Managing Large-scale Probabilistic Databases

Christopher R

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Washington

2009

Program Authorized to fPer Degree: Computer Science & Engineering

University of Washington
Graduate School

This is to certify that | have examined this copy of a doctoral dissertation by

Christopher R

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final
examining committee have been made.

Chair of the Supervisory Committee:

Dan Suciu

Reading Committee:

Magdalena Balazinska

Anna Karlin

Dan Suciu

Date:

In presenting this dissertation in partial fulfilment of the requirements for the doctoral degree at
the University of Washington, | agree that the Library shall make its copies freely available for

inspection. | further agree that extensive copying of this dissertation is allowable only for scholarly
purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying
or reproduction of this dissertation may be referred to Proquest Information and Learning, 300
North Zeeb Road, Ann Arbor, Ml 48106-1346, 1-800-521-0600, to whom the author has granted
“the right to reproduce and sell (a) copies of the manuscript in microfornoafil) printed copies

of the manuscript made from microform.”

Signature

Date

University of Washington

Abstract

Managing Large-scale Probabilistic Databases

Christopher R

Chair of the Supervisory Committee:
Professor Dan Suciu
Computer Science & Engineering

Modern applications are driven by data, and increasingly the data driving these applications are
imprecise. The set of applications that generate imprecise data is diverse: In sensor database appli-
cations, the goal is to measure some aspect of the physical world (such as temperature in a region or
a person’s location). Such an application has no choice but to deal with imprecision, as measuring
the physical world is inherently imprecise. In data integration, consider two databases that refer
to the same set of real-world entities, but the way in which they refer to those entities is slightly
different. For example, one database may contain an entity ‘J. Smith’ while the second database
refers to ‘John Smith’ . In such a scenario, the large size of the data makes it too costly to manu-
ally reconcile all references in the two databases. To lower the cost of integration, state-of-the-art
approaches allow the data to be imprecise. In addition to applications which are forced to cope with
imprecision, emerging data-driven applications, such as large-scale information extraction, natively
produce and manipulate similarity scores. In all these domains, the current state-of-the-art approach
is to allow the data to be imprecise and to shift the burden of coping with imprecision to applica-
tions. The thesis of this work is that it is possible féeetively manage large, imprecise databases
using a generic approach based on probability theory. The key technical challenge in building such
a general-purpose approach is performance, and the technical contributions of this dissertation are
techniques for €icient evaluation over probabilistic databases. In particular, we demonstrate that it

is possible to run complex SQL queries on tens of gigabytes of probabilistic data with performance

that is comparable to a standard relational database engine.

TABLE OF CONTENTS

Page
Listof Figures e e e e e iii
Chapter 1: Introduction 1
1.1 Problem Space, Key Challenges,andGoals 2
1.2 Technical Contributions 4
Chapter 2: Preliminaries e 8
2.1 General Database Preliminaries 8
2.2 BIDdatabases e 11
2.3 Lineage¢-tables, or Intensional evaluation 15
2.4 ExpressivenessoftheModel Lo 20
Chapter 3: Query-time Technique I: Top-K Query Evaluation 22
3.1 Motivating Scenario and Problem Definition 22
3.2 Top-k Query Evaluation using Multisimulation 27
3.3 Optimizations e e e 35
3.4 EXperiments e e e e 40
Chapter 4: Query-time Technique II: Extensional Evaluation for Aggregates 46
4.1 Motivating Scenario e e 46
4.2 Formal Problem Description e 52
4.3 Preliminaries e 56
4.4 Approaches fAHAVING o it 62
4.5 GeneratingaRandomWorld 74
4.6 ApproximatingdAVING queries WithMIN, MAXandSUM 81
47 SummaryofResults. 90
Chapter 5: View-based Technique |: Materialized Views 92
5.1 Motivating Scenario and Problem Definition 93
5.2 Query Answering using ProbabilisticViews 98

5.3 Practical Query Answering using Probabilistic Views 116

5.4 EXperiments e e e e e 119
Chapter 6: View-based Technique Il: Approximate Lineage 124
6.1 Motivating Scenarios e 124
6.2 StatementofResults 130
6.3 SdficientLineage 141
6.4 PolynomialLineage 148
6.5 Experiments 153
Chapter 7: Related Work e 159
7.1 BroadlyRelated Work 159
7.2 Specific Related Work 164
Chapter 8: Conclusionand Future Work, 169
Bibliography e e 172
Appendix A: Proofof Relaxed Progress, 185
A.1 Bounding the Violationsof Progress 185
Appendix B: Proofs for Extensional Evaluation 191
B.1 PropertiesofSafePlans 191
B.2 Appendix: Full Proof foICOUNT(DISTINCT) v v vt i e e 192
B.3 Appendix: Full Proofs foBUM andAVG 195
B.4 Convergence Proofof Lemma4.6.8 197

LIST OF FIGURES

Figure Number Page
1.1 Ascreenshotof MbTIQ 2
2.1 An SQL Query and its equivalentrelationalplan. 10
2.2 Sample datafromamoviedatabase, 12
2.3 TheReviews relation encoded in the syntax of Lineage. 16
3.1 Schema fragment of IMDB and Amazon database, and a fuzzy matchtable 23
3.2 Sample fuzzy match datausingIMDB 23
3.3 Sampletogequery e e e 24
3.4 Top-5answersforaqueryonIMDB 26
3.5 llustration of Multisimulation 29
3.6 Threeimprecisedatasets 39
3.7 Query Statistics with and without SafePlans 39
3.8 Experimental Evaluation 45
4.1 Sample data f(AVINGQUErES o v it a7
4.2 Query Syntax fOHAVING qUeries o v i v v it i e 52
4.3 SampleimprecisedatafromIMDB 54
4.4 Query and its extensional queryplan oL 57
4.5 Alistof semirings used to evaluate aggregates 63
4.6 A graphical representation of extensional evaluation 77
4.7 Summary of results f&fIN,MAX andCOUNT 90
5.1 Sample restaurant data for materializedviews, 94
5.2 Representable views and thefieet on query processing 120
5.3 Dataset summary for materializedviews, 121
6.1 Modeling the GO database using Lineage 125
6.2 Query statistics forthe GODB[37]. i 153
6.3 Compression ratio for approximatelineage 154
6.4 Comparison of dficient and polynomial lineage 155
6.5 Compression experimentforIMDB 156

6.6 Explanation recovery experiment e
6.7 Impact of approximate lineage on query processing performance

ACKNOWLEDGMENTS

| am forever indebted to Dan Suciu. Dan is blessed with an astonishing combination of brilliance
and patience, and | will be forever grateful for the skills he has patiently taught me. | owe him my
research career, which is one of the most rewarding pursuits in my life.

Magdalena Balazinskafi@red me patient support and advice throughout my time at the Uni-
versity of Washington. | am also profoundly grateful for her trust that my only vaguely defined
research directions would lead to something interesting. | am also grateful to Anna Karlin for her
participation on my committee.

The students in the database group and the Computer Science & Engineering department made
my graduate studies both intellectually stimulating and incredibly enjoyable. An incomplete list of
those who helped me on this path include Eytan Adar, Michael Cafarella, Nilesh Dalvi, YongChul
Kwon, Julie Letchner, Jayant Madhavan, Gerome Miklau, Kate Moore, Vibhor Rastogi, and Atri
Rudra. The conversations that | had with each one of them enriched my life and made this work a
joy to pursue. The faculty and stat the University of Washington have created a wonderful place,
and | am very thankful to be a part of it.

Finally, 1 would like to thank my family. My father, Donald& not only provided love and
support thoughout my life, but also listened to hours of excited chatter about my research ideas that
were — at best — only halfway clear in my own mind. John and Peggy Emery provided incredible
support including countless meals, rides, and hours of great conversation. | am, however, most
grateful to them for two things: their love and the greatest gift of all, their daughter and my wife,
Mikel. Mikel's patience, love, and support are boundless. For any current or future success that |

might have, Mikel deserves more credit than | can possibly express in a few lines of text.

Chapter 1

INTRODUCTION

A probabilistic database is a general framework for managing imprecision and uncertainty in
data. Building a general framework to manage uncertainty in data is a challenging goal because
critical data-management tasks, such as query processing, are theoretically and practically more ex-
pensive than in traditional database systems. As a result, a major challenge in probabilistic databases
is to dficiently query and understand large collections of uncertain ddie thesis demonstrates
that it is possible to fectively manage large, imprecise databases using a generic approach based

on probability theory.

One example application domain for a probabilistic database, such as our systam®Ms
integrating data from autonomous sources [21]. In this application, a key problem is that the same
entity may be representedfidirently in diterent sources. In one source, the Very Large Database
Conference may be represented by its full name; in another source, it is referenced as simply,
“VLDB". As a result, if we ask a query such a8Vhich papers appeared in the last VLDB?”"

a standard database will likely omit some or all of the relevant answers. When integrating large
data sources, it is infeasible to manually reconcile every pair of references, so automatic technigues
are used that produce scored candidate matches for each pair of referencasti®, Me model

these scores gwobabilistic eventsin response to a (potentially complicated) SQL querysiQ
combines the stored probabilistic events to produce a set of answers ttatrartated with the
probability that the answer is in the output of the quefyr example output of MsTiQ is shown in
Figure 1.1. Ms1iQ makes essential use of the scores associated with answers in two ways: First,
by allowing the system to return some answers with lower confidence, we can achigbeare-

call; that is, we are able to return more of the papers that truly appeared in VLDB. SecesdQM

uses the probability scores to rank the answers which altogfsprecisionthat is, spurious papers

are ranked below papers that actually appeared in VLDB. The true powerafi@lis evident in

more sophisticated applications. For example, if we perform a social networking analysis to find

IEI MystiQ ———— v {\)_(
File Query Window Help
SELECT TOP = DISTINCT putitle
FROM Papers p, Authors a, ConfMatch
HERE p.author= a.id and A.affil = Washington'

AMND p.conf = c.name and c.conf = WVLDE'
AND poysar = 2008

| probabilit

4] li [[

Figure 1.1: A screen shot of M1iQ [21, 142], which ranks query answers by probability; the
probability is computed by combining the uncertainty in the database tables mentioned in the query.

influential papers, we could incorporate the (imprecise) results into our paper database. We could
then pose interesting structured queries, suchfiasl influential papers from previous VLDBs that

were authored at the University of Washington”

1.1 Problem Space, Key Challenges, and Goals

The key technical goal of this dissertation is to build a probabilistic relational database system that
is able to scale to large databases (gigabytes or more) with query performance that is comparable to
a standard relational database without imprecision. We believe that we have succeeded in this goal
as the techniques in this dissertation allow sophisticated SQL queries to be run on tens of gigabytes
of relational data using the ¥1iQ system, which demonstrates our central thesis: it is possible to
effectively manage large, imprecise databases using a generic approach based on probability theory.
We briefly discuss the problem space of this dissertation (a more substantial discussion of related

work is in Chapter 7).

Datamodel

In this work, we focus exclusively on discrete relational databases that are queried using SQL or
its formal equivalent, conjunctive queries [1]. This is not the only choice: Others have chosen in
the last few years to consider probabilistic XML databases [3, 36,104, 150], streaming probabilistic
databases queried using sequence languages [99, 138, 157], and continuous probabilistic, sensor
databases [34, 56]. Even within the space of discrete probabilistic relational databases, there are a
wide-variety of diterent approaches: The Monte Carlo DB or MCDB [95] is an approach that is
well-grounded in statistics; it allows one to specify complex distributions over attributes and even
entire tables. The distributions are specified implicitly, system can handle any distribution that a
user is able to sample from. Processing these black-box distribution funcftitrierdly is very

difficult, and the key challenge the project addresses is performance. Although this model seems
substantially dferent from the approach we consider in this dissertation, we believe that many of
our techniques are applicable: As noted by Jampaal. [95] in the paper that introduces MCDB,

the techniques of Chapter 5 dealing with materialized views are a promising technique to enable
scalability. Another line of work casts the problem of probabilistic query answering as probabilistic
inference [148, 167]. This approach allows these systems to leverage years of statistical inference
expertise in coping with complex distributions. In contrast, the approach in this dissertation starts
with a simpler model, and attempts to leverage data management techniques for scalability such as
materialized views (Chapter 5) , and database theory techniques to find the border of tractability

(Chapter 4).

Two projects are very closely related to thedviQ project and the contents of this dissertation:
the Trio system [17,129,168] and the MayBMS system [8,9,91]. The original focus of the Trio was
understanding the modeling issues that arise when keeping imprecise or uncertain information in
the database. Notably, they promoted the idelinebigewhich helps process probabilistic queries;
a concept we discuss in detail in Chapter 2. In contrast, the focus of this dissertation is on perfor-
mance. The MayBMS system supports a more powerful query language than standard SQL that
allows one to do interesting operations such as introducing uncertainty via the query or condition-
ing on complex probabilistic events. In this dissertation, we will consider only SQL or conjunctive

gueries. One benefit of choosing a simple model is that many of the results in this dissertation are

applicable to the systems that we have discussed above.

Key Technical Challenges and Goals

The key challenge that we address in this dissertation is performance. Performance is challenging
in probabilistic databases: in contrast to standard SQL processing, which is always theoretically
easy ACY), evaluating queries on a probabilistic database is theoretically f@sdard) [46, 78}.

While hardness is a key challenge, it is also a golden opportunity: Optimization techniques from the
database management literature can actually become iiecéive for probabilistic databases than

they were for standard relational databases. For example, materialized views #ectvedech-

nique in relational optimizers, which allows the system to precompute information and then use this
precomputed information to optimize queries. In probabilistic databases, this technigue is even more
effective: As we will see in Chapter 5, a query may be theoretically hard, but by precomputing infor-
mation, at run-time the remaining processing can be déi@ently (in PTIME). Practically, using
materialized views we are able to reduce the cost of query processing on probabilistic databases

substantially (from hours to seconds).
1.2 Technical Contributions

We divide the techniques of this dissertation into two categogasry-time techniquesvhich are
efficient run-time query-processing strategies, @pa-based techniqugahich are techniques that

exploit logical views and precomputation to optimize queries.

Query-time technigues

Top-K Processing Computing the output score of even a single answer on a probabilistic database
requires technigues that are orders of magnitude slower than processing standard SQL, such as

Monte Carlo sampling. Often, users are not interested in all answers, but only the most highly

IHere, our notion of complexity is data complexity in which the query is fixed, but the database is allowed to grow.
We measure the complexity with respect to this growti, is the class of languages that can be decided by uniform
families of circuits with unbounded fan-in, polynomial size and constant depth [128, pg #{®d6]a class of counting
problems: For any decision problem that can be verifieR,ia P problem asks for the number of solutions of that
problem. The canonicdP hard problem iiSAT, which counts the number of solutions of a Boolean formula [128,
pg. 441].

ranked, say top 10, answers. In spite of this, they are forced to wait as the system churns through
thousands of useless results. To remedy this, we designed an algorithmnealtisiimulationthat

saves computational resources in two ways: (1) it focuses on those answers that have a chance of
being in the top 10, and (2) instead of computing a precise probability for each answer, it com-
putes only a relative ordering of the top answers. The central technical result of this chapter the
multisimulation algorithm is optimal among all deterministic algorithms for finding thektomst

highly probable tuples. Moreover, it is within a factor of 2amfy (even non-deterministic) approach.
Multisimulation is the heart of MstiQ’s processing of general SQL queries and is the subject of
Chapter 3. This work appeared in the International Conference on Data Engineering in 2007 [137]

and is joint work with Nilesh Dalvi and Dan Suciu.

Probabilistic Decision Support The next generation of business applications will generate large
guantities of imprecise data, and so will bé&idult for users to understand. Traditional decision sup-

port systems allow users to understand their (precise) databases by providing sophisticated aggre-
gation functions, e.g., using tHAVING clause in SQL. Inspired by the success of decision support
gueries in relational databases, we studied the evaluation of decision support queries on probabilis-
tic databases. The key challenge is that standard approaches to processing imprecise queries, such
as sampling, force the user to choose between poor quality guarantees or prohibitively long execu-
tion times. To overcome this, we designed an algorithnfiiciently and exactly evaluate decision
support queries using generalized arithmetic operatioRsr a class of decision support queries,

our algorithms are optimal: (1) either a query can be compuftiéciently using our generalized
arithmetic operations and is PITIME, or (2) computing an aggregation query's exactly probability

is intractable {P-hard), but our results can provide a provablfiyatent approximation (areTras),

or (3) it is both intractable and does not haverarras. Our results provide a guide to extend a
probabilistic database to process decision support queries and define the limits of any approach.
This work is the subject of Chapter 4 and is joint work with Dan Suciu. A preliminary version of

this work appeared in the Symposium on Databases and Programming Languages, 2007 [139], and

2Formally, we used an abstraction based on semirings and monoid convolutions. Monoids are an abstraction of
addition (or multiplication) on the natural numbers. Semirings can be viewed as an abstraction of the standard rules of
multiplication and addition applied to Monoids.

a extended version appeared in the Journal of Very Large Databases [143].

View-based techniques

Materialized Views for Probabilistic Databases In standard databases, a fundamental query
optimization technique is to precompute intermediate results, knownadsrialized viewsand

then use these views to expedite future queries. If we directly apply this technique to probabilistic
databases, then we run into a problem: each intermediate result in the view (and answer to a query)
is actually a probabilistic event and so maydmerelated with other intermediate resultEhe stan-

dard approach to tracking correlations requires expensive bookkeeping, lozdiage[168], that

records every derivation of every answer that appears in the view. To recover the classical perfor-
mance benefits of materialized views, we need to discard the lineage, but doing so may lead to
incorrect results. Our key technical result is a simple dfidient test to decide whether one can
safely discard the lineage associated with a view. On rare occasions, this test may return a false
negative, meaning that it rejects some views that could be safely processed. Practically, one cannot
go too far beyond this test, because we showed that any complete test (without false positives) must
be indficient: the problem iI,P-Complete in the size of the view definititinWe validated our
approach using data from a Seattle-area start-up company, iLike.com, and showed that probabilistic
databases are able to handle huge amounts (GBs) of imprecise data. This work is the subject of
Chapter 5. It was joint work with Dan Suciu and appeares in the Very Large Database Conference

of 2007 [140] and will appear in the Journal of Computer and System Sciences [49].

Approximate Lineage In addition to performance challenges, correlations makefitdlt to un-
derstand and debug the output of a probabilistic database. Specifically, the sheer size and complexity
of the correlation information (lineage) can overwhelm both the query processor and the user of the
system. As the amount of lineage increases, the importance of any individual piece of lineage de-
creases. Inspired by this observation, we propose a scheme sgfiegbnt lineagethat removes

some correlation information to produce a sma#ipproximate lineage formulawith a substan-

tially smaller lineage formula (often hundreds of times smaller), a probabilistic database is able to

3I1,P denotes the second level of the polynomial hierarchy, which is the class of problems decidabieNy a
machine with access to &P oracle [128, pg. 425].The canonical complete problenTTg® is VASAT.

process many queries orders of magnitude méieiently than with the original, full lineage for-

mula. Although a sfiicient lineage formula is much smaller than a traditional lineage formula, we
demonstrated theoretically and empirically that a probabilistic database usiiogest lineage still
provides high quality answers. Furtherfistient lineage has two practically important properties:
first, it is syntactically identical to standard lineage, and so can be used without modifying the query
processor, and second, it encodes a small set of explanations for a query answer, and so can be used
to debug query answers. fiuaient lineage is only one instantiation of approximate lineage: We
also defined other formalisms for approximate lineage, notably, one based on polynomials. This
formalism can allow smaller lineage functions, but the formulae it producesagyntactically
identical to standard lineage. Thus, polynomial lineage requires additional work to integrate with a
probabilistic database. This was joint work with Dan Suciu and appeared in the proceedings of the

Very Large Database Conference in 2008 [141].

Summary The central goal of this dissertation is to provide a framework that can manage large
amounts of probabilistic data, which supports the thesis of this work: it is possibléetdiecly

manage large, imprecise databases using a generic approach based on probability theory. The main
technical challenge is performance, and the techniques of this dissertation use a two-pronged ap-

proach to this problenquery-timeoptimizations andiiew-basedr precompuatioroptimizations.

Chapter 2
PRELIMINARIES

This section gives two critical pieces of background material for this dissertation: how to repre-
sent (store) a probabilistic database and how to query it. We describe each of these two pieces in two
different ways: first, we describe a concrete representation of a probabilistic databasBloaked
independent-disjoindr (BID) [137, 140], and then a more abstract representation system based on
lineage[168] andc-tables [93]. As we show here, if we add conjunctive views to BID tables then
the two representations essentially equivalent.

The strengths of the two approaches are complementary. We introduce the BID representation
because it igeneralandconcrete It is general since it includes as special cases many other rep-
resentations discussed in the literature such-assets ang-or-sets [82], ?- and-relations [145],
and tuple independent databases [46, 108]. The BID representationdeetein that it is the rep-
resentation implemented in the Mystiq system [21]. On the other hand, the representation based on
lineage allows us to specify the technical contributions later in this work precisely and succinctly.
The formal model that underlies both representations is the stragaossible worlds modgh4].

This model is the standard for probabilistic databases and is essentially a reformulation of standard

discrete probability theory.
2.1 General Database Preliminaries

We briefly recall some standard database concepts to fix our ndtation

2.1.1 A Declarative View of Queries

Fix a finite or infinite domairD, which will contain all values that occur in our database, e.g., movie

names, review ids, etc. in a movie reviews database. We assume a standard relationaRschema

10ur presentation in this section borrows from the thesis of Gerome Miklau [118] and the text book by Abiteboul,
Hull, and Vianu [1]

with relation nameg®4, Ry, ... and follow Datalog notation. For exampk;(a, b, ¢) denotes a tuple
(a, b,c) in R;. A database instancer world J is a subset of tuples in each of the relations. The
content (or extent) of a relatidhin a world J is denoted®”. For a fixed schema, we denote the set
of all possible instances witimst.

A queryof arity k is a functionq : Inst — P(DX), i.e., a query takes as input a database instance
and produces a set of tuples with the same scReinahis work, we focus on a subset of queries

calledconjunctive queriefl]. An abstract example of a conjunctive query is

01(2 = R(X,Zz°C’), S(X. Y, =), T(y, —, ‘@’)

Here, x,y, z are variables, ‘a’ and ‘c’ are constants,represents anonymous variables (eacis
distinct from all other variables). Denote lar(q) the set of all variables in a queryand by

consi(q) the set of all constants in a quegyIn general, a conjunctive query is a rule of the form:

ay) == 91,---,0n

where each of thg; are subgoals that may contain selections. The qgeapove consists of three
subgoals. The first subg@(x, z, ‘b’) contains a selection that intuitively says we are only interested
in R tuples whose third component is ‘b’. We denote the set of subgoals in the giasgoal(q).

We evaluate a querg on an instancd in the standard way: we search for a query homomor-
phismh : var(qg) U consi{q) — D which is identity on constants, i.éh(c) = c for all c € cons{q)
and such that for each subgafl = R(z,...,zn) wherez is either a variable or a constant, we

have thatR(h(z1), h(z),...,h(zn)) € R’. If this holds for all subgoals, then we return the tuple
(h(yl)a h(y2)’ D) h(ym))

Relationship to SQL

One reason that this fragment is important is that it captures the heart of the standard query language
for relational databases, SQL [94]. Figure 2.1(b) shows an SQL query that is equivalgnt to

Later, in Chapter 4, we enhance this language to handle some advanced features of SQL, notably

2A (Boolean) queny is a function wherék = 0 (or is a sentence in the standard sense of first-order logic [61]).

10

R(A,B,C) SELECT DISTINCT R.B

S(A,B,D) FROM R,S,T P1=R(X,Z'C) > m_y, S(X, Y, U1)
T(B,E,F) WHERE R.A = S.A AND R.C = ‘¢’ P = m_y (P1 > -y, T(Y, Up, ‘"))
S.B = T.B AND T.F = ‘a’
() (b) (c)

Figure 2.1: (a) The corresponding Relational Style Schema for querfp) is an SQL query that

is equivalent tog;. (c) P is an equivalent relational query plan (we have labeled the anonymous
variables inq asu; and u, for readability). We usdP; to aid readability; we simply inline the
definition of Py in P.

aggregation functions that include functions sucS@sor AVG.

2.1.2 An operational view of conjunctive queries

Query plans are a more operational, but equivalent, way to describe conjunctive queries. A query
plan is tree of relational operators, where each relational operator is a function from relations (of

any arity) to relation&

Definition 2.1.1(Query Plan Syntax)A query plan P is inductively defined as (1) a single subgoal
which may contain selections, (2)Fr_xP1 (projection) where Pis a plan and x is a variable, (3)

P, = P> where R and B are plans.

