is:

n∑
j=1

cov(Xi, Xj) ≤ c+ 8c2 + 16c3 + . . .+ 8kck+1
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With some manipulation it can be shown that

n∑
j=1

cov(Xi, Xj) ≤ c+
8c2(1− ck)k

1− c

Consequently using Chebyshev’s inequality

Appendix C Further analysis

C.1 Estimate dollars lost to evasion and health costs

Dollars lost trough evasion

We estimate the dollars lost trough evasion in three steps. First we convert our coefficient

of the effect of the reform into area illegally mined. Then we calculate the dollars lost in

titles fees and finally the dollars lost in royalty taxes. The coefficient of “After the reform”

when illegal mining is measured as percentage of municipality area is 0.13 (Column 2,

Table 18. The analyzed area is 457, 840km2, consequently illegal mining increased by

595km2. The coefficient of “After X Loser” in that specification is 0.29. The analyzed

area in loser municipalities is 136, 170km2. This represents additional 395km2 in the

losers, for a total of 990km2 = 99, 000ha increase in illegal mining due to the reform.

The title fee per year is equivalent to a daily legal minimum wage ($10.5) per ha, for a

total of $1M lost title fees. Around half a kilo of gold is extracted per ha,38, the price of

gold per kg is $ 44,000, and the royalties rate for gold is 5%. Multiplying these quantities

we get $ 1,100 lost in revenue per hectare. We estimate that around 40% of the area

illegally mined extracts gold, therefore at least $44M of royalties revenue are lost with

the reform. Compared to the total mining royalties of $660M , this is equivalent to 7 cents

per dollar.

Additional health cost

We would like to have information on the health effects of mining on the surrounding

population. Unfortunately we only have estimates for newborns so our estimates are a

lower bound for the total health effects. We proceed in two steps. First, we estimate the

cost per affected baby and then we estimate the number of affected babies. The effect

of being born with low APGAR is a reduction of -2.6 IQ points (Ehrenstein, 2009). The

38http://phenomena.nationalgeographic.com/2013/10/28/gold-mining-in-peru-is-much-worse-than-
anyone-thought/
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association between IQ points and wages is 0.53% per IQ point (Psacharopoulos & Velez,

1992). The minimum monthly wage in Colombia in 2011 was $ 240 and we assume each

person works for 40 years. Multiplying these quantities we obtain that the estimated cost

per affected baby is $1,590.

The differential APGAR effect from illegal mining is −0.7 percentage points. We estimate

there are 269, 398 babies born downstream from mines in 2011. Therefore the number of

affected babies is 1,886, with a total of $3M in newborn health costs. The gold royalties

were $66M , so a lower bound is for every dollar redistributed at least 4 cents of health

costs are accrued.

C.2 Heterogeneous treatment effects in loser municipalities

It is possible to analyze heterogeneous effects in the loser municipalities. Instead of choos-

ing a particular variable to present heterogeneous effects, we use another machine learning

technique to let the data highlight the most relevant variable. Athey and Imbens (2016)

introduces “honest causal trees” to identify subgroups with heterogeneous treatment ef-

fects. The “honest” part is because it incorporates in the objective function that there

is out-of-sample estimation, and the “causal” part reflects that we are in the potential

outcomes framework so municipalities are observed as winners or losers. The idea is to

divide the data into three sub-samples: one sub-sample (A) to create the tree-splitting

structure of similar sub-groups; sub-sample (B) to estimate the treatment effects; and the

last sub-sample (C) to validate the results. If the same sample were to be used for the

tree partition and the estimation of treatment effects, the confidence intervals would not

be valid.

The results are presented in Table 22. In Column 1 we repeat our main specification

in the whole sample for ease of comparison, in Column 2 we do the same specification

in sub-sample C and in the last column we present the specification with the sub-groups

identified. In this case the variable chosen to partition the data is the number of in-

stitutions per capita in the municipality. Here, we are underpowered because only 148

municipalities are losers, so splitting the municipalities into three sub-samples and two

sub-groups results in only around 25 treated observations per sub-group. Although the

results are not statistically significant, they suggest the effect of the reform was larger in

municipalities with weak national government presence. Finally, in an Altonji test, the

identified set for the coefficient of “After X Pct. Budget Loss”, βL, is (.05 ,.07 ) percentage

points.
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Table 22: Heterogeneous effects of the reform in loser municipalities

Dependent variable:% of total area mined illegally
(1) (2) (3)

After 0.13*** 0.15* 0.095
(0.037) (0.085) (0.098)

After x Loser 0.29** 0.31 0.19
(0.13) (0.21) (0.16)

After x Group 0.25
(0.22)

After x Loser x Group 0.34
(0.61)

Sample
N. of obs. 10267 3299 3299
Municipalities 944 302 302
Mean of Dep. Var. 0.53 0.53 0.53
R2 0.77 0.77 0.77

All regressions include municipality fixed effects, linear trend and control for the price index. Standard
errors, clustered by municipalities, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

C.3 Positive effects of the reform?

