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Abstract 

The Blinder-Oaxaca decomposition technique is widely used to identify and quantify the 

separate contributions of differences in measurable characteristics to group differences in 

an outcome of interest. The use of a linear probability model and the standard Blinder-

Oaxaca decomposition, however, can provide misleading estimates when the dependent 

variable is binary, especially when group differences are very large for an influential 

explanatory variable. A simulation method of performing a nonlinear decomposition that 

uses estimates from a logit, probit or other nonlinear model was first developed in a 

Journal of Labor Economics article (Fairlie 1999). This nonlinear decomposition 

technique has been used in nearly a thousand subsequent studies published in a wide 

range of fields and disciplines. In this paper, I address concerns over path dependence in 

using the nonlinear decomposition technique. I also present a straightforward method of 

incorporating sample weights in the technique. 

 

 

I thank Eric Aldrich and Ben Jann for comments and suggestions, and Brandon Heck for 

research assistance.



1. Introduction 

 The Blinder-Oaxaca decomposition technique has been used extensively to 

examine the potential causes of inter-group differences in outcome variables. A problem 

arises, however, if the outcome is qualitative and the coefficients are from a logit, probit, 

multinomial logit, or other nonlinear model. These coefficient estimates cannot be used 

directly in the standard Blinder-Oaxaca decomposition equations. Additionally, the use of 

a linear probability model and the standard Blinder-Oaxaca decomposition can provide 

misleading estimates especially when group differences are very large for an influential 

explanatory variable. A solution to this problem is a simulation algorithm first developed 

and published in the Journal of Labor Economics (Fairlie 1999) and revised slightly later 

in the same journal (Fairlie and Robb 2007). The technique uses the original nonlinear 

equation, such as a logit or probit, for both estimation and decomposition. Software code 

for the technique has been written for Stata, SAS and R making it relatively easy to 

implement in practice.1 

The nonlinear decomposition technique addresses the concern with the Blinder-

Oaxaca technique when group differences are large for an independent variable. The 

concern is related to the problem with the possibility of predicted probabilities lying 

outside of the (0,1) interval using the linear probability model, but is potentially more 

problematic. The decomposition expression essentially involves calculating the 

difference between the predicted probability for one group using the other group's 

regression coefficients and the predicted probability for that group using its own 

regression coefficients. Even at the means, the predictions involving one group with 

                                                           
1 See http://people.ucsc.edu/~rfairlie/decomposition/. 

http://people.ucsc.edu/~rfairlie/decomposition/
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another group's coefficients could be much lower than 0 or much larger than 1 resulting 

in misleading contribution estimates in the decomposition. Procedures that partially 

linearize the decomposition can suffer from a similar concern because they might load all 

of the weight on the one explanatory variable that has the extreme difference between 

groups even if the total difference is constrained. 

 The nonlinear decomposition technique due to (Fairlie 1999) has been used 

extensively in the literature to examine group differences across a wide range of 

outcomes, choices of groups, fields, and disciplines. The technique has been used to 

explore the potential causes of racial and gender differences in many different economic 

outcomes similar to the original applications of the Blinder-Oaxaca technique (Blinder 

1973 and Oaxaca 1973).2 The causes of differences in other individual characteristics 

have also been examined using the Fairlie (1999) nonlinear decomposition technique. For 

example, the technique has been used to examine differences between low-IQ and high-

IQ individuals in stock market participation rates (Grinblatt, Keloharju, and Linnainmaa: 

Journal of Finance 2011) and religion on child survival in India (Bhalotra, Valente, and 

van Soest: Journal of Health Economics 2010). The technique is not limited to exploring 

the potential causes of differences in race, gender or other individual characteristics, 

however, and has also be used to study differences over time, geographies and school 

types. For example, the technique has recently been used to analyze the causes of changes 

over time in mortality rates (Finks, Osborne and Birkmeyer: New England Journal of 

Medicine 2013) and childlessness (Hayford: Demography 2013), differences between 

                                                           
2 Racial and gender differences in other fields and disciplines have been examined with the technique. For 

example, it has been used to study the causes of gender differences in college major choice (Zafar: Journal 

of Human Resources 2013), low cholesterol (Sambamoorthi et al.: Women's Health Issues 2012), and racial 

differences in appendicitis (Livingston and Fairlie: JAMA: Surgery 2012). 
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contiguous and noncontiguous countries in conflicts (Reed and Chiba: American Journal 

of Political Science 2010), and differences between school types in teacher turnover rates 

(Stuit and Smith: Economics of Education Review 2012). 