Figure 2.1(c) shows a query plan that is equivalentidand so to the SQL query in Fig-
ure 2.1(b)). We view query plans as inductively computing tuples. We also denote the variables
that are “returned” by a plaR with var(P) and define it inductively: 1P = g thenvar(P) is the
set of free variables ig, if P = 7_4P; thenvar(P) = var(P;) — {x}, and if P = P; = P; then

var(P) = var(P1) U var(P2).

30ur description of relational query plans is standard with the minor caveat that we view projections as removing
attributes, rather than naming which attributes they keep.

11

Query Plan Semantics

A query planP on an instancé produces a set of tuples. To define this set, we first reeaih
matching[159]: A tuplet matches a subgo@ = R(y1,...,Y¥n) where they, may be (repeated)
variables or constants, if there exists a homomorphismvar(g) U consf{g) — D such that:
t = R(h(y1), ..., h(yn)). For example, if§ = R(X, x,y, ‘a’) then the tupleR(b, b, ¢, a) matchegy, but
neither of the following tuples matdn R(a, b, c, a) (there is no way to mag) norR(a, a, b, b) (the
constants cannot match). Now, we can define the semantics of query plans:

We writet € P(l) if the tuplet is produced byP on instancd and define this set of tuples

inductively:

e Let P = gwith g = R(y), a subgoal with selections, ther P if t € R matchesy.
e Let P =n_P" thent € P if there existd’ such that’[var(P)] = t[var(P)] andt’ € P’.
e Let P = Py < P, thent € P, if there existds, t, such thatj[var(P;)] = t[var(P;)] fori = 1, 2.

As is standard, the semantics of query plans are equivalent to the semantics of conjunctive queries.
Figure 2.1(c) illustrates a query plan that is equivalent to the conjunctive query in Figure 2.1(a) (and

so to the SQL query in Figure 2.1(b)).
2.2 BID databases

The representation of a probabilistic database that is used in the Mystiq system is datikd B
Independent Bjoint or BID. A BID database consists of one or more tables, where each table is
associated with a BID schema. A BID schema describes both the content of the table as in standard
relational databases, and additionally, the schema describes how we should interpret the imprecision
in that table. An example BID database about movie reviews is shown in Figure 2.2.

More precisely, a BID schema is a relational schema where the attributes are partitioned into
three disjoint sets. We write a BID schema for a syntbasR(K; A; P) where the sets are separated
by semicolons. HereK is a set of attributes called thmssible worlds keyA is a set of attributes
called the set ofalue attributesandP is a single, distinguished attribute that stores the marginal
probability of the tuple called thprobability attribute The values oK and A come from some
discrete domain, and the values in the attridat@re numbers in the interval (0]. In the relation,

K and A must form a key, i.e., itfKA] = t'[KA] thent = t’. For example, one BID schema

12

] ReviewID \ Reviewer H Title H P \ Title Matched P
‘ , Fletch’ 0.7 | tram ‘Fletch’ ‘Fletch’ 095 | m
231 Ryan ‘Spies Like Us’ 0.3 | tos ‘Fletch’ ‘Fletch 2’ 09 | m
: — ‘Fletch 2’ ‘Fletch’ 04 | my
. , European Vacation’|| 0.90 | t . .

232 Ryan n 0051 o2 | ‘Golden Child" | ‘Golden Child’ | 0.95| m,
Fioteh 68 : ‘Golden Child’ | ‘Golden Child’ || 0.8 | ms

‘ ’ : 238 ‘Golden Child’ ‘Wild Child’ 0.2
235 Ben Wild Child 02 | toem me

Reviews(ReviewlD, Reviewer ; ReviewTitle ; P) MovieMatch(CleanTitle, ReviewTitle ;; P)

Figure 2.2: Sample data arising from integrating automatically extracted reviews from a movie
databaseMovieMatch is a probabilistic relation, we are uncertain which review title matches with
which movie in our clean databasBeviews is uncertain because it is the resultinformation
extraction Note that the identifiers next to each tuple are not part of the databas&;s¢, they are

there so that we can refer to tuples by a shorthand.

in Figure 2.2 isReviews(ReviewerlD,Reviewer;Titld?): {ReviewerID,Reviewsris the possible
worlds key,{Title} is the set of value attributes, aftis the probability attribute. Also pictured in

Figure 2.2 is an instance of this schema.

Semantics of BID tables

An instance of a BID schema represents a distribution over instances palisible worldg64].

The schema of a possible worldsRéK, A), i.e., the same schema as the BID table exeatitout

the attributeP. Again, this models our choice that the user should query the data as if it were
deterministic, and it is the goal of the system to manage the imprecision] hetan instance of

a BID schema. We denote WK AP] a tuple inJ, emphasizing its three kinds of attributes, and
call tfKA], its projection on theK A attributes, gpossible tuple Define apossible world W, to

be any instance dR(K, A) consisting of possible tuples such théis a key in W. Note that the

key constraints do not hold in the BID instandebut must hold in any possible worlV. Let

‘W3 be the set of all possible worlds associatedJtoln Figure 2.2, one possible worly; is

such thaR™ = {ty31a, toam, t235a). Graphically, we have illustrated the blocks from which the BID

representation gets its name: Each key value defines a block of tuples such that at most one of them

“We say thaK is a key inW if for t,t" € RY we havet[K] = t'[K] = t=t.

13

may occur together in any possible world. For example, no possible world may contaity4gth
andtoza.

We define the semantics of BID instances only ¥aiid instances, which are BID instances
such that the values iR can be interpreted as a valid probability distribution, i.e., such that for
every tuplet € R’ in any BID relationR(K; A; P) the inequalitsteR:s[K]:t[K] gP] < 1 holds.

A valid instanced defines a finite probability spacéi(y, u3). First note that any possible tuple
t[KA] can be viewed as an event in the probability sparé;(u;), namely the event that a world
containst{ KA]. Then we define the semantics dto be the probability spacel;, 13) such that

(a) the marginal probability of any possible tupl& A] is t[P], (b) any two tuples from the same
relationt[K A], t'[KA] such thatt[K] = t'[K] are disjoint eventgor exclusive eventsand (c) for

any set of tuplegts, .. ., ty} such that all tuples from the same relation have distinct keys, the events
defined by these tuples are independent. If the database contained oRkviles table, and

W1 = {t231a, 23, to3m}, we see thati(Wy) = .7 % .9 % .8 = .504.

Example 2.2.1 The data in Figure 2.2 shows an example of a BID database that stores data from in-
tegrating extracted movie reviews from USENET with a movie database from IMDBIdhi&Match
table is uncertain because it is the result of an automatic matching procedure (or fuzzy-join [31]).
For example, the probability a review title ‘Fletch’ matches a movie titled ‘Fletch’ is very high
(0.95), but it is not certain (D) because the title is extracted from text and so may contain errors.
For example, fromThe second Fletch movigbur extractor will likely extract jusFletch’ although

this review actually refers td-letch 2’. The review table is uncertain because it is the resul-of
formation extraction That is, we have extracted the title from text (#kptch is a great movie, just

like Spies Like Ug. Notice thatto3x[P] + t23n[P] = 0.95 < 1, which indicates that there is some

probability reviewid 232 is actually not a review at all.

Remark 2.2.2. Recall that two distinct possible tuples, s@i¢A] and t[KA], are disjoint if {K] =
t'[K] and {A] # t'[A]. But what happens if A 0, i.e., all attributes are part of the possible worlds
key? In that case all possible tuples become independent, and we sometime call dkabR)R
tuple independent tab[d6], which is also known as @-tablg[129] or a p-?-tablg[82]. An example

is theMovieMatch table in Figure 2.2.

14

Finally, we generalize to probabilistic databases that contain many BID tables in the standard

way: tuples in distinct tables are independent.

2.2.1 Probabilistic Query Semantics

Users write queries in terms of the possible worlds schema. In particular, a query written by the user
doesnot explicitly mention the probability attributes of the BID relations. This reflects a choice
that the user should pose her query as if the data is deterministic, and it is the responsibility of
the system to combine the various sources of imprecision. Other choices are possible and useful
for applications. For example, the work of Koch [106], Mo@teal. [120], and Fagiret al. [64]

discuss query languages that allow predication on probabilities, e.g. is the probability of a query
g greater than ®?; Moreover, the works of Koch and Fageh al. allow these predicates to be

used compositionally within queries. In this dissertation, the answer to any query is a set of tuples
annotated with probability scores. The score is exactly the marginal probability that the query is

true, and we define this formally for any Boolean property:

Definition 2.2.3(Query Semantics)Let® : Inst — {0, 1} be a Boolean property, then the marginal

probability of any® on a probabilistic databaséy’ = (J, i) is writtenu;(®) is defined by:

w@ = D pW)

WeW;:WED

where we write W= @ if ®(W) = 1.

A Boolean conjunctive query is a Boolean property and so, we wrjig(q) to denote the

marginal probability thafj is true.

Example 2.2.4 For example, the query that asksas the movie 'Fletch’ reviewed?”or as a
Boolean conjunctive querg() = R(-, —, ‘Fletch’), is true whenty31, Or tr3s, are present. Def-
inition 2.2.3 tells us that, semantically, we can compute the probability that this occurs by sum-
ming over all possible worlds. Of course, there is a simgaenhocshortcut in this caseu(q) =
1-(1-0.7)(1-0.8)=0.94.

For non-Boolean queries, we (semantically) substitute the head variables with constants in all

possible ways. The result of this process is a Boolean query. For exagler R(X, —, ‘Fletch’)

15

returns all people who may have reviewed the movie ‘Fletch’. The score of an answer, say that Ryan
reviewed the movie, is given by the Boolean queify :— (‘Ryan’, —, ‘Fletch’). The probability of
g is precisely the scores associated with the answer Ryan that is returned to the user in the Mystiq

system (as shown in Figure 1.1).
2.3 Lineage, c-tables, or Intensional evaluation

In a probabilistic database, the presence or absence of any tuple is a probabilistic event. Thus, a
Boolean query — whose value may depend on many tuples in the database — defines a complex
event which may contain correlations between tuplemeageis a mechanism that tracks these
correlations by essentially recording all derivations of a query [168]; this is similar to our informal
reasoning in Example 2.2.4.

In this dissertation, we adopt a viewpoint of lineage based-tables [82, 93]: we think of
lineage as a constraint that tells us which worlds are possible. This viewpoint still results in the
standardhossible worlds semantidsr probabilistic databases that we saw in the previous section.
We introduce this abstraction because it allows us to unify the presentation of the technical contri-

butions in this work.

2.3.1 A declarative view of Lineage

The starting point for lineage is that there is a seatmims(or base evenjgdenotedX = xy, Xo, . ..

which are propositions about the real world, e.g., a Boolean event could encode that “Ryan reviewed
Fletch”. Atoms may also be non-Boolean and then can be thought of as variables that take a value in
some domaii\. An EQ-termis a formulax = awherex € X andais an element of.. Informally,

an EQ-term is true ik takes the valua and false otherwise. A lineage functioh,assigns to each

tuplet a Boolean expression over EQ-terms which is dend(€d These Boolean expressions are
precisely the conditions from which tleetables get their name [93]. When all atoms are Boolean,

we abbreviate = true as simplyx for readability.

Example 2.3.1 Figure 2.3 shows thReviews table from the previous example (Example 2.2) en-
coded in the syntax of lineage. Here, if the atomp takes the valua then this implies that in

review 232 Ryan reviewed ‘European Vacation’ whil&i, takes valud this means that he instead

16

[ReviewlID [Reviewer | Title [2] Xo31 | @ 07
T e e
232 | Ryan | EwOpeanVecaton] xe=a] | e | b 009
235 | ‘Benm W G =D e | b 0z
Reviews(ReviewlD, Reviewer, ReviewTitle}) A Probability Assignment

Figure 2.3: Thekeviews relation encoded in the syntax of Lineage.

reviewed 'Fletch 2'. Since we insist thigh, has a single value, he could not have reviewed both.

He may, however, have reviewed neither, if for example,= c.

Semantics of Lineage

To define the standard semantics of lineage, we defipesaible world Wthrough a two-stage
process: First, select an assignméntor each atom inX, i.e., A : X — A. Then, for each
tuplet, includet if and only if A;(A) evaluates to true. Hera(A) denotes the formula that results
from substituting each atom € X with A(X). This process results in an unique wowdifor any

assignmenA. We denote the set of all assignmentgtas Assigni) or simply Assign.

Example 2.3.2 One assignment ig;31 = @, X232 = C andxzzs = a. Then the resulting possible
world W contains two tuple$V; = {(231, Ryan Fletch) (235 Ben Fletch). In contrast, the world
W, = {(231, Ryan Fletch) (231, Ryan Spies Like us)) is not possible as this would require that

X231 = aandxpzy = b.

We capture this example in a definition. Fix a relational schemaioAd is a subset of tuples
conforming to that relational schema. Given an assignmentd a worldW, we say thaWV is the
possible worldnduced byA if it contains exactly those tuples consistent with the lineage function,
that is, for all tupled, A((A) < t € W. Moreover, we writel(A, W) to denote the Boolean

function that is true whekllV is a possible world induced b4. In symbols,

AAW) dif(A\ at(A)] A [A ﬂzt(A)} (2.1)

t:iteW t:itgW

17

We complete the construction of a probabilistic database as a distribution over possible worlds
by introducing a score function. We assume that there is a fungtithrat assigns to each atom
x € X and each atom € A a probability score denotep(x = a). In Figure 2.3p(x232 = @) has
been assigned a score indicating that we are very confident that Ryan reviewed European Vacation
in reviewid 232 (09). An important special case is wh@(x = a) = 1, which indicates absolute

certainty.

Definition 2.3.3. Fix a set of atom& with domainA. A probabilistic assignmeng is a function that
assigns a probability score to each atom value gaj) € A x A which reflects the probability that
X = a, we write §x, a) as (X = a) for readability. Thus, for each & Awe havey ., p(x = a) = 1.
A probabilistic lineage databad#’ is a probabilistic assignment p and a lineage functicat
represents a distributiop over worlds defined as:
def

aW =Y aAaw) [pix=v)

AcAssign XV:A(X)=V

In words, W is a product space ovet® with measure p.

Since for anyA, there is a uniqu&V such thati(A, W) = 1, u is a probability measure. We then

define the semantics of queries exactly as in Definition 2.2.3.
Example 2.3.4 Consider a simple query on the database in Figure 2.3:
g() = R(-, —, ‘Fletch’),R(-, —, ‘Fletch 2")

This query asks if the movies ‘Fletch’ and ‘Fletch 2’ were both reviewed in our database. This
guery is true in a world when the following (lineage) formula holkg{ = aV Xo31 = @) A Xo31 = @
Said another way, if we think af as a view, then its output is a single tuple witfy()) = (Xe35 =

avV Xoz1 = a) A X231 = a.

Generalizing this example, one may wonder whether we can always find a formula (or con-
straint) that correctly captures the semantics of the derived table. The answer is yes, which is

exactly the strong representation property of Imielinksi and Lipskeftables [93, Theorem 7.1].

18

2.3.2 An operational view of Lineage

In databases, new tuples are derived from old tuples in the database using queries (views). An
important case is when the queries that define the views are conjunctive, as in Example 2.3.4. Recall
that a conjunctive query can be computed using a relationalRlarhis plan is useful to us here
because we can use it to compute the lineage derived by the query in a straightforw2ird way

Inductively, we compute the lineage of a tuplasing a plarP, A(P, t).

e LetP = g, thenA(P,t) = A(t) if t matcheg) otherwiseL (false)
e LetP = 7P thenA(Pt) = Vi var(py=tivarpy) AP’ ')
o LetP = Py x Py thenA(P,t) = A(Py1, t1) A A(P2, t2) wheretj[var(P))] = t[var(P)]

It is easy to check using any plan that is logically equivalemtitoExample 2.3.4 that we can com-
pute the same lineage operationally using the above rules, as we computeatlihacway in the
example.

Later, we generalize this technique of computing lineage in two ways: To compute aggregate
gueries, we follow Greeat al.[81] and generalize lineage to compute formulas in (non-necessarily-
Boolean) semirings. In an orthogonal direction, we reduce the expense of processing and under-
standing lineage, by approximating the Boolean formulas during lineage computation, a technique

calledapproximate lineage

Internal Lineage An important special case of lineage is callaternal lineage[145]; the intu-
ition is that internal lineage is built-up exclusively from views (or queries) inside the database. In
contrastexternal lineagenodels the situation when lineage is also created by external entities, e.g.,
during an Extract-Transform-Load (ETL) workflow. More precisely, a relaRds abase relation
if for each tuplet in R A(t) consists of a single EQ-term. An internal lineage database contains base
relations and views (whose lineage functions are built using the previous rules). It is interesting to
note that BID tables are essentially base relations with an additional schema-like restriction: there
is a possible worlds kel that satisfies the following two conditions: Ligt’ € R

1. If t[K] = t'[K] thenvar(A(t)) = var(A(t')) (Key values are variables)

2. ifA(t) = A(t") thent =t/ (Aisinjective)

5This computation is similar to the Probabilistic Relational Algebra of Fuhr and Roelleke [68].

19

Thus, BID tables are a special case of lineage, but under very mild restrictions.

2.3.3 The role of lineage in query evaluation

A simple, but important, property of conjunctive queries (views) on BID tables is that the lineage
formulas they produce can be writtenlaBNF formula$ for small values ok, i.e.,k depends only

the size of the query, butdoesnot depend on the size of the data. More precisely,

Proposition 2.3.5. Let A be the derived lineage for a tuple t in the output of a conjunctive query q

with k subgoals. Them, can be written as a k-DNF formula of polynomial size.

Proof. Using the standard equivalence of relational plans, there is always relational quey plan

in which the projections induce a single connected component in the plan tree that contains the
root (i.e., the projections are “on top”). Since a projection takes only a single input, this connected
component is necessarily a chain. Then, the lineage for each tuple produced by the $ybplan

of this chain can be seen to be a conjunction of atomic terms: the only operator that modifies the
lineage is the joinkk), and each join introduces at most onasymbol per tuple. Thus, the number

of conjunctions is upper bounded by the number of joined tables, whikh &nce the chain of

projections creates a single disjunction, the output formuli©alF. O

The importance of this proposition is that we have reduced our problem of computing the prob-
ability a query is true to the problem of computing the probability theCaNF formula is satisfied,
which is a well-studied problem. Unfortunately, this problem is hard for 2-ONFse good news is
that this type of formula hadiécient approximations a fact that we leverage in Chapter 3. Moreover,
in Chapter 4, we generalize this condition tiaently evaluate and approximate aggregate queries,

and in Chapter 6, we exploit this connection to produce small, approximate lineage formula.

6A k-DNF formula is a Boolean formula idisjunctive normal formvhere each monomial contains at mkéiterals,
i.e., that can be writteth = \/i_y m A\ jo1x Xi.j Wherex ; is a literal or its negation.

"Itis easy to see that the queR(x), S(x, y), R(y) can producany2-DNF formula. Computing the probability that even
a monotone a 2-DNF is satisfiediB-hard [162]. This fact was used by &@felet al. [78] to show that computing
reliability of queries isfP-hard. This result was further sharpened by Dalvi and Suciu [46] to the precise syntactic
boundary where hardness occurs.

20

2.4 Expressiveness of the Model

In this dissertation, we consider a data model where probabilities are listed explicitly. For example,
if one has @erson table withsalary andage attributes whose values are correlated probability
distributions, then in our model one needs to enumerate explicitly all combinatiarzd afy and

age, €.9.(Smith, 20, 1000, 0.3), (Smith, 20, 5000, 0.1), (Smith, 40, 5000, 0.6).

This allows for correlated attributes — as long as the joint distribution is represented explicitly. With
the addition of viewsanypossible worlds distribution can be represented.

More precisely, we say that a possible worlds distributica (W), u) represents a possible
worlds distributiond = (‘W3, uy) if there exists a mappingl : ‘W, — W; such that (1) for each
relational symboR in W andW € ‘W3, RV = RHW) e, every relation il has exactly the same
content, and (2) for any world/; € ‘W3, we haveu(W;) = u(fW, € W, | HW,) = Wj3}), i.e., the
probability is the sanfe

Proposition 2.4.1. For any possible worlds database=]J(‘W, u), there exists a BID database with

conjunctive views whose possible worlds represent J.

Proof. Let W = {W,,...,W,} and introduce new constants, ..., w, for each such world. Let
A(X; W; P) be a fresh relational symbol not appearinginrhen, letA = {(x, w;, u(\W)) | W € W}.
Notice that since there is only one value for tkeattribute, all these events are disjoint: in any
possible world the unique variabletakes a single value For each symigA) in J, introduce a
new symboR'(A, W), i.e.,R has the same schemaRwith an additional attribut®/. Now, define
the conjunctive viewR(x) :— R'(x, w), A(w) wherex has the same arity &s. Fori = 1,...,n, define
the mappingH by mappingW to the unique world wherg = w;. We can see thaR" = RHW),

and so, this distribution represerits |

If we examine the construction, we see that the database we are constructing is an internal
lineage database, since the tahles a base table. We say that a representation systeoniplete

if it can represent any discrete possible worlds distribution. Then, we have shown:

Corollary 2.4.2. BID databases with conjunctive views and internal lineage databases are com-

plete.

8This definition necessarily preserves correlations because the chdicis tfie same foall relations.

21

This simple result (or a minor variation of it) has been observed in the literature many times [17,
82,137]. This gives some intuition why variants of this model have been used as far back as 1992
by Barbareet al.[13] (without views), and as recently as the current Mystiq [21], Trio [168], Con-
quer [70], and MayBMS systems [9]: it is a simple, yet surprisingly expressive, model. There are

other more succinct models that have been proposed in the literature, which we discuss in Chapter 7.

22

Chapter 3
QUERY-TIME TECHNIQUE I: TOP-K QUERY EVALUATION

The central observation of this chapter is that on a probabilistic database, the meaningful infor-
mation isnotconveyed by the exact scores in a query’s answer; instead, the meaningful information
is conveyed bythe rankingof those scores in the query’s answer. In many cases, the user is not
interested in the scores of every tuple, but likely in only the top few highly ranked answers. With
the observation in mind, we focus offieiently finding and ordering those top tuples, and shift away
from prior art that focuses exclusively on computing the exact output probabilities.

In many applications, the motivation for introducing probabilities is to increase the recall of
queries on the database. This increase of recall always comes at the expense of lowering precision,
which forces the user to deal with a swarm of low-quality answers. Since many tuples in the query
answer are of very low quality (probability), and users are often interested in seeing only the most
highly ranked answers, it is ficient to compute just the firdt answers for smalk. With the
idea that a ranking of the top tuplesces in many situations, we develop a novel query evaluation
algorithm for computing the tog-answers that has theoretical guarantees. Additionally, we consider
several optimizations that are implemented in thesilQ system, and we evaluate their impact on

MysTiQ’s performance.

3.1 Motivating Scenario and Problem Definition

We illustrate the challenges that are faced by query evaluation on probabilistic databases using an
application that integrates the Internet Movie Database fimtb . com, with movie reviews from
amazon.com. There are over 10M tuples in the integrated database. A simplified schema is shown
in Figure 3.1, and we will use it as our running example in this section. Amazon products (DVDs in
our case) are identified by a unigue Amazon Standard Identification Nuasier, and each DVD

object has several subobjects: customer reviews, actors, director, etc. The IMDB schema is self

explanatory. The value of integrating the two data sources lies in combining the detailed movie data

23

AMZNReviews(asin, title, customer, rating, ...)
AMZNDirector(asin, director)

AMZNActor(asin, actor)

IMDBMovie(mid, movieTitle, genre, did, year)
IMDBDirector(did, dirName)

IMDBCast(mid, aid)

IMDBActor(aid, actorName)

TitleMatch(asin; mid; P)

Figure 3.1: Schema fragment of IMDB and Amazon database, and a fuzzy match table

TitleMatch(asin mid; P)

asin mid P
t1 | a282 m897 (“Twelve Monkeys”) 0.4
t> | (“12 Monkeys”) | m389 (“Twelve Monkeys (1995)") 0.3
t3 m656 (“Monk”) 0.013
ty | a845 m897 (“Twelve Monkeys”) 0.35
ts | (“Monkey Love”) | m845 (“Love Story”) 0.27

Figure 3.2: Fuzzy matches storedTiitleMatch. The table stores only thesin andmid values,
but we included the review title and movie title for readability.

in IMDB with customers ratings in Amazon.

