
Managing Large-scale Probabilistic Databases

Christopher Ŕe

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Washington

2009

Program Authorized to Offer Degree: Computer Science & Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Christopher Ŕe

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

Dan Suciu

Reading Committee:

Magdalena Balazinska

Anna Karlin

Dan Suciu

Date:

In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at
the University of Washington, I agree that the Library shall make its copies freely available for
inspection. I further agree that extensive copying of this dissertation is allowable only for scholarly
purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying
or reproduction of this dissertation may be referred to Proquest Information and Learning, 300
North Zeeb Road, Ann Arbor, MI 48106-1346, 1-800-521-0600, to whom the author has granted
“the right to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed copies
of the manuscript made from microform.”

Signature

Date

University of Washington

Abstract

Managing Large-scale Probabilistic Databases

Christopher Ŕe

Chair of the Supervisory Committee:
Professor Dan Suciu

Computer Science & Engineering

Modern applications are driven by data, and increasingly the data driving these applications are

imprecise. The set of applications that generate imprecise data is diverse: In sensor database appli-

cations, the goal is to measure some aspect of the physical world (such as temperature in a region or

a person’s location). Such an application has no choice but to deal with imprecision, as measuring

the physical world is inherently imprecise. In data integration, consider two databases that refer

to the same set of real-world entities, but the way in which they refer to those entities is slightly

different. For example, one database may contain an entity ‘J. Smith’ while the second database

refers to ‘John Smith’ . In such a scenario, the large size of the data makes it too costly to manu-

ally reconcile all references in the two databases. To lower the cost of integration, state-of-the-art

approaches allow the data to be imprecise. In addition to applications which are forced to cope with

imprecision, emerging data-driven applications, such as large-scale information extraction, natively

produce and manipulate similarity scores. In all these domains, the current state-of-the-art approach

is to allow the data to be imprecise and to shift the burden of coping with imprecision to applica-

tions. The thesis of this work is that it is possible to effectively manage large, imprecise databases

using a generic approach based on probability theory. The key technical challenge in building such

a general-purpose approach is performance, and the technical contributions of this dissertation are

techniques for efficient evaluation over probabilistic databases. In particular, we demonstrate that it

is possible to run complex SQL queries on tens of gigabytes of probabilistic data with performance

that is comparable to a standard relational database engine.

TABLE OF CONTENTS

Page

List of Figures . iii

Chapter 1: Introduction . 1

1.1 Problem Space, Key Challenges, and Goals . 2

1.2 Technical Contributions . 4

Chapter 2: Preliminaries . 8

2.1 General Database Preliminaries . 8

2.2 BID databases . 11

2.3 Lineage,c-tables, or Intensional evaluation . 15

2.4 Expressiveness of the Model . 20

Chapter 3: Query-time Technique I: Top-K Query Evaluation 22

3.1 Motivating Scenario and Problem Definition . 22

3.2 Top-k Query Evaluation using Multisimulation 27

3.3 Optimizations . 35

3.4 Experiments . 40

Chapter 4: Query-time Technique II: Extensional Evaluation for Aggregates 46

4.1 Motivating Scenario . 46

4.2 Formal Problem Description . 52

4.3 Preliminaries . 56

4.4 Approaches forHAVING . 62

4.5 Generating a Random World . 74

4.6 ApproximatingHAVING queries withMIN, MAX andSUM 81

4.7 Summary of Results . 90

Chapter 5: View-based Technique I: Materialized Views 92

5.1 Motivating Scenario and Problem Definition . 93

5.2 Query Answering using Probabilistic Views . 98

i

5.3 Practical Query Answering using Probabilistic Views 116

5.4 Experiments . 119

Chapter 6: View-based Technique II: Approximate Lineage 124

6.1 Motivating Scenarios . 124

6.2 Statement of Results . 130

6.3 Sufficient Lineage . 141

6.4 Polynomial Lineage . 148

6.5 Experiments . 153

Chapter 7: Related Work . 159

7.1 Broadly Related Work . 159

7.2 Specific Related Work . 164

Chapter 8: Conclusion and Future Work . 169

Bibliography . 172

Appendix A: Proof of Relaxed Progress . 185

A.1 Bounding the Violations of Progress . 185

Appendix B: Proofs for Extensional Evaluation . 191

B.1 Properties of Safe Plans . 191

B.2 Appendix: Full Proof forCOUNT(DISTINCT) . 192

B.3 Appendix: Full Proofs forSUM andAVG . 195

B.4 Convergence Proof of Lemma 4.6.8 . 197

ii

LIST OF FIGURES

Figure Number Page

1.1 A screen shot of MQ . 2

2.1 An SQL Query and its equivalent relational plan 10

2.2 Sample data from a movie database . 12

2.3 TheReviews relation encoded in the syntax of Lineage. 16

3.1 Schema fragment of IMDB and Amazon database, and a fuzzy match table 23

3.2 Sample fuzzy match data using IMDB . 23

3.3 Sample top-k query . 24

3.4 Top-5 answers for a query on IMDB . 26

3.5 Illustration of Multisimulation . 29

3.6 Three imprecise datasets . 39

3.7 Query Statistics with and without Safe Plans . 39

3.8 Experimental Evaluation . 45

4.1 Sample data forHAVING Queries . 47

4.2 Query Syntax forHAVING queries . 52

4.3 Sample imprecise data from IMDB . 54

4.4 Query and its extensional query plan . 57

4.5 A list of semirings used to evaluate aggregates . 63

4.6 A graphical representation of extensional evaluation 77

4.7 Summary of results forMIN, MAX andCOUNT . 90

5.1 Sample restaurant data for materialized views . 94

5.2 Representable views and their effect on query processing 120

5.3 Dataset summary for materialized views . 121

6.1 Modeling the GO database using Lineage . 125

6.2 Query statistics for the GO DB [37]. 153

6.3 Compression ratio for approximate lineage . 154

6.4 Comparison of sufficient and polynomial lineage 155

6.5 Compression experiment for IMDB . 156

iii

6.6 Explanation recovery experiment . 157

6.7 Impact of approximate lineage on query processing performance 158

iv

ACKNOWLEDGMENTS

I am forever indebted to Dan Suciu. Dan is blessed with an astonishing combination of brilliance

and patience, and I will be forever grateful for the skills he has patiently taught me. I owe him my

research career, which is one of the most rewarding pursuits in my life.

Magdalena Balazinska offered me patient support and advice throughout my time at the Uni-

versity of Washington. I am also profoundly grateful for her trust that my only vaguely defined

research directions would lead to something interesting. I am also grateful to Anna Karlin for her

participation on my committee.

The students in the database group and the Computer Science & Engineering department made

my graduate studies both intellectually stimulating and incredibly enjoyable. An incomplete list of

those who helped me on this path include Eytan Adar, Michael Cafarella, Nilesh Dalvi, YongChul

Kwon, Julie Letchner, Jayant Madhavan, Gerome Miklau, Kate Moore, Vibhor Rastogi, and Atri

Rudra. The conversations that I had with each one of them enriched my life and made this work a

joy to pursue. The faculty and staff at the University of Washington have created a wonderful place,

and I am very thankful to be a part of it.

Finally, I would like to thank my family. My father, Donald Ŕe, not only provided love and

support thoughout my life, but also listened to hours of excited chatter about my research ideas that

were – at best – only halfway clear in my own mind. John and Peggy Emery provided incredible

support including countless meals, rides, and hours of great conversation. I am, however, most

grateful to them for two things: their love and the greatest gift of all, their daughter and my wife,

Mikel. Mikel’s patience, love, and support are boundless. For any current or future success that I

might have, Mikel deserves more credit than I can possibly express in a few lines of text.

v

1

Chapter 1

INTRODUCTION

A probabilistic database is a general framework for managing imprecision and uncertainty in

data. Building a general framework to manage uncertainty in data is a challenging goal because

critical data-management tasks, such as query processing, are theoretically and practically more ex-

pensive than in traditional database systems. As a result, a major challenge in probabilistic databases

is to efficiently query and understand large collections of uncertain data.This thesis demonstrates

that it is possible to effectively manage large, imprecise databases using a generic approach based

on probability theory.

One example application domain for a probabilistic database, such as our system MQ, is

integrating data from autonomous sources [21]. In this application, a key problem is that the same

entity may be represented differently in different sources. In one source, the Very Large Database

Conference may be represented by its full name; in another source, it is referenced as simply,

“VLDB”. As a result, if we ask a query such as,“Which papers appeared in the last VLDB?”,

a standard database will likely omit some or all of the relevant answers. When integrating large

data sources, it is infeasible to manually reconcile every pair of references, so automatic techniques

are used that produce scored candidate matches for each pair of references. In MQ, we model

these scores asprobabilistic events. In response to a (potentially complicated) SQL query, MQ

combines the stored probabilistic events to produce a set of answers that areannotated with the

probability that the answer is in the output of the query. An example output of MQ is shown in

Figure 1.1. MQ makes essential use of the scores associated with answers in two ways: First,

by allowing the system to return some answers with lower confidence, we can achieve ahigher re-

call; that is, we are able to return more of the papers that truly appeared in VLDB. Second, MQ

uses the probability scores to rank the answers which allowshigh precision, that is, spurious papers

are ranked below papers that actually appeared in VLDB. The true power of MQ is evident in

more sophisticated applications. For example, if we perform a social networking analysis to find

2

Figure 1.1: A screen shot of MQ [21, 142], which ranks query answers by probability; the
probability is computed by combining the uncertainty in the database tables mentioned in the query.

influential papers, we could incorporate the (imprecise) results into our paper database. We could

then pose interesting structured queries, such as,“find influential papers from previous VLDBs that

were authored at the University of Washington”.

1.1 Problem Space, Key Challenges, and Goals

The key technical goal of this dissertation is to build a probabilistic relational database system that

is able to scale to large databases (gigabytes or more) with query performance that is comparable to

a standard relational database without imprecision. We believe that we have succeeded in this goal

as the techniques in this dissertation allow sophisticated SQL queries to be run on tens of gigabytes

of relational data using the MQ system, which demonstrates our central thesis: it is possible to

effectively manage large, imprecise databases using a generic approach based on probability theory.

We briefly discuss the problem space of this dissertation (a more substantial discussion of related

work is in Chapter 7).

3

Datamodel

In this work, we focus exclusively on discrete relational databases that are queried using SQL or

its formal equivalent, conjunctive queries [1]. This is not the only choice: Others have chosen in

the last few years to consider probabilistic XML databases [3,36,104,150], streaming probabilistic

databases queried using sequence languages [99, 138, 157], and continuous probabilistic, sensor

databases [34, 56]. Even within the space of discrete probabilistic relational databases, there are a

wide-variety of different approaches: The Monte Carlo DB or MCDB [95] is an approach that is

well-grounded in statistics; it allows one to specify complex distributions over attributes and even

entire tables. The distributions are specified implicitly, system can handle any distribution that a

user is able to sample from. Processing these black-box distribution functions efficiently is very

difficult, and the key challenge the project addresses is performance. Although this model seems

substantially different from the approach we consider in this dissertation, we believe that many of

our techniques are applicable: As noted by Jampaniet al. [95] in the paper that introduces MCDB,

the techniques of Chapter 5 dealing with materialized views are a promising technique to enable

scalability. Another line of work casts the problem of probabilistic query answering as probabilistic

inference [148, 167]. This approach allows these systems to leverage years of statistical inference

expertise in coping with complex distributions. In contrast, the approach in this dissertation starts

with a simpler model, and attempts to leverage data management techniques for scalability such as

materialized views (Chapter 5) , and database theory techniques to find the border of tractability

(Chapter 4).

Two projects are very closely related to the MQ project and the contents of this dissertation:

the Trio system [17,129,168] and the MayBMS system [8,9,91]. The original focus of the Trio was

understanding the modeling issues that arise when keeping imprecise or uncertain information in

the database. Notably, they promoted the idea oflineagewhich helps process probabilistic queries;

a concept we discuss in detail in Chapter 2. In contrast, the focus of this dissertation is on perfor-

mance. The MayBMS system supports a more powerful query language than standard SQL that

allows one to do interesting operations such as introducing uncertainty via the query or condition-

ing on complex probabilistic events. In this dissertation, we will consider only SQL or conjunctive

queries. One benefit of choosing a simple model is that many of the results in this dissertation are

4

applicable to the systems that we have discussed above.

Key Technical Challenges and Goals

The key challenge that we address in this dissertation is performance. Performance is challenging

in probabilistic databases: in contrast to standard SQL processing, which is always theoretically

easy (AC0), evaluating queries on a probabilistic database is theoretically hard (]P-hard) [46, 78]1.

While hardness is a key challenge, it is also a golden opportunity: Optimization techniques from the

database management literature can actually become more effective for probabilistic databases than

they were for standard relational databases. For example, materialized views are an effective tech-

nique in relational optimizers, which allows the system to precompute information and then use this

precomputed information to optimize queries. In probabilistic databases, this technique is even more

effective: As we will see in Chapter 5, a query may be theoretically hard, but by precomputing infor-

mation, at run-time the remaining processing can be done efficiently (in PTIME). Practically, using

materialized views we are able to reduce the cost of query processing on probabilistic databases

substantially (from hours to seconds).

1.2 Technical Contributions

We divide the techniques of this dissertation into two categories:query-time techniques, which are

efficient run-time query-processing strategies, andview-based techniques, which are techniques that

exploit logical views and precomputation to optimize queries.

Query-time techniques

Top-K Processing Computing the output score of even a single answer on a probabilistic database

requires techniques that are orders of magnitude slower than processing standard SQL, such as

Monte Carlo sampling. Often, users are not interested in all answers, but only the most highly

1Here, our notion of complexity is data complexity in which the query is fixed, but the database is allowed to grow.
We measure the complexity with respect to this growth.AC0 is the class of languages that can be decided by uniform
families of circuits with unbounded fan-in, polynomial size and constant depth [128, pg. 386].]P is a class of counting
problems: For any decision problem that can be verified inP, a]P problem asks for the number of solutions of that
problem. The canonical]P hard problem is]SAT, which counts the number of solutions of a Boolean formula [128,
pg. 441].

5

ranked, say top 10, answers. In spite of this, they are forced to wait as the system churns through

thousands of useless results. To remedy this, we designed an algorithm calledmultisimulationthat

saves computational resources in two ways: (1) it focuses on those answers that have a chance of

being in the top 10, and (2) instead of computing a precise probability for each answer, it com-

putes only a relative ordering of the top answers. The central technical result of this chapter the

multisimulation algorithm is optimal among all deterministic algorithms for finding the topk most

highly probable tuples. Moreover, it is within a factor of 2 ofany(even non-deterministic) approach.

Multisimulation is the heart of MQ’s processing of general SQL queries and is the subject of

Chapter 3. This work appeared in the International Conference on Data Engineering in 2007 [137]

and is joint work with Nilesh Dalvi and Dan Suciu.

Probabilistic Decision Support The next generation of business applications will generate large

quantities of imprecise data, and so will be difficult for users to understand. Traditional decision sup-

port systems allow users to understand their (precise) databases by providing sophisticated aggre-

gation functions, e.g., using theHAVING clause in SQL. Inspired by the success of decision support

queries in relational databases, we studied the evaluation of decision support queries on probabilis-

tic databases. The key challenge is that standard approaches to processing imprecise queries, such

as sampling, force the user to choose between poor quality guarantees or prohibitively long execu-

tion times. To overcome this, we designed an algorithm to efficiently and exactly evaluate decision

support queries using generalized arithmetic operations2. For a class of decision support queries,

our algorithms are optimal: (1) either a query can be computed efficiently using our generalized

arithmetic operations and is inPTIME, or (2) computing an aggregation query’s exactly probability

is intractable (]P-hard), but our results can provide a provably efficient approximation (an),

or (3) it is both intractable and does not have an. Our results provide a guide to extend a

probabilistic database to process decision support queries and define the limits of any approach.

This work is the subject of Chapter 4 and is joint work with Dan Suciu. A preliminary version of

this work appeared in the Symposium on Databases and Programming Languages, 2007 [139], and

2Formally, we used an abstraction based on semirings and monoid convolutions. Monoids are an abstraction of
addition (or multiplication) on the natural numbers. Semirings can be viewed as an abstraction of the standard rules of
multiplication and addition applied to Monoids.

6

a extended version appeared in the Journal of Very Large Databases [143].

View-based techniques

Materialized Views for Probabilistic Databases In standard databases, a fundamental query

optimization technique is to precompute intermediate results, known asmaterialized views, and

then use these views to expedite future queries. If we directly apply this technique to probabilistic

databases, then we run into a problem: each intermediate result in the view (and answer to a query)

is actually a probabilistic event and so may becorrelated with other intermediate results. The stan-

dard approach to tracking correlations requires expensive bookkeeping, calledlineage[168], that

records every derivation of every answer that appears in the view. To recover the classical perfor-

mance benefits of materialized views, we need to discard the lineage, but doing so may lead to

incorrect results. Our key technical result is a simple and efficient test to decide whether one can

safely discard the lineage associated with a view. On rare occasions, this test may return a false

negative, meaning that it rejects some views that could be safely processed. Practically, one cannot

go too far beyond this test, because we showed that any complete test (without false positives) must

be inefficient: the problem isΠ2P-Complete in the size of the view definition3. We validated our

approach using data from a Seattle-area start-up company, iLike.com, and showed that probabilistic

databases are able to handle huge amounts (GBs) of imprecise data. This work is the subject of

Chapter 5. It was joint work with Dan Suciu and appeares in the Very Large Database Conference

of 2007 [140] and will appear in the Journal of Computer and System Sciences [49].

Approximate Lineage In addition to performance challenges, correlations make it difficult to un-

derstand and debug the output of a probabilistic database. Specifically, the sheer size and complexity

of the correlation information (lineage) can overwhelm both the query processor and the user of the

system. As the amount of lineage increases, the importance of any individual piece of lineage de-

creases. Inspired by this observation, we propose a scheme calledsufficient lineagethat removes

some correlation information to produce a smallerapproximate lineage formula. With a substan-

tially smaller lineage formula (often hundreds of times smaller), a probabilistic database is able to

3Π2P denotes the second level of the polynomial hierarchy, which is the class of problems decidable by acoNP
machine with access to anNP oracle [128, pg. 425].The canonical complete problem forΠ2P is ∀∃SAT.

7

process many queries orders of magnitude more efficiently than with the original, full lineage for-

mula. Although a sufficient lineage formula is much smaller than a traditional lineage formula, we

demonstrated theoretically and empirically that a probabilistic database using sufficient lineage still

provides high quality answers. Further, sufficient lineage has two practically important properties:

first, it is syntactically identical to standard lineage, and so can be used without modifying the query

processor, and second, it encodes a small set of explanations for a query answer, and so can be used

to debug query answers. Sufficient lineage is only one instantiation of approximate lineage: We

also defined other formalisms for approximate lineage, notably, one based on polynomials. This

formalism can allow smaller lineage functions, but the formulae it produces arenot syntactically

identical to standard lineage. Thus, polynomial lineage requires additional work to integrate with a

probabilistic database. This was joint work with Dan Suciu and appeared in the proceedings of the

Very Large Database Conference in 2008 [141].

Summary The central goal of this dissertation is to provide a framework that can manage large

amounts of probabilistic data, which supports the thesis of this work: it is possible to effectively

manage large, imprecise databases using a generic approach based on probability theory. The main

technical challenge is performance, and the techniques of this dissertation use a two-pronged ap-

proach to this problem:query-timeoptimizations andview-basedor precompuationoptimizations.

8

Chapter 2

PRELIMINARIES

This section gives two critical pieces of background material for this dissertation: how to repre-

sent (store) a probabilistic database and how to query it. We describe each of these two pieces in two

different ways: first, we describe a concrete representation of a probabilistic database calledBlock-

independent-disjointor (BID) [137, 140], and then a more abstract representation system based on

lineage[168] andc-tables [93]. As we show here, if we add conjunctive views to BID tables then

the two representations essentially equivalent.

The strengths of the two approaches are complementary. We introduce the BID representation

because it isgeneralandconcrete. It is general since it includes as special cases many other rep-

resentations discussed in the literature such asp-?-sets andp-or-sets [82], ?- andx-relations [145],

and tuple independent databases [46, 108]. The BID representation isconcretein that it is the rep-

resentation implemented in the Mystiq system [21]. On the other hand, the representation based on

lineage allows us to specify the technical contributions later in this work precisely and succinctly.

The formal model that underlies both representations is the same:the possible worlds model[64].

This model is the standard for probabilistic databases and is essentially a reformulation of standard

discrete probability theory.

2.1 General Database Preliminaries

We briefly recall some standard database concepts to fix our notation1.

2.1.1 A Declarative View of Queries

Fix a finite or infinite domainD, which will contain all values that occur in our database, e.g., movie

names, review ids, etc. in a movie reviews database. We assume a standard relational schemaR

1Our presentation in this section borrows from the thesis of Gerome Miklau [118] and the text book by Abiteboul,
Hull, and Vianu [1]

9

with relation namesR1, R2, . . . and follow Datalog notation. For example,R1(a,b, c) denotes a tuple

(a,b, c) in R1. A database instanceor world J is a subset of tuples in each of the relations. The

content (or extent) of a relationR in a world J is denotedRJ. For a fixed schema, we denote the set

of all possible instances withInst.

A queryof arity k is a functionq : Inst→ P(Dk), i.e., a query takes as input a database instance

and produces a set of tuples with the same schema2. In this work, we focus on a subset of queries

calledconjunctive queries[1]. An abstract example of a conjunctive query is

q1(z) D R(x, z, ‘c’) , S(x, y,−), T(y,−, ‘a’)

Here, x, y, z are variables, ‘a’ and ‘c’ are constants,− represents anonymous variables (each− is

distinct from all other variables). Denote byvar(q) the set of all variables in a queryq and by

const(q) the set of all constants in a queryq. In general, a conjunctive query is a rule of the form:

q(y) D g1, . . . ,gn

where each of thegi are subgoals that may contain selections. The queryq1 above consists of three

subgoals. The first subgoalR(x, z, ‘b’) contains a selection that intuitively says we are only interested

in R tuples whose third component is ‘b’. We denote the set of subgoals in the queryq asgoal(q).

We evaluate a queryq on an instanceJ in the standard way: we search for a query homomor-

phismh : var(q) ∪ const(q) → D which is identity on constants, i.e.,h(c) = c for all c ∈ const(q)

and such that for each subgoalgi = R(z1, . . . , zm) wherezi is either a variable or a constant, we

have thatR(h(z1),h(z2), . . . ,h(zm)) ∈ RJ. If this holds for all subgoals, then we return the tuple

(h(y1),h(y2), . . . ,h(ym)).

Relationship to SQL

One reason that this fragment is important is that it captures the heart of the standard query language

for relational databases, SQL [94]. Figure 2.1(b) shows an SQL query that is equivalent toq1.

Later, in Chapter 4, we enhance this language to handle some advanced features of SQL, notably

2A (Boolean) queryq is a function wherek = 0 (or is a sentence in the standard sense of first-order logic [61]).

10

R(A,B,C)
S(A,B,D)
T(B,E,F)

SELECT DISTINCT R.B

FROM R,S,T

WHERE R.A = S.A AND R.C = ‘c’

S.B = T.B AND T.F = ‘a’

P1 = R(x, z, ‘c’) Z π−u1S(x, y,u1)

P = π−y
(
P1 Z π−u2T(y,u2, ‘a’)

)

(a) (b) (c)

Figure 2.1: (a) The corresponding Relational Style Schema for queryq1. (b) is an SQL query that
is equivalent toq1. (c) P is an equivalent relational query plan (we have labeled the anonymous
variables inq as u1 and u2 for readability). We useP1 to aid readability; we simply inline the
definition ofP1 in P.

aggregation functions that include functions such asSUM or AVG.

2.1.2 An operational view of conjunctive queries

Query plans are a more operational, but equivalent, way to describe conjunctive queries. A query

plan is tree of relational operators, where each relational operator is a function from relations (of

any arity) to relations3.

Definition 2.1.1(Query Plan Syntax). A query plan P is inductively defined as (1) a single subgoal

which may contain selections, (2) P= π−xP1 (projection) where P1 is a plan and x is a variable, (3)

P1 Z P2 where P1 and P2 are plans.

Figure 2.1(c) shows a query plan that is equivalent toq1 (and so to the SQL query in Fig-

ure 2.1(b)). We view query plans as inductively computing tuples. We also denote the variables

that are “returned” by a planP with var(P) and define it inductively: IfP = g thenvar(P) is the

set of free variables ing, if P = π−xP1 thenvar(P) = var(P1) − {x}, and if P = P1 Z P2 then

var(P) = var(P1) ∪ var(P2).

3Our description of relational query plans is standard with the minor caveat that we view projections as removing
attributes, rather than naming which attributes they keep.

11

Query Plan Semantics

A query planP on an instanceI produces a set of tuples. To define this set, we first recallterm

matching[159]: A tuple t matches a subgoalg = R(y1, . . . , yn) where theyi may be (repeated)

variables or constants, if there exists a homomorphismh : var(g) ∪ const(g) → D such that:

t = R(h(y1), . . . ,h(yn)). For example, ifg = R(x, x, y, ‘a’) then the tupleR(b,b, c,a) matchesg, but

neither of the following tuples matchg: R(a,b, c,a) (there is no way to mapx) nor R(a,a,b,b) (the

constants cannot match). Now, we can define the semantics of query plans:

We write t ∈ P(I) if the tuple t is produced byP on instanceI and define this set of tuples

inductively:

• Let P = g with g = R(y), a subgoal with selections, thent ∈ P if t ∈ RI matchesg.

• Let P = π−xP′ thent ∈ P if there existst′ such thatt′[var(P)] = t[var(P)] andt′ ∈ P′.

• Let P = P1 Z P2 thent ∈ P, if there existst1, t2 such thatti [var(Pi)] = t[var(Pi)] for i = 1,2.

As is standard, the semantics of query plans are equivalent to the semantics of conjunctive queries.

Figure 2.1(c) illustrates a query plan that is equivalent to the conjunctive query in Figure 2.1(a) (and

so to the SQL query in Figure 2.1(b)).

2.2 BID databases

The representation of a probabilistic database that is used in the Mystiq system is called Block-

Independent Disjoint or BID. A BID database consists of one or more tables, where each table is

associated with a BID schema. A BID schema describes both the content of the table as in standard

relational databases, and additionally, the schema describes how we should interpret the imprecision

in that table. An example BID database about movie reviews is shown in Figure 2.2.

More precisely, a BID schema is a relational schema where the attributes are partitioned into

three disjoint sets. We write a BID schema for a symbolR asR(K; A; P) where the sets are separated

by semicolons. Here,K is a set of attributes called thepossible worlds key; A is a set of attributes

called the set ofvalue attributes; andP is a single, distinguished attribute that stores the marginal

probability of the tuple called theprobability attribute. The values ofK and A come from some

discrete domain, and the values in the attributeP are numbers in the interval (0,1]. In the relation,

K and A must form a key, i.e., ift[KA] = t′[KA] then t = t′. For example, one BID schema

12

ReviewID Reviewer Title P

231 ‘Ryan’
‘Fletch’ 0.7 t231a

‘Spies Like Us’ 0.3 t231b

232 ‘Ryan’
‘European Vacation’ 0.90 t232a

‘Fletch 2’ 0.05 t232b

235 ‘Ben’
‘Fletch’ 0.8 t235a

‘Wild Child’ 0.2 t235b

Title Matched P
‘Fletch’ ‘Fletch’ 0.95 m1

‘Fletch’ ‘Fletch 2’ 0.9 m2

‘Fletch 2’ ‘Fletch’ 0.4 m3

‘Golden Child’ ‘Golden Child’ 0.95 m4

‘Golden Child’ ‘Golden Child’ 0.8 m5

‘Golden Child’ ‘Wild Child’ 0.2 m6

Reviews(ReviewID, Reviewer ; ReviewTitle ; P) MovieMatch(CleanTitle, ReviewTitle ;; P)

Figure 2.2: Sample data arising from integrating automatically extracted reviews from a movie
database.MovieMatch is a probabilistic relation, we are uncertain which review title matches with
which movie in our clean database.Reviews is uncertain because it is the result ofinformation
extraction. Note that the identifiers next to each tuple are not part of the database, e.g.,t232, they are
there so that we can refer to tuples by a shorthand.

in Figure 2.2 isReviews(ReviewerID,Reviewer;Title;P): {ReviewerID,Reviewer} is the possible

worlds key,{Title} is the set of value attributes, andP is the probability attribute. Also pictured in

Figure 2.2 is an instance of this schema.

Semantics of BID tables

An instance of a BID schema represents a distribution over instances calledpossible worlds[64].

The schema of a possible worlds isR(K, A), i.e., the same schema as the BID table exceptwithout

the attributeP. Again, this models our choice that the user should query the data as if it were

deterministic, and it is the goal of the system to manage the imprecision. LetJ be an instance of

a BID schema. We denote byt[KAP] a tuple in J, emphasizing its three kinds of attributes, and

call t[KA], its projection on theKA attributes, apossible tuple. Define apossible world, W, to

be any instance ofR(K, A) consisting of possible tuples such thatK is a key4 in W. Note that the

key constraints do not hold in the BID instanceJ, but must hold in any possible worldW. Let

WJ be the set of all possible worlds associated toJ. In Figure 2.2, one possible worldW1 is

such thatRW1 = {t231a, t232b, t235a}. Graphically, we have illustrated the blocks from which the BID

representation gets its name: Each key value defines a block of tuples such that at most one of them

4We say thatK is a key inW if for t, t′ ∈ RW we havet[K] = t′[K] =⇒ t = t′.

13

may occur together in any possible world. For example, no possible world may contain botht232a

andt232b.

We define the semantics of BID instances only forvalid instances, which are BID instances

such that the values inP can be interpreted as a valid probability distribution, i.e., such that for

every tuplet ∈ RJ in any BID relationR(K; A; P) the inequality
∑

s∈R:s[K]=t[K] s[P] ≤ 1 holds.

A valid instanceJ defines a finite probability space (WJ, µJ). First note that any possible tuple

t[KA] can be viewed as an event in the probability space (WJ, µJ), namely the event that a world

containst[KA]. Then we define the semantics ofJ to be the probability space (WJ, µJ) such that

(a) the marginal probability of any possible tuplet[KA] is t[P], (b) any two tuples from the same

relationt[KA], t′[KA] such thatt[K] = t′[K] aredisjoint events(or exclusive events), and (c) for

any set of tuples{t1, . . . , tn} such that all tuples from the same relation have distinct keys, the events

defined by these tuples are independent. If the database contained only theReviews table, and

W1 = {t231a, t232b, t235a}, we see thatµ(W1) = .7 ∗ .9 ∗ .8 = .504.

Example 2.2.1 The data in Figure 2.2 shows an example of a BID database that stores data from in-

tegrating extracted movie reviews from USENET with a movie database from IMDB. TheMovieMatch

table is uncertain because it is the result of an automatic matching procedure (or fuzzy-join [31]).

For example, the probability a review title ‘Fletch’ matches a movie titled ‘Fletch’ is very high

(0.95), but it is not certain (1.0) because the title is extracted from text and so may contain errors.

For example, from‘The second Fletch movie’, our extractor will likely extract just‘Fletch’ although

this review actually refers to‘Fletch 2’. The review table is uncertain because it is the result ofin-

formation extraction. That is, we have extracted the title from text (e.g.‘Fletch is a great movie, just

like Spies Like Us’). Notice thatt232a[P] + t232b[P] = 0.95 < 1, which indicates that there is some

probability reviewid 232 is actually not a review at all.

Remark 2.2.2. Recall that two distinct possible tuples, say t[KA] and t′[KA], are disjoint if t[K] =

t′[K] and t[A] , t′[A]. But what happens if A= ∅, i.e., all attributes are part of the possible worlds

key? In that case all possible tuples become independent, and we sometime call a table R(K; ; P) a

tuple independent table[46], which is also known as a?-table[129] or a p-?-table[82]. An example

is theMovieMatch table in Figure 2.2.

14

Finally, we generalize to probabilistic databases that contain many BID tables in the standard

way: tuples in distinct tables are independent.

2.2.1 Probabilistic Query Semantics

Users write queries in terms of the possible worlds schema. In particular, a query written by the user

doesnot explicitly mention the probability attributes of the BID relations. This reflects a choice

that the user should pose her query as if the data is deterministic, and it is the responsibility of

the system to combine the various sources of imprecision. Other choices are possible and useful

for applications. For example, the work of Koch [106], Mooreet al. [120], and Faginet al. [64]

discuss query languages that allow predication on probabilities, e.g. is the probability of a query

q greater than 0.5?; Moreover, the works of Koch and Faginet al. allow these predicates to be

used compositionally within queries. In this dissertation, the answer to any query is a set of tuples

annotated with probability scores. The score is exactly the marginal probability that the query is

true, and we define this formally for any Boolean property:

Definition 2.2.3(Query Semantics). LetΦ : Inst→ {0,1} be a Boolean property, then the marginal

probability of anyΦ on a probabilistic databaseW = (J, µ) is writtenµJ(Φ) is defined by:

µJ(Φ) =
∑

W∈WJ:W|=Φ

µJ(W)

where we write W|= Φ if Φ(W) = 1.

A Boolean conjunctive queryq is a Boolean property and so, we writeµJ(q) to denote the

marginal probability thatq is true.

Example 2.2.4 For example, the query that asks“was the movie ’Fletch’ reviewed?” or as a

Boolean conjunctive query,q() = R(−,−, ‘Fletch’), is true whent231a or t235a are present. Def-

inition 2.2.3 tells us that, semantically, we can compute the probability that this occurs by sum-

ming over all possible worlds. Of course, there is a simplead hocshortcut in this case:µ(q) =

1− (1− 0.7)(1− 0.8) = 0.94.

For non-Boolean queries, we (semantically) substitute the head variables with constants in all

possible ways. The result of this process is a Boolean query. For example,q(x) D R(x,−, ‘Fletch’)

15

returns all people who may have reviewed the movie ‘Fletch’. The score of an answer, say that Ryan

reviewed the movie, is given by the Boolean queryq′() D (‘Ryan’,−, ‘Fletch’). The probability of

q′ is precisely the scores associated with the answer Ryan that is returned to the user in the Mystiq

system (as shown in Figure 1.1).

2.3 Lineage, c-tables, or Intensional evaluation

In a probabilistic database, the presence or absence of any tuple is a probabilistic event. Thus, a

Boolean query – whose value may depend on many tuples in the database – defines a complex

event which may contain correlations between tuples.Lineageis a mechanism that tracks these

correlations by essentially recording all derivations of a query [168]; this is similar to our informal

reasoning in Example 2.2.4.

In this dissertation, we adopt a viewpoint of lineage based onc-tables [82, 93]: we think of

lineage as a constraint that tells us which worlds are possible. This viewpoint still results in the

standardpossible worlds semanticsfor probabilistic databases that we saw in the previous section.

We introduce this abstraction because it allows us to unify the presentation of the technical contri-

butions in this work.

2.3.1 A declarative view of Lineage

The starting point for lineage is that there is a set ofatoms(or base events) denotedX = x1, x2, . . .

which are propositions about the real world, e.g., a Boolean event could encode that “Ryan reviewed

Fletch”. Atoms may also be non-Boolean and then can be thought of as variables that take a value in

some domainA. An EQ-termis a formulax = a wherex ∈ X anda is an element ofA. Informally,

an EQ-term is true ifx takes the valuea and false otherwise. A lineage function,λ, assigns to each

tuple t a Boolean expression over EQ-terms which is denotedλ(t). These Boolean expressions are

precisely the conditions from which thec-tables get their name [93]. When all atoms are Boolean,

we abbreviatex = trueas simplyx for readability.

Example 2.3.1 Figure 2.3 shows theReviews table from the previous example (Example 2.2) en-

coded in the syntax of lineage. Here, if the atomt232 takes the valuea then this implies that in

review 232 Ryan reviewed ‘European Vacation’ while ift232 takes valueb this means that he instead

16

ReviewID Reviewer Title λ

231 ‘Ryan’
‘Fletch’ x231 = a

‘Spies Like Us’ x231 = b

232 ‘Ryan’
‘European Vacation’ x232 = a

‘Fletch 2’ x232 = b

235 ‘Ben’
‘Fletch’ x235 = a

‘Wild Child’ x235 = b

x231 a 0.7
x231 b 0.3

x232 a 0.9
x232 b 0.05
x232 c 0.05

x232 a 0.8
x232 b 0.2

Reviews(ReviewID, Reviewer, ReviewTitle,λ) A Probability Assignment

Figure 2.3: TheReviews relation encoded in the syntax of Lineage.

reviewed ’Fletch 2’. Since we insist thatt232 has a single value, he could not have reviewed both.

He may, however, have reviewed neither, if for example,t232 = c.

Semantics of Lineage

To define the standard semantics of lineage, we define apossible world Wthrough a two-stage

process: First, select an assignmentA for each atom inX, i.e., A : X → A. Then, for each

tuple t, includet if and only if λt(A) evaluates to true. Here,λt(A) denotes the formula that results

from substituting each atomx ∈ X with A(x). This process results in an unique worldW for any

assignmentA. We denote the set of all assignments toX as Assign(X) or simply Assign.

Example 2.3.2 One assignment isx231 = a, x232 = c and x235 = a. Then the resulting possible

world W contains two tuplesW1 =
{
(231,Ryan,Fletch), (235,Ben,Fletch)

}
. In contrast, the world

W2 =
{
(231,Ryan,Fletch), (231,Ryan,Spies Like us)

}
is not possible as this would require that

x231 = a andx231 = b.

We capture this example in a definition. Fix a relational schema. Aworld is a subset of tuples

conforming to that relational schema. Given an assignmentA and a worldW, we say thatW is the

possible worldinduced byA if it contains exactly those tuples consistent with the lineage function,

that is, for all tuplest, λt(A) ⇐⇒ t ∈ W. Moreover, we writeλ(A,W) to denote the Boolean

function that is true whenW is a possible world induced byA. In symbols,

λ(A,W)
def
=

 ∧
t:t∈W

λt(A)

 ∧
 ∧
t:t<W

¬λt(A)

 (2.1)

17

We complete the construction of a probabilistic database as a distribution over possible worlds

by introducing a score function. We assume that there is a functionp that assigns to each atom

x ∈ X and each atoma ∈ A a probability score denotedp(x = a). In Figure 2.3p(x232 = a) has

been assigned a score indicating that we are very confident that Ryan reviewed European Vacation

in reviewid 232 (0.9). An important special case is whenp(x = a) = 1, which indicates absolute

certainty.

Definition 2.3.3. Fix a set of atomsXwith domainA. Aprobabilistic assignmentp is a function that

assigns a probability score to each atom value pair(x,a) ∈ A×A which reflects the probability that

x = a, we write p(x,a) as p(x = a) for readability. Thus, for each x∈ Awe have
∑

a∈A p(x = a) = 1.

A probabilistic lineage databaseW is a probabilistic assignment p and a lineage functionλ that

represents a distributionµ over worlds defined as:

µ(W)
def
=

∑
A∈Assign

λ(A,W)
∏

x,v:A(x)=v

p(x = v)

In words,W is a product space overAX with measure p.

Since for anyA, there is a uniqueW such thatλ(A,W) = 1, µ is a probability measure. We then

define the semantics of queries exactly as in Definition 2.2.3.

Example 2.3.4 Consider a simple query on the database in Figure 2.3:

q() = R(−,−, ‘Fletch’), R(−,−, ‘Fletch 2’)

This query asks if the movies ‘Fletch’ and ‘Fletch 2’ were both reviewed in our database. This

query is true in a world when the following (lineage) formula holds (x235 = a∨ x231 = a)∧ x231 = a.

Said another way, if we think ofq as a view, then its output is a single tuple withλ(q()) = (x235 =

a∨ x231 = a) ∧ x231 = a.

Generalizing this example, one may wonder whether we can always find a formula (or con-

straint) that correctly captures the semantics of the derived table. The answer is yes, which is

exactly the strong representation property of Imielinksi and Lipski forc-tables [93, Theorem 7.1].

18

2.3.2 An operational view of Lineage

In databases, new tuples are derived from old tuples in the database using queries (views). An

important case is when the queries that define the views are conjunctive, as in Example 2.3.4. Recall

that a conjunctive query can be computed using a relational planP. This plan is useful to us here

because we can use it to compute the lineage derived by the query in a straightforward way5:

Inductively, we compute the lineage of a tuplet using a planP, λ(P, t).

• Let P = g, thenλ(P, t) = λ(t) if t matchesg otherwise⊥ (false)

• Let P = π−xP′ thenλ(P, t) =
∨

t′:t′[var(P)]=t[var(P)] λ(P′, t′)

• Let P = P1 Z P2 thenλ(P, t) = λ(P1, t1) ∧ λ(P2, t2) whereti [var(Pi)] = t[var(P)]

It is easy to check using any plan that is logically equivalent toq in Example 2.3.4 that we can com-

pute the same lineage operationally using the above rules, as we computed in anad hocway in the

example.

Later, we generalize this technique of computing lineage in two ways: To compute aggregate

queries, we follow Greenet al.[81] and generalize lineage to compute formulas in (non-necessarily-

Boolean) semirings. In an orthogonal direction, we reduce the expense of processing and under-

standing lineage, by approximating the Boolean formulas during lineage computation, a technique

calledapproximate lineage.

Internal Lineage An important special case of lineage is calledinternal lineage[145]; the intu-

ition is that internal lineage is built-up exclusively from views (or queries) inside the database. In

contrast,external lineagemodels the situation when lineage is also created by external entities, e.g.,

during an Extract-Transform-Load (ETL) workflow. More precisely, a relationR is abase relation

if for each tuplet in Rλ(t) consists of a single EQ-term. An internal lineage database contains base

relations and views (whose lineage functions are built using the previous rules). It is interesting to

note that BID tables are essentially base relations with an additional schema-like restriction: there

is a possible worlds keyK that satisfies the following two conditions: Lett, t′ ∈ R

1. If t[K] = t′[K] thenvar(λ(t)) = var(λ(t′)) (Key values are variables)

2. if λ(t) = λ(t′) thent = t′ (λ is injective)

5This computation is similar to the Probabilistic Relational Algebra of Fuhr and Roelleke [68].

19

Thus, BID tables are a special case of lineage, but under very mild restrictions.

2.3.3 The role of lineage in query evaluation

A simple, but important, property of conjunctive queries (views) on BID tables is that the lineage

formulas they produce can be written ask-DNF formulas6 for small values ofk, i.e.,k depends only

the size of the queryq, butdoesnot depend on the size of the data. More precisely,

Proposition 2.3.5. Let λ be the derived lineage for a tuple t in the output of a conjunctive query q

with k subgoals. Then,λ can be written as a k-DNF formula of polynomial size.

Proof. Using the standard equivalence of relational plans, there is always relational query planP

in which the projections induce a single connected component in the plan tree that contains the

root (i.e., the projections are “on top”). Since a projection takes only a single input, this connected

component is necessarily a chain. Then, the lineage for each tuple produced by the subplanP1

of this chain can be seen to be a conjunction of atomic terms: the only operator that modifies the

lineage is the join (Z), and each join introduces at most one∧ symbol per tuple. Thus, the number

of conjunctions is upper bounded by the number of joined tables, which isk. Since the chain of

projections creates a single disjunction, the output formula is ak-DNF. �

The importance of this proposition is that we have reduced our problem of computing the prob-

ability a query is true to the problem of computing the probability that ak-DNF formula is satisfied,

which is a well-studied problem. Unfortunately, this problem is hard for 2-DNFs7. The good news is

that this type of formula has efficient approximations a fact that we leverage in Chapter 3. Moreover,

in Chapter 4, we generalize this condition to efficiently evaluate and approximate aggregate queries,

and in Chapter 6, we exploit this connection to produce small, approximate lineage formula.

6A k-DNF formula is a Boolean formula indisjunctive normal formwhere each monomial contains at mostk literals,
i.e., that can be writtenφ =

∨
i=1,m

∧
j=1,k xi, j wherexi, j is a literal or its negation.

7It is easy to see that the queryR(x),S(x, y),R(y) can produceany2-DNF formula. Computing the probability that even
a monotone a 2-DNF is satisfied is]P-hard [162]. This fact was used by Grädelet al. [78] to show that computing
reliability of queries is]P-hard. This result was further sharpened by Dalvi and Suciu [46] to the precise syntactic
boundary where hardness occurs.

20

2.4 Expressiveness of the Model

In this dissertation, we consider a data model where probabilities are listed explicitly. For example,

if one has aPerson table withsalary andage attributes whose values are correlated probability

distributions, then in our model one needs to enumerate explicitly all combinations ofsalary and

age, e.g.(Smith, 20, 1000, 0.3), (Smith, 20, 5000, 0.1), (Smith, 40, 5000, 0.6).

This allows for correlated attributes – as long as the joint distribution is represented explicitly. With

the addition of views,anypossible worlds distribution can be represented.

More precisely, we say that a possible worlds distributionI = (WI , µI) represents a possible

worlds distributionJ = (WJ, µJ) if there exists a mappingH : WI → WJ such that (1) for each

relational symbolR in WJ andW ∈ WJ, RW = RH(W), i.e., every relation inJ has exactly the same

content, and (2) for any worldWJ ∈ WJ, we haveµ(WJ) = µ({WI ∈ WI | H(WI) =WJ}), i.e., the

probability is the same8.

Proposition 2.4.1. For any possible worlds database J= (W, µ), there exists a BID database with

conjunctive views whose possible worlds represent J.

Proof. LetW = {W1, . . . ,Wn} and introduce new constantsw1, . . . ,wn for each such world. Let

A(X; W; P) be a fresh relational symbol not appearing inJ. Then, letA = {(x,wi , µ(Wi)) |Wi ∈ W}.

Notice that since there is only one value for theX attribute, all these events are disjoint: in any

possible world the unique variablex takes a single value For each symbolR(A) in J, introduce a

new symbolR′(A,W), i.e.,R′ has the same schema asRwith an additional attributeW. Now, define

the conjunctive viewR(x) D R′(x,w),A(w) wherex has the same arity asA. For i = 1, . . . ,n, define

the mappingH by mappingWi to the unique world wherex = wi . We can see that,RW1 = RH(W1),

and so, this distribution representsJ. �

If we examine the construction, we see that the database we are constructing is an internal

lineage database, since the tableA is a base table. We say that a representation system iscomplete

if it can represent any discrete possible worlds distribution. Then, we have shown:

Corollary 2.4.2. BID databases with conjunctive views and internal lineage databases are com-

plete.

8This definition necessarily preserves correlations because the choice ofH is the same forall relations.

21

This simple result (or a minor variation of it) has been observed in the literature many times [17,

82, 137]. This gives some intuition why variants of this model have been used as far back as 1992

by Barbaraet al. [13] (without views), and as recently as the current Mystiq [21], Trio [168], Con-

quer [70], and MayBMS systems [9]: it is a simple, yet surprisingly expressive, model. There are

other more succinct models that have been proposed in the literature, which we discuss in Chapter 7.

22

Chapter 3

QUERY-TIME TECHNIQUE I: TOP-K QUERY EVALUATION

The central observation of this chapter is that on a probabilistic database, the meaningful infor-

mation isnotconveyed by the exact scores in a query’s answer; instead, the meaningful information

is conveyed bythe rankingof those scores in the query’s answer. In many cases, the user is not

interested in the scores of every tuple, but likely in only the top few highly ranked answers. With

the observation in mind, we focus on efficiently finding and ordering those top tuples, and shift away

from prior art that focuses exclusively on computing the exact output probabilities.

In many applications, the motivation for introducing probabilities is to increase the recall of

queries on the database. This increase of recall always comes at the expense of lowering precision,

which forces the user to deal with a swarm of low-quality answers. Since many tuples in the query

answer are of very low quality (probability), and users are often interested in seeing only the most

highly ranked answers, it is sufficient to compute just the firstk answers for smallk. With the

idea that a ranking of the top tuples suffices in many situations, we develop a novel query evaluation

algorithm for computing the top-k answers that has theoretical guarantees. Additionally, we consider

several optimizations that are implemented in the MQ system, and we evaluate their impact on

MQ’s performance.

3.1 Motivating Scenario and Problem Definition

We illustrate the challenges that are faced by query evaluation on probabilistic databases using an

application that integrates the Internet Movie Database fromimdb.com, with movie reviews from

amazon.com. There are over 10M tuples in the integrated database. A simplified schema is shown

in Figure 3.1, and we will use it as our running example in this section. Amazon products (DVDs in

our case) are identified by a unique Amazon Standard Identification Number,asin, and each DVD

object has several subobjects: customer reviews, actors, director, etc. The IMDB schema is self

explanatory. The value of integrating the two data sources lies in combining the detailed movie data

23

AMZNReviews(asin, title, customer, rating, ...)