 The main concern with the nonlinear decomposition technique is over path 

dependence due to the arbitrarily selected ordering of variables. Although not 

problematic in many applications, there is the concern that the decomposition estimates 

could be sensitive to the ordering of variables because of the nonlinearity of the 

prediction equations. This paper presents a simple and straightforward method of 

addressing the concern. Specifically, path dependence is addressed by randomly ordering 

the variables across replications of the decomposition. Randomly ordering variables 

preserves the summing up property in each replication and the correlation across 

characteristics within individuals, but removes the arbitrariness of the order in which 

variables are chosen when switching group distributions. With enough replications the 

procedure will converge to the decomposition in which the contribution from each 

variable is calculated from the average of all possible orderings of variables. 

 This paper also discusses how to incorporate sample weights in the 

decomposition. Similar to the unweighted decomposition in which a white subsample is 

randomly chosen, the weighted decomposition also involves drawing a white subsample, 

but in this case the probabilities of being randomly chosen are proportional to the sample 

weights. A black sample of equal size is also drawn randomly with weights proportional 

to sample weights. 

 Finally, the paper provides an empirical example that demonstrates the problem 

with the linear Blinder-Oaxaca technique when there are large differences between 
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groups in an independent variable. Furthermore, I demonstrate how partially linearized 

techniques for performing the decomposition can also provide misleading contribution 

estimates in some situations. 

 

2. Nonlinear Decomposition Technique 

For a linear regression, the standard Blinder-Oaxaca decomposition of the 

white/black gap (male/female, North//South, U.S./Country X, etc...) in the average value 

of the dependent variable, Y, can be expressed as: 

where jX is a row vector of average values of the independent variables and
ĵ is a vector 

of coefficient estimates for race j.  Following Fairlie (1999), the decomposition for a 

nonlinear equation, Y = F(X ̂ ), can be written as: 

 

where Nj is the sample size for race j.  This alternative expression for the decomposition 

is used because Y  does not necessarily equal F( X ̂ ).3  In both (2.1) and (2.2), the first 

term in brackets represents the part of the racial gap that is due to group differences in 

distributions of X, and the second term represents the part due to differences in the group 

processes determining levels of Y.  The second term also captures the portion of the racial 

gap due to group differences in unmeasurable or unobserved endowments.  Similar to 

                                                           
3 Note that the Blinder-Oaxaca decomposition is a special case of (2.2) in which F(Xiβ)= Xiβ. 
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most previous studies applying the decomposition technique, I do not focus on this 

"unexplained" portion of the gap because of the difficulty in interpreting results (see 

Jones 1983 and Cain 1986 for more discussion). 

To calculate the decomposition, define 
jY as the average probability of the binary 

outcome of interest for race j and F as the cumulative distribution function from the 

logistic distribution.  Equation (2.2) will hold exactly for the logit model that includes a 

constant term because the average value of the dependent variable must equal the average 

value of the predicted probabilities in the sample.4  The equality does not hold exactly for 

the probit model, in which F is defined as the cumulative distribution function from the 

standard normal distribution, but holds very closely as an empirical regularity. 

 An equally valid expression for the decomposition is: 
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In this case, the black coefficient estimates,
B̂ are used as weights for the first term in the 

decomposition, and the white distributions of the independent variables, WX are used as 

weights for the second term.  This alternative method of calculating the decomposition 

often provides different estimates, which is the familiar index problem with the Blinder-

Oaxaca decomposition technique. Alternatively, the first term of the decomposition 

expression could be weighted using coefficient estimates from a pooled sample of the 

                                                           
4 In contrast, the predicted probability evaluated at the means of the independent variables is not 

necessarily equal to the proportion of ones, and in the sample used below it is larger because the 

logit function is concave for values greater than 0.5. 
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two groups as suggested in Oaxaca and Ransom (1994) or all racial and ethnic groups as 

suggested in Fairlie and Robb (2007). I return to this issue below. 