From Imprecisions to Probabilities One source of imprecision in integrating the two sources
is that their movie titles often do not match, eTywelve Monkeys v.S.12 Monkeys orWho Done
it? v.s.The Three Stooges: Who Done it. The problem of detecting when two representa-
tions denote the same object has been intensively studied, and referred to as deduplication, record
linkage, or merge-purge [6, 10, 32, 65, 71, 83, 89, 169, 170]. Perfect object matching is almost al-
ways impossible, and when it is possible it is often very costly, since it requires specialized, domain
specific algorithms. Our approach is to rely on existing domain independent methods, and change
the way their outputs are used. Currently, all fuzzy match methods tleesholded similarity
function approacti6], which relies on a threshold value to classify objects into matches and non-
matches. This is a compromise that can lead to false positives (when the threshold value is too
low) or to false negatives (when the threshold is too high). In contrast, in our approach the system
retains all similarity scores and handles them as probabilistic data. We computed a similarity score

between each pair of movie title and review title by comparing their sets of 3-grams: this resulted

24

SELECT DISTINCT d.dirName AS Director
FROM AMZNReviews a, AMZNReviews b,
TitleMatch ax, TitleMatch by,
IMDBMovie x, IMDBMovie y,
IMDBDirector d
WHERE a.asin=ax.asin and b.asin=by.asin and x.did=y.did and y.did=d.did
and x.genre=’comedy’ and y.genre=’drama’
and abs(x.year - y.year) <= 5 and a.rating>4 and b.rating<2

g(namg :—Director(namez), AMZNReviews(X,r), AMZNReviews(X,r’),
TitleMatch(x,m), TitleMatch(x’,nY), IMDBMovie(m, ‘Comedy’,Y,2),
IMDBMovie(nY, ‘Drama’,y’,2), r>5, r' <2, absg-7)

Figure 3.3: Query retrieving all directors that produced both a highly rated comedy and a low rated
drama less than five years apart.

in a numbemp between 0 and 1, which we interpret as the confidence score and stored it in a table

calledTitleMatch. Figure 3.2 shows a very simplified fragmentTiftleMatch(asin;mid;P),

consisting of five tuples, ..., ts. Each tuple contains aisin value (a review immazon) and a

mid value (a movie intMDB). The amazon review withsin = a282 refers to a movie with title

12 Monkeys, and this can be one of three movies in the IMDB database: dithdive Monkeys,

or to Twelve Monkeys (1995), or toMonk. Thus, only one of the tuplds, t,, t3 can be correct,

i.e., they areexclusive or disjoint, and their probabilities arp; = 0.4, p» = 0.3, andps = 0.013

respectively. Note thagp, + p2 + p3 < 1, which is a necessary condition since the three tuples are

exclusive events: we normalized the similarity scores to enforce this condition. Similarly, the movie

review aboutonkey Love can refer to one of two IMDB movies, with probabilitips = 0.35 and

ps = 0.27 respectively. We assume that any of the three matches for the first review is independent

from any of the two matches of the second review. This summarizes how we mapped fuzzy object

matches to probabilities. We briefly discuss other types of imprecisions in Section 3.4.1.
ChallengesQuery evaluation poses two major challenges. The first is that computing the exact

output probabilities is computationally hard. The data complexity for the query in Figure 3.3 is

#P-complete (this can be shown using results in [46]), meaning that any algorithm that computes

25

the probabilities exactly essentially needs to iterate through all possible worlds. Previous work on
probabilistic databases avoided this issue in several ways. Bagbaita[13] requires the SQL
gueries to include all keys in all tables, thus disallowing duplicate elimination. This rules out our
query in Figure 3.3, because this query does not include any of the keys of the seven tables in the
FROM clause. If we included all these keys in tBELECT clause, then each director in the answer
would be listed multiple times, once for each pair of movies that satisfies the criterion: in our
example each of the 1415 directors would have occurred on average 234.8 times. This makes it
impossible to rank the directors. ProbView [108] computes probability intervals instead of exact
probabilities. In contrast to Luby and Karp’s algorithm, which can approximate the probabilities
to an arbitrary precision, the precision in ProbView's approach cannot be controlled. In fact, the
more complex the query, the wider the approximation intervals, since ProbView’s strategies have to
conservatively account for a wide range of possible correlations between the input probabilities. For
example, when combining the (on average).83ifferent probabilities to compute the probability

of a single director, the resulting interval degenerates ta][fbr most directors. One can still use

this method in order to rank the outputs, (by ordering them based on their intervals’ midpoints) but
this results in low precision. Fuhr [68] uses an exponential time algorithm that essentially iterates
over all possible worlds that support a given answer. This is again impractical in our setting. Finally
Dalvi [46] only considers “safe” queries, while our query is not safe.

The second challenge is that the number of potential answers for which we need to compute the
probabilities is large: in our example, there are 1415 such answers. Many of them have very low
probability, and exists only because of some highly unlikely matches between movies and reviews.
Even if the system spends large amounts of time computing all 1415 probabilities precisely, the

users is likely to end up inspecting just the first few of them.

Overview of our Approach

We focus the computation on the top k answers with the highest probabilities. A naive way to find
the top k probabilities is to compute all probabilities then select the top k. Instead, we approximate
probabilities only to the degree needed to guarantee that (a) the top k answers are the correct ones,

and (b) the ranking of these top k answers is correct. In our running example, we will run an

26

Rank | Director p
1 Woody Allen 0.9998

2 Ralph Senensky 0.715017
3 Fred Olen Ray | 0.701627
4

5

George Cukor | 0.665626
Stewart R#ill 0.645483

Figure 3.4: Top 5 query answers, out of 1415

approximation algorithm for many steps on the, say,kep 10 answers, in order to identify them

and rank them, but will run only a few steps on the remaining 141% = 1405 answers, and
approximate their probabilities only as much as needed to guarantee that they are not in the top
10. This turns out to be orders of magnitude mofficient than the naive approach. The major
challenge is that we do not know which tuples are in top 10 before we know their probabilities: the

solution to this is the main technical contribution in this chapter.

The problem we address here is the following: We are given a SQL query and a rkjrabdr
we have to return to the user thénighest ranked answers sorted by their output probabilities. To
compute the probabilities we use Luby and Karp’s Monte Carlo simulation algorithm [101] (MC),
which can compute an approximation to any desired precision. A naive application of MC would be
to run it a sificiently large number of steps on each query answer and compute its probability with
high precision, then sort the answers and return thé.tdmp contrast, we describe here an algorithm
calledmultisimulation(MS), which concentrates the simulation steps on th&tmpswers, and only
simulates the others afficient number of steps to ensure that they are not in thk.téye prove that
MS is theoretically optimal in a very strong sense: it is within a factor of two of a non-deterministic
optimal algorithm, which magically “knows” how many steps to simulate each answemnceottier
deterministic algorithm can be better. There are three variations of MS: computing the sekof top
answers, computing and sorting the set ofkgmswers, and aany timealgorithm, which outputs
the answers in the order2, 3,k, ... and can be stopped at any time. Our experiments show that
MS exploits gracefully (the running times are essentially linearknand that MS is dramatically

more dficient than a naive application of MC.

27

3.1.1 Prior Art: Computing the probability of a DNF Formula

As we observed in the Preliminaries (Chapter 2), computing the probability of a tuple in the outputis
equivalent to computing the probability of a DNF formula. For an answer tués DNF formula
is exactlyA(t), which we can compute using the rules for lineage. From Proposition 2.3.5, we know
that the resulting formula(t) is a DNF, and so we now recall prior art that computes the probability
thatA is satisfied using a Monte Carlo-style algorithm.

A Monte Carlo algorithm repeatedly chooses at random a possible world, and computes the truth
value of the Boolean expressianthe probabilityp = u(A(t)) is approximated by the frequency
p with which A(t) was true. Luby and Karp have described the variant shown in Algorithm 3.1.1.1,
which has better guarantees than a naive MC. For our purposes the details of the Luby and Karp
algorithm are not important: what is important is that, after runningNosteps, the algorithm
guarantees with high probability thais in some intervald, b], whose width shrinks aN increases.

Formally:

Theorem 3.1.1.[101] Let 6 > 0 and defines = +/4mlog(2/5)/N, where m is the number of
disjunctions inA(t) and N is the number of steps executed by the Luby and Karp algorithm. Let

a=p-eandb= p+ e Then the value p belongs fa, b] with probability> 1 - ¢, i.el:

p(pelab) > 1-6 (3.1)

3.2 Top-k Query Evaluation using Multisimulation

We now describe our algorithm. We are given a queand an instancé stored in a SQL database
engine, and we have to compute the top k answerg orJ. Evaluation has two parts: (1) evaluat-

ing the SQL query in the engine and grouping the answer tuples to const{@trunning a Monte

Carlo simulation on each group in the middleware to compute the probabilities, then returning the
top k probabilities. We describe here the basic algorithm, and discuss optimizations in the next

section.

LIn the original paper the bound is given|ap — P |< &p, sincep < 1 this implies our bounds. The bound in that
paper is a stronger, relative bound. This is a technical point that we return to later in Chapter 4, but is unimportant for
our discussion here.

28

Algorithm 3.1.1.1 Luby-Karp algorithm for computing the probability of a DNF formul&) =
Vi ti wheret; is a disjunct.
fix an order on the disjunctsi, to, ..., tm
CcC:=0
repeat
Choose randomly one disjungte A
Choose randomly a truth assignmenwith probability conditioned ofit ; is satisfied”
if forall j <itj(x) = falsethenC:=C+1
until N times
return p=C/N

3.2.1 Multisimulation (MS)

We model the problem as follows. We are given aGget {G,, ..., Gy} of n objects, with unknown
probabilitiesps, ..., pn, @and a numbek < n. Our goal is to find a set df objects with the highest
probabilities, denote@opK C G: we discuss below how to also sort this set. The way we observe the
objects’ probabilities is by means of a simulation algorithm that, after runNistgps on an object

G, returns an approximation interval}, b\] for its probability p, with aN < bN (we assumaN =

bN can never happen). We make the following four assumptions about the simulation algorithm and

about the unknown probabilities:

Convergence: limy_e aV = limy_. bN.

Precision : VN.p € [aV, bN].

Progress : YN.[aN*1, bN+1] c [aN, bM].

Separation : Vi # j, pi # pj.

By the separation assumpti@npK has a unigue solution, i.e. there are no ties, and by the other
three assumptions the solution can be found naively by a round robin algorithm.

In our setting each obje@ is a group of tuples representing a lineage formuyland its proba-
bility is p = u(1). The simulation algorithm is Luby-Karp. Only the first assumption holds strictly

(convergence): we revisit below how to address the other three.

29

d c
GZ *r—
Ge—— 3
G5 4 ‘ ‘ —o
¢ d P ——o
0 1 ———o
Example Empty critical region
c d c d C d
V4
*r—o & o s
*—o *—o *—o
[. r—°
W i Wl W .
Case 1l Case 2 Case 3

Figure 3.5: Illustration of MSk = 2.

Intuition Any algorithm that computeSopK can only do this by running simulations on the
objects. It initializes the intervals t@{, b1] = [az,b2] = ... = [an, bn] = [0, 1], then repeatedly
chooses to simulate sontg for one step. At each point in the execution, obj€¢thas been
simulatedN; steps, and thus its interval iai'\f,bi'\'i] = [&,] (we omit the superscript when it is
clear). The total number of steps over all group®is= Y/, N;. Consider the top left figure in
Figure 3.5, where fok = 2. Here we have already simulated each of the five groups for a while:
clearlyGs is in the top 2 (it may be dominated only I&8p), although we don’t know if it is 1st or
2nd. However, it is unclear who the other object in top 2 is: it mighGaeG,, or G4. It is also

certain thatGs is not among the top 2 (it is belo@,, G3).

Given two intervals;, bi], [a;, bj], if bj < a; then we say that the first lelow and the second
is above We also say that the two intervals aeparated in this case we knowp; < p;j (even if
bi = aj, due to the “separation” assumption). We say that the setiofervals isk-separated if
there exists a sét C G of exactlyk intervals such that any interval i is above any interval not
in T. Any algorithm searching for thBopK must simulate the intervals until it findskaseparation
(otherwise we can prove th@bpK is not uniquely determined); in that case it outpTeeK = T.

The cost of the algorithm is the number of sté&pat termination.

30

Our golden standard will be the following nondeterministic algorithm, OPT, which is obviously

optimal. OPT “knows” exactly how many steps to simul@e namelyN
opt NO t

P! o [¢]
following holds (a) the intervalsaﬁ1 N e A [aﬁ'”pt, bﬁ'”pt] are k-separated, and (b) the sum

P steps, such that the
NOPt = 3. NiOpt is minimal. When there are multiple optimal solutions, OPT chooses one arbitrar-
ily. Clearly such an oracle algorithm cannot be implemented in practice. Our goal is to derive a

deterministicalgorithm that comes close to OPT.

Example 3.2.1 To see the dficulties, consider two objecs;,G, andk = 1 with probabilities

p1 < p2, and the current intervals (say, after simulating bBthandG, for one step) areg, by],

[az, bo] such thatay = p1 < a2 < by < p2 = be. The correct top-1 answer &,, but we don’t know

this until we have separated them: all we knowpise [az, b1], p2 € [az, b2] and it is still possible
thatp, < p1. Suppose we decide to simulate repeatedly @y This clearly cannot be optimal.

For exampleG, may require a huge number of simulation steps bedgiacreases aboug, while

G1 may take only one simulation step to decrebgsbeloway: thus, by betting only oG, we may
perform arbitrarily worse than OPT, which would know to cho@seto simulate. Symmetrically,

if we bet only onG;, then there are cases when we perform much worse than OPT. Round robin
seems a more reasonable strategy, i.e. we simulate alterna@ivelgdG,. Here, the cost is twice

that of OPT, in the following case: fd¥ stepsa, andb; move very little, such that their relative
order remains unchangeal, < a, < by < b,. Then, at theN + 1'th step,b; decreases dramatically,
changing the order tey < by < ay < bp. Round robin finishes inl? + 1 steps. TheN steps used

to simulateG, were wasted, since the changesjnwere tiny and made no fierence. Here OPT
chooses to simulate onfg1, and its cost isN + 1, which is almost half of round robin. In fact, no
deterministic algorithm can be better than twice the cost of OPT. However, round robin is not always
a good algorithm: sometime it can perform much worse than OPT. ConsiglgectsG,, . ..,Gy

andk = 1. Round robin may perform times worse than OPT, since there are cases in which (as
before) choosing the right object on which to bet exclusively is optimal, while round robin wastes

simulation steps on all theobjects, hence its cost s NOPL,

Notations and definitionsGivenn non-negative numberg, Xo, . . ., X,, not necessarily distinct,
let us defindop(Xy, . . ., X)) to be thek's largest value. Formally, given some permutation such that

Xi, = Xi, = ... > X, top is defined to bex,. We setopn.1 = 0.

31

Definition 3.2.2. Thecritical region top objectsandbottom objectsre:

(c.d)

(top(@as - - - » @), topesa(bas, - - ., bn)) (3.2)
T = (Gild<a}

B {Gi | b <c}

One can check th@ N TopK = @ andT C TopK: e.g. by < ¢ implies (by definition ofc) that
there arek intervals fj, bj] above B, bj], which proves the first claim. Figure 3.5 illustrates four
critical regions.

The important property of the critical region is that the intervals hakesaparationft the
critical region is empty, i.eg > d, in which case we can retuffopK = T. This is illustrated in the
upper right of Figure 3.5, where the top 2 objects are clearly those to the right of the critical region.
We therefore assunme< d from now on. Call an objedg; a crosserif [&, bj] contains the critical
region, i.e.g; < ¢, d < b;. There are always at least two crossers. Indeed, thetle-adeintervals
[a, bj] such thad < b;. and at mosk — 1 of them may satisfg < a;; hence, the others (at least two)
satisfya; < ¢, and are crossers. Given a crossgrlj] we call it anupper crosseif d < b;, alower
crossernf g < ¢, and adouble crosseif it is both.

The Algorithm is shown in Algorithm 3.2.1.1. At each step it picks one or two intervals to
simulate, according to three cases (see Fig 3.5). First, it tries a double cragshgr, [if there is
none then it tries to find an upper crosser, lower crosser pair; if none exists then it means that either
all crossers have the same left endpaint c or all have the same right endpoiht= by;. In either
case there exists a maximal crosser, i.e., one that contains all other crossers: pick one and simulate
it (there may be several, since intervals may be equal). After each iteration re-compute the critical
region; when it becomes empty, stop and return th& séintervals above the critical region. Based
on our previous discussion the algorithm is clearly correct: i.e., it reltwpk when it terminates.
From theconvergenceassumption it follows that the algorithm terminates.

Analysis We now prove that the algorithm is optimal within a factor of two of OPT, and, more-
over, that no deterministic algorithm can be better.

At any point during the algorithm’s execution we say that an interaab]] has slackif N; <

Ni°pt. If it has slack then the algorithm can safely simulate it without doing worse than OPT. We

32

Algorithm 3.2.1.1 The Mulisimulation Algorithm

MS_TopK(G.K) : /* G = {G1,...,Gn} */

Let[a,b1] = ... =[an,bn] =[0,1], (c,d) = (0,1)

while c < d do
Case 1:exists a double crosser: simulate it one step
Case 2:exists an upper crosser and a lower crosser: simulate both one step
Case 3:otherwise: pick a maximal crosser, simulate it one step
Update €, d) using Eq.(3.2)

return TopK =T = {Gj | d < g}

have:

Lemma 3.2.3. Let[a, b] be a crosser. Then, in all cases belda, bj] has slack: (1) If it is an
upper crosser and is not in the top k. (2) If it is a lower crosser and is in the top k. (3) Ifitis a

double crosser. (4) If it contains all crossers (i.e. it is a maximal crosser).

Proof. To see (1), note that OPT must fikihtervals abové; but since &, biNi] iS an upper crosser,
there are at most— 1 b;\"' 's such thab;\'j > bi'\'j; hence, OPT can find at mdst 1 intervals (namely

the same ones, at most) that are atinﬁ')ei.e. a:.\l?m > biNi, becausa:.\l?pt < b:.\'j (due to the progress
assumption). It follows that OPT must simulatt least one more step thakto bring biNiopt below

biNi in order to separate it from the tdp (2) and (3) are similar. To prove (4), we assume that the
intervali is in TopK: the other case is symmetric. Consider khe1 intervals that have; > d: at
least one, sayd|, bj], must be not irTopK, and OPT must separate them by proving taath;] is
below [a;, bj]. But & < aj because eithemj, b;] is included in [y, bi], or [aj, b;] is not a crosser
(henceg; < ¢ < aj). Hence, to separate them, OPT must either redacé;[] to a point or further
simulate f,bi]. But since we assume that an MC algorithm cannot return a point interval (i.e.

aN < bN forall N), OPT must simulateg{, b;]. O

Theorem 3.2.4.(1) The cost of algorithivS_TopK is < 2N°Pt, (2) For any deterministic algorithm

computing the top k and for any<c2 there exists an instance on which its costisN°F.,

Proof. To prove (1), notice that at each step the algorithm simulates one or two interval§icésu

to prove that at least one of them has sfackhere are three cases. First, a double crosser is

2This shows that the cost i 2N°P; to prove< 2N°P! one notices that at least one iteration simulates a single interval,
with slack.

33

simulated: clearly it has slack. Second, an upper and a lower crosser are simulated: in order for
both not to have slack we must have one is in thekkapd the other is not in the tdp but in that

case OPT must simulate at least one of them, since they are not separated yet, hence one of them
does have slack after all. Third, there are only upper or only lower crossers and we simulate the

largest one: we have seen that this also has slack.

The main idea for (2) is in Example 3.2.1. Given a deterministic algori#iwe construct a
family of instances indexed by > 1 (and that depend of) such that the optimal has cdsf” and
A can do better thanl\fz%pt. The instance contains two intervalandJ. The intuition is that one of
these two intervals will separate at “timefi2but not before. Initially] = [O, 2] andJ = [%1]
Suppose that the algorithm sperglson simulating interval ands; simulating intervall where
S + 5 < 2m. Then, the intervals will shrink td = [%é] similarly J = [%,1— g—gq] Since
s + S3 < 2m, this means that the intervals will overlap for the entire time. To construatnttie
instance, let the algorithm run fon steps and shrink the intervals as above. Then, choose which
ever interval the algorithm has simulated least and make it collapse. More precisely, assume that

interval isl: if | was simulated least, then on the next iteratiohwe will setl = [6im 36—;11] Notice

thats, < m. OPT only simulate$ which has cosNS™

= 5 < m, while A pays cost at leastni2on
this instance. A symmetric argument holds if the algorithm choddess frequently. Notice that

since the algorithm is deterministic, it is only a function of the intervals. |

Corollary 3.2.5. Let A be any deterministic algorithm for findinfppK. Then (a) on any instance
the cost oMS_TopK is at most twice the cost &f, and (b) for any c< 1 there exists an instance

where the cost oA is greater than c times the costMIS_TopK.

3.2.2 Discussion

Variations and extensionsln query answering we need to compute the kamswersandto sort
them. The following variation of MS, which we calS_RankK, does this. First, compute the top

k, Tk = MS_TopK (G, k). Next, compute the following sets, in this sequence:

34

Twer = MS_TopK,i(Tk. k—1)
Tk—2 = MS,TOpK ni(Tk—L k — 2)
T1 = MS_TopK,(T2, 1)

At each step we have a skt of the topj answers, and we compute the tpp 1: this also iden-
tifies the’th ranked object. Thus, all topobjects are identified, in reverse order. HB/8_TopK ;;
denotes the algorithiiS_TopK without the first line: that is, it does not initialize the intervals
[a;, bi] but continues from where the previous multisimulation lgft @his algorithm is also opti-

mal: It is straightforward to prove a theorem similar to 3.2.4.

The second variation is aany-timealgorithm, which computes and returns the top answers
in order, without knowingk. The user can stop any time. The algorithm starts by identifying
the top element; = MS_TopK(G, 1), then it finds the remaining groups in decreasing order:
Tj+1 = MS_TopK(Bj, 1), whereBj = G — (T1 U ... U Tj). Note that fork > 1 this algorithm isnot
optimal in finding the tofk elements; its advantage is in its any-time nature. Also, it prevents the

semi-join optimization discussed below, which requires knowledde of

Revisiting the assumptionsPrecision holds for any MC algorithm, but only in a probabilistic
sense. For example after running Luby-Karp’s algorithmNostepsu(p € [aN,bN]) > 1 - 61.
The choice of theonfidence; affects the convergence ratey — aN = 2/4mlog(2/61)/N, where
m is the size of the group. In our context the user chooses a global parahsetdrrequires that
all n groups be precise with confidenée Assuming equal confidences, the system setior
each group tas/n, since it implies (1- 6;)" > 1 — 6. Still, since it appears under log, we can
choosevery smallvalues fors without afecting significantly the running time\{, hence precision
holds for all practical purposes. The separation assumption is more problematic, since in practice
probabilities are often equal or very close to each other. Here we simply rely on a second parameter

& > 0: when the critical region becomes less thamve stop and rank the uncertain groups based

35

on the midpoints of their intervals. Progress as stated, does not hold for our Monte Carlo simulation
technique: After a large number of steps, sapur estimate may have jumped by a factonof;

this means that its “confidence interval” is like! + n=/2 — which is outside the bounding interval.
Instead, what does hold is the weaker statement that after a negligible number of steps with respect
to OPT, the sequence of intervals are again nested (with high probability). This allows us to show
that MS takes @PT + o(OPT) steps (see Appendix A.1). The choicesadiso dfects running time

and precisiofrecall. We discuss the system’s sensitivitydoande in Section 3.4.

Finally, note that our restriction that the intervals never collapse &es b forall N) is im-
portant. This is always true in practice (for any MC algorithm). As a pure theoretical observation
we note here that without this assumption the proof of Lemma 3.2.3 (4) fails and, in fact, no deter-
ministic algorithm can be within a constant factor of OPT. Consider searching for the=tdpof n
objects; alln intervals start from the initial configuration,[0]. OPT picks the winner object, whose
interval, after one simulation step, collapses to [1,1]: OPT finishes in 1 step, while any deterministic

algorithm must touch ah intervals at least one.

Further Improvements One may wonder if our adversarial model in which intervals may shrink
at arbitrary, unpredictable rates is too strong. In theory it may be possible to design an algorithm that
findsTopK by exploiting the specific rates at which the intervals shrink (see the boundsin Th. 3.1.1).
However, note that this will result in at most a factor of 2 improvement over the MS algorithm, due

to Corollary 3.2.5.

3.3 Optimizations

We present two optimizations: the first reduces the number of groups to be simulated using a simple
pruning technique, the second reduces the sizes of the groups by pushing more of the processing
from the middleware to the engine. Both techniques are provably correct in that they are guaranteed

to preserve the query’s semantics.

Pruning The following are two simple upper and lower bounds for the probability of a group

At) = p1 vV -+ V ¢ for any tuplet

36

They can be computed easily and allow us to initializedtigcal region using Eq. 3.2 and to
prune some groups before even starting MS. As an improvements, when there are no pairs of disjoint
tuples in the group (which is a condition that can be checked statically) then the upper bound can be
tightened to - [];(1 — u(¢i).