AMZNDirector(asin, director)

AMZNActor(asin, actor)

IMDBMovie(mid, movieTitle, genre, did, year)

IMDBDirector(did, dirName)

IMDBCast(mid, aid)

IMDBActor(aid, actorName)

TitleMatch(asin; mid; P)

Figure 3.1: Schema fragment of IMDB and Amazon database, and a fuzzy match table

TitleMatch(asin; mid; P)
asin mid P

t1 a282 m897 (“Twelve Monkeys”) 0.4
t2 (“12 Monkeys”) m389 (“Twelve Monkeys (1995)”) 0.3
t3 m656 (“Monk”) 0.013

t4 a845 m897 (“Twelve Monkeys”) 0.35
t5 (“Monkey Love”) m845 (“Love Story”) 0.27

Figure 3.2: Fuzzy matches stored inTitleMatch. The table stores only theasin andmid values,
but we included the review title and movie title for readability.

in IMDB with customers ratings in Amazon.

From Imprecisions to Probabilities One source of imprecision in integrating the two sources

is that their movie titles often do not match, e.g.,Twelve Monkeys v.s.12 Monkeys or Who Done

it? v.s. The Three Stooges: Who Done it. The problem of detecting when two representa-

tions denote the same object has been intensively studied, and referred to as deduplication, record

linkage, or merge-purge [6, 10, 32, 65, 71, 83, 89, 169, 170]. Perfect object matching is almost al-

ways impossible, and when it is possible it is often very costly, since it requires specialized, domain

specific algorithms. Our approach is to rely on existing domain independent methods, and change

the way their outputs are used. Currently, all fuzzy match methods use athresholded similarity

function approach[6], which relies on a threshold value to classify objects into matches and non-

matches. This is a compromise that can lead to false positives (when the threshold value is too

low) or to false negatives (when the threshold is too high). In contrast, in our approach the system

retains all similarity scores and handles them as probabilistic data. We computed a similarity score

between each pair of movie title and review title by comparing their sets of 3-grams: this resulted

24

SELECT DISTINCT d.dirName AS Director

FROM AMZNReviews a, AMZNReviews b,

TitleMatch ax, TitleMatch by,

IMDBMovie x, IMDBMovie y,

IMDBDirector d

WHERE a.asin=ax.asin and b.asin=by.asin and x.did=y.did and y.did=d.did

and x.genre=’comedy’ and y.genre=’drama’

and abs(x.year - y.year) <= 5 and a.rating>4 and b.rating<2

q(name) DDirector(name, z), AMZNReviews(x, r), AMZNReviews(x′, r ′),
TitleMatch(x,m), TitleMatch(x′,m′), IMDBMovie(m, ‘Comedy’, y, z),
IMDBMovie(m′, ‘Drama’, y′, z), r > 5, r ′ < 2, abs(z− z′)

Figure 3.3: Query retrieving all directors that produced both a highly rated comedy and a low rated
drama less than five years apart.

in a numberp between 0 and 1, which we interpret as the confidence score and stored it in a table

calledTitleMatch. Figure 3.2 shows a very simplified fragment ofTitleMatch(asin;mid;P),

consisting of five tuplest1, . . . , t5. Each tuple contains anasin value (a review inamazon) and a

mid value (a movie inIMDB). The amazon review withasin = a282 refers to a movie with title

12 Monkeys, and this can be one of three movies in the IMDB database: eitherTwelve Monkeys,

or to Twelve Monkeys (1995), or toMonk. Thus, only one of the tuplest1, t2, t3 can be correct,

i.e., they areexclusive, or disjoint, and their probabilities arep1 = 0.4, p2 = 0.3, andp3 = 0.013

respectively. Note thatp1 + p2 + p3 ≤ 1, which is a necessary condition since the three tuples are

exclusive events: we normalized the similarity scores to enforce this condition. Similarly, the movie

review aboutMonkey Love can refer to one of two IMDB movies, with probabilitiesp4 = 0.35 and

p5 = 0.27 respectively. We assume that any of the three matches for the first review is independent

from any of the two matches of the second review. This summarizes how we mapped fuzzy object

matches to probabilities. We briefly discuss other types of imprecisions in Section 3.4.1.

ChallengesQuery evaluation poses two major challenges. The first is that computing the exact

output probabilities is computationally hard. The data complexity for the query in Figure 3.3 is

#P-complete (this can be shown using results in [46]), meaning that any algorithm that computes

25

the probabilities exactly essentially needs to iterate through all possible worlds. Previous work on

probabilistic databases avoided this issue in several ways. Barbaraet al. [13] requires the SQL

queries to include all keys in all tables, thus disallowing duplicate elimination. This rules out our

query in Figure 3.3, because this query does not include any of the keys of the seven tables in the

FROM clause. If we included all these keys in theSELECT clause, then each director in the answer

would be listed multiple times, once for each pair of movies that satisfies the criterion: in our

example each of the 1415 directors would have occurred on average 234.8 times. This makes it

impossible to rank the directors. ProbView [108] computes probability intervals instead of exact

probabilities. In contrast to Luby and Karp’s algorithm, which can approximate the probabilities

to an arbitrary precision, the precision in ProbView’s approach cannot be controlled. In fact, the

more complex the query, the wider the approximation intervals, since ProbView’s strategies have to

conservatively account for a wide range of possible correlations between the input probabilities. For

example, when combining the (on average) 234.8 different probabilities to compute the probability

of a single director, the resulting interval degenerates to [0,1] for most directors. One can still use

this method in order to rank the outputs, (by ordering them based on their intervals’ midpoints) but

this results in low precision. Fuhr [68] uses an exponential time algorithm that essentially iterates

over all possible worlds that support a given answer. This is again impractical in our setting. Finally

Dalvi [46] only considers “safe” queries, while our query is not safe.

The second challenge is that the number of potential answers for which we need to compute the

probabilities is large: in our example, there are 1415 such answers. Many of them have very low

probability, and exists only because of some highly unlikely matches between movies and reviews.

Even if the system spends large amounts of time computing all 1415 probabilities precisely, the

users is likely to end up inspecting just the first few of them.

Overview of our Approach

We focus the computation on the top k answers with the highest probabilities. A naive way to find

the top k probabilities is to compute all probabilities then select the top k. Instead, we approximate

probabilities only to the degree needed to guarantee that (a) the top k answers are the correct ones,

and (b) the ranking of these top k answers is correct. In our running example, we will run an

26

Rank Director p

1 Woody Allen 0.9998
2 Ralph Senensky 0.715017
3 Fred Olen Ray 0.701627
4 George Cukor 0.665626
5 Stewart Raffill 0.645483

.

Figure 3.4: Top 5 query answers, out of 1415

approximation algorithm for many steps on the, say, topk = 10 answers, in order to identify them

and rank them, but will run only a few steps on the remaining 1415− 10 = 1405 answers, and

approximate their probabilities only as much as needed to guarantee that they are not in the top

10. This turns out to be orders of magnitude more efficient than the naive approach. The major

challenge is that we do not know which tuples are in top 10 before we know their probabilities: the

solution to this is the main technical contribution in this chapter.

The problem we address here is the following: We are given a SQL query and a numberk, and

we have to return to the user thek highest ranked answers sorted by their output probabilities. To

compute the probabilities we use Luby and Karp’s Monte Carlo simulation algorithm [101] (MC),

which can compute an approximation to any desired precision. A naive application of MC would be

to run it a sufficiently large number of steps on each query answer and compute its probability with

high precision, then sort the answers and return the topk. In contrast, we describe here an algorithm

calledmultisimulation(MS), which concentrates the simulation steps on the topk answers, and only

simulates the others a sufficient number of steps to ensure that they are not in the topk. We prove that

MS is theoretically optimal in a very strong sense: it is within a factor of two of a non-deterministic

optimal algorithm, which magically “knows” how many steps to simulate each answer, andno other

deterministic algorithm can be better. There are three variations of MS: computing the set of topk

answers, computing and sorting the set of topk answers, and anany timealgorithm, which outputs

the answers in the order 1,2,3, . . . , k, . . . and can be stopped at any time. Our experiments show that

MS exploits gracefullyk (the running times are essentially linear ink) and that MS is dramatically

more efficient than a naive application of MC.

27

3.1.1 Prior Art: Computing the probability of a DNF Formula

As we observed in the Preliminaries (Chapter 2), computing the probability of a tuple in the output is

equivalent to computing the probability of a DNF formula. For an answer tuplet, this DNF formula

is exactlyλ(t), which we can compute using the rules for lineage. From Proposition 2.3.5, we know

that the resulting formulaλ(t) is a DNF, and so we now recall prior art that computes the probability

thatλ is satisfied using a Monte Carlo-style algorithm.

A Monte Carlo algorithm repeatedly chooses at random a possible world, and computes the truth

value of the Boolean expressionλ; the probabilityp = µ(λ(t)) is approximated by the frequency

p̃ with whichλ(t) was true. Luby and Karp have described the variant shown in Algorithm 3.1.1.1,

which has better guarantees than a naive MC. For our purposes the details of the Luby and Karp

algorithm are not important: what is important is that, after running forN steps, the algorithm

guarantees with high probability thatp is in some interval [a,b], whose width shrinks asN increases.

Formally:

Theorem 3.1.1. [101] Let δ > 0 and defineε =
√

4mlog(2/δ)/N, where m is the number of

disjunctions inλ(t) and N is the number of steps executed by the Luby and Karp algorithm. Let

a = p̃− ε and b= p̃+ ε. Then the value p belongs to[a,b] with probability≥ 1− δ, i.e.1:

µ(p ∈ [a,b]) > 1− δ (3.1)

3.2 Top-k Query Evaluation using Multisimulation

We now describe our algorithm. We are given a queryq and an instanceJ stored in a SQL database

engine, and we have to compute the top k answers forq on J. Evaluation has two parts: (1) evaluat-

ing the SQL query in the engine and grouping the answer tuples to constructλ, (2) running a Monte

Carlo simulation on each group in the middleware to compute the probabilities, then returning the

top k probabilities. We describe here the basic algorithm, and discuss optimizations in the next

section.

1In the original paper the bound is given as| p − p̃ |≤ εp, sincep ≤ 1 this implies our bounds. The bound in that
paper is a stronger, relative bound. This is a technical point that we return to later in Chapter 4, but is unimportant for
our discussion here.

28

Algorithm 3.1.1.1 Luby-Karp algorithm for computing the probability of a DNF formulaλ(t) =∨
i ti whereti is a disjunct.
fix an order on the disjuncts:t1, t2, . . . , tm
C := 0
repeat

Choose randomly one disjunctti ∈ λ
Choose randomly a truth assignmentx with probability conditioned on“t i is satisfied”
if forall j < i t j(x) = false then C := C + 1

until N times
return p̃ = C/N

3.2.1 Multisimulation (MS)

We model the problem as follows. We are given a setG = {G1, . . . ,Gn} of n objects, with unknown

probabilitiesp1, . . . , pn, and a numberk ≤ n. Our goal is to find a set ofk objects with the highest

probabilities, denotedTopK ⊆ G: we discuss below how to also sort this set. The way we observe the

objects’ probabilities is by means of a simulation algorithm that, after runningN steps on an object

G, returns an approximation interval [aN,bN] for its probability p, with aN < bN (we assumeaN =

bN can never happen). We make the following four assumptions about the simulation algorithm and

about the unknown probabilities:

Convergence : limN→∞ aN = limN→∞ bN.

Precision : ∀N.p ∈ [aN,bN].

Progress : ∀N.[aN+1,bN+1] ⊆ [aN,bN].

Separation : ∀i , j, pi , p j .

By the separation assumptionTopK has a unique solution, i.e. there are no ties, and by the other

three assumptions the solution can be found naively by a round robin algorithm.

In our setting each objectG is a group of tuples representing a lineage formulaλ, and its proba-

bility is p = µ(λ). The simulation algorithm is Luby-Karp. Only the first assumption holds strictly

(convergence): we revisit below how to address the other three.

29

0 1

G2
G1 G3G4G5 p

cd

Example Empty critical region
c d c d c d

Case 1 Case 2 Case 3

Figure 3.5: Illustration of MS;k = 2.

Intuition Any algorithm that computesTopK can only do this by running simulations on the

objects. It initializes the intervals to [a1,b1] = [a2,b2] = . . . = [an,bn] = [0,1], then repeatedly

chooses to simulate someGi for one step. At each point in the execution, objectGi has been

simulatedNi steps, and thus its interval is [aNi
i ,b

Ni
i] = [ai ,bi] (we omit the superscript when it is

clear). The total number of steps over all groups isN =
∑n

i=1 Ni . Consider the top left figure in

Figure 3.5, where fork = 2. Here we have already simulated each of the five groups for a while:

clearlyG3 is in the top 2 (it may be dominated only byG2), although we don’t know if it is 1st or

2nd. However, it is unclear who the other object in top 2 is: it might beG1, G2, or G4. It is also

certain thatG5 is not among the top 2 (it is belowG2,G3).

Given two intervals [ai ,bi], [a j ,b j], if bi ≤ a j then we say that the first isbelow, and the second

is above. We also say that the two intervals areseparated: in this case we knowpi < p j (even if

bi = a j , due to the “separation” assumption). We say that the set ofn intervals isk-separated if

there exists a setT ⊆ G of exactlyk intervals such that any interval inT is above any interval not

in T. Any algorithm searching for theTopK must simulate the intervals until it finds ak-separation

(otherwise we can prove thatTopK is not uniquely determined); in that case it outputsTopK = T.

The cost of the algorithm is the number of stepsN at termination.

30

Our golden standard will be the following nondeterministic algorithm, OPT, which is obviously

optimal. OPT “knows” exactly how many steps to simulateGi , namelyNopt
i steps, such that the

following holds (a) the intervals [a
Nopt

1
1 ,b

Nopt
1

1], . . ., [aNopt
n

n ,bNopt
n

n] are k-separated, and (b) the sum

Nopt =
∑

i Nopt
i is minimal. When there are multiple optimal solutions, OPT chooses one arbitrar-

ily. Clearly such an oracle algorithm cannot be implemented in practice. Our goal is to derive a

deterministicalgorithm that comes close to OPT.

Example 3.2.1 To see the difficulties, consider two objectsG1,G2 andk = 1 with probabilities

p1 < p2, and the current intervals (say, after simulating bothG1 andG2 for one step) are [a1,b1],

[a2,b2] such thata1 = p1 < a2 < b1 < p2 = b2. The correct top-1 answer isG2, but we don’t know

this until we have separated them: all we know isp1 ∈ [a1,b1], p2 ∈ [a2,b2] and it is still possible

that p2 < p1. Suppose we decide to simulate repeatedly onlyG2. This clearly cannot be optimal.

For example,G2 may require a huge number of simulation steps beforea2 increases aboveb1, while

G1 may take only one simulation step to decreaseb1 belowa2: thus, by betting only onG2 we may

perform arbitrarily worse than OPT, which would know to chooseG1 to simulate. Symmetrically,

if we bet only onG1, then there are cases when we perform much worse than OPT. Round robin

seems a more reasonable strategy, i.e. we simulate alternativelyG1 andG2. Here, the cost is twice

that of OPT, in the following case: forN stepsa2 andb1 move very little, such that their relative

order remains unchanged,a1 < a2 < b1 < b2. Then, at theN + 1’th step,b1 decreases dramatically,

changing the order toa1 < b1 < a2 < b2. Round robin finishes in 2N + 1 steps. TheN steps used

to simulateG2 were wasted, since the changes ina2 were tiny and made no difference. Here OPT

chooses to simulate onlyG1, and its cost isN + 1, which is almost half of round robin. In fact, no

deterministic algorithm can be better than twice the cost of OPT. However, round robin is not always

a good algorithm: sometime it can perform much worse than OPT. Considern objectsG1, . . . ,Gn

andk = 1. Round robin may performn times worse than OPT, since there are cases in which (as

before) choosing the right object on which to bet exclusively is optimal, while round robin wastes

simulation steps on all then objects, hence its cost isn · Nopt.

Notations and definitionsGivenn non-negative numbersx1, x2, . . . , xn, not necessarily distinct,

let us definetopk(x1, . . . , xn) to be thek’s largest value. Formally, given some permutation such that

xi1 ≥ xi2 ≥ . . . ≥ xin, topk is defined to bexik. We settopn+1 = 0.

31

Definition 3.2.2. Thecritical region, top objects, andbottom objectsare:

(c,d) = (topk(a1, . . . ,an), topk+1(b1, . . . ,bn)) (3.2)

T = {Gi | d ≤ ai}

B = {Gi | bi ≤ c}

One can check thatB∩ TopK = ∅ andT ⊆ TopK: e.g. bi ≤ c implies (by definition ofc) that

there arek intervals [a j ,b j] above [ai ,bi], which proves the first claim. Figure 3.5 illustrates four

critical regions.

The important property of the critical region is that the intervals have ak-separation iff the

critical region is empty, i.e.,c ≥ d, in which case we can returnTopK = T. This is illustrated in the

upper right of Figure 3.5, where the top 2 objects are clearly those to the right of the critical region.

We therefore assumec < d from now on. Call an objectGi a crosserif [ai ,bi] contains the critical

region, i.e.ai ≤ c, d ≤ bi . There are always at least two crossers. Indeed, there arek + 1 intervals

[ai ,bi] such thatd ≤ bi . and at mostk−1 of them may satisfyc < ai ; hence, the others (at least two)

satisfyai ≤ c, and are crossers. Given a crosser [ai ,bi] we call it anupper crosserif d < bi , a lower

crosserif ai < c, and adouble crosserif it is both.

The Algorithm is shown in Algorithm 3.2.1.1. At each step it picks one or two intervals to

simulate, according to three cases (see Fig 3.5). First, it tries a double crosser [ai ,bi] ; if there is

none then it tries to find an upper crosser, lower crosser pair; if none exists then it means that either

all crossers have the same left endpointai = c or all have the same right endpointd = bi . In either

case there exists a maximal crosser, i.e., one that contains all other crossers: pick one and simulate

it (there may be several, since intervals may be equal). After each iteration re-compute the critical

region; when it becomes empty, stop and return the setT of intervals above the critical region. Based

on our previous discussion the algorithm is clearly correct: i.e., it returnsTopK when it terminates.

From theconvergenceassumption it follows that the algorithm terminates.

Analysis We now prove that the algorithm is optimal within a factor of two of OPT, and, more-

over, that no deterministic algorithm can be better.

At any point during the algorithm’s execution we say that an interval [ai ,bi] has slackif Ni <

Nopt
i . If it has slack then the algorithm can safely simulate it without doing worse than OPT. We

32

Algorithm 3.2.1.1 The Mulisimulation Algorithm
MS TopK (G, k) : /* G = {G1, . . . ,Gn} * /
Let [a1,b1] = . . . = [an,bn] = [0,1], (c,d) = (0,1)
while c ≤ d do

Case 1:exists a double crosser: simulate it one step
Case 2:exists an upper crosser and a lower crosser: simulate both one step
Case 3:otherwise: pick a maximal crosser, simulate it one step
Update (c,d) using Eq.(3.2)

return TopK = T = {Gi | d ≤ ai}

have:

Lemma 3.2.3. Let [ai ,bi] be a crosser. Then, in all cases below,[ai ,bi] has slack: (1) If it is an

upper crosser and is not in the top k. (2) If it is a lower crosser and is in the top k. (3) If it is a

double crosser. (4) If it contains all crossers (i.e. it is a maximal crosser).

Proof. To see (1), note that OPT must findk intervals abovei; but since [aNi
i ,b

Ni
i] is an upper crosser,

there are at mostk−1 b
N j

j ’s such thatb
N j

j > b
N j

i ; hence, OPT can find at mostk−1 intervals (namely

the same ones, at most) that are abovebNi
i , i.e. a

Nopt
j

j > bNi
i , becausea

Nopt
j

j < b
N j

j (due to the progress

assumption). It follows that OPT must simulatei at least one more step thanNi to bringb
Nopt

i
i below

bNi
i in order to separate it from the topk. (2) and (3) are similar. To prove (4), we assume that the

interval i is in TopK: the other case is symmetric. Consider thek + 1 intervals that haveb j ≥ d: at

least one, say [a j ,b j], must be not inTopK, and OPT must separate them by proving that [a j ,b j] is

below [ai ,bi]. But ai ≤ a j because either [a j ,b j] is included in [ai ,bi], or [a j ,b j] is not a crosser

(henceai ≤ c ≤ a j). Hence, to separate them, OPT must either reduce [a j ,b j] to a point or further

simulate [ai ,bi]. But since we assume that an MC algorithm cannot return a point interval (i.e.

aN < bN forall N), OPT must simulate [ai ,bi]. �

Theorem 3.2.4.(1) The cost of algorithmMS TopK is< 2Nopt. (2) For any deterministic algorithm

computing the top k and for any c< 2 there exists an instance on which its cost is≥ cNopt.

Proof. To prove (1), notice that at each step the algorithm simulates one or two intervals: it suffices

to prove that at least one of them has slack2. There are three cases. First, a double crosser is

2This shows that the cost is≤ 2Nopt; to prove< 2Nopt one notices that at least one iteration simulates a single interval,
with slack.

33

simulated: clearly it has slack. Second, an upper and a lower crosser are simulated: in order for

both not to have slack we must have one is in the topk and the other is not in the topk; but in that

case OPT must simulate at least one of them, since they are not separated yet, hence one of them

does have slack after all. Third, there are only upper or only lower crossers and we simulate the

largest one: we have seen that this also has slack.

The main idea for (2) is in Example 3.2.1. Given a deterministic algorithmA, we construct a

family of instances indexed bym> 1 (and that depend onA) such that the optimal has costNopt
m and

A can do better than 2Nopt
m . The instance contains two intervalsI andJ. The intuition is that one of

these two intervals will separate at “time” 2m, but not before. Initially,I =
[
0, 2

3

]
andJ =

[
1
3,1

]
.

Suppose that the algorithm spendssI on simulating intervalI and sJ simulating intervalJ where

sI + sJ < 2m. Then, the intervals will shrink toI =
[

sI
6m,

2
3

]
, similarly J =

[
1
3,1−

sJ
6m

]
. Since

sI + sJ ≤ 2m, this means that the intervals will overlap for the entire time. To construct them-th

instance, let the algorithm run form steps and shrink the intervals as above. Then, choose which

ever interval the algorithm has simulated least and make it collapse. More precisely, assume that

interval isI : if I was simulated least, then on the next iteration ofI we will setI =
[

sI
6m,

si+1
6m

]
. Notice

that sI < m. OPT only simulatesI which has costNopt
m = sI < m, while A pays cost at least 2m on

this instance. A symmetric argument holds if the algorithm choosesJ less frequently. Notice that

since the algorithm is deterministic, it is only a function of the intervals. �

Corollary 3.2.5. Let A be any deterministic algorithm for findingTopK. Then (a) on any instance

the cost ofMS TopK is at most twice the cost ofA, and (b) for any c< 1 there exists an instance

where the cost ofA is greater than c times the cost ofMS TopK .

3.2.2 Discussion

Variations and extensionsIn query answering we need to compute the topk answersand to sort

them. The following variation of MS, which we callMS RankK , does this. First, compute the top

k, Tk = MS TopK (G, k). Next, compute the following sets, in this sequence:

34

Tk−1 = MS TopKni(Tk, k− 1)

Tk−2 = MS TopKni(Tk−1, k− 2)

. . .

T1 = MS TopKni(T2,1)

At each step we have a setT j of the top j answers, and we compute the topj − 1: this also iden-

tifies the j’th ranked object. Thus, all topk objects are identified, in reverse order. HereMS TopKni

denotes the algorithmMS TopK without the first line: that is, it does not initialize the intervals

[ai ,bi] but continues from where the previous multisimulation left off. This algorithm is also opti-

mal: It is straightforward to prove a theorem similar to 3.2.4.

The second variation is anany-timealgorithm, which computes and returns the top answers

in order, without knowingk. The user can stop any time. The algorithm starts by identifying

the top elementT1 = MS TopK (G,1), then it finds the remaining groups in decreasing order:

T j+1 = MS TopK (Bj ,1), whereBj = G − (T1 ∪ . . . ∪ T j). Note that fork > 1 this algorithm isnot

optimal in finding the topk elements; its advantage is in its any-time nature. Also, it prevents the

semi-join optimization discussed below, which requires knowledge ofk.

Revisiting the assumptionsPrecision holds for any MC algorithm, but only in a probabilistic

sense. For example after running Luby-Karp’s algorithm forN steps,µ(p ∈ [aN,bN]) > 1 − δ1.

The choice of theconfidenceδ1 affects the convergence rate:bN − aN = 2
√

4mlog(2/δ1)/N, where

m is the size of the group. In our context the user chooses a global parameterδ and requires that

all n groups be precise with confidenceδ. Assuming equal confidences, the system setsδ1 for

each group toδ/n, since it implies (1− δ1)n ≥ 1 − δ. Still, since it appears under log, we can

choosevery smallvalues forδ without affecting significantly the running time (N), hence precision

holds for all practical purposes. The separation assumption is more problematic, since in practice

probabilities are often equal or very close to each other. Here we simply rely on a second parameter

ε > 0: when the critical region becomes less thanε, we stop and rank the uncertain groups based

35

on the midpoints of their intervals. Progress as stated, does not hold for our Monte Carlo simulation

technique: After a large number of steps, sayn, our estimate may have jumped by a factor ofn−1;

this means that its “confidence interval” is liken−1+ n−1/2 – which is outside the bounding interval.

Instead, what does hold is the weaker statement that after a negligible number of steps with respect

to OPT, the sequence of intervals are again nested (with high probability). This allows us to show

that MS takes 2OPT+ o(OPT) steps (see Appendix A.1). The choice ofε also affects running time

and precision/recall. We discuss the system’s sensitivity onδ andε in Section 3.4.

Finally, note that our restriction that the intervals never collapse (i.e.,aN < bN forall N) is im-

portant. This is always true in practice (for any MC algorithm). As a pure theoretical observation

we note here that without this assumption the proof of Lemma 3.2.3 (4) fails and, in fact, no deter-

ministic algorithm can be within a constant factor of OPT. Consider searching for the topk = 1 of n

objects; alln intervals start from the initial configuration [0,1]. OPT picks the winner object, whose

interval, after one simulation step, collapses to [1,1]: OPT finishes in 1 step, while any deterministic

algorithm must touch alln intervals at least one.

Further Improvements One may wonder if our adversarial model in which intervals may shrink

at arbitrary, unpredictable rates is too strong. In theory it may be possible to design an algorithm that

findsTopK by exploiting the specific rates at which the intervals shrink (see the bounds in Th. 3.1.1).

However, note that this will result in at most a factor of 2 improvement over the MS algorithm, due

to Corollary 3.2.5.

3.3 Optimizations

We present two optimizations: the first reduces the number of groups to be simulated using a simple

pruning technique, the second reduces the sizes of the groups by pushing more of the processing

from the middleware to the engine. Both techniques are provably correct in that they are guaranteed

to preserve the query’s semantics.

Pruning The following are two simple upper and lower bounds for the probability of a group

λ(t) = φ1 ∨ · · · ∨ φn for any tuplet

36

m
max
i=1

µ(φi) ≤ µ(λ(t)) = µ(
∨

i=1,...,n φi) ≤
m∑

i=1

µ(φi)

They can be computed easily and allow us to initialize thecritical region using Eq. 3.2 and to

prune some groups before even starting MS. As an improvements, when there are no pairs of disjoint

tuples in the group (which is a condition that can be checked statically) then the upper bound can be

tightened to 1−
∏

i(1− µ(φi).

Safe SubqueriesSometimes the probabilities can be pushed to the engine, by multiplying prob-

abilities (when the tuples are independent) or by adding them (when the tuples are disjoint). This

can be achieved by running a SQL query, over a subsetR
′
⊆ R of the tables in the original queryq,

like the following (hereR
′
= R1, R2, R2):

sq = SELECT B
′
, AGG(R1p.p*R2p.p*R3p.p) as p

FROM R1p, R2p, R3p WHERE C GROUP-BY B
′

whereAGG is eithersum or prod 1 1:

sum(p1, . . . , pm) =
∑

i

pi

prod 1 1(p1, . . . , pm) = 1−
∏

i

(1− pi)

The optimization works like this. Given the queryq choose a subset of its tablesR
′
⊆ R, and some

set of attributesB
′

(which must include all attributes on which the relationsR
′

join with the other

relations). Then construct a subquery likesq above, and use it as a subexpression inq as it were

a normal BID table3, with probability given byp, and its possible-worlds key given by a certain

subsetS of B
′
.

3We will later in Chapter 5 see a more general condition calledrepresentabilitythat establishes the exact conditions
for a table to be a BID table, which are more general than the sufficient conditions that we discuss here.

37

Three conditions must be met for this rewriting to be correct. (1) The tuple probabilityp com-

puted byAGG must be correct, (2) in the output, tuples having the same value ofS must be disjoint

tuples and tuples having different values ofS must be independent tuples, and (3) each such proba-

bility must be independent of all the other tuple in the original query that it joins with. Recall that

Key(R) denotes the set of key attributes for the possible worlds forR.

To check (1) we have the following:

Proposition 3.3.1. Consider the querysq above. LetAttr(R) denote the attributes of relationR

(does not include thep attribute, which technically belongs only toRp) andAttr(sq) denote the

union ofAttr(R) for all relationsR in sq.

1. If AGG is sum thenp is computed correctly iff ∃R ∈ R
′
s.t.Key(R) ⊆ B

′
andAttr(sq) − B

′
⊆

Attr(R).

2. If AGG is prod 1 1 thenp is computed correctly iff ∀R ∈ R
′
, Attr(sq) − B

′
⊆ Key(R).

To check (2) we have the following:

Proposition 3.3.2. Consider the querysq above.

1. Two output tuples having the same values ofS are disjoint events iff ∃R ∈ R
′

s.t. Key(R) ⊆ S

andB
′
− S ⊆ Attr(R).

2. Two output tuples having different values ofS are independent events iff ∀R ∈ R
′
, B
′
− S ⊆

Key(R).

Finally, to check (3) we need to check that the relations used bysq do not occur again the rest of

the queryq.

Example 3.3.3 Consider three probabilistic tables:

AmazonHighReviewsp(asin, reviewer, p)

TitleMatchp(asin, imdbid, p)

IMDBHighRatedFilmsp(imdbid, p)

38

with possible worlds keys

Key(AmazonHighReviews) = {asin, reviewer}

Key(TitleMatch) = {asin}

Key(IMDBHighRatedFilms) = {imdbid}

Note thatAmazonHighReviews andIMDBHighRatedFilms contain only independent tuples. Con-

sider the queryq:

q = TOP 5 SELECT DISTINCT A.reviewer

FROM AmazonHighReviews A,

TitleMatch T, IMDBHighRatedFilms I

WHERE A.asin = T.asin and T.imdbid = I.imdbid

The query can be optimized by observing that the following subquery is a safe subquery:

sq = SELECT T.asin, sum(T.p * I.p) as p

FROM TitleMatchp T, IMDBHighRatedFilmsp I

WHERE T.imdbid = I.imdbid

GROUP BY T.asin

The output of this subquery is a tableTmpp(asin, p) that can be treated as a base probabilistic

table with possible world keyasin and probability attributep. To see why, let us verify that this

subquery satisfies the three conditions for safe subquery:

• For condition (1), we use Prop. 3.3.1(1). HereB
′
= {asin} andAttr(sq)= {asin, imdbid}.

We see thatKey(TitleMatch) ⊆ B
′
andAttr(sq) − B

′
⊆

Attr(TitleMatch), so the condition is met.

• For condition (2), we use Prop. 3.3.2. Here,S = {asin} since we are claiming thatasin is the

key for Tmp. Prop. 3.3.2(2) holds trivially becauseB
′
− S = ∅. Prop. 3.3.2(1) holds because

Key(TitleMatch) ⊆ S.

• Condition (3) holds because all event tables outsideTmp are distinct from those inside.

39

Probabilistic #Tuples #exclusive tuples
Table Name Avg. Max
MovieToAsin 339095 4 13
AmazonReviews 292680 1 1
ActorMatch 6758782 21 2541
DirectorMatch 18832 2 36

UsenetMatch 134803 5 203
UsenetReview 3159 1 3159

ActivityData 2614480 3 10
HMM 100 10 10

Figure 3.6: Three Case Studies of Imprecisions

Query # of Avg Max # of
name groups group group prob.

(n) sizem size tables
no SP SP no SP SP (m)

SS 33 20.4 8.4 63 26 2
SL 16 117.7 77.5 685 377 4
LS 3259 3.03 2.2 30 8 2
LL 1415 234.8 71.0 9088 226 4

Figure 3.7: Query Stats w/o and w/ S(afe) P(lan)

Having verified that the subquery is indeed safe, we rewrite the queryq by makingsq a subquery:

qsafe-plan = TOP 5 SELECT DISTINCT A.reviewer

FROM AmazonHighReviews A, sq Tmp

WHERE A.asin = Tmp.asin

Thus, the tableTmp(asin,p) is computed inside the engine, and treated like a base query by

MS. The rest of MS remains unchanged. The new query has the same number of groups as the

original query, but each group is much smaller since some of the probabilistic computation has been

pushed in the engine.

40

3.4 Experiments

In this section we evaluate our approach experimentally. We address five questions: (1) what is the

scale of probabilistic databases when modeling imprecisions; (2) how does our new query evaluation

method compare to the current state of the art; (3) how effective is the multisimulation (MS) over

a naive approach (4) how effective are the optimizations; and (5) how sensitive is the system’s

performance on the choice ofδ andε.

SetupOur experiments were run on a dual processor Intel Xenon 3GHz Machine with 8G RAM

and 2 400GB disks. The operating system used was Linux with kernel version 2.6.12 high-mem

build. The database was DB2 UDB Trial Edition, v. 8.2. Due to licensing restrictions DB2 was only

one able to use one of the cores. Indexes and configuration parameters such as buffer pools were

tuned by hand.

Methodology For each running time we perform the experiment 5 times, dropping the highest

and the lowest and average the remaining three runs. The naive simulation method was capped at

20 minutes. In between each experiment, we force the database to terminate all connections. The

same experiments was not run repeatedly to minimize caching effects but the cache was allowed to

be warm. In the precision/recall experiments, the precision and recall are defined as the fraction of

the topk answers returned by method being evaluated that overlap with the “correct” set of topk

answers. In order to compute the latter we had to compute the exact tuple probabilities, which is

intractable. For that we used the approximate values returned by the simulation algorithm with very

low settings forε andδ: ε = 0.001 andδ = 0.01.

3.4.1 Case Studies

In an empirical study we modeled imprecisions in three application domains. The first integrates the

IMDB movie database with reviews from Amazon, as described in a simplified form in Sec. 3.1, and

the sources of imprecisions are fuzzy object matches (for titles, actors, and directors), and the confi-

dence in the amazon reviews (“how many people found this review useful”). The second application

integrates IMDB with reviews collected from a USENET site4. These reviews were in free text and

we had to use information extraction techniques to retrieve for each review (a) the movie and (b) the

4ftp://ftp.uu.net/usenet/rec.arts.movies.reviews/

41

rating. The imprecisions here were generated by information extraction tools. In the third applica-

tion we used human activity recognition data obtained from body-worn sensors [110]. The data was

first collected from eight different sensors (accelerometer, audio, IR/visible light, high-frequency

light, barometric pressure, humidity, temperature, and compass) in a shoulder mounted multi-sensor

board, collected at a rate of 4 per second, then classified into intoN = 10 classes of human activ-

ity A1,A2, . . . ,AN, one for each subject and each time unit. The classes were: riding elevator up or

down, driving car, riding bicycle, walking stairs up or down, jogging, walking, standing, sitting. The

imprecisions here come from the classification procedure, which results in probability distribution

on theN activities.

Figure 3.6 shows brief summaries of the probabilistic data in each of these applications. Each

required between two and four base probabilistic tables, and between one to three SQL views for

complex probabilistic correlations. In addition to the probabilistic data IMDB had some large de-

terministic tables (over 400k movies, 850k actors, and 3M casts, not shown in the figure), which

are part of the query processor’s input in the experiments below, hence they are important for our

evaluation.

3.4.2 Query Performance

We report below measurements only from the first data set (IMDB-Amazon integration), which was

the largest and richest. The processor’s performance was mostly affected by two query parameters:

the number of groups (denotedn in Sec. 3.2) and the average size of each group. In additional exper-

iments (not shown) we noticed that the performance was less affected by the number of probabilistic

tables in the query (m in Sec. 3.2), which roughly corresponds to the number of sources of evidence

in the imprecise data.

By choosing each parameter to be small (S) or large (L) we obtained four classes of queries de-

note SS, SL, LS, and LL respectively; we chose one query form each class, and show it in Figure 3.7.

The queries are:

SS In which years didAnthony Hopkinsappear in a highly rated movie? (Our system returns the

top answer 2001, the year he was in Hannibal)

42

SL Find all actors who were in Pulp Fiction who were in two very bad movies in the five years

before Pulp Fiction. (Top 2 Answers: Samuel L Jackson and Christopher Walken)

LS Find all directors who had a low rated movie between 1980 and 1989. (Top 2 Answers: Richard

C. Sarafian for Gangster Wars and Tim King for Final Run)

LL Find all directors who had a low rated drama and a high rated comedy less than five years apart.

(Top Answer: Woody Allen)

Unless otherwise stated, the confidence and precision parameters wereε = .01,δ = .01, and the

multisimulation algorithm run wasMS RankK (Sec. 3.2.2), which finds the topk and sorts them.

Comparison with Other Methods The state of the art in query evaluation on probabilistic

databases is to either compute each query answer exactly, using a complete Monte Carlo simulation

(we call this method naive (N)), or to approximate the probabilities using some strategies [108]

by ignoring their correlations. The first results in much larger running times than multisimulation

(MS): see Figure 3.8 (a) (note the logarithmic scale): the naive method timed out for the LS and LL

queries. The approximation method is much faster than MS, but results in lower precision/recall,

due to the fact that it ignores correlations between imprecisions: this is shown in Figure 3.8 (b).

Note that, unlike a Monte Carlo simulation, where precision and recall can be improved by running

longer, there is no room for further improvement in the approximate method. Note that one of the

queries (LS) flattened at around 60% precision/recall. The queries that reached 100% did so only

whenk reached the total number of groups: even then, the answers are much worse then it looks

since their order is mostly wrong. This clearly shows that one cannot ignore correlations when

modeling imprecisions in data.

Analysis of Multisimulation The main idea of the multisimulation algorithm is that it tries to

spend simulation steps on only the topk buckets. We tested experimentally how the total number

of simulation steps varies withk, and in which buckets the simulation steps are spent. We show

here the results for SS. Figure 3.8 (c) shows the total number of simulation steps as a function

of k, both for theTopK algorithm (which only finds the topk set without sorting it) and for the

RankK algorithm (which findsand sorts the topk set). First, the graph clearly shows thatRankK

benefits from low values ofk: the number increases linearly withk. Second, it shows that, for

43

TopK, the number of steps is essentially independent onk. This is because most simulation steps

are spent at the separation line between the topk and the rest. A deeper views is given by the graph

in Figure 3.8 (d), which shows for each group (bucket) how many simulation steps were spent, for

k = 1,5,10,25, and 50. For example, whenk = 1 most simulation steps are spent in buckets 1

to 5 (the highest in the order of the probability). The graph illustrates two interesting things: that

RankK correctly concentrates most simulation steps on the topk buckets, and that, oncek increases

beyond a given bucket’s number, the number of simulation steps for that bucket does not further

increase. The spikes in both graphs correspond to clusters of probabilities, where MS had to spend

more simulation steps to separate them. Figure 3.8 (e) shows the effect ofk on the measured running

time of each query. As expected, the running time scales almost linearly ink. That is, the fewer

answer the user requests, the faster they can be retrieved.

Effectiveness of the OptimizationsWe tested both optimizations: the semijoin pruning and safe

query rewriting. The semijoin pruning was always effective for the queries with a large number of

buckets (LS, LL), and harmless for the other two. We performed the pruning in the middleware, and

the additional cost to the total running time was negligible. The safe-plan rewriting (SP) is more

interesting to study, since it is highly non-trivial. Figure 3.8 (a) shows significant improvements

(factors of 3 to 4) in the running times when the buckets are large (SL, LL), and modest improve-

ments in the other cases. The query time in the engine differed, since now the queries issued are

different: in one case (SL) the engine time was larger. Figure 3.7 shows how the SP optimization

affects the average group size: this explains the better running times.

Sensitivity to ParametersFinally, we tested the system’s sensitivity to the parametersδ andε

(see Sec. 3.2.2). Recall that the theoretical running time isO(1/ε2) andO(log(1/(nδ)). Figure 3.8

(f) shows both the precision/recall and the total running time as a function of 1− ε, for two queries:

LL and LS; k = 20, δ = 0.01, and SP is turned off. The running time are normalized to that of

our golden standard, 1− ε = 0.99. As 1− ε increases, the precision/recall quickly approaches the

upper values, while the running time increases too, first slowly, then dramatically. There is a price

to pay for very high precision/recall (which is what we did in all the other experiments). However,

there is some room to tune 1− ε: around 0.9 both queries have a precision/recall of 90%-100%

while the running time is significantly less than the golden standard. The similar graphs forδ differ,

and is much more boring: the precisions/recall reaches 1 very fast, while the running time is almost

44

independent onδ. (The graphs look almost like two horizontal lines.) We can chooseδ in a wide

range without degrading either precision/recall or performance.

45

 1

 10

 100

 1000

SPMSNSPMSNSPMSNSPMSN

Ru
nn

in
g

an
d

En
gi

ne
 T

im
e

(s
) [

Lo
g

Sc
al

e]

SS SL LS LL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

Pr
ec

isi
on

K

SS
SL
LS
LL

(a) Running times N(aive), MS, and S(afe) P(lan) (b) Precision/Recall for naive strategies
[k = 10,ε = .01,δ = .01]

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30

Si
m

ul
at

io
n

St
ep

s (
x1

00
00

0)

K

RankK
TopK

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

Si
m

ul
at

io
n

St
ep

s *
 1

05

Bucket Index

1
5

10
25
50

(c) Total number of simulation steps for query SS (d) Number of simulation steps per bucket for query SS

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 10 20 30 40 50

Ru
nn

in
g

Ti
m

e
(s

)

K

SS
SL
LS
LL

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.2

 0.4

 0.6

 0.8

 1

Pr
ec

isi
on

Ru
nn

in
g

Ti
m

e
(%

 o
f M

ax
)

1 - epsilon

LS Running Time

LS Precision

LL Precision

LL Running Time

(e) Effect of K on Running Time (f) Effect of ε on Precision and Running Time

Figure 3.8: Experimental Evaluation

46

Chapter 4

QUERY-TIME TECHNIQUE II: EXTENSIONAL EVALUATION FOR
AGGREGATES

In traditional databases, aggregation is a key technique to summarize a single large database

instance. In probabilistic databases, we need to summarizemanylarge instances (possible worlds).

Intuitively, this suggests that aggregation may actually be a more fundamental operation on prob-

abilistic data than even over standard, deterministic relational data. In this section, we both tackle

the algorithmic challenge of evaluating (and approximating) aggregate queries on a probabilistic

databases, and also, discuss the limits of any approach.

In this chapter, we studyHAVING querieswhich are inspired by theHAVINGclause in SQL; more

precisely, aHAVING is a conjunctive Boolean queries with an aggregation predicate, e.g., is the MAX

greater than 10?. Informally, the technical highlight of this chapter is a trichotomy result: we show

that for eachHAVING queryQ the complexity of evaluatingQ falls into one of three categories: (1)

The exact evaluation problem hasP-time data complexity. In this case, we call the querysafe. (2)

The exact evaluation problem is]P-hard, but the approximate evaluation problem has (randomized)

P-time data complexity. More precisely, there exists an for the query. In this case, we call

the queryapx-safe. (3) The exact evaluation problem is]P-hard, and the approximate evaluation

problem is also hard (no likely exists). We call these querieshazardous.

4.1 Motivating Scenario

In SQL, aggregates come in two forms:value aggregatesthat are returned to the user in theSELECT

clause (e.g., theMAX price) andpredicate aggregatesthat appear in theHAVING clause (e.g., is the

MAX price greater than $10.00?). In this section, we focus on positive conjunctive queries with a

single predicate aggregate that we callHAVING queries. Prior art [26, 97] has defined a semantic

for value aggregationthat returns the expected value of an aggregate query (e.g., the expectedMAX

price) and has demonstrated its utility for OLAP-style applications. In this section, we propose a

47

Item Forecaster Profit P

Widget
Alice $−99K 0.99
Bob $100M 0.01

Whatsit Alice $1M 1

SELECT SUM(PROFIT)

FROM PROFIT

WHERE ITEM=‘Widget’

SELECT ITEM

FROM PROFIT

WHERE ITEM=‘Widget’

HAVING SUM(PROFIT) > 0.0

Profit(Item;Forecaster,Profit;P) (a) Expectation Style (b)HAVING Style

Figure 4.1: A probabilistic database with aProfit relation that contains the profit an analyst fore-
casts for each item sold. Prior Art [97] has considered a semantic similar to the query in (a), which
returns the expected value of an aggregate. In contrast, we study queries similar to (b) which com-
putes the probability of aHAVING style predicate, e.g., that theSUM of profits exceeds a value (here,
0.0).

complementary semantic for predicate aggregates inspired byHAVING (e.g., what is theprobability

that theMAX price is bigger than $10.00?). We illustrate the difference between the approaches with

a simple example:

Example 4.1.1 Figure 4.1 illustrates a probabilistic database that contains a single relation,Profit.

Intuitively, a tuple inProfit records the profit that one of our analysts forecasts if we continue to

sell that item. We are not certain in our prediction, and soProfit records a confidence with each

prediction. For example, Alice is quite sure that we will lose money if we continue selling widgets;

this is captured by the tuple (Widget, Alice, $ − 99K, 0.99) in Profit. Intuitively, 0.99 is the

marginal probability of the fact (Widget,Alice,$− 99k).

An example of a value aggregate is shown in Figure 4.1(a). In this approach, the answer to an

aggregation query is theexpected value of the aggregate function. Using linearity of expectation,

the value of the query in Figure 4.1(a) is 100M * 0.01+ −99K * 0.99≈ 900K. Intuitively, this large

value suggests that we should continue selling widgets because we expect to make money. A second

approach (that we propose and study in this chapter), is akin toHAVING style aggregation in standard

SQL. An example is the query in Figure 4.1(b) that intuitively says:“What is the probability that we

will make a profit?”. The answer to this query is the probability that the value of theSUM is greater

than 0. Here, the answer is only 0.01: this small probability tells us that we should stop selling

widgets or risk going out of business.

48

Our technical starting point is the observation that we can evaluate a queryq with an aggregate

α on a deterministic database using a two step process: (1) annotate the database with values from

some semiring,Sα, e.g., ifα = COUNT, then we can takeSα to be the natural numbers, and (2)

propagate these annotations during query processing (using the rules in Greenet al. [81]). In this

scheme, each tuple output by the query is annotated with a value in the semiringSα that is exactly

thevalueof the aggregate, e.g., theCOUNT of the tuples returned byq. Thus, it is easy to check if the

HAVING query is true: simply test the predicate aggregate on the value returned by the query, e.g., is

theSUM returned by the query greater than 0? If the answer is yes, return true.

To evaluate aggregate queries on probabilistic databases, we generalize this approach. On a

probabilistic database, the output of an aggregate queryQ is described by arandom variable, de-

notedsQ, that takes values inSα. A HAVING queryQ whose predicate is, say,COUNT(∗) < k, can

be computed over a probabilistic database in two stages: (1) compute the distribution of the random

variable,sQ; and (2) apply arecovery functionthat computes the probability thatsQ < k, i.e., sum

over all satisfying values ofsQ. The cost of this algorithm depends on the space required to rep-

resent the random variablesQ, which may be exponential in the size of the database. This cost is

prohibitively high for many applications1. In general, this cost is unavoidable, as prior art has shown

that forSELECT-PROJECT-JOIN (SPJ) queries (withoutHAVING), computing a query’s probability is

]P-Complete2 [46,78].

Although evaluating general SPJ queries on a probabilistic database is hard, there is a class of

SPJ queries (calledsafe queries) that can be computed efficiently and exactly [46, 135]. A safe

query has a relational planP, called asafe plan, that is augmented to compute the output probability

of a query by manipulating the marginal probabilities associated with tuples. The manipulations

performed by the safe plan are standard multiplications and additions. These manipulations are

correct because the safe plan “knows” the correlations of the tuples that the probabilities represent,

e.g., the plan only multiplies probabilities when the events are independent. To generalize safe plans

1A probabilistic database represents a distribution over standard, deterministic instances, calledpossible worlds[63].
A probabilistic database withn tuples can encode 2n possible worlds, i.e., one for each subset of tuples. We defer to
Section 4.2.1 for more details.

2]P defined by Valiant [162] is the class of functions that contains the problem of counting the number of solutions
to NP-Hard problems (e.g.,]3-SAT). Formally, we mean here that there is a polynomial reduction from a]P-Hard
problem, and to any problem in]P. Since technically, the query evaluation problem itself is not in]P.

49

to computeHAVING queries, we provide analogous operations for semiring random variables. First,

we describemarginal vectorsthat are analogous to marginal probabilities: a marginal vector is a

succinct, but lossy, representation of a random variable. We then show that the operation analogous

to multiplying marginal probabilities is a kind ofsemiring convolution. Informally, we show that

substituting multiplications with convolutions is correct precisely when the plan is safe.