 The first terms in (2.2) and (2.3) provide an estimate of the contribution of racial 

differences in the entire set of independent variables to the racial gap in the dependent 

variable.  Estimation of the total contribution is relatively simple as one only needs to 

calculate two sets of predicted probabilities and take the difference between the average 

values of the two.  Identifying the contribution of group differences in specific variables 

to the racial gap, however, is not as straightforward.  To simplify, first assume that 

NB=NW and that there exists a natural one-to-one matching of black and white 

observations.  Using coefficient estimates from a logit regression for a pooled sample,
*̂ , 

the independent contribution of X1 to the racial gap can then be expressed as: 

 

Similarly, the contribution of X2 can be expressed as: 

 

The contribution of each variable to the gap is thus equal to the change in the average 

predicted probability from replacing the black distribution with the white distribution of 

that variable while holding the distributions of the other variable constant. A useful 

property of this technique is that the sum of the contributions from individual variables 

will be equal to the total contribution from all of the variables evaluated with the full 

sample. 
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 One problem, however, is that unlike in the linear case, the independent 

contributions of X1 and X2 depend on the value of the other variable.  This implies that 

the choice of a variable as X1 or X2 (or the order of switching the distributions) is 

potentially important in calculating its contribution to the racial gap. I discuss a 

straightforward solution to address this problem of path dependence in the next section. 

 Standard errors can also be calculated for these estimates.  Following Oaxaca and 

Ransom (1998), I use the delta method to approximate standard errors.  To simplify 

notation, rewrite (2.4) as: 
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  and f is the logistic probability 

density function. 

In practice, the sample sizes of the two groups are rarely the same and a one-to-

one matching of observations from the two samples is needed to calculate (2.4), (2.5), 

and (2.7).  In this example, it is likely that the black sample size is substantially smaller 

than the white sample size. A convenient method to address this problem is to draw a 

random subsample of whites with or without replacement of equal size to the full black 

sample (NB).5 Each observation in the randomly drawn white subsample is matched 

                                                           
5 The choice over drawing the white subsample with or without replacement is unimportant if enough 

replications of the procedure are performed. As more replications are performed the decomposition 
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randomly to an observation in the full black sample. Originally, the technique involved 

matching the white subsample and the full black sample by their respective rankings in 

predicted probabilities (Fairlie 1999).6 More recently, however, the technique has been 

revised to randomly match the white subsample and full black sample (Fairlie and Robb 

2007), which is more in line with the goal of hypothetically matching all white 

observations to all black observations.7 

The decomposition estimates obtained from this procedure depend on the 

randomly chosen subsample of whites. Ideally, the results from the decomposition should 

approximate those from matching the entire white sample to the entire black sample. A 

simple method of approximating this hypothetical decomposition is to draw a large 

number of random subsamples of whites, randomly match each of these randomly drawn 

subsamples of whites to the full black sample, and calculate separate decomposition 

estimates. The mean value of estimates from the separate decompositions is calculated 

and used to approximate the results for the entire white sample.8 

To ensure that the full white distribution is approximated a large number of 

replications should be performed. Depending on computational speed and complexity of 

the model, I recommend drawing 1,000 subsamples if feasible.9 Increasing the number of 

                                                           

estimates will converge to the same value. As discussed further below, however, sampling with 

replacement is preferred when incorporating sample weights because sampling weights could differ widely 

across observations. 
6 To match by predicted probabilities, one set of coefficient estimates (white, black or pooled) are first used 

to calculate predicted probabilities for each black and white observation in the sample (Fairlie 1999). Then 

each observation in the randomly chosen white subsample and full black sample is separately ranked by the 

predicted probabilities and matched by their respective rankings. 
7 Fairlie (2003, 2005) finds estimates that are not overly sensitive to this choice. 
8 An example of the code used in Stata is provided in Appendix A1. 
9 See Appendix A2 for setting the number of replications to 1,000 in Stata. In Fairlie (2005) I find that 

estimates for the main specification are identical to the 4th decimal place using 10,000 simulations for all 

contributions except two groups of variables (which were both less than 0.0001 different).  In fact, using 

only 100 simulations provided contribution estimates that are identical to the 4th decimal place except for 
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replications might be important in some applications, and when randomizing the order of 

variables or using sample weights as discussed below. When randomizing the order of 

variables it is especially important to increase the number of replications (1,000 should be 

considered a minimum number for most applications). 

 

Pooled Estimates 

 As discussed above, an alternative to weighting the first term of the 

decomposition expression using coefficient estimates from a white sample as presented in 

(2.2) or the black sample as presented in (2.3) is to use coefficient estimates from a 

pooled sample of the two groups as suggested in Oaxaca and Ransom (1994).10 Both 

groups contribute to the estimation of the parameters instead of only one group. It is 

essential to include a dummy variable for black race in the regression to remove any 

influence on the coefficients from racial differences that are correlated with any of the 

explanatory variables.   