Safe SubqueriesSometimes the probabilities can be pushed to the engine, by multiplying prob-
abilities (when the tuples are independent) or by adding them (when the tuples are disjoint). This
can be achieved by running a SQL query, over a subsetR of the tables in the original quey,

like the following (hereR’ = R1, R2, R2):

sq = SELECT B, AGG(RLP.p*R2P.p*R3P.p) as p
FROM R1P, R2P, R3P WHERE C GROUP-BY B’

whereAGG is eithersum or prod_1_1:

sum(ps, ..., Pm)

Zpi
1-[Ja-p

prod-1_1(py,..., Pm)

The optimization works like this. Given the quearychoose a subset of its tabRsc R, and some
set of attribute®’ (which must include all attributes on which the relati®sgoin with the other
relations). Then construct a subguery likeg above, and use it as a subexpression as it were
a normal BID tablé, with probability given byp, and its possible-worlds key given by a certain

subset of B'.

3We will later in Chapter 5 see a more general condition cakguiesentabilitythat establishes the exact conditions
for a table to be a BID table, which are more general than tffcsgnt conditions that we discuss here.

37

Three conditions must be met for this rewriting to be correct. (1) The tuple probabitibyn-
puted byAGG must be correct, (2) in the output, tuples having the same valSerafst be disjoint
tuples and tuples havingfiiérent values 0§ must be independent tuples, and (3) each such proba-
bility must be independent of all the other tuple in the original query that it joins with. Recall that
Key (R) denotes the set of key attributes for the possible world8.for

To check (1) we have the following:

Proposition 3.3.1. Consider the quergq above. LetAttr(R) denote the attributes of relatioR
(does not include the attribute, which technically belongs only) and Attr(sq) denote the

union ofAttr(R) for all relationsRin sq.

1. If AGGis sum thenp is computed correctlyfidR € R s.t.Key(R) € B andAttr(sq) - B C

Attr(R).

2. If AGGis prod_1_1thenp is computed correctlyfivR R, Attr(sq) - B ¢ Key(R).

To check (2) we have the following:

Proposition 3.3.2. Consider the quergq above.

1. Two output tuples having the same values afe disjoint eventsffR € R s.t. Key(R) C S

andB - Sc Attr(R).

2. Two output tuples having grent values of are independent event§ ¥R € R, B-Sc

Key(R).
Finally, to check (3) we need to check that the relations usesigbyo not occur again the rest of
the queryy.
Example 3.3.3 Consider three probabilistic tables:

AmazonHighReviewsP(asin, reviewer, p)
TitleMatchP(asin, imdbid, p)

IMDBHighRatedFilmsP(imdbid, p)

38

with possible worlds keys

Key(AmazonHighReviews) = {asin, reviewer}
Key(TitleMatch) = {asin}
Key (IMDBHighRatedFilms) = {imdbid}

Note thatAmazonHighReviews andIMDBHighRatedFilms contain only independent tuples. Con-

sider the query:

q = TOP 5 SELECT DISTINCT A.reviewer
FROM AmazonHighReviews A,
TitleMatch T, IMDBHighRatedFilms I

WHERE A.asin = T.asin and T.imdbid = I.imdbid
The query can be optimized by observing that the following subquery is a safe subquery:

sq = SELECT T.asin, sum(T.p * I.p) as p
FROM TitleMatchP T, IMDBHighRatedFilmsP I
WHERE T.imdbid = I.imdbid
GROUP BY T.asin

The output of this subquery is a talilepP (asin, p) that can be treated as a base probabilistic
table with possible world kegsin and probability attribute. To see why, let us verify that this

subquery satisfies the three conditions for safe subquery:

e For condition (1), we use Prop. 3.3.1(2). HBre- {asin}andAttr(sq) = {asin, imdbid}.
We see thakey (TitleMatch) C B andAttr(sq) —B C

Attr(TitleMatch), so the condition is met.

e For condition (2), we use Prop. 3.3.2. HeSes {asin} since we are claiming thakin is the
key for Tmp. Prop. 3.3.2(2) holds trivially becauBe— S = 0. Prop. 3.3.2(1) holds because

Key(TitleMatch) C S.

e Condition (3) holds because all event tables outSigieare distinct from those inside.

Probabilistic #Tuples| #exclusive tuples
Table Name Avg. Max
MovieToAsiIn 339095 4 13
AmazonReviews| 292680 1 1
ActorMatch 6758782 21 2541
DirectorMatch 18832 2 36
UsenetMatch 134803 5 203
UsenetReview 3159 1 3159
ActivityData 2614480 3 10
HMM 100 10 10

Figure 3.6: Three Case Studies of Imprecisions

Query # of Avg Max # of
name || groups group group prob.
(n) sizem size tables

noSP| SP|| noSP| SP (m)

SS 33| 204| 84 63| 26 2
SL 16 || 117.7| 775 685 | 377 4
LS 3259 3.03| 2.2 30 8 2
LL 1415 234.8| 71.0| 9088 | 226 4

Figure 3.7: Query Stats/@ and w S(afe) P(lan)

39

Having verified that the subquery is indeed safe, we rewrite the quleyymakingsq a subquery:

Qsafe-plan = TOP 5 SELECT DISTINCT A.reviewer

FROM AmazonHighReviews A, sq Tmp

WHERE A.asin = Tmp.asin

Thus, the tabl&mp (asin,p) is computed inside the engine, and treated like a base query by

MS. The rest of MS remains unchanged. The new query has the same number of groups as the

original query, but each group is much smaller since some of the probabilistic computation has been

pushed in the engine.

40

3.4 Experiments

In this section we evaluate our approach experimentally. We address five questions: (1) what is the
scale of probabilistic databases when modeling imprecisions; (2) how does our new query evaluation
method compare to the current state of the art; (3) hfiiactve is the multisimulation (MS) over

a naive approach (4) howffective are the optimizations; and (5) how sensitive is the system’s
performance on the choice 6fande.

SetupOur experiments were run on a dual processor Intel Xenon 3GHz Machine with 8G RAM
and 2 400GB disks. The operating system used was Linux with kernel version 2.6.12 high-mem
build. The database was DB2 UDB Trial Edition, v. 8.2. Due to licensing restrictions DB2 was only
one able to use one of the cores. Indexes and configuration parameters suffleragdmls were
tuned by hand.

Methodology For each running time we perform the experiment 5 times, dropping the highest
and the lowest and average the remaining three runs. The naive simulation method was capped at
20 minutes. In between each experiment, we force the database to terminate all connections. The
same experiments was not run repeatedly to minimize cacliagte but the cache was allowed to
be warm. In the precisigrecall experiments, the precision and recall are defined as the fraction of
the topk answers returned by method being evaluated that overlap with the “correct” setlof top
answers. In order to compute the latter we had to compute the exact tuple probabilities, which is
intractable. For that we used the approximate values returned by the simulation algorithm with very

low settings fore andé: & = 0.001 ands = 0.01.

3.4.1 Case Studies

In an empirical study we modeled imprecisions in three application domains. The first integrates the
IMDB movie database with reviews from Amazon, as described in a simplified formin Sec. 3.1, and
the sources of imprecisions are fuzzy object matches (for titles, actors, and directors), and the confi-
dence in the amazon reviews (“how many people found this review useful”). The second application
integrates IMDB with reviews collected from a USENET $it&hese reviews were in free text and

we had to use information extraction techniques to retrieve for each review (a) the movie and (b) the

4ftp://ftp.uu.net/usenet/rec.arts.movies.reviews/

41

rating. The imprecisions here were generated by information extraction tools. In the third applica-
tion we used human activity recognition data obtained from body-worn sensors [110]. The data was
first collected from eight dierent sensors (accelerometer, audigyigtble light, high-frequency

light, barometric pressure, humidity, temperature, and compass) in a shoulder mounted multi-sensor
board, collected at a rate of 4 per second, then classified intd\into10 classes of human activ-

ity AL, A2, ... AN, one for each subject and each time unit. The classes were: riding elevator up or
down, driving car, riding bicycle, walking stairs up or down, jogging, walking, standing, sitting. The
imprecisions here come from the classification procedure, which results in probability distribution
on theN activities.

Figure 3.6 shows brief summaries of the probabilistic data in each of these applications. Each
required between two and four base probabilistic tables, and between one to three SQL views for
complex probabilistic correlations. In addition to the probabilistic data IMDB had some large de-
terministic tables (over 400k movies, 850k actors, and 3M casts, not shown in the figure), which
are part of the query processor’s input in the experiments below, hence they are important for our

evaluation.

3.4.2 Query Performance

We report below measurements only from the first data set (IMDB-Amazon integration), which was
the largest and richest. The processor’s performance was mésttyesl by two query parameters:
the number of groups (denotadn Sec. 3.2) and the average size of each group. In additional exper-
iments (not shown) we noticed that the performance was fésstad by the number of probabilistic
tables in the queryniin Sec. 3.2), which roughly corresponds to the number of sources of evidence
in the imprecise data.

By choosing each parameter to be small (S) or large (L) we obtained four classes of queries de-
note SS, SL, LS, and LL respectively; we chose one query form each class, and show it in Figure 3.7.

The queries are:

SS In which years didAnthony Hopkinsappear in a highly rated movie? (Our system returns the

top answer 2001, the year he was in Hannibal)

42

SL Find all actors who were in Pulp Fiction who were in two very bad movies in the five years

before Pulp Fiction. (Top 2 Answers: Samuel L Jackson and Christopher Walken)

LS Find all directors who had a low rated movie between 1980 and 1989. (Top 2 Answers: Richard

C. Sarafian for Gangster Wars and Tim King for Final Run)

LL Find all directors who had a low rated drama and a high rated comedy less than five years apart.

(Top Answer: Woody Allen)

Unless otherwise stated, the confidence and precision parameters wedé, 5 = .01, and the
multisimulation algorithm run waklS_RankK (Sec. 3.2.2), which finds the tdpand sorts them.

Comparison with Other Methods The state of the art in query evaluation on probabilistic
databases is to either compute each query answer exactly, using a complete Monte Carlo simulation
(we call this method naive (N)), or to approximate the probabilities using some strategies [108]
by ignoring their correlations. The first results in much larger running times than multisimulation
(MS): see Figure 3.8 (a) (note the logarithmic scale): the naive method timed out for the LS and LL
gueries. The approximation method is much faster than MS, but results in lower prgeisatin
due to the fact that it ignores correlations between imprecisions: this is shown in Figure 3.8 (b).
Note that, unlike a Monte Carlo simulation, where precision and recall can be improved by running
longer, there is no room for further improvement in the approximate method. Note that one of the
queries (LS) flattened at around 60% precigiecall. The queries that reached 100% did so only
whenk reached the total number of groups: even then, the answers are much worse then it looks
since their order is mostly wrong. This clearly shows that one cannot ignore correlations when
modeling imprecisions in data.

Analysis of Multisimulation The main idea of the multisimulation algorithm is that it tries to
spend simulation steps on only the tiopuckets. We tested experimentally how the total number
of simulation steps varies witk, and in which buckets the simulation steps are spent. We show
here the results for SS. Figure 3.8 (c) shows the total number of simulation steps as a function
of k, both for theTopK algorithm (which only finds the toj set without sorting it) and for the
RankK algorithm (which findsand sorts the togk set). First, the graph clearly shows ttRatkK

benefits from low values dk: the number increases linearly wikh Second, it shows that, for

43

TopK, the number of steps is essentially independenk.ofhis is because most simulation steps

are spent at the separation line between thektapd the rest. A deeper views is given by the graph

in Figure 3.8 (d), which shows for each group (bucket) how many simulation steps were spent, for
k = 1,5,10 25, and 50. For example, whén= 1 most simulation steps are spent in buckets 1

to 5 (the highest in the order of the probability). The graph illustrates two interesting things: that
RankK correctly concentrates most simulation steps on thétmpckets, and that, onéeincreases
beyond a given bucket’s number, the number of simulation steps for that bucket does not further
increase. The spikes in both graphs correspond to clusters of probabilities, where MS had to spend
more simulation steps to separate them. Figure 3.8 (e) showff¢glce @k on the measured running

time of each query. As expected, the running time scales almost lineaklyThat is, the fewer
answer the user requests, the faster they can be retrieved.

Effectiveness of the Optimization®Ve tested both optimizations: the semijoin pruning and safe
query rewriting. The semijoin pruning was alwayfeetive for the queries with a large number of
buckets (LS, LL), and harmless for the other two. We performed the pruning in the middleware, and
the additional cost to the total running time was negligible. The safe-plan rewriting (SP) is more
interesting to study, since it is highly non-trivial. Figure 3.8 (a) shows significant improvements
(factors of 3 to 4) in the running times when the buckets are large (SL, LL), and modest improve-
ments in the other cases. The query time in the engifierdd, since now the queries issued are
different: in one case (SL) the engine time was larger. Figure 3.7 shows how the SP optimization
affects the average group size: this explains the better running times.

Sensitivity to ParametersFinally, we tested the system’s sensitivity to the parameitensde
(see Sec. 3.2.2). Recall that the theoretical running tin@(1g<?) andO(log(1/(ns)). Figure 3.8
(f) shows both the precisigrecall and the total running time as a function of , for two queries:

LL and LS;k = 20,6 = 0.01, and SP is turnedfio The running time are normalized to that of

our golden standard, 4 & = 0.99. As 1- ¢ increases, the precisigacall quickly approaches the
upper values, while the running time increases too, first slowly, then dramatically. There is a price
to pay for very high precisigrecall (which is what we did in all the other experiments). However,
there is some room to tune-le: around 09 both queries have a precisjoecall of 90%-100%

while the running time is significantly less than the golden standard. The similar graphdifiar,

and is much more boring: the precisigregall reaches 1 very fast, while the running time is almost

44

independent o@. (The graphs look almost like two horizontal lines.) We can ch@oisea wide

range without degrading either precisiatall or performance.

N MS SP N MS SP N MS SP
SS SL LS

N MS SP
LL

45

K

1000 T T T
5) y
Z 100 = .
K .2 T
2 Z
B 3
;ﬂ & SS —
L e R I O e [[e [Y <) S
E 10 SL i
H LS e
g LL oo
~ 0 1 1 1 1 1 1 1 1 T

0 5 10 15 20 25 30 35 40 45 50

(a) Running times N(aive), MS, and S(afe) P(lan) (b) PrecisigRecall for naive strategies

(c) Total number of simulation steps for query SS

[k =10, = .01,6 = .01]

(e) Efect of K on Running Time

(d) Number of simulation steps per bucket for query

(f) Effect of e on Precision and Running Time

250 T T T T T T T T T T
. RankK
& | TopK -
= 200 "’2 A 4
=1 N i A
o % 1
2 150 g i i
‘& 2 “i do
1l -
2 100 £ SUN IR -
g = [N i
= =5 i ! H
= g RPN |
g 50 @ L ! E
%) \/ i e
N SN N , [N i K
0 TRRE HARC LS Sl | VAN 4= I I TR
5 10 15 20 25 30 15 20 25 30
K Bucket Index

450 T T T T Il 7171 717 7] !
400 _%ﬁ 7777777 - 0.9 - LL Precision
- 350 _LL? ,,,,,,,, . 0.8 4 0.8 E’g
® 300 [| 0.7 =
E 250 i g 0.6 ey 0.6 S
o Z 05 LL Running Time="" 2
c 200 — 3 o . R
= - . &=
E 150 | i A 0.4 - 0.4 o
> 03 | _.-"'LS Precision ‘g
T 400 | . e : E
0.2 02
50 1 01 N/ B LS Running Time. -~
0 I T TR N T B B 0
0.1 02 03 04 05 06 07 08 09 1

Figure 3.8: Experimental Evaluation

1 - epsilon

46

Chapter 4

QUERY-TIME TECHNIQUE II: EXTENSIONAL EVALUATION FOR
AGGREGATES

In traditional databases, aggregation is a key technique to summarize a single large database
instance. In probabilistic databases, we need to summardrglarge instances (possible worlds).
Intuitively, this suggests that aggregation may actually be a more fundamental operation on prob-
abilistic data than even over standard, deterministic relational data. In this section, we both tackle
the algorithmic challenge of evaluating (and approximating) aggregate queries on a probabilistic
databases, and also, discuss the limits of any approach.

In this chapter, we studyAVING querieswhich are inspired by thBAVINGclause in SQL; more
precisely, &IAVING is a conjunctive Boolean queries with an aggregation predicate, e.g., is the MAX
greater than 10?. Informally, the technical highlight of this chapter is a trichotomy result: we show
that for eactHAVING queryQ the complexity of evaluatin@ falls into one of three categories: (1)

The exact evaluation problem hagime data complexity. In this case, we call the qusaje (2)

The exact evaluation problem{iB-hard, but the approximate evaluation problem has (randomized)
P-time data complexity. More precisely, there existsrairas for the query. In this case, we call
the queryapx-safe (3) The exact evaluation problemfiB-hard, and the approximate evaluation

problem is also hard (neptras likely exists). We call these queriésizardous

4.1 Motivating Scenario

In SQL, aggregates come in two formalue aggregatethat are returned to the user in tSELECT

clause (e.g., th¥AX price) andpredicate aggregatethat appear in thHAVING clause (e.g., is the

MAX price greater than $10.007?). In this section, we focus on positive conjunctive queries with a
single predicate aggregate that we ¢®IVING queries. Prior art [26, 97] has defined a semantic
for value aggregatiornhat returns the expected value of an aggregate query (e.g., the exwexted

price) and has demonstrated its utility for OLAP-style applications. In this section, we propose a

a7

, SELECT SUM(PROFIT) SELECT ITEM
| ltem | Forecastef Profit [P | ppoy proFIT FROM PROFIT
Widget Alice $-99K || 0.99 WHERE ITEM=‘Widget’ WHERE ITEM=‘Widget’
Bob $100M | 0.01 HAVING SUM(PROFIT) > 0.0
[Whatsit] Alice [$IM [1]
Profit(ltem;Forecaster,Profi®) (a) Expectation Style (HJAVING Style

Figure 4.1: A probabilistic database wittPaofit relation that contains the profit an analyst fore-
casts for each item sold. Prior Art [97] has considered a semantic similar to the query in (a), which
returns the expected value of an aggregate. In contrast, we study queries similar to (b) which com-
putes the probability of HAVING style predicate, e.g., that tis&M of profits exceeds a value (here,

0.0).

complementary semantic for predicate aggregates inspirBd NG (e.g., what is th@robability
that theMAX price is bigger than $10.00?). We illustrate th&efience between the approaches with

a simple example:

Example 4.1.1 Figure 4.1 illustrates a probabilistic database that contains a single refatofi,t.
Intuitively, a tuple inProfit records the profit that one of our analysts forecasts if we continue to
sell that item. We are not certain in our prediction, an®soefit records a confidence with each
prediction. For example, Alice is quite sure that we will lose money if we continue selling widgets;
this is captured by the tupleA(idget Alice, $ — 99K, 0.99) in Profit. Intuitively, 0.99 is the
marginal probability of the factW/idget Alice, $ — 99).

An example of a value aggregate is shown in Figure 4.1(a). In this approach, the answer to an
aggregation query is thexpected value of the aggregate functidssing linearity of expectation,
the value of the query in Figure 44)(is 100M * 0.01 + —99K * 0.99 ~ 900K. Intuitively, this large
value suggests that we should continue selling widgets because we expect to make money. A second
approach (that we propose and study in this chapter), is aKIBMTNG style aggregation in standard
SQL. An example is the query in Figure 4.1(b) that intuitively s&yghat is the probability that we
will make a profit?”. The answer to this query is the probability that the value ofSthieis greater
than 0. Here, the answer is only0Q: this small probability tells us that we should stop selling

widgets or risk going out of business.

48

Our technical starting point is the observation that we can evaluate a quétly an aggregate
a on a deterministic database using a two step process: (1) annotate the database with values from
some semirings,, e.g., ifa = COUNT, then we can tak&, to be the natural numbers, and (2)
propagate these annotations during query processing (using the rules inegBedg81]). In this
scheme, each tuple output by the query is annotated with a value in the se8irihgt is exactly
thevalueof the aggregate, e.g., tlkOUNT of the tuples returned hy. Thus, it is easy to check if the
HAVING query is true: simply test the predicate aggregate on the value returned by the query, e.g., is

the SUM returned by the query greater than 07 If the answer is yes, return true.

To evaluate aggregate queries on probabilistic databases, we generalize this approach. On a
probabilistic database, the output of an aggregate gQdsydescribed by aandom variable de-
notedsy, that takes values i8,. A HAVING queryQ whose predicate is, SagQUNT(x) < k, can
be computed over a probabilistic database in two stages: (1) compute the distribution of the random
variable,sq; and (2) apply aecovery functiorthat computes the probability theg < kK, i.e., sum
over all satisfying values adg. The cost of this algorithm depends on the space required to rep-
resent the random variab$g, which may be exponential in the size of the database. This cost is
prohibitively high for many applicatiofts In general, this cost is unavoidable, as prior art has shown
that forSELECT-PROJECT-JOIN (SPJ) queries (withoMAVING), computing a query’s probability is
#P-Completé [46, 78].

Although evaluating general SPJ queries on a probabilistic database is hard, there is a class of
SPJ queries (calledafe queriesthat can be computedtiiently and exactly [46, 135]. A safe
guery has a relational pld?, called asafe planthat is augmented to compute the output probability
of a query by manipulating the marginal probabilities associated with tuples. The manipulations
performed by the safe plan are standard multiplications and additions. These manipulations are
correct because the safe plan “knows” the correlations of the tuples that the probabilities represent,

e.g., the plan only multiplies probabilities when the events are independent. To generalize safe plans

1A probabilistic database represents a distribution over standard, deterministic instancepossileld world$63].
A probabilistic database with tuples can encodéd'2ossible worlds, i.e., one for each subset of tuples. We defer to
Section 4.2.1 for more details.

24P defined by Valiant [162] is the class of functions that contains the problem of counting the number of solutions
to NP-Hard problems (e.g$i3-SAT). Formally, we mean here that there is a polynomial reduction frdi-Blard
problem, and to any problem . Since technically, the query evaluation problem itself is ndiin

49

to computeHAVING queries, we provide analogous operations for semiring random variables. First,
we describemarginal vectorghat are analogous to marginal probabilities: a marginal vector is a
succinct, but lossy, representation of a random variable. We then show that the operation analogous
to multiplying marginal probabilities is a kind a&femiring convolution Informally, we show that

substituting multiplications with convolutions is correct precisely when the plan is safe.

As we show, the running time of safe plans with convolutions is proportional to the number of

elements in the semirindg3,. Thus, to comput®AVING queries with an aggregate efficiently,

we needS,, to be small, i.e.S, should contain at most polynomially many elements in the size of
the instance. This condition is met when the aggregateone of{EXISTS, MIN, MAX, COUNT}. For

a € {SUM,AVG, COUNT(DISTINCT)}, the condition is not met. In these cases, our algorithrffisient

only for a restricted type of safe plans that we eallafe Fora-safe plans, #AVING query witha

can be computedfigciently and exactly. Further, we show thasafe plans capture tractable exact
evaluation for queries without self joiiisMore precisely, for each aggregatec {EXISTS, MIN,

MAX, COUNT, SUM, AVG, COUNT(DISTINCT) }, there is a dichotomy for queries without self joins:
Either (1)Q is a-safe, and so hasRxtime algorithm, or (2)Q is nota-safe and evaluatinQ exactly

is iP-Hard. Further, we can decide whether a queky-&afe inP-time.

Exact evaluation is the gold standard, but in many applicatimsroximatelycomputing prob-
abilities sufices. For example, if the input probabilities are obtained heuristically, then computing
the precise value of the output probability may be overkill. Alternatively, even if the probabili-
ties are obtained precisely, a user may not care about ffezatice between a query that returns a
probability score of9 versus90001; moreover, as we argued in Chapter 3 such precision may be
suficient to rank the answers. Leveraging these observations, we show that there are some queries
that can be ficiently approximate¢deven though they are natsafe (and so cannot be computed
exactly). More precisely, we study when there exisiully Polynomial Time Randomized Approx-
imation Scheméprras) for approximating the value of BAVING query*. Our key result is that

there is a second dichotomy for approximate evaluation for queries without self joins: Either (1) an

3A self join is a join between a relation and itself. The quB(y, y), S(y) does not have a self join, bR(x, y), R(y, 2)
does.

4An rrTRAS can be thought of as a form of sampling that is guaranteed to rapidly converge andhsiciste We defer
to Definition 4.6.1 for formal detalils.

50

approximation scheme in this chapter can approximai&VaNG query dficiently, or (2) there is
no such éicient approximation scheme. Interestingly, we show that the introduction of self joins
raisesthe complexity of approximation: we show a stronger inapproximability result for queries
involving self joins.