The reform was mainly intended to reduce regional inequality. Therefore, we examine

whether the unintended increase in illegal mining is compensated by an improvement in

socioeconomic indicators in municipalities that won with the reform. We lack information

to conduct a complete cost-benefit analysis but we can look at infant mortality, given that

health is one of the items royalties should be spent on. Results are presented in Table 23.

Columns 1 and 2 are our standard specifications using infant mortality as the dependent

variable. In Column 3 we use the percentage of budget loss, and in Column 4 we try to

separate the effects of winning and losing with the reform. Finally in Columns 5 and 6 we

repeat the specification of Column 4 separated by municipalities without and with armed

groups. We find evidence that infant mortality in municipalities that lost with the reform

did not improve as much as it did in those that won. When we decompose the results in

Column 4, we observe that in municipalities that won more the improvement is greater.

Surprisingly, the improvements are concentrated in municipalities with armed groups. We

were expecting more budget capture in those municipalities, however the coefficient could

also be capturing reduced pollution of less illegal mining.
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Table 23: Change in infant mortality rate

Dependent variable: Infant Mortality Rate
(1) (2) (3) (4) (5) (6)

After -0.30***
(0.044)

After x Loser -0.24* -0.24*
(0.14) (0.14)

After x Pctg Budget Loss -0.0040
(0.0051)

After x Pctg Budget Loss if Loss -0.024***
(0.0077)

After x Pctg Budget Win if Won -0.039***
(0.011)

Time FE
Linear Trend
N. of obs. 8398 8398 8398 8398
Municipalities 944 944 944 944
Mean of Dep. Var. 21.4 21.4 21.4 21.4
R2 0.99 0.99 0.99 0.99

All regressions include municipality fixed effects. Standard errors, clustered by municipalities, are in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

C.4 Effects on municipalities with mineral resources and prone

to satellite detection

We expect to detect the effects of the reform mostly in municipalities where mining is open

pit given that we use satellite data to construct our measure. To check this, we run our

main specification separating by satellite-prone municipalities. In our definition, satellite-

prone municipalities are those where the Census indicates there is open-pit extraction, or

if they were not included in the Census, where there is extraction of minerals that in most

municipalities are mined using open-pit methods. Results are presented in Table 24. The

results suggest that most of the effects are in satelliteprone municipalities.
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Table 24: Results by satellite-prone municipalities

Dependent variable:Pctg of mined area mined illegally
All Satellite-prone Not satellite-prone
(1) (2) (3)

After 0.13*** 0.16*** 0.052
(0.037) (0.043) (0.032)

After x Loser 0.29** 0.15 0.18
(0.13) (0.15) (0.18)

Time FE
Linear Trend
N. of obs. 10267 7031 2838
Municipalities 944 645 262
Mean of Dep. Var. 0.53 0.47 0.47
R2 0.77 0.72 0.72

All regressions include municipality fixed effects and control for the price index. Standard errors, clustered by municipalities,

are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

C.5 Endogenous response of municipalities to budget change

There are concerns that municipalities could have adjusted their local taxes in response

to the royalties reallocation. To study this possibility, we run our main regressions using

as the dependent variable one of two measures of local taxes. In Table 25, columns 1 and

2 use local taxes as a percentage of the municipal budget and columns 3 and 4 use local

taxes normalized to the value of local taxes in the municipality in 2004. We do not find

evidence of municipalities adjusting local taxes.
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Table 25: Endogenous response of municipalities to budget change

Dependent variable: Pctg own tax budget Normalized own tax budget
(1) (2) (3) (4)

After -1.52*** 19.0
(0.17) (14.1)

After x Loser 2.57*** 2.57*** 198.6 198.8
(0.55) (0.55) (128.6) (128.7)

Time FE No Yes No Yes
Linear Trend Yes No Yes No
N. of obs. 9282 9282 9220 9220
Municipalities 944 944 934 934
Mean of Dep. Var. 13.7 13.7 248.2 248.2
R2 0.91 0.91 0.41 0.41

All regressions include municipality fixed effects. Standard errors, clustered by municipalities, are in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix D Online Appendix

Figure 13: Evolution of illegal mining by winners and losers with the reform
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The x-axis plots time in years, with a vertical line when the reform happened. The y-axis represents our
estimate of percentage of area mined illegally as percentage of total municipality area.