 An alternative approach, which is becoming increasingly popular when studying 

racial differences, however, is to use the full sample of all races to estimate the 

coefficients (Fairlie and Robb 2007). This version of the pooled sample is advantageous 

in that it incorporates the full market response and does not exclude rapidly growing 

groups of the population (i.e. Hispanics and Asians).11 Again, it is important to include 

the full set of racial and ethnic dummy variables in the regression specification. In the 

                                                           

only two groups of variables (which are both less than 0.0002 different). But, this insensitivity might not 

hold for more complicated models. 
10 Appendix A1 provides an example of Stata code for using the pooled estimates. Appendix A3 provides 

an example where instead the white sample is used to estimate the coefficients (i.e. equation 2.2) and 

Appendix A4 provides an example where the black sample is used (i.e. equation 2.3). 
11 An example of the Stata code is provided in Appendix A5. 
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end, the choice across these alternative methods of calculating the first term of the 

decomposition is difficult and depends on the application with many studies reporting 

results for more than one specification. 

 

3. Path Dependence 

 A potential concern in using the nonlinear decomposition technique is the effect 

of the ordering of variables on the results.  As noted above, because of the nonlinearity of 

the decomposition equation the results may be path dependent. Often researchers will 

experiment with reversing the order of switching distributions of variables, and in many 

cases the results will not be overly sensitive to that ordering. One important feature of the 

decomposition technique is that the total contribution, however, remains unchanged 

because the sum of the individual contributions, regardless of their order, must equal the 

total contribution defined in (2.2) or (2.3). 

The sensitivity of estimates to the reordering of variables, however, depends on 

the application. The initial location in the logistic distribution and the total movement 

along the distribution from switching distributions of other variables both contribute to 

how sensitive the results are to the ordering of variables. If the results vary across 

different orderings of the variables then randomizing the ordering of variables can solve 

the problem. In fact, the ordering of switching distributions can be conveniently 

randomized at the same time as drawing the random subsample of whites. By using a 

large number of replications the procedure will approximate the average decomposition 

across all possible orderings of variables while preserving the summing up property. 
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Table 1 presents decomposition estimates for an application for explaining racial 

differences in computer ownership originally discussed in Fairlie (2003, 2005). The 

nonlinear decomposition results from the original ordering of variables are presented 

along with the random ordering of variables and the reverse order ordering of variables.12 

There are some differences in contribution estimates for a few variables between the 

original ordering of variables and the reverse ordering of variables. Reassuringly, the 

random ordering of variables results in decomposition estimates that lie between 

estimates from the two orderings of variables. Although the differences in contribution 

estimates resulting from different orderings of variables are relatively small, with the 

availability of faster computing randomizing the order of variables is straightforward. 

Faster computers have made this increasingly feasible even with very large datasets and 

complicated underlying regression models. 

 

4. Comparison to Linear and Partially Linearized Methods 

Concerns over path dependence have been the main criticism of the Fairlie (2009) 

nonlinear decomposition technique, and has been used to justify use of the linear Blinder-

Oaxaca technique or the alternative "partially linearized" technique (e.g. Yun 2004 and 

Even and Macpherson 1990) even with a logit or probit model. Although these 

techniques do not suffer from path dependence they are vulnerable to the possibility of 

inflated estimates on contributions from independent variables in which group differences 

                                                           
12 The procedure of randomizing the order of switching variables with each replication is easily 

implemented in Stata. See Appendix A6 for an example of the Stata code. It is recommended, however, to 

increase the number of replications and check to make sure that the decomposition estimates are similar 

when performing the procedure with a few different random draws. SAS code for randomizing the order of 

variables is also available (see  

http://people.ucsc.edu/~rfairlie/decomposition/decompexamplerandom_v7.sas). 



 12 

are extremely large. The contribution estimate from independent variable, X1, in the 

Blinder-Oaxaca linear decomposition is the following from (2.1): 

The linear expression of (2.1) allows for separability of contributions for X1 and X2, and 

thus removes concerns over path dependence. One major weakness in the linear setting is 

that there is no restriction on how large this contribution estimate can be even when the 

dependent variable is constrained to equal 0 or 1. This concern is similar to the concern 

over predictions when using OLS to estimate an equation in which the dependent variable 

lies between 0 and 1. Even at the means, the predictions involving one group with 

another group's coefficients could be much lower than 0 or much larger than 1 resulting 

in misleading contribution estimates in the decomposition. 