In general, the complexity of evaluatingHAVING query Q depends on the predicate that
uses. More precisely, the hardness depends on both the aggregate functiod the comparison
function, 8, which together are called aaggregate-test pajre.g., in Figure 4.1(b) the aggregate-
test pair is COUNT, >). For many such aggregate test paitsd), we show atrichotomy result
For HAVING queries usingd, 6) without self joins over tuple-independent probabilistic databases,
exactly one of the following three statements is true: (1) The exact evaluation problePrtinaes
data complexity. In this case we call the qusafe (2) The exact evaluation problemfiB-hard,
but the approximate evaluation problem has (randomiBetiine data complexity (there exists an
FPTRAS 10 evaluate the query). In this case, we call the quary-safe (3) The exact evaluation
problem isfP-hard and the approximate evaluation problem is also hardr(ras exists). We call
these queriebazardouslt is interesting to note that the third class is emptyE®ISTS, which are
essentially the class of Boolean conjunctive queries that are studied by prior work [46]; that is, all
Boolean conjunctive queries have dha@ent approximation algorithm.

The approximation algorithms in this chapter are Monte-Carlo-style approximation algorithms;
the key technical step such algorithms must perforntfisient sampling, i.e., randomly generat-
ing instances (called possible worlds). Computing a random possible world is straightforward in
a probabilistic database: we select each tuple with its corresponding marginal probability taking
care never to select two disjoint tuples. However, to supp@idient techniques likémportance
sampling[102], we need to do something more: we need to generate a random possible world from
the set of worlds thagatisfy a constraint that is specified by an aggregate quEoy example, we
need to generate a random worlll, such that thélAX price returned by a queny on W is equal
to 30. We call this theandom possible world generation proble@ur key technical result is that
whengq is safe (without aggregation) and the number of elements in the ser@inagmall, then
we can solve this problemntteciently, i.e., with randomized polynomial time data complexity. The
novel technical insight is thate can use safe plans as a guide to sample the dataffdie use is

in contrast to the traditional use for safe plans of computing query probabilities exactly. We apply

51

our novel sampling technique to provideamras to approximately evaluate sorHaVING queries
that havefP-hard exact complexity. Thus, the approaches described in this chaptefficanty

answer strictly more queries than our previous, exact approach (albeit only in an approximate sense).

Contributions and Outline

We study conjunctive queries withAVING predicates on common representations of probabilistic
databases [13, 137, 168] where the aggregation function is OREISTS, MIN, MAX, COUNT, SUM,

AVG, or COUNT(DISTINCT); and the aggregate test is one=9ft, <, <, >, or >. In Section 4.2, we for-
malizeHAVING queries, our choice of representation, and defifieient evaluation. In Section 4.3,

we review the relevant technical background (e.g., semirings and safe plans). In Section 4.4, we give
our main results for exact computation: For each aggregatee find a class 0HAVING queries,

calleda-safe, such that for an® usinge:

o If Qis a-safe therQ’'s data complexity is irP.

¢ If Qhas no self joins and is natsafe thenQ hasfP-hard data complexity.

¢ We can decide in polynomial time (in the size@f if Q is a-safe.

In Section 4.5, we state and solve the problem of generating a random possible world when the
guery defining the constraint is safe. In Section 4.6, we discuss approximation schemes for queries
that havew € {MIN,MAX, COUNT, SUM}. The hardness of an approximation algorithm faGtA¥ING

query depends on the aggregaiebut also on the predicate tegt,We show:

e If Qis (a, #)-apx-safe ther®) has arrptras.

¢ If Q has no self joins and is not(6)-apx-safe thenQ does not have arrtras and is g, 6)-

hazardous.

e We can decide in polynomial time (in the size@fif Q is (a, 8)-apx-safe.

52

SELECT m.Title

;E(E)gEMOVI'QeM.atC[}.T’_Rel_\','ewer ;"tl Q(M)[COUNT(DISTINCT) > 2] = QCOUNT(DISTINCTT)> 2] -
m.Reviewlitle=r.reviewlite MovieMatch(t, m), MovieMatch(t, ‘Fletch’),
GROUP BY m.Title . .
. Reviewer(-,r,t) Reviewer(—,r,t)
HAVING COUNT(DISTINCT r.reviewer)> 2
(a) SQL Query (b) Extended Syntax (Not Boolean) (c) Syntax of this paper

Figure 4.2: A translation of the quefyWhich movies have been reviewed by at least 2 distinct
reviewers?” into (a) SQL; (b) an extended syntax of this paper, which is not Boolean; and (C) the
syntax of this paper, which is Boolean and BA/ING query.

We show that the trichotomy holds for all combinationsxoéindg € {=, <, <, >, >}, but leave
open the case afOUNT andSUM with either of{>, >}. Additionally, we also show that queries with
self joins belong to a complexity class that is believed to be as hard to approximate as any problem
in §P. This suggests that the complexity i&VING query approximation is perhaps more subtle

than for Boolean queries.

4.2 Formal Problem Description

We first define the syntax and semanticsHAWING queries on probabilistic databases and then

define the problem of evaluatithVING queries.

4.2.1 Semantics

We consider the aggregate functidt®&ISTS, MIN, MAX, COUNT, SUM, AVG, andCOUNT(DISTINCT)

as functions on multisets with the obvious semantics.

Definition 4.2.1. A Boolean conjunctive query is a single ruleqps, ..., gnwWherefori=1,...,m,
gi is a distinct, positive extensional database predicate (EDB), that is, a relational symhol

BooleanHAVING query is a single rule:

Qla(y) 6K = 01,...,0n

5Since all relational symbols are distinBVING queries do not contain self joing:= R(x, y), R(y, 2) has a self-join,
while R(x, y), S(y) does not.

53

where for each i, gs a positive EDB predicate; € {MIN, MAX, COUNT, SUM, AVG, COUNT(DISTINCT)},
y is a single variablg, 6 € {=, #, <, <, >, >}, and k is a constant. The set of variables in the body of
Q is denotedrar(Q). We assume thatg var(Q). The conjunctive query & 0i,...,0n, is called
the skeletonof Q and is denotedk(Q) = g. In the above syntax,is called thepredicate testk is

called thepredicate operan@nd the pair(a, 6) is called anaggregate test

Figure 4.2(a) shows a SQL query withHAVING predicate that asks for all movies reviewed
by at least two distinct reviewers. A translation of this query into an extension of our syntax is
shown in Figure 4.2(b). The translated query is not a BooBAIING query because it has a head
variable (n). In this paper, we discuss only BooleHAVING queries. As is standard, to study the
complexity of non-Boolean queries, we can substitute constants for head variables. For example, if

we substitute ‘Fletch’ fom, then the result is Figure 4.2(c) which is a BooI@&AWING query.

Definition 4.2.2. Given aHAVING query Qa(y) 6 K] and a world W (a standard relational instance),
we defineV to be the multiset of valueqyy where y is distinguished variable in Q and v is a

valuation of g= sk(Q) that is contained in W. In symbols,

Y = {| v(y) | vis a valuation forsk(Q) andim(v) € W |}

Here,im(v) € W denotes that image sk(Q) under the valuation v is contained in the world W. We
say that Q is satisfied on W and write W/ Q[a(y) 6 K] (or simply WE Q) if ¥ # 0 anda(¥) 6 k
holds.

In the above definition, we follow SQL semantics and require #at 0 in order to say that
W E Q. For exampleQ[COUNT(x) < 10] :— R(x) is false in SQL ifRY = 0, i.e., the interpretation
of Rin the worldW is the empty table. This, however, is a minor technicality and our results are

undfected by the alternate choice tlG&UNT(x) < 10 is true on the empty database.

4.2.2 Probabilistic Databases

The data in Figure 4.3 shows an example of a BID database that stores data from integrating ex-

tracted movie reviews from USENET with a movie database from IMDB. fidnei eMatch table

5For COUNT, we will omity and write the more familiatOUNT(x) instead.

54

Title Matched P | RID [Reviewer]| Title [P]
‘Fletch’ ‘Fletch’ 095 | m ‘ , ‘Fletch’ 07 | tam
‘Fletch’ ‘Fletch 2’ 0.9 mp 231 Ryan ‘Spies Like Us’ 03 t2310

‘Fletch 2’ ‘Fletch’ 04 | my : —
. , Euro. Vacation’ || 0.90 | t
“The G. Child’ | ‘The G. Child’ || 0.95| m, | 232 | ‘Ryan e 005 | ton
“The G. Child’ | ‘G. Child’ 0.8 | ms —— — t23
‘The G. Child’ | ‘Wild Child’ 0.2 ‘ ' : 238
M6 | 235 'Ben Wild ChId || 02 | tas
MovieMatch(CleanTitle, ReviewTitle ;; P) Reviews(RID, Reviewer ; ReviewTitle ; P)

Figure 4.3. Sample data arising from integrating automatically extracted reviews from a movie
databaseMovieMatch is a probabilistic relation, we are uncertain which review title matches with
which movie in our clean databasBeviews is uncertain because it is the resultinformation
extraction

is uncertain because it is the result of an automatic matching procedure (or fuzzy-join [31]). For
example, the probability a review title ‘Fletch’ matches a movie titled ‘Fletch’ is very higdbj0

but it is not certain (D) because the title is extracted from text and so may contain errors. For
example, fromThe second Fletch moviebur extractor will likely extract justFletch’ although

this review actually refers td-letch 2. The review table is uncertain because it is the result of
information extraction That is, we have extracted the title from text (e'Eletch is a great movie,

just like Spies Like U$.! Notice thattyzx[P] + t2s3n[P] = 0.95 < 1, which indicates that there is

some probability reviewid 232 is actually not a review at all.

Query Semantics Users write queries on the possible worlds schema, i.e., their queries do not
explicitly mention the probability attributes of relations. In this paper, all queries are Boolean so the
answer to a query is a probability score (the marginal probability that the query is true). We define

this formally:
Definition 4.2.3(Query Semantics)The marginal probability of #AVING query Q on BID database

J is denoted:;(Q) (or simplyu(Q)) and is defined by:

w@= D HaW)

WeW;:WEQ

55

In general, for a Boolean conjunctive quepywe writeu 3(q) to denote the marginal probability

thatq is true.

Example 4.2.4 Figure 4.2(c) shows a query that asks for all movies that were reviewed by at least
2 different reviewers. The movie ‘Fletch’ is present when the following formula is satisfigda (

t231a) V (M A toz) V (Mg A to3ss). The multiplicity of tuples returned by the query is exactly the
number of disjuncts satisfied. ThygQ) is the probability that at least two of these disjuncts are
true. Definition 4.2.3 tells us that, semantically, we can compute this by summing over all possible

worlds.

4.2.3 Notions of complexity f(fAVING queries

In the database tradition, we would like to measure the data complexity [164], i.e., treat the query
as fixed, but allow the data to grow. This assumption makes sense in practice because the query
is generally orders of magnitude smaller than the size of the database. Hence, a running time for
query evaluation ofo(nf(I) where|Q| is the size of a conjunctive que is P-time. In our

setting, this introduces a minor technical problem: By fixingASING queryq, we also fixk (the
predicate operand); this means that we should accept a runningtithas dficient. Clearly this

is undesirable: becaugecan be largé For exampleQ[SUM(y) > 200] :— R(x,y). For that reason,

we consider in this paper an alternative definition of the data complexl#yGEING queries, where

both the database akdare part of the input.

Definition 4.2.5. Fix a skeleton g, an aggregate and a comparison operat@. Thequery eval-
uation problemis: given as input a BID representationahda parameter k> 0, calculateu;(Q)

where Qa(y) 6 K] is such thask(Q) = q.

The technical problem that we address in this work is the complexity of the query evaluation
problem. Later, we will see that the query evaluation problem for the query in Example 4.2.4 is hard

for §P, and moreover, that this is the general complexity foHAUING queries.

“If we fix the query thark is assumed to be a constant, and so we can take even double exponentialkirii@us,
we would like to takek as part of the input.

56

4.3 Preliminaries

We review some basic facts about semirings (for a reference see Lang [109]). Then, we introduce

random variables over semirings.

4.3.1 Background: Queries on databases with semiring annotations

In this section, we review material from Greenal. [81] that tells us how to compute queries on
a database whose tuples are annotated with elements of a semiring. To get there, we need some
classical definitions.

A monoidis a triple S, +, 0) whereS is a set,+ is an associative binary operation Snand 0
is the identity of+, i.e.,s+ 0 = O for eachs € S. For exampleS = N (the natural numbers) with
addition is the canonical example of a monoid.

A semiringis a structure$, +, -, 0, 1) where §, +, 0) forms a commutative monoid with identity
0; (S,-,1) is a monoid with identity 1; distributes over, i.e.,s- (t + u) = (s-t) + (S- u) where
s t,u e S; and 0 annihilate$, i.e., 0- s= 0 for anyse S.

A commutative semiring one in which §, -, 1) is a commutative monoid. As is standard, we
abbreviate either structure with the Satvhen the associated operations and distinguished constants

are clear from the context. In this paper, all semirings will be commutative semirings.

Example 4.3.1 [Examples of Semirings] For an integek 0, letZy,1 = {0, 1,. .., k} then for every
suchk, (Zx, max min, 0,k) is a semiring. In particulak = 2 is the Boolean semiring, denot&d
Fork = 1,2,...,, another set of semirings we consider 8ke= (Z, +k, 'k, 0, 1) where+(X,y) =

min(x + v, k) and-x = min(xy, k) where addition and multiplication are

The idea is that database elements will be annotated with elements from the semiring (defined
next) and then these annotations will be propagated during query processing. For us, the important

point is that aggregation queries can be viewed as doing computation in these semirings.

Definition 4.3.2. Given a commutative semiring S and a Boolean conjunctive quergg. . . , On,
an annotation is a set of functions indexed by subgoals such thatfdk,i..,n, 74 is a function

from tuples that unify with;go S. We denote the set of annotation functions with

57

m'[0,2,4,6] =(0.68,0.17,0.12,0.03)
+

Incorrect!

y
a; | b| m{02]=(0.802) 4 Not
a, | c | m041=(0.850.15) 4m independent
>
x B E
2 a|b a, | 05 | mio2=0505)| || a | b | 04 | mI011=(0.6,04)
4 ac a,| 1.0 | mial =(1.0) a, | ¢ |03 | m0.2]-(0.7,03)
R(x) a | d RIX) a, |d| 0.2 | mo3-0802)
S(x,y) S(x,y)
(a) (b)

Figure 4.4: (a) This is a query plah = m_x(m_y(R(X) = S(x,Y))) for the queryq = R(X), S(x,y)

over some database annotatedlinThe value of the query ig(W. 7) = 6. (b) This is an extensional

plan (Definition 4.4.5) forP (7r'_x(7r'_y(R(x) > S(X,¥))). This plan is not safe, since intermediate
values may be neither independent nor disjoint. Thus, the extensional value computed by this plan
is not the correct marginal probability of the query. For readability, we underline elements of the

semiring.

Remark 4.3.3. In the above definition, we restrietto assigning values to tuples that unify with g
since g may incorporate selections. For example, jif-g R(X, ‘a’) thent does not need to assign

values to tuples whose second component is ‘b’. Implieithhould assign all such tuplés
We recall the syntax of relational plans as we generalize them in this work.

Definition 4.3.4(Query Plan Syntax)

e aplanP is inductively defined as (1) a single subgoal that may include selections,(2)

if Py is a plan and x is a variable, and (3);R« P, if Py, P, are plans.

e var(P), the variables output by P, is defined inductively asv@(g), the variables in the
subgoal g, if P= g; (2) var(7_xP) = var(P)—{x}; and (3)var(P1 » P2) = var(P1) Uvar(P>).

e goal(P), the set of subgoals in P, is defined inductively agBl(g) = {g}; (2) goalr_xP1) =
goal(P,); and (3)goal(P; = P,) = goal(P1) U goal(Py).

58

A graphical example query plan is shown in Figure 4.4(a) along with its description in the above
syntax.

We view relational plans as computing relational tuples that are annotated with elements of a
semiring (following Greert al.[81]). To be precise, fix a domaib, and denote thealueof a plan
P on a deterministic instand& asw}, which is a functiorDVa (Pl — S Informally, the value of a
plan maps each standard tuple returned by the plan to an element of the s@nWegdefinew‘,Q’

inductively:
e If P = gthenift € W andt unifies withg thenw})(t) = 74(t) elsew}(t) = 0.

o f P=r Py then) p = > wf(t).
t:t'[var(P)]=t
o elseP = Py = P and fori = 1,2 lett; bet restricted tovar(P;) thenwy! o (1) = wf/ (t1) -

wp, (t2)

An example of a plan computing a value in a semiring is shown in Figure 4.4(a). The value of the
plan in the figure is 6: Since the plan is Boolean, it returns the empty tuple which is annotated with
6, more succinctlyw? () = 6.

For a standard conjunctive queglythere may be many distinct, but logically equivalent, rela-
tional plans to computg. Greenet al.[81] show thatw} does not dependn the particular choice
of logically equivalent plar for g. In turn, this justifies the notatiog(W, 7), as the value of a con-
junctive queryg on a deterministic instand® under annotatiom. Formally, we define this value as
qW, 1) aef a)‘,é"() whereP is any plan forg and Whereu‘F’,V is applied to the empty tuple. This notion
is well defined precisely because the valug dbes not depend on the choice of plRnWhenr is

clear from the context, we drop it and write simgj¥V) to denote the value ajon a worldw.

4.3.2 Background: Random Variables on Semirings

In this section, we extend the idea of semirings on a standard database to probabilistic databases.
Intuitively, in each possible world, every tuple is annotated with a (potentialigrént) semiring el-
ement. Hence, we think of each tuple as being associated wigmaing random variablédefined

formally below). A naive representation of these random variables can be large, which motivates us

59

to define an fiicient (small) representation calletarginal vectorgin full analogy with marginal
probabilities). In addition, we defineffecient) operations on these marginal vectors that are fully
analogous with multiplying and adding marginal probabilities . In the remainder of this section,
we fix a BID instancel, and denote byW, u) the distribution on possible worlds induced by

(Section 4.2.1).

Definition 4.3.5. Given a semiring S, an-8andom variabler, is a functionr: W — S. Given

two S -random variables tthen r+t and r- t denote random variables defined in the obvious way:

(r + (W) = r(W) + t(W) and(r - (W) = r(W) - t(w)

We writer = sas a shorthand for the event that the random variatd&es values. We denote
the probability of this event ggr = s). More preciselyu(r = s) = u({W e W | r(W) = s}). Two

basic notions on random variables are independence and disjointness:

Definition 4.3.6. Given a semiring S and a set of random variables=Rry,...,rn} on S, R is

independenif YN € {1,...,n}and any sets...,s, € S, we have
,u(/\ r = S‘] = l_l#(ri =3)
ieN ieN

We say that R idisjointif for any i # j we have:

u((ri#0)A(rj#0)=0

If r andt are two disjoint random variab@ghenu(r =0Vt = 0) = u(r = 0) + u(t = 0) — 1.

To represent a singl8-random variable, we may need space as large as the number of possible
worlds (‘W]). This can be exponential in the size of the datalkhsd so, is prohibitive for most
applications. We now define an alternative representation calrginal vectorghat have size

proportional to the size of the semiring, i.iS|.

8A more illustrative way to write this computationigr = OVt =0] = 1-u[r #0At # 0] =1- (1 -u(r =
0)) + (1 - pu(t=0))

60

Definition 4.3.7. Given a random variable r on S, tmearginal vectofor simply, the marginal) of

ris denotedm’ and is a real-valued vector indexed by S defined®¢ S u(r = s) = m'[9).

Two simple facts immediate from the definition a&fs € S ni[s] > 0 (all entries are positive)
and) s M [s] = 1 (total probability). We use the following notationi[sy, .. ., s wheres,, . .., &
are semiring elements to be a shorthand for the tuple of marginal probabiities]; ..., m[s]).

Marginal vectors for semiring random variables are the analog of marginal probabilities for
Boolean events: they are a means to write down a simple, succinct (but lossy) representation of a
random variable. In the case of a Boolean semiring Bes ({0, 1}, max min, 0, 1)), a random
variabler is an event that is true (whan= 1) or false (whermr = 0). Suppose that the marginal
probability thatr is true isp; (and so it is false with probability 2 p;). Then, the marginal vector

has two entries one for each of the semiring elements, 0 and 1:
m[0] = 1- pr andm([1] = p

If r andt are independent Boolean events, then their conjunctiohhas marginal probability
given by the simple formula[r A t] = u[r]u[t]. We generalize the idea of multiplying marginal
probabilities to marginal vectors of semiring elements; the resulting operation is catenaid
convolution In full analogy, when when,t are disjoint semiring random variables, we introduce a

disjoint operationthat is analogous to the ruldr v t] = u[r] + u[t] for disjoint Boolean events.

Definition 4.3.8. Given a monoids, +, 0), themonoid convolutioris a binary operation on marginal
vectors denoteg. For any marginalsm’ and m! we define the s-entry (forsS) ofm @ m' by the
equation:

(M eom)g € > m[i]n(]]

i,jli+j=s
That is, the sum ranges over all pairs of elements from the semiring S whose sum (computed in the
semiring S) is exactly s. We emphasize that since the entries of the marginal vector® atkdan
arithmetic operations omin the above equation are performediras well.

Thedisjoint operatiorfor (S, 0, +) is denotedn’ | | m and is defined by

if s 0 (nf [1m)[g & mr[g + Mg
else (n¥] m)[0] £ (mf[0] + mi[0]) - 1.

61

In a semiring(S, +, -, 0, 1) we used to mean the convolution over addition, i.e., over the monoid
(S, +,0), and® to mean the convolution over multiplication, i.e., over the moi{8id, 1). Notice

that the disjoint operation is always paired with(not-).

Example 4.3.9 Consider the Boolean semirifiggand two random variablesandt taking values in
B with marginal probabilitieg, andp, respectively. Them' = (1- py, pr) andmt = (1- p, py). If
r andt are independent, then the distributiorr oft can be computed usingpt (in B, r vt =r +1).
From the definition, we see thatgt)[0] = (1-p;)(1-pt) and ¢&t)[1] = (1- pt) +(1— pr) Pt + Pr Pt

If r andt are disjoint, therm*{[1] = (m' [[m)[1] = (pr + pr) andm*[0] = (m'] m")[0] =
1— m*1].

The next proposition restates that the two operations in the previous definition yield the correct

results, and states bounds on their running time:

Proposition 4.3.10.Let r and s be random variables on the mon¢fd+, 0) with marginal vectors
m’ and mt, respectively. Then leti ™' denote the marginal of t. If r and t are independent then
m*t = m @ mi. If r and t are disjoint therm** = m’ || m'. Further, the convolution is associative,

so the convolution of n variables,r.. ., r, can be computed in time(®|S|2):
D o Enire...onmn

and disjoint operation applied tar. . ., r, denoted below can be computed i(n(H)).

_Unn{ldgfmrl]_l.“]_lrﬁn

Proof. We include the proof of the convolution since it is illustrative. We assumentia} = u(x =

i) for x € {r,t} andi € S, i.e., the marginal vectors are correct, and thandt are independent. We

62

show thatm’ @ m") [s] = u(r +t = s). Sinces € Sis arbitrary, this proves the correctness claim.

(Men)lg = > nf[ini[j]
i,jeSii+j=s
= D ur=iut=])
i,jeS:i+j=s
= D, ur=irt=])
i,jeS:i+j=s

= u(r+t=29=mm[g

The first equality is the definition. The second equality is by assumption that the marginal vectors
are correct. The third line is by the independence assumption. The final line is because the sum is
exhaustive. To see the time bound, observe that we can simply consi¢iif @ihirs to compute

the convolution (which we assume has unit cost). Since the semiring is associative, and so is the

convolution. This also means that we can computentf@d convolutions pairwise. O

The importance of this proposition is that if the number of elements in the semiring is small,
then each operation can be doriogently. We will use this proposition as the basis of officgent

exact algorithms.

4.4 Approaches for HAVING

We definex-safeHAVING queries fora € { EXISTS, MIN, MAX, COUNT} in Section 4.4.3, forr =

COUNT(DISTINCT) in Section 4.4.4, and € {AVG, SUM} in Section 4.4.5.

4.4.1 Aggregates and semirings

We explain how to computBAVING queries using semirings on deterministic databases, which we
then generalize to probabilistic databases. SHISEING queries are Boolean, we use a function
p . S — {true falsg, called therecovery functionthat maps a semiring valugto true if that
value satisfies the predicate in the having qu@re.g., when checkinQOUNT(x) > 4, p(4) is true,

but p(3) is false. Figure 4.5 lists the semirings for the aggregates in this paper, their associated

63

| HAVING Predicate] Semiring | Annotationr: (t) | Recoveny(s) |
| EXISTS | (Z2, max min) | 1 \ s=1 \
MIN(Y) {<, <} k (Z3, max min) if to kthen 2 else 1 s=2
MIN(Y) {>,>} k (Z3, max min) if t 6 kthen 1 else 2 s=1
MIN(y) {=, #} Kk (Zg,maxmin) | if t<kthen3else if =thens=2
ift=kthen2elsel| if #thens+ 2
| COUNT(x) 0Kk | Skx | 1 | (s#0)A(sK) |
| SuM(y) 6 k | Ske1 \ t[y] | (5£0)A(s6K) |

Figure 4.5: Semirings for the operatdfEN, COUNT andSUM. Let g* be the lowest indexed subgoal

such that containg. For allg # g*, Vt, 7¢4(t) equals the multiplicative identity of the semiring.