As we show, the running time of safe plans with convolutions is proportional to the number of

elements in the semiring,Sα. Thus, to computeHAVING queries with an aggregateα efficiently,

we needSα to be small, i.e.,Sα should contain at most polynomially many elements in the size of

the instance. This condition is met when the aggregateα is one of{EXISTS, MIN, MAX, COUNT}. For

α ∈ {SUM,AVG, COUNT(DISTINCT)}, the condition is not met. In these cases, our algorithm is efficient

only for a restricted type of safe plans that we callα-safe. Forα-safe plans, aHAVING query withα

can be computed efficiently and exactly. Further, we show thatα-safe plans capture tractable exact

evaluation for queries without self joins3. More precisely, for each aggregateα ∈ {EXISTS, MIN,

MAX, COUNT, SUM, AVG, COUNT(DISTINCT) }, there is a dichotomy for queries without self joins:

Either (1)Q isα-safe, and so has aP-time algorithm, or (2)Q is notα-safe and evaluatingQ exactly

is]P-Hard. Further, we can decide whether a query isα-safe inP-time.

Exact evaluation is the gold standard, but in many applications,approximatelycomputing prob-

abilities suffices. For example, if the input probabilities are obtained heuristically, then computing

the precise value of the output probability may be overkill. Alternatively, even if the probabili-

ties are obtained precisely, a user may not care about the difference between a query that returns a

probability score of.9 versus.90001; moreover, as we argued in Chapter 3 such precision may be

sufficient to rank the answers. Leveraging these observations, we show that there are some queries

that can be efficiently approximated, even though they are notα-safe (and so cannot be computed

exactly). More precisely, we study when there exists aFully Polynomial Time Randomized Approx-

imation Scheme() for approximating the value of aHAVING query4. Our key result is that

there is a second dichotomy for approximate evaluation for queries without self joins: Either (1) an

3A self join is a join between a relation and itself. The queryR(x, y),S(y) does not have a self join, butR(x, y),R(y, z)
does.

4An  can be thought of as a form of sampling that is guaranteed to rapidly converge and so is efficient. We defer
to Definition 4.6.1 for formal details.

50

approximation scheme in this chapter can approximate aHAVING query efficiently, or (2) there is

no such efficient approximation scheme. Interestingly, we show that the introduction of self joins

raisesthe complexity of approximation: we show a stronger inapproximability result for queries

involving self joins.

In general, the complexity of evaluating aHAVING query Q depends on the predicate thatQ

uses. More precisely, the hardness depends on both the aggregate function,α, and the comparison

function, θ, which together are called anaggregate-test pair, e.g., in Figure 4.1(b) the aggregate-

test pair is (COUNT, >). For many such aggregate test pairs (α, θ), we show atrichotomy result:

For HAVING queries using (α, θ) without self joins over tuple-independent probabilistic databases,

exactly one of the following three statements is true: (1) The exact evaluation problem hasP-time

data complexity. In this case we call the querysafe. (2) The exact evaluation problem is]P-hard,

but the approximate evaluation problem has (randomized)P-time data complexity (there exists an

 to evaluate the query). In this case, we call the queryapx-safe. (3) The exact evaluation

problem is]P-hard and the approximate evaluation problem is also hard (no exists). We call

these querieshazardous. It is interesting to note that the third class is empty forEXISTS, which are

essentially the class of Boolean conjunctive queries that are studied by prior work [46]; that is, all

Boolean conjunctive queries have an efficient approximation algorithm.

The approximation algorithms in this chapter are Monte-Carlo-style approximation algorithms;

the key technical step such algorithms must perform is efficient sampling, i.e., randomly generat-

ing instances (called possible worlds). Computing a random possible world is straightforward in

a probabilistic database: we select each tuple with its corresponding marginal probability taking

care never to select two disjoint tuples. However, to support efficient techniques likeimportance

sampling[102], we need to do something more: we need to generate a random possible world from

the set of worlds thatsatisfy a constraint that is specified by an aggregate query. For example, we

need to generate a random world,W̃, such that theMAX price returned by a queryq on W̃ is equal

to 30. We call this therandom possible world generation problem. Our key technical result is that

whenq is safe (without aggregation) and the number of elements in the semiringS is small, then

we can solve this problem efficiently, i.e., with randomized polynomial time data complexity. The

novel technical insight is thatwe can use safe plans as a guide to sample the database. This use is

in contrast to the traditional use for safe plans of computing query probabilities exactly. We apply

51

our novel sampling technique to provide an to approximately evaluate someHAVING queries

that have]P-hard exact complexity. Thus, the approaches described in this chapter can efficiently

answer strictly more queries than our previous, exact approach (albeit only in an approximate sense).

Contributions and Outline

We study conjunctive queries withHAVING predicates on common representations of probabilistic

databases [13, 137, 168] where the aggregation function is one ofEXISTS, MIN, MAX, COUNT, SUM,

AVG, orCOUNT(DISTINCT); and the aggregate test is one of=,,, <,≤, >, or≥. In Section 4.2, we for-

malizeHAVING queries, our choice of representation, and define efficient evaluation. In Section 4.3,

we review the relevant technical background (e.g., semirings and safe plans). In Section 4.4, we give

our main results for exact computation: For each aggregateα, we find a class ofHAVING queries,

calledα-safe, such that for anyQ usingα:

• If Q is α-safe thenQ’s data complexity is inP.

• If Q has no self joins and is notα-safe then,Q has]P-hard data complexity.

• We can decide in polynomial time (in the size ofQ) if Q is α-safe.

In Section 4.5, we state and solve the problem of generating a random possible world when the

query defining the constraint is safe. In Section 4.6, we discuss approximation schemes for queries

that haveα ∈ {MIN,MAX, COUNT, SUM}. The hardness of an approximation algorithm for aHAVING

query depends on the aggregate,α, but also on the predicate test,θ. We show:

• If Q is (α, θ)-apx-safe thenQ has an.

• If Q has no self joins and is not (α, θ)-apx-safe then,Q does not have an and is (α, θ)-

hazardous.

• We can decide in polynomial time (in the size ofQ) if Q is (α, θ)-apx-safe.

52

SELECT m.Title
FROM MovieMatch m, Reviewer r
WHERE m.ReviewTitle= r.ReviewTitle
GROUP BY m.Title
HAVING COUNT(DISTINCT r.reviewer)≥ 2

Q(m)[COUNT(DISTINCT r) ≥ 2] D
MovieMatch(t,m),
Reviewer(−, r, t)

Q[COUNT(DISTINCT r) ≥ 2] D
MovieMatch(t, ‘Fletch’),
Reviewer(−, r, t)

(a) SQL Query (b) Extended Syntax (Not Boolean) (c) Syntax of this paper

Figure 4.2: A translation of the query“Which movies have been reviewed by at least 2 distinct
reviewers?” into (a) SQL; (b) an extended syntax of this paper, which is not Boolean; and (C) the
syntax of this paper, which is Boolean and is aHAVING query.

We show that the trichotomy holds for all combinations ofα andθ ∈ {=,≤, <,≥, >}, but leave

open the case ofCOUNT andSUM with either of{≥, >}. Additionally, we also show that queries with

self joins belong to a complexity class that is believed to be as hard to approximate as any problem

in]P. This suggests that the complexity forHAVING query approximation is perhaps more subtle

than for Boolean queries.

4.2 Formal Problem Description

We first define the syntax and semantics ofHAVING queries on probabilistic databases and then

define the problem of evaluatingHAVING queries.

4.2.1 Semantics

We consider the aggregate functionsEXISTS, MIN, MAX, COUNT, SUM, AVG, andCOUNT(DISTINCT)

as functions on multisets with the obvious semantics.

Definition 4.2.1. A Boolean conjunctive query is a single rule q= g1, . . . ,gm where for i= 1, . . . ,m,

gi is a distinct, positive extensional database predicate (EDB), that is, a relational symbol5. A

BooleanHAVING query is a single rule:

Q[α(y) θ k] D g1, . . . ,gn

5Since all relational symbols are distinct,HAVING queries do not contain self joins:q = R(x, y),R(y, z) has a self-join,
while R(x, y),S(y) does not.

53

where for each i, gi is a positive EDB predicate,α ∈ {MIN, MAX, COUNT, SUM, AVG, COUNT(DISTINCT)},

y is a single variable6, θ ∈ {=,,, <,≤, >,≥}, and k is a constant. The set of variables in the body of

Q is denotedvar(Q). We assume that y∈ var(Q). The conjunctive query q= g1, . . . ,gn, is called

theskeletonof Q and is denotedsk(Q) = q. In the above syntax,θ is called thepredicate test; k is

called thepredicate operand; and the pair(α, θ) is called anaggregate test.

Figure 4.2(a) shows a SQL query with aHAVING predicate that asks for all movies reviewed

by at least two distinct reviewers. A translation of this query into an extension of our syntax is

shown in Figure 4.2(b). The translated query is not a BooleanHAVING query because it has a head

variable (m). In this paper, we discuss only BooleanHAVING queries. As is standard, to study the

complexity of non-Boolean queries, we can substitute constants for head variables. For example, if

we substitute ‘Fletch’ form, then the result is Figure 4.2(c) which is a BooleanHAVING query.

Definition 4.2.2. Given aHAVING query Q[α(y) θ k] and a world W (a standard relational instance),

we defineY to be the multiset of values v(y) where y is distinguished variable in Q and v is a

valuation of q= sk(Q) that is contained in W. In symbols,

Y = {| v(y) | v is a valuation forsk(Q) and im(v) ⊆W |}

Here,im(v) ⊆W denotes that image ofsk(Q) under the valuation v is contained in the world W. We

say that Q is satisfied on W and write W|= Q[α(y) θ k] (or simply W |= Q) if Y , ∅ andα(Y) θ k

holds.

In the above definition, we follow SQL semantics and require thatY , ∅ in order to say that

W |= Q. For example,Q[COUNT(∗) < 10] D R(x) is false in SQL ifRW = ∅, i.e., the interpretation

of R in the worldW is the empty table. This, however, is a minor technicality and our results are

unaffected by the alternate choice thatCOUNT(∗) < 10 is true on the empty database.

4.2.2 Probabilistic Databases

The data in Figure 4.3 shows an example of a BID database that stores data from integrating ex-

tracted movie reviews from USENET with a movie database from IMDB. TheMovieMatch table

6ForCOUNT, we will omit y and write the more familiarCOUNT(∗) instead.

54

Title Matched P
‘Fletch’ ‘Fletch’ 0.95 m1

‘Fletch’ ‘Fletch 2’ 0.9 m2

‘Fletch 2’ ‘Fletch’ 0.4 m3

‘The G. Child’ ‘The G. Child’ 0.95 m4

‘The G. Child’ ‘G. Child’ 0.8 m5

‘The G. Child’ ‘Wild Child’ 0.2 m6

RID Reviewer Title P

231 ‘Ryan’
‘Fletch’ 0.7 t231a

‘Spies Like Us’ 0.3 t231b

232 ‘Ryan’
‘Euro. Vacation’ 0.90 t232a

‘Fletch 2’ 0.05 t232b

235 ‘Ben’
‘Fletch’ 0.8 t235a

‘Wild Child’ 0.2 t235b

MovieMatch(CleanTitle, ReviewTitle ;; P) Reviews(RID, Reviewer ; ReviewTitle ; P)

Figure 4.3: Sample data arising from integrating automatically extracted reviews from a movie
database.MovieMatch is a probabilistic relation, we are uncertain which review title matches with
which movie in our clean database.Reviews is uncertain because it is the result ofinformation
extraction.

is uncertain because it is the result of an automatic matching procedure (or fuzzy-join [31]). For

example, the probability a review title ‘Fletch’ matches a movie titled ‘Fletch’ is very high (0.95),

but it is not certain (1.0) because the title is extracted from text and so may contain errors. For

example, from‘The second Fletch movie’, our extractor will likely extract just‘Fletch’ although

this review actually refers to‘Fletch 2’. The review table is uncertain because it is the result of

information extraction. That is, we have extracted the title from text (e.g.,‘Fletch is a great movie,

just like Spies Like Us’). Notice thatt232a[P] + t232b[P] = 0.95 < 1, which indicates that there is

some probability reviewid 232 is actually not a review at all.

Query Semantics Users write queries on the possible worlds schema, i.e., their queries do not

explicitly mention the probability attributes of relations. In this paper, all queries are Boolean so the

answer to a query is a probability score (the marginal probability that the query is true). We define

this formally:

Definition 4.2.3(Query Semantics). The marginal probability of aHAVING query Q on BID database

J is denotedµJ(Q) (or simplyµ(Q)) and is defined by:

µJ(Q) =
∑

W∈WJ:W|=Q

µJ(W)

55

In general, for a Boolean conjunctive queryq, we writeµJ(q) to denote the marginal probability

thatq is true.

Example 4.2.4 Figure 4.2(c) shows a query that asks for all movies that were reviewed by at least

2 different reviewers. The movie ‘Fletch’ is present when the following formula is satisfied: (m1 ∧

t231a) ∨ (m2 ∧ t232b) ∨ (m1 ∧ t235a). The multiplicity of tuples returned by the query is exactly the

number of disjuncts satisfied. Thus,µ(Q) is the probability that at least two of these disjuncts are

true. Definition 4.2.3 tells us that, semantically, we can compute this by summing over all possible

worlds.

4.2.3 Notions of complexity forHAVING queries

In the database tradition, we would like to measure the data complexity [164], i.e., treat the query

as fixed, but allow the data to grow. This assumption makes sense in practice because the query

is generally orders of magnitude smaller than the size of the database. Hence, a running time for

query evaluation ofO(nf (|Q|)) where |Q| is the size of a conjunctive queryQ is P-time. In our

setting, this introduces a minor technical problem: By fixing aHAVING queryq, we also fixk (the

predicate operand); this means that we should accept a running timenf (k) as efficient. Clearly this

is undesirable: becausek can be large7. For example,Q[SUM(y) > 200]D R(x, y). For that reason,

we consider in this paper an alternative definition of the data complexity ofHAVING queries, where

both the database andk are part of the input.

Definition 4.2.5. Fix a skeleton q, an aggregateα, and a comparison operatorθ. Thequery eval-

uation problemis: given as input a BID representation Janda parameter k> 0, calculateµJ(Q)

where Q[α(y) θ k] is such thatsk(Q) = q.

The technical problem that we address in this work is the complexity of the query evaluation

problem. Later, we will see that the query evaluation problem for the query in Example 4.2.4 is hard

for]P, and moreover, that this is the general complexity for allHAVING queries.

7If we fix the query thank is assumed to be a constant, and so we can take even double exponential time ink. Thus,
we would like to takek as part of the input.

56

4.3 Preliminaries

We review some basic facts about semirings (for a reference see Lang [109]). Then, we introduce

random variables over semirings.

4.3.1 Background: Queries on databases with semiring annotations

In this section, we review material from Greenet al. [81] that tells us how to compute queries on

a database whose tuples are annotated with elements of a semiring. To get there, we need some

classical definitions.

A monoidis a triple (S,+,0) whereS is a set,+ is an associative binary operation onS, and 0

is the identity of+, i.e., s+ 0 = 0 for eachs ∈ S. For example,S = N (the natural numbers) with

addition is the canonical example of a monoid.

A semiringis a structure (S,+, ·,0,1) where (S,+,0) forms a commutative monoid with identity

0; (S, ·,1) is a monoid with identity 1;· distributes over+, i.e., s · (t + u) = (s · t) + (s · u) where

s, t,u ∈ S; and 0 annihilatesS, i.e., 0· s= 0 for anys ∈ S.

A commutative semiringis one in which (S, ·,1) is a commutative monoid. As is standard, we

abbreviate either structure with the setS when the associated operations and distinguished constants

are clear from the context. In this paper, all semirings will be commutative semirings.

Example 4.3.1 [Examples of Semirings] For an integerk ≥ 0, letZk+1 = {0,1, . . . , k} then for every

suchk, (Zk,max,min,0, k) is a semiring. In particular,k = 2 is the Boolean semiring, denotedB.

For k = 1,2, . . . ,, another set of semirings we consider areSk = (Zk,+k, ·k,0,1) where+k(x, y) =

min(x+ y, k) and·k = min(xy, k) where addition and multiplication are inZ.

The idea is that database elements will be annotated with elements from the semiring (defined

next) and then these annotations will be propagated during query processing. For us, the important

point is that aggregation queries can be viewed as doing computation in these semirings.

Definition 4.3.2. Given a commutative semiring S and a Boolean conjunctive query q= g1, . . . ,gn,

an annotation is a set of functions indexed by subgoals such that for i= 1, . . . ,n, τgi is a function

from tuples that unify with gi to S . We denote the set of annotation functions withτ.

57

Figure 4.4: (a) This is a query planP = π−x(π−y(R(x) Z S(x, y))) for the queryq = R(x),S(x, y)
over some database annotated inN. The value of the query isq(W, τ) = 6. (b) This is an extensional
plan (Definition 4.4.5) forP (πI

−x(π
I
−y(R(x) Z S(x, y))). This plan is not safe, since intermediate

values may be neither independent nor disjoint. Thus, the extensional value computed by this plan
is not the correct marginal probability of the query. For readability, we underline elements of the
semiring.

Remark 4.3.3. In the above definition, we restrictτ to assigning values to tuples that unify with gi ,

since gi may incorporate selections. For example, if gi = R(x, ‘a’) thenτ does not need to assign

values to tuples whose second component is ‘b’. Implicitly,τ should assign all such tuples0.

We recall the syntax of relational plans as we generalize them in this work.

Definition 4.3.4(Query Plan Syntax).

• a planP is inductively defined as (1) a single subgoal that may include selections, (2)π−xP1

if P1 is a plan and x is a variable, and (3) P1 Z P2 if P1,P2 are plans.

• var(P), the variables output by P, is defined inductively as (1)var(g), the variables in the

subgoal g, if P= g; (2) var(π−xP) = var(P)−{x}; and (3)var(P1 Z P2) = var(P1)∪var(P2).

• goal(P), the set of subgoals in P, is defined inductively as (1)goal(g) = {g}; (2) goal(π−xP1) =

goal(P1); and (3)goal(P1 Z P2) = goal(P1) ∪ goal(P2).

58

A graphical example query plan is shown in Figure 4.4(a) along with its description in the above

syntax.

We view relational plans as computing relational tuples that are annotated with elements of a

semiring (following Greenet al. [81]). To be precise, fix a domainD, and denote thevalueof a plan

P on a deterministic instanceW asωW
P , which is a functionD|var(P)| → S. Informally, the value of a

plan maps each standard tuple returned by the plan to an element of the semiringS. We defineωW
P

inductively:

• If P = g then if t ∈W andt unifies withg thenωW
P (t) = τg(t) elseωW

P (t) = 0.

• If P = π−xP1, thenωW
π−xP1

(t) =
∑

t′:t′[var(P)]=t

ωW
P1

(t′).

• elseP = P1 Z P2 and for i = 1,2 let ti be t restricted tovar(Pi) thenωW
P1ZP2

(t) = ωW
P1

(t1) ·

ωW
P2

(t2)

An example of a plan computing a value in a semiring is shown in Figure 4.4(a). The value of the

plan in the figure is 6: Since the plan is Boolean, it returns the empty tuple which is annotated with

6, more succinctly,ωW
P () = 6.

For a standard conjunctive queryq, there may be many distinct, but logically equivalent, rela-

tional plans to computeq. Greenet al. [81] show thatωW
P does not dependon the particular choice

of logically equivalent planP for q. In turn, this justifies the notationq(W, τ), as the value of a con-

junctive queryq on a deterministic instanceW under annotationτ. Formally, we define this value as

q(W, τ)
def
= ωW

P () whereP is any plan forq and whereωW
P is applied to the empty tuple. This notion

is well defined precisely because the value ofq does not depend on the choice of plan,P. Whenτ is

clear from the context, we drop it and write simplyq(W) to denote the value ofq on a worldW.

4.3.2 Background: Random Variables on Semirings

In this section, we extend the idea of semirings on a standard database to probabilistic databases.

Intuitively, in each possible world, every tuple is annotated with a (potentially different) semiring el-

ement. Hence, we think of each tuple as being associated with asemiring random variable(defined

formally below). A naive representation of these random variables can be large, which motivates us

59

to define an efficient (small) representation calledmarginal vectors(in full analogy with marginal

probabilities). In addition, we define (efficient) operations on these marginal vectors that are fully

analogous with multiplying and adding marginal probabilities . In the remainder of this section,

we fix a BID instanceJ, and denote by (W, µ) the distribution on possible worlds induced byJ

(Section 4.2.1).

Definition 4.3.5. Given a semiring S , an S-random variable, r, is a function r : W → S . Given

two S -random variables r, t then r+ t and r · t denote random variables defined in the obvious way:

(r + t)(W) = r(W) + t(W) and(r · t)(W) = r(W) · t(W)

We writer = s as a shorthand for the event that the random variabler takes values. We denote

the probability of this event asµ(r = s). More precisely,µ(r = s) = µ({W ∈ W | r(W) = s}). Two

basic notions on random variables are independence and disjointness:

Definition 4.3.6. Given a semiring S and a set of random variables R= {r1, . . . , rn} on S , R is

independentif ∀N ⊆ {1, . . . ,n} and any set s1, . . . , sn ∈ S , we have

µ

∧
i∈N

r i = si

 =∏
i∈N

µ(r i = si)

We say that R isdisjoint if for any i , j we have:

µ((r i , 0)∧ (r j , 0)) = 0

If r andt are two disjoint random variables8 thenµ(r = 0∨ t = 0) = µ(r = 0)+ µ(t = 0)− 1.

To represent a singleS-random variable, we may need space as large as the number of possible

worlds (|W|). This can be exponential in the size of the databaseJ, and so, is prohibitive for most

applications. We now define an alternative representation calledmarginal vectorsthat have size

proportional to the size of the semiring, i.e.,|S|.

8A more illustrative way to write this computation isµ[r = 0 ∨ t = 0] = 1 − µ[r , 0 ∧ t , 0] = 1 − (1 − µ(r =
0))+ (1− µ(t = 0))

60

Definition 4.3.7. Given a random variable r on S , themarginal vector(or simply, the marginal) of

r is denotedmr and is a real-valued vector indexed by S defined by∀s ∈ S µ(r = s) = mr [s].

Two simple facts immediate from the definition are∀s ∈ S mr [s] ≥ 0 (all entries are positive)

and
∑

s∈S mr [s] = 1 (total probability). We use the following notationmr [s1, . . . , sk] wheres1, . . . , sk

are semiring elements to be a shorthand for the tuple of marginal probabilities (mr [s1], . . . ,mr [sk]).

Marginal vectors for semiring random variables are the analog of marginal probabilities for

Boolean events: they are a means to write down a simple, succinct (but lossy) representation of a

random variable. In the case of a Boolean semiring (i.e.,B = ({0,1} ,max,min,0,1)), a random

variabler is an event that is true (whenr = 1) or false (whenr = 0). Suppose that the marginal

probability thatr is true ispr (and so it is false with probability 1− pr). Then, the marginal vector

has two entries one for each of the semiring elements, 0 and 1:

mr [0] = 1− pr andmr [1] = pr

If r andt are independent Boolean events, then their conjunctionr ∧ t has marginal probability

given by the simple formulaµ[r ∧ t] = µ[r]µ[t]. We generalize the idea of multiplying marginal

probabilities to marginal vectors of semiring elements; the resulting operation is called amonoid

convolution. In full analogy, when whenr, t are disjoint semiring random variables, we introduce a

disjoint operationthat is analogous to the ruleµ[r ∨ t] = µ[r] + µ[t] for disjoint Boolean events.

Definition 4.3.8. Given a monoid(S,+,0), themonoid convolutionis a binary operation on marginal

vectors denoted⊕. For any marginalsmr andmt we define the s-entry (for s∈ S) ofmr ⊕ mt by the

equation:

(mr ⊕ mt)[s]
def
=

∑
i, j:i+ j=s

mr [i]mt[j]

That is, the sum ranges over all pairs of elements from the semiring S whose sum (computed in the

semiring S) is exactly s. We emphasize that since the entries of the marginal vectors are inR, the

arithmetic operations onm in the above equation are performed inR as well.

Thedisjoint operationfor (S,0,+) is denotedmr ∐ mt and is defined by

if s , 0 (mr ∐ mt)[s]
def
= mr [s] + mt[s]

else (mr ∐ mt)[0]
def
= (mr [0] + mt[0]) − 1.

61

In a semiring(S,+, ·,0,1) we use⊕ to mean the convolution over addition, i.e., over the monoid

(S,+,0), and⊗ to mean the convolution over multiplication, i.e., over the monoid(S, ·,1). Notice

that the disjoint operation is always paired with+ (not ·).

Example 4.3.9 Consider the Boolean semiringB and two random variablesr andt taking values in

B with marginal probabilitiespr andpt, respectively. Thenmr = (1− pr , pr) andmt = (1− pt, pt). If

r andt are independent, then the distribution ofr ∨ t can be computed usingr ⊕ t (in B, r ∨ t = r + t).

From the definition, we see that (r⊕ t)[0] = (1− pr)(1− pt) and (r⊕ t)[1] = (1− pt)+(1− pr)pt+ pr pt.

If r andt are disjoint, thenmr+t[1] = (mr ∐ mt)[1] = (pr + pt) andmr+t[0] = (mr ∐ mt)[0] =

1− mr+t[1].

The next proposition restates that the two operations in the previous definition yield the correct

results, and states bounds on their running time:

Proposition 4.3.10.Let r and s be random variables on the monoid(S,+,0) with marginal vectors

mr and mt, respectively. Then letmr+t denote the marginal of r+ t. If r and t are independent then

mr+t = mr ⊕mt. If r and t are disjoint thenmr+t = mr ∐ mt. Further, the convolution is associative,

so the convolution of n variables r1, . . . , rn can be computed in time O(n |S|2):

⊕
i=1,...,n

mr i def
= mr1 ⊕ · · · ⊕ mrn

and disjoint operation applied to r1, . . . , rn denoted below can be computed in O(n |S|).

∐
i=1,...,n

mr1 def
= mr1

∐
· · ·

∐
mrn

Proof. We include the proof of the convolution since it is illustrative. We assume thatmx[i] = µ(x =

i) for x ∈ {r, t} andi ∈ S, i.e., the marginal vectors are correct, and thatr andt are independent. We

62

show that
(
mr ⊕ mt) [s] = µ(r + t = s). Sinces ∈ S is arbitrary, this proves the correctness claim.

(
mr ⊕ mt

)
[s] =

∑
i, j∈S:i+ j=s

mr [i]mt[j]

=
∑

i, j∈S:i+ j=s

µ(r = i)µ(t = j)

=
∑

i, j∈S:i+ j=s

µ(r = i ∧ t = j)

= µ(r + t = s) = mr+t[s]

The first equality is the definition. The second equality is by assumption that the marginal vectors

are correct. The third line is by the independence assumption. The final line is because the sum is

exhaustive. To see the time bound, observe that we can simply consider all|S|2 pairs to compute

the convolution (which we assume has unit cost). Since the semiring is associative, and so is the

convolution. This also means that we can compute then-fold convolutions pairwise. �

The importance of this proposition is that if the number of elements in the semiring is small,

then each operation can be done efficiently. We will use this proposition as the basis of our efficient

exact algorithms.

4.4 Approaches for HAVING

We defineα-safeHAVING queries forα ∈ { EXISTS, MIN, MAX, COUNT} in Section 4.4.3, forα =

COUNT(DISTINCT) in Section 4.4.4, andα ∈ {AVG, SUM} in Section 4.4.5.

4.4.1 Aggregates and semirings

We explain how to computeHAVING queries using semirings on deterministic databases, which we

then generalize to probabilistic databases. SinceHAVING queries are Boolean, we use a function

ρ : S → {true, false}, called therecovery function, that maps a semiring values to true if that

value satisfies the predicate in the having queryQ, e.g., when checkingCOUNT(∗) ≥ 4, ρ(4) is true,

but ρ(3) is false. Figure 4.5 lists the semirings for the aggregates in this paper, their associated

63

HAVING Predicate Semiring Annotationτg∗(t) Recoveryρ(s)

EXISTS (Z2,max,min) 1 s= 1

MIN(y) {<,≤} k (Z3,max,min) if t θ k then 2 else 1 s= 2
MIN(y) {>,≥} k (Z3,max,min) if t θ k then 1 else 2 s= 1
MIN(y) {=,,} k (Z4,max,min) if t < k then 3 else

if t = k then 2 else 1
if = thens= 2
if , thens, 2

COUNT(∗) θ k Sk+1 1 (s, 0)∧ (s θ k)

SUM(y) θ k Sk+1 t[y] (s, 0)∧ (s θ k)

Figure 4.5: Semirings for the operatorsMIN, COUNT andSUM. Let g∗ be the lowest indexed subgoal
such that containsy. For all g , g∗, ∀t, τg(t) equals the multiplicative identity of the semiring.

Let Zk+1 = {0,1, . . . , k} and+k(x, y)
def
= min(x + y, k) and ·k

def
= min(xy, k), wherex, y ∈ Z. Let

Sk
def
= (Zk+1,+k, ·k,0,1). MAX andMIN are symmetric.COUNT(DISTINCT) is omitted because it uses

two different algebras together. One important point to note is that, in the case ofSUM, if t is outside
the semiring (i.e., larger) thanτ(t) is set to the largest element of the semiring. Since all values
are present, once this value is present it forces the value of the predicateθ, e.g., if θ =≥ then the
predicate is trivially satisfied.

annotation functionsτ, and an associated Boolean recovery functionρ. The aggregation function

EXISTS essentially yields the safe plan algebra of Dalvi and Suciu [46,48,135].

Example 4.4.1 Consider the queryQ[MIN(y) > 10] D R(y) whereR = {t1, . . . , tn} is a tuple in-

dependent database. Figure 4.5 tells us that we should use the semiring (Z3,max,min). We first

apply τ: τ(ti) = 1 represents thatti [y] > 10 while τ(ti) = 2 represents thatti [y] ≤ 10. Let

qτ =
∑

i=1,...,mτ(ti), the sum is inS, and so,qτ = maxi=1,...,mτ(ti). Now, ρ(qt) is satisfied only

whenqτ is 1. In turn, this occurs if and only if allti [y] are greater than 10 as required.

A careful reader may have noticed that we could have usedZ2 to compute this example (instead

of Z3). When we generalize to probabilistic databases, we may have to account for a tuple being

absent (for which we use the value 0).

More generally, we have the following proposition:

Proposition 4.4.2. Given aHAVING query Q, let q= sk(Q) and S ,ρ and τ be chosen as in Fig-

64

ure 4.5, then for any deterministic instance W:

W |= Q ⇐⇒ ρ (q(W, τ))

Proof. Let q, the skeleton ofQ, haven subgoals. We show onlyMIN with ≤ in full detail. All other

aggregate-test pairs follow by similar arguments. We observe the equation

q(W, τ) =
∑

v:im(v)⊆W

∏
i=1,...,n

v(gi)

Further,W |= Q[MIN(y) ≤ k] if and only if there there is some valuation such that
∏

i=1,...,n v(gi) = 2.

Since, 2+ s = 2 for anys ∈ S the existence of such a valuation impliesq(W, τ) = 2. Conversely, if

q(W, τ) = 2 then there must be some such valuation sincex+ y = 2 implies that eitherx or y is 2 in

this semiring. Hence, the claim holds.

Similarly, W |= Q[MIN(y) ≥ k], the query is satisfied if and only ifall elements are≥ k and so

each term (valuation) in the summation must evaluate to 0 or 1. Similar arguments are true for=,,.

In the case ofCOUNT, if we want to count from 1, . . . , k we also need two elements, 0 andk + 1: 0

encodes that a tuple is absent andk+ 1 encodes that the value is “bigger than k”. �

In probabilistic databases, we viewq(W, τ) as a random variable by fixingτ (the semiring an-

notation functions), i.e., we viewq(W, τ) as a function ofW alone. We denote this random variable

qτ. Our goal is to compute the marginal vector ofqτ. The marginal vector ofqτ, denotedmqτ , is

sufficient to compute the value of anyHAVING query since we can simply examine those entries in

mqτ for which the recovery function,ρ, is true. Said another way, a simple corollary of Prop. 4.4.2

is the following generalization to probabilistic databases:

Corollary 4.4.3. Given aHAVING query Q, let q= sk(Q), S ,ρ, andτ be as in Prop. 4.4.2, then for

any BID instance J we have the following equalities:

µJ(Q) =
∑

k : ρ(k) is true

mqτ [k]

65

Cor. 4.4.3 tells us that we can computeµ(Q) by examining the entries of the marginal vector

mqτ . Hence, our goal is to computemqτ [s] for each such index,s ∈ S.

4.4.2 Computing safely in semirings

We now extend safe plans to compute a marginal vector instead of a Boolean value. Specifically, we

computemqτ , the marginal vector forqτ using the operations defined in Section 4.3.2.

Definition 4.4.4. An extensional planfor a Boolean conjunctive query q is defined recursively as

a subgoal g and if P1,P2 are extensional plans then so areπI
−xP1 (independent project),πD

−xP1

(disjoint project), and P1 Z P2 (join). An extensional plan P issafeif, assuming P1 and P2 are safe,

the following conditions are met:

• P = g is always safe

• P = πI
−xP1 is safe if x∈ var(P1) and∀g ∈ goal(P1) then x∈ key(g)

• P = πD
−xP1 is safe if x∈ var(P1) and∃g ∈ goal(P1), key(g) ⊆ var(P), x ∈ var(g).

• P = P1 Z P2 is safe ifgoal(P1)∩goal(P2) = ∅ and for i= 1,2, var(goal(P1))∩var(goal(P2)) ⊆

var(Pi), i.e., we may not project away variables that are shared in two subgoals before they

are joined.

An extensional plan P is a safe plan for q if P is safe andgoal(P) = q andvar(P) = ∅.

Intuitively, a safe plan tells us that the correlations of tuples produced by intermediate stages

of the plan are either independent or disjoint, as opposed to correlated in some unknown way. In

particular,P = πI
−x(P1) is a safe plan whenever those tuples produced byP1 on any instance are

independent (provided the tuples differ on the variablex). Hence, we callπI an independent project.

Similarly, if P = πD
−x(P1) is safe, then the tuples produced byP1 are disjoint whenever they differ

on the variablex. Further, a join is safe if the branches do not contain any common subgoals, i.e.,

any tuple produced byP1 is independent of any tuple produced byP2. For completeness, we state

and prove a formal version of this discussion in Appendix B.1.

66

Computing With Safe Plans

We now augment safe plans to compute marginal vectors. Intuitively, we generalize the operation

of multiplying marginal probabilities (as done in safe plans) to semiring convolutions of marginal

vectors, and we generalize the operation of adding the marginal probabilities of disjoint events to

disjoint operations on marginal vectors. We think of a plan as computing a marginal vector: The

marginal vector computed by a planP on a BID instanceJ is called theextensional valueof P and

is denoted as ˆωJ
P,S and is defined below.

Definition 4.4.5. Given a BID instance J and a semiring S . Let P be a safe plan. Denote the

extensional valueof P in S on J aŝωJ
P,S. ω̂J

P,S is a function that maps each tuple to a marginal

vector. To emphasize the recursion, we fix J and S and denoteω̂J
P,S as ω̂P. We define the value of

ω̂P inductively:

• If P = g thenω̂P(t) = mt wheremt[0] = 1 − t[P] and mt[τg(t)] = t[P] and all other entries

are0.

• If P = πI
−xP1 then ω̂P(t) =

⊕
t′:t′[var(P1)]=t

ω̂P1(t) where
⊕

denotes the convolution over the

monoid(S,+,0).

• If P = πD
−xP1 thenω̂P(t) =

∐
t′:t′[var(P1)]=t

ω̂P1(t) where
∐

denotes the disjoint operation over the

monoid(S,+,0).

• If P = P1 Z P2 thenω̂P(t) = ω̂P1(t1) ⊗ ω̂P2(t2) where for i= 1,2 ti is t restricted tovar(Pi)

and⊗ denotes the convolution over the monoid(S, ·,1).

Figure 4.4(b) gives an example of computing the extensional value of a plan: The plan shown

is not safe, meaning that the extensional value it computes is not correct, i.e., equal tomqτ . This

illustrates that any plan may be converted to an extensional plan, but we need additional conditions

67

(safety) to ensure that the computation is correct. Interestingly, in this case, there is an alternate safe

plan: P0 = π−x(R(x) Z π−y(S(x, y))), i.e., we move the projection early.

The next lemma states that for safe plans, the extensional value is computed correctly, i.e., the

conditions insured by the safe plan and the operator used in Definition 4.4.5 make exactly the same

correlation assumptions. For example,πI indicates independence, which ensures that⊕ correctly

combines two input marginal vectors. The proof of the following lemma is a straightforward induc-

tion and is omitted.

Lemma 4.4.6. If P is a safe plan for a Boolean query q andτ is any annotation function into S ,

then for any si ∈ S on any BID instance J, we haveω̂J
P()[si] = µJ(qτ = si).

A safe plan (in the terminology of this paper) ensures that the convolutions and disjoint opera-

tions output the correct results, but it isnot sufficient to ensure that the plan is efficient. In particular,

the operations in a safe plan onS take time (and space) polynomial in|S|. Thus, if the size ofS

grows super-polynomially in|J|, the size of the BID instance, the planwill not be efficient. As we

will see, this rapid growth happens forSUM in most cases. In contrast, as we show in the next section,

if α is one ofMIN, MAX, or COUNT, the number of elements in the needed semiring is small enough,

so the safety ofsk(Q) andQ coincide.

4.4.3 EXISTS-,MIN-, MAX- andCOUNT-safe

We now give optimal algorithms whenα is one ofEXISTS, MIN, MAX, or COUNT. The results on

EXISTS are exactly the results of Dalvi and Suciu [46]. We include them to clarify our generaliza-

tion.

Definition 4.4.7. Letα be one of{EXISTS, MIN, MAX, COUNT} and Q[α(t) θ k] be aHAVING query,

then Q isα-safeif the skeleton of Q is safe.

Theorem 4.4.8.Let Q[α(y) θ k] be aHAVING query forα ∈ { EXISTS, MIN, MAX, COUNT} such that

Q isα-safe then the exact evaluation problem for Q is in polynomial time in the size of the data.

Correctness is straightforward from Lemma 4.4.6. Efficiency follows because the semiring is of

constant size forEXISTS, MIN, andMAX. ForCOUNT, observe that an upper bound on|S| is number

68

of tuples returned by the query plus one (for empty), thus count is polynomially bounded as well.

Thus, the entire plan has polynomial time data complexity.

Complexity

The results of Dalvi and Suciu [46, 48, 135] show that either a conjunctive query without self joins

has a safe plan or it is]P-hard. The idea is to show that aHAVING queryQ is satisfied only ifsk(Q)

is satisfied, which implies that computingQ is at least as hard as computingsk(Q). Formally, we

have:

Theorem 4.4.9(Exact Dichotomy forMIN, MAX, andCOUNT). If α ∈ {MIN, MAX, COUNT} and Q[α(y) θ k]

does not contain self joins, then either (1) Q isα-safe and so Q has data complexity inP, or (2) Q

has]P-hard data complexity. Further, we can find anα-safe plan inP.

Proof. The first part of the dichotomy is Theorem 4.4.8. We show the matching negative result.

Consider the predicate testMIN(y) ≥ 1; assuming thatQ is notMIN-safe, we have (by above) that

sk(Q) = q is not safe in the sense of Dalvi and Suciu, we show that this query can be used to

computeµ[q] on an BID instanceJ. To see this, create a new instanceJ′ that contains exactly the

same tuples asJ, but recode all values in attributes referenced byy as integers with values greater

than 1: this query is true precisely when at least one tuple exists and hence withµ[q]. We show

below that this is sufficient to imply that all testsθ are hard as well. The proof forMAX is symmetric.

COUNT is similar. �

Lemma 4.4.10.Let α ∈ {MIN,MAX, COUNT, SUM, COUNT(DISTINCT)}, if computing Q[α(y) = k]

exactly is]P-hard, then it is]P-hard for all θ ∈ Θ. Furthermore, if qτ takes at most polynomially

many values then the converse also holds: if computing Q[α(y) θ k] exactly is]P-hard for any

θ ∈ Θ, then it is]P-hard for all θ ∈ Θ.

Proof. We first observe that all aggregate functionsα in the statement are positive, integer-valued

functions. We show that we can use≤,≥, >, <,, as a black box to compute= efficiently. We then

show that we can compute the inequalities in timeO(k) (using=), thus proving both parts of the

claim.

69

First, observe thatq(W, τ) = s is a function on worlds, i.e., the events are disjoint for different

values ofs. Hence,

µ(Q[α(y) ≤ k]) =
∑
k′≤k

µ(Q[α(y) = k′]

From this equation it follows that we can compute any inequality using= in time proportional to the

number of possible values. To see the forward direction, we compute

µ(Q[α(y) ≤ k+ 1]) − µ(Q[α(y) ≤ k]) = µ(Q[α(y) = k])

similarly for a strict inequality. And, 1− µ(Q[α(y) , k]) − µ(Q[α(y) , 0]) = µ(Q[α(Y) = k]). The

, 0 statement is only necessary with SQL semantics. �

The exact]P-hardness proofs in the remainder of this section satisfy the requirement of this

lemma. Interestingly, this lemmadoes not hold for approximation hardness.

4.4.4 COUNT(DISTINCT)-safe queries

Intuitively, we computeCOUNT(DISTINCT) in two stages: (1) For the subplan rooted atπ−y, we first

compute the probability that each value is returned by the plan (i.e., we compute theDISTINCTpart

usingEXISTS). (2) Then, since we have removed duplicates implicitly usingEXISTS, we count the

number of distinct values using theCOUNT algorithm from Section 4.4.3.

The ordering of the operators, firstEXISTS and thenCOUNT, is important. As we show in The-

orem 4.4.16, this ordering exactly captures tractable evaluation. First, we need a small technical

proposition to state our characterization:

Proposition 4.4.11. If P is a safe plan for q, then for x∈ var(q) there is exactly one ofπI
−x or πD

−x

in P.

Proof. At least one of the two projections must be present, because we must remove the variable

x (q is Boolean). If there were more than one in the plan, then they cannot be descendants of each

other becausex < var(P1) for the ancestor and they cannot be joined afterward because of the join

condition fori = 1,2 var(goal(P1)) ∩ var(goal(P2)) ⊆ var(Pi). �

70

Thus, it makes sense to talk about the unique node in the plan tree where a variablex is removed,

as we do in the next definition:

Definition 4.4.12. A query Q[COUNT(DISTINCT y) θ k] is COUNT(DISTINCT)-safeif there is a safe

plan P for the skeleton of Q such that if P1 is the unique node in the plan where y is removed, i.e.,

eitherπI
−y or πD

−y in P, then no proper ancestor of P1 is πI
−x for any x.

This definition exactly insists on the ordering of operators that we highlighted above.

Example 4.4.13Fix a BID instanceJ. Consider

Q[COUNT(DISTINCT y) ≥ 2] D R(y, x),S(y)

A COUNT(DISTINCT)-safe plan for the skeleton ofQ is P = πI
−y((π

I
−xR(y, x)) Z S(y)). The subquery

P1 = (πI
−xR(y, x)) Z S(y) returns tuples (values fory). We use theEXISTS algebra to compute the

probability that each distinct value appears.

Now, we must count the number of distinct values: Since we have eliminated duplicates, ally

values are trivially distinct and we can use theCOUNT algebra. To do this, we map eachEXISTS

marginal vector to a vector suitable for computingCOUNT, i.e., a vector inZk (herek = 2). In other

words, (1− p, p) = ω̂J
P,EXISTS(t) = mt is mapped to ˆτ(mt) = (1 − p, p,0). In general, this vector

would be of lengthk+ 1.

SinceP = πI
−yP1, we know that all tuples returned byP1 are independent. Thus, the correct

distribution is given by convolution over all sucht′, each one corresponding to a distincty value,

i.e.,⊕tτ̂(t′). To compute the final result, use the recovery function,ρ defined byρ(s) = s≥ 2

The proof of the following theorem is a generalization of Example 4.4.13, whose proof we

include in the appendix (Appendix B.2):

Theorem 4.4.14.If Q is COUNT(DISTINCT)-safe then its evaluation problem isP-time.

Complexity We now establish that forCOUNT(DISTINCT) queries without self joins,COUNT(DISTINCT)-

safe captures efficient computation. We do this in two stages: first, we exhibit some canoni-

cal hard patterns forCOUNT(DISTINCT), and second, in the appendix, we reduce any other non-

COUNT(DISTINCT)-safe pattern to one of these hard patterns.

71

Proposition 4.4.15.The followingHAVING queries are]P-hard for i = 1,2, . . . :

Q1[COUNT(DISTINCT y) θ k] D R(x), S(x, y)

and,

Q2,i [COUNT(DISTINCT y) θ k] D R1(x; y), . . . , Ri(x; y)

Proof. We proveQ1 is hard and deferQ2,i to the Appendix B.2. To see thatQ1 is hard, we reduce

from counting the number of independent sets in a graph (V,E) which is]P-hard. We letk be the

number of edges (|E|) andθ = ‘ ≥′. Intuitively, with these choicesQ will be satisfied only when all

edges are present. For each nodeu ∈ V, create a tupleR(u) with probability 0.5. For edgee= (u, v)

create two tuplesS(u,e), S(v,e), each with probability 1. For any setV′ ⊆ V, let WV′ denote the

world where the tuples corresponding toV′ are present. For any subset of nodes,V′, we show that

V′ is an independent set if and only ifWV−V′ satisfiesQ1, i.e., all edges are present in its node-

complement. Sincef (N) = V − N is one-to-one, the number of possible worlds that satisfyQ1 are

exactly the number of independent sets, thus completing the reduction. Now, ifN is an independent

set, then for any edge (u, v), it must be the case that at least one ofu or v is in V − N, else the set

would not be independent, since it would contain an induced edge. Thus, every edge is present and

Q is satisfied. IfN is not independent, then there must be some edge (u, v) such thatu, v ∈ N, hence

neither ofu, v is in V − N. Since this edge is missing,Q1 cannot be satisfied. This completes the

reduction. The hardness ofQ2 is based on a reduction from counting the set covers of a fixed size

and is in the appendix. �

There is some work in showing that the patterns in the previous theorem capture the boundary

of hardness.

Theorem 4.4.16(COUNT(DISTINCT) Dichotomy). Let Q[α(y) θ k] be a HAVING such thatα is

COUNT(DISTINCT), then either (1) Q isCOUNT(DISTINCT)-safe and so hasP data complexity or

(2) Q is notCOUNT(DISTINCT)-safe and has]P-hard data complexity.

Proof. Part (1) of the result is Theorem 4.4.14. We sketch the proof of (2) in the simpler case when

72

only tuple independent probabilistic tables are used inQ and defer a full proof to Appendix B.2.

Assume the theorem fails, letQ be the minimal counter example in terms of subgoals; this implies

we may assume thatQ is connected and the skeleton ofQ is safe. Since there is no safe plan

projecting ony and only independent projects are possible, the only condition that can fail is that

some subgoal does not containy. Thus, there are at least two subgoalsR(x) andS(z, y) such that

y < x ∪ z andx ∩ z, ∅. Given a graph (V,E), we then construct a BID instanceJ exactly as in the

proof of Prop. 4.4.15. Only theR relation is required to have probabilistic tuples, all others can set

their probabilities to 1. �

Extending to BID databases requires more work because our technique of adding extra tuples

with probability 1 does not work: doing so naively may violate a possible worlds key constraint. The

full proof appears in Appendix B.2. It is straightforward to decide if a plan isCOUNT(DISTINCT)-

safe: the safe plan algorithm of Dalvi and Suciu [48, 135] simply tries only disjoint projects and

joins until it is able to project awayy or it fails.

4.4.5 SUM-safe andAVG-safe queries

To find SUM- andAVG-safe queries, we need to further restrict the class of allowable plans. For ex-

ample, there are queries involvingSUM on a single table that are]P-hard, e.g., the queryQ[SUM(y) =

k] D R(y) is already]P-hard. There are, however, some queries that can be evaluated efficiently:

Definition 4.4.17. A HAVING query Q[α(y) θ k] for α ∈ {SUM, AVG} is α-safe, if there is a safe plan

P for the skeleton of Q such thatπD
−y in P and no proper ancestor ofπD

−y is πI
−x for any x.

The idea of the positive algorithm is that if the plan containsπD
−y, i.e., each value fory is present

disjointly. Let a1, . . . ,an be they values returned by running the standard queryq(y) (addingy to

the head ofsk(Q)). Now consider the queryQ′ wheresk(Q′) = q[y→ ai] (substitutey with ai). On

this query, the value ofy is fixed, so we only need to compute the multiplicity ofai figure out ifQ′

is true. To do this, we use theCOUNT algebra of Section 4.4.3 wheneverq is safe.

Theorem 4.4.18. If Q[α(y) θ k] for α ∈ {SUM, AVG} is α-safe, then Q’s evaluation problem is in

P-time.