It is not difficult to find an empirical example where this potentially presents a 

problem. One example is that GNP per capita in the United States is $48,000 compared 

with $1,400 in India (World Bank 2015). The contribution estimate, (4.1), from this 

cross-country difference in per-capital income is thus 46,600 *
1̂ . One would only need 

a coefficient of at least 0.00002 (which implies a small effect of 2 percentage points for 

every $1,000 in per-capita income) to generate a contribution estimate of 1.  

 Another "partially linearized" method used to perform the decomposition is to 

combine this linear contribution estimate for each independent variable with the total 

contribution from all variables using the nonlinear function (e.g. probit or logit) as 

displayed in the first half of (2.2): 
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The partially linearized contribution for independent variable, X1, is: 

(4.2) ,

1

1
1 T
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where k=1,…,K for each independent variable (or group of variables) in the 

decomposition, and 
W

1̂ is from the nonlinear estimation technique (e.g. probit or logit) 

for calculating C1 in (4.1). The contribution estimate is essentially a linear partition of the 

total nonlinear contribution from all included variables. It limits the total potential 

influence of group differences in all variables combined, but does not prevent one 

variable with a very large group difference from capturing all or most of the total 

contribution from the nonlinear difference. 

 

Illustrative Example with Large Group Difference in an Independent Variable 

 To illustrate these concerns with an empirical example, I use data from the 2013 

American Community Survey (ACS). The dependent variable is computer ownership 

which is equal to 0 or 1. The independent variables included in this illustrative example 

are housing value, education level, and age. To maximize differences between groups for 

illustrative purposes I choose the highest housing value state for whites (California) and 

the lowest housing value state for Latinos (Oklahoma). Average house prices are 

$355,000 for whites and $49,000 for Latinos. The difference in percentage terms is 

similar to the national gap in net worth between whites and Latinos (U.S. Census Bureau 

2015), but the ACS does not include information on net worth, only house values. 
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Table 2 reports estimates from all three decomposition methods: the nonlinear 

technique, Blinder-Oaxaca technique, and the partially linearized technique for the gaps 

in computer ownership. The nonlinear technique indicates that ethnic/racial differences in 

house values and education levels explain large portions of the gaps in computer 

ownership. Group differences in house values explain 13.7 percentage points (or 49 

percent) of the 28 percentage point gap in computer ownership rates. Group differences 

in education levels, which are also large, explain another 6.4 percentage points (or 23 

percent) of the computer gap. The education disparity is large between whites and 

Latinos (14.5 and 10.9 years of schooling, respectively).  

Using the Blinder-Oaxaca decomposition I find a much larger contribution 

estimate for white/Latino differences in house values. I find that group differences in 

house values explain 39 percentage points of the gap (which is more than 100% of the 

gap). Although there is always the possibility that one factor can explain more than 100% 

of the gap, the key point here is that this estimate is three times larger than the 

contribution estimate from the nonlinear decomposition technique which through the use 

of a logit or probit model forces a limit on predicted probabilities being less than 1 no 

matter how large house values are. The Blinder-Oaxaca also provides larger contribution 

estimates from group differences in education and age, but these are more similar to the 

contribution estimates from the nonlinear technique. 

By definition the partially linearized technique provides the same total 

contribution estimate from group differences in all three independent variables combined 

as the nonlinear technique. For both the partially linearized technique and the nonlinear 

technique group differences in house values, education and age explain a total of 20.7 
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percentage points (or 74 percent) of the 28 percentage point gap in computer ownership 

rates. What is of most concern, however, is that the technique places almost all of this 

weight on group differences in house values and very little weight on the contribution 

from group differences in education (which as noted above are also very large). The 

partially linearized technique provides a contribution estimate from house value 

differences of 18.9 percentage points of the total 20.7 percentage points explained by all 

of the variables. The partially linearized technique provides a contribution estimate of 

only 1.6 percentage points from education differences. 