55



Table 26: Summary statistics for municipalities separated by whether it was censused

All Censused Not Censused Difference

% Loss -4.03 -5.14 -3.10 2.04∗∗∗

(11.6) (10.3) (12.5) (0.76)
Royalties from precious metals 0.32 0.34 0.31 -0.032

(0.47) (0.47) (0.46) (0.031)
Royalties from oil-gas 0.14 0.11 0.16 0.051∗∗

(0.35) (0.31) (0.37) (0.023)
Armed group presence before reform 0.40 0.39 0.40 0.0074

(0.49) (0.49) (0.49) (0.032)
Population 25280.0 23160.5 27072.4 3911.9

(40628.4) (41049.0) (40223.3) (2685.3)
Area (km2) of municipality in raster 638.1 633.1 642.4 9.30

(1330.7) (1348.7) (1316.7) (88.1)

Summary statistics for municipalities used in the analysis. An observation is a municipality. All data
comes from CEDE’s municipalities panel, except the row that indicates is from the 2010 Mining Census.
Calculations: Authors.

Table 27: Heterogeneous effects of the reform

Dependent variable: % mined area mined illegally
Only Colombia

(1) (2) (3) (4) (5)

After x Colombia 1.63*** 0.87 1.96*** 1.36*** 0.23 0.39
(0.45) (0.56) (0.63) (0.51) (0.72) (0.77)

After X Weak Institutions 2.83***
(1.00)

After x Judiciary Strength -0.62
(0.96)

After X Oil-Gas 1.71*
(1.02)

After X High population 2.75***
(0.98)

After X Large area 2.14**
(1.00)

N. of obs. 8796 8455 8796 8796 8796 8796
Municipalities 927 890 927 927 927 927
Mean of Dep. Var. 93.7 93.6 93.7 93.7 93.7 93.7
R2 0.78 0.79 0.78 0.78 0.78 0.78

All regressions include municipality fixed effects and control for the price index. Standard errors, clustered
by municipalities, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 28: Heterogeneous effects of the reform

Dependent variable: % mined area mined illegally
Only Colombia

(1) (2) (3) (4) (5)

After x Colombia 1.63*** 1.40*** 1.94*** 1.68*** 2.16***
(0.45) (0.52) (0.60) (0.54) (0.71)

After x Loser 1.32
(1.00)

After x Armed Groups -0.76
(1.00)

After X Precious Metals -0.16
(1.11)

After X Poor -1.06
(0.97)

N. of obs. 8796 8796 8796 8796 8796
Municipalities 927 927 927 927 927
Mean of Dep. Var. 93.7 93.7 93.7 93.7 93.7
R2 0.78 0.78 0.78 0.78 0.78

All regressions include municipality fixed effects and control for the price index. Standard errors, clustered
by municipalities, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 29: Change in armed groups homicide rate

Dependent variable: Armed Group Homicides Rate
All No AG Bef Reform AG Bef Reform
(1) (2) (3)

After x Loser 1.21 -3.50 10.6
(11.0) (2.91) (25.4)

Mineral price index 0.13 0.0074 0.27
(0.12) (0.023) (0.30)

Time FE
N. of obs. 10267 6184 4083
Municipalities 944 568 376
Mean of Dep. Var. 24.5 1.65 59.1
R2 0.24 0.11 0.23

Standard errors, clustered by municipalities, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 30: Change in armed groups homicide rate

Dependent variable: Armed Group Homicides Rate
All No AG Bef Reform AG Bef Reform
(1) (2) (3)

After x Pctg Budget Loss 0.032 -0.078 0.29
(0.22) (0.064) (0.44)

Mineral price index 0.13 0.0078 0.26
(0.12) (0.023) (0.31)

Time FE
N. of obs. 10267 6184 4083
Municipalities 944 568 376
Mean of Dep. Var. 24.5 1.65 59.1
R2 0.24 0.11 0.23

Standard errors, clustered by municipalities, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 31: Change in armed groups homicide rate

Dependent variable: Armed Group Homicides
All No AG Bef Reform AG Bef Reform
(1) (2) (3)

After x Loser 0.084 -0.018 0.25
(0.36) (0.085) (0.84)

Mineral price index 0.0041 0.00027 0.0089
(0.0028) (0.00058) (0.0072)

Time FE
N. of obs. 10267 6184 4083
Municipalities 944 568 376
Mean of Dep. Var. 0.49 0.029 1.20
R2 0.27 0.11 0.26

Standard errors, clustered by municipalities, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 32: Change in armed groups homicide rate

Dependent variable: Armed Group Homicides
All No AG Bef Reform AG Bef Reform
(1) (2) (3)

After x Pctg Budget Loss 0.0023 -0.00074 0.0069
(0.0060) (0.0012) (0.012)

Mineral price index 0.0041 0.00027 0.0088
(0.0028) (0.00059) (0.0073)

Time FE
N. of obs. 10267 6184 4083
Municipalities 944 568 376
Mean of Dep. Var. 0.49 0.029 1.20
R2 0.27 0.11 0.26

Standard errors, clustered by municipalities, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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