73

Sketch.SinceQ is α-safe, then there is a planP satisfying Definition 4.4.17. The consequence of

this definition is that on any possible worldW, we have that the conjunctive queryq(y) (q = sk(Q))

returns a single tuple (i.e., a single binding fory). This implies that the values aredisjoint. So for a

fixed positive integera returned byq(y), the predicateSUM(y) θ k depends only on themultiplicity

of a. Hence, we can write:

µ[Q] =
∑
a∈S

µ[Qa[COUNT(∗) θ
k
a

]

Here,Qa denotes thatsk(Qa) = q[y→ a], i.e., y is substituted witha in the body ofQa. SinceQ is

α-safe, we have thatq[y → a] is safe, and so by Theorem 4.4.8, each term can be computed with

theCOUNT algebra. Hence, we can compute the entire sum in polynomial time and soµ[Q]. For

AVG, it is slightly simpler: Since we are taking the value ofm copies ofa, we have that theAVG is a

if m > 0 (else the query is false). Thus, we simply need to compute the probability that the valuea

exists with multiplicity greater than 1 (which can be handled by the standardEXISTS algebra).

�

Example 4.4.19ConsiderQ[SUM(y) > 10] D R(‘a’; y), S(y,u). This query isSUM-safe, with plan

πD
−y(R(‘a’; y) Z πI

−uS(y,u)).

Complexity We show that if aHAVING query without self joins is notSUM-safe then, it has]P-data

complexity.AVG follows by essentially the same construction.

Proposition 4.4.20.Letα ∈ {SUM, AVG} andθ ∈ {≤, <,=, >,≥} then Q[α(y) θ k] D R(y) has]P-data

complexity.

Proof. We only showSUM, deferringAVG to the appendix. Consider whenθ is =. An instance of

]SUBSET-SUM is a set of integersx1, . . . , xn and our goal is to count the number of subsetsS ⊆

1, . . . ,n such that
∑

s∈S xi = B. We create the representation with schemaR(X; ; P) satisfyingR =

{(x1; 0.5), . . . , (xn; 0.5)}, i.e., each tuple present with probability 0.5. Thus,µ(Q) ∗ 2n is number of

suchS. Showing hardness for other aggregate tests follows from Lemma 4.4.10. �

Theorem 4.4.21.Let α ∈ {SUM, AVG} and let Q[α(y) θ k] be aHAVING query, then either (1) Q is

α-safe and hence hasP-time data complexity, or (2) Q is notα-safe and Q has]P-data complexity.

74

We prove this theorem in Appendix B.3.

4.5 Generating a Random World

In this section, we give an algorithm (Alg. 4.5.2.1) to solve therandom possible world generation

problem, which informally asks us to generate a possible worldW̃ such thatq(W̃, τ) = s, i.e., such

that the value ofq on W̃ is s. The probability that we generate a fixed worldW̃ is exactly the

probability ofW̃ conditionedon the value ofq being equal tos. Our solution to this problem is a

key a subroutine in our for SUM (in Section 4.6), but it is also an interesting problem in its

own right. As pointed out by Cohenet al. [35], a random world satisfying some constraints is useful

for many debugging and related tasks.

4.5.1 Problem Definition

Definition 4.5.1. Let J be a BID instance, q be a conjunctive query, andτ be an annotation function.

A BID random world generator(simply, arandom generator) is a randomized algorithmA that

generates a possible world̃W ∈ WJ such that for any s∈ S we have9:

µA[W̃ =W] = µ(W | q(W, τ) = s)

whereµA emphasizes that the probability is taken over the random choices of the algorithmA.

Further, we require thatA run in timepoly(|J| , |S|).

This definition says that the probability a world is generated isexactlythe conditional probability

of that instance (conditioned on the value of the queryq beings). In this section, we show that when

sk(Q) is safe then we can solve create a random generator for any BID instance and any annotation

function.

4.5.2 Possible World Generation Algorithm

To describe our algorithm, we need a notation to record the intermediate operations of the safe

plan on the marginal vectors, i.e., a kind oflineageor provenancefor the semiring computation.

9Formally, ifW = ∅, then we require that that a random generator return a special value,⊥. This value is like an
exception and will not be returned during the course of normal execution.

75

Algorithm 4.5.2.1 A random world generator forJφ

Decl: RWH(φ : semiring parse tree,
s : a semiring value)

returns a random world denoted̃W ⊆ Jφ.

if φ is a leaf, i.e.,φ = (t,mt) for some tuplet then
(* If s, 0 then this implies the tuple must be present. *)
if s, τ(t) then return {t}
elif s= 0 then return ∅ else return⊥

(* Inductive case *)
Let φ have label (,mr) and childrenφ1 andφ2

with marginal vectorsmφ1 andmφ2, respectively.
if  = ⊕ then

Choose (s1, s2) s.t. s1 + s2 = s with probabilitymφ1[s1]mφ1[s2] 1
mφ[s]

if  = ⊗ then
Choose (s1, s2) s.t. s1 · s2 = s with probabilitymφ1[s1]mφ1[s2] 1

mφ[s]
if  =

∐
then

Choose (s1, s2) = (s,0) with probabilitymφ1[s1] 1
mφ[s]

or (s1, s2) = (0, s) with probabilitymφ1[s2] 1
mφ[s]

(* Union the results of the recursive calls *)
return RWH(φ1, s1) ∪ RWH(φ2, s2)

Here, we view a safe plan as computing the marginal vectorsandas computing a symbolic semiring

expression (essentially, a parse tree of the extensional computation performed by the plan).

Definition 4.5.2. A semiring parse treeφ is a binary tree where a leaf is labeled with a pair(t,mt)

where t is a tuple andm is a marginal vector on S ; and an internal node is labeled with a pair

(,m) where ∈ {⊕,⊗,
∐
} andm is a marginal vector.

Given a safe planP and a BID instanceJ with annotationτ, the parse tree associated toP andJ

is denotedφ(P, J, τ). We think ofφ(P, J, τ) as a record of the computation ofP on J. More precisely,

φ(P, J, τ) is a parse tree for the semiring expression that we compute givenP andJ using the rules

of Definition 4.4.5. The operations in a safe plan aren-ary: we can, however, transform thesen-

ary operations into a binary parse tree in an arbitrary way, since the operations are associative. An

example parse tree is shown in Figure 4.6. We observe that any safe plan can be mapped to a parse

tree.

76

Algorithm 4.5.2.2 A random world generator forJ

Decl: RW(φ : semiring parse tree,
J : A BID instance,s a semiring element

returns a random world ofJ denotedW̃.

Let W̃← RWH(φ, s) andT = J − Jφ
for each t ∈ T do

Let K(t) = {t′ | t[K] = t′[K]} = {t1, . . . , tm} with pi = µ[ti].
Let {tk+1, . . . , tm} = K(t) ∩ Jφ
if K(t) ∩ W̃ = ∅ then

selectti from i = 1, k with pi
1−

∑
j=k+1,m p j

and W̃← W̃∪ {ti}
T ← T − K(t)

return W̃

Example 4.5.3 Figure 4.6 illustrates howφ(P, J, τ) is constructed for a simple example based on

SUM. Figure 4.6(a) shows a relationR(A; B) whereA is a possible worlds key. Our goal is to

generate a random world such that the queryQ[SUM(y) = 6] D R(x; y) is true. The skeleton ofQ is

safe and so has a safe plan,P = πI
−x(π

D
−y(R)). Figure 4.6(a) also shows the intermediate tuples that

are computed by the plan, along with their associated marginal vectors. For example, the marginal

vector associated tot1 is mt1[0,1] = (1 − p1, p1). Similarly, the marginal vector for intermediate

tuples liket6 is mt6[1] = p2. At the top of the plan is the empty tuple,t8, and one entry in its

associated marginal vector, i.e.,mt8[6] = p1p5 + p2p4.

The parse treeφ(P, J, τ) corresponding toP on the instanceJ = {R} is illustrated in Figure 4.6(b).

The bottom-most level of internal nodes have =
∐

, since they encode the action of the disjoint

projectionπD
−y. In contrast, the root has = ⊕, since it records the computation of the independent

project,πI
−x. As we can see, the parse tree simply records the computation and the intermediate

results.

Algorithm Overview Our algorithm has two phases: (1) We first build a random generator for

the tuples in the parse treeφ (defined formally below); this is Alg. 4.5.2.1. (2) Using the tuples

generated in step (1), we select those tuples not in the parse tree and complete the generator forJ;

this is Alg. 4.5.2.2. To make this precise, we need the following notation:

Definition 4.5.4. Given a semiring parse treeφ, we definetup(φ) inductively: ifφ is a leaf corre-

77

(a) (b)

Figure 4.6: (a) A BID relationR(A; B) used in Example 4.5.3 along with a safe planP = πI
−x(π

D
−y(R)).

The extensional computation is in the semiringN. (b) φ(P, {R}) is shown whereP = πI
−x(π

D
−y(R)).

The dotted boxes map to the nodes in the tree, described in Definition 4.5.2. In the figure, for
readability, we only show the entry for 6 in the root. Also, the entries in the marginal vectors
are real (rational) numbers and are written as expressionsonly for the sake of readability. There
is a one-to-one correspondence between intermediate marginal vectors and nodes in the parse tree
φ(P, J, τ).

sponding to a tuple t, thentup(φ) = {t}. Otherwise,φ has two child parse treesφ1 andφ2, then

tup(φ) = tup(φ1) ∪ tup(φ2). We also considertup+(φ) = tup(φ) − {t | τ(t) = 0}, i.e., tup+(φ) is the

set of tuples with non-zero annotations contained inφ.

If P is a safe plan, thentup has a particular simple form:

Proposition 4.5.5.Let P be a safe plan for q and J be a BID instance, then for any internal nodeφ0

in φ(P, J, τ) with childrenφ1 andφ2, we have thattup(φ1)∩tup(φ2) = ∅ andtup+(φ1)∩tup+(φ2) = ∅.

Proof. We observe that an⊕ or an
∐

node is introduced only if there is a projection removing a

variablex (Definition 4.4.4), in which case the tuples intup(φ1) andtup(φ2) disagree onx, hence,

are disjoint sets of tuples. Case two is that = ⊗, which is introduced only as a join of two

tuples. In this case,tup(φ1) andtup(φ2) come from different relations (since there are no self joins

in q). Thus,tup(φ1) andtup(φ2) have an empty intersection. The second statement follows since

tup+(φi) ⊆ tup(φi) for i = 1,2. �

78

For any parse treeφ, we can view the tuples intup+(φ) as a BID instance that we denoteJφ

(any subset of a BID instance is again, a BID instance). For a deterministic worldW and a semiring

expressionφ, we writeφ(W) to mean the semiring value ofφ on worldW, which is computed in the

obvious way.

Step (1): A generator for Jφ We now define precisely the first step of our algorithm: Our goal

is to construct a random world generator for the worlds induced by the BID instanceJφ. This is

captured by the following lemma:

Lemma 4.5.6.Let P be a safe plan for a query q,φ = φ(P, J, τ), and Jφ = tup+(φ) then Alg. 4.5.2.1

is a random generator for Jφ for any annotation functionτ.

Proof. Let φ0 be a subtree ofφ(P, J, τ). Then, given anys ∈ S, Alg. 4.5.2.1 is a random generator

for Jφ0. We induct on the structure of the parse treeφ. In the base case,φ0 is a leaf node and our

claim is straightforward: Ifs= 0, then we return the empty world. Ifτ(t) = s, then we simply return

a singleton world{t} if τ(t) = s. Otherwise, we have thatτ(t) , s, then the input is not well-formed

and we return an exception (⊥) as required. This is a correct random generator, because our input is

conditioned to be deterministic (i.e.,µ has all the mass on a single instance).

We now write the probability thatφ(W) = s in a way that shows that if we recursively can

randomly generate worlds for subtrees, then we can make a random generator. Inductively, we

consider an internal nodeφ with childrenφ1 andφ2. Assume for concreteness that = ⊕ (the

argument for = ⊗ is identical and for =
∐

is only a slight variation). LetW denote a world of

Jφ. Then,

µ[φ(W) = s] = µ[φ1(W) = s1 ∧ φ2(W) = s2 | s1 + s2 = s]

This equality follows from the computation ofφ. We then simplify this expression using the fact

that for i = 1,2, φi ’s value is a functiontup+(φi). Let Wi =W∩ tup+(φi), we get:

µ[φ1(W1) = s1 ∧ φ2(W2) = s2 | s1 + s2 = s]

79

Observe thatµ[s1 + s2 = s] = µ[φ(W) = s]. Then, for any fixeds1, s2 such thats1 + s2 = s, we can

then apply Bayes’s rule and independence to get:

µ[φ1(W1) = s1]µ[φ2(W2) = s2]
µ[φ(W) = s]

Notice thatW1 (respectively,W2) is a possible world ofJφ1 (respectively,Jφ2) and so the inductive

hypothesis applies. Now, by Prop. 4.5.5, the worlds returned by these worlds do not make conflicting

choices. Since the recursive calls are correct, we just need to ensure that we pick (s1, s2) with the

above probability. Examining Alg. 4.5.2.1, we see that we pick (s1, s2) with exactly this probability,

since

µ[φ1(W) = s1 ∧ φ2(W) = s2 | s1 + s2 = s] =
mφ1[s1]mφ2[s2]

mφ[s]

This completes the proof. �

Example 4.5.7 We illustrate Alg. 4.5.2.1 using the data of Example 4.5.3. Our goal is to generate

a random world such that the queryQ[SUM(y) = 6] D R(x; y) is true. The algorithm proceeds

top-down from the rootφ. The entry for 6 is selected with probability equal top1p5 + p2p4.

Assume we have selected 6, then we look at the child parse trees,φ1 andφ2: There are two ways

to derive 6 with non-zero probability (1) the subtreeφ1 takes value 1 andφ2 takes value 5, written

(φ1, φ2) = (1,5) or (2) we set (φ1, φ2) = (2,4). We choose between these options randomly; we

select (φ1, φ2) = (1,5) with probability equal to p1p5
p1p5+p2p4

(the conditional probability). Otherwise,

we select (φ1, φ2) = (2,4). Suppose we have selected (φ1, φ2) = (1,5), we then recurse on the

subtreeφ1 with values1 = 1 and the subtreeφ2 with values2 = 5.

Recursively, we can see that to setφ1 = 1, it must be thatt1 is present andt2 is absent. Similarly,

we conclude thatt4 must be absent andt5 must be present. Hence, our random world isW̃ = {t1, t5}.

If we had instead chosen (φ1, φ2) = (2,4) then we would selected̃W = {t2, t4}. Notice that our

algorithm never selects (φ1, φ2) = (3,3) (i.e., this occurs with probability 0). More generally, this

algorithmneverselects any invalid combination of tuple values.

Step (2): A generator for J We randomly include tuples inJ that are not mentioned inφ, i.e.,

tuples inJ − Jφ. These are tuples that do not match any selection condition in the query, and can

be freely added tõW without affecting the query result. Here, we need to exercise some care to not

80

insert two tuples with the same key intõW, and so, we only consider tuples whose possible worlds

key differs from those returned by Step (1). Formally, we prove the following lemma:

Lemma 4.5.8. Letφ(P, J, τ) be a parse tree for a safe plan P, a BID instance J, and an annotation

τ. Then, given a random generator for Jφ, Alg. 4.5.2.2 is a random generator for J.

Proof. We first use the random generator to produce a random world ofJφ, call it Wφ. Now, consider

a tuplet ∈ J − Jφ, let K(t) = {t′ | t′[K] = t[K]} = {t1, . . . , tm}, i.e., tuples distinct fromt that share

a key with t. If K(t) ∩Wφ , ∅, thent cannot appear in this world because it is disjoint from the

set ofK(t). Otherwise,K(t) ∩Wφ = ∅, and letK(t) − Jφ = {t1, . . . , tk} (without loss) with marginal

probabilitiesp1, . . . , pk, i.e., those key tuples not intup+(φ). These tuples do not affect the value so

all that matters is adding them with the correct probability, which is easily seen to be the conditional

probability:

µ[ti is included]=
pi

1−
∑

j=k+1,...,m p j

This conditional simply says that it is conditioned onnoneof the tuples inK(t)∩ Jφ appearing. This

is exactly Alg. 4.5.2.2 �

The main result We now state the main technical result of this section: It follows directly from

the lemma above:

Theorem 4.5.9.Let q be a safe conjunctive query, then Alg. 4.5.2.1 is a random generator for any

BID instance J and annotationτ.

An immediate consequences of Theorem 4.5.9 is that if the semiringS does not contain too

many elements, then Alg. 4.5.2.1 solves the random possible world generation problem.

Corollary 4.5.10. If q is safe and|S| = poly(|J|), then Alg. 4.5.2.1 solves the random possible world

generation problem in timepoly(|J|).

We use this corollary in the next section to design an for SUM.

81

4.6 Approximating HAVING queries with MIN, MAX and SUM

In this section, we study the problem of approximatingHAVING queries. First, we describe an

 for having queries that haveα = MIN where the test condition is< or ≤, or α = MAX where

the condition is one of{≥, >}. This first applies to arbitrary suchHAVING queries, including

queries whose skeleton is unsafe. Second, we describe an for HAVING queries whose skeleton

is safe, whose aggregate isSUM, and where the test condition is any of<, ≤, >, or≥.

Our  for SUM uses the random possible world generator of the previous section. These

es apply to a class of queries that we call (α, θ)-apx-safe. Additionally, we study the limits

of any approach, and prove an approximation dichotomy for many (α, θ) pairs ofHAVING queries

without self joins: Either the above scheme is able to provide an and so the query is (α, θ)-

apx-safe, or there is no: we call these queries (α, θ)-hazardous10.

4.6.1 Background: Approximation of]P-Hard Problems

Although]P-problems are unlikely to be able to be solved exactly and efficiently, some problems

have a strong approximation called aFully Polynomial Time Randomized Approximation Schemeor

 [121], which is intuitively like a 1+ ε approximation.

Definition 4.6.1. Given functionf that takes an input J and returns a numberf(J) ∈ [0,1], where J

is a BID instance, we say that an algorithmA is an  for f if given anyδ > 0, a confidence,

and anyε > 0, an error,A takes J,ε, andδ as input and produces a number denotedf̃(J) such that

µA[
∣∣∣f(J) − f̃(J)

∣∣∣ ≤ ε f(J)] > 1− δ

whereµA is taken over the random choices of the algorithm,A. Further,A runs in time polynomial

in ε−1, |W|, andlog 1
δ .

This definition asks for arelative approximation[121], which means that iff is exponentially

small, but non-zero, our algorithm is required to return a non-zero value. This is in contrast to an

absolute approximation, that is allowed to return 0 (and could be constructed using naı̈ve random

10Formally, we mean that the]BIS problem would have an, an unlikely outcome, [58,59].

82

sampling). In this section, we fix a queryQ and consider the functionf (J) = µJ(Q), whereJ is a

BID instance. We study whether this function admits an.

We define three counting-like problems that are all]P-hard and will be of use later in this section:

Definition 4.6.2. The]CLIQUE problem is given a graph(V,E), compute the fraction of the subsets

of V that are cliques. The]BIS problem is given a bipartite graph(U,V,E), compute the fraction of

of the subsets of U× V that are independent sets. The]KNAPSACK problem is given a set of positive

integers Y= {y1, . . . , yn} and a positive integer value k, compute the fraction of sets W⊆ Y such

that
∑

i∈W yi ≤ k.

All three problems are]P-hard11. In a celebrated result, Jerrum and Sinclair [152] showed

that]KNAPSACK doeshave an using a sophisticated Markov Chain Monte Carlo technique.

It is believed that neither]CLIQUE nor]BIS have an. Interestingly, they are not equally

hard to approximate (see Dyeret al. [58]). In particular,]BIS is a complete problem with respect

to approximation preserving reductions. We do not need these reductions in their full generality,

and simply observe that polynomial time computable 1-1 reductions (bijections) are approximation

preserving. In this section, we say that a problem is]BIS-hard if there is a 1-1, polynomial-time

reduction to]BIS.

The]KNAPSACK problem is related to the problem of computingHAVING queries with the aggre-

gate functionsSUM on a single table.

4.6.2 An for MIN with {≤, <} andMAX with {≥, >}

Consider a queryQ[MIN(y) ≤ k] D g1, . . . ,gl then an equivalent condition toW |= Q is thatW |= q′

whereq′ D g1, . . . ,gl , y ≤ k. In other words,Q is equivalent to a conjunctive query,q′, that contains

an inequality predicate. As such, the standard algorithm for conjunctive queries on probabilistic

databases [46,78,137] based on Karp-Luby [102] can be used. A symmetric argument can be used

to find an for the aggregate test (MAX,≥). Thus, we get essentially for free the following

theorem:

Theorem 4.6.3. If (α, θ) ∈ {(MIN,≤), (MIN, <), (MAX,≥), (MAX, >)} then Q[α(y) θ k] has an.

11We mean here that there is a 1− 1 correspondence with the counting variants of these problems, which are canonical
]P-complete problems.

83

Although this theorem is easy to obtain, it is interesting to note thatQ[MIN(y) > k] has an

only if sk(Q) is safe (as we show in Lemma 4.6.10). Ifsk(Q) is safe, then, we can compute its value

exactly, so the is not very helpful. In contrast, Theorem 4.6.3 has no such restriction –sk(Q)

can be an arbitrary conjunctive query. This is a striking example that approximation complexity

may be more subtle than exact evaluation. In particular, an analog of Lemma 4.4.10 does not hold.

4.6.3 An for safe queries usingSUM with {<,≤,≥, >}

The key idea of the is based on a generalization of Dyer’s observation: for somek ≥ 0,

the queryQ[SUM(y) ≤ k] is only hard to compute ifk is very large. Ifk is small, i.e., polynomial

in the instance size, then we can computeQ exactly. Dyer’s idea is toscale and round down the

values, so that the y-values are small enough for exact computation. The cost of rounding is that it

introduces some spurious solutions, but not too many. In particular, the fraction of rounded solutions

is large enough that if we can sample from the rounded solutions, then we can efficiently estimate

the fraction of original solutions inside the rounded solutions.

To perform the sampling, we use Alg. 4.5.2.1 from the previous section (via Alg. 4.6.3.2).

Pseudo-code for the entire is shown in Figure 4.6.3.1. We show only (SUM,≤) in detail,

and explain informally how to extend to the other inequalities at the end of the section.

Theorem 4.6.4.Let Q be aHAVING query Q[SUM(y) θ k] such thatθ ∈ {≤, <} andsk(Q) is safe, then

Alg. 4.6.3.1 is an for Q.

It is interesting to note that Theorem 4.6.4 implies that we can efficiently evaluate amuch larger

set of queries than the previous, complete exact algorithm (albeit only in an approximate sense). In

particular, only a very restricted class ofSUM-safe queries can be processed efficiently and exactly

(c.f. Definition 4.4.17).

Our algorithm makes two technical assumptions: (1) in this section, unlike the rest of the pa-

per, our semantics differ from SQL: In standard SQL, for a BooleanHAVING queryq, if no tuples

are returned bysk(Q) then Q[SUM(y) ≤ k] is false. In contrast, in this section, we assume that

Q[SUM(y) ≤ 1] is true, even ifsk(Q) = q is false, i.e., we choose the mathematical convention∑
y∈Y = 0, over SQL’s choice, and (2) we make abounded oddsassumption12 : for any tuplet there

12For example, that this rules ourpt = 1 for any tuple and allows any tuple to not be present with some probability.

84

Algorithm 4.6.3.1 An  for SUM

Decl:S(Q : a queryQ[SUM(y) ≤ k] with a safe skeletonq,
an instanceI , a confidenceδ and errorε)

returns estimate ofµI (Q).

Let body(q) = {g1, . . . ,gl} andni = |pred(gi)|, i.e., the size of theith relation.
Let n =

∏
i=1,...,l ni .

Let QR[SUM(y) ≤ n2] with the same body asq (see below).

Let τR(y) = bn
2y
k c andy > k 7→ n2 + 1

Construct an expression parse tree,φ = φ(P, I , τR) whereP is a plan forqR.
For i = 1, . . .m Wi ← SH(φ, k)
(* Run m samples, form a polynomial inδ, ε,n *)

return |{Wi |Wi |=QO}|
m ∗ µ(QR) (* ≈ µ(QO)

µ(QR)µ(QR) = µ(QO) *)

(* Compute fraction ofWi that satisfy the original queryQO. *)

Algorithm 4.6.3.2 Sampling Helper Routine

Decl:SH(φ: safe aggregate expression,b: a bound)
returns a world

Selects ∈ 0, . . . ,b with probability mφ[s]∑
s′ mφ[s′] .

(* Select a final value for the query that is less than the boundb *)
return RW(φ, s)

is existsβ > 1 such thatβ−1 ≤
pt

1−pt
≤ β. These technical restrictions can be relaxed, but are chosen

to simplify our analysis.

The Rounding Phase

The goal of the rounding phase is to produce a query and an annotation function that rounds the

values in the instance down enough so that (1) the exact processing algorithms of Section 4.4.2

for SUM queries can be used, and (2) we can randomly generate a world using the algorithm of

Section 4.5. Alg. 4.6.3.2 shows pseudo code for how these two steps are put together. The main

result of this section is that the resulting algorithm is efficient (runs in time polynomial in the size

of the BID instanceJ).

To get there, we construct two things: (1) an annotation function,τR, to do the rounding and

(2) a query,QR, that uses the annotation functionτR and the semiringSn2+1 to compute the exact

85

distribution of the rounded sum in polynomial time.

The Annotation Function Let g be the first subgoal ofq such thatvar(g) 3 y andR = pred(g),

i.e., R is some relation containingy values. We scale down the values ofy in R via the (rounding)

annotation function denotedτR. Let n =
∏

g∈goal(q) |pred(g)|, i.e., the product of the sizes of all

relations inq. Observe thatn is polynomial in the instance size13. The rounded annotation function

maps into the much smaller, rounded semiringSR = Sn2+1. We define the rounded annotation func-

tion τR to agree everywhere with the original annotation functionτO, excepton g (theR relation):

Here,τO
g (t) = t[y]. In the rounded annotation function, we haveτR

g(t) = bn
2

k t[y]c, i.e., they values

are scaled down by a factor ofn2/k and rounded-down to the next highest integer. Additionally, if

t[y] is greater thank, thenτR(t) = n2 + 1. Intuitively, this mapping is correct since if such a tuple is

in the output of the query, then we are sure the summation is greater thank.

The Query We construct a rounded queryQR[SUM(y) ≤ n2] with the same body asQO. Let q be

the skeleton of bothQO andQR, i.e.,q = sk(QR) = sk(QO). We observe that sincen2 is polynomial

in the instance size, the generic semiring algorithm of Section 4.4.2 can be used to compute the entire

distributionq(W, τR) exactlyin time polynomial in the size of the instance. Since we will always

useQR with the rounded annotation function it makes sense to writeW |= QR if q(W, τR) ≤ n2.

Similarly, we will always useQO with the original annotation function so that it makes sense to

write W |= QO if q(W, τO) ≤ k.

Definition 4.6.5. Let W be a possible world from some BID instance J. If W|= QO, then we call

W anoriginal solution. If W |= QR then we call W arounded solution. Further, denote the set of

original solutions with WO
J and rounded solutions with WRJ :

WO
J = {W ∈ WJ |W |= QO} and WR

J = {W ∈ WJ |W |= QR}

We drop the subscript J when the BID instance is clear from the context.

We observe an essential property of our scheme: All original solutions are rounded solutions,

13Recall that the query is fixed so if the database containsm tuples thenn = mO(1) whereO(1) hides a constant
depending only onq, e.g., the number of subgoals suffices.

86

i.e.,WO
J ⊆WR

J . Formally,

Lemma 4.6.6. For any possible world W, W|= QO =⇒ W |= QR, and more precisely, there exists

a δ ∈ [0,n) such that q(W, τR) = q(W, τO) − δ.

Proof. Let q = sk(QO) = sk(QR) andV be the set of all valuations forq. LetW be a possible world:

W |= QO ⇐⇒
∑

v∈V:im(v)⊆W

τO(v(g)) ≤ k

⇐⇒
∑

v∈V:im(v)⊆W

n2

k
τO(v(g)) ≤ n2

=⇒
∑

v∈V:im(v)⊆W

τR(v(g)) + δv ≤ n2

⇐⇒ W |= QR

Here,δv ∈ [0,1) and accounts for the round-off of the floor function. Since 0≤
∑

v δv < n, we

have the more precise statement. �

The importance of this lemma is that by sampling within the rounded solutions, we have a chance

of hitting anyoriginal solution. LetW̃ be a random rounded solution created using Alg. 4.6.3.2, then

let f be the Boolean-valued estimator (random variable) that takes value 1 iff W̃ |= QO. It is not hard

to see that this estimator satisfies:

EA[f] =
µJ

(
WO

)
µJ

(
WR)

Here,A is written to emphasize that the expectation is taken with respect to the (random) choices

of Alg. 4.6.3.2. Importantly, this is exactly an individual trial of Alg. 4.6.3.1.

Analysis of the convergence

Using Alg. 4.6.3.2, we can efficiently conduct an individual (random) trial. The last technical piece

to show that Alg. 4.6.3.1 is an, is to show that the number of trialsm that are needed to

guarantee that the estimator converges is small enough, i.e.,m= poly(|J|). The first lemma that we

need is the standard{0,1}-estimator lemma [121], which is an application of a Chernoff Bound.

Lemma 4.6.7([121]). Let m> 0 be an integer. Given a sequence of independent Boolean-valued

87

({0,1}) random variablesf1, . . . , fm with meanE[f], then the estimator

fm =
1
m

∑
i=1,m

fi

achieves a relative error ofε with probability1− δ for some m= O(E[f]−1ε−2 logδ−1).

Observe that the estimator used in Alg. 4.6.3.1 is exactly of this type. The second lemma that

we need is that the probability mass of the original solutions contained in the rounded solutions is

“big enough” so that our sampling scheme will converge quickly.

Lemma 4.6.8. Let QR and QO defined as above, J be a BID instance, andµJ be J’s induced

probability measure, then,

(n+ 1)−1β−1 ≤
µJ(WO)
µJ(WR)

≤ 1

where n=
∏

g∈goal(q) |pred(g)|.

This lemma is the technical heart of the argument: it intuitively places bounds on the variance

of our estimate. We give a full proof in Appendix B.4. The importance of Lemma 4.6.8 is that

it shows thatE[f] = µJ(WO)
µJ(WR) ≥ n−1β, and so, applying Lemma 4.6.7, we see that we need at most

m = O(nβ−1ε−2 logδ−1) samples. We observe that a relative estimate forE[f] implies that we

have a relative estimate forE[f]µJ(WR) = µJ(WO), the probability that we want to estimate. Thus,

the algorithm is efficient as long as the the number of samples is bounded by a polynomial in|J|;

a sufficient condition for this to hold isβ−1 = poly(|J|) which follows from the bounded odds

assumption. Thus, under the bounded odds assumption withβ = poly(|J|), we have:

Theorem 4.6.9.Let Q be aHAVING query Q[α θ k] withα = SUM andθ ∈ {<,≤, >,≥}, if the skeleton

of Q is safe then Q has an.

Extending to Other Inequalities A virtually identical argument shows thatθ = ‘ < ’ has an

. To see that≥ has an with SUM on tuple independent database, the key observation is

that we can compute a numberM = maxW q(W, τ). Then, we create a new BID instancēJ where

each tuplet ∈ J, we mapt to t′ wheret = t′ except thatt[P] = 1 − p. We then ask the query

Q[SUM(y) < M − k], which is satisfied precisely on a worldW whenQ[SUM(y) ≥ k].

88

4.6.4 The Limits of Any Approach and a Dichotomy

We now study the limit of any approach to approximatingHAVING queries. We see two interesting

phenomenon: (1) the approximation depends not only the aggregate, but also the test. For example,

Q[MIN ≤ k] has an while, in general,Q[MIN(y) ≥ k] does not. (2) The introduction of self

joins results in problems that are believed to be harder to approximate than those without self joins;

this suggests a more interesting complexity landscape for approximate query evaluation than exact

query evaluation [59].

In this section, we only considerθ ∈ {=, <,≤, >,≥}, i.e., we omit, from consideration. To

compactly specify aggregate tests, e.g., (MIN, >), we write (α,Θ0) whereα is an aggregate andΘ0

is a set of tests, i.e.,Θ0 ⊆ {=, <,≤, >,≥} = Θ; (α,Θ0) is a short hand for the set
⋃
θ∈Θ0
{(α, θ)}. We

letΘ≤ = {≤, <,=} andΘ≥ = {≥, >,=}. With this notation, we can state our first lemma.

Lemma 4.6.10.Let (α, θ) be in {(MIN,Θ≥), (MAX,Θ≤), (COUNT,Θ≤), (SUM,Θ≤)} then the following

HAVING query is]BIS-hard:

QBIS[α(y) θ k] D R(x),S(x, y),T(y)

Let Q[α(y) θ k] be aHAVING query such thatsk(Q) is not safe and consider only tuple-independent

databases, then Q is]BIS-hard.

The second statement identifies the precise boundary of hardness for approximation over tuple

independent databases.

Proof. We give a general construction that will be used in every reduction used to prove thatQBIS

is]BIS-hard. Given a bipartite graph (U,V,E), we create an instance of three relationsR,S and

T. The skeleton of our query in the reduction isR(x),S(x, y),T(y). Without loss, we assume that

U,V are labeled from 1, . . . |U | + |V|. Here, we encode a bipartite graph withu ∈ U 7→ R(u) and

v ∈ V 7→ T(v), we assign each of these tuples probability 0.5. We letS encodeE. It is not hard

to see that there is a bijection between possible worlds and subsets of the graph. In particular, if

a possible world corresponds to an independent set then no tuples are returned. We now add in a

deterministic set of tuples, i.e., all probabilities are 1, as{R(a),S(a,a),T(a)} for somea that we will

89

set below. These tuples are always present in the answer. Actually,only these tuples are present in

the output if and only if this world encodes a bipartite independent set.

To see the reduction forMAX, seta = 0. We observe thatMAX(y) ≤ 0 if and only if the only tuple

returned are the 0 tuples, i.e., a bipartite independent set. ForMIN let a = |U | + |V| + 1, now check

if MIN(y) ≥ a. TheCOUNT(y) ≤ 1 if only thea tuples are present. Similarly,SUM follows by setting

a = 1 and ensuring all values are encoded higher. Thus, the bijection of the solution sets is the same.

Claim (2), that this reduction works for any unsafe query, follows by a result of Dalvi and

Suciu [46] that shows that if a skeleton is not safe over tuple independent databases, it mustalways

contain theR(x),S(x, y),T(y) pattern used in this reduction. All other relations can contain a single

tuple. This works because our reductions do not care about where the distinguished variabley falls,

so we can set everything to 1 (or 0) in another relation. �

As a consequence of this lemma, the positive results of this paper, and the completeness of the

safe plan algorithm of Dalvi and Suciu [46], we have the following:

Theorem 4.6.11.Assume that]BIS doesnothave an. Let(α, θ) be one of(MIN,Θ), (MAX,Θ),

(COUNT,Θ≤), or (SUM,Θ≤) then for anyHAVING query Q[α(y) θ k] over a tuple independent database

J, either (1) the query evaluation problem can be approximated in randomized polynomial time and

we call it (α, θ)-apx-safe or(2) the query evaluation problem does not have an and we call it

(α, θ)-hazardous. Further, we can decide in which case Q falls in polynomial time.

In some cases deciding in which case a query falls is trivial, e.g., a (MIN,≤) HAVING query is

always (α, θ)-safe. In the cases that the decision is non-trivial, we can reuse the safe plan algorithm

of Dalvi and Suciu [46] (applied tosk(Q)). An immediate consequence of this dichotomy is a

trichotomy which is obtained by combining the relevant theorem from Section 4.4 with the above

theorem. For example, to get a trichotomy for the class of (COUNT,≤)-HAVING queries, we combine

Theorem 4.4.9 with the above theorem.

It is interesting to note that our positive algorithms work for arbitrary safe plans over BID

databases. However, it is not immediately clear that the known hardness reductions (based on poly-

nomial interpolation [48]), can be used to prove approximate hardness. Further, we leave the case

of COUNT andSUM with {>,≥} open.

90

sk(Q) (MIN,Θ<), (MAX,Θ>) (MIN,Θ>), (MAX,Θ<), (COUNT,Θ)
safe safe (P, Theorem 4.4.8) safe (P, Theorem 4.4.8)

notsafe apx-safe (, Theorem 4.6.3)) hazardous (no, Theorem 4.6.11)

Figure 4.7: Summary of results forMIN, MAX andCOUNT. They form a trichotomy over tuple inde-
pendent databases.

4.7 Summary of Results

Figure 4.7 summarizes our results forMIN, MAX andCOUNT. If we restrict toHAVING queries over

tuple independent instances the lines of the table are crisp and form a trichotomy: any suchHAVING

query cleanly falls into exactly one bucket. The positive results we have shown hold for all BID

database. Over general BID databases, however, we have only established the weaker negative

result that there existssomehard query when the skeleton is unsafe14. For example, the query

R(x; y),S(y) is known to be]P-hard [48]. Our results show thatQ[COUNT(y) ≥ y] D R(x; y),S(y) is

]P-hard, but leave open whether it has an.

The state of the results with (SUM, <) over tuple-independent databases is more interesting: IfQ

is SUM-safe, then its evaluation is inP-time (Theorem 4.4.18). IfQ is notSUM-safe, butsk(Q) is safe

thenQ is]P-hard (Theorem 4.4.21), but does admit an (Theorem 4.6.9). We callQ (SUM, <)-

apx-safe. Ifsk(Q) is not safe, then evaluatingQ is]BIS-hard (Theorem 4.6.11), and so likely has

no . We callQ (SUM, <)-hazardous. We now show that with the addition of self joins, even a

simple pattern becomes as hard toapproximateas]CLIQUE, which is as hard to approximate as any

problem in]P. This is interesting because it points out that the complexity of approximation may

be richer than we have explored in this paper:

Lemma 4.7.1.Let(α, θ) be in{(MIN,Θ≤), (MAX,Θ≥), (COUNT,Θ≤), (SUM,≤)} and consider theHAVING

query:

QCLIQUE[α(y) θ k] D R(x),S(x, y),R(x)

then QCLIQUE is as hard to approximate as]CLIQUE.

Proof. The input instance of]CLIQUE is G = (V,E): For eachv ∈ V, we create a tupleR(v) that has

14It is an open problem to extend these results to all BID databases.

91

probability 1
2 andE encodes exactly thecomplement(symmetrically closed) edge relation; Here,

(v, v) < E. Notice that a possible world is simply a subset ofR. If in a possible world,q = sk(Q)

is satisfied then, this implies there is some pair of nodes (u, v) that are not connected by an edge in

G and soW does not represent a clique. Hence the query is false precisely when]CLIQUE is true.

Using exactly the same encoding as we used in the previous proof, we can then test the probability

of this condition. �

92

Chapter 5

VIEW-BASED TECHNIQUE I: MATERIALIZED VIEWS

The technique of materialized views is widely used to speed up query evaluation in relational op-

timizers. Early relational optimizers were restricted to using simple indexes (which are materalized

views that contain a simple projection) [161], while modern optimizers can use materialized views

that are defined by aribitrary SQL [5]. In general, materialized views can provide dramatic im-

provements in query performance for expensive queries. Materialized views are a form of caching:

instead of computing the query from scratch, we precompute a portion of the information needed by

a query, and use this information to reduce our work at query time. In probabilistic databases, query

evaluation is not only practically expensive, but theoretically expensive (]P-hard). As a result, it

is natural to suspect (and it is indeed the case) that materialized views have an even greater impact

on optimizing probabilistic queries than they do for standard, relational database queries. In this

chapter, we discuss how to apply materialized view techniques to probabilistic databases.

The major, new challenge in using materialized views in a probabilistic database query optimizer

is that views may contain complex correlations. One way to track this correlation is using a complete

approach based onlineage[51,137,148] which effectively trackseveryderivation for a tuple in the

output. Using the complete approach allows any query to be used with any view, but it does not

allow the large performance gains that we expect from materialized views. The reason is that the

bottleneck in query answering isnot computing the lineage, but is in performing the probabilistic

inference necessary to compute the probability of an answer tuple. In this chapter, we study a more

aggressive approach that avoids recomputing the lineage at query time, and so provides greater gains

than the complete approach.

The key to our technique is a novel static analysis of the view and query definitions that allows

us to determine how the tuples in the view are correlated. An important desideratum for our check

is that it is only a function of the view and query definitions, and not the data, which means it can

be used in a query optimizer. The property that we are testing is over an (uncountably) infinite set

93

of database, i.e., do the claimed independences hold forany probabilistic relational database? As

a result, it is not clear that this test is even decidable. Our main technical result is that this test is

decidable for conjunctive views, and is inΠ2P, the second level of the polynomial hierarchy [128,

pg. 433]. In fact, the decision problem is complete forΠ2P. To cope with this high complexity, we

provide efficient approximations, i.e., polynomial-time tests that are sound, but not complete. We

show that for a restricted class of query and view definitions these simple, efficient tests actually are

complete. One important special case is when a viewV is representable, which operationally means

that it can be treated by the query optimizer as as if it wereBID table, and so, we can use all the

query optimization techniques in the MQ system, notably, safe plans [46].

We validate our solutions using data given to us by iLike.com [40], a service provided by the

music site GarageBand [39], which provides users with recommendations for music and friends.

iLike has three characteristics which make it a good candidate for materialized views. First, the

data are uncertain because the recommendations are based on similarity functions. Second, the

database is large (tens of gigabytes) and backs an interactive website with many users; hence, query

performance is important. Third, the database hosts more than one service, implying that there are

integration issues. Probabilistic materialized views are a tool that addresses all three of these issues.

Interestingly, materialized views are present in iLike. Since there is no support for uncertain views,

the materialized views are constructed in anad hocmanner and require care to use correctly. Our

experiments show that 80% of the materialized views in iLike are representable by BID tables and

more than 98.5% of their workload could benefit from our optimizations. We also experiment with

synthetic workloads and find that the majority of queries can benefit from our techniques. Using the

techniques described in this paper, we are able to achieve speed ups of more than three orders of

magnitude on large probabilistic data sets (e.g., TPC 1G with additional probabilities).

5.1 Motivating Scenario and Problem Definition

Our running example is a scenario in which a user, Alice, maintains a restaurant database that is

extracted from web data and she wishes to send data to Bob. Alice’s data are uncertain because they

are the result ofinformation extraction[84,96,126] andsentiment analysis[62]. A natural way for

her to send data to Bob is to write a view, materialize its result and send the result to Bob.

94

Chef Restaurant P
TD D. Lounge 0.9 (w1)
TD P. Kitchen 0.7 (w2)
MS C. Bistro 0.8 (w3)

Restaurant Dish
D. Lounge Crab Cakes
P. Kitchen Crab Cakes
P. Kitchen Lamb
C. Bistro Fish

Chef Dish Rating P

TD Crab Cakes
High 0.8 (r11)
Med 0.1 (r12)
Low 0.1 (r13)

TD Lamb
High 0.3 (r21)
Low 0.7 (r22)

MS Fish
High 0.6 (r31)
Low 0.3 (r32)

W(Chef,Restaurant;;P) (WorksAt) S(Restaurant,Dish) (Serves) R(Chef,Dish;Rating;P) (Rated)

Figure 5.1: Sample Restaurant Data in Alice’s Database. InWorksAt each tuple isindependent.
There is no uncertainty aboutServes. In Rated, each (Chef,Dish) pair has one true rating. All of
these are BID tables.

Sample data is shown in Figure 5.1 for Alice’s schema that contains three relations described

in BID syntax: W (WorksAt), S (Serves) andR (Rating). The relationW records chefs, who may

work at multiple restaurants in multiple cities. The tuples ofW are extracted from text and so are

uncertain. For example, (‘TD’, ‘D. Lounge’) (w1) in W signifies that we extracted that ‘TD’ works at

‘D.Lounge’ with probability 0.9. Our syntax tells us that all tuples are independent because they all

have different possible worlds keys. The relationR records the rating of a chef’s dish (e.g. ‘High’

or ‘Low’). Each (Chef,Dish) pair has only one true rating. Thus,r11 andr13 aredisjoint because

they rate the pair (‘TD’, ‘Crab Cakes’) as both ‘High’ and ‘Low’. Because distinct (Chef,Dish) pair

ratings are extracted independently, they are associated to ratings independently.

Semantics In W, there are 23 possible worlds. For example, the probability of the singleton subset

{(‘TD’ , ‘D. Lounge’)} is 0.9 ∗ (1 − 0.7) ∗ (1 − 0.8) = 0.054. This representation is called ap-?-

table [82], ?-table [51] or tuple independent [46]. The BID tableR yields 3∗ 2 ∗ 3 = 18 possible

worlds since each (Chef,Dish) pair is associated with at most one rating. When the probabilities

shown sum to 1, there is at least one rating for each pair. For example, the probability of the world

{r11, r21, r31} is 0.8 ∗ 0.3 ∗ 0.6 = 0.144.

95

Representable Views

Alice wants to ship her data to Bob, who wants a view with all chefs and restaurant pairs that make

a highly rated dish. Alice obliges by computing and sending the following view:

V1(c, r) D W(c, r), S(r,d), R(c,d; ‘High’) (5.1)

In the following example data, we calculate the probability of a tuple appearing in the output both

numerically in theP column and symbolically in terms of other tuple probabilities of Figure 5.1.

We calculate the probabilities symbolically only for exposition; the output of a query or view is a

set of tuples matching the head with associated probability scores.

Example 5.1.1 [Output ofV1 from Eq. (5.1)]

C R P (Symbolic Probability)

to1 TD D. Lounge 0.72 w1r11

to2 TD P.Kitchen 0.602 w2(1− (1− r11)(1− r21))

to3 MS C.Bistro 0.32 w3r31

The output tuples,to1 and to2, arenot independent because both depend onr11. This lack of

independence is problematic for Bob because a BID instance cannot represent this type of corre-

lation; Hence, we sayV1 is not arepresentable view. For Bob to understand the data, Alice must

ship the lineage of each tuple. For example, it would be sufficient to ship the symbolic probability

polynomials in Example 5.1.1.

Consider a second view where we can be much smarter about the amount of information nec-

essary to understand the view. InV2, Bob wants to know which working chefs make and serve a

highly rated dish:

V2(c) D W(c, r), S(r,d), R(c,d; ‘High’) (5.2)

Example 5.1.2 [Output ofV2 from Eq. (5.2)]

c P (Symbolic Probability)

TD 0.818 r11(1− (1− w1)(1− w2)) + (1− r11)(w2r21)

MS 0.48 w3r31

96

Importantly, Bob can understand the data in Example 5.1.2 with no auxiliary information because

the set of events contributing to ‘TD’ and those contributing to ‘MS’ areindependent. It can be

shown that over any instance, all tuples contributing to distinctc values are independent. Thus,V1

is arepresentable view. This motivates us to understand the following fundamental question:

Problem 1 (View Representabilty). Given a view V, can the output of V be represented as a BID

table?

It is interesting to note that efficiency and representability are distinct concepts: Computing

the output ofV1 can be done in polynomial time, but its result is not representable. On the other

hand, computingV2 can be shown to be]P-Hard [46, 135], butV2 is representable. To processV2,

we must use Monte Carlo procedures (e.g., [137]), which are orders of magnitude more expensive

than traditional SQL processing. We do not discuss evaluation further because our focus is not on

efficiently evaluating views, but on representing the output of views.

Partially Representable Views

To optimize and share a larger class of views, we want to use the the output of views that are not

representable. The output of a non-representable view still has meaning: It contains the marginal

probabilities that each tuple appears in the view but may not describe how all the tuples in the view

correlate. Consider the output ofV1 in Example 5.1.1, although this view is not a BID table, there is

still a lot of correlation information in the view definition: It is not hard to see that tuples that agree

onc are correlated, but tuples with differentc values are independent.

To build intuition, notice that when a viewV is a BID table, then, denotingK = Key(V), the

following two properties hold: for any set of tuples, if any two tuples in the set differ on at least

one of theK attributes, then the set of tuples is independent, and any two tuples that agree on the

K attributes are disjoint. If the viewV is not a BID table, but an arbitrary probabilistic relation,

then we may still be able to find two sets of attributes,L andK, that satisfy these two properties

separately. Formally:

Definition 5.1.3. Let (W, µ) be a probabilistic database over a single relation V.

• We say that(W, µ) is L-block independent, where L⊆ Attr(V), if any set of tuples{t1, . . . , tn}

s.t. ti .L , t j .L, 1 ≤ i < j ≤ n, is independent.

97

• We say that(W, µ) is K-block disjoint, where K⊆ Attr(V), if any two tuples t, t′ s.t. t.K = t′.K

are disjoint. Equivalently, K is a key in each possible world of V.

Example 5.1.4 Recall the viewV1 in Eq. (5.1), whose natural schema isV(C,R). It is has a partial

representation (L,K) with L = {C}, K = {C,R}. Tuples that differ onC are independent, but those

that agree onC but differ onRmay be correlated in unknown ways. Thus, the materialized view does

have some meaning for Bob, but does not contain sufficient information to completely determine a

probability distribution on its possible worlds.

Trivially, any viewV(H) can be partially represented by lettingL = ∅ andK = H. At the other

extreme, a BID table is one in whichL = K. Intuitively, we want a “large”L and a “small”K. Thus

the interesting question is: What is the complexity to decide, for a givenK, L, if a viewV is partially

representable?This is a generalization of Problem 3, and this is one of our main technical results in

this chapter.