Although admittedly, the example is chosen to maximize differences in house 

values to illustrate potential problems with the Blinder-Oaxaca and partially linearized 

techniques, large group differences in independent variables are not uncommon.13 In fact, 

the magnitude and group difference in net worth for the country are not that different 

from these house value differences. The mean level of net worth among non-Latino 

whites is $435,000 and the mean level of net worth among Latinos is $86,000 for the 

United States (U.S. Census Bureau 2015). Decompositions involving cross country 

differences often involve much larger group differences. For example, as noted above 

GNP per capita in the United States is $48,000 compared with $1,400 in India (World 

Bank 2015). 

 In the end, the Blinder-Oaxaca and partially linearized techniques may face 

problems when group differences in a key independent variable are large. In this case, 

                                                           
13 The patterns hold for other large states with large Latino populations and low house prices, such as 

Texas. The Blinder-Oaxaca technique provides a very large house value contribution and the partially 

linearized technique provides a very small education contribution. 
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and in general, it is safer to use the nonlinear decomposition technique to avoid overly 

large contribution estimates or loading up too much weight on one variable. 

 

4. Sample Weights 

 This section turns to a discussion of including sample weights in the nonlinear 

decomposition. To simplify the presentation, the decomposition equations presented 

above do not include sample weights. Without sample weights, a random white (or group 

1) subsample is drawn of the same sample size as the minority (or group 2) full sample 

for convenience for matching distributions. An easy method of incorporating sample 

weights, first suggested by Ben Jann (Jann 2006), is to draw the white subsample with 

replacement where the sampling probabilities are proportional to the sample weights. A 

minority subsample should also be drawn with replacement where the sampling 

probabilities are proportional to the sample weights. The decomposition technique 

presented above is nearly identical to this procedure for incorporating sample weights 

when the sample weights are the same within the white and minority samples and the 

minority sample size is used. The only difference is that the full minority sample differs 

from the minority sample drawn with replacement in each iteration. As the number of 

replications of the procedure increases estimates of the mean value across all replications 

will converge to each other. 

 A few possible choices for the sample size to match the white and black 

(minority) subsamples include the full black sample size (NB), the full white sample 

(NW), or the average of the two. The decision over the number of observations drawn 

from the white and black samples is arbitrary, however, because the convergence in the 
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precision of results depends on the total number of white and black observations matched 

(which is a function of the matching sample size and the number of replications). 

Choosing the smaller black sample size for each iteration, for example, could be offset by 

increasing the number of replications. For any chosen sample size for matching, the 

expected value of results is equivalent to the original decomposition if the weights are 

equal within the white and black samples or are independent from the variables. See 

Appendix A7 for an example of the Stata code to perform the decomposition with sample 

weights. SAS code is also now available (see Appendix and 

http://people.ucsc.edu/~rfairlie/decomposition/). 

 

5. Summary 

The nonlinear decomposition technique developed in Fairlie (1999) has been used 

to identify the underlying causes of group differences in outcomes in nearly one thousand 

studies in several different fields, across many outcomes, and for a wide range of groups. 

Because the technique uses the original nonlinear equation, such as a logit or probit, for 

both estimation and decomposition it does not suffer from the potential problem of 

generating predictions outside of the (0,1) interval or misleading estimates from the linear 

Blinder-Oaxaca decomposition (or partially linearized techniques) when group 

differences are very large for an influential explanatory variable. Concerns over path 

dependence due to the ordering of variables in the nonlinear decomposition technique are 

addressed by randomly ordering the variables and increasing the number of replications 

of the procedure. Sample weights are also easily included in the decomposition by 

randomly drawing a minority subsample in addition to a white subsample and randomly 
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drawing each subsample in proportion to the original sample weights. The random 

ordering and sample weights are easy to implement with existing Stata and SAS code. 
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Appendix 

SAS and Stata Code 

SAS 

SAS Programs (both programs can incorporate sample weights if needed) 

 

SAS Program for Specified Ordering of Variables: 

http://people.ucsc.edu/~rfairlie/decomposition/decompexample_v7.sas 

 

SAS Program for Randomized Ordering of Variables: 

http://people.ucsc.edu/~rfairlie/decomposition/decompexamplerandom_v7.sas 

 

Example Dataset to Use with Programs: 

http://people.ucsc.edu/~rfairlie/decomposition/finaldecomp00.sas7bdat 

 

 

Stata 

- to install procedure       ssc install fairlie 

- or to update version    ssc install fairlie, replace 

- to obtain help on procedure     help fairlie 

 

Examples: 

 