Let Zxis1 = {0,1,...,K} and+k(Xx,y) aef min(x + y, k) and-x def min(xy, k), wherex,y € Z. Let

Sk def (Zx+1, +k» 'k» 0,1). MAX andMIN are symmetricCOUNT(DISTINCT) is omitted because it uses
two different algebras together. One important point to note is that, in the c&8#,df t is outside

the semiring (i.e., larger) thar(t) is set to the largest element of the semiring. Since all values
are present, once this value is present it forces the value of the predi@te, if¢ => then the
predicate is trivially satisfied.

annotation functions, and an associated Boolean recovery functiorThe aggregation function

EXISTS essentially yields the safe plan algebra of Dalvi and Suciu [46, 48, 135].

Example 4.4.1 Consider the quer@Q[MIN(y) > 10] :— R(y) whereR = {t3,...,t,} is a tuple in-
dependent database. Figure 4.5 tells us that we should use the se@gingg min). We first

apply r: 7(tj) = 1 represents that[y] > 10 while 7(tj)) = 2 represents that[y] < 10. Let

,,,,,,,,,,

wheng; is 1. In turn, this occurs if and only if ali[y] are greater than 10 as required.

A careful reader may have noticed that we could have dseéd compute this example (instead
of Z3). When we generalize to probabilistic databases, we may have to account for a tuple being

absent (for which we use the value 0).

More generally, we have the following proposition:

Proposition 4.4.2. Given aHAVING query Q, let g= sk(Q) and S ,0 and r be chosen as in Fig-

64

ure 4.5, then for any deterministic instance W:

WEQ = p(qWr))

Proof. Let g, the skeleton o), haven subgoals. We show onlIN with < in full detail. All other

aggregate-test pairs follow by similar arguments. We observe the equation

awn= > [] v

vim(v)cWi=1,...,n

Further,W = Q[MIN(y) < K] if and only if there there is some valuation such thpt; _,v(gi) = 2.
Since, 2+ s= 2 for anys € S the existence of such a valuation implg%\,) = 2. Conversely, if
g(W.) = 2 then there must be some such valuation sineey = 2 implies that eithex ory is 2 in
this semiring. Hence, the claim holds.

Similarly, W E Q[MIN(Y) > K], the query is satisfied if and only #ll elements are: k and so
each term (valuation) in the summation must evaluate to O or 1. Similar arguments are tue.for
In the case ofOUNT, if we want to count from 1 ..,k we also need two elements, O ake 1: O

encodes that a tuple is absent &ne1 encodes that the value is “bigger than k”. |

In probabilistic databases, we vieyWW, r) as a random variable by fixing (the semiring an-
notation functions), i.e., we vieg(W, 7) as a function oiV alone. We denote this random variable
g.. Our goal is to compute the marginal vectorgef The marginal vector of},, denotedm®, is
suficient to compute the value of afAVING query since we can simply examine those entries in
m% for which the recovery functiom, is true. Said another way, a simple corollary of Prop. 4.4.2

is the following generalization to probabilistic databases:

Corollary 4.4.3. Given aHAVING query Q, let g= sk(Q), S ,p, andt be as in Prop. 4.4.2, then for

any BID instance J we have the following equalities:

w@=), mK

k: p(K) is true

65

Cor. 4.4.3 tells us that we can compui) by examining the entries of the marginal vector

m%*. Hence, our goal is to compute™[s] for each such indexs € S.

4.4.2 Computing safely in semirings

We now extend safe plans to compute a marginal vector instead of a Boolean value. Specifically, we

computem®, the marginal vector fog, using the operations defined in Section 4.3.2.

Definition 4.4.4. An extensional plarfior a Boolean conjunctive query q is defined recursively as
a subgoal g and if P, P, are extensional plans then so ar&,P; (independent projectyr®, Py
(disjoint project), and I P> (join). An extensional plan P safeif, assuming Pand B are safe,

the following conditions are met:

P = g is always safe

P = n' P, is safe if xe var(P;) and¥g € goal(P;) then xe key(qg)

P = nP, P is safe if xe var(P;) anddg € goal(P;), key(g) < var(P), x € var(g).

P = Py » Py is safe ifgoal(P1)ngoal(P,) = 0 and fori= 1, 2, var(goal(P1))nvar(goal(P,))
var(P;), i.e., we may not project away variables that are shared in two subgoals before they

are joined.

An extensional plan P is a safe plan for q if P is safe godl(P) = g andvar(P) = 0.

Intuitively, a safe plan tells us that the correlations of tuples produced by intermediate stages
of the plan are either independent or disjoint, as opposed to correlated in some unknown way. In
particular,P = n' ,(P1) is a safe plan whenever those tuples produce®{gn any instance are
independent (provided the tuplesfdr on the variable). Hence, we calt' an independent project.
Similarly, if P = z°,(P;) is safe, then the tuples produced Byare disjoint whenever they fiéer
on the variablex. Further, a join is safe if the branches do not contain any common subgoals, i.e.,
any tuple produced b, is independent of any tuple produced By. For completeness, we state

and prove a formal version of this discussion in Appendix B.1.

66

Computing With Safe Plans

We now augment safe plans to compute marginal vectors. Intuitively, we generalize the operation
of multiplying marginal probabilities (as done in safe plans) to semiring convolutions of marginal
vectors, and we generalize the operation of adding the marginal probabilities of disjoint events to
disjoint operations on marginal vectors. We think of a plan as computing a marginal vector: The
marginal vector computed by a plé&hon a BID instancel is called theextensional valuef P and

is denoted as)} ¢ and is defined below.

Definition 4.4.5. Given a BID instance J and a semiring S. Let P be a safe plan. Denote the
extensional valuef P in S on J asb%s. (Dg’s is a function that maps each tuple to a marginal
vector. To emphasize the recursion, we fix J and S and dérggteas&)p. We define the value of

wp inductively:

e If P = g thendp(t) = m' wherem'[0] = 1 — t[P] and m'[74(t)] = t[P] and all other entries

are0.
e If P = 7' Py thendp(t) = @ @p,(t) where @ denotes the convolution over the
t:t’[var(P1)]=t
monoid(S, +, 0).
e If P = 7P P; thendp(t) = U wp, (t) where] | denotes the disjoint operation over the

t:t’[var(P1)]=t
monoid(S, +, 0).

o If P = Py P2 thenwp(t) = wp, (t1) ® wp,(t2) where for i= 1,2t; is t restricted tovar(P;)

and® denotes the convolution over the mon(d-, 1).

Figure 4.4(b) gives an example of computing the extensional value of a plan: The plan shown
is not safe, meaning that the extensional value it computes is not correct, i.e., equfal fbhis

illustrates that any plan may be converted to an extensional plan, but we need additional conditions

67

(safety) to ensure that the computation is correct. Interestingly, in this case, there is an alternate safe
plan: Pg = m_x(R(X) > 7_y(S(X,y))), i.e., we move the projection early.

The next lemma states that for safe plans, the extensional value is computed correctly, i.e., the
conditions insured by the safe plan and the operator used in Definition 4.4.5 make exactly the same
correlation assumptions. For exampté,indicates independence, which ensures ghabrrectly
combines two input marginal vectors. The proof of the following lemma is a straightforward induc-

tion and is omitted.

Lemma 4.4.6.If P is a safe plan for a Boolean query q amds any annotation function into S,

then for any s€ S on any BID instance J, we ha@g()[s] = u3(d = s).

A safe plan (in the terminology of this paper) ensures that the convolutions and disjoint opera-
tions output the correct results, but itrist syficient to ensure that the plan igeient In particular,
the operations in a safe plan &take time (and space) polynomial i8|. Thus, if the size o6
grows super-polynomially ifJ|, the size of the BID instance, the plall not be gficient As we
will see, this rapid growth happens f8/M in most cases. In contrast, as we show in the next section,
if @ is one ofMIN, MAX, or COUNT, the number of elements in the needed semiring is small enough,

so the safety o$k(Q) andQ coincide.

4.4.3 EXISTS-,MIN-, MAX- and COUNT-safe

We now give optimal algorithms whem is one of EXISTS, MIN, MAX, or COUNT. The results on
EXISTS are exactly the results of Dalvi and Suciu [46]. We include them to clarify our generaliza-

tion.

Definition 4.4.7. Leta be one of EXISTS, MIN, MAX, COUNT} and J«(t) 6 k] be aHAVING query,

then Q isa-safeif the skeleton of Q is safe.

Theorem 4.4.8.Let Ja(y) 6 K] be aHAVING query fora € { EXISTS, MIN, MAX, COUNT} such that

Q is a-safe then the exact evaluation problem for Q is in polynomial time in the size of the data.

Correctness is straightforward from Lemma 4.4.6idiency follows because the semiring is of

constant size foEXISTS, MIN, andMAX. For COUNT, observe that an upper bound |&his number

68

of tuples returned by the query plus one (for empty), thus count is polynomially bounded as well.

Thus, the entire plan has polynomial time data complexity.

Complexity

The results of Dalvi and Suciu [46, 48, 135] show that either a conjunctive query without self joins
has a safe plan or it #P-hard. The idea is to show thaHAVING queryQ is satisfied only iSk(Q)
is satisfied, which implies that computiii@gis at least as hard as computigk(Q). Formally, we

have:

Theorem 4.4.9(Exact Dichotomy foMIN, MAX, andCOUNT). If @ € {MIN, MAX, COUNT} and a(y) 6 K]
does not contain self joins, then either (1) Qvisafe and so Q has data complexityHnor (2) Q

hasfiP-hard data complexity. Further, we can find arsafe plan inP.

Proof. The first part of the dichotomy is Theorem 4.4.8. We show the matching negative result.
Consider the predicate te$IN(y) > 1; assuming tha® is notMIN-safe, we have (by above) that
sk(Q) = g is not safe in the sense of Dalvi and Suciu, we show that this query can be used to
computeu[q] on an BID instancel. To see this, create a new instankehat contains exactly the
same tuples ag, but recode all values in attributes referenced/ag integers with values greater
than 1: this query is true precisely when at least one tuple exists and hence[gith\Ve show
below that this is sficient to imply that all test8 are hard as well. The proof fMAX is symmetric.

COUNT is similar. O

Lemma 4.4.10.Let a € {MIN,MAX, COUNT, SUM, COUNT(DISTINCT)}, if computing Qa(y) = K]
exactly isP-hard, then it isfP-hard forall 6 € ®. Furthermore, if g takes at most polynomially
many values then the converse also holds: if computifigy® 6 k] exactly isfP-hard for any

0 € O, then it isiP-hard for all 6 € ©.

Proof. We first observe that all aggregate functiens the statement are positive, integer-valued
functions. We show that we can use>, >, <, # as a black box to compute efficiently. We then
show that we can compute the inequalities in ti®) (using=), thus proving both parts of the

claim.

69

First, observe thag(W,) = sis a function on worlds, i.e., the events are disjoint fdfadent

values ofs. Hence,

(Qlay) <K) =) u(Qla(y) = K1

k' <k
From this equation it follows that we can compute any inequality usiitgtime proportional to the

number of possible values. To see the forward direction, we compute

#(Qlaly) < k+1]) — u(Qla(y) < K]) = u(Qla(y) = K])

similarly for a strict inequality. And, £ u(Q[a(y) # K]) — u(Q[a(y) # 0]) = u(Q[a(Y) = K]). The

0 statement is only necessary with SQL semantics. O

The exactiP-hardness proofs in the remainder of this section satisfy the requirement of this

lemma. Interestingly, this lemndoes not hold for approximation hardness

4.4.4 COUNT(DISTINCT)-safe queries

Intuitively, we computeCOUNT(DISTINCT) in two stages: (1) For the subplan rootedraf, we first
compute the probability that each value is returned by the plan (i.e., we compWESTENCTpart
usingEXISTS). (2) Then, since we have removed duplicates implicitly ugkgSTS, we count the
number of distinct values using tliOUNT algorithm from Section 4.4.3.

The ordering of the operators, filBKISTS and thenCOUNT, is important. As we show in The-
orem 4.4.16, this ordering exactly captures tractable evaluation. First, we need a small technical

proposition to state our characterization:

Proposition 4.4.11.1f P is a safe plan for g, then for & var(q) there is exactly one of , or n°,

in P.

Proof. At least one of the two projections must be present, because we must remove the variable
X (g is Boolean). If there were more than one in the plan, then they cannot be descendants of each
other becausg ¢ var(P;) for the ancestor and they cannot be joined afterward because of the join

condition fori = 1,2 var(goal(P1)) n var(goal(P,)) c var(P;). mi

70

Thus, it makes sense to talk about the unigue node in the plan tree where a vaisaeimoved,

as we do in the next definition:

Definition 4.4.12. A query QCOUNT(DISTINCTY) 6 K] is COUNT(DISTINCT)-safeif there is a safe
plan P for the skeleton of Q such that if B the unique node in the plan where y is removed, i.e.,

eitherz', or z2 in P, then no proper ancestor ofi s 7', for any x.
This definition exactly insists on the ordering of operators that we highlighted above.

Example 4.4.13Fix a BID instancel. Consider
Q[COUNT(DISTINCTY) > 2] :— R(Y, X), S(y)

A COUNT(DISTINCT)-safe plan for the skeleton @ is P = ﬂl_y((ﬂ'l_xR(y, X)) > S(y)). The subquery
P; = (7' R(y, X)) > S(y) returns tuples (values fg). We use th&XISTS algebra to compute the
probability that each distinct value appears.

Now, we must count the number of distinct values: Since we have eliminated duplicates, all
values are trivially distinct and we can use $@UNT algebra. To do this, we map eaERISTS
marginal vector to a vector suitable for computit@NT, i.e., a vector irZy (herek = 2). In other
words, (1- p,p) = &)REXISTS(t) = m' is mapped tar(m') = (1 - p, p,0). In general, this vector
would be of lengthk + 1.

SinceP = 7r'_yP1, we know that all tuples returned B84 are independent. Thus, the correct
distribution is given by convolution over all su¢h each one corresponding to a distigotalue,

i.e.,&T(t"). To compute the final result, use the recovery functiodefined byp(s) = s> 2

The proof of the following theorem is a generalization of Example 4.4.13, whose proof we

include in the appendix (Appendix B.2):

Theorem 4.4.14.1f Q is COUNT(DISTINCT)-safe then its evaluation problemmstime.

Complexity We now establish that f@OUNT(DISTINCT) queries without self joing;OUNT(DISTINCT)-
safe capturesficient computation. We do this in two stages: first, we exhibit some canoni-
cal hard patterns foEOUNT(DISTINCT), and second, in the appendix, we reduce any other non-

COUNT(DISTINCT)-safe pattern to one of these hard patterns.

71

Proposition 4.4.15. The followingHAVING queries areiP-hard fori=1,2,...:

Q1[COUNT(DISTINCTY) 6 K] :— R(X), S(X,)

and,

Q2,i[COUNT(DISTINCTY) 6 K] :— R1(X;Y), ..., Ri(XY)

Proof. We proveQ; is hard and defe@,; to the Appendix B.2. To see thg} is hard, we reduce
from counting the number of independent sets in a grapk)(which isP-hard. We lek be the

number of edgegKE|) andd = * >’. Intuitively, with these choice® will be satisfied only when all
edges are present. For each nadeV, create a tupl®(u) with probability Q5. For edges = (u, V)
create two tuples(u,), S(v, €), each with probability 1. For any s&t C V, let Wy, denote the
world where the tuples correspondingM6are present. For any subset of nodés,we show that
V’ is an independent set if and only\if\,_y satisfiesQq, i.e., all edges are present in its node-
complement. Sincé(N) = V — N is one-to-one, the number of possible worlds that sat@fare
exactly the number of independent sets, thus completing the reduction. Nvg &n independent
set, then for any edgel(v), it must be the case that at least onauafr vis in V — N, else the set
would not be independent, since it would contain an induced edge. Thus, every edge is present and
Q is satisfied. IfN is not independent, then there must be some edlgg $uch thau,v € N, hence
neither ofu,vis in V — N. Since this edge is missin@: cannot be satisfied. This completes the

reduction. The hardness Q& is based on a reduction from counting the set covers of a fixed size

and is in the appendix. i

There is some work in showing that the patterns in the previous theorem capture the boundary

of hardness.

Theorem 4.4.16(COUNT(DISTINCT) Dichotomy) Let QJa(y) 6 k] be a HAVING such thate is
COUNT(DISTINCT), then either (1) Q iSCOUNT(DISTINCT)-safe and so haP data complexity or
(2) Q is NnotCOUNT(DISTINCT)-safe and hagP-hard data complexity.

Proof. Part (1) of the result is Theorem 4.4.14. We sketch the proof of (2) in the simpler case when

72

only tuple independent probabilistic tables are use@ iand defer a full proof to Appendix B.2.
Assume the theorem fails, I€ be the minimal counter example in terms of subgoals; this implies
we may assume thd) is connected and the skeleton @fis safe. Since there is no safe plan
projecting ony and only independent projects are possible, the only condition that can fail is that
some subgoal does not contginThus, there are at least two subgo@{g) andS(z y) such that

y ¢ xU zandxn z # 0. Given a graph\(, E), we then construct a BID instandeexactly as in the
proof of Prop. 4.4.15. Only thR relation is required to have probabilistic tuples, all others can set

their probabilities to 1.]

Extending to BID databases requires more work because our technique of adding extra tuples
with probability 1 does not work: doing so naively may violate a possible worlds key constraint. The
full proof appears in Appendix B.2. It is straightforward to decide if a pla@OGNT(DISTINCT)-
safe: the safe plan algorithm of Dalvi and Suciu [48, 135] simply tries only disjoint projects and

joins until it is able to project away or it fails.

4.4.5 SUM-safe anddVG-safe queries

To find SUM- andAVG-safe queries, we need to further restrict the class of allowable plans. For ex-
ample, there are queries involvisgM on a single table that afi®-hard, e.g., the quer@[SUM(y) =

K] :— R(y) is alreadyP-hard. There are, however, some queries that can be evalufateengly:

Definition 4.4.17. A HAVING query Qa(y) 8 K] for « € {SUM, AVG} is a-safe, if there is a safe plan

P for the skeleton of Q such thai’y in P and no proper ancestor @n?y is 7, for any x.

The idea of the positive algorithm is that if the plan contazi_H)g i.e., each value foy is present
disjointly. Letay,...,a, be they values returned by running the standard quesy (addingy to
the head o8k(Q)). Now consider the quer®’ wheresk(Q’') = q[y — a&] (substitutey with &). On
this query, the value of is fixed, so we only need to compute the multiplicityapfigure out if Q/

is true. To do this, we use tl@UNT algebra of Section 4.4.3 whenewgis safe.

Theorem 4.4.18.1f Q[a(y) 6 K] for « € {SUM, AVG} is a-safe, then Q’s evaluation problem is in

P-time.

73

Sketch.SinceQ is a-safe, then there is a pldhsatisfying Definition 4.4.17. The consequence of
this definition is that on any possible woNd, we have that the conjunctive queggy) (g = sk(Q))
returns a single tuple (i.e., a single binding ¥9r This implies that the values adésjoint So for a
fixed positive integea returned byg(y), the predicatsSuM(y) 6 k depends only on theultiplicity

of a. Hence, we can write:

K
ulQl =) HQalCOUNT(x) 6]

aes
Here, Q4 denotes thask(Q,) = gy — 4], i.e.,y is substituted witha in the body 0fQ,. SinceQ is
a-safe, we have thaj[ly — 4] is safe, and so by Theorem 4.4.8, each term can be computed with
the COUNT algebra. Hence, we can compute the entire sum in polynomial time apf3o For
AVG, it is slightly simpler: Since we are taking the valuenotopies ofa, we have that thavG is a
if m> 0 (else the query is false). Thus, we simply need to compute the probability that theavalue

exists with multiplicity greater than 1 (which can be handled by the star&E¥rsir'S algebra).

Example 4.4.19 ConsiderQ[SUM(y) > 10] :— R(‘a’; y), S(y, u). This query isSUM-safe, with plan

2y R(@%; y) b 7Ly S(y, U)).

Complexity We show that if IAVING query without self joins is nd8UM-safe then, it hagP-data

complexity. AVG follows by essentially the same construction.

Proposition 4.4.20.Leta € {SUM, AVG} and@ € {<, <, =, >, >} then Qa(y) 6 K] :— R(y) hastiP-data

complexity.

Proof. We only showsSUNM, deferringAvG to the appendix. Consider whens =. An instance of
#SUBSET-SUM is a set of integersy, ..., X, and our goal is to count the number of subs@ts
1,...,nsuch thaty s X = B. We create the representation with scheRi¥; ; P) satisfyingR =
{(X1;0.5),..., (xn; 0.5)}, i.e., each tuple present with probabilityp0 Thus,u(Q) * 2" is number of

suchS. Showing hardness for other aggregate tests follows from Lemma 4.4.10. m|

Theorem 4.4.21.Leta € {SUM, AVG} and let Qa(y) 6 K] be aHAVING query, then either (1) Q is

a-safe and hence hdastime data complexity, or (2) Q is natsafe and Q hagP-data complexity.

74

We prove this theorem in Appendix B.3.
4.5 Generating a Random World

In this section, we give an algorithm (Alg. 4.5.2.1) to solve tiwedom possible world generation
problem which informally asks us to generate a possible wolduch thag(W, 7) = s, i.e., such
that the value ofj on W is s. The probability that we generate a fixed wold is exactly the
probability of W conditionecbn the value ofy being equal tes. Our solution to this problem is a
key a subroutine in ourrtras for SUM (in Section 4.6), but it is also an interesting problem in its
own right. As pointed out by Coheet al.[35], a random world satisfying some constraints is useful

for many debugging and related tasks.

45.1 Problem Definition

Definition 4.5.1. Let J be a BID instance, g be a conjunctive query, abé an annotation function.
A BID random world generatofsimply, arandom generatdiis a randomized algorithntA that

generates a possible worly € ‘W, such that for any § S we havé

palW = W] = u(W | qW.7) = 3)

whereu# emphasizes that the probability is taken over the random choices of the algafithm

Further, we require thatA run in timepoly(J|, |S|).

This definition says that the probability a world is generatekectlythe conditional probability
of that instance (conditioned on the value of the quggings). In this section, we show that when
sk(Q) is safe then we can solve create a random generator for any BID instance and any annotation

function.

4.5.2 Possible World Generation Algorithm

To describe our algorithm, we need a notation to record the intermediate operations of the safe

plan on the marginal vectors, i.e., a kindlofeageor provenancdor the semiring computation.

SFormally, if W = 0, then we require that that a random generator return a special valuBhis value is like an
exception and will not be returned during the course of normal execution.

75

Algorithm 4.5.2.1 A random world generator fal,

Decl: RWHELPER(¢) : SEemiring parse tree,
S: a semiring value)
returns a random world denoted/ c J,.

if ¢ is aleaf,i.e.p = (t, m") for some tuple then
(* If s+ 0then this implies the tuple must be present. *)
if s# 7(t) then return {t}
elif s= 0 then return 0 else return L
(* Inductive case *)
Let ¢ have label ¢p, m') and childrenp; andg,
with marginal vectorsn’: andm?2, respectively.

if op = & then

Choose §1, $) S.t. 51 + S = swith probability nf:[s;] m¢1[32]m+[s]
if op = ® then

Choose §1, $) S.t. 51 - S = swith probabilityrrfﬁl[&]m”l[sz]#[s]
if op = [] then

Choose §1, s) = (s, 0) with probabilitymf:[s] WL[S]
or (s1, %) = (0, s) with probabilitynﬁl[sQ]W%[S]

(* Union the results of the recursive calls *)
return RWHELPER(¢1, 1) U RWHELPER (2,)

Here, we view a safe plan as computing the marginal veetodsis computing a symbolic semiring

expression (essentially, a parse tree of the extensional computation performed by the plan).

Definition 4.5.2. A semiring parse treg is a binary tree where a leaf is labeled with a p&iym')
where t is a tuple andn is a marginal vector on S; and an internal node is labeled with a pair

(op, m) whereor € {®,®, | [} andmis a marginal vector.