Using Views to Answer Queries

In an information exchange setting, we do not have access to the base data and so for partially

representable views may not know how all tuples are correlated. Thus, to answer a queryQ, we

need to ensure that the value ofQ does not depend on correlations that are not captured by the

partial representation. To illustrate, we attempt to use the output ofV1, a partially representable

view, to answer two queries.

Example 5.1.5 Suppose Bob has a local relation,L(d; r), whered is a possible worlds key forL.

Bob wants to answer the following queries:

Qu(d) D L(d; r),V1(c, r) andQn(c) D V1(c, r)

Since the materialized viewV1 does not uniquely determine a probability distribution on its possible

worlds, it is not immediately clear that Bob can answer these queries without access to Alice’s

database and toV1’s definition. However, the queryQu is uniquely defined. For any fixedd0, the set

98

of r i values such thatL(d0; r i) partition the possible worlds:

µ(Qu(d0)) =
∑

r i :I |=L(d0;r i)

µ(L(d0; r i) ∧ ∃c V1(c, r i))

The partial representationV1(C; R; ∅), tells us that distinct values forc in V1 are independent. Thus,

each term in the summation is uniquely defined implyingQu is uniquely defined. In contrast,Qn

is not uniquely defined becauseQn(‘TD’) is true when either ofto1 or to2 are present; our partial

representation does not capture the correlation of the pair (to1, t
o
2).

This example motivates the following problem:

Problem 2 (View Answering). Let (L,K) be a partial representation for a view V. Given a query

Q using V, is the value of Q uniquely defined?

We will solve this problem in the case whenV is a conjunctive view andQ is any monotone

Boolean property. A special case of this general result is whenQ is specified by a conjunctive

query.

Relationship with Query Evaluation As we noted earlier, efficient query evaluation for a view

and its degree of representability are distinct concepts. When a query has aPTIME algorithm, it

is called asafe query[46]. It can be seen that the super-safe plan optimization of Chapter 3.3 are

those plans which are representable, safe, and do not contain self joins. Thus, progress on the view

answering problem allows us to extend this technique to a larger class of subplans. For the case

of SQL-like queries (conjunctive queries), the results in this chapter give a complete solution for

the view answering problem which allows us to build a query optimizer for large-scale probabilistic

databases.

5.2 Query Answering using Probabilistic Views

We begin by discussing a very general problem: how to find a partial representation (L,K) for an

arbitrary probabilistic relation; we show that there is always a unique maximal choice forL in the

partial representation such that a weaker independence property holds (2-independence). Then, we

show that if a viewV is defined in first-order logic (FO), its output has a unique maximalL such that

99

our stronger property of total independence holds. We then show that ifV is defined by a conjunctive

query, then we can findL with aΠ2P algorithm (and moreover that the related decision problem is

Π2P-complete). Finally, we discuss the problem of answering queries using a partial represented

views. The technical issue is to decide if a query using a view has a uniquely defined value1. We

show that this property is decidable for conjunctive queries and conjunctive views, and moreover is

complete forΠ2P as well.

5.2.1 Partial Representation of a Probabilistic Table

In this section we will not assume that a tableV is a block disjoint-independent (BID) table, but

rather allow it to be an arbitrary probability space over the set of possible instances forV. The

intuition is thatV is a view computed by evaluating a query over some BID database: the output of

the view is, in general, not a BID table, but some arbitrary probabilistic database (W, µ).

In general, a probabilistic tableV may admit more than one partial representation. For example,

every probabilistic tableV admits the trivial partial representationL = ∅ andK = Attr(V), but this

representation is not useful to answer queries, except the most trivial queries that check for the pres-

ence of a single ground tuple. Intuitively, we want a “large”L and a “small”K. It is easy to check

that we can always relax the representation in the other way: if (L,K) is a partial representation,

andL′,K′ are such thatL′ ⊆ L andK ⊆ K′, then (L′,K′) is also a partial representation. Of course,

we want to go in the opposite direction: increaseL, decreaseK. We will give several results in the

following sections showing that a unique maximalL exists, and will explain how to compute it. On

the other hand, no minimalK exists in general; we will show that the space of possible choices for

K can be described using standard functional dependency theory.

It is not obvious at all that a maximalL exists, and in fact it fails in the most general case, as

shown by the following example.

Example 5.2.1 Consider a probabilistic tableV(A, B,C) with three possible tuples:

1This presentation in this section is from“Probabilistic query answering and query answering using Views”in the
Journal of Computer and System Sciences [49].

100

T : A B C

a b c t1

a b′ c t2

a b′ c′ t3

and four possible worlds:I1 = ∅, I1 = {t1, t2}, I2 = {t2, t3}, I3 = {t1, t3}, each with probability

1/4. Any two tuples are independent: indeedµ(t1) = µ(t2) = µ(t3) = 1/2 andµ(t1t2) = µ(t1t3) =

µ(t2t3) = 1/4. V is AB-block independent: this is because the only sets of tuples that differ onAB

are{t1, t2} and{t1, t3}, and they are independent. Similarly,V is alsoAC-block independent. ButV

is notABC-block independent, because any two tuples in set{t1, t2, t3} differ onABC, yet the entire

set is not independent:µ(t1t2t3) = 0. This shows that there is no largest setL: bothAB andAC are

maximal.

A weaker result holds. For a setL ⊆ Attr(V) we say thatV is L-block 2-independent if any two

tuplest1, t2 s.t. t1.L , t2.L are independent.

Lemma 5.2.2. Let V be a probabilistic table. Then there exists a maximal set L s.t. V is L-block

2-independent.

Proof. We prove the following: ifL1, L2 ⊆ Attr(V) are such thatV is Li-block 2-independent for

eachi = 1,2, thenV is alsoL-block 2-independent, whereL = L1 ∪ L2. Indeed, lett1, t2 be two

tuples s.t. t1.L , t2.L. Then eithert1.L1 , t2.L1 or t1.L2 , t2.L2, hencet1, t2 are independent

tuples. The largest setL claimed by the lemma is then the union of all setsL′ s.t. V is L′-block

2-independent. �

Continuing Example 5.2.1 we note thatV is ABC-block 2-independent, since any two of the

tuplest1, t2, t3 are independent.

5.2.2 Partial Representation of a probabilistic lineage database

Recall that ifV is a view defined by an FO query over a BID database, thenV can be expressed as

probabilistic lineage database. In this section we study the partial representation of a probabilistic

lineage database. Recall that a lineage database (λ, µ) consists of two parts:λ is a function that

101

assigns each tuple a Boolean expression andµ is a product probability space on the set of variables

X̄ that are used in the Boolean expressions ofλ. Our main result in this section is the following:

given the lineage functionλ and a particular relationV, there exists a maximal set of attributes

L ⊆ Attr(V) such that for any product probability spaceµ, V is L-block independent. Thus, ifV is a

view defined by an FO query over a BID database, then this result shows us how to compute a good

partial representation for the view.

Let X̄ = {X1, . . . ,Xm} be the variables used in the Boolean expressions inλ, and letDom(X j) be

the finite domain of values for the variableX j , j = 1,m. The annotated tableV consists ofn tuples

t1, . . . , tn, each annotated with a Boolean expressionλ(t1), . . . , λ(tn) obtained from atomic formulas

of the formX j = v, wherev ∈ Dom(X j), and the connectives∧, ∨, and¬. A valuationθ is a function

θ : X̄→
⋃

i Dom(X j) s.t.,θ(X j) ∈ Dom(X j), for j = 1,m.

The following definition is adapted from Miklau and Suciu [119].

Definition 5.2.3. Letϕ be a Boolean expression over variablesX̄. A variable Xj is called acritical

variablefor ϕ if there exists a valuationθ for the variablesX̄−
{
X j

}
and two values v′, v′′ ∈ Dom(X j)

s.t.ϕ[θ ∪
{
(X j , v′)

}
] , ϕ[θ ∪

{
(X j , v′′)

}
].

For a simple illustration, supposeDom(X1) = Dom(X2) = Dom(X3) = {0,1,2}, and consider the

Boolean expression

ϕ ≡ (X1 = 0)∨ (X1 = 1)∨ ((X3 = 1)∧ ¬(X1 = 2))

ThenX2 is not a critical variable forϕ, because it is not mentioned in the expression ofϕ. X3 is also

not a critical variable, becauseϕ simplifies to (X1 = 0)∨ (X1 = 1) (sinceDom(X1) = {0,1,2}). On

the other hand,X1 is a critical variable: by changingX1 from 0 to 2 we changeϕ from true to false.

In notation, ifθ is the valuation{(X2,0), (X3,0)}, thenϕ[θ∪{(X1,0)}] = true, ϕ[θ∪{(X1,2)}] = false.

The main result in this section is based on the following technical lemma:

Lemma 5.2.4. Letϕ, ψ be two Boolean expressions. Then the following two statements are equiva-

lent:

• For every product probability spaceµ on the set of variables̄X, ϕ and ψ are independent

events.

102

• ϕ andψ have no common critical variables.

Proof. The “if” direction is straightforward: ifϕ, ψ use disjoint sets of variables, thenµ(ϕ ∧ ψ) =

µ(ϕ)µ(ψ), hence they are independent for any choice ofµ.

The “only if” direction was shown in [119] for the case when all variablesX j are Boolean,

i.e. |Dom(X j)| = 2. We briefly review the proof here, then show how to extend it to non-Boolean

variables. Given a probability spaces (Dom(X j), µ j), denotex j = µ j(X j = 1), henceµ j(X j = 0) =

1 − x j . Thenµ(ϕ) is a polynomial in the variablesx1, . . . , xm where each variable has degree≤ 1.

(For example, ifϕ = ¬(X1 ⊗ X2 ⊗ X3) (exclusive or) thenµ(ϕ) = x1x2(1 − x3) + x1(1 − x2)x3 +

(1 − x1)x2x3 + (1 − x1)(1 − x2)(1 − x3), which is a polynomial of degree 1 inx1, x2, x3.) One can

check that ifX j is a critical variable forϕ then the degree ofx j in the polynomialµ(ϕ) is 1; on the

other hand, ifX j is not a critical variable, then the degree ofx j in the polynomialµ(ϕ) is 0 (in other

words the polynomial does not depend onx j). The identityµ(ϕ)µ(ψ) = µ(ϕ ∧ ψ) must hold for any

values ofx1, . . . , xm, becauseϕ, ψ are independent for anyµ. If X j were a common critical variable

for bothϕ andψ then the degree ofx j in the left hand side polynomial is 2, while the right hand side

has degree at most 1, which is a contradiction.

We now extend this proof to non-Boolean domains. In this case a variableX j may take values

0,1, . . . ,d j , for d j ≥ 1. Define the variablesxi j to be xi j = µ(X j = i), for i = 1, . . . ,d j , thus

µ(X j = 0) = 1− x1 j − x2 j − · · · − xd j j . As beforeµ(ϕ) is a polynomial of degree 1 in the variables

xi j with the additional property that ifi1 , i2 thenxi1 j andxi2 j cannot appear in the same monomial.

We still have the identityµ(ϕψ) = µ(ϕ)µ(ψ), for all values of the variablesxi j (since the identity

holds on the setxi j ≥ 0 for all i, j, and
∑

i xi j ≤ 1, for all j, and this set has a non-empty interior).

If X j is a critical variable forϕ thenµ(ϕ) must have a monomial containing somexi1 j ; if it is also

critical for ψ, thenµ(ψ) has a monomial containingxi2 j . Hence their product containsxi1 j · xi2 j ,

contradiction. �

We will use the lemma to prove the main result in this section. LetλV denote the lineage function

λ restricted to tuples inV. Thus, (λV, µ) defines a probabilistic database with a single relation,V.

Theorem 5.2.5.Let V be a table in a lineage database(λ, µ). Then there exists a unique maximal

set of attributes L such that, for any product probability spaceµ, the lineage database(λV, µ) is

L-block independent.

103

Proof. Denotet1, . . . , tn the tuplesV, and letλ(t1), . . . , λ(tn) their Boolean expressions annotations.

Let L be a set of attributes. We prove the following:

Lemma 5.2.6. The following three statements are equivalent:

1. For anyµ, the pdb(λV, µ) is L-block independent.

2. For anyµ, the pdb(λV, µ) is L-block 2-independent.

3. For any two tuples ti , t j , if ti .L , t j .L then the Boolean expressionsλ(ti) andλ(t j) do not have

any common critical variables.

Proof. Obviously (1) implies (2), and from the Lemma 5.2.4 it follows that (2) implies (3) (since

µ(ti) = µ(λ(ti)) andµ(ti , t j) = µ(λ(ti) ∧ λ(t j))). For the last implication, letµ be any product prob-

ability space, and consider somem tuplesti1, . . . , tim that have distinct values for theirL attributes.

Then, the Boolean expressionsλ(ti1), . . . , λ(tim) depend on disjoint sets of Boolean variables, hence

µ(t1, . . . , tm) = µ(ϕi1, . . . , ϕim) = µ(ϕi1) · · · µ(ϕim) = µ(t1) · · · µ(tm), proving that they are independent.

Thus, the three statements above are equivalent. �

Continuing the proof of Theorem 5.2.5, consider two sets of attributesL1, L2 such that each

satisfies condition (3) in Lemma 5.2.6. Then their union,L1 ∪ L2, also satisfies condition (3):

indeed, ifti andt j are two tuples such thatti .(L1 ∪ L2) , t j .(L1 ∪ L2), then eitherti .L1 , t j .L1 or

ti .L2 , t j .L2, and in either caseλ(ti) andλ(t j) do not have any common critical tuples. It follows that

there exists a maximal set of attributesL that satisfies condition (3), which proves the theorem.�

As an application of this result, we show how to apply it to a viewV defined by an FO expression

over a BID database. LetR be a relational schema, and letPDB= (T, µ) be a BID database, where

T is a set of possible tuples.

Corollary 5.2.7. For every FO view definition v over the relational schemaR and for every set of

possible tuples T there exists a unique maximal set of attributes L such that: for any BID database

PDB= (T, µ) the probabilistic view v(T, µ) is L-block independent.

The proof follows immediately from Theorem 5.2.5 and the observation that the viewv(PDB)

is a lineage database.

We end this section by noting that, in general, no unique minimalK exists. For example the

lineage table below has two minimal keys,{A} and{B}:

104

A B

a1 b1 X = 1∧ Y = 1

a1 b2 X = 1∧ Y = 2

a2 b1 X = 2∧ Y = 1

a2 b2 X = 2∧ Y = 2

Therefore, any lineage database defined over this table is bothA-block disjoint, andB-block

disjoint, but it is not∅-block disjoint.

5.2.3 Partial Representation of a Conjunctive View

In the previous section we have shown how to compute a partial representation for a given view

(expressed in FO) and a given input BID database. We now study how to compute a partial repre-

sentation given only the view expression, and not the input database. In this case we seek a partial

representation (L,K) that is satisfied by the the view forany input BID database. This partial repre-

sentation depends only on the view expression, not the data instance, and is computed through static

analysis on the view expression only. Throughout this section we will restrict the view expression

to be a conjunctive query.

Fix the schemaR of a BID database, and letV be defined by a conjunctive queryv overR. Given

a BID input,PDB, we denoteV = v(PDB) the probabilistic table obtained by evaluating the view

on the BID input. We prove in this section two results.

Theorem 5.2.8.Fix a relational schemaR.

1. For any conjunctive query v there exists a unique maximal set of attributes L⊆ Attrs(v) such

that for any BID database PDB over the schemaR, v(PDB) is L-block independent.

2. The problem“given a conjunctive queryv and L ⊆ Attrs(v) check whether for any BID

databasePDB, v(PDB) is L-block independent”, is inΠ2P. Moreover, there exists a schema

R for which this problem isΠ2P-hard.

The theorem, in essence, says that there exists a unique maximal set of attributesL, and com-

puting such a set isΠ2P-complete in the size of the conjunctive queryv. To obtain a good partial

105

representation (L,K) for the viewv, we also need to computeK: finding K is equivalent to inferring

functional dependencies on the output of a conjunctive view, from the key dependencies in the input

schemaR. This problem is well studied [1], and we will not discuss it further, but note that, in

general, there may not be a unique minimal setK.

Before proving Theorem 5.2.8 we give some examples of partial representations for conjunctive

views.

Example 5.2.9 1. Consider the schemaR(A), S(A, B,C,D), and the view:

v(x, y, z) D R(x),S(x, y, z,u)

DenoteV(X,Y,Z) the schema of the materialized view. A partial representation forV is

(X,XY). To see thatV is X-block independent, notice that if two tuples inV differ on theirX

attribute, then the lineage of the two tuples depends on disjoint sets of input tuples inRandS.

To see thatV is XY-block disjoint, it suffices to see that the functional dependencyXY→ Z

holds inV (because it holds inS). Thus, (X,XY) is a partial representation forV, and one can

see that it is the best possible (that is, we cannot increaseX nor decreaseXY).

2. Consider the schemaR(A, B,C), S(A,C, B) and the view:

v(x, y, z) D R(x, y, z),S(x, z, y)

HereV is X-block independent. In addition,V is bothXY-block disjoint andXZ-block dis-

joint: but it is notX-block disjoint. There are two “best” partial representations: (X,XY) and

(X,XZ).

In the remainder of this section we will prove Theorem 5.2.8, and start with Part 1. Fix a BID

probabilistic databasePDB. ThenV = v(PDB) is a lineage database: by Theorem 5.2.5 there exists

a unique maximal set of attributesLPDB such thatV is L-block independent (for any choice of the

probability function inPDB). Then the set of attributes
⋂

PDB LPDB is the unique, maximal set of

attributes claimed by the theorem.

106

Before proving part 2 of Theorem 5.2.8, we need to review the notion of a critical tuple for a

Boolean queryq.

Definition 5.2.10. A ground tuple t is calledcritical for a Boolean query q if there exists a (conven-

tional) database instance I s.t. q(I) , q(I ∪ {t}).

A tuple is critical if it makes a difference for the query. For a simple illustration, consider

the Boolean queryq D R(x, x),S(a, x, y), wherea is a constant. ThenR(b,b) (for some constant

b) is a critical tuple becauseq is false on the instanceI = {S(a,b, c)} but true on the instance

{R(b,b),S(a,b, c)}. On the other handR(b, c) is not a critical tuple. In general, if the queryq is

a conjunctive query, then any critical tuple must be the ground instantiation of a subgoal. The

converse is not true as the following example shows due to Miklau and Suciu shows [119] :q D

R(x, y, z, z,u),R(x, x, x, y, y). The tuplet = R(a,a,b,b, c), which is a ground instantiation of the first

subgoal, is not a critical tuple. Indeed, ifq is true onI ∪ {t}, then only the first subgoal can be

mapped tot, and therefore the second subgoal is mapped to the ground tupleR(a,a,a,a,a), which

must be inI : but thenq is also true onI , hencet is not critical. We review here the main results

Miklau and Suciu [119]. While these results were shown for a relational schemaR where the key

of each relation is the set of all its attributes (in other words, any BID database over schemaR is a

tuple-independent probabilistic database), they extend immediately to BID probabilistic databases

(the main step of the extension consists of Lemma 5.2.4).

Theorem 5.2.11. [119] Fix a relational schemaR.

1. Let q,q′ be two Boolean conjunctive queries over the schemaR. Then the following two

statements are equivalent: (a) q and q′ have no common critical tuples, (b) for any BID

probabilistic database over the schemaR, q and q′ are independent events.

2. The problem“given two Boolean queriesq,q′, check whether they have no common critical

tuples” is inΠ2P.

3. There exists a schemaR such that the problem“given a Boolean queryq and a ground tuple

t, check whethert is not a critical tuple forq” , isΠ2P-hard.

107

We now prove part 2 of Theorem 5.2.8. Given a set of attributesL, the following two conditions

are equivalent: (a) for any inputPDB, v(PDB) is L-block independent, and (b) for any two distinct

grounded|L|-tuplesā, b̄, the two Boolean queriesv(ā) andv(b̄) have no common critical tuples.

(Herev(ā) denotes the Boolean query where the head variables corresponding to theL attributes are

substituted with ¯a, while the rest of the head variables are existentially quantified). The equivalence

between (a) and (b) follows from Lemma 5.2.6 (2) and Theorem 5.2.11 (1). Membership inΠ2P

follows now from property (b) and Theorem 5.2.11 (2).

To prove hardness forΠ2P, we use Theorem 5.2.11 (3): we reduce the problem “given a query

q and a tuplet check whethert is not a critical tuple forq” to the problem (b) above. LetR be the

vocabulary forq andt, and let the ground tuplet beT(a1, . . . ,ak). Construct a new vocabularyR′

obtained fromR by adding two new attributes to each relation name: that is, ifR(A1, . . . ,Am) is a

relation name inR, thenR′(U,V,A1, . . . ,Am) is a relation name inR′. Let U,V be two variables.

Denoteq′(U,V) the query obtained fromq by replacing every subgoalR(. . .) in q with R′(U,V, . . .)

(thus, the variablesU,V will occur in all subgoals ofq′(U,V)), and define the following view:

v(U,V) D q′(U,V),T(V,U,a1, . . . ,ak)

We show thatv is UV-block independent iff t is not a critical tuple forq. For that, we consider

two distinct constant tuples (u1, v1) and (u2, v2) and examine whether the Boolean queriesv(u1, v1)

andv(u2, v2) are independent, or, equivalently, have no common critical tuples. All critical tuples of

v(u1, v1) must have the formR(u1, v1, . . .), or T(v1,u1, . . .); in other words, they must start with the

constantsu1, v1 or with v1,u1. Similarly for v(u2, v2); hence, if{u1, v1} , {u2, v2} then the queries

v(u1, v1) andv(u2, v2) have no common critical tuples. The only case when they could have common

critical tuples is whenu1 = v2 andu2 = v1 (since (u1, v1) , (u2, v2)), and in that case they have a

common critical tuple iff T(u1, v1,a1, . . . ,ak) is a critical tuple forq′(u1, v1), and this happens iff

T(a1, . . . ,ak) is a critical tuple forq. This completes the hardness proof.

108

5.2.4 Querying Partially Represented Views

We have shown how to compute a “best” partial representation (L,K) for a materialized viewV:

tuples with distinct values forL are independent, while tuples that agree onK are disjoint. All other

pairs of tuples, which we callintertwined, have unspecified correlations. In this section we study

the problem of deciding whether a queryq can be answered by using only the marginal probabilities

in V: we say thatq is well-definedin terms of the view and its partial representation. Intuitively,q

does not look at pairs of intertwined tuples. This problem is complementary to the query answering

using views problem [85]: there, we are given a queryq over a conventional database and a set of

views, and we want to check ifq can be rewritten into an equivalent queryq′ that uses the views.

We assume that the rewriting has already been done, thusq already mentions the view(s).

We illustrate with an example:

Example 5.2.12Let V(A, B,C) have the following partial representation:L = A, K = AB. Consider

the following queries:

q1 D V(a, y, z)

q2 D V(x,b, y)

q3 D V(x, y, c)

Herex, y, z are variables, anda,b, c are constants. For example, the view could be that from Exam-

ple 5.2.9 (1),v(x, y, z) D R(x),S(x, y, z,u), and the queryq1 could beq1 D R(a),S(a, y, z,u): after

rewritingq1 in terms of the view, we obtain the equivalent expressionq1 D V(a, y, z).

We argue thatq2 is well-defined, whileq1,q3 are not. Consider firstq2. Its value depends only

on the tuples of the form (ai ,b, c j), where the constantsai andc j range over the active domain, and

b is the fixed constant occurring in the query. Partition these tuples byai . For eachi = 1,2, . . .,

any two tuples in the set defined byai are disjoint (becauseV satisfies the partial representation

(A,AB), and any two tuples in the same group agree on bothA and B): thus, the Boolean query

∃z.V(ai ,b, z) is a disjunction of the exclusive eventsV(ai ,b, c j), and therefore its probability is the

sum of the probabilitiesµ(V(ai ,b, c j)). Moreover, the set of events{∃z.V(a1,b, z),∃z.V(a2,b, z), . . .},

109

is independent, which allows us to compute the probability of the queryq2, since it is the disjunction

of these independent events:q2 ≡ ∃x.∃z.V(x,b, z). Thus, assuming that the viewV satisfies the

partial representation (A,AB), the probability ofq2 depends only on the marginal tuples probabilities

in the viewV.

In contrast, neitherq1 nor q2 are well-defined. To see this, suppose that the view has exactly

two tuples,t1 = (a,b1, c) andt2 = (a,b2, c). These tuples are intertwined, i.e.the probabilityµ(t1, t2)

is unknown. Further,µ(q1) = µ(q3) = µ(t1 ∨ t2) = µ(t1) + µ(t2) − µ(t1t2): µ(t1) andµ(t2) are well

defined in the view, butµ(t1, t2) is unknown. So, neitherq1 norq3 is well-defined.

In this section we consider Boolean, monotone queriesq, which includes conjunctive queries.

We assume thatq is over a single viewV, and mentions no other relations. This is not too restrictive,

sinceq may have self-joins overV, or unions (since we allow arbitrary monotone queries). It is

straightforward to extend our results to a query expressed over multiple viewsV1,V2, . . ., each with

its own partial representation, assuming that all views are independent.

Definition 5.2.13. Let V be a view with a partial representation(L,K), and let q be a monotone

Boolean query over the single relation name V. We say that q is well-defined given the partial

representation(L,K), if for any two probabilistic relations PV= (W, µ) and PV′ = (W′, µ′) that

satisfy the partial representation(L,K), and that have identical tuple probabilities2, the following

holds:µ(q) = µ′(q).

Thus,q is well defined iff µ(q) depends only on the marginal tuple probabilitiesµ(t) (which we

know), and not on the entire distributionµ (which we don’t know). We will give now a necessary and

sufficient condition forq to be well defined, but first we need to introduce two notions: intertwined

tuples, and a set of critical tuples.

Definition 5.2.14. Let (L,K) be a partial representation of a view V. Let t, t′ be two ground tuples

of the same arity as V. We call t,t′ intertwinedif t.L = t′.L and t.K , t′.K.

Next, we generalize a critical tuple (see Definition 5.2.10) to a set of critical tuples. LetInst =

P(Tup) be the set of (conventional) database instances over the set of ground tuplesTup. To each

Boolean queryq we associate the real-valued functionfq : Inst→ R:

2∀t µ(t) = µ′(t)

110

fq(I) =

 1 if q(I) is true

0 if q(I) is false

Definition 5.2.15. Let f : Inst → R be a real-valued function on instances. Thedifferentialof f

w.r.t. a set of tuples S⊆ Tup is the real-valued function∆S f : Inst→ R defined as follows:

∆∅ f (I) = f (I)

∆{t}∪S f (I) = ∆S f (I) − ∆S(f (I − {t})) if t < S

Definition 5.2.16. A set of tuples C⊆ Tup is critical for f if there exists an instance I s.t.∆C f (I) ,

0. A set of tuples C is critical for a Boolean query q if it is critical for fq.

We can now state the main result in this section:

Theorem 5.2.17.Let V be a view with a partial representation(L,K).

1. A monotone Boolean query q over V is well defined iff for any two intertwined tuples t, t′ the

set{t, t′} is not critical for q.

2. The problem“given a Boolean conjunctive queryq over the viewV, decide whetherq is well

defined” is in Π2P. Moreover, there exists a view V and partial representation(L,K) for

which this problem isΠ2P hard.

Thus, in order to evaluate a queryq using a viewV with partial representation (L,K) one pro-

ceeds as follows. First, we check ifq is well defined, by checking if it has no pair of intertwined,

critical tuples: this is aΠ2P-complete problem in the size of the queryq. Second, if this holds, then

we evaluateq overV by assumingV is a BID table with key attributesL; or, alternatively, we may

assume a BID table with key attributesK. The well-definedness condition ensures that we obtain

the same answer over any of these two BID tables as over the viewV.

In the rest of the section we prove Theorem 5.2.17, and for that we give a definition, and three

lemmas.

111

Definition 5.2.18. Let T ⊆ Tup be a set of tuples. Therestrictionof a real-valued function f to T

is: f T(I) = f (I ∩ T). Similarly, the restriction of a Boolean query q to T is: qT(I) = q(I ∩ T).

The first lemma establishes some simple properties of critical sets of tuples. Note that a set of

tuplesC is not critical for f iff ∆C f = 0, meaning∀I : ∆C f (I) = 0.

Lemma 5.2.19.Let C be a set of tuples and suppose∆C f = 0. Then:

1. For any set of tuples D⊇ C,∆D f = 0.

2. For any set of tuples S ,∆C∆S f = 0.

3. For any set of tuples T,∆C f T = 0.

Proof. (1): we show that∆D f (I) = 0 by induction on the size ofD. If D = C then it follows

from the assumption that∆C f = 0. We show this forD ∪ {t}, wheret < D: ∆D∪{t}(I) = ∆D(I) −

∆D(I − {t}) = 0− 0 = 0. (2): ∆C∆S f (I) = ∆S∪C f (I), and the latter is 0 by the previous claim. (3):

∆C f T(I) = ∆C f (I ∩ T) = 0, because∆C f = 0. �

The second lemma gives a series expansion for any real-valued functionf : Inst→ R, in terms

of its differentials.

Lemma 5.2.20.For any set of tuples T⊆ Tup:

f =
∑
S⊆T

∆S f Tup−(T−S) (5.3)

As a consequence:

f =
∑

S⊆Tup

∆S f S (5.4)

Equation (5.3) can be written equivalently asf (I) =
∑

S⊆T ∆S f (I − (T − S)). For example, by

settingT = {t} or T = {t1, t2} in Eq.(5.3) we obtain:

f (I) = f (I − {t}) + ∆t f (I)

f (I) = f (I − {t1, t2}) + ∆t1 f (I − {t2}) + ∆t2 f (I − {t1}) + ∆t1,t2 f (I)

112

Proof. (Sketch) We prove (5.3) by induction on the size of the setT. The first example above shows

the base case. Assumings < T, we can split the sum overS ⊆ T ∪ {t} into to sums: one iterating

overS whereS ⊆ T and the other iterating overS ∪ {t} whereS ⊆ T:

∑
S⊆T∪{t}

∆S f Tup−(T∪{t}−S)(I) =

=
∑
S⊆T

∆S f Tup−(T∪{t}−S)(I) +
∑
S⊆T

∆S∪{t} f
Tup−(T−S)(I)

=
∑
S⊆T

∆S f Tup−(T∪{t}−S)(I) +
∑
S⊆T

∆S f Tup−(T−S)(I) −
∑
S⊆T

∆S f Tup−(T−S)(I − {t})

=
∑
S⊆T

∆S f Tup−(T−S)(I) = f (I)

The last identity holds becausef Tup−(T∪{t}−S)(I) = f Tup−(T−S)(I − {t}). This completes the proof of

(5.3). To prove (5.4) we setT = Tup in (5.3). �

For the third lemma, we fix the partial representation (L,K) of the view.

Definition 5.2.21. A set of ground tuples T is non-intertwined, or NIT, if∀t, t′ ∈ T, t and t′ are not

intertwined. In other words:∀t, t′ ∈ T, either t.L , t′.L or t.K = t′.K.

Lemma 5.2.22.Let (L,K) be a partial representation of a view V, and let q be a monotone Boolean

query over V. Assume q has no critical pairs of intertwined tuples, and let T be a NIT set of tuples.

Then qT is well defined given the partial representation(L,K) of the view V.

Proof. A mintermfor qT is a minimal instanceJ s.t. qT(J) is true; that is,J is a set of tuples s.t.

qT(J) is true and for allJ′ ⊆ J, if qT(J′) is true thenJ = J′. DenoteM the set of all minterms forqT .

Obviously, each minterm forqT is a subset ofT. SinceqT is monotone (becauseq is monotone), it

is uniquely determined byM:

qT(I) =
∨
J∈M

(J ⊆ I)

In other words,qT is true on an instanceI iff the set of tuplesI contains a mintermJ. Denoter J the

113

Boolean queryr J(I) = (J ⊆ I), we apply the inclusion-exclusion formula to derive:

µ(qT) = µ(
∨
J∈M

r J) =
∑

N⊆M,N,∅

(−1)|N|µ(r
⋃

N)

Finally, we observe that for eachN ⊆ M, the expressionµ(r
⋃

N) is well defined. Indeed, the set

J =
⋃

N is the union of minterms inN, thus it is a subset ofT, hence it is a NIT set. IfJ = {t1, t2, . . .},

the queryr J simply checks for the presence of all tuplest1, t2, . . .; in more familiar notationµ(r J) =

µ(t1t2 · · ·). If the setJ contains two disjoint tuples (ti .K = t j .K) thenµ(t1t2 · · ·) = 0. Otherwise, it

contains only independent tuples (ti .L , t j .L), henceµ(t1t2 · · ·) = µ(t1)µ(t2) · · · In either cases it is

well-defined and, hence, so isµ(qT). �

We now prove Theorem 5.2.17

Proof. Part 1: We start with the “only if” direction. Letq be well defined, and assume it has a

pair t, t′ of intertwined, critical tuples. By definition there exists an instanceI s.t. fq(I) − fq(I −

{t}) − fq(I − {t′}) + fq(I − {t, t′}) , 0. Sinceq is monotone it follows thatfq is monotone, hence

q(I) = true, q(I − {t, t′}) = false, and eitherq(I − {t}) = q(I − {t′}) = falseor q(I − {t}) = q(I − {t′}) =

true. Without loss of generality, assume thatq(I − {t}) = q(I − {t′}) = false. Then we define

two probabilistic databasesPV = (W, µ) andPV′ = (W, µ′) as follows. Each has four possible

worlds: I , I − {t} , I − {t′} , I − {t, t′}. In PV these worlds are assigned probabilityµ = (0.5,0,0,0.5),

respectively; here,t1 and t2 are positively correlated. InPV′, all worlds are assigned probability

0.25 i.e.the two tuples are independent. Observe that in both cases, the marginal probability of any

tuple is the same,µ(t) = µ(t′) = 0.5 and all other tuples have probability 1. Then we haveµ(q) = 0.5

andµ′(q) = 0.25, contradicting the assumption thatq is well-defined.

Next we prove the “if” part, so assumeq has no pair of intertwined, critical tuples. The basic

plan is this. Suppose an instanceI contains two intertwined tuplest, t′ (hence we don’t know their

correlations). Writeq(I) = q(I − {t, t′}) + ∆tq(I − {t′}) + ∆t′q(I − {t}) (because∆t,t′q = 0). Thus, we

can “remove”t or t′ or both fromI and get a definition ofq on a smaller instance, and by repeating

this process we can eliminate all intertwined tuples fromI , then we apply Lemma 5.2.22

Formally, letq be a monotone Boolean query that has no critical pair of intertwined tuples for

(L,K). Let PV = (W, µ) be a probabilistic database that satisfies the partial representation (L,K),

114

and letTupbe the set of possible tuples inPV. We expandfq using Lemma 5.2.20:

fq =
∑

T⊆Tup

∆T f T
q

=
∑

T⊆Tup:T is NIT
∆T f T

q

=
∑

T⊆Tup:T is NIT

∑
S⊆T

(−1)|S| f T−S
q (5.5)

The first line is Eq.(5.4) in Lemma 5.2.20. To show the second line, we start from the fact that

∆{t,t′} fq = 0 when t, t′ are intertwined tuples, because we assumed thatq has no critical pair of

intertwined tuples. Then, every setT that is not NIT can be written asT = {t, t′} ∪ T′ wheret, t′

are two intertwined tuples. We apply Lemma 5.2.19 twice:∆{t,t′} fq = 0 implies∆{t,t′} f T
q = 0, which

further implies∆T f T
q = 0. Thus, the only terms in the first line that are non-zero are those that

correspond to setsT that are NIT: this is what the second line says. Finally, the last line is the direct

definition of∆T .

Next we apply the expectation on both sides of Eq.(5.5), and use the linearity of expectation plus

µ(q) = E[fq]:

µ(q) = E[fq] =
∑

T⊆Tup:T is NIT

∑
S⊆T

(−1)|S|E[f T−S
q]

=
∑

T⊆Tup:T is NIT

∑
S⊆T

(−1)|S|µ(qT−S)

The claim of the theorem follows from that fact that by Lemma 5.2.22 each expressionµ(qT−S)

is well defined.

We now prove Part 2, by providing a reduction from the problem“given a conjunctive query q

and a tuple t check whether t is critical for q”. Assume w.l.o.g. that the query and the tuple are

over a vocabulary with a single relation symbol (namelyV). If not, we rename relation symbols by

padding them so that they have the same arities, then adding constants: for example if the vocabulary

is R1(A, B),R2(C,D,E, F),R3(G,H,K), then we will rewrite both the query and the tuple using a

115

single relation symbolV of arity 5 (the largest of the three arities plus one), and replaceR1(x, y)

with V(x, y,a,a), replaceR2(x, y, z,u) with V(x, y, z,u,b), and replaceR3(x, y, z) with V(x, y, z, c, c),

wherea,b, c are fixed constants.

Thus, we have a queryq and a ground tuplet, over a single relation symbolV of arity k, in

particulart = V(c1, . . . , ck) = V(c̄). We want to check whethert is a critical tuple forq. We reduce

this problem to the problem of checking whether some queryq′ is well defined over some viewV′;

the new view will have arityk + 1. Fix two distinct constantsa,b. The new queryq′ is obtained

fromqby replacing every subgoalV(x, y, . . .) with V′(a, x, y, . . .), and by adding the constant subgoal

V(b, c1, . . . , ck). Thus, queriesq andq′ look like this:

q = V(x̄1),V(x̄2), . . . ,V(x̄m)

q′ = V′(a, x̄1),V′(a, x̄2), . . . ,V′(a, x̄m),V′(b, c̄)

Consider the partial representation (L,K) for V′, whereL = Attr(V) andK = Attr(V′). Recall thatq′

is well defined over this partial representation, iff it has no pairs of intertwined, critical tuples. Thus,

to prove the hardness claim it suffices to show that the following two statements are equivalent:

1. There exists two intertwined, critical tuples forq′.

2. t is a critical tuple forq.

We start by showing 1 implies 2. Two tuplest1, t2 are intertwined iff they agree on theL at-

tributes,t1.L = t2.L, and disagree on theK attributes, hencet1.A , t2.A, whereA = Attrs(V′) − L

is the extra attribute that was added toV′. On the other hand, if the set{t1, t2} is also critical forq′,

thent1.A = a andt2.A = b (sinceq′ only inspects tuples that haveA = a or A = b), and, moreover,

t1.L = t2.L = c̄ (since the only tuple withA = b that is critical forq′ is V′(b, c̄)). Let I ′ be an instance

that witnesses the fact that{t1, t2} is doubly critical:

0 , ∆t1,t2 fq′(I
′) = fq′(I

′) − fq′(I
′ − {t1}) − fq′(I

′ − {t2}) + fq′(I
′ − {t1, t2})

= 1− fq′(I
′ − {t1}) − 0+ 0

We used the fact thatfq′(I ′) = 1 (otherwise, iffq′(I ′) = 0 then∆t1,t2(fq′(I ′)) = 0), which implies that

116

t2 = V′(b, c̄) ∈ I ′. Thus, we haveq′(I ′) = true andq′(I ′ − {t1}) = false. We construct from here

an instanceI such thatq(I) = true andq(I − {t}) = false: indeed, takeI = {V(d̄) | V(a, d̄) ∈ I ′}, it

obviously satisfies this property. Thus,I is a witness fort being a critical tuple forq.

To prove 2 implies 1 we use the same argument, in reverse. We start with an instanceI such that

q(I) = true, q(I − {t}) = false, and defineI ′ = {V(a, d̄) | V(d̄) ∈ I } ∪ {V(b, c̄)}. It is easy to check that

∆t1,t2 fq′(I ′) , 0. This completes the proof. �

5.3 Practical Query Answering using Probabilistic Views

In this section, we consider practical enhancements to the theory of probabilsitic views. Concretely,

the complexity of the decision problems in the previous section is high. In this section, we give effi-

cient approximation algorithms for both problems that are sound (but not complete). For a restricted

class of queries, we are able to prove that ourPTIME algorithms are complete. We then discuss

further practical enhancements to our theory, such as coping with dependencies.

5.3.1 Practical Algorithm for Representability

CheckingL-block independence is intractable, and so we give a polynomial time approximation that

is sound, i.e. it says a view is representable only if it is representable, but not complete, the test may

say that a view is notL-block independent when in fact it is. The central notion is ak-collision,

which intuitively says there are two output tuples which may depend on input tuples that are not

independent (i.e. the same tuple or disjoint).

To make this precise, letq = g1, . . . ,gn be a conjunctive query whereki denotes the tuple of

variables and constants in the possible worlds key position of the subgoalgi . For example,

q = R(x, x, y; z),R(x, y, y; u),S(x, ‘a’ ; z)

thenk1 = (x, x, y), k2 = (x, y, y), andk3 = (x, ‘a’). We say that a valuationv : var(q)→ D is disjoint

aware if for i, j = 1, . . . ,n, we havev(ki) = v(k j) andpred(gi) = pred(g j) thenv(gi) = v(g j).

The intution is that this is a valuation which is consistent with the possible worlds key constraints.

Above,v(x, y, z,u) = (a,b, c,d) is disjoint aware, whilev(x, y, z,u) = (a,a, c,d) is not: there is no

possible world that contains both of the tuplesR(a,a,a; c) andR(a,a,a; d), since this would violate

117

the possible worlds key constraint.

Definition 5.3.1. A L-collision for a view

Vp(L,U) D g1, . . . ,gn

is a pair of disjoint aware valuations(v,w) such that v(L) , w(L) but there exists i, j such that gi

that is probabilistic,pred(gi) = pred(g j) and v(ki) = w(k j).

The utility of this definition is that we will show that if we cannot find anL-collision, then we

are sure that the output of the view will beL-independent.

Example 5.3.2 ConsiderVp
2 (C) in Eq. (5.2), if we unify any pair of probabilistic subgoals, we are

forced to unify the head,c. This means that a collision is never possible and we conclude thatVp
2

is C-block independent. Notice that we can unify theS subgoal for distinct values ofc, sinceS

is deterministic, this is not a collision. InVp
1 (c, r) Eq. (5.1), the following pair (v,w), v(c, r,d) =

(‘TD’ , ‘D.Lounge’,‘Crab Cakes’) andw(c, r,d) = (‘TD’ , ‘P.Kitchen’, ‘Crab Cakes’), is a collision

becausev(c, r) , w(c, r) and we have unified the keys of theRp subgoal. Since there are no repeated

probabilistic subgoals, we are sure thatVp
1 is notCR-block independent.

We need the following proposition:

Proposition 5.3.3. If V(L,U) is a view on a BID database without an L-collision. Then for any

tuples s, t ∈ V such that s[L] , t[L] the sets of variables inλ(s) andλ(t) are disjoint.

Proof. This is immediate from the definition. �

Lemma 5.3.4.If a view v(L,U) on a BID table does not have an L-collision, then v is L-independent.

Moreover, if v does not contain repeated predicates then the converse holds as well.

Proof. If there does not exist anL-collision, then for any tupless, t such thats[L] , t[L] that appear

in the viewV, thenλ(s) andλ(t) have no common variables. Hence, no critiacl tuple could be shared

between them and so the view isL-independent. If there are no repeated predicates inv, then we

observe thatevery tuplein the image of any valuation is critical. Letv,w be the valuations provided

by the definition andgi ,g j be subgoals such thatv(ki) = w(k j) andv(L) , w(L). Then, this implies

the tuplesv(gi) andv(g j) are pair critical. �

118

The last thing we must observe is that there is an easy, complete test forL-collisions:

• Create two copies of the queryV(L,U) and put them into one queryVV(L,U, L′,U′) =

V(L,U),V′(L′,U′).

• For each pair of subgoalsgi ∈ V andg′ ∈ V′, unify them inVV and then construct the most

general unifier [159] that respects the key constraints in the BID instances. If we can construct

a such thatL , L′, then reject the query: this unifier encodes anL-collision. To see this,v

(resp. w) is the unifier restricted to the variables inV (resp. V′). If not, then there is no

L-collision.

The second step can be done using the Chase for functioanl dependencies, which is done in

polynomial time [1]. Thus, we can findL-collisions in polynomial time. Summarizing, we have the

following theorem:

Theorem 5.3.5.Given a conjunctive view V(L,U) on a BID instance. The previous algorithm gives

a polynomial-time, sound test for testing L-independence. Moreover, if V does not contain self-joins,

then the test is complete.

5.3.2 Practical Test for Uniqueness

We now give a test in a similar spirit for uniqueness. We say that a pair of disjoint-aware valuations

v,w is compatibleif for i, j = 1, . . . ,n, whenever we havev(ki) = w(k j) andpred(gi) = pred(g j),

then it must be thatv(gi) = w(g j). Intuitively, if a pair of valuations is compatible it means that

there is somepossibleworld W where both of these valuations can map the query simultaneously,

i.e. v(q) ∪ w(q) ⊆W.

Definition 5.3.6. Given a schema with a single view V that has a partial representation(L,K), an

intertwined collisionfor a query Q(H) is a pair of compatible valuations(v,w) such that v(H) =

w(H) and there exists a pair of subgoals,(gi ,g j), such that v(gi) and v(g j) are intertwined.

The intution of an intertwined collision is that there are two derivations for a tuple in the output

of Q that depend on a pair of intertwined tuples, i.e., tuples whose correlation is not specified by the

partially represent view.

119

Example 5.3.7 In V1, KI = {C} and D = {R}. An intertwined collision forQ1 is v(c, r) =

(‘TD’ , ‘D.Lounge’) andw(c, r) = (‘TD’ , ‘P.Kitchen’), thusQ’s value is not uniquely defined. On the

other hand, inQ2, trivially there is no intertwined collision and soQ2’s value is uniquely defined.

The algorithm to find an intertwined collision is a straightforward extension of finding aK-

collision. The key difference is that we use the Chase to ensure that the valuations we find are

compatible, not individually disjoint aware.

Theorem 5.3.8.If no intertwined collisions exist for a conjunctive query Q, then its value is uniquely

defined. If the partially representable view symbol Vp is not repeated, this test is complete. The test

can be implemented inPTIME.

Proof. First consider the soundness argument in the special case of a Boolean queryQ(). We show

that if there exists a critical intertwined pair (s, t) for Q, then there must be an intertwined collision.

Let I be the instance provided Definition 5.2.14. Suppose,I − {s} |= Q(). SinceI − {s, t} 6|= Q(), the

image of any valuationv that witnessesI −{s} |= Q() must containt. By symmetry, the image of any

valuation that witnessesI − {t} |= Q() must containw. It is easy to see that (v,w) is compatible and

hence (v,w) is an intertwined collision. IfI − {s} 6|= Q() then there is a single valuationv which uses

both s, t. Thus, (v, v) is an intertwined collision. It is straightforward to extend to the non-Boolean

case. To see completeness, we observe that thatevery tuplein the image of any valuation is critical.

Hence an intertwined collision finds a pair of intertwined tuples that are critical. We then apply

Theorem 5.2.17. �

5.4 Experiments

In this section we answer three main questions: To what extent do representable and partially rep-

resentable views occur in real and synthetic data sets? How much do probabilistic materialized

views help query processing? How expensive are our proposed algorithms for finding representable

views?

5.4.1 Experimental Setup

Data Description We experimented with a variety of real and synthetic data sets including: a

database from iLike.com [40], the Northwind database (NW) [41], the Adventure Works Database

120

Figure 5.2: (a) Percentage by workload that are representable, non-trivially partially representable
or not representable. We see that almost all views have some non-trivial partial representation.
(b) Running times for Query 10 which is safe. (c) Retrieval times for Query 5 which is not safe.
Performance data is TPC-H (0.1, 0.5, 1G) data sets. All running times in seconds and on logarithmic
scale.

from SQL Server 2005 (AW) [42] and the TPC-H/R benchmark (TPCH) [43, 44]. We manually

created several probabilistic schemata based on the Adventure Works [42], Northwind [41] and

TPC-H data which are described in Fig. 5.3.

Queries and Views We interpreted all queries and views with scalar aggregation as probabilistic

existence operators (i.e. computing the probability a tuple is present). iLike, Northwind and Adven-

ture Works had predefined views as part of the schema. We created materialized views for TPC-H

using an exhaustive procedure to find all subqueries that were representable, did not contain cross

products and joined at least two probabilistic relations.

Real data: iLike.com We were given query logs and the relational schema of iLike.com,

which is interesting for three reasons: It is a real company, a core activity of iLike is manipulating

uncertain data (e.g. similarity scores) and the schema contains materialized views. iLike’s data,

though not natively probabilistic, is easily mapped to a BID representation. The schema contains

over 200 tables of which a handful contain uncertain information. The workload trace contains over

7 million queries of which more than 100,000 manipulated uncertain information contained in 5

121

Schema Tables (w/P)
AW 18 (6)
AW2 18 (3)
NW1 16 (2)
NW2 16 (5)
NW3 16 (4)

TPC-H 8 (5)

Size (w/P) Tuples (w/P)
0.1 (440M) 3.3M (2.4M)
0.5 (2.1G) 16M (11.6M)
1.0 (4.2G) 32M (23.2M)

(a) (b)

Figure 5.3: Schema and TPC Data statistics.(a) Number of tables referenced by at least one view and number of

probabilistic tables (i.e. with attributeP). (b) Size and (w/P) are in Gb. The number of deterministic and probabilistic tuples is in

millions.

views. Of these 100,000 queries, we identified less than 10 query types which ranged from simple

selections to complicated many way joins.