To load dataset for examples: 

use http://people.ucsc.edu/~rfairlie/decomposition/finaldecomp00.dta 

 

A1: Nonlinear decomposition using pooled (white and black) coefficient estimates 

fairlie homecomp female age (educ:hsgrad somecol college) (marstat:married prevmar) if  

  white==1|black==1, by(black) pooled(black) 

 

A2: Adding more replications to A1 

fairlie homecomp female age (educ:hsgrad somecol college) (marstat:married prevmar) if  

  white==1|black==1, by(black) pooled(black) reps(1000) 

 

A3: Using white coefficient estimates 

fairlie homecomp female age (educ:hsgrad somecol college) (marstat:married prevmar) if  

  white==1|black==1, by(black) 

 

A4: Using black coefficient estimates 

fairlie homecomp female age (educ:hsgrad somecol college) (marstat:married prevmar) if  

  white==1|black==1, by(black) reference(1) 

 

A5: Using pooled (all races) coefficient estimates 

generate black2 = black==1 if white==1|black==1 

fairlie homecomp female age (educ:hsgrad somecol college) (marstat:married prevmar), 

  by(black2) pooled(black latino asian natamer) 

 



 22 

A6: Randomly ordering variables 

fairlie homecomp female age (educ:hsgrad somecol college) (marstat:married prevmar), 

  by(black2) pooled(black latino asian natamer) ro reps(1000) 

 

A7: Including sample weights 

fairlie homecomp female age (educ:hsgrad somecol college) (marstat:married prevmar) 

  [pw=wgt], by(black2) pooled(black latino asian natamer) reps(1000) 
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(1) (2) (3) (4)

Modification to decomposition Orginal Reverse Random Random

Order Order Order Order

White computer ownership rate 0.7278 0.7278 0.7278 0.7278

Black computer ownership rate 0.4175 0.4175 0.4175 0.4175

Black/White gap 0.3103 0.3103 0.3103 0.3103

Contributions from racial differences in:

Sex and age -0.0001 -0.0002 -0.0002 -0.0002

(0.0002) (0.0005) (0.0004) (0.0004)

0.0% -0.1% 0.0% 0.0%

Marital status and children 0.0154 0.0237 0.0206 0.0207

(0.0011) (0.0016) (0.0014) (0.0014)

5.0% 7.6% 6.6% 6.7%

Education 0.0329 0.0510 0.0407 0.0409

(0.0010) (0.0011) (0.0010) (0.0010)

10.6% 16.4% 13.1% 13.2%

Income 0.1005 0.0768 0.0886 0.0883

(0.0019) (0.0020) (0.0019) (0.0019)

32.4% 24.8% 28.6% 28.5%

Region 0.0062 0.0047 0.0057 0.0057

(0.0012) (0.0010) (0.0011) (0.0011)

2.0% 1.5% 1.8% 1.8%

Central city status 0.0003 -0.0009 -0.0002 -0.0002

(0.0014) (0.0012) (0.0014) (0.0014)

0.1% -0.3% -0.1% -0.1%

All included variables 0.1552 0.1552 0.1552 0.1552

50.0% 50.0% 50.0% 50.0%

Number of replications 1,000 1,000 1,000 5,000

Table 1

Non-Linear Decompositions of Black/White Gaps in Home Computer Rates

Orginal Ordering, Reverse Ordering and Random Ordering of Variable Groups

Specification
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(1) (2) (3)

Modification to decomposition Nonlinear Linear (Bl.-

Oaxaca)

Partially 

Linearized

White (CA) computer ownership rate 0.8979 0.8979 0.8979

Latino (OK) computer ownership rate 0.6181 0.6181 0.6181

Latino/White gap 0.2798 0.2798 0.2798

Contributions from racial differences in:

House values 0.1368 0.3915 0.1885

(0.0071) (0.0413) (0.0086)

48.9% 139.9% 67.4%

Education 0.0641 0.0777 0.0163

(0.0087) (0.0111) (0.0031)

22.9% 27.8% 5.8%

Age 0.0058 0.0130 0.0018

(0.0054) (0.0073) (0.0016)

2.1% 4.6% 0.6%

All included variables 0.2067 0.4822 0.2067

73.9% 172.3% 73.9%

Number of replications 1,000 N/A N/A

Table 2

Non-Linear, Linear and Partially Linearized Decompositions of Latino/White 

Gaps in Home Computer Rates

Specification