Given a safe pla® and a BID instancd with annotationr, the parse tree associated®@andJ
is denoted(P, J, 7). We think of¢(P, J,) as a record of the computationBfon J. More precisely,
¢(P, J 1) is a parse tree for the semiring expression that we compute §haerd J using the rules
of Definition 4.4.5. The operations in a safe plan esary: we can, however, transform thase
ary operations into a binary parse tree in an arbitrary way, since the operations are associative. An
example parse tree is shown in Figure 4.6. We observe that any safe plan can be mapped to a parse

tree.

76

Algorithm 4.5.2.2 A random world generator far

Decl: RanbomWoRLD(¢ : Semiring parse tree,
J: A BID instance,s a semiring element
returns arandom world of] denotedW.

LetW « RWHEeLpER(¢, S) andT = J — Js

for eacht e T do
Let K(t) = {t’ | t[K] = V'[K]} = {ta, ..., tm} With p; = u[ti].
Let {tks1, ..., tm} = KE®) N J,
if K(t) W = 0 then

selectt; fromi = 1, k with m and W — WU {t;}
T« T-K(t) '
return W

Example 4.5.3 Figure 4.6 illustrates how(P, J, 7) is constructed for a simple example based on
SUM. Figure 4.6(a) shows a relatidR(A; B) where A is a possible worlds key. Our goal is to
generate a random world such that the quefsuM(y) = 6] :— R(X;y) is true. The skeleton dp is
safe and so has a safe pl&hs= n'_x(ery(R)). Figure 4.6(a) also shows the intermediate tuples that
are computed by the plan, along with their associated marginal vectors. For example, the marginal
vector associated t is mit[0,1] = (1 — p1, p1). Similarly, the marginal vector for intermediate
tuples likets is m[1] = po. At the top of the plan is the empty tuplg, and one entry in its
associated marginal vector, i.e8[6] = p1ps + P2Pa.

The parse treg(P, J, 7) corresponding t® on the instancd = {R} is illustrated in Figure 4.6(b).
The bottom-most level of internal nodes haxe= [], since they encode the action of the disjoint
projectionnE’y. In contrast, the root hag = &, since it records the computation of the independent
project, 7' ,. As we can see, the parse tree simply records the computation and the intermediate

results.

Algorithm Overview Our algorithm has two phases: (1) We first build a random generator for
the tuples in the parse tree(defined formally below); this is Alg. 4.5.2.1. (2) Using the tuples
generated in step (1), we select those tuples not in the parse tree and complete the gendrator for

this is Alg. 4.5.2.2. To make this precise, we need the following notation:

Definition 4.5.4. Given a semiring parse trag we defindup(¢) inductively: if¢ is a leaf corre-

77

() tg m[6]=(p,ps + p2ps)

L I
x| b
6 _ H &) 1 Internal
Bob | t; m®[0,1,2] = (1-p;-p,.py.p2) fmo[6] =(p,ps + pap) | Nodes
Joe | t, m7[0,4,51= (1-ps-ps.p.-ps)
g 4] b
2 { 11 Vo 11)

| x y P 00,121 ~(1-py-ps. prps)] {mP(0.4,5] =(1-pypsprps) |
Bob | 1|p, | t, mi[0,1] = (1-p,.p))
2 py |t m2[02] = (1-p,.py)
Toe |4 p| t, m0.41 = (1-pypy)
51ps | ts m®[0,5] = (1-ps.ps)

() (b)

Figure 4.6: (a) A BID relatiofR(A; B) used in Example 4.5.3 along with a safe plaa 7r'_x(n9y(R)).

The extensional computation is in the semiriig (b) ¢(P. {R}) is shown whereé® = 7' (7 (R)).

The dotted boxes map to the nodes in the tree, described in Definition 4.5.2. In the figure, for
readability, we only show the entry for 6 in the root. Also, the entries in the marginal vectors
are real (rational) numbers and are written as expressiolysfor the sake of readability. There

is a one-to-one correspondence between intermediate marginal vectors and nodes in the parse tree

¢(P’ ‘J, T)'

sponding to a tuple t, thetup(¢) = {t}. Otherwise has two child parse treeg; and ¢,, then
tup(¢) = tup(¢1) U tup(¢2). We also consideiup*(¢) = tup(¢) — {t | 7(t) = 0}, i.e.,tup*(¢) is the

set of tuples with non-zero annotations contained.in
If Pis a safe plan, thetup has a particular simple form:

Proposition 4.5.5. Let P be a safe plan for g and J be a BID instance, then for any internal pgde

in ¢(P, J, 7) with childreng, and¢,, we have thatup(¢1)Ntup(¢2) = 0 andtup™ (¢1)Ntup*(¢2) = 0.

Proof. We observe that a@ or an[] node is introduced only if there is a projection removing a
variablex (Definition 4.4.4), in which case the tuplestimp(¢1) andtup(¢2) disagree orx, hence,

are disjoint sets of tuples. Case two is that= ®, which is introduced only as a join of two
tuples. In this casdup(¢;) andtup(¢,) come from diferent relations (since there are no self joins
in g). Thus,tup(¢1) andtup(¢2) have an empty intersection. The second statement follows since

tup™(¢i) C tup(¢) fori =1, 2. m|

78

For any parse treg, we can view the tuples itup*(¢) as a BID instance that we denalg
(any subset of a BID instance is again, a BID instance). For a deterministic Waaltl a semiring
expressiony, we writeg¢(W) to mean the semiring value gfon worldW, which is computed in the

obvious way.

Step (1): A generator for J, We now define precisely the first step of our algorithm: Our goal
is to construct a random world generator for the worlds induced by the BID instBncehis is

captured by the following lemma:

Lemma 4.5.6. Let P be a safe plan for a query ¢,= ¢(P, J, 7), and J, = tup™(¢) then Alg. 4.5.2.1

is a random generator forgJfor any annotation functiom.

Proof. Let ¢g be a subtree af(P, J, 7). Then, given anys € S, Alg. 4.5.2.1 is a random generator
for Js,. We induct on the structure of the parse tyeeln the base casey is a leaf node and our
claim is straightforward: I6 = 0, then we return the empty world.{t) = s, then we simply return

a singleton worldt} if 7(t) = s. Otherwise, we have thaft) # s, then the input is not well-formed
and we return an exception) as required. This is a correct random generator, because our input is
conditioned to be deterministic (i.g.,has all the mass on a single instance).

We now write the probability thad(W) = sin a way that shows that if we recursively can
randomly generate worlds for subtrees, then we can make a random generator. Inductively, we
consider an internal nodg with children¢, and¢,. Assume for concreteness that = @ (the
argument foop = ® is identical and foor = [] is only a slight variation). Le¥V denote a world of

Js. Then,

ulgW) =8 = ulpr(W) = s1 A 2(W) = 2| S1 + 2 = 8]

This equality follows from the computation gt We then simplify this expression using the fact

that fori = 1, 2, ¢;’s value is a functionup*(¢;). LetW, = Wn tup*(¢;), we get:

ulp1(W1) = st A po(Wo) = | S1 + 5 = o

79

Observe thati[s; + s = g = u[¢(W) = 5. Then, for any fixeds;, s, such thats; + s, = s, we can

then apply Bayes's rule and independence to get:

ulp1(Wh) = s1]ul¢2(We) = 5]
ulp(W) =

Notice thatW; (respectivelyW,) is a possible world ofl,, (respectivelyJs,) and so the inductive

hypothesis applies. Now, by Prop. 4.5.5, the worlds returned by these worlds do not make conflicting
choices. Since the recursive calls are correct, we just need to ensure that we, pigkwith the
above probability. Examining Alg. 4.5.2.1, we see that we pgk) with exactly this probability,

since
1[5][5]

Hlos(W) = 517 62(W) = 2 [1+ S = o] = —— Trs

This completes the proof. m|

Example 4.5.7 We illustrate Alg. 4.5.2.1 using the data of Example 4.5.3. Our goal is to generate
a random world such that the que@[SUM(Y) = 6] :(— R(x;y) is true. The algorithm proceeds
top-down from the roop. The entry for 6 is selected with probability equalggps + p2ps.

Assume we have selected 6, then we look at the child parse greasdg,: There are two ways
to derive 6 with non-zero probability (1) the subtrgetakes value 1 and, takes value 5, written
(61, 92) = (1,5) or (2) we setd1,¢2) = (2,4). We choose between these options randomly; we
select 1, ¢2) = (1,5) with probability equal t% (the conditional probability). Otherwise,
we select ¢1, ¢2) = (2,4). Suppose we have selectefti,2) = (1,5), we then recurse on the
subtreep, with values; = 1 and the subtreg, with values, = 5.

Recursively, we can see that to get= 1, it must be that; is present antb is absent. Similarly,
we conclude that; must be absent artg must be present. Hence, our random worldvis= {ty, ts}.
If we had instead chosem{, ¢») = (2,4) then we would selected/ = {t,,ts}. Notice that our

algorithm never select®{, ¢2) = (3,3) (i.e., this occurs with probability 0). More generally, this

algorithmneverselects any invalid combination of tuple values.

Step (2): A generator ford We randomly include tuples id that are not mentioned iy, i.e.,
tuples inJ — J,. These are tuples that do not match any selection condition in the query, and can

be freely added t&V without afecting the query result. Here, we need to exercise some care to not

80

insert two tuples with the same key i, and so, we only consider tuples whose possible worlds

key differs from those returned by Step (1). Formally, we prove the following lemma:

Lemma 4.5.8. Let¢(P, J, t) be a parse tree for a safe plan P, a BID instance J, and an annotation

7. Then, given a random generator fof, Alg. 4.5.2.2 is a random generator for J.

Proof. We first use the random generator to produce a random wodgl ol it W,;. Now, consider
atuplet € J - Jy, letK(t) = {t' | '[K] = t[K]} = {t,...,tm}, i.e., tuples distinct front that share

a key witht. If K(t) n W # 0, thent cannot appear in this world because it is disjoint from the
set ofK(t). OtherwiseK(t) n W, = 0, and letK(t) — Jy = {ty,...,t} (without loss) with marginal
probabilitiesps, .. ., pk, i.e., those key tuples not tinp*(¢). These tuples do noffact the value so

all that matters is adding them with the correct probability, which is easily seen to be the conditional

probability:

Pi

ulti is included =

This conditional simply says that it is conditionedmoneof the tuples irk(t) n J, appearing. This

is exactly Alg. 4.5.2.2 O

The main result We now state the main technical result of this section: It follows directly from

the lemma above:

Theorem 4.5.9.Let g be a safe conjunctive query, then Alg. 4.5.2.1 is a random generator for any

BID instance J and annotation

An immediate consequences of Theorem 4.5.9 is that if the senfiridges not contain too

many elements, then Alg. 4.5.2.1 solves the random possible world generation problem.

Corollary 4.5.10. If q is safe andS| = poly(|J|), then Alg. 4.5.2.1 solves the random possible world

generation problem in timpoly(J)).

We use this corollary in the next section to desigrr@amras for SUM.

81

4.6 Approximating HAVING queries with MIN, MAX and SUM

In this section, we study the problem of approximatix¥VING queries. First, we describe an
rpTRAS fOr having queries that have = MIN where the test condition is or <, or @ = MAX where
the condition is one of>, >}. This firsteprras applies to arbitrary SUCRAVING queries, including
gueries whose skeleton is unsafe. Second, we descritveran for HAVING queries whose skeleton
is safe, whose aggregateSM, and where the test condition is any<gf<, >, or >.

Our rrTrAS fOr SUM uses the random possible world generator of the previous section. These
FPTRASES apply to a class of queries that we calld)-apx-safe Additionally, we study the limits
of any approach, and prove an approximation dichotomy for mang) (pairs of HAVING queries
without self joins: Either the above scheme is able to provideratns and so the query isy 6)-

apx-safe, or there is n@tras: we call these queries(6)-hazardous’.

4.6.1 Background: Approximation g-Hard Problems

Although §iP-problems are unlikely to be able to be solved exactly afidiently, some problems
have a strong approximation calledrally Polynomial Time Randomized Approximation Scheme

FPTRAS [121], which is intuitively like a 1+ & approximation.

Definition 4.6.1. Given functiorf that takes an input J and returns a numligl) € [0, 1], where J
is a BID instance, we say that an algorith#f is anrptras for f if given anys > 0, a confidence,

and anye > 0, an error, A takes J g, andé§ as input and produces a number denoi(elj such that
uallfQ) -1J)| <ef(]>1-6

whereu 4 is taken over the random choices of the algoritlfin,Further, A runs in time polynomial

in 71, |W|, andlog 3.

This definition asks for aelative approximatiorf121], which means that if is exponentially
small, but non-zero, our algorithm is required to return a non-zero value. This is in contrast to an

absolute approximatigrthat is allowed to return O (and could be constructed usifigenandom

1°Formally, we mean that tH#BIS problem would have arptras, an unlikely outcome, [58, 59].

82

sampling). In this section, we fix a que€yand consider the functioh(J) = u3(Q), whereld is a
BID instance. We study whether this function admitsaumas.

We define three counting-like problems that arg@thard and will be of use later in this section:

Definition 4.6.2. ThefCLIQUE problem is given a graptV, E), compute the fraction of the subsets
of V that are cliques. Th§BIS problem is given a bipartite grapfy, V, E), compute the fraction of
of the subsets of & V that are independent sets. THINAPSACK problem is given a set of positive
integers Y= {y1,...,Yn} and a positive integer value k, compute the fraction of sets W such

thatZiEW Vi < K.

All three problems aréP-hard’. In a celebrated result, Jerrum and Sinclair [152] showed
that fJKNAPSACK doeshave areptrAs USINg a sophisticated Markov Chain Monte Carlo technique.
It is believed that neithefCLIQUE nor §BIS have anrptras. Interestingly, they are not equally
hard to approximate (see Dyet al. [58]). In particular,§BIS is a complete problem with respect
to approximation preserving reductiondVe do not need these reductions in their full generality,
and simply observe that polynomial time computable 1-1 reductions (bijections) are approximation
preserving. In this section, we say that a probleBisS-hard if there is a 1-1, polynomial-time
reduction tofBIS.

The#KNAPSACK problem is related to the problem of computitaV ING queries with the aggre-

gate function$SUM on a single table.

4.6.2 AneptrAs for MIN with {<, <} and MAX with {>, >}

Consider a quer@[MIN(y) < K] :— g1,..., g then an equivalent condition W E Q is thatW ¢

whereq’ - g1,...,0, Y < k. In other wordsQ is equivalent to a conjunctive query, that contains

an inequality predicate. As such, the standard algorithm for conjunctive queries on probabilistic
databases [46, 78, 137] based on Karp-Luby [102] can be used. A symmetric argument can be used
to find anrptrAs for the aggregate tesMAX, >). Thus, we get essentially for free the following

theorem:

Theorem 4.6.3.1f (a, 0) € {(MIN, <), (MIN, <), (MAX, >), (MAX, >)} then Qa(y) 6 k] has anrpTras.

We mean here that there is a1 correspondence with the counting variants of these problems, which are canonical
#P-complete problems.

83

Although this theorem is easy to obtain, it is interesting to note@fHMIN(y) > K] has aneptrAs
onlyif sk(Q) is safe (as we show in Lemma 4.6.10)sk{Q) is safe, then, we can compute its value
exactly, so theprras is not very helpful. In contrast, Theorem 4.6.3 has no such restrictsdgQ®)
can be an arbitrary conjunctive query. This is a striking example that approximation complexity

may be more subtle than exact evaluation. In particular, an analog of Lemma 4.4.10 does not hold.

4.6.3 Anrprras for safe queries usin§UM with {<, <, >, >}

The key idea of theptras is based on a generalization of Dyer’'s observation: for sekme 0,
the queryQ[SUM(y) < K] is only hard to compute ik is very large. Ifk is small, i.e., polynomial
in the instance size, then we can compQtexactly. Dyer’s idea is t@cale and round down the
values, so that the y-values are small enough for exact computatimcost of rounding is that it
introduces some spurious solutions, but not too many. In particular, the fraction of rounded solutions
is large enough that if we can sample from the rounded solutions, then weticiéendy estimate
the fraction of original solutions inside the rounded solutions.

To perform the sampling, we use Alg. 4.5.2.1 from the previous section (via Alg. 4.6.3.2).
Pseudo-code for the entiketras is shown in Figure 4.6.3.1. We show onl§U{l, <) in detail,

and explain informally how to extend to the other inequalities at the end of the section.

Theorem 4.6.4.Let Q be aHAVING query SUM(Y) 6 K] such tha® € {<, <} andsk(Q) is safe, then
Alg. 4.6.3.1 is aptrAS for Q.

Itis interesting to note that Theorem 4.6.4 implies that we ¢aciently evaluate anuch larger
set of queries than the previous, complete exact algorithm (albeit only in an approximate sense). In
particular, only a very restricted class $ifM-safe queries can be processdiceently and exactly
(c.f. Definition 4.4.17).

Our algorithm makes two technical assumptions: (1) in this section, unlike the rest of the pa-
per, our semantics fiier from SQL: In standard SQL, for a BooleHAVING queryq, if no tuples
are returned bysk(Q) then Q[SUM(y) < K] is false. In contrast, in this section, we assume that
Q[SuM(y) < 1] is true, even ifsk(Q) = qis false, i.e., we choose the mathematical convention

Yyey = 0, over SQL's choice, and (2) we makéaunded oddassumptiot? : for any tuplet there

12For example, that this rules opy = 1 for any tuple and allows any tuple to not be present with some probability.

84

Algorithm 4.6.3.1 An rpTrASs for SUM

Decl:SampLE(Q : a queryQ[SUM(y) < k] with a safe skeleton,
an instance, a confidencé and errore)
returns estimate ofy (Q).

Let body(@) = {g1,...,9} andn; = |pred(g;)|, i.e., the size of th&h relation.

Let QR[SUM(y) < n?] with the same body as (see below).

Let tR(y) = L%’J andy >k n?+1

Construct an expression parse trges ¢(P, 1, %) whereP is a plan forgR.
Fori=1,...mW « SampLEHELPER(, K)

(* Run msamples, fom a polynomial ing, €, n *)

R (@) (+ = (@) = (@)

(* Compute fractlon of\V that satisfy the original quer@®. *)

return

Algorithm 4.6.3.2 Sampling Helper Routine

Decl:SampLEHELPER (¢ Safe aggregate expressidmna bound)
returns a world

Selects€ 0,...,bwith probablhty—[—%;
(* Selecta flnal value for the query ‘that is less than the bdutyd
return RanpoMWoRLD(¢, S)

is existsB > 1 such thag™?! < % < B. These technical restrictions can be relaxed, but are chosen

to simplify our analysis.

The Rounding Phase

The goal of the rounding phase is to produce a query and an annotation function that rounds the
values in the instance down enough so that (1) the exact processing algorithms of Section 4.4.2
for SUM queries can be used, and (2) we can randomly generate a world using the algorithm of
Section 4.5. Alg. 4.6.3.2 shows pseudo code for how these two steps are put together. The main
result of this section is that the resulting algorithm fiscgent (runs in time polynomial in the size
of the BID instancel).

To get there, we construct two things: (1) an annotation functiBnto do the rounding and

(2) a query,QR, that uses the annotation functiefi and the semiring,2,, to compute the exact

85

distribution of the rounded sum in polynomial time.

The Annotation Function Let g be the first subgoal af such thatvar(g) > y andR = pred(g),
i.e.,Ris some relation containingvalues. We scale down the valuesyah R via the (rounding)
annotation function denotee. Letn = [Tgegoalq) IPred(g)l, i.e., the product of the sizes of all
relations ing. Observe than is polynomial in the instance size The rounded annotation function
maps into the much smaller, rounded semir8ig= S,.,,. We define the rounded annotation func-
tion 7R to agree everywhere with the original annotation functi®nexcepton g (the R relation):
Here,rg(t) = {[y]. In the rounded annotation function, we haxge(t) = L”—kzt[y]J, i.e., they values
are scaled down by a factor of /k and rounded-down to the next highest integer. Additionally, if
t[y] is greater thark, thentR(t) = n® + 1. Intuitively, this mapping is correct since if such a tuple is

in the output of the query, then we are sure the summation is greatek.than

The Query We construct a rounded que@R[SUM(y) < n?] with the same body a®°. Letq be

the skeleton of botl)° andQR, i.e.,q = sk(QR) = sk(Q®). We observe that sina@ is polynomial

in the instance size, the generic semiring algorithm of Section 4.4.2 can be used to compute the entire
distributiong(W, %) exactlyin time polynomial in the size of the instance. Since we will always
use QR with the rounded annotation function it makes sense to White= QR if q(W,7g) < n?.
Similarly, we will always useQ® with the original annotation function so that it makes sense to

write W = QP if q(W, 7o) < k.

Definition 4.6.5. Let W be a possible world from some BID instance J. WD, then we call
W anoriginal solution If W = QR then we call W aounded solution Further, denote the set of

original solutions with Vf{’ and rounded solutions with W
WP = (We Wy | WE Q% and Wy = {(WeW; |WE QY

We drop the subscript J when the BID instance is clear from the context.

We observe an essential property of our scheme: All original solutions are rounded solutions,

BBRecall that the query is fixed so if the database contairtsples thenn = m°® where O(1) hides a constant
depending only om, e.g., the number of subgoalsBces.

86

- R
i.e., WP c WR. Formally,

Lemma 4.6.6. For any possible world W, W Q° = W E QR, and more precisely, there exists

a ¢ € [0, n) such that ¢\, =) = q(W,°) - 6.

Proof. Letq = sk(Q®) = sk(QR) andV be the set of all valuations for. LetW be a possible world:

WEQ® = > °Ma) =k

veV:im(v)cW
" o 2
= Z —7-(V(@) <n
. k

veV:im(v)cW
= > @) +o<r?

veV:im(v)cW
= WEQR

Here,sy € [0, 1) and accounts for the roundf®f the floor function. Since &), 6y < n, we

have the more precise statement. |

The importance of this lemma is that by sampling within the rounded solutions, we have a chance
of hitting anyoriginal solution. LetVV be a random rounded solution created using Alg. 4.6.3.2, then
letf be the Boolean-valued estimator (random variable) that takes vaffié/1= QO. It is not hard

to see that this estimator satisfies:
HI (WO)
u3 (WR)

Here, A is written to emphasize that the expectation is taken with respect to the (random) choices

Ealf] =

of Alg. 4.6.3.2. Importantly, this is exactly an individual trial of Alg. 4.6.3.1.

Analysis of the convergence

Using Alg. 4.6.3.2, we canficiently conduct an individual (random) trial. The last technical piece
to show that Alg. 4.6.3.1 is arrtras, iS to show that the number of triata that are needed to
guarantee that the estimator converges is small enoughmizepoly(J|). The first lemma that we

need is the standaf@, 1}-estimator lemma [121], which is an application of a ChéfBound.

Lemma 4.6.7([121]). Let m> O be an integer. Given a sequence of independent Boolean-valued

87

({0, 1}) random variabled,, .. ., f,, with meanE[f], then the estimator

fm=%2fi

i=1m
achieves a relative error of with probability 1 — 6 for some m= O(E[f] e ?logéY).

Observe that the estimator used in Alg. 4.6.3.1 is exactly of this type. The second lemma that
we need is that the probability mass of the original solutions contained in the rounded solutions is

“big enough” so that our sampling scheme will converge quickly.

Lemma 4.6.8. Let R and @ defined as above, J be a BID instance, andbe J's induced

probability measure, then,

u3(WO)
(WA =1

(n+1)7pt<

where n= [Tgeqoalq) IPred(g)l.

This lemma is the technical heart of the argument: it intuitively places bounds on the variance

of our estimate. We give a full proof in Appendix B.4. The importance of Lemma 4.6.8 is that

1a(WO°)
u3(WR)

m = O(nB~te?logs~1t) samples. We observe that a relative estimateBf} implies that we

it shows thatE[f] = > n~18, and so, applying Lemma 4.6.7, we see that we need at most

have a relative estimate f&q{f]u;(WR) = 13(WPC), the probability that we want to estimate. Thus,
the algorithm is #icient as long as the the number of samples is bounded by a polynomil in
a suficient condition for this to hold igt = poly(J|) which follows from the bounded odds

assumption. Thus, under the bounded odds assumptioBwitpoly(|J]), we have:

Theorem 4.6.9.Let Q be aHAVING query a 6 K] witha = SUMandé € {<, <, >, >}, if the skeleton

of Q is safe then Q has amTras.

Extending to Other Inequalities A virtually identical argument shows that= * < ’ has an
FPTRAS. TO See that has arrpTrAs With SUM on tuple independent database, the key observation is
that we can compute a numbkr = maxy gq(W. 7). Then, we create a new BID instandavhere
each tupleg € J, we mapt to t” wheret = t’ except that[P] = 1 - p. We then ask the query

Q[SUM(Y) < M — K], which is satisfied precisely on a wonl whenQ[SUM(y) > K].