Performance Data All performance experiments use the TPC-H data set with a probabilistic

schema containing uncertainty in thepart, orders, customer, supplier andlineitem tables.

We used the TPC-H tooldbgen to generate relational data. The data in each table marked as prob-

abilistic was then transformed by uniformly at random injecting additional tuples such that each

key value was expected to occur 2.5 times. We allowed forentity uncertainty, that is, the sum of

probabilities for a possible worlds key may be less than 1.

System Details Our experimental machine was a Windows Server 2003 machine running SQL

Server 2005 with 4GB of RAM, 700G Ultra ATA drive and dual Xeon (3GHz) processors. The

MQ engine is a middleware system that functions as a preprocessor and uses a complete ap-

proach [21, 137]. The materialized view tools are implemented using approximately 5000 lines of

OCaml. After importing all probabilistic materialized views, we tuned the database using only the

SQL Server Database Engine Tuning Advisor.

Execution Time Reporting Method We reduced query time variance by executing each query

seven times, dropping the highest and lowest times and averaging the remaining five times. In all

reported numbers, the variance of the five runs was less than 5% of query execution time.

122

5.4.2 Question 1: Do Representable and Partially Representable views exist?

In Fig. 5.2(a), we show the percentage of views in each workload that is trivially representable be-

cause there are no probabilities in the view(TRIVIAL), representable(REP), non-trivially partially

representable(PARTIAL)or only trivially partially representable(NOTREP). In iLike’s workload,

4 of the 5 views (80%) are representable. Further, 98.5% of the over 100k queries that manipulate

uncertain data use the representable views. In synthetic data sets, representable views exist as well.

In fact, 50% or more of the views in each data set except for AW are representable. Overall, 63%

of views are representable. 45% of the representable views are non-trivially representable. Addi-

tionally, almost all views we examined have a non-trivial partial representations (over 95%). We

conclude that that representable and partially representable views exist and can be used in practice.

5.4.3 Question 2: Do our techniques make query processing more efficient?

The TPC data set is the basis for our performance experiments because it is reproducible and the

data can be scaled arbitrarily. We present queries 5 and 10, because they both have many joins (6

and 4) and they are contrasting: Query 10 issafe[46, 135], and so can be efficiently evaluated by a

modified SQL query. Query 5 isunsafeand so requires expensive Monte Carlo techniques. Graphs

5.2(b) and 5.2(c) report the time taken to execute the query and retrieve the results. For query 10,

this is the total time for execution because it is safe. In contrast, query 5 requires additional Monte

Carlo techniques to compute output probabilities.

Graph Discussion In Fig. 5.2(b), we see running times of query 10 without probabilistic seman-

tics (PTPC), as a safe plan(SAFE), with a subview materialized and retaining lineage(LIN) and the

same subview without lineage(NOLIN). LIN is equivalent to a standard materialized view optimiza-

tion; the lineage information is computed and stored as a table. InNOLIN, we discard the lineage

and retain only the probability that a tuple appears in the view. The graph confirms that materializ-

ing the lineage yields an order of magnitude improvement for safe queries because we do not need

to compute three of the four joins at query execution time. Interestingly, the bars forNOLIN show

that precomputing the probabilities and ignoring the lineage yields an additional order of magnitude

improvement. This optimization is correct because the materialized view isrepresentable. This is

123

interesting because it shows that being aware of when we can remove lineage is helpful even for

safe plans.

As a baseline, Fig. 5.2(c) shows the query execution times for query 5 without probabilistic

semantics but using the enlarged probabilistic tables(PTPC). Fig. 5.2(c) also shows the cost of

retrieving the tuples necessary for Monte Carlo simulation(MC). Similarly, we also see the cost

when materializing a view and retaining lineage(LIN) and when we precompute the probabilities

and discard the lineage(NOLIN). For (MC) and(LIN), the extra step of Monte Carlo Simulation is

necessary which for TPC 0.1 (resp. TPC 0.5, TPC 1) requires an additional 13.62 seconds (resp.

62.32s, 138.21s). Interestingly, query 5 using the materialized view doesnot require Monte Carlo

Simulation because the rewritten query is safe. Thus, the time forNOLIN is an end-to-end run-

ning time and so we conclude that our techniques offer four order of magnitude improvement over

materializing the lineage alone (8.2s+ 138.21s with lineage v. 0.03s without).

5.4.4 Question 3: How costly are our algorithms?

All views listed in this paper were correctly classified by our practical algorithm, which always

executes in well under 1 second. Finding all representable or partially representable sub-views for

all but two queries completed in under 145 seconds; the other two queries completed in under an

hour. Materializing views for unsafe queries completed under 1.5 hours for all results reported in

the paper. However, this is an offline process and can be parallelized because it can utilize multiple

separate Monte Carlo processes.

124

Chapter 6

VIEW-BASED TECHNIQUE II: APPROXIMATE LINEAGE

In probabilistic databases,lineage is fundamental to processing probabilistic queries and un-

derstanding the data. Many state-of-the-art systems use acomplete approach, e.g., Trio [16] or

MQ [46, 137], in which the lineage for a tuplet is a Boolean formula which represents all

derivations oft. The central observation in this chapter is that, for many applications, it is often un-

necessary for the system to painstakingly track every derivation. A consequence of ignoring some

derivations is that our system may return an approximate query probability such as 0.701± 0.002,

instead of the true value of 0.7. An application may be able to tolerate this difference, especially if

the approximate answer can be obtained significantly faster. A second issue is that although a com-

plete lineage approach explains all derivations of a tuple, it does not tell us which facts are the most

influential in that derivation. In large data sets, a derivation may become extremely large because

it aggregates together a large number of individual facts. This makes determining which individual

facts are influential an important and non-trivial task.

With these observations in mind, we advocate an alternative to complete lineage calledapprox-

imate lineage. Informally, the spirit of approximate lineage is to compress the data by tracking

only the most influential facts in the derivation. This approach allows us to both efficiently answer

queries, since the data is much smaller, and also to directly return the most important derivations.

We motivate our study of approximate lineage by discussing two application domains: (1) large

scientific databases and (2) similarity data. We show that approximate lineage can compress the

data by up to two orders of magnitude, e.g., 100s of MB to 1MB, while providing high-quality

explanations.

6.1 Motivating Scenarios

We discuss some applications of approximate lineage.

125

Process (P)

Gene Product Process λ

(t1) AGO2 “Cell Death” x1

(t2) AGO2 “Embryonic Development” x1

(t3) AGO2 “Gland development” x2

(t4) Aac11 “Cell Death” x2

(t5) Aac11 “Embroynic Development” x3

Annotations (Atoms)

Atom Code Description P
x1 TAS “Dr. X’s PubMed PMID:12593804” 3

4
x2 NAS “Dr. Y’s RA Private Communication” 1

4
x3 IEA “Inferred from Computational Similarity” 1

8

V(y) D P(x, y), P(‘Aac11’, y), x , ‘Aac11’
V is a view that asks for“Gene Products that share a process with a product ‘Aac11”’

Level I DB (Complete Lineage)
Gene Product λ

(t6) AGO2 (x1 ∧ x2) ∨ (x1 ∧ x3)

Level II DB (Approximate Lineage)

Type Lineage Formula
Sufficient λ̃S

t6 = x1 ∧ x2

Arithmetization λ̃A
t6 = x1(1− (1− x2)(1− x3))

Polynomial λ̃P
t6 =

33
128 +

21
32(x2 −

1
4) + 9

16(x3 −
1
8)

Figure 6.1: Process (P) relates each gene product to a process, e.g., AG02 is involved in “cell
death”. Each tuple inProcess has an annotation from the set of atoms. An atom,xi for i = 1,2,3,
is a piece of evidence that has an associated probability, e.g.,x1 is the proposition that we trust
“Dr. X.’s PubMed article PMID:12593804”, which we assign probability34. V is a view that asks
for “Gene Products that share a process with a product ‘Aac11”’. BelowV’s definition is its output
in the original database with a complete approach. At the right examples of approximate lineage
functions we consider are listed. The compressed database is obtained by replacingλ with one of
these functions, e.g.,̃λS

t6. This database is inspired by the Gene Ontology (GO) database [37].The
terms (Level I) and (Level II) are specific to our approach and defined in (Section 6.1.1).

126

Application (1): Large Scientific databases In large scientific databases, lineage is used to inte-

grate data from several sources [24]. These sources are combined by both large consortia, e.g., [37],

and single research groups. A key challenge faced by scientists is that facts from different sources

may not be trusted equally. For example, the Gene Ontology Database (GO) [37] is a large (4GB)

freely available database of genes and proteins that is integrated by a consortium of researchers.

For scientists, the most important data stored in GO is a set of associations between proteins and

their functions. These associations are integrated by GO from many sources, such as PubMed arti-

cles [134], raw experimental data, data from SWISS-PROT [20], and automatically inferred match-

ings. GO tracks the provenance of each association, using what we callatoms. An atom is simply a

tuple that contains a description of the source of a statement. An example atom is“Dr. X’s PubMed

article PMID:12593804”. Tracking provenance is crucial in GO because much of the data is of

relatively low quality: approximately 96% of the more than 19 million atoms stored in GO are auto-

matically inferred. To model these trust issues, our system associates each atom with a probability

whose value reflects our trust in that particular annotation. Figure 6.1 illustrates such a database.

Example 6.1.1 A statement derivable from GO is, “Dr. X claimed in PubMed PMID:12593804 that

the gene Argonaute2 (AGO2) is involved in cell death” [77]. In our model, one way to view this is

that there is a fact,the gene Argonaute2 is involved in cell deathand there is an atom,Dr. X made the

claim in PubMed PMID:12593804. If we trust Dr. X, then we assign a high confidence value to this

atom. This is reflected in Figure 6.1 since the atom,x1, has a high probability,34. More complicated

annotations can bederived, e.g., via query processing. An example is the viewV in Figure 6.1,

that asks for gene products that share a process with the gene ‘Aac11’. The tuple, AGO2 (t6), that

appears inV is derived from the facts that both AGO2 and Aac11 are involved in “cell death” (t1

andt4) and “embryonic development” (t2 andt5); these tuples use the atomsx1 (twice), x2 andx3

shown in the Annotations table.

A benefit of annotating the data with confidence scores is that the scientist can now obtain the

reliability of each query answer. To compute the reliability value in a complete approach, we may

be forced to process all the lineage for a given tuple. This is challenging, because the lineage

can be very large. This problem is not unique to GO. For example, [30] reports that a 250MB

biological database has 6GB of lineage. In this thesis, we show how to useapproximate lineage

127

to effectively compress the lineage more than two orders of magnitude, even for extremely low

error rates. Importantly, our compression techniques allow us to process queries directly on the

compressed data. In our experiments, we show that this can result in up to two orders of magnitude

more efficient processing than a complete approach.

An additional important activity for scientists is understanding the data; the role of the database

in this task is to provide interactive results to hone the scientist’s knowledge. As a result, we cannot

tolerate long delays. For example, the lineage of even a single tuple in the gene ontology database

may be 9MB. Consider a scientist who finds the result ofV in Fig 6.1 surprising: One of her goals

may be to find out whyt6 is returned by the system, i.e.she wants a sufficient explanation as to

why AGO2 was returned. The system would return that themost likely explanationis that we trust

Dr.X that AGO2 is related to cell death (t1) and Dr.Y’s RA that Aac11 is also related to cell death

(t4). An alternative explanation usest1 and the automatic similarity computation (t5). However, the

first explanation is more likely, since the annotation associated witht4 (x2) is more likely than the

annotation oft5 (x3), here1
4 = p(x2) ≥ p(x3) = 1

8.

A scientist also needs to understand the effect of her trust policy on the reliability score oft6.

Specifically, she needs to know which atom is the mostinfluentialto computing the reliability fort6.

In this case, the scientist is relatively sure that AGO2 is associated with cell death, since it is assigned

a score of34. However, the key new clement leading to this surprising result is that Aac11 is also

associated “cell death”, which is supported by the atomx2, the statement of Dr. Y’s RA. Concretely,

x2 is the most influential atom because changingx2’s value will change the reliability oft6 more than

changing any other atom. In our experiments, we show that we can find sufficient explanations with

high precision, e.g., we can find the top 10 influential explanations with between 70% and 100%

accuracy. Additionally, we can find influential atoms with high precision (80%−100% of the top 10

influential atoms). In both cases, we can conduct these exploration tasks without directly accessing

the raw data.

Application (2): Managing Similarity Scores Applications that manage similarity scores can

benefit from approximate lineage. Such applications include managing data from object reconcilia-

tion procedures [6, 89] or similarity scores between users, such as iLike.com. In iLike, the system

automatically assigns a music compatibility score between friends. The similarity score between

128

two users, e.g., Bob and Joe, has a lineage: It is a function of many atomic facts, e.g., which songs

they listen to and how frequently, which artists they like, etc. All of these atomic facts are combined

into a single numeric score which is then converted intoquantitativebuckets, e.g., high, medium

and low. Intuitively, to compute such rough buckets, it is unnecessary to precisely maintain every

bit of lineage. However, this painstaking computation is required by a complete approach. In this

chapter, we show how to use approximate lineage to effectively compress object reconciliation data

in the IMDB database [173].

6.1.1 Overview of our Approach

At a high level, both of our example applications, large scientific data and managing similarity

scores, manage data that is annotated with probabilities. In both applications, we propose a two-level

architecture: TheLevel I database is a large, high-quality database that uses a complete approach

and is queried infrequently. TheLevel IIdatabase is much smaller, and uses an approximate lineage

system. A user conducts her query and exploration tasks on theLevel IIdatabase, which is the focus

of this chapter.

The key technical idea of this chapter isapproximate lineage, which is a strict generalization of

complete lineage. Abstractly, lineage is a functionλ that maps each tuplet in a database to a Boolean

formulaλt over a fixed set of Boolean atoms. For example in Figure 6.1, the lineage of the tuplet6

is λt6 = (x1 ∧ x2) ∨ (x1 ∧ x3). In this chapter, we propose two instantiations of approximate lineage:

a conservative approximation,sufficient lineage, and a more aggressive approximation,polynomial

lineage.

In sufficient lineage, each lineage function is replaced with a smaller formula that logically

implies the original. For example, a sufficient lineage fort6 is λ̃S
t6 = x1 ∧ x2. The advantage of suf-

ficient lineage is that it can be much smaller than standard lineage, which allows query processing

and exploration takes to proceed much more efficiently. For example, in our experiments processing

a query on an uncompressed data took 20 hours, while it completed in 30m on a database using

sufficient lineage. Additionally, understanding query reliability is easy with sufficient lineage: the

reliability computed for a queryq is always less than or equal to the reliability computed on the orig-

inal Level I database. However, only monotone lineage functions can be represented by a sufficient

129

approach.

The second generalization ispolynomial lineagewhich is a function that maps each tuplet in

a database to areal-valued polynomialon Boolean variables, denotedλ̃P
t . An example polynomial

lineage isλ̃P
t6 in Figure 6.1. There are two advantages of using real-valued polynomials instead

of Boolean-valued functions: (1) powerful analytic techniques already exist for understanding and

approximating real-valued polynomials, e.g., Taylor series or Fourier Series, and (2)any lineage

function can be represented by polynomial approximate lineage. Polynomial lineage functions can

allow a more accurate semantic than sufficient lineage in the same amount of space, i.e., the differ-

ence in value between computingq on the Level I and Level II database is small. In Section 6.5 we

demonstrate a view in GO such that polynomial lineage achieves a compression ratio of 171 : 1 and

sufficient lineage achieves 27 : 1 compression ratio with error rate less than 10−3 (Def. 6.2.10).

Although polynomial lineage can give better compression ratios and can be applied to a broader

class of functions, there are three advantages of sufficient lineage over polynomial lineage: (1)

sufficient lineage is syntactically identical to complete lineage, and so can be processed by existing

probabilistic relational databases without modification, e.g., Trio and Mystiq. (2) The semantic of

sufficient lineage is easy to understand since the value of a query is a lower bound of the true value,

while a query may have either a higher or lower value using polynomial lineage. (3) Our experiments

show that sufficient lineage is less sensitive to skew, and can result in better compression ratios when

the probability assignments to atoms are very skewed.

In both lineage systems, there are three fundamental technical challenges: creating it, processing

it and understanding it. In this chapter, we study these three fundamental problems for both forms

of approximate lineage.

6.1.2 Contributions, Validation and Outline

In the remainder of this chapter, we show that we can (1) efficiently construct both types of approxi-

mate lineage, (2) process both types of lineage efficiently and (3) use approximate lineage to explore

and understand the data.

• In Section 6.2, we define the semantics of approximate lineage, motivate the technical prob-

lems that any approximate lineage system must solve and state our main results. The tech-

130

nical problems are: creating approximate lineage (Prob. 3); explaining the data, i.e.finding

sufficient explanations (Prob. 4), finding influential variables (Prob. 5); and query processing

with approximate lineage (Prob. 6).

• In Section 6.3, we define our implementation for one type of approximate lineage,sufficient

lineage. This requires that we solve the three problems above: we give algorithms to construct

it (Section 6.3.2), to use it to understand the data (Section 6.3.3), and to process further queries

on the data (Section 6.3.4).

• In Section 6.4, we define our proposal forpolynomial approximate lineage; our proposal

brings together many previous results in the literature to give algorithms to construct it (Sec-

tion 6.4.2), to understand it (Section 6.4.3) and to process it.

• In Section 6.5, we provide experimental evidence that both approaches work well in practice;

in particular, we show that approximate lineage can compress real data by orders of magnitude

even with very low error, (Section 6.5.2), provide high quality explanations (Section 6.5.3)

and provide large performance improvements (Section 6.5.4). Our experiments use data from

the Gene Ontology database [37,156] and a probabilistic database of IMDB [173] linked with

reviews from Amazon.

6.2 Statement of Results

We first give some background on lineage and probabilistic databases, and then formally state our

problem with examples.

6.2.1 Preliminaries: Queries and Views

In this chapter, we consider conjunctive queries and views written in a datalog-style syntax. A

queryq is a conjunctive rule writtenq D g1, . . . ,gn where eachgi is a subgoal, that is, a relational

predicate. For example,q1 D R(x),S(x, y, ‘a’) defines a query with a join betweenR and S, a

variabley that is projected away, and a constant ‘a’. For a relational databaseW, we writeW |= q to

denote thatW entailsq.

131

6.2.2 Lineage and Probabilistic Databases

We again adopt a viewpoint of lineage similar toc-tables [82, 93], and we think of lineage as a

constraint that tells us which worlds are possible. We generalize lineage. To make our generalization

clear, we recall the definitions of lineage from Chapter 2.

Definition 6.2.1 (Lineage Function). An atomis a Boolean proposition about the real world, e.g.,

Bob likes Herbie Hancock. Fix a relational schemaσ and a set of atomsA. A lineage function,

λ, assigns to each tuple t conforming to some relation inσ, a Boolean expression overA, which is

denotedλt. An assignmentis a functionA → {0,1}. Equivalently, it is a subset ofA, denoted A,

consisting of those atoms that are assigned true.

Figure 6.1 illustrates tuples and their lineages. The atoms represent propositions about data

provenance. For example, the atomx1 in Figure 6.1 represents the proposition that we trust “Dr. X’s

PubMed PMID:12593804”. Of course, atoms can also represent more coarsely grained propositions,

“A scientist claimed it was true”or finely-grained facts“Dr. X claimed it in PubMed 18166081 on

page 10”. In this chapter, we assume that the atoms are given; we briefly discuss this at the end the

current section. This form of lineage is sometimes calledBoolean pc-tables, since we are restricting

the domain of every atom to be Boolean.

To define the standard semantics of lineage, we define apossible world Wthrough a two-stage

process: (1) select a subset of atoms,A, i.e., an assignment, and (2) For each tuplet, if λt(A)

evaluates to true thent is included inW. This process results in an unique worldW for any choice

of atomsA.

Example 6.2.2 If we selectA13 = {x1, x3}, that is, we trust Dr. X and Dr. Y’s RA, but distrust the

similarity computation, thenW1256= {t1, t2, t5, t6} is the resulting possible world. The reason is that

for eachti ∈ W1256, λti is satisfied by the assignment corresponding toA13 and for eacht j < W1256,

λt j is false. In contrast,W125 = {t1, t2, t5} is not a possible world because inW125, we know that

AGO2 and Aac11 are both associated with Cell Death, and so AGO2 should appear in the view (t6).

In symbols,λt6(W125) = 1, butt6 <W125.

We capture this example in the following definition:

132

Definition 6.2.3. Fix a schemaσ. A world is a subset of tuples conforming toσ. Given a set of

atoms A and a world W, we say that W is apossible worldinduced by A if it contains exactly those

tuples consistent with the lineage function, that is, for all tuples t,λt(A) ⇐⇒ t ∈W. Moreover, we

write λ(A,W) to denote the Boolean function that takes value1 if W is a possible world induced by

A. In symbols,

λ(A,W)
def
=

∧
t:t∈W

λt(A)
∧

t:t<W

(1− λt(A)) (6.1)

Eq. 6.1 is important, because it is the main equation that we generalize to get semantics for

approximate lineage.

We complete the construction of a probabilistic database as a distribution over possible worlds.

We assume that there is a functionp that assigns each atoma ∈ A to a probability score denoted

p(a). In Figure 6.1,x1 has been assigned a scorep(x1) = 3
4, indicating that we are very confident

in Dr. X’s proclamations. An important special case is whenp(a) = 1, which indicates absolute

certainty.

Definition 6.2.4. Fix a set of atomsA. A probabilistic assignmentp is a function fromA to [0,1]

that assigns a probability score to each atom a∈ A. A probabilistic databaseW is a probabilistic

assignment p and a lineage functionλ that represents a distributionµ over worlds defined as:

µ(W)
def
=

∑
A⊆A

λ(A,W)

 ∏
i:ai∈A

p(ai)


 ∏

j:a j<A

(1− p(a j))


Given any Boolean query q onW, the marginal probability of q denotedµ(q) is defined as

µ(q)
def
=

∑
q:W|=q

µ(W) (6.2)

i.e., the sum of the weights over all worlds that satisfy q.

Since for anyA, there is a uniqueW such thatλ(A,W) = 1, µ is a probability measure. In all of

our semantics, the semantic for queries will be defined similarly to Eq. 6.2.

Example 6.2.5 Consider a simple query on our database:

q1() D P(x, ‘Gland Development’), V(x)

133

This query asks if there exists a gene productx, that is associated with ‘Gland Development’, and

also has a common function with ‘Aac11’, that is it also appears in the output ofV. On the data in

Figure 6.1,q1 is satisfied on a worldW if and only if (1)AGO2 is associated with Gland development

and (2)AGO2 and Aac11 have a common function, here, either Embryonic Development or Cell

Death. The subgoal requires thatt3 be present and the second thatt6 be present. The formula

λt3 ∧ λt6 simplifies tox1 ∧ x2, i.e., we must trust both Dr.X and Dr.Y’s RA to deriveq1, which has

probability 3
4 ·

1
4 =

3
16 ≈ 0.19.

We now generalize the standard (complete) semantics to give approximate semantics; the ap-

proximate lineage semantics are used to give semantics to the compressed Level II database.

Sufficient Lineage Our first form of approximate lineage is calledsufficient lineage. The idea is

simple: Eachλt is replaced by a Boolean formulaλ̃S
t such that̃λS

t =⇒ λt is a tautology. Intuitively,

we think ofλ̃S
t as a good approximation toλt if λS

t andλt agree on most assignments. We define the

function λ̃S(A,W) following Eq. 6.1:

λ̃S(A,W)
def
=

∧
t:t∈W

λ̃S
t (A)

∧
t:t<W

(1− λ̃S
t (A)) (6.1s)

The formula simply replaces each tuplet’s lineage,λt with sufficient lineage,̃λS
t and then checks

whetherW is a possible world forA given the sufficient lineage.This, in turn, defines a new proba-

bility distribution on worlds ˜µS:

µ̃S(W)
def
=

∑
A⊆A

λ̃S(A,W)

 ∏
i:ai∈A

p(ai)


 ∏

j:a j<A

(1− p(a j))


Given a queryq, we define ˜µS(q) exactly as in Eq. 6.2, withµ syntactically replaced by ˜µS, i.e.,

as a weighted sum over all worldsW satisfyingq. Two facts are immediate: (1) ˜µS is a probability

measure and (2) for any a conjunctive (monotone) queryq, µ̃S(q) ≤ µ(q). Sufficient lineage is

syntactically the same as standard lineage. Hence, it can be used to process queries with existing

relational probabilistic database systems, such as Mystiq and Trio. If the lineage is a large DNF

formula, then any single disjunct is a sufficient lineage. However, there is a trade off between

choosing sufficient lineage that is small and lineage that is a good approximation. In some cases,

134

it is possible to get both. For example, the lineage of a tuple may be less than 1% of the original

lineage, but still be a very precise approximation.

Example 6.2.6 We evaluateq from Ex. 6.2.5. In Figure 6.1, a sufficient lineage for tuplet6 is

trusting Dr. X and Dr. Y’s RA, that is̃λS
t6 = x1 ∧ x2. Thus,q is satisfied exactly with this probability

which is≈ 0.19. Recall from Ex. 6.2.5 that in the original data,q reduced to exactly the formula

x1 ∧ x2, and so the sufficient lineage approach computes the exact answer. In general, this is not the

case: if we had choseñλS
t6 = x1 ∧ x3, i.e., our explanation was trusting Dr.X and the matching, then

we would have computed that ˜µS(q) = 3
4 ·

1
8 =

3
32 ≈ 0.09≤ 0.19.

One can also consider the dual form of sufficient lineage,necessary lineage, where each formula

λt is replaced with a Boolean formulãλN
t , such thatλt =⇒ λ̃N

t is a tautology. Similar properties

hold for necessary lineage: For example, ˜µN is an upper bound forµ, which implies that using

necessary and sufficient lineage in concert can provide the user with a more robust understanding of

query answers. For the sake of brevity, we shall focus on sufficient lineage for the remainder of this

chapter.

Polynomial Lineage In contrast to both standard and sufficient lineages that map each tuple to a

Boolean function, polynomial approximate lineage maps each tuple to areal-valued function. This

generalization allows us to leverage approximation techniques for real-valued functions, such as

Taylor and Fourier series.

Given a Boolean formulaλt on Boolean variablesx1, . . . , xn anarithmetizationis a real-valued

polynomialλA
t (x1, . . . , xn) in real variables such that (1) each variablexi has degree 1 inλA

t and (2)

for any x1, . . . , xn ∈ {0,1}n, we haveλt(x1, . . . , xn) = λA
t (x1, . . . , xn) [121, p. 177]. For example,

an arithmetization ofxy ∨ xz is x(1 − (1 − y)(1 − z)) and an arithmetization ofxy ∨ xz∨ yz is

xy+ xz+ yz− 2xyz. Figure 6.1 illustrates an arithmetization of the lineage formula fort6, which is

denotedλA
t6.

In general, the arithmetization of a lineage formula may be exponentially larger than the original

lineage formula. As a result, we do not use the arithmetization directly; instead, we approximate it.

For example, an approximate polynomial forλt6 is λ̃P
t6 in Figure 6.1.

135

To define our formal semantics, we defineλ̃P(A,W) generalizing Eq. 6.1 by allowing̃λP to

assign a real-valued, as opposed to Boolean, weight.

λ̃P(A,W)
def
=

∏
t:t∈W

λ̃P
t (A)

∏
t:t<W

(1− λ̃P
t (A)) (6.1p)

The first difference in polynomial lineage is that it assigns real-valued weights to worlds, as

opposed to Boolean weights. A second difference is that for sufficient and exact lineage approaches

once we know the assignment, this determines a unique worldW such thatλ(A,W) is non-zero, i.e.,

λ is functional in its second argument. In contrast, in polynomial lineage,λ̃P is a relation:many

worldsmay receive non-zero weight from the same assignment.

Example 6.2.7 In Figure 6.1,W1256 is a possible world sinceλ(A,W1256) = 1 for A = {x1, x3}.

In contrast,λ̃P(A,W1256) , 1. To see this,̃λP(A,W1256) simplifies toλ̃P
t6(A,W1256), since all other

lineage functions have{0,1} values. Evaluating̃λP
t6(A) gives 33

128+
21
32(0− 1

4)+ 9
16(1− 1

8) = 75
128 ≈ 0.58.

Further, approximate lineage functions may assign non-zero mass even to worlds which are not

possible. For exampleW125 is not a possible world, but̃λP(A,W13) = 1− λt6(A)(1− 75
128) , 0.

The second step in the standard construction is to define a probability measureµ (Def. 6.2.4);

In approximate lineage, we define a function ˜µP – which may not be a probability measure– that

assigns arbitrary real-valued weights to worlds. Here,pi = p(ai) wherep is a probability assignment

as in Def. 6.2.4:

µ̃P(W)
def
=

∑
A⊆A

λ̃(A,W)

 ∏
i:ai∈A

pi


 ∏

j:a j<A

(1− p j)

 (6.3)

Our approach is to search forλ̃P that is a good approximation, that is if for anyq, we have

µ̃(q) ≈ µ(q), i.e., the value computed using approximate lineage is close to the standard approach.

Similar to sufficient lineage, we get a query semantic by syntactically replacingµ by µ̃P in Eq. 6.2.

However, the semantics for polynomial lineage is more general than the two previous semantics,

since an assignment is allowed map tomanyworlds.

Example 6.2.8 Continuing Ex. 6.2.7, in the original data,µ(W1256) = 9
128. However,µ̃P assigns

136

W1256 a different weight:

µ̃P(W1256) = λ̃
P(W1256)

(
3
4

) (
1
8

) (
1−

1
4

)
=

75
128

Recallq1 from Ex. 6.2.5; its value isµ(q1) ≈ 0.19. Using Eq. 6.3, we can calculate that the value of

q1 on the Level II database using polynomial lineage in Figure 6.1 is ˜µP(q1) ≈ 0.17. In this case the

error is≈ 0.02. If we had treated the tuples in the database independently, we would get the value

1
4 ∗

11
32 ≈ 0.06 – an error of 0.13, which is an order of magnitude larger error than an approach using

polynomial lineage. Further,̃λP is smaller than the original Boolean formula.

6.2.3 Problem Statements and Results

In our approach, the original Level I database, that uses a complete lineage system, is lossily com-

pressed to create a Level II database, that uses an approximate lineage system; we then perform

all querying and exploration on the Level II database. To realize this goal, we need to solve three

technical problems (1) create a “good” Level II database, (2) provide algorithms to explore the data

given the approximate lineage, and (3) process queries using the approximate lineage.

Internal Lineage Functions Although our algorithms apply to general lineage functions, many

of our theoretical results will consider an important special case of lineage functions calledinternal

lineage functions[146]. In internal linage functions, there are some tables (base tables) such that

every tuple is annotated with a single atom, e.g.,P in Figure 6.1. The database also contains derived

tables (views), e.g.,V in Figure 6.1. The lineage for derived tables is derived using the definition of

V and tuples in base tables. For our purposes, the significance of internal lineage is that all lineage

is a special kind of Boolean formula, ak-monotone DNFs (k-mDNF). A Boolean formula is ak-

mDNF if it is a disjunction of monomials each containing at mostk literals and no negations. The

GO database is captured by an internal lineage function.

Proposition 6.2.9. If t is a tuple in a view V such that, when unfolded, references k (not necessarily

distinct) base tables, then the lineage functionλt is a k-mDNF.

Proof. The proof is the same as Proposition 2.3.5 in Chapter 2 with one minor twist: We have

137

restricted all atoms to occur only positively (since they are Boolean) and so the resulting lineage

formula,λt is monotone in these atoms. �

One consequence of this is thatk is typically small. And so, as in data complexity [1], we con-

siderk a small constant. For example, an algorithm is considered efficient if it is at most polynomial

in the size of the data, but possibly exponential ink.

Creating Approximate Lineage

Informally, approximate lineage is good if (1) for each tuplet the functionλ̃t is a close approxima-

tion of λt, i.e., λt and λ̃t are close on many assignments, and (2) the size ofλ̃t is small for every

t. Here, we writeλ̃t (without a superscript) when a statement applies to either type of approximate

lineage.

Definition 6.2.10. Fix a set of atomsA. Given a probabilistic assignment p forA, we say that̃λt

is anε-approximation ofλt if

Ep[(λ̃t − λt)
2] ≤ ε

whereEp denotes the expectation over assignments to atoms induced by the probability function p.

Given a probabilistic assignmentp, our goal is to ensure that the lineage function forevery

tuple in the database has anε-approximation. Def. 6.2.10 is used in computational learning, e.g.,

[114,151], because anε-approximation of a function disagrees on only a few inputs:

Example 6.2.11Let y1 andy2 be atoms such thatp(yi) = 0.5 for i = 1,2. Consider the lineage

function for somet, λt(y1, y2) = y1∨y2 and an approximate lineage functionλ̃S
t (y1, y2) = λ̃P

t (y1, y2) =

y1. Here,λt andλ̃S
t (or λ̃P

t) differ on precisely one of the four assignments, i.e.,y1 = 0 andy2 = 1.

Since all assignments are equally weighted,λ̃S
t is a 1/4-approximation forλ. In general, ifλ1 and

λ2 are Boolean functions on atomsA = {y1, . . . , yn} such thatp(yi) = 0.5 for i = 1, . . . ,n, thenλ1 is

anε approximation ofλ2 if λ1 andλ2 differ on less than anε fraction of assignments.

Our first problem is constructing lineage that has arbitrarily small error approximation and oc-

cupies a small amount of space.

138

Problem 3 (Constructing Lineage). Given a linage functionλt and an input parameterε, can we

efficiently construct anε-approximation forλt that is small?

For internal lineage functions, we show how to construct approximate lineage efficiently that is

provably small for both sufficient lineage (Section 6.3.2) and polynomial lineage (Section 6.4.2),

under the technical assumption that the atoms have probabilities bounded away from 0 and 1, e.g.,

we do not allow probabilities of the formn−1 wheren is the size of the database. Informally,

provably small means that the lineage for a tupledoes not depend on the size of the database. The

lineage of a tuple in the output of a viewV may, however, depend (exponentially) on the size of the

description ofV. Further, we experimentally verify that sufficient lineage offers compression ratios

of up to 60 : 1 on real datasets and polynomial lineage offers up to 171 : 1 even with stringent error

requirements, e.g.,ε = 10−3.

Understanding Lineage

Recall our scientist from the introduction, she is skeptical of an answer the database produces, e.g.,

t6 in Figure 6.1, and wants to understand why the system believes thatt6 is an answer to her query.

We informally discuss the primitive operations our system provides to help her understandt6 and

then define the corresponding formal problems that we need to solve to apply approximate lineage

to this problem.

Sufficient Explanations She may want to know the possibleexplanationsfor a tuple, i.e.,“why

was tuple t6 returned?”. Since there are many possible explanations (or derivations), our

technical goal is to find the best ormost likely(top) explanations.

Finding influential atoms Our scientist may want to know which atoms contributed to returning

the surprising tuple,t6. In a complicated query, the query will depend on many atoms, but

some atoms are moreinfluential in producing the query result than others. Informally, an

atomx1 is influential if it there are many assignments such that it is the “deciding vote”, i.e.,

changing the assignment ofx1 changes whethert6 is returned. In contrast, an atom that does

not effect the answer to the query has no influence. This motivates our technical goal, which

is to return the most influential atoms.

139

The technical challenge in both situation is to perform these actions using approximate lineage

on the Level II database, without retrieving the much larger Level I database.

Sufficient Explanations An explanationfor a lineage functionλt is a minimal conjunction of

atomsτt such that for any assignmenta to the atoms, we haveτt(a) =⇒ λt(a). The probability

of an explanation,τ, is µ[τ]. A solution would be straightforward on the original, Level I database:

Execute the query, produce a lineage formula, and simply select the most highly probable monomials

in the answer. Our goal is more difficult: we need to retrieve thetop-k explanations, ranked by

probability, from the lossily-compressed, Level II data.

Problem 4. Given a tuple t, calculate the top-k explanations, ranked by their probability using only

the Level II database.

This problem is straightforward when using sufficient lineage, but is more challenging for poly-

nomial lineage. The first reason is that polynomials seem to throw away information about mono-

mials. For example,̃λP
t6 in Figure 6.1 does not mention the terms ofanymonomial. Further compli-

cating matters is that even computing the expectation ofλ̃P
t6 may be intractable, and so we have to

settle for approximations which introduce error. As a result, we must resort to statistical techniques

to guess if a formulaτt is a sufficient explanation. In spite of these problems, we are able to use

polynomial lineage to retrieve sufficient explanations with a precision of up to 70% fork = 10 with

error in the lineage,ε = 10−2.

Finding Influential Atoms The technical question is: Given a formula, e.g.,λt6, which atom is

most influential in computingλt6’s value? We define theinfluenceof xi onλt, denoted Infxi (λt), as:

Inf xi (λt)
def
= µ[λt(A) , λt(A⊕ {i})] (6.4)

where⊕ denotes the symmetric difference. This definition, or a closely related one, has appeared has

appeared in wide variety of work, e.g., underling causality in the AI literature [86, 131], influential

variables in the learning literature [114], and critical tuples in the database literature [119,136].

Example 6.2.12What influence doesx2 have on tuplet6 presence, i.e., what is the value of Infx1(λt6)?

Informally, x2 can only change the value ofλt6 if x1 is true andx3 is false. This happens with prob-

140

ability 3
4(1− 1

8) = 21
32. As we will see later, it is no coincidence this is the coefficient ofx2 in λ̃P

t6: our

polynomial representation uses the influence to define its coefficients.

The formal problem is to find the topk most influential variables, i.e., the variables with thek

highest influences:

Problem 5. Given a tuple t, efficiently calculate the k most influential variables inλt using only the

level II database.

This problem is challenging because the Level II database is a lossily-compressed version of

the database and so some information needed to exactly answer Prob. 5 is not present. The key

observation for polynomial lineage is that the coefficients we retain are the coefficients of influential

variables; this allows us to compute the influential variables efficiently in many cases. We show that

we can achieve an almost-perfect average precision for the top 10. For sufficient lineage, we are

able to give an approach with bounded error to recover the influential coefficients.

Query Processing with Approximate Lineage

Our goal is to efficiently answer queries directly on the Level II database, using sampling ap-

proaches:

Problem 6. Given an approximate lineage functionλ̃ and a query q, efficiently evaluatẽµ(q) with

low-error.

Processing sufficient lineage is straightforward using existing complete techniques; However,

we are able to prove that the error will be small. We verify experimentally that we can answer

queries with low-error 10−3, 2 orders of magnitude more quickly than a complete approach. For

polynomial lineage, we are able to directly adapt techniques form the literature, such as Blumet

al. [19].

6.2.4 Discussion

The acquisition of atoms and trust policies is an interesting future research direction. Since our focus

is on large databases, it is impractical to require users to label each atom manual. One approach is

141

to define a language for specifying trust policies. Such a language could do double duty, by also

specifying correlations between atoms. We consider the design of a policy language to be important

future work. In this chapter, we assume that the atoms are given, the trust policies are explicitly

specified, and all atoms are independent.

6.3 Sufficient Lineage

We define our proposal for sufficient lineage that replaces a complicated lineage formulaλt, by a

simpler (and smaller) formulãλS
t . We construct̃λS

t using several sufficient explanations forλt.

6.3.1 Sufficient Lineage Proposal

Given an internal lineage function for a tuplet, that is, a monotonek-DNF formulaλt, our goal is to

efficiently find a sufficient lineagẽλS
t that is small and is anε-approximation ofλt (Def. 6.2.10). This

differs fromL-minimality [15] that looks for a formula that is equivalent, but smaller. In contrast,

we look for a formula that may only approximate the original formula. More formally, the size of

a sufficient lineageλ̃S
t is the number of monomials it contains, and so is small if it contains few

monomials. The definition ofε-approximation (Def. 6.2.10) simplifies for sufficient lineage and

gives us intuition how to find good sufficient lineage.

Proposition 6.3.1. Fix a Boolean formulaλt and let λ̃S
t be a sufficient explanation forλt, that is,

for any assignment A, we haveλ̃S
t (A) =⇒ λt(A). In this situation, the error function simplifies to

E[λt] − E[λ̃S
t]; formally, the following equation holdsE[(λt − λ̃

S
t)2] = E[λt] − E[λ̃S

t]

Proof. The formula (λt − λ̃
S
t)2 is non-zero only ifλt , λ̃

S
t , which means thatλt = 1 andλ̃S

t = 0,

sinceλ̃S
t (A) =⇒ λt(A) for any A. Because bothλt and λ̃S

t are Boolean, (λt − λ̃
S
t)2 ∈ {0,1} and

simplifies toλt − λ̃
S
t . We use linearity ofE to conclude. �

Proposition 6.3.1 tells us that to get sufficient lineage with the low error, it is enough to look for

sufficient formulaλ̃t with highprobability.

Scope of our Analysis In this section, our theoretical analysis considers only internal lineage

functions with constant bounded probability distributions; a distribution isconstant boundedif there

142

is a constantβ such that for any atoma, p(a) > 0 implies thatp(a) ≥ β. To justify this, recall that

in GO, the probabilities are computed based on the type of evidence: For example, a citation in

PubMed is assigned 0.9, while an automatically inferred matching is assigned 0.1. Here,β = 0.1

and is independent of the size of the data. In the following discussion,β will always stand for this

bound andk will always refer to the maximum number of literals in any monomial of the lineage

formula. Further, we shall only consider sufficient lineage which are subformulae ofλt. This choice

guarantees that the resulting formula is sufficient lineage and is also simple enough for us to analyze

theoretically.

6.3.2 Constructing Sufficient Lineage

The main result of this section is an algorithm (Alg. 6.3.2.1) that constructs good sufficient lineage,

solving Prob. 3. Given an error term,ε, and a formulaλt, Alg. 6.3.2.1 efficiently produces an

approximate sufficient lineage formulãλS
t with error less thanε. Further, Theorem 6.3.3 shows that

the size of the formula produced by Alg. 6.3.2.1 depends only onε, k andβ – not on the number of

variables or number of terms inλt; implying that the formula is theoretically small.

Before diving into the algorithm, we consider a simple, alternative approach to constructing a

sufficient lineage formula to build intuition on the technical.

Example 6.3.2 Given a monotonek-DNF formulaλ, suppose that to construct a sufficient lineage

formula, we simply select the highest probability monomials. Consider then the following 2-DNF

formula, callφt for t = 1, . . . ,n,

φt
def
=

∧
i=1,...,t

(x0 ∧ yi) ∧
∧

j=1,...,t

(x j ∧ zj)

Let ε = 0.1 (for concreteness), then we set the probabilities as follows:µ[xi] = µ[zj] = 0.5 for

i = 0, . . . , t and j = 1, . . . , t. Then, setyi = 0.5+ ε for i = 1, . . . , t.

In φt the highest probability monomialsHt will be H = {(x0 ∧ y1), . . . (x0 ∧ yt)}. Now, each of

these monomials contains the same variable,x0, and soµ[H] ≤ Pr[x0] = 0.5. On the other hand,

the probability ofφt approaches 1, since the other monomials are all independent. Thus, the error

of usingH approaches 0.5 and in particular cannot be made smaller than a constant. Hence, this

143

approach would not be a solution for construction for sufficient lineage.

In this example, we should have selected the large independent block – its probability tends to

1. Indeed, this is the general rule: Pick as many independent as you can. What we show next is that

when there isn’t a sufficiently large independent set then there must be a small set of bottlenecks

like x0, i.e., a small cover, and we can use this cover to recurse.

Algorithm 6.3.2.1 Suff(λt, ε) constructs sufficient lineage
Input: A monotonek+1-DNF formulaλt and an errorε > 0
Output: λ̃S

t , a small sufficient lineageε-approximation.
1: Find a matchingM, greedily. (* A subset of monomials *)
2: if µ[λS

t] − µ[M] ≤ ε then (* If λt is a 1-mDNF always true *)
3: Let M = m1 ∨ · · · ∨ml s.t. i ≤ j impliesµ[mi] ≥ µ[mj]

4: return Mr
def
= m1, . . . ,mr , r is min s.t.µ[λt] − µ[Mr] ≤ ε.

5: else
6: Select a small coverC = {x1, . . . , xc} ⊆ var(M)
7: Arbitrarily assign each monomial to axc ∈ C that covers it
8: for each xi ∈ C do
9: λS

i ← Suff(λi [xi → 1], ε/c). (* λi [xi → 1] setsx1 = 1 and recurses, and is ak-DNF *)
10: return

∨
i=1,...,n λ

S
i .

Algorithm Description Alg. 6.3.2.1 is a recursive algorithm, whose input is ak-mDNF λt and

an errorε > 0, it returnsλ̃S
t , a sufficientε-approximation. For simplicity, we assume that we can

compute the expectation of monotone formula exactly. In practice, we estimate this quantity using

sampling, e.g., using Luby-Karp [101]. The algorithm has two cases: In case (I) on lines 2-4,

there is a large matching, that is, a set of monomialsM such that distinct monomials inM do not

contain common variables. For example, in the formula (x1 ∧ y1) ∨ (x1 ∧ y2) ∨ (x2 ∧ y2) a matching

is (x1 ∧ y1) ∨ (x2 ∨ y2). In Case (II) lines 6-10, there is a small cover, that is a set of variables

C = {x1, . . . , xc} such that every monomial inλt contains some element ofC. For example, in

(x1∧ y1)∨ (x1∧ y2)∨ (x1∧ y3), the singleton{x1} is a cover. The relationship between the two cases

is that if we find a maximal matching smaller thanm, then there is a cover of size smaller thankm

(all variables inM form a cover).

Case I: (lines 2-4) The algorithm greedily selects a maximal matchingM = {m1, . . . ,ml}. If M is a

144

good approximation, i.e.,µ[λS
t] − µ[

∨
m∈N m] ≤ ε then we trimM to be as small as possible

so that it is still a good approximation. Observe thatP[
∨

m∈M m] can be computed efficiently

since the monomials inM do not share variables, and so are independent. Further, for any

sizel the subset ofM of sizel with the highest probability is exactly thel highest monomials.

Case II: (lines 6-10) Let var(M) be the set of all variables in the maximal matching we found.

SinceM is a maximal matching,var(M) forms a cover,x1, . . . , xc. We then arbitrarily assign

each monomialm to one element that coversm. For eachxi , let λi be the set of monomials

associated to an element of the cover,xi . The algorithm recursively evaluates on eachλi ,

with smaller error,ε/c, and returns their disjunction. We chooseε/c so that our result is anε

approximate lineage.

Theorem 6.3.3(Solution to Prob. 3). For anyε > 0, Alg. 6.3.2.1 computes smallε-sufficient lineage.

Formally, the output of the algorithm,̃λt satisfies two properties: (1)̃λS
t is anε-approximation of

λt and (2) the number of monomials iñλt is less than k!β−(
k
2) logk(1

ε) + O
(
logk−1(1

δ)
)
, which is

independent of the size ofλt.

Proof. Claim (1) follows from the preceding algorithm description. To prove claim (2), we inspect

the algorithm. In Case I, the maximum size of a matching is upper bounded byβ−k log(1
ε) since

a matching of sizem in a k-dnf has probability at least 1− (1 − βk)m; if this value is greater than

1 − ε, we can trim terms; combining this inequality and that 1− x ≤ e−x for x ≥ 0, completes

Case I. In Case II, the size of the coverc satisfiesc ≤ kβ−k log(1
ε). If we let S(k + 1, ε) denote the

size of our formula at depthk + 1 with parameterε, then it satisfies the recurrenceS(k + 1, ε) =

(k+ 1)β−(k+1) log(1
ε) · S(k, ε/c), which grows no faster than the claimed formula. �

The recurrence of our algorithm is linear, since no monomial is replicated on each recursion and

the depth of the recursion at mostk, the recurrence has costO(k|λt|) steps. But, we must at each

stage compute the probability of a DNF formula, a]P-hard problem. For this, we use a randomized

solution (either Luby-Karp [101] or a Chernoff Bound on naive random sampling). Randomization

introduces the possibility of failure, which we cope by in the standard way: a slight increase in

running time.

145

We observe that the running time of the randomized solution is a function of two things (1) the

error, which we can take to be a small constant depending onε, and (2) the probability of failure,

δ. We setδ so small that the algorithm succeeds with high probability. Letc be the number of calls

to the randomized algorithm (steps) during execution, then the probability that all of the succeed is

(1− 1
δ)s. Hence, we need to takeδ � s−1. To see the effect on the running time: Lett be the running

time of iterationi andmi be the number of terms in the approximation on calli, then,ti = O(mlog 1
δ).

Now, we observe that
∑

i mi = k |λt| as above, and so the running time is
∑

i ti = k |λt| log |λt|.

Completeness Our goal is to construct lineage that is small as possible; one may wonder if we

can efficiently produce substantially smaller lineage with a different, but still efficient, algorithm.

We give evidence that no such algorithm exists by showing that the key step in Alg. 6.3.2.1 is

intractable (NP-hard) even if we restrict to internal lineage functions with 3 subgoals, that isk = 3.