88

4.6.4 The Limits of Any Approach and a Dichotomy

We now study the limit of any approach to approximatify ING queries. We see two interesting
phenomenon: (1) the approximation depends not only the aggregate, but also the test. For example,
Q[MIN < K] has anrpTrAs While, in general Q[MIN(y) > K] does not. (2) The introduction of self
joins results in problems that are believed to be harder to approximate than those without self joins;
this suggests a more interesting complexity landscape for approximate query evaluation than exact
guery evaluation [59].

In this section, we only consider € {=, <, <, >, >}, i.e., we omit# from consideration. To
compactly specify aggregate tests, e LN >), we write @, ®g) wherea is an aggregate arég
is a set of tests, i.eQg C {=,<,<,>,>} = 0; (a, Q) is a short hand for the sely.q, {(a, 6)}. We

let@. = {<, <, =} and®s = {>, >, =}. With this notation, we can state our first lemma.

Lemma 4.6.10.Let (a, 6) be in{(MIN, ®;), (MAX, O.), (COUNT, ©.), (SUM, O)} then the following
HAVING query isBIS-hard:

Qersla(y) 6 K] := R(x), S(x.Y). T(y)

Let Ja(y) 6 k] be aHAVING query such thask(Q) is not safe and consider only tuple-independent
databases, then Q EBIS-hard.

The second statement identifies the precise boundary of hardness for approximation over tuple

independent databases.

Proof. We give a general construction that will be used in every reduction used to prov@gtlat

is §BIS-hard. Given a bipartite graptJ(V, E), we create an instance of three relatiéd$ and

T. The skeleton of our query in the reductionR&x), S(x,y), T(y). Without loss, we assume that

U,V are labeled from 1..|U| + |V|. Here, we encode a bipartite graph witke U — R(u) and

v e V — T(v), we assign each of these tuples probabiliy. 0Ne letS encodeE. It is not hard

to see that there is a bijection between possible worlds and subsets of the graph. In particular, if
a possible world corresponds to an independent set then no tuples are returned. We now add in a

deterministic set of tuples, i.e., all probabilities are 1{R(8), S(a, @), T(a)} for somea that we will

89

set below. These tuples are always present in the answer. Actaijthese tuples are present in
the output if and only if this world encodes a bipartite independent set.
To see the reduction fatAX, seta = 0. We observe thatAX(y) < 0 if and only if the only tuple
returned are the 0 tuples, i.e., a bipartite independent setIRdet a = |U| + |V| + 1, how check
if MIN(y) > a. TheCOUNT(y) < 1 if only thea tuples are present. Similarlyp¥ follows by setting
a = 1 and ensuring all values are encoded higher. Thus, the bijection of the solution sets is the same.
Claim (2), that this reduction works for any unsafe query, follows by a result of Dalvi and
Suciu [46] that shows that if a skeleton is not safe over tuple independent databasesalivayst
contain theR(x), S(x, y), T(y) pattern used in this reduction. All other relations can contain a single
tuple. This works because our reductions do not care about where the distinguished yd&bdle

S0 we can set everything to 1 (or 0) in another relation. O

As a consequence of this lemma, the positive results of this paper, and the completeness of the

safe plan algorithm of Dalvi and Suciu [46], we have the following:

Theorem 4.6.11.Assume thatBIS doesnothave areerras. Let(a, 6) be one of MIN, ©), (MAX, ©),
(COUNT, B.), or (SUM, ®.) then for anyHAVING query Qa(y) 6 K] over atuple independent database

J, either (1) the query evaluation problem can be approximated in randomized polynomial time and
we call it (a, 6)-apx-safe 0f2) the query evaluation problem does not haveraras and we call it

(a,)-hazardousFurther, we can decide in which case Q falls in polynomial time.

In some cases deciding in which case a query falls is trivial, e.@II¥ €) HAVING query is
always @, 6)-safe. In the cases that the decision is non-trivial, we can reuse the safe plan algorithm
of Dalvi and Suciu [46] (applied tek(Q)). An immediate consequence of this dichotomy is a
trichotomy which is obtained by combining the relevant theorem from Section 4.4 with the above
theorem. For example, to get a trichotomy for the clas€08)T, <)-HAVING queries, we combine
Theorem 4.4.9 with the above theorem.

It is interesting to note that our positive algorithms work for arbitrary safe plans over BID
databases. However, it is not immediately clear that the known hardness reductions (based on poly-
nomial interpolation [48]), can be used to prove approximate hardness. Further, we leave the case

of COUNT andSUM with {>, >} open.

90

sk(Q) (MIN,©.), (MAX, ©.) (MIN, ©.), (MAX, ©.), (COUNT, ®)
safe safe P, Theorem 4.4.8) safe P, Theorem 4.4.8)
notsafe | apx-safefprras, Theorem 4.6.3)) hazardous (nertras, Theorem 4.6.11

Figure 4.7: Summary of results fMIN, MAX andCOUNT. They form a trichotomy over tuple inde-
pendent databases.

4.7 Summary of Results

Figure 4.7 summarizes our results #IN, MAX and COUNT. If we restrict toHAVING queries over
tuple independent instances the lines of the table are crisp and form a trichotomy: atij$LKkG
query cleanly falls into exactly one bucket. The positive results we have shown hold for all BID
database. Over general BID databases, however, we have only established the weaker negative
result that there existsomehard query when the skeleton is unsédfeFor example, the query
R(X; y), S(y) is known to beiP-hard [48]. Our results show th@]COUNT(y) > y] :— R(x;y), S(y) is
#P-hard, but leave open whether it hasramas.

The state of the results witlsl, <) over tuple-independent databases is more interesting: If
is SUM-safe, then its evaluation is Prtime (Theorem 4.4.18). I is notSUM-safe, busk(Q) is safe
thenQ is #§P-hard (Theorem 4.4.21), but does admitrarras (Theorem 4.6.9). We caf) (SUM, <)-
apx-safe. Ifsk(Q) is not safe, then evaluating is #BIS-hard (Theorem 4.6.11), and so likely has
no rptras. We callQ (SUM, <)-hazardous. We now show that with the addition of self joins, even a
simple pattern becomes as hardifiproximateasCLIQUE, which is as hard to approximate as any
problem infP. This is interesting because it points out that the complexity of approximation may

be richer than we have explored in this paper:

Lemmad4.7.1.Let(a, 0) be in{(MIN, Q.), (MAX, ®s), (COUNT, O.), (SUM, <)} and consider th&AVING
query:
Qcrrouela(y) 0 K] := R(X), S(X,), R(X)

then Qi 1que iS as hard to approximate &L IQUE.

Proof. The input instance dfCLIQUE is G = (V, E): For eachv € V, we create a tupl®(v) that has

Y1t is an open problem to extend these results to all BID databases.

91

probability% and E encodes exactly theomplemen{symmetrically closed) edge relation; Here,

(v,v) ¢ E. Notice that a possible world is simply a subsefoflf in a possible worldg = sk(Q)

is satisfied then, this implies there is some pair of hodeg) that are not connected by an edge in

G and soW does not represent a clique. Hence the query is false precisely f@h&QUE is true.

Using exactly the same encoding as we used in the previous proof, we can then test the probability

of this condition. O

92

Chapter 5

VIEW-BASED TECHNIQUE I: MATERIALIZED VIEWS

The technique of materialized views is widely used to speed up query evaluation in relational op-
timizers. Early relational optimizers were restricted to using simple indexes (which are materalized
views that contain a simple projection) [161], while modern optimizers can use materialized views
that are defined by aribitrary SQL [5]. In general, materialized views can provide dramatic im-
provements in query performance for expensive queries. Materialized views are a form of caching:
instead of computing the query from scratch, we precompute a portion of the information needed by
a query, and use this information to reduce our work at query time. In probabilistic databases, query
evaluation is not only practically expensive, but theoretically expengRenérd). As a result, it
is natural to suspect (and it is indeed the case) that materialized views have an even greater impact
on optimizing probabilistic queries than they do for standard, relational database queries. In this

chapter, we discuss how to apply materialized view techniques to probabilistic databases.

The major, new challenge in using materialized views in a probabilistic database query optimizer
is that views may contain complex correlations. One way to track this correlation is using a complete
approach based dimeage[51, 137, 148] which ffectively trackseveryderivation for a tuple in the
output. Using the complete approach allows any query to be used with any view, but it does not
allow the large performance gains that we expect from materialized views. The reason is that the
bottleneck in query answering it computing the lineage, but is in performing the probabilistic
inference necessary to compute the probability of an answer tuple. In this chapter, we study a more
aggressive approach that avoids recomputing the lineage at query time, and so provides greater gains

than the complete approach.

The key to our technique is a novel static analysis of the view and query definitions that allows
us to determine how the tuples in the view are correlated. An important desideratum for our check
is that it is only a function of the view and query definitions, and not the data, which means it can

be used in a query optimizer. The property that we are testing is over an (uncountably) infinite set

93

of database, i.e., do the claimed independences holdrfpprobabilistic relational database? As

a result, it is not clear that this test is even decidable. Our main technical result is that this test is
decidable for conjunctive views, and isliipP, the second level of the polynomial hierarchy [128,

pg. 433]. In fact, the decision problem is completeIlbP. To cope with this high complexity, we
provide dficient approximations, i.e., polynomial-time tests that are sound, but not complete. We
show that for a restricted class of query and view definitions these sinfiiéeet tests actually are
complete. One important special case is when a WMasrepresentablewhich operationally means

that it can be treated by the query optimizer as as if it vi&li2 table, and so, we can use all the

guery optimization techniques in thexvriQ system, notably, safe plans [46].

We validate our solutions using data given to us by iLike.com [40], a service provided by the
music site GarageBand [39], which provides users with recommendations for music and friends.
iLike has three characteristics which make it a good candidate for materialized views. First, the
data are uncertain because the recommendations are based on similarity functions. Second, the
database is large (tens of gigabytes) and backs an interactive website with many users; hence, query
performance is important. Third, the database hosts more than one service, implying that there are
integration issues. Probabilistic materialized views are a tool that addresses all three of these issues.
Interestingly, materialized views are present in iLike. Since there is no support for uncertain views,
the materialized views are constructed inaghhocmanner and require care to use correctly. Our
experiments show that 80% of the materialized views in iLike are representable by BID tables and
more than 98.5% of their workload could benefit from our optimizations. We also experiment with
synthetic workloads and find that the majority of queries can benefit from our techniques. Using the
techniques described in this paper, we are able to achieve speed ups of more than three orders of

magnitude on large probabilistic data sets (e.g., TPC 1G with additional probabilities).

5.1 Motivating Scenario and Problem Definition

Our running example is a scenario in which a user, Alice, maintains a restaurant database that is
extracted from web data and she wishes to send data to Bob. Alice’s data are uncertain because they
are the result oinformation extractiorj84, 96, 126] angentiment analysig2]. A natural way for

her to send data to Bob is to write a view, materialize its result and send the result to Bob.

94

Chef Dish Rating || P
Chef | Restaurant] P geﬁtaurant = ?)IS(':h 7 TD | Crab Cakes Med | 0.1 | (rp)
. Lounge | Crab Cakes Cow 01l (r
D | D. L_ounge 0.9 | (wa) P. Kitchen | Crab Cakes - (r13)
TD | P.Kitchen| 0.7 | (w») . High | 0.3 | (r21)
- P. Kitchen Lamb TD Lamb
MS | C.Bistro || 0.8 | (ws) C Bisto Fsh Low || 0.7 | (roo)
: . High [0.6 [(rsp)
MS | Fish Cow | 03 (rs)

W(Chef,Restauran®) (WorksAt) S(Restaurant,Dish) (Serves) R(Chef,Dish;Rating?) (Rated

Figure 5.1: Sample Restaurant Data in Alice’s DatabasdioltksAt each tuple isndependent
There is no uncertainty aboBérves. In Rated, each (Chef,Dish) pair has one true rating. All of
these are BID tables.

Sample data is shown in Figure 5.1 for Alice’s schema that contains three relations described
in BID syntax: W (WorksAt), S (Serves) andR (Rating). The relatioriv records chefs, who may
work at multiple restaurants in multiple cities. The tuplediaire extracted from text and so are
uncertain. For example, (‘TD'D. Lounge’) (w1) in W signifies that we extracted that ‘TD’ works at
‘D.Lounge’ with probability 09. Our syntax tells us that all tuples are independent because they all
have diterent possible worlds keys. The relatibmecords the rating of a chef’s dish (e.g. ‘High’
or ‘Low’). Each (Chef,Dish) pair has only one true rating. Thug,andrq3 aredisjoint because
they rate the pair (‘T)"Crab Cakes’) as both ‘High’ and ‘Low’. Because distinct (Chef,Dish) pair

ratings are extracted independently, they are associated to ratings independently.

Semantics In W, there are 2possible worldsFor example, the probability of the singleton subset
{(‘'TD’,'D. Lounge’)} is 09 % (1 — 0.7) = (1 — 0.8) = 0.054. This representation is calledpe?-

table [82], ?-table [51] or tuple independent [46]. The BID tablgelds 3« 2 « 3 = 18 possible
worlds since each (Chef,Dish) pair is associated with at most one rating. When the probabilities
shown sum to 1, there is at least one rating for each pair. For example, the probability of the world

{rll, 21, I’31} is08x0.3%0.6=0.144.

95

Representable Views

Alice wants to ship her data to Bob, who wants a view with all chefs and restaurant pairs that make

a highly rated dish. Alice obliges by computing and sending the following view:

Vi(c,r) == W(c,r), S(r,d),R(c, d; ‘High’) (5.1)

In the following example data, we calculate the probability of a tuple appearing in the output both
numerically in theP column and symbolically in terms of other tuple probabilities of Figure 5.1.
We calculate the probabilities symbolically only for exposition; the output of a query or view is a

set of tuples matching the head with associated probability scores.

Example 5.1.1 [Output ofV; from Eq. (5.1)]

C R P (Symbolic Probability)
t? | TD | D. Lounge|| 0.72 Wil11
t2 | TD | PKitchen || 0.602 | wo(1— (1 - r11)(1-r21))
tg MS C.Bistro 0.32 W3I'31

The output tuplest? andtg, arenot independent because both dependron This lack of
independence is problematic for Bob because a BID instance cannot represent this type of corre-
lation; Hence, we say; is not arepresentable viewFor Bob to understand the data, Alice must
ship the lineage of each tuple. For example, it would f@ant to ship the symbolic probability
polynomials in Example 5.1.1.

Consider a second view where we can be much smarter about the amount of information nec-
essary to understand the view. Vi, Bob wants to know which working chefs make and serve a

highly rated dish:

Vz(c) :— W(c,r), S(r,d), R(c, d; ‘High’) (5.2)

Example 5.1.2 [Output ofV, from Eq. (5.2)]

c P (Symboalic Probability)
TD | 0818 r1a(1— (1 —wa)(1—w2)) + (1 - rog)(Waraz)
MS || 0.48 Wal31

96

Importantly, Bob can understand the data in Example 5.1.2 with no auxiliary information because
the set of events contributing to ‘TD’ and those contributing to ‘MS’ ex@ependent It can be
shown that over any instance, all tuples contributing to distinalues are independent. Thus,

is arepresentable viewr his motivates us to understand the following fundamental question:

Problem 1 (View Representabilty) Given a view V, can the output of V be represented as a BID

table?

It is interesting to note thatficiency and representability are distinct concepts: Computing
the output ofV; can be done in polynomial time, but its result is not representable. On the other
hand, computing/, can be shown to bgP-Hard [46, 135], bul/, is representableTo procesd/s,
we must use Monte Carlo procedures (e.g., [137]), which are orders of magnitude more expensive
than traditional SQL processing. We do not discuss evaluation further because our focus is not on

efficiently evaluating views, but on representing the output of views.

Partially Representable Views

To optimize and share a larger class of views, we want to use the the output of views that are not
representable The output of a non-representable view still has meaning: It contains the marginal
probabilities that each tuple appears in the view but may not describe how all the tuples in the view
correlate. Consider the outputéf in Example 5.1.1, although this view is not a BID table, there is
still a lot of correlation information in the view definition: It is not hard to see that tuples that agree
onc are correlated, but tuples withftérentc values are independent.

To build intuition, notice that when a vieW is a BID table, then, denotinf = Key(V), the
following two properties hold: for any set of tuples, if any two tuples in the s&mdon at least
one of theK attributes, then the set of tuples is independent, and any two tuples that agree on the
K attributes are disjoint. If the view is not a BID table, but an arbitrary probabilistic relation,
then we may still be able to find two sets of attributesand K, that satisfy these two properties

separately. Formally:

Definition 5.1.3. Let (W, 1) be a probabilistic database over a single relation V.

e We say thafW, u) is L-block independent, whered. Attr(V), if any set of tuplegts, ..., tn}

st.tL#t.L,1<i<j<n,isindependent.

97

e We say thatW, i) is K-block disjoint, where KZ Attr(V), if any two tuples,tt’ s.t. tK =t".K

are disjoint. Equivalently, K is a key in each possible world of V.

Example 5.1.4 Recall the viewv in Eq. (5.1), whose natural schemad€C, R). It is has a partial
representationl(K) with L = {C}, K = {C,R}. Tuples that dier onC are independent, but those
that agree o but difer onRmay be correlated in unknown ways. Thus, the materialized view does
have some meaning for Bob, but does not contaifigent information to completely determine a

probability distribution on its possible worlds.

Trivially, any view V(H) can be partially represented by lettihg= ® andK = H. At the other
extreme, a BID table is one in whidh= K. Intuitively, we want a “large’L and a “small’K. Thus
the interesting question is: What is the complexity to decide, for a divénif a view V is partially
representableThis is a generalization of Problem 3, and this is one of our main technical results in

this chapter.

Using Views to Answer Queries

In an information exchange setting, we do not have access to the base data and so for partially
representable views may not know how all tuples are correlated. Thus, to answer ajuesy

need to ensure that the value Qfdoes not depend on correlations that are not captured by the
partial representation. To illustrate, we attempt to use the outpui,och partially representable

view, to answer two queries.

Example 5.1.5 Suppose Bob has a local relatidr{d; r), whered is a possible worlds key fdr.

Bob wants to answer the following queries:

Qu(d) == L(d;r), Va(c,r) andQn(c) = Vi(c,r)

Since the materialized vieW; does not uniquely determine a probability distribution on its possible
worlds, it is not immediately clear that Bob can answer these queries without access to Alice’s

database and t¢;'s definition. However, the quer®, is uniquely defined. For any fixat), the set

98

of rj values such thdt(dp; r;) partition the possible worlds:

pQu(do)) = D u(L(doiri) Adc Va(c,Ti))
ri:lEL(do;ri)
The partial representatior (C; R; 0), tells us that distinct values farin V1 are independent. Thus,
each term in the summation is uniquely defined imply@gis uniquely defined. In contrasQ,
is not uniquely defined becausg(‘TD’) is true when either oft? or t3 are present; our partial

representation does not capture the correlation of the {Jai§

This example motivates the following problem:

Problem 2 (View Answering) Let (L, K) be a partial representation for a view V. Given a query

Q using V, is the value of Q uniquely defined?

We will solve this problem in the case whé&his a conjunctive view an® is any monotone

Boolean property. A special case of this general result is whes specified by a conjunctive

query.

Relationship with Query Evaluation As we noted earlier,fécient query evaluation for a view

and its degree of representability are distinct concepts. When a queryRiEME algorithm, it

is called asafe quenyj46]. It can be seen that the super-safe plan optimization of Chapter 3.3 are
those plans which are representable, safe, and do not contain self joins. Thus, progress on the view
answering problem allows us to extend this technique to a larger class of subplans. For the case
of SQL-like queries (conjunctive queries), the results in this chapter give a complete solution for
the view answering problem which allows us to build a query optimizer for large-scale probabilistic

databases.
5.2 Query Answering using Probabilistic Views

We begin by discussing a very general problem: how to find a partial representationfér an
arbitrary probabilistic relation; we show that there is always a unique maximal choiteifidihe
partial representation such that a weaker independence property holds (2-independence). Then, we

show that if a viewV is defined in first-order logic (FO), its output has a unique maxioglch that

99

our stronger property of total independence holds. We then show W& defined by a conjunctive
guery, then we can fintd with aII,P algorithm (and moreover that the related decision problem is
IT,P-complete). Finally, we discuss the problem of answering queries using a partial represented
views. The technical issue is to decide if a query using a view has a uniquely definetl Vateie

show that this property is decidable for conjunctive queries and conjunctive views, and moreover is

complete fol,P as well.

5.2.1 Partial Representation of a Probabilistic Table

In this section we will not assume that a taMds a block disjoint-independent (BID) table, but
rather allow it to be an arbitrary probability space over the set of possible instances fbine
intuition is thatV is a view computed by evaluating a query over some BID database: the output of

the view is, in general, not a BID table, but some arbitrary probabilistic datafi&sg)(

In general, a probabilistic tab may admit more than one partial representation. For example,
every probabilistic tabl® admits the trivial partial representatian= 0 andK = Attr(V), but this
representation is not useful to answer queries, except the most trivial queries that check for the pres-
ence of a single ground tuple. Intuitively, we want a “largednd a “small’K. It is easy to check
that we can always relax the representation in the other way:, KX is a partial representation,
andL’, K’ are such that’ C L andK c K’, then (', K’) is also a partial representation. Of course,
we want to go in the opposite direction: incredselecreasd&. We will give several results in the
following sections showing that a uniqgue maxinagxists, and will explain how to compute it. On
the other hand, no minim#d exists in general; we will show that the space of possible choices for

K can be described using standard functional dependency theory.

It is not obvious at all that a maximél exists, and in fact it fails in the most general case, as

shown by the following example.

Example 5.2.1 Consider a probabilistic tabM(A, B, C) with three possible tuples:

1This presentation in this section is frdiRrobabilistic query answering and query answering using Viewsthe
Journal of Computer and System Sciences [49].

100

T:|A|B|C
a c |ty
alb|c |t
al|b|cd |t

and four possible worldsl; = 0, 11 = {t3,t2}, 12 = {to,t3}, I3 = {t3,t3}, each with probability
1/4. Any two tuples are independent: indegth) = u(t2) = u(ts) = 1/2 andu(tity) = u(tits) =
u(tots) = 1/4. V is AB-block independent: this is because the only sets of tuples thiat dnAB
are{ty, to} and{ty, t3}, and they are independent. SimilaNyis alsoAC-block independent. BW
is not ABC-block independent, because any two tuples irtsetb, t3} differ onABC, yet the entire
set is not independentz(t;tot3) = 0. This shows that there is no largest seboth ABandAC are

maximal.

A weaker result holds. For a sketc Attr(V) we say thal is L-block 2-independent if any two

tuplest;, to s.t.t1.L # to.L are independent.

Lemma 5.2.2. Let V be a probabilistic table. Then there exists a maximal set L s.t. V is L-block

2-independent.

Proof. We prove the following: ifL;, Ly € Attr(V) are such thaV is Lj-block 2-independent for
eachi = 1,2, thenV is alsoL-block 2-independent, whelle = L; U L. Indeed, lets,t, be two
tuples s.t.t1.L # to.L. Then eithert;.L1 # to.L; ort1.L, # to.Lp, hencety, t, are independent
tuples. The largest sé&t claimed by the lemma is then the union of all sktss.t. V is L’-block

2-independent. |

Continuing Example 5.2.1 we note thdtis ABC-block 2-independent, since any two of the

tuplesty, to, t3 are independent.

5.2.2 Partial Representation of a probabilistic lineage database

Recall that ifV is a view defined by an FO query over a BID database, thean be expressed as
probabilistic lineage database. In this section we study the partial representation of a probabilistic

lineage database. Recall that a lineage databgs@ ¢onsists of two partsa is a function that

101

assigns each tuple a Boolean expressionaisdch product probability space on the set of variables
X that are used in the Boolean expressiong.oDur main result in this section is the following:
given the lineage function and a particular relatioW, there exists a maximal set of attributes
L ¢ Attr(V) such that for any product probability spaceV is L-block independent. Thus, ¥f is a
view defined by an FO query over a BID database, then this result shows us how to compute a good
partial representation for the view.

LetX = {X1,..., Xm} be the variables used in the Boolean expressions amd letDom(X;) be
the finite domain of values for the variab¥g, j = 1, m. The annotated tabM consists oh tuples
t1,...,tn, €ach annotated with a Boolean expressifn), .. ., A(t,) obtained from atomic formulas
of the formX; = v, wherev e Dom(X;), and the connectives, v, and—-. A valuationd is a function
6 : X — [J; Dom(X;) s.t.,6(X;) € Dom(X;), for j = 1, m.

The following definition is adapted from Miklau and Suciu [119].

Definition 5.2.3. Lety be a Boolean expression over variabXsA variable X is called acritical

variablefor ¢ if there exists a valuatioa for the variablesxX — {Xj} and two values’vv’ € Dom(Xj)
sl U {(X V)] # elo U {(X. V)]l
For a simple illustration, suppog®om(X;) = Dom(Xz) = Dom(X3) = {