This justifies our use of a greedy heuristic above.

Proposition 6.3.4. Given a k-mDNF formulaλt, finding a subformulãλS
t with d monomials such

that λ̃S
t has largest probability among all subformula ofλt is NP-Hard, even if k= 3.

Proof. We reduce from the problem of finding ank-uniform k-regular matching in a 3-hypergraph,

which is NP-hard, see [88]. Given (V1,V2,V3,E) such thatE ⊆ V1 × V2 × V3, let eachv ∈ Vi

have probability1
2. We observe that if there is a matching of sized, then there is a functionλ′t

with probability 1− (1 − βk)d, and every other sized formula that is not a matching has strictly

smaller probability. Since we can compute the probability of a matching efficiently, this completes

the reduction. �

The reduction is from of finding a matching in ak-uniform k-regular hypergraph. The greedy

algorithm is essentially an optimal approximation for this hypergraph matching [88]. Since our

problem appears to be more difficult, this suggests – but does not prove – that our greedy algorithm

may be close to optimal.

6.3.3 Understanding Sufficient Lineage

Both Prob. 4, finding sufficient explanations, and Prob. 5, finding influential variables deal with

understanding the lineage functions: Our proposal for sufficient lineage makes Prob. 4 straightfor-

146

ward: SinceλS
t is a list of sufficient explanations, we simply return the highest ranked explanations

contained iñλS
t . As a result, we focus on computing the influence of a variable given only sufficient

lineage. The main result is that we can compute influence with only a small error using sufficient

lineage. We do not discuss finding the top-k efficiently; for which we can use prior art, e.g., [137].

We restate the definition of influence in a computationally friendly form (Proposition 6.3.5) and then

prove bounds on the error of our approach.

Proposition 6.3.5. Let xi be an atom with probability p(xi) andσ2
i = p(xi)(1 − p(xi)). If λt is a

monotone lineage formula:

Inf xi (λt) = σ
−2
i E[λt(xi − p(xi))]

Proof. We first arithmetizeλt and then factor the resulting polynomial with respect toxi , that isλt =

fi xi+ f0 where neitherfi nor f0 containxi . We then observe that Infxi (λt) = E[λt(A∪{xi})−λt(A−{xi})]

for monotoneλt. Using the factorization above and linearity, we have that Infxi (λt) = E[fi]. On the

other handE[λt(xi−p(xi))] = E[fi xi(xi−p(xi))+(xi−p(xi)) f0], since fi and f0 do not containxi , this

reduces toE[fi]E[xi (xi − p(xi))] + 0. Observing thatE[xi (xi − p(xi))] = σ2
i proves the claim. �

The use of Proposition 6.3.5 is that to show that we can compute influence from sufficient lineage

with small error:

Proposition 6.3.6. Let λ̃S
t be a sufficient ε-approximation ofλt, then for any xi ∈ A s.t. p(xi) ∈

(0,1), we have the following pair of inequalities

Inf xi (λ̃
S
t) −

ε

σ2
p(xi) ≤ Inf xi (λt) ≤ Inf xi (λ̃

S
t) +

ε

σ2
(1− p(xi))

Proof. E[λt(xi − p(xi))] = E[(λt − λ̃
S
t)(xi − p(xi)) + λ̃S

t (xi − p(xi))]. The first term is lower bounded

by −εp(xi) and upper bounded byε(1− p(xi)). Multiplying by σ−2
i , completes the bound, since the

second term is Infxi (λ̃
S
t). �

This proposition basically says that we can calculate the influence foruncertainatoms. With

näıve random sampling, we can estimate the influence of sufficient lineage to essentially any desired

147

precision. The number of relevant variables in sufficient lineage is small, so simply evaluating the

influence of each variable and sorting is an efficient solution to solve Prob. 5.

6.3.4 Query Processing

Existing systems such as Mystiq or Trio can directly process sufficient lineage since it is syntacti-

cally identical to standard (complete) lineage. However, using sufficient lineage in place of complete

lineage introduces errors during query processing. In this section, we show that the error introduced

by query processing is at most a constant factor worse than the error in a single sufficient lineage

formula.

Processing a queryq on a database with lineage boils down to building a lineage expression for

q by combining the lineage functions of individual tuples, i.e.,intensional evaluation[68,137]. For

example, a join producing a tuplet from t1 andt2 produces lineage fort, λt = λt1∧λt2. We first prove

that the error in processing a queryq is upper bounded by the number of lineage functions combined

by q (Proposition 6.3.7). Näıvely applied, this observation would show that the error grows with the

size of the data. However, we observe that the lineage function for a conjunctive query depends on

at most constantly many variables; from these two observations it follows that the query processing

error is only a constant factor worse.

Proposition 6.3.7. If λ̃S
1 and λ̃S

2 are sufficientε approximations for̃λ1 and λ̃2 then, bothλ̃S
1 ∧ λ̃

S
2

and λ̃S
1 ∨ λ̃

S
2 are2ε sufficient approximations.

Proof. Both formulae are clearly sufficient. We write
∥∥∥λ1λ2 − λ̃

S
1 λ̃

S
2

∥∥∥ = ∥∥∥λ1(λ2 − λ̃
S
2) + λ̃S

2 (λ1 − λ̃
S
1)

∥∥∥,
each term is less thanε, completing the bound. �

This proposition is essentially an application of a union bound [121]. From this proposition and

the fact that a queryq that producesn tuples and hask subgoals haskn logical operations, we can

conclude that if all lineage functions areεS approximations, thenµ(q) − µ̃S(q) ≤ εSkn. This bound

depends on the size of the data. We want to avoid this, because it implies that to answer queries as

the data grows, we would need to continually refine the lineage. The following proposition shows

that sometimes there is a choice of sufficient lineage that can do much better job; this is essentially

the same idea as in Section 6.3.2:

148

Lemma 6.3.8. Fix a query q with k subgoals andε > 0, there exists a database with sufficient

approximate lineage functioñλ such that the the lineage for each tuple t,λ̃t is of constant size and

µ(q) − µ̃S(q) ≤ ε

Proof. As we have observed, we can evaluate a query by producing an internal lineage function.

This means that we can apply Theorem 6.3.3 to show that for anyδ > 0, there exists a sub-formula

φ̃ of size f (k, δ) such thatµ(q) − E[φ̃] ≤ δ. We must only ensure that the atoms in these monomials

are present. �

This shows that sufficient lineage can be effectively utilized for query processing, solving Prob. 6.

It is an interesting open question to find such lineage that works for many queries simultaneously.

Example 6.3.9 Our current lineage approach uses only local knowledge, but we illustrate why

some global knowledge may be required to construct lineage that is good for even simple queries.

Consider a database withn tuples and a single relationR = {t1, . . . , tn} and the lineage of tuple

λtt = x0 ∨ xi . A sufficient lineage database could beλ̃ti = x0 for eachi. Notice, that the query

q D R(x) on the sufficient lineage database is thenx0 while the formulas on the level I database is

x0 ∨ x1 · · · ∨ xn. A potentially much larger probability.

6.4 Polynomial Lineage

In this section, we propose an instantiation of polynomial lineage based on sparse low-total-degree

polynomial series. We focus on the problems of constructing lineage and understanding lineage,

since there are existing approaches, [19], that solve the problem of sampling from lineage, which is

sufficient to solve the query evaluation problem (Problem 6).

6.4.1 Sparse Fourier Series

Our goal is to write a Boolean function as a sum of smaller terms; this decomposition is similar to

Taylor and Fourier series decompositions in basic calculus. We recall the basics of Fourier Series

on the Boolean Hypercube1.

1For more details, see [114,125]

149

In our discussion, we fix a set of independent random variablesx1, . . . , xn, e.g., the atoms, where

pi = E[xi] (the expectation) andσ2
i = pi(1− pi) (the variance). LetB be the vector space of real-

valued Boolean functions onn variables; a vector in this space is a functionλ : {0,1}n→ R. Rather

than the standard basis forB, we define the Fourier basis for functions. To do so we equipB with

an inner product that is defined via expectation, that is,〈λ1, λ2〉
def
= E[λ1 · λ2]. This inner product

induces a norm,‖λt‖
2 def
= 〈λt, λt〉. This norm captures our error function (see Def. 6.2.10) since

E[(λt − λ̃
P
t)2] =

∥∥∥λ̃t − λ̃
P
t

∥∥∥2
. We can now define an orthonormal basis for the vector space using the

set ofcharacters:

Definition 6.4.1. For eachz ∈ {0,1}n, thecharacterassociated withz is a function from{0,1}n→ R

denotedφz and defined as:

φz
def
=

∏
i:zi=1

(xi − pi)σ
−1
i

Since the set of all characters is an orthonormal basis, we can write any function inB as a sum

of the characters. The coefficient of a character is given by projection on to that character, as we

define below.

Definition 6.4.2. The Fourier transformof a functionλt is denotedFλt and is a function from

{0,1}n→ R defined as:

Fλt (z)
def
= 〈λt, φz〉 = E[λtφz]

TheFourier seriesof f is defined as
∑

z∈{0,1}n Fλt (z)φz(A).

The Fourier series capturesλt, that is, for any assignmentA, f (A) =
∑

z∈{0,1}n Fλt (z)φz(A). An

important coefficient isFλt (0), which is the probability (expectation) ofλt. We give an example of

to illustrate the computation of Fourier series:

Example 6.4.3 Let λt = x1∨ · · · ∨ xn, that is, the logical or of independentn random variables. The

arithmetization forλt is 1−
∏

i=1,...,n(1− xi). Applying Def. 6.4.2,Fλt (0) = E[λt] = 1−
∏

i=1,...,n(1−

150

p(xi)) and forz, 0:

Fλt (z) = E
[
φz

(
1−

∏
i=1,...,n(1− xi)

)]
= E

[
φz−

(∏
i:zi=1 φei (1− xi)

) (∏
j:zj=0(1− x j)

)]
=

(∏
i:zi=1σi

) (∏
j:zj=0(1− p(x j))

)
where fori = 1, . . . ,n, σ2

i = p(xi)(1− p(xi)) (the variance ofxi).

Our goal is to get a small, but good approximation; we make this goal precise using sparse

Fourier series:

Definition 6.4.4. An s-sparse seriesis a Fourier series with at most s non-zero coefficients. We say

λ has an(s, ε) approximation if there exists an s-sparse approximationλ̃P
t such that

∥∥∥λt − λ̃
P
t

∥∥∥2
≤ ε.

A bests-sparse series for a functionλ is the s-sparse series that minimizesε.

Our approach for polynomial lineage is to approximate the lineage for a tuplet, λt, by a sparse

Fourier series̃λP
t , ideally an (s, ε)-sparse approximation for smallsandε. Additionally, we want̃λP

t

to have low total degree (constant) so we can describe its coefficients succinctly (in constant space).

Selecting an approximation The standard approach to approximation using series is to keep only

the largest coefficients, which is optimal in this case:

Proposition 6.4.5. For any Boolean functionλt and any s> 0, a best s-spare approximation forλt

is the s largest coefficients in absolute value, ties broken arbitrarily.

Proof. Let g be anyt term approximation andSG be its non-zero coefficients then we can write:

‖ f − g‖2 =
∑

Sg
(Fλt (S) − Fλ2(S))2 +

∑
S̄g
Fλt (S)2. Notice thatS ∈ Sg implies thatFλt (S) = Fλ2(S),

else we could get a strictly better approximation – thus, the best approximation consists of a subset

of coefficients in the Fourier expansion. If it does not contain the largest in magnitude, we can

switch a term from the right to the left sum, and get a strictly better approximation. Thus, all best

approximations are of this form. �

151

6.4.2 Constructing Lineage

We construct polynomial lineage by searching for the largest coefficients using the KM algorithm

[107]. The KM algorithm is complete in the sense that if there is an (s, ε) sparse approximation it

finds an only slightly worse (s, ε + ε2/s) approximation. The key technical insight, is thatk-DNFs

do have sparse (and low-total-degree) Fourier series, [114,151]. This implies we only need to keep

around a relatively few coefficients to get a good approximation. More precisely,

Theorem 6.4.6([107,114,151]). Given a set of atomsA = {x1, . . . , xn} and a probabilistic assign-

ment p, letβ = mini=1,...,n{p(xi),1− p(xi)} andλt be a (not necessarily monotone) k-DNF function

overA, then there exists an(s, ε)-approximationλ̃P
t where s≤ kO(kβ−1 log(1

ε)) and the total degree of

any term inλ̃P
t is bounded by c0β−1k log(1

ε) where c0 is a constant. Further, we can constructλ̃P
t in

randomized polynomial time.

The KM algorithm is an elegant recursive search algorithm. However, a key practical detail

is at each step it requires that we use a two-level estimator, that is, the algorithm requires that at

each step, we estimate a quantityy1 via sampling; to compute each sample ofy1, we must, in turn,

estimate a second quantityy2 via sampling. This can be very slow in practice. This motivates us

to purpose a cheaper heuristic: For each monomialm, we estimate the coefficient corresponding to

each subset of variables ofm. For example, ifm= x1 ∧ x2, then we estimate0, e1, e2 ande12. This

heuristic takes time 2k|λt|, but can be orders of magnitude more efficient in practice, as we show in

our evaluation section (Section 6.5.2). This is linear with respect to data complexity.

6.4.3 Understanding Approximate Lineage

Our goal in this section is to find sufficient explanations and influential variables, solving Problem 4

and Problem 5, respectively.

Sufficient Explanations Let λt be a lineage formula such thatE[λt] ∈ (0,1) andλ̃P
t be a polyno-

mial approximation ofλt. Given a monomialm, our goal is to test ifm is a sufficient explanation

for λt. The key idea is thatm is a sufficient explanation if and only ifµ[λt ∧m] = µ[m], since this

implies the implication holds for every assignment.

152

If λ̃P
t is exactly the Fourier series forλt, then we can compute each value in timeO(2k), since

E[λ̃P
t m] =

∑
z:zi=1 =⇒ i∈m

Fλt (z)

 ∏
i∈m:zi=1

σ


 ∏

j∈m:zj=0

µ j

 (6.5)

However, oftenλt is complicated, which forces us to use sampling to approximate the coefficients

of λ̃P
t . Sampling introduces noise in the coefficients. To tolerate noise, we relax our test:

Definition 6.4.7. Let τ > 0, the tolerance, andδ > 0, the confidence, then we say that a monomial

m is a(τ, δ) sufficient explanationfor λ̃P
t if:

µN [|E[λ̃P
t ·m] − E[m]︸ ︷︷ ︸

(†)

| ≤ τ] ≥ 1− δ (6.6)

whereN denotes the distribution of the sampling noise.

The intuition is that we want thatE[λ̃P
t m] and E[m] to be close with high probability. For

independent random sampling, theN is a set of normally distributed random variables, one for each

coefficient. Substituting Eq. 6.5 into Eq. 6.6 shows that (†) is a sum of 2k normal variables, which

is again normal; we use this fact to estimate the probability that (†) is less thanτ.

Our heuristic is straightforward, given a toleranceτ and a confidenceδ: For each monomialm,

compute the probability in Eq. 6.6, if it is withinδ then declarem a sufficient explanation. Finally,

rank each sufficient explanation by the probability of that monomial.

Influential tuples The key observation is that the influence ofxi is determined by its coefficient

in the expansion [114,151]:

Proposition 6.4.8.Letλt be an internal lineage function, xi an atom andσ2
i = p(xi)(1− p(xi)) then

Inf xi (λt) = σ
−1
i Fλt (ei)

This gives us a simple algorithm for finding influential tuples using polynomial lineage, simply

scale eachFλt (ei), sort them and return them. Further, the term corresponding toei in the transform

isFλt (ei)φei = Inf xi (λt)(xi − p(xi)), as was shown in Figure 6.1.

153

Query Tables # Evidence # Tuples Avg. Lin. Size Size

V1 8 2 1 234 12k
V2 6 2 1119 1211 141M
V3 6 1 295K 3.36 104M
V4 7 1 28M 7.68 31G

Figure 6.2: Query statistics for the GO DB [37].

6.5 Experiments

In this section, we answer three main questions about our approach: (1) In Section 6.5.2, do our

lineage approaches compress the data? (2) In Section 6.5.3, to what extent can we recover ex-

planations from the compressed data? (3) In Section 6.5.4, does the compressed data provide a

performance improvement while returning high quality answers? To answer these questions, we ex-

perimented with the Gene Ontology database [37] (GO) and similarity scores from a movie matching

database [137,173].

6.5.1 Experimental Details

Primary Dataset The primary dataset is GO, that we described in the introduction. We assigned

probability scores to evidence tuples based on the type of evidence. For example, we assigned a

high reliability score (0.9) to a statement in a PubMed article, while we assigned a low score (0.1) to

an automated similarity match. Although many atoms are assigned the same score, they are treated

as independent events. Additionally, to test the performance of our algorithms, we generated several

probability values that were obtained from more highly skewed distributions, that are discussed in

the relevant sections.

Primary Views We present four views which are taken from the examples and view definitions

that accompany the GO database [37]. The first viewV1 asks for all evidence associated with a fixed

pair of gene products.V2 looks for all terms associated with a fixed gene product.V3 is a view of

all annotations associated with the Drosophila fly (via FlyBase [66]).V4 is a large view of all gene

products and associated terms. Figure 6.2 summarizes the relevant parameters for each view: (1)

the number of tables in the view definition (2) the number of sources evidence, that is, how many

154

 1

 10

 100

 1000

 0.001 0.01 0.1 1

C
om

pr
es

si
on

 R
at

io
 (

y:
1)

 [l
og

sc
al

e]

Error

Poly
Suff

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 100 200 300 400 500 600

N
um

be
r

of
 M

on
om

ia
ls

 [L
og

sc
al

e]

Rank

DNF Size
Sufficient Size

(a) (b)

Figure 6.3: (a) Compression ratio as error increases in log scale for queryV2. (b) Distribution of
size of DNF forV2 with and without compression,x-axis is sorted by size, e.g.,x = 1 is the largest
DNF (823k).

times it joins with the evidence table (3) the number of tuples returned (4) the average of the lineage

sizes for each tuple, and (5) the storage size of the result.

Secondary Dataset To verify that our results apply more generally than the GO database, we

examined a database that (fuzzily) integrated movie reviews from Amazon [174] that have been

integrated with IMDB (the Internet Movie Database) [173]. This data has two sources of impreci-

sion: matches of titles between IMDB and Amazon, ratings assigned to each movie by automatic

sentiment analysis, that is, a classifier.

Experimental Setup All experiments were run on a Fedora core Linux machine (2.6.23-14 SMP)

with Dual Quad Core 2.66GHz 16Gb of RAM. Our prototype implementation of the compression

algorithms was written in approximately 2000 lines of Caml. Query performance was done using

a modified C++/caml version of the MQ engine [21] backed by databases running SQL Server

2005. The implementation was not heavily optimized.

6.5.2 Compression

We verify that our compression algorithms produce small approximate lineage, even for stringent

error requirements. We measured the compression ratios and compression times achieved by our

approaches for both datasets at varying errors.

155

 50

 100

 150

 200

 250

 0 0.1 0.2 0.3 0.4 0.5

C
om

pr
es

si
on

 R
at

io
 (

y:
1)

Mean

Poly
Suff

Suff Poly
Q PT PT

V1 0.23s 0.50s
V2 3.5h 3.5h
V3 10.3m 24.3m
V4 50.3h 67.4h

(a) (b)

Figure 6.4: (a) The compression ratio versus the mean of the distribution forV1. Sufficient is more
stable, though the polynomial lineage can provide better approximation ratios. (b) The compression
time for each view, the processing time (PT).

Compression Ratios Figure 6.3(a) shows the compression ratio versus error trade-off achieved

by polynomial and sufficient lineage forV2. Specifically, for a fixed error on thex-axis they axis

shows the compression ratio of the lineage (in log scale). As the graph illustrates, in the best case,

V2, the compression ratio for the polynomial lineage is very large. Specifically,even for extremely

small error rates, 10−3, the compressed ratio 171 : 1 for polynomial lineage versus 27 : 1 times

smaller for sufficient lineage. In contrast,V3 is our worst case. The absolute maximum our methods

can achieve is a ratio of 3.36 : 1, which is the ratio we would get by keeping a single monomial for

each tuple. At an errorε = 0.01, polynomial lineage achieves a 1.8 : 1 ratio, while sufficient lineage

betters this with a 2.1 : 1 ratio.

The abundance of large lineage formula inV2 contain redundant information, which allows

our algorithms to compress them efficiently. Figure 6.3(b) shows the distribution of the size of

the original lineage formulae and below it the size after compression. There are some very large

sources in the real data; the largest one contains approximately 823k monomials. Since large DNFs

have probabilities very close to one, polynomial lineage can achieve anε-approximation can use the

constant 1. In contrast, sufficient lineage cannot do this.

Effect of Skew We investigate the effect of skew, by altering the probabilistic assignment, that

is, the probability we assigned to each atom. Specifically, we assigned an atom a score drawn

from a skewed probability distribution. We then compressedV1 with the skewed probabilities.V1

contains only a single tuple with moderate sized lineage (234 monomials). Figure 6.4(a) shows the

156

ε Suff Poly
0.1 4.0 4.5
0.05 2.7 2.6
0.01 1.4 1.5
0.001 1.07 1.3 1

 10

 100

 0 5000 10000 15000 20000

N
um

be
r

of
 M

on
om

ia
ls

 [L
og

sc
al

e]

Rank

DNF Size
Sufficient

(a) (b)

Figure 6.5: (a) Compression Ratio (|Original|
|Compressed|) (b) The distribution of lineage size in IMDB view,

by rank.

compression ratio as we vary the skew from small means, 0.02, to larger means, 0.5. More formally,

the probability we assign to an atom is drawn from a Beta distribution withβ = 1 andα taking the

value on thex axis. Sufficient lineage provides lower compression ratios for extreme means, that is

close to 0.02 and 0.5, but is more consistent in the less extreme cases.

Compression Time Figure 6.4(b) shows the processing time for each view we consider. For views

V2, V3 andV4, we used 4 dual-core CPUs and 8 processes simultaneously. The actual end-to-end

running times are about a factor of 8 faster, e.g.,V2 took less than 30m to compress. It is interesting

to to note that the processor time forV2 is much larger than the comparably sizedV3, the reason is

that the complexity of our algorithm grows non-linearly with the largest DNF size. Specifically, the

increase is due to the cost of sampling.

The compression times for polynomial lineage and sufficient lineage are close; this is only true

because we are using the heuristic of Section 6.4.2. The generic algorithm is orders of magnitude

slower: It could not compressV1 in an hour, compared to only 0.5s using the heuristic approach.

Our implementation of the generic search algorithm could be improved, but it would require orders

of magnitude improvement to compete with the efficiency the simple heuristic.

IMDB and Amazon dataset Using the IMDB movie data, we compressed a view of highly rated

movies. Figure 6.5(a) shows the compression ratio for versus error rate. Even for stringent error

requirements, our approach is able to obtain good compression ratios for both instantiations of

approximate lineage. Figure 6.5(b) shows the distribution of the lineage size, sorted by rank, and its

157

sufficient compression size. Compared to Figure 6.3, there are relatively few large lineage formulae,

which means there is less much opportunity for compression. On a single CPU, the time taken to

compress the data was always between 180 and 210s. This confirms that our results our more general

than a single dataset.

6.5.3 Explanations

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100

N
um

be
r

of
 E

xp
la

na
tio

ns
 in

 T
op

 K

Number of Coeffs (Size)

Mean
-1 Std. Dev
+1 Std. Dev

 0

 2

 4

 6

 8

 10

 0.001 0.01 0.1

N
um

be
r

of
 D

er
iv

at
iv

es
 in

 T
op

 K
Epsilon (Error)

Mean
+1 Std. Dev
-1 Std. Dev

(a) (b)

Figure 6.6: (a) Shows the precision of the top-k explanations versus the number of terms in the
polynomial expansion (c) The number (precision) of influential variables in the top 10 returned
using sufficient lineage that are in the top 10 of the uncompressed function.

We assess how well approximate lineage can solve the explanation tasks in practice, that is

finding sufficient explanations (Prob. 4) and finding influential variables (Prob. 5). Specifically, we

answer two questions: (1) How well can sufficient lineage compute influential variables? (2) How

well can polynomial lineage generate sufficient explanations?

To answer question (1), we created 10 randomly generated probabilistic assignment for the

atoms inV1; we ensured that the resulting lineage formula had non-trivial reliability, i.e., in (0.1,0.9).

We then tested precision: Out of the top 10 influential variables, how many were returned in the top

10 using sufficient lineage (Section 6.3.3)? Figure 6.6(b) shows that for high error rates,ε = 0.1,

we still are able to recover 6 of the top 10 influential variables and for lower error rates,ε = 0.01,

we do even better: the average number of recovered top 10 values is 9.6. The precision trails-off for

very small error rates due to small swaps in rankings near the bottom of the top 10, e.g., all top 5

are within the top 10.

To answer question (2), we used the same randomly generated probabilistic assignments for the

atoms inV1 as in the answer to question (1). Figure 6.6(a) shows the average number of terms in

158

the topk explanations returned by the method of Section 6.4.3 that are actual sufficient explanations

versus the number of terms retained by the formula. We have an average recall of approximately

0.7 (with low standard deviation), while keeping only a few coefficients. Here, we are using the

heuristic construction of polynomial lineage. Thus, this experiment should be viewed as a lower

bound on the quality of using polynomial lineage for providing explanations.

These two experiments confirm that both sufficient and polynomial lineage are able to provide

high quality explanations of the data directly on the compressed data.

6.5.4 Query Performance

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1

T
im

e
(s

)

Error

Uncompressed
Suff
Poly

 50

 100

 150

 200

 250

 300

 0.001 0.01 0.1

T
im

e
(s

)

Error

Uncompressed
SUFF
POLY

(a) (b)

Figure 6.7: Query performance on (a)V2. (b) IMDB data.

Figure 6.7 shows the effect of compression on execution time ofV2; The query asks to compute

each tuple in the view. They-axis is in log scale, it takes just under 20 hours to run this query on

the uncompressed data. On data compressed with sufficient lineage atε = 0.001, we get an order of

magnitude improvement; the query takes approximately 35m to execute. Using the data compressed

with polynomial lineage, we get an additional order of magnitude; the query now runs in 1.5m.

Figure 6.7(b) shows the effect of compression on query performance for the IMDB movie dataset

where the compression was not as dramatic. Again our query was to compute the lineage for each

tuple in the view. The time taking is to perform Monte Carlo sampling on the now much smaller

query. As expected, the data with higher error, and so smaller, allows up to a five time performance

gain. In this example both running times scale approximately with the size of compression.

159

Chapter 7

RELATED WORK

We begin by discussing work that deals with managing imprecision in a broad sense, and then

we discuss work whose technical details or approach are related.

7.1 Broadly Related Work

We begin with the most closely related work.

Probabilistic Relational Databases

In recent years, the database community has seen a flurry of work probabilistic databases. Manag-

ing probabilistic data is difficult, and each of the systems similar problems in different ways. The

MQ project at the University of Washington was started with the paper by Dalvi and Suciu [46]

who showed that a dichotomy holds for conjunctive queries without self-joins: Either the query’s

data complexity isPTIMEor it is]P-hard. Moreover, if the query is inPTIMEthen we can create

an SQL query which simply multiplies or adds probabilities to compute the probability efficiently

and correctly. Inspired by this result, in this dissertation, we generalize this dichotomy result to

aggregate queries in Chapter 4. Later, this result was generalized to queries that contained self-

joins; the algorithm was more complicated and the translation to standard SQL queries is currently

unknown [47].

At about the same time, the Trio project began to focus on representation issues for uncertain

databases, calling itself an “Uncertain and Lineage Database” (ULDB) [16,17,145,146,168]. This

project promoted lineage as not only a technical convenience, but an important concept in its own

right [168]. More recently, Das Sarma [146] optimize queries by exploiting common structure in

the lineage of queries at run-time. A similar approach was taken in the context of graphical models

by Senet al.[149]. In contrast, the techniques in this paper are usually done atcompile-time, similar

to a standard query optimizer. Sen’s earlier work [148] in this area was one of the first to suggest

160

that query evaluation could be done efficiently by casting the problem in term of graphical models.

One observation made in this work is that sometimes the data may contain structure unknown to the

optimizer (e.g., a functional dependency), which means that a query which has]P-data complexity

in general, is actually tractable. His approach discovers such structure at runtime. The MayBMS

system [8, 9, 91] is also a probabilistic relational database with a representation that is close to the

Mystiq system; they do, however, allow a much richer language than discussed in this dissertation.

In particular, their query language allows direct predication on probabilities, e.g.,“is the probability

of q1 < 0.3 and q2 > 0.4?” , and is able to introduce uncertainty through therepair-by-key con-

struct. These enhancements are not superficial: the query language they propose captures exactly

second-order logic; interestingly, they recently announced an algebra to compute it similar to the

relational algebra [106]. Other powerful features of their language allows include expressing con-

ditionals, i.e.,“what is the probability of q given that price> 10?”. Additionally, the have focused

on secondary storage issues and begun an interesting research program ofphysical optimization for

probabilistic databasesin the context of the SPROUT project [127]. One interesting observation of

this project is that the existence of a safe plan for a query can be exploited – even the plan itself is

not sued. In this context, they also looked at computing probabilities without exact procedures like

Davis-Putnam and Ordered Binary Decision diagrams.

Although there is a lot of recent work on probabilistic relational databases, the problems of

imprecision and uncertainty in data are not new: they have a long history within the database com-

munity [13, 28, 57, 144] . For example Barbará et al. [13] discussed a probabilistic model that is

very close to the BID model we discuss here. To keep the evaluation tractable, they did not allow

duplicate elimination in their queries; the techniques in this dissertation attempt to continue this line

of work by efficiently evaluating a larger set of SQL queries, notably aggregates. Predating this

work by more than a decade was Cavallo and Piterali [28] who studied a probabilistic database that

captured a single alternative world. In the ProbView system [144], an alternate approach t was taken

which allowed interval probabilities to be returned. This had the benefit that a much richer class of

queries and aggregates can be handled. In some cases, the intervals may degenerate to [0,1], which

gives little information to the user.

At the same time, there were approaches to study a problem calledquery reliabilitywhich im-

plicitly used a probabilistic database [78]. The idea was to understand to what extent a queries

161

depends on the answers in the database, formally it was a tuple independent database where every

tuple was given a probability of12. The reliability is then the probability that the (Boolean) query is

true.

Inconsistent and Incomplete Databases

An alternative approach to probabilistic databases from which this thesis drew inspiration is the area

of incomplete and inconsistent databases. For example, we may have two databases who individu-

ally are consistent, but when we merge them some dependencies fail, such as a key constraint. In

one database, John lives in Seattle, and in the other he lives in New York. Although each is indi-

vidually consistent, when merged together they become inconsistent. In this context, there has been

a great deal of work [18, 69, 79, 93, 165]. The typical query semantic of this work is greatest lower

bound or least upper bound on the set of all minimal repairs. Also known as thecertainor possible

answer semantics. One particular relevant piece of related work is Arenaset al. [11] who consider

the complexity of aggregate queries, similar toHAVING queries, over data which violates functional

dependencies. They also consider multiple predicates, which we do not. There is a deep relationship

between the repair semantics and probabilistic approaches. A representative work in this direction is

Andristoset al. [7]. No discussion of incomplete databases would be complete without the seminal

work of Imielinski and Lipski [93] who formalized the notion ofc-tables and initiated the study of

incomplete and inconsistent databases.

Lineage and Provenance

Lineage is central to the Trio system [168], who identifies lineage as a central concept [129]. Our

thinking of lineage was influenced by a paper of Green and Tannen [82], which spelled out the

connections of the various models in the literature – notably to thec-tables of Imielinski and Lip-

ski [93] – to the model we presented here. In addition, view of lineage in this paper was heavily

influenced by a paper of Greenet al. [81] who explained that semirings were the right mathematical

structure needed to unify the various concepts of lineage. In this dissertation we view lineage as

a formal language to precisely explain our algorithms. In recent years, however, there has been

work on the practical utility of provenance and lineage for applications, especially, in scientific

162

databases [25, 30, 53, 80]. There has been work in the systems community on entire architectures

that are provenance aware, e.g., provenance-aware storage systems [122]. This speaks to the funda-

mental nature of the concept of provenance or lineage.

Succinct models

While the BID formalism is complete, Markov Networks [45] and Bayesian Networks [130], and

their extensions to Probabilistic Relational Models [67], allow some discrete distributions to be

expressed much more succinctly. The trade-off is that query answering becomes correspondingly

more difficult. For example, Roth suggests that inference in even very simply Bayes nets do not

admit efficient approximation algorithms. There is active work in the database community about

adopting these more succinct models, which represent an interesting alternative approach to the

techniques of this dissertation [148, 167]. One clear advantage of this approach is that we it can

leverage the very interesting and deep work that has gone on in the graphical model community,

such as variational methods [98], differential inference [50], and lifted inference [52, 153]. On the

other hand, we contend that by choosing a more restrictive model, we can more fully concentrate

on scale. In particular, we are unaware of any of these approaches which runs with comparably

performance to a standard relational database, as we have demonstrated in this thesis in Chapter 5.

That said, there is a huge opportunity to merge the two approaches in the next few years.

Continuous attributes

In this work, we do not consider continuous attribute values, e.g., the techniques in this disserta-

tion cannot handle the case where the attributetemperature has a normal distribution with mean

40. Representing this kind of uncertainty is central to approaches that integrate sensor data such

as the BBQ project [55], or the Orion System [34]. More recently the MCDB project has advo-

cated an approaching based on Monte-Carlo sampling which can generate much more sophisticated

distributions [95]. This supports, for example, the ability to “what-if” answer queries such as“if

we had lowered our prices by 5%, would would our profit have been?”; internally, the user has

specified a demand curve that relates price changes to expected demand, and the system samples

from the resulting distribution many times. This expressive power comes at a price, and the cen-

163

tral challenge here is performance. The performance challenge is more difficult than in our setting,

because the sampling procedure is a black-box; nonetheless, by bundling samples together and late-

materialization strategies the MCDB system can achieve good performance. Deshpandeet al.[56] in

the BBQ project consider probabilistic databases resulting from sensor networks so that the database

models continuous values, such as temperature. The focus in this work is on rich correlation models,

but simpler querying.

Semistructured Models

There is also a wealth of work in non-relational systems, notably in semi-structured XML-based

systems [3,36,92,104,124,150]. As with relational probabilistic databases, there have been a num-

ber of different variants of probabilistic XML proposed in the literature. We refer the reader to

Kimelfeld [103, Chapter 4] for a comprehensive taxonomy and comparison of expressive power of

these models. One compelling reason to consider probabilistic XML is that there may be ambi-

guity in the structure of the data, and as noted by Niermanet al. [124], XML gracefully captures

incompleteness. This property makes XML a particularly appropriate model for data integration

applications [163]. Hunget al. [92] defines a formal, probabilistic XML algebra that is similar in

spirit to the intensional algebra of Fuhr for relational databases [68].

Sequential Models

Another line of work in the database area deals with sequential, relational models calledMarkovian

Streams or Sequences[99, 138]. These streams arise from tasks including RFID networks [138],

Radar monitoring systems [157], and speech-recognition systems [111]. The work of Kanagal and

Deshpande [99] maps a SQL query to operations on a graphical model representing the input, which

allows them to leverage the extensive work in the graphical model community [98]. In the the

SASE projectet al. [157] and Lahar projects [138], a regular-expression-like language is used.

These projects both build on earlier work in the event processing literature such as Caygua [22]

and SnoopIB [4]. The processing techniques are automaton-based, which allows near-real-time

performance in some situations. More recently, there has been work on creating indexes for these

models such as the Markov Chain Index [112] and its generalization to tree-structured models [100].

164

The key idea in both approaches is to save or cache some portion of the probabilistic inference that

recurs.

Applications

There has been a wealth of interest in probabilistic models in the database community. The Conquer

system [7] allowed users to cope with uncertainty arising from entity resolution. Their focus was on

efficient evaluation on probabilistic data, which is a common goal of the MQ project. Gupta and

Sarawagi [84] showed that they could model the output of information extraction tasks using the BID

model. A key argument they made for using a probabilistic database to manage these tasks is that

throwing away low-scoring extractions negatively impacted recall. One major motivation for prob-

abilistic databases is to increase the recall, without losing too much precision. More sophisticated

probabilistic models for information extraction are an area of interesting ongoing work, notably the

Avatar group [96, 116]. This project is building rich probabilistic models to increase the recall of

hand-written extractors. Another important application for probabilistic relational databases is man-

aging the output of entity-resolution or deduplication tasks [6,10,32,65,71,83,89,169,170], as we

discussed in Chapter 3.

7.2 Specific Related Work

In this section, we discuss work that is very closely to specific technical contributions of this disser-

tation.

Top-k and Ranking

Solimanet al.[154] consider combining top-k with measures, such asSUM, for example“ Tell me the

ten highest ranked products by total sales?”, when the underlying data is imprecise. This combines

both the uncertainty of the probabilities along with the measure dimension and has surprisingly

subtle semantics that have been the subject of interesting debate within the community [38, 172].

This work is similar in spirit to ourHAVING (Chapter 4) and top-k processing based on probabili-

ties (Chapter 3). In the original paper of Solimanet al., they considered a rich correlation model

(essentially arbitrary Bayes networks), but they do not focus on complex queries involving joins.

165

This work has inspired a large amount of follow-up work including more efficient algorithms for

restricted models [73, 90, 171]. In addition, combining probabilistic data and skyline operators is

considered by Pei [132]. There is very interesting recent work that combines ranking (and cluster-

ing) in one unified framework with an approach based on generating functions [113].

Materialized Views

Materialized views are a fundamental technique used to optimize queries [2, 33, 75, 85] and as a

means to share, protect and integrate data [117, 160] that are currently implemented by all major

database vendors. Because the complexity of deciding when a query can use a view is high, there

has been a considerable amount of work on making query answering using views algorithms scal-

able [75, 133]. In the same spirit, we provide efficient practical algorithms for our representability

problems. As there are technical connections between our problem and the view-security problem,

an interesting problem is to apply the work by Machanavajjhala [115] on expanding the syntactic

boundary of tractability to the view setting. In prior art [51], the following question is studied:

Given a class of queriesQ is a particular representation formalism closed for allQ ∈ Q? In contrast,

our test is more fine-grained: For any fixed conjunctiveQ, is theBID formalism closed underQ?

A related line of work on World Set Decompositions [9] which allow complete representations by

factoring databases; applying the techniques to this representation system is an interesting problem.

Aggregation

Aggregation is a fundamental operation in databases, and it should come as no surprise that ag-

gregation has been considered for probabilistic data many times. In the OLAP setting, Burdicket

al. [26,27] give efficient algorithms forvalue aggregationin a model that is equivalent to the single

table model. Their focus is on the semantics of the problem. As such, they consider how to assign

the correct probabilities, calledthe allocation problem, and handling constraints in the data. The

allocation problem is an interesting and important problem. Rosset al. [144] describe an approach

to computing aggregates on a probabilistic database, by computing bounding intervals (e.g., theAVG

is between [5600,5700]). They consider a richer class of aggregation functions than we discuss, but

with an incomparable semantics. Their complexity results show that computing bounding intervals

166

exactly isNP-Hard. In contrast, we are interested in a more fine-grained static analysis: our goal is

to find the syntactic boundary of hardness. Trio also uses a bounded interval style approach [123].

There is work on value aggregation on a streaming probabilistic databases [97]. In addition,

they consider computing value approximations aggregates, such asAVG, in a streaming manner. In

contrast, computing theAVG for predicate aggregates (as we do in Chapter 4) on a single table is

]P-Hard. One way to put these results together is that computing a value aggregate is the first mo-

ment (expectation) while aHAVING aggregate allows us to capture the complete distribution (in the

exact case). Kanagal and Deshpande [99] also work in the streaming context of aggregation that

computes an expected value style of aggregation. This work does not look at complex queries, like

joins. Koch [105] formalizes a language that allows predication on probabilities and discusses ap-

proximation algorithms for this richer language, though he does not considerHAVING aggregation.

This is in part due to the fact that his aim is to create a fully compositional language for proba-

bilistic databases [106]. Extending our style of aggregation to a fully compositional language is an

interesting open problem. The problem of generating a random world that satisfies a constraint is

fundamental and is considered by Cohenet al. [35]. They point out that many applications for this

task, and use it to answer rich queries on probabilistic XML databases. In this paper, we differ in

the constraint language we choose and that we use our sampling algorithm as a basis for an.

Our trichotomy results are based on the conjecture that]BIS does not have an. Evidence

of this conjecture is given by Dyer [58,59] by establishing that this problem is complete for a class

of problems with respect toapproximation preserving reductions. At this point, it would be fair to

say that this conjecture is less well established than]P , P. Any positive progress, i.e., showing that

]BIS does have an, could be adapted to our setting. As we have shown, some problems are

as hard to approximate as any problem in]P, e.g., as hard as]CLIQUE. An interesting open problem

is to find if there is a corresponding syntactic boundary of hardness: is it true that either a query is

]BIS-easy or]CLIQUE-hard? We conjecture that such a syntactic boundary exists, though it remains

open.

167

Compression and Approximation

There is long, successful line of work that compresses (deterministic) data to speed up query pro-

cessing [54, 72, 76, 155, 166]. In wavelet approaches, probabilistic techniques are used to achieve a

higher quality synopses, [54]. In contrast, lineage in our setting contains probabilities, which must

be captured. The fact that the lineage is probabilistic raises the complexity of compression. For

example, the approach of Garofalakiset al. [72] assumes that the entire wavelet transform can be

computed efficiently. In our work, the transform size is exponential in the size of the data. Proba-

bilistic query evaluation can be reduced to calculating a single coefficient of the transform, which

implies exact computation of the transform is intractable [46, 78]. Arefet al. [60] advocate an

approach to operate directly on compressed data to optimize queries on Biological sequences. How-

ever, this approach is not lineage aware and so cannot extract explanations from the compressed

data.

In probabilistic databases, lineage is used for query processing in Mystiq [46,137] and Trio [168].

However, neither considers approximate lineage. Réet al. [137] consider approximately computing

the probability of a query answer, but do not consider the problem of storing the lineage of a query

answer. These techniques are orthogonal: We can use the techniques of [137] to compute the top-k

query probabilities from the Level II database using sufficient lineage. Approximate lineage is used

to materialize views of probabilistic data; this problem has been previously considered [136], but

only with an exact semantics.

Senet al. [148] consider approximate processing of relational queries using graphical models,

but not approximate lineage. In the graphical model literature [45,98] approximate representation is

considered, where the goal is to compress the model for improved performance. However, the data

and query models of the our approaches is different. Specifically, our approach leverages the fact

that lineage is database is ofteninternal.

Learning Theory

Our approach to computing polynomial lineage is based on computational learning techniques, such

as the seminal paper by Linialet al. [114], and others, [19, 23, 125]. A key ingredient underlying

these results areswitching lemmata, [14,87,147]. For the problem of sufficient lineage, we use use

168

the implicit in both Segerlindet al. [147] and Trevisan [158] that either a few variables in a DNF

matter (hit every clause) or the formula isε large. The most famous (and sharpest) switching lemma

due to Håstad [87] underlies the Fourier results. So far, learning techniques have only been applied

to compressing the data, but have not compressed the lineage [12, 74]. A difference between our

approach and this prior art is that we do not discard any tuples, but may discard lineage.

Explanation

Explanation is an important task for probabilistic databases that we only briefly touched on in Chap-

ter 6. Explanation is a well-studied topic in the Artificial Intelligence community [86, 131]. The

definition of explanation of a fact is a formula that is a minimal and sufficient to explain a fact –

which is similar to our definition – but they additionally require that the formula beunknownto

the user. We do not model the knowledge of users, but such a semantic would be very useful for

scientists.

169

Chapter 8

CONCLUSION AND FUTURE WORK

This thesis demonstrates that it is possible to effectively manage large, imprecise databases

using a generic approach based on probability theory. The technical contributions are two query-

time techniques,top-k query processingandaggregate evaluation, and two view-based techniques:

materialized viewsandapproximate lineage. We demonstrated that a system, MQ, based on the

techniques in this dissertation was able to support rich, structured queries on probabilistic databases

that contain tens of gigabytes of data with performance comparable to a standard relational engine.

Future Work

The management of uncertainty will be an increasingly important area over the next several years as

businesses, governments, and scientific researchers contend with an ever-expanding amount of data.

Although the space of applications will be diverse, there will be fundemental primitives common

to many of these applications (just as there with standard, deterministic data). As a result, there

will be a ned for a general-purpose data management frameworks that can answer queries, explain

results, and perform advanced analytics on large collections of imprecise data. The timing is right

for such a system because of two complementary forces, atechnology pushand anapplication

pull. Thetechnology pushis that there are a diverse and increasingly large set of technologies that

produce imprecise data, such as entity matching, information extraction and inexpensive sensors.

Theapplication pull is the wide-variety of applications that require the ability to query, transform

and process uncertain data, such as data integration, data exploration and preventive health-care

monitoring applications. The critical problems of these future systems are of scale, performance

and maintainability which are the cornerstones of the data management field.

An immediate challenge is to understand the trade-offs between the expressive power of proba-

bilistic models and their ability to process large datasets. Consider an application that tracks thou-

sands of users equipped with RFID sensors. Ideally, we would capture not only low-level physical

170

constraints, such as“a user’s current location is correlated with their previous location”, but also

higher-level correlation information, such as“the database group has lunch together on Wednes-

day”. An interesting question is: to what extent do specific types of correlations affect the output

of a particular application? If our application only asks questions about groups of individuals, we

could optimize our model to disregard low-level correlation information about any single individ-

ual. Dropping correlation information can vastly improve query performance both because we must

process a much smaller amount of data, but also because we may be able to use more aggressive pro-

cessing strategies. In the context of a database of RFID sensors, our preliminary results suggest that

for some queries, not tracking correlations allows orders of magnitude performance improvement,

e.g., we can process thousands more streams using the same resources. At the same, time there is

only a small decrease in quality, e.g., our detection rates for events decreases only slightly. There

are many other opportunities for aggressive approximations in probabilistic query processing. Ap-

proximation techniques for query processing will be crucial in probabilistic database applications,

but our understanding of its limits is still in its infancy.

Long-term work Current database management systems are well-suited to informing users of the

who, what, and where of data processing, e.g.,“which of my stores has a projected profit?”, but do

a poor job of informing users about thewhyandhowof data processing, e.g.,“why does store six

have a projected profit?”. Worse still, the next generation of data products, such as forecasting data,

similarity scores or information extraction tools; areless precisethan traditional relational data and

so,more difficult to understand. A transparent database would allow me to tackle current data man-

agement problems, such asexplaining the provenance of data, but alsoemerging data management

problems, such as debugging the output of information extraction tools. For example, consider the

database of a large retailer that contains standard relational data, such as current inventory levels

and orders, and also contains imprecise data, such as the result of forecasting software. In response

to the query above, the system would return anexplanationsuch as“we predict a large profit in

store six because predictive model 10 says that cameras will sell well in the Southwest where store

10 is located.”A facility for explanations is the necessary primitive to build a system that allows an

analyst to interactively explore and understand a large collection of imprecise data. A transparent

database could also supportwhat-if analyseswhere our goal is to understand how changes in the

171

underlying data affect the final output. Adapting existing notions of explanations from the artificial

intelligence community [29, 131] to the problem of explaining the results of complex queries on

large-scale data products is a major open challenge.

172

BIBLIOGRAPHY

[1] S. Abiteboul, R. Hull, and V. Vianu.Foundations of Databases. Addison-Wesley, 1995.

[2] Serge Abiteboul and Oliver M. Duschka. Complexity of answering queries using materialized
views. InPODS, pages 254–263, 1998.

[3] Serge Abiteboul and Pierre Senellart. Querying and updating probabilistic information in
xml. In EDBT, pages 1059–1068, 2006.

[4] Raman Adaikkalavan and Sharma Chakravarthy. Snoopib: Interval-based event specification
and detection for active databases.Data Knowl. Eng., 59(1):139–165, 2006.

[5] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated selection of materi-
alized views and indexes in sql databases. InVLDB 2000, Proceedings of 26th International
Conference on Very Large Data Bases, September 10-14, 2000, Cairo, Egypt, pages 496–505.
Morgan Kaufmann, 2000.

[6] Rohit Ananthakrishna, Surajit Chaudhuri, and Venkatesh Ganti. Eliminating fuzzy duplicates
in data warehouses. InVLDB, pages 586–596, 2002.

[7] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers over dirty databases. InICDE,
2006.

[8] L. Antova, C. Koch, and D. Olteanu. World-set decompositions: Expressiveness and efficient
algorithms. InICDT, pages 194–208, 2007.

[9] Lyublena Antova, Christoph Koch, and Dan Olteanu. 10106
worlds and beyond: Efficient

representation and processing of incomplete information. InICDE, pages 606–615, 2007.

[10] Arvind Arasu, Christopher Ŕe, and Dan Suciu. Large-scale deduplication with constraints
using Dedupalog (full research paper). InICDE, 2009.to appear.

[11] Marcelo Arenas, Leopoldo E. Bertossi, Jan Chomicki, Xin He, Vijay Raghavan, and Jeremy
Spinrad. Scalar aggregation in inconsistent databases.Theor. Comput. Sci., 296(3):405–434,
2003.

[12] S. Babu, M. Garofalakis, and R. Rastogi. Spartan: A model-based semantic compression
system for massive data tables. InSIGMOD, pages 283–294, 2001.

173

[13] D. Barbara, H. Garcia-Molina, and D. Porter. The management of probabilistic data.IEEE
Trans. Knowl. Data Eng., 4(5):487–502, 1992.

[14] P. Beame. A switching lemma primer. Technical Report 95-07-01, University of Washington,
Seattle, WA, 1995.

[15] O. Benjelloun, A. Das Sarma, A. Y. Halevy, M. Theobald, and J. Widom. Databases with
uncertainty and lineage.VLDB J., 17(2):243–264, 2008.

[16] O. Benjelloun, A. Das Sarma, C. Hayworth, and J. Widom. An introduction to ULDBs and
the Trio system.IEEE Data Eng. Bull, 29(1):5–16, 2006.

[17] Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, and Jennifer Widom. Uldbs: Databases
with uncertainty and lineage. InVLDB, pages 953–964, 2006.

[18] L. Bertossi and J. Chomicki. Query answering in inconsistent databases. In G. Saake
J. Chomicki and R. van der Meyden, editors,Logics for Emerging Applications of Databases.
Springer, 2003.

[19] A. Blum, M. L. Furst, J C. Jackson, M J. Kearns, Y. Mansour, and S. Rudich. Weakly learning
dnf and characterizing statistical query learning using fourier analysis. InSTOC, pages 253–
262, 1994.

[20] B. Boeckmann, A. Bairoch, R. Apweiler, M. C. Blatter, A. Estreicher, E. Gasteiger, M. J.
Martin, K. Michoud, C. O’Donovan, I. Phan, S. Pilbout, and M. Schneider. The swiss-prot
protein knowledgebase and its supplement trembl in 2003.Nucleic Acids Res, 31(1):365–370,
January 2003.

[21] Jihad Boulos, Nilesh N. Dalvi, Bhushan Mandhani, Shobhit Mathur, Christopher Ré, and Dan
Suciu. Mystiq: a system for finding more answers by using probabilities (demonstration). In
FatmaÖzcan, editor,SIGMOD Conference, pages 891–893. ACM, 2005.

[22] Lars Brenna, Alan J. Demers, Johannes Gehrke, Mingsheng Hong, Joel Ossher, Biswanath
Panda, Mirek Riedewald, Mohit Thatte, and Walker M. White. Cayuga: a high-performance
event processing engine. InSIGMOD Conference, pages 1100–1102, 2007.

[23] N. Bshouty and C. Tamon. On the fourier spectrum of monotone functions.J. ACM,
43(4):747–770, 1996.

[24] P. Buneman, A. Chapman, and J. Cheney. Provenance management in curated databases. In
SIGMOD, pages 539–550, 2006.

[25] Peter Buneman, James Cheney, Wang Chiew Tan, and Stijn Vansummeren. Curated
databases. InPODS, pages 1–12, 2008.

174

[26] D. Burdick, P. M. Deshpande, T. S. Jayram, R. Ramakrishnan, and S. Vaithyanathan. Olap
over uncertain and imprecise data.VLDB J., 16(1):123–144, 2007.

[27] Douglas Burdick, Prasad Deshpande, T. S. Jayram, Raghu Ramakrishnan, and Shivakumar
Vaithyanathan. Olap over uncertain and imprecise data. InVLDB, pages 970–981, 2005.

[28] Roger Cavallo and Michael Pittarelli. The theory of probabilistic databases. InProceedings
of VLDB, pages 71–81, 1987.

[29] Urszula Chajewska and Joseph Y. Halpern. Defining explanation in probabilistic systems. In
Dan Geiger and Prakash P. Shenoy, editors,UAI, pages 62–71. Morgan Kaufmann, 1997.

[30] A. Chapman and H. V. Jagadish. Issues in building practical provenance systems.IEEE Data
Eng. Bull., 30(4):38–43, 2007.

[31] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and efficient fuzzy match for
online data cleaning. InACM SIGMOD, San Diego, CA, 2003.

[32] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani. Robust and efficient
fuzzy match for online data cleaning. InSIGMOD, pages 313–324, 2003.

[33] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseok Shim. Optimizing
queries with materialized views. InICDE, pages 190–200, 1995.

[34] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries over imprecise
data. InProc. of SIGMOD03, 2003.

[35] Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. Incorporating constraints in probabilistic
xml. In PODS, pages 109–118, 2008.

[36] Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. Running tree automata on probabilistic
xml. In PODS, pages 227–236, 2009.

[37] The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. In
Nature Genet., pages 25–29, (2000).

[38] Graham Cormode, Feifei Li, and Ke Yi. Semantics of ranking queries for probabilistic data
and expected ranks. InICDE, pages 305–316, 2009.

[39] Garage Band Corp.http://www.garageband.com/.

[40] Garage Band Corp.www.ilike.com.

[41] Microsoft Corp. Northwind for sql server 2000.

175

[42] Microsoft Corp. Sql server 2005 samples (feb. 2007).

[43] Transaction Processing Performance Council. Tpc-h (ad-hoc, decision support) benchmark.
http://www.tpc.org/.

[44] Transaction Processing Performance Council. Tpc-r (decision support) benchmark (obso-
lete). http://www.tpc.org/.

[45] R. G. Cowell, S. L. Lauritzen, A. P. David, and D. J. Spiegelhalter.Probabilistic Networks
and Expert Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[46] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. InVLDB,
Toronto, Canada, 2004.

[47] N. Dalvi and D. Suciu. The dichotomy of conjunctive queries on probabilistic structures. In
PODS, pages 293–302, 2007.

[48] N. Dalvi and D. Suciu. Management of probabilisitic data: Foundations and challenges. In
PODS, pages 1–12, 2007.

[49] Nilesh Dalvi, Christopher Ŕe, and Dan Suciu. Queries and materialized views on probabilistic
databases.JCSS, 2009.

[50] Adnan Darwiche. A differential approach to inference in bayesian networks.J. ACM,
50(3):280–305, 2003.

[51] A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working models for uncertain data.
In ICDE, 2006.

[52] Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth. Lifted first-order probabilistic inference.
In IJCAI, pages 1319–1325, 2005.

[53] Special issue on data provenance.IEEE Data Eng. Bull., 30(4), 2007.

[54] A. Deligiannakis, M. Garofalakis, and N. Roussopoulos. Extended wavelets for multiple
measures.ACM Trans. Database Syst., 32(2):10, 2007.

[55] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong. Model-driven data
acquisition in sensor networks. InVLDB, pages 588–599, 2004.

[56] Amol Deshpande, Carlos Guestrin, Samuel Madden, Joseph M. Hellerstein, and Wei Hong.
Model-driven data acquisition in sensor networks. In M.A. Nascimento, M.T.Özsu, D. Koss-
mann, R.J. Miller, J.A. Blakeley, and K.B. Schiefer, editors,VLDB, pages 588–599. Morgan
Kaufmann, 2004.

176

[57] Debabrata Dey and Sumit Sarkar. Generalized normal forms for probabilistic relational data.
IEEE Trans. Knowl. Data Eng., 14(3):485–497, 2002.

[58] Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, and Mark Jerrum. On the
relative complexity of approximate counting problems. InAPPROX, pages 108–119, 2000.

[59] Martin E. Dyer, Leslie Ann Goldberg, and Mark Jerrum. An approximation trichotomy for
boolean #csp.CoRR, abs/0710.4272, 2007.

[60] M. Eltabakh, M. Ouzzani, and W. G. Aref. bdbms - a database management system for
biological data. InCIDR, pages 196–206, 2007.

[61] Herbert B. Enderton.A Mathematical Introduction To Logic. Academic Press, San Diego,
1972.

[62] Oren Etzioni, Michele Banko, and Michael J. Cafarella. Machine reading. InAAAI, 2006.

[63] Ronald Fagin and Joseph Y. Halpern. Reasoning about knowledge and probability. In
Moshe Y. Vardi, editor,Proceedings of the Second Conference on Theoretical Aspects of
Reasoning about Knowledge, pages 277–293, San Francisco, 1988. Morgan Kaufmann.

[64] Ronald Fagin, Joseph Y. Halpern, and Nimrod Megiddo. A logic for reasoning about proba-
bilities. Information and Computation, 87(1/2):78–128, 1990.

[65] I. P. Fellegi and A. B. Sunter. A theory for record linkage. InJournal of the American
Statistical Society, volume 64, pages 1183–1210, 1969.

[66] http://flybase.bio.indiana.edu/.

[67] N. Friedman, L .Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational models.
In IJCAI, pages 1300–1309, 1999.

[68] Norbert Fuhr and Thomas Rölleke. A probabilistic relational algebra for the integration of
information retrieval and database systems.ACM Trans. Inf. Syst., 15(1):32–66, 1997.

[69] A. Fuxman and R. J. Miller. First-order query rewriting for inconsistent databases. InICDT,
pages 337–351, 2005.

[70] Ariel Fuxman, Elham Fazli, and Renée J. Miller. Conquer: Efficient management of incon-
sistent databases. InSIGMOD Conference, pages 155–166, 2005.

[71] Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon, and Cristian-Augustin
Saita. Declarative data cleaning: Language, model, and algorithms. InVLDB, pages 371–
380, 2001.

177

[72] M. Garofalakis and P. Gibbons. Probabilistic wavelet synopses.ACM Trans. Database Syst.,
29:43–90, 2004.

[73] Tingjian Ge, Stanley B. Zdonik, and Samuel Madden. Top-k queries on uncertain data: on
score distribution and typical answers. InSIGMOD Conference, pages 375–388, 2009.

[74] L. Getoor, B. Taskar, and D. Koller. Selectivity estimation using probabilistic models. In
SIGMOD, pages 461–472, 2001.

[75] J. Goldstein and P. Larson. Optimizing queries using materialized views: a practical, scalable
solution. InSIGMOD 2001, pages 331–342, New York, NY, USA, 2001. ACM Press.

[76] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing relations and indexes. InICDE,
pages 370–379, 1998.

[77] S.M. Gorski, S. Chittaranjan, E.D. Pleasance, J.D. Freeman, C.L. Anderson, R.J. Varhol, S.M.
Coughlin, S.D. Zuyderduyn, S.J. Jones, and M.A. Marra. A SAGE approach to discovery of
genes involved in autophagic cell death.Curr. Biol., 13:358–363, Feb 2003.

[78] Erich Gr̈adel, Yuri Gurevich, and Colin Hirsch. The complexity of query reliability. InPODS,
pages 227–234, 1998.

[79] G. Grahne. Lncs 554: The problem of incomplete information in relational databases. 1991.

[80] T. Green, G. Karvounarakis, N. E. Taylor, O. Biton, Z. G. Ives, and V. Tannen. Orchestra:
facilitating collaborative data sharing. InSIGMOD, pages 1131–1133, 2007.

[81] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. InPODS, pages 31–40,
2007.

[82] Todd Green and Val Tannen. Models for incomplete and probabilistic information.IEEE
Data Engineering Bulletin, 29(1):17–24, 2006.

[83] Lifang Gu, Rohan Baxter, Deanne Vickers, and Chris Rainsford. Record linkage: Current
practice and future directions. InCMIS Technical Report No. 03/83, 2003.

[84] R. Gupta and S. Sarawagi. Curating probabilistic databases from information extraction mod-
els. InProc. of the 32nd Int’l Conference on Very Large Databases (VLDB), 2006.

[85] Alon Halevy. Answering queries using views: A survey.VLDB Journal, 10(4):270–294,
2001.

[86] J. Halpern and J. Pearl. Causes and explanations: A structural-model approach - part II:
Explanations. InIJCAI, pages 27–34, 2001.

178

[87] J. Håstad. Computational limitations for small depth circuits. M.I.T Press, Cambridge,
Massachusetts, 1986.

[88] E. Hazan, S. Safra, and O. Schwartz. On the hardness of approximating k-dimensional match-
ing. ECCC, 10(020), 2003.

[89] M. Hernandez and S. Stolfo. The merge/purge problem for large databases. InSIGMOD,
pages 127–138, 1995.

[90] Ming Hua, Jian Pei, Wenjie Zhang, and Xuemin Lin. Efficiently answering probabilistic
threshold top-k queries on uncertain data. InICDE, pages 1403–1405, 2008.

[91] Jiewen Huang, Lyublena Antova, Christoph Koch, and Dan Olteanu. Maybms: a probabilistic
database management system. InSIGMOD Conference, pages 1071–1074, 2009.

[92] Edward Hung, Lise Getoor, and V. S. Subrahmanian. Pxml: A probabilistic semistructured
data model and algebra. InICDE, pages 467–, 2003.

[93] T. Imielinski and W. Lipski. Incomplete information in relational databases.Journal of the
ACM, 31:761–791, October 1984.

[94] ISO. Standard 9075. Information Processing Systems. Database Language SQL, 1987.

[95] Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher M. Jermaine, and
Peter J. Haas. MCDB: a monte carlo approach to managing uncertain data. InSIGMOD
Conference, pages 687–700, 2008.

[96] T. S. Jayram, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar Vaithyanathan, and
Huaiyu Zhu. Avatar information extraction system.IEEE Data Eng. Bull., 29(1):40–48,
2006.

[97] T.S. Jayram, S. Kale, and E. Vee. Efficient aggregation algorithms for probabilistic data. In
SODA, 2007.

[98] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to variational methods
for graphical models.Machine Learning, 37(2):183–233, 1999.

[99] Bhargav Kanagal and Amol Deshpande. Online filtering, smoothing and probabilistic mod-
eling of streaming data. InICDE, pages 1160–1169, 2008.

[100] Bhargav Kanagal and Amol Deshpande. Indexing correlated probabilistic databases. In
SIGMOD Conference, pages 455–468, 2009.

179

[101] Richard Karp and Michael Luby. Monte-carlo algorithms for enumeration and reliability
problems. InSTOC, 1983.

[102] Richard M. Karp and Michael Luby. Monte-carlo algorithms for enumeration and reliability
problems. InFOCS, pages 56–64, 1983.

[103] Benny Kimelfeld. Querying Paradigms for the Web. PhD thesis, The Hebrew University,
August 2008.

[104] Benny Kimelfeld, Yuri Kosharovsky, and Yehoshua Sagiv. Query efficiency in probabilistic
xml models. InSIGMOD Conference, pages 701–714, 2008.

[105] Christoph Koch. Approximating predicates and expressive queries on probabilistic databases.
In PODS, pages 99–108, 2008.

[106] Christoph Koch. A compositional query algebra for second-order logic and uncertain
databases. InICDT, pages 127–140, 2009.

[107] E. Kushilevitz and Y. Mansour. Learning decision trees using the fourier spectrum.SIAM J.
Comput., 22(6):1331–1348, 1993.

[108] L. Lakshmanan, N. Leone, R. Ross, and V.S. Subrahmanian. Probview: A flexible proba-
bilistic database system.ACM Trans. Database Syst., 22(3), 1997.

[109] Serge Lang.Algebra. Springer, January 2002.

[110] J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Hannaford. A hybrid discrimina-
tive/generative approach for modeling human activities. InIJCAI, pages 766–772, 2005.

[111] Julie Letchner, Christopher Ré, Magdalena Balazinska, and Mathai Philipose. Lahar demon-
stration: Warehousing markovian streams. InVLDB, 2009.

[112] Julie Letchner, Christopher Ré, Magdalena Balazinska, and Matthai Philipose. Access meth-
ods for markovian streams. InICDE, pages 246–257, 2009.

[113] Jian Li, Barna Saha, and Amol Deshpande. A unified approach to ranking in probabilistic
databases. InVLDB, 2007.

[114] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, fourier transform, and learn-
ability. J. ACM, 40(3):607–620, 1993.

[115] A. Machanavajjhala and J .Gehrke. On the efficiency of checking perfect privacy. In Stijn
Vansummeren, editor,PODS, pages 163–172. ACM, 2006.

180

[116] Eirinaios Michelakis, Rajasekar Krishnamurthy, Peter J. Haas, and Shivakumar
Vaithyanathan. Uncertainty management in rule-based information extraction systems. In
SIGMOD Conference, pages 101–114, 2009.

[117] G. Miklau and D. Suciu. A formal analysis of information disclosure in data exchange. In
SIGMOD, 2004.

[118] Gerome Miklau.Confidentiality and Integrity in Data Exchange. PhD thesis, University of
Washington, Aug 2005.

[119] Gerome Miklau and Dan Suciu. A formal analysis of information disclosure in data exchange.
J. Comput. Syst. Sci., 73(3):507–534, 2007.

[120] Katherine F. Moore, Vihbor Rasogi, Christopher Ré, and Dan Suciu. Query containment of
tier-2 queries over a probabilsitic database. InManagment of Uncertain Databases, 2009.

[121] Rajeev Motwani and Prabhakar Raghavan.Randomized Algorithms.Cambridge University
Press, 1997.

[122] Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun, and Margo I. Seltzer.
Provenance-aware storage systems. InUSENIX Annual Technical Conference, General Track,
pages 43–56, 2006.

[123] Raghotham Murthy, Robert Ikeda, and Jennifer Widom. Making aggregation work in uncer-
tain and probabilistic databases. Technical Report 2007-7, Stanford InfoLab, June 2007.

[124] Andrew Nierman and H. V. Jagadish. Protdb: Probabilistic data in xml. InVLDB, pages
646–657, 2002.

[125] R. W. O’Donnell.Computational Applications of Noise Sensitivity. PhD thesis, M.I.T., 2003.

[126] O.Etzioni, M.J. Cafarella, D. Downey, S. Kok, A. Popescu, T. Shaked, S. Soderland, D.S.
Weld, and A. Yates. Web-scale information extraction in knowitall: (preliminary results). In
S.I. Feldman, M. Uretsky, M. Najork, and C.E. Wills, editors,WWW, pages 100–110. ACM,
2004.

[127] Dan Olteanu, Jiewen Huang, and Christoph Koch. SPROUT: Lazy vs. eager query plans for
tuple-independent probabilistic databases. InProc. of ICDE 2009, 2009.

[128] Christos Papadimitriou.Computational Complexity. Addison Wesley Publishing Company,
1994.

[129] A. Parag, O. Benjelloun, A.D. Sarma, C. Hayworth, S. Nabar, T. Sugihara, and J. Widom.
Trio: A system for data uncertainty and lineage. InVLDB, 2006.

181

[130] J. Pearl. Probabilistic Reasoning In Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, Inc, 1988.

[131] Judea Pearl.Causality : Models, Reasoning, and Inference. Cambridge University Press,
March 2000.

[132] Jian Pei, Bin Jiang, Xuemin Lin, and Yidong Yuan. Probabilistic skylines on uncertain data.
In VLDB, pages 15–26, 2007.

[133] Rachel Pottinger and Alon Y. Halevy. Minicon: A scalable algorithm for answering queries
using views.VLDB J., 10(2-3):182–198, 2001.

[134] http://www.pubmed.gov.

[135] C. Ŕe, N. Dalvi, and D. Suciu. Query evaluation on probabilistic databases.IEEE Data
Engineering Bulletin, 29(1):25–31, 2006.

[136] C. Ŕe and D. Suciu. Materialized views in probabilistic databases for information exchange
and query optimization. InVLDB, pages 51–62, 2007.

[137] Christopher Ŕe, Nilesh N. Dalvi, and Dan Suciu. Efficient top-k query evaluation on proba-
bilistic data (full research paper). InICDE, pages 886–895. IEEE, 2007.

[138] Christopher Ŕe, Julie Letchner, Magdalena Balazinska, and Dan Suciu. Event queries on
correlated probabilistic streams. InSIGMOD Conference, pages 715–728, 2008.

[139] Christopher Ŕe and Dan Suciu. Efficient evaluation ofHAVING queries. InDBPL, pages
186–200, 2007.

[140] Christopher Ŕe and Dan Suciu. Materialized views in probabilistic databases for information
exchange and query optimization. InVLDB, pages 51–62, 2007.

[141] Christopher Ŕe and Dan Suciu. Approximate lineage for probabilistic databases.(Formally,
VLDB) PVLDB, 1(1):797–808, 2008.

[142] Christopher Ŕe and Dan Suciu. Managing probabilistic data with Mystiq: The can-do, the
could-do, and the can’t-do. InSUM, pages 5–18, 2008.

[143] Christopher Ŕe and Dan Suciu. The trichotomy ofHAVING queries on a probabilistic database.
VLDB Journal, 2009.

[144] Robert Ross, V. S. Subrahmanian, and John Grant. Aggregate operators in probabilistic
databases.J. ACM, 52(1):54–101, 2005.

182

[145] A.D. Sarma, O. Benjelloun, A.Y. Halevy, and J. Widom. Working models for uncertain data.
In Ling Liu, Andreas Reuter, Kyu-Young Whang, and Jianjun Zhang, editors,ICDE, page 7.
IEEE Computer Society, 2006.

[146] Anish Das Sarma, Martin Theobald, and Jennifer Widom. Exploiting lineage for confidence
computation in uncertain and probabilistic databases. InICDE, pages 1023–1032, 2008.

[147] N. Segerlind, S. R. Buss, and R. Impagliazzo. A switching lemma for small restrictions and
lower bounds for k-dnf resolution.SIAM J. Comput., 33(5):1171–1200, 2004.

[148] P. Sen and A. Deshpande. Representing and querying correlated tuples in probabilistic
databases. InProceedings of ICDE, 2007.

[149] Prithviraj Sen, Amol Deshpande, and Lise Getoor. Exploiting shared correlations in proba-
bilistic databases.PVLDB, 1(1):809–820, 2008.

[150] Pierre Senellart and Serge Abiteboul. On the complexity of managing probabilistic xml data.
In PODS, pages 283–292, 2007.

[151] R. Servedio. On learning monotone dnf under product distributions.Inf. Comput., 193(1):57–
74, 2004.

[152] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and rapidly
mixing markov chains.Inf. Comput., 82(1):93–133, 1989.

[153] Parag Singla and Pedro Domingos. Lifted first-order belief propagation. InAAAI, pages
1094–1099, 2008.

[154] M. Soliman, I.F. Ilyas, and K. Chen-Chaun Chang. Top-k query processing in uncertain
databases. InProceedings of ICDE, 2007.

[155] M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin,
S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik. C-store: A column-
oriented dbms. InVLDB, pages 553–564, 2005.

[156] Go database v. go200801.

[157] Thanh Tran, Charles Sutton, Richard Cocci, Yanming Nie, Yanlei Diao, and Prashant J.
Shenoy. Probabilistic inference over rfid streams in mobile environments. InICDE, pages
1096–1107, 2009.

[158] L. Trevisan. A note on deterministic approximate counting for k-dnf.Electronic Colloquium
on Computational Complexity (ECCC), (069), 2002.

183

[159] Jeffrey D. Ullman.Principles of Database and Knowledgebase Systems I. Computer Science
Press, Rockville, MD 20850, 1989.

[160] Jeffrey D. Ullman. Information integration using logical views. In Foto N. Afrati and
Phokion G. Kolaitis, editors,Database Theory - ICDT ’97, 6th International Conference,
Delphi, Greece, January 8-10, 1997, Proceedings, volume 1186 ofLecture Notes in Com-
puter Science, pages 19–40. Springer, 1997.

[161] Patrick Valduriez. Join indices.ACM Trans. Database Syst., 12(2):218–246, 1987.

[162] L.G. Valiant. The complexity of enumeration and reliability problems.SIAM J. Comput.,
8(3):410–421, 1979.

[163] Maurice van Keulen, Ander de Keijzer, and Wouter Alink. A probabilistic xml approach to
data integration. InICDE, pages 459–470, 2005.

[164] M. Y. Vardi. The complexity of relational query languages. InProceedings of 14th ACM
SIGACT Symposium on the Theory of Computing, pages 137–146, San Francisco, California,
1982.

[165] M. Y. Vardi. On the integrity of databases with incomplete information. InProceedings of
5th ACM Symposium on Principles of Database Systems, pages 252–266, 1986.

[166] J. Vitter and M. Wang. Approximate computation of multidimensional aggregates of sparse
data using wavelets. InSIGMOD, pages 193–204, 1999.

[167] Daisy Zhe Wang, Eirinaios Michelakis, Minos N. Garofalakis, and Joseph M. Hellerstein.
Bayesstore: managing large, uncertain data repositories with probabilistic graphical models.
PVLDB, 1(1):340–351, 2008.

[168] Jennifer Widom. Trio: A system for integrated management of data, accuracy, and lineage.
In CIDR, pages 262–276, 2005.

[169] Stephen E. Fienberg William W. Cohen, Pradeep Ravikumar. A comparison of string distance
metrics for name-matching tasks. InIIWeb, pages 73–78, 2003.

[170] William Winkler. The state of record linkage and current research problems. InTechnical
Report, Statistical Research Division, U.S. Bureau of the Census, 1999.

[171] Ke Yi, Feifei Li, George Kollios, and Divesh Srivastava. Efficient processing of top-k queries
in uncertain databases. InICDE, pages 1406–1408, 2008.

[172] Xi Zhang and Jan Chomicki. On the semantics and evaluation of top-k queries in probabilistic
databases. InICDE Workshops, pages 556–563, 2008.

184

[173] http://imdb.com.

[174] http://www.amazon.com.

185

Appendix A

PROOF OF RELAXED PROGRESS

A.1 Bounding the Violations of Progress

The high level goal of this section is to establish that after a negligible number of steps with respect

to the optimal, the progress assumption holds. The result contained here, allows us to show that with

extremely high probability our algorithm takes 2(OPT + o(OPT)) steps, thus achieving our stated

competitive ratio of 2.

To achieve this goal, our technical tool is an exponentially small upper bound on the probability

that progress is violated. Further, we do not assume anything about the underlying distribution of

true probabilities, thus keeping our competitive result free of distributional assumptions. Specifi-

cally, in what follows, all random choices are on the results of the experiment with the underlying

probabilities chosen adversarial.

We first introduce some notation and define our random variables, an estimation lemma and

prove our main result.

A.1.1 Notation and Random Variables

We letn be the number of iterations on the current interval, and consider for a fixedδ what is the

probability that progress is violated after we taken0 steps. We denote the (fixed) true probabilityp.

Interval Size Function Let f (n, δ) be the bounding function,

f (n, δ) =
2m
√

n
log

2
δ

Random Variables We have two main random variables,ρ(n) and X(n0). ρ(n) represents the

value of our estimator aftern draws.X(n0) represents the value ofn0 random draws after then. We

observe that all though we have described them as sequential, they are actually independent random

186

variables because they are sums of independent trials. We summarize the properties of these random

variables below.

r.v. α E[α] As Sums of Indicators

ρ(n) p 1
n

∑n0
i=1 yi

X(n0) n0p
∑n

j=1 x j

Notation An obvious extension isρ(n+ n0), the estimate aftern+ n0 steps. This random variable

can be written in terms of the other two (independent) rvs as,

ρ(n+ n0) =
ρ(n) ∗ n+ X(n0)

n+ n0
(A.1)

And the following decompositions are helpful later

ρ(n+ n0) − ρ(n) =
X(n0) − ρ(n)n0

n+ n0
(A.2)

and,

ρ(n) − ρ(n+ n0) =
ρ(n)n0 − X(n0)

n+ n0
(A.3)

Progress Conditions Progress is violated when either of two conditions are met

1. ρ(n) < ρ(n+ n0) and

ρ(n) + f (n, δ) < ρ(n+ n0) + f (n+ n0, δ
′)

2. ρ(n) > ρ(n+ n0) and

ρ(n) − f (n, δ) > ρ(n+ n0) − f (n+ n0, δ
′)

A.1.2 Helpful Lemma

Lemma A.1.1. Let n0 = nα andβ be a constant such thatβ > 1. Then the following holds,

1
√

n
−

1
√

n+ n0
∈ Θ(nα−3/2) (A.4)

187

Proof. We first factor outn−1/2 and rearrange the second term to get the inequality

cnα−1 ≤ 1− (
n

n+ n0
)1/2 ≤ cnα−1

We prove thatg(n) = 1 − (n
n+1)1/2 ∈ Θ(n−1). We observe that ifn0 = nα, factoring will yield

g(n1−α). Using composition we get thatg(n1−α) = Θ(nα−1), which implies our lemma.

Written another way, we are comparing 1− 1
n =

n−1
n and

√
n

n+1.

(n− 1)2

n2
∝

n
n+ 1

⇔ (n− 1)2(n+ 1) ∝ n3

�

A.1.3 Chernoff Version of Bounds

The idea here is to exponentiate the bounds, i.e. (etX) and then apply a Markov inequality. We then

optimize our choice oft to get a minimize the probability.

P[Progress is violated](n,n0, δ) ≤ P[(f (n, δ) − f (n+ n0, δ)) < (ρ(n+ n0) − ρ(n))] +

P[(f (n, δ) − f (n+ n0, δ)) < (ρ(n) − ρ(n+ n0))] Union Bound

≤ 2P[−e(f (n,δ)− f (n+n0,δ)) < e(ρ(n+n0)−ρ(n))2
] Dual is the same

≤ 2E[e(ρ(n+n0)−ρ(n))]e−(f (n,δ)− f (n+n0,δ)) Markov afteret

The dual case is≤ E[et(ρ(n)−ρ(n+n0))]e−t(f (n,δ)− f (n+n0,δ)). We will see that it is no worse than the

case we have chosen.

The Expectation term

Lemma A.1.2. If t << n+ n0 thenE[et(ρ(n+n0)−ρ(n))] andE[et(ρ(n)−ρ(n+n0))] are both O(1).

188

Proof. We do the calculation forE[et(ρ(n+n0)−ρ(n))],

E[et(ρ(n+n0)−ρ(n))] = E[et(
X(n0)
n+n0
−

n0ρ(n)
n+n0

)] Decomposition in Eq.. A.2

= E[e
tX(n0)
n+n0]E[e−

tn0ρ(n)
n+n0] independence ofX(n0), ρ(n)

Thus we only need to establish that ift << n+ n0 then

1. E[e
tX(n0)
n+n0] ∈ O(1)

2. E[e
tn0ρ(n)
n+n0] ∈ O(1)

First term: E [e
tX(n0)
n+n0]

E[e
tX(n0)
n+n0] = E[e

∑n0
i=1

txi
n+n0] Definition of X(n0)

=
∏n0

i=1 E[e
txi

n+n0] independence of{xi}

=
∏n0

i=1(e
t

n+n0 p+ 1− p) Expectation

=
∏n0

i=1((e
t

n+n0 − 1)p+ 1) factoringp

<
∏n0

i=1 ee
t

n+n0 −1p 1+ x < ex

= en0p(e
t

n+n0 −1) exp rules

We observe that fort << n+ n0, then this term goes toe0 = 1 as desired.

Second Term: E[e
tn0ρ(n)
n+n0] We deal with the second expectation term.

E[eρ(n) t
(n+n0)] = E[e

∑n
i=1 yi

t
n(n+n0)]

= exp(np(e
t

n(n+n0) − 1)) Same argument

189

Now, we observe that fort << n(n+ n0) this term will also go to 1. �

The Denominator

Lemma A.1.3. For any choice of t,

e−t(f (n,δ)− f (n+n0,δ)) ≤ e2tmlog 2
δnα−3/2

Proof.

e−t(f (n,δ)− f (n+n0,δ)) = e2tmlog 2
δ (n−1/2−(n+n0)−1/2)

≤ e2mt log 2
δnα−3/2

LemmaA.1.1

�

The Punchline

Combining lemma A.1.3 and A.1.2, we have

t << n+ n0 =⇒ P[Progress is violated](n,n0, δ) ≤ 2e2mt log 2
δnα−3/2

We taket = n0 = nα for α < 1, which satisfiest << n+ n0.

P[Progress is violated](n,n0, δ) ≤ 2e2mlog 2
δn2α−3/2

If we taket = nα = 3
4 + α

′, for α′ ∈ [0, 1
4) then our probability simplifies to:

P[violation](n, α′, δ) ≤ 2e−2mlog 2
δnα

′

(A.5)

Since this is exponentially small probability, the number and variance of errors are exponen-

tially small. Thus by applying a Chebyshev inequality we can conclude with exponentially high

190

probability there are no errors afternα steps from any fixedn.

Theorem A.1.4. The probability that progress holds after some negligible number of steps tends to

1 exponentially quickly.

Remark A.1.5. Also as long asα < 1, our optimality ratio is preserved.

191

Appendix B

PROOFS FOR EXTENSIONAL EVALUATION

B.1 Properties of Safe Plans

We formalize the properties that hold in safe extensional plans in the following proposition:

Proposition B.1.1. Let P = πI
−xP1 be a safe plan then for any tuples t1, . . . , tn ∈ D|var(P1)| that

disagree on x, i.e., such that i, j implies that ti [var(P)] = t j [var(P)] and ti [x] , t j [x] and then for

any s1, . . . , sn ∈ S we have independence, that is the following equation holds:

µ

 ∧
i=1,...,n

ωP1,S(ti) = si

 = ∏
i=1,...,n

µ
(
ωP1,S(ti) = si

)
(B.1)

Similarily, let P= πDP1 then we have disjointness:

µ

 ∧
i=1,...,n

ωP1,S(ti) = 0

 = ∑
i=1,...,n

µ
(
ωP1,S(ti) = 0

)
− (n− 1) (B.2)

Let P = P1 Z P2, then for any tuples ti ∈ D
|var(Pi)| for i = 1,2 then and s1, s2 ∈ S , we have

independence:

µ
(
ωP1,S(t1) = s1 ∧ ωP1,S(t2) = s2

)
= µ

(
ωP1,S(t1) = s1

)
µ
(
ωP1,S(t2) = s2

)
(B.3)

Proof. We prove Eq. B.1. To see this observe that, directly from the definition, the set of tuples that

contribute toti and t j (i , j) do not share the same value for a key inany relation. It is not hard

to see thatti andt j are functions of independent tuples, hence are independent. The equation then

follows by definition of independence.

We prove Eq. B.2. Assume for contradiction that the tuples are not disjoint, that is there exists

some possible worldW such that for somei , j
{
ti , t j

}
⊆W. By the definition, there must exist some

192

key goalg such thatkey(g) ⊆ var(P). Thus, forti andt j to be present inW it must be that there are

two distinct tuples with the same key value – but different values for the attribute corresponding to

x. This is a contradiction to the key condition, hence the tuples are disjoint and the equation follows.

We prove Eq. B.3. In a safe plan,goal(P1)∩goal(P2) = ∅ and distinct relations are independent.

As a result, the tuples themselves are independent. �

B.2 Appendix: Full Proof for COUNT(DISTINCT)

Theorem B.2.1(Restatement of Theorem 4.4.14). Let Q beCOUNT(DISTINCT)-safe then its evalu-

ation problem is inP.

Proof. SinceQ is COUNT(DISTINCT)-safe, then there is a safe planP for the skeleton ofQ. In

the following letP1 ≺ P2 denote the relationship thatP1 is a descendant inP of P2 (alternatively,

containment). LetPy be a subplan which satisfiesP−y = πI
−y(P

′) ≺ P or P−y = πD
−y(P

′) ≺ P.

P−y is a safe plan, henceS-safe forS = Z2, i.e., theEXISTS algebra. For eacht, we can write

ω̂I
P−y

(t) = (1− p, p), i.e.,t is present with probabilityp. From this, create a marginal vector inZk+1,

as inCOUNT, mt such thatmt[0] = 1− p andmt[1] = p and all other entries 0. Notice that ift , t′

thent[y] , t[y′]. Informally, this means ally values are distinct “after”Py.

Compute the remainder ofP as follows: IfP0 is not a proper ancestor or descendant ofPy, then

computeP0 as if you were using theEXISTS algebra. To emphasize thatP0 should be computed

this way, we shall denote the value oft underP0 asω̂J
P0,EXISTS

(t). SinceP is COUNT(DISTINCT)-safe,

any proper ancestorP0 of P−y is of the formP0 = πD
−xP1 or P0 = P1 Z P2. If P0 = πD

−xP1 then

ω̂J
P0

(t) =
∐

t′∈P1
ω̂J

P1
(t); this is correct because the tuples we are combining are disjoint, so which

values are present does not matter. Else, we may assumeP0 = P1 Z P2 and without loss we assume

thatPy ≺ P1, thus we compute:

ω̂J
P1,COUNT(DISTINCT)

(t) = ω̂J
P1

(t1) ⊗ ω̂J
P2,EXISTS

(t2)

This is an abuse of notation since we intend that ˆωJ
P2
∈ Z2 is first mapped intoZk+1 and then the

convolution is performed. Since we are either multiplying our lossy vector by the annihilator or the

multiplicative identity, this convolution has the effect of multiplying by the probability thatt is in

P2, since these events are independent this is exactly the value of their conjunction. �

193

B.2.1 Complexity

Proposition B.2.2(Second Half of Prop. 4.4.15). The followingHAVING queries are]P-hard for

i ≥ 1:

Q2,i [COUNT(DISTINCT y) θ k] D R1(x; y), . . . , Ri(x; y)

Proof. We start withi = 1. The hardness ofQ2,i is shown by a reduction counting the number

of set covers of sizek. The input is a set of elementsU = {u1, . . . ,un} and a family of setsF =

{S1, . . . ,Sm}. A cover is a subset ofF such that for eachu ∈ U there isS ∈ S such thatu ∈ S.

For each elementu ∈ U, let Su = {S ∈ F | u ∈ S}, add a tupleR(u; S; |Su|
−1) whereS ∈ Su.

Every possible world corresponds to a set cover and hence, ifWk is the number of covers of size

k thenµ(Q) = Wk(
∏

u∈U |Su|
−1). Notice that if use the same reductioni > 1, we have thatµ(Q) =

Wk(
∏

u∈U |Su|
−i). �

We show that ifQ contains self joins and is notCOUNT(DISTINCT)-safe, thenQ has]P data

complexity. First, we observe a simple fact:

Proposition B.2.3. Let Q be aHAVING query with an unsafe skeleton then Q has]P-hard data

complexity. Further, if Q is connected and safe but notCOUNT(DISTINCT)-safe then there must exist

x , y such that∀g ∈ goal(Q), x ∈ key(g).

Proof. We simply observe that the count of distinct variables is≥ 1 exactly when the query is

satisfied, which is]P-hard. The other aggregates follow easily. Since the skeleton ofQ is safe, there

is a safe plan forQ that is notCOUNT(DISTINCT)-safe. This implies that there is some projection

independentπI
−x on all variables. �

Definition B.2.4. For a conjunctive query q, let Fq∞ be the least fixed point of Fq0, F
q
1, . . . , where

Fq
0 = {x | ∃g ∈ goal(Q) s.t. key(g) = ∅ ∧ x ∈ var(g)}

and

Fq
i+1 = {x | ∃g ∈ goal(Q) s.t. key(g) ⊆ Fi ∧ x ∈ var(g)}

Intuitively, Fq
∞ is the set of variables “fixed” in a possible world.

194

Proposition B.2.5. If q is safe and x∈ Fq
∞ then there is a safe plan P such thatπD

−x ∈ P and for all

ancestors ofπD
−x they are eitherπD

−zP1 for some z or P1 Z P2.

Proof. Consider the smallest queryq such that the proposition fails where the order is given by

number of subgoals then number of variables variables. Letx1, . . . , xn according to the partial order

xi ≺ x j if exists Fq
k such thatxi ∈ Fq

k but x j < Fq
k. If q = q1q2 such thatx ∈ var(q1) and

var(q1) ∩ var(q2) = ∅ thenP1 satisfies the claim andP1 Z P2 is a safe plan. Otherwise letP1 be

a safe plan forq[x1 → a] for some fresh constanta. Since this has fewer variablesP1 satisfies the

claim andπ−xP1 is safe immediately from the definition. �

We now define a set of rewrite rules⇒ which transform the skeleton and preserve hardness. We

use these rewrite rules to show the following lemma:

Lemma B.2.6. Let Q be aHAVING query usingCOUNT(DISTINCT) such that q= sk(Q) is safe, but

Q is notCOUNT(DISTINCT)-safe; and let there be some g such that y< key(g) and y< Fq
∞ then Q

has]P-hard data complexity.

For notational convenience, we shall work with the skeleton of aHAVING queryQ[α(y) θ k] and

assume thaty is a distinguished variable.

1) q⇒ q[z→ c] if z ∈ Fq
∞

2) q⇒ q1 if q = q1q2 andvar(q1) ∩ var(q2) = ∅ andy ∈ var(q1)

3) q⇒ q[z→ x] if x, z ∈ key(g) andz, y

4) q,g⇒ q,g′ if key(g) = key(g′), var(g) = var(g′) andarity (g) < arity (g)′

5) q,g⇒ q if key(g) = var(g)
We letq⇒∗ q′ denote thatq′ is the result of any finite sequence of rewrite rules applied toq.

Proposition B.2.7. If q⇒∗ q′ and q′ has]P-hard data complexity, then so does q.

Proof. For rule 1, we can simply restrict to instances wherez→ c. For rule 2, ifq1 is hard then

q is hard because we can fill out each relation inq2 with a single tuple and useq to answerq1.

Similarly, for rule 3 we can consider instances wherez = x so q will answerq1. For rule 4, we

apply the obvious mapping on instances (to the new subgoal). For rule 5, we fill outg with tuples of

probability 1 and use this to answerq. �

195

Prop. B.2.6.By Prop. B.2.3, there is somex such thatx ∈ key(g) for any g ∈ goal(Q). Let q =

sk(Q), we apply rule 1 and 2 to a fixed point, which removes any products. We then apply the rule 3

as∀z, y, q[z→ x]. Thus, all subgoals have two variables,x andy. We then apply rule 4 to a fixed

point and finally rule 5 to a fixed point. It is easy to see that all remaining subgoals are of the form

R(x; y) which is the hard pattern. Further, it is easy to see thatg⇒∗ Ri(x; y) for somei. �

We can now prove the main result:

Lemma B.2.8. If Q is aHAVING query without self joins and Q is notCOUNT(DISTINCT)-safe then

the evaluation problem for Q is]P-hard.

Proof. If q is unsafe, thenQ has]P-hard data complexity. Thus, we may assume thatq is safe but

Q is notCOUNT(DISTINCT)-safe. IfQ containsg ∈ goal(Q) such thaty ∈ var(g) buty < key(g) then

Q has]P-hard data complexity by Lemma B.2.6. Thus, we may assume thaty appears only in key

positions.

First apply rewrite rule 2, to remove any products and so we may assumeQ is connected. IfQ

is a connected andy ∈ key(g) for everyg thenQ is COUNT(DISTINCT)-safe. Thus, there are at least

two subgoals and one contains a variablex distinct fromy call themg andg′ respectively. Apply

the rewrite rule 3 asq[z→ x] for eachz ∈ var(q) − {x, y}. Using rules 4 and 5, we can then drop all

subgoals butg,g′ to obtain the patternR(x),S(x, y), which is hard. �

B.3 Appendix: Full Proofs for SUM and AVG

B.3.1 AVG hardness

Definition B.3.1. Given a set of nonnegative integers a1, . . . ,an,

the]NONNEGATIVE SUBSET-AVG problem is to count the number of non-empty subsets S⊆ 1, . . . ,n

such that
∑

s∈S as|S|
−1 = B for some fixed integer B.

Proposition B.3.2.]NONNEGATIVE SUBSET-AVG is]P-hard.

Proof. We first observe that if we allow arbitrary integers, then we can reduce any]NONNEGATIVE

SUBSET-SUM with B = 0, which is]P-hard. Since the summation of any set is 0 if and only if their

average is 0. Thus, we reduce from this unrestricted version of the problem. LetB = mini ai then

196

we simply makea′i = ai + B, now all values are positive, we then ask if the average isB. For any set

S we have :

∑
s∈S

a′s|S|
−1 =

∑
s∈S

(as+ B)|S|−1 =
∑
s∈S

(as+ B)|S|−1 =
∑
s∈S

|S|−1as+ B

Thus, it is clear that the average is satisfied only when
∑

s∈S as = 0. �

B.3.2 Proof of Theorem 4.4.21

It is sufficient to show the following lemma:

Lemma B.3.3. Let q= sk(Q), if If q is safe, but Q is notSUM-safe then there is an instance I then for

any set of values y1, . . . , yn let qi = q[y→ yi] and S⊆ 1, . . . ,n we haveµ(
∧n

s∈S qs) =
∏

s∈S µ(qs) =

2−|S|. Further, on any world W and qi there is a single valuation v for qi such thatim(qi) ⊆W.

Armed with his lemma we can always construct the distribution used in Prop. 4.4.20.

Proof. We observe thaty < Fq
∞ else there would be aSUM- andAVG-safe plan by Prop. B.2.5. Now

consider the rewritingq[x → ’a’] for any x ∈ F∞ andq[x → y] if x < F∞. Thus, in any subgoal

y = var(g). Pick one and add eachy1 value with probability1
2 independently. Notice that every

relation either containsyi in each tuple or the constanta. Since there are no self joins, this implies

in any valuation either it must use a tuple containingyi or the relation contains a single tuple with

a for every attribute. Hence, the multiplicity ofyi is ≤ 1 in any possible world. Since there is only

one relation with probabilistic tuples and all tuples haveµ(t) = 0.5, we haveµ(∧s∈Sqs) = 2−|S| as

required. �

Proposition B.3.4. If Q[SUM(y) = k] is notSUM-safe and on a tuple independent instance, then Q

does not have an.

Proof. We observe that (SUM,=) is hard to approximate on even a single tuple-independent as a

consequence of the previous reduction, which gives a one-to-one reduction showing (SUM,=) is as

hard as

]SUBSET-SUM, anNP-hard problem and so has no. �

197

B.4 Convergence Proof of Lemma 4.6.8

In the proof of this lemma, we need a technical proposition:

Proposition B.4.1. Let q be a conjunctive query without self joins and R any relation contained in

goal(q), then q(W, τ) =
∑

t∈R q ((W− R) ∪ {t} , τ). Here, the summation is in the semiring S .

Proof. By definition, the value of the queryq(W) can be written asq(W, τ) =
∑

v∈V
∏

g∈g τ(v(g)).

Sinceq does not contain self joins, each valuation contains exactly one member ofR. Hence, there

is a bijection between the between the two sums. Since semirings are associative, this completes the

proof. �

We can now prove Lemma 4.6.8.

Lemma 4.6.8.We first observe thatWO ⊆ WR, by Lemma 4.6.6, which showsµ(WO)
µ(WR) ≤ 1. To see

the other inequality, we construct a functionf : WR→ WO such that for anyW ∈ WO, µ(W)
µ(f −1(W)) ≥

(n+ 1)−1β−1. This is sufficient to prove the claim. We describef : if W ∈ WO then f (W) = W else,

W ∈ WR −WO then we show that there is a tuplet ∈ W such thatW − {t} ∈ WO, f (W) = W − {t}.

Since there are at mostn possible tuples to remove, this shows that
∣∣∣ f −1(W)

∣∣∣ ≤ (n + 1), Using the

bounded odds equation, we have thatµ(W)
µ(f −1(W)) ≥ (n+ 1)−1β−1. Thus, all that remains to be shown is

that we can always find such a tuple,t.

ConsiderW ∈ WR −WO, which means thatq(W, τO) > k andq(W, τR) ≤ n2. There must exist a

tuple t such thatq(W, τO) − q(W − {t} , τO) > k/n otherwiseq(W, τO) ≤ k, which is a contradiction.

To see this, consider any relationR in the query, we apply the above proposition to observe that:

∑
t∈R

q(W− {t} , τO) =
∑
t∈R

∑
s∈R:s,t

q(W− R∪ {s} , τO)

= (|R| − 1)
∑
t∈R

q(W− R∪ {t} , τO)

= (|R| − 1)q(W, τO)

The second to last equality follows by counting how many times each term appears in the summation

and that the semiring is embeddable in the rational numbers (Q).

198

q(W, τO) − q(W− {t} , τO) ≤ k/n

=⇒ |R|q(W, τO) +
∑
t∈R

q(W− {t} , τO) ≤ k

=⇒ |R|q(W, τO) + (|R| − 1)q(W, τO) = q(W, τO) ≤ k

The second line follows by summing overt in R, using the previous equation, and using that|R| ≤ n.

Thus, we can conclude there is somet such thatq(W, τO) − q(W − {t} , τO) > k/n. By Lemma 4.6.6

we have:

q(W, τR) ≤ n2 =⇒
n2

k
q(W, τR) − δ ≤ n2

Whereδ ∈ [0,n). In turn, this implies

q(W, τO) ≤
k

n2
δ + k ≤ k+

k
n

Since,q(W, τO) − q(W − {t} , τO) > k/n, we have thatq(W − {t} , τO) ≤ k and soW − {t} |= QO and

hence,W− {t} ∈WO. �

199

VITA

Christopher Ŕe was born in Los Angeles, California and raised in nearby Pasadena, California.

He received a B.A. with a double major in Mathematics and Computer Science from Cornell Uni-

versity in 2001, an M.Eng in Computer Science in 2003 from Cornell University, and an M.S. in

Computer Science in 2005 from the University of Washington. Starting in August of 2009, he will

be an assistant professor at the University of Wisconsin–Madison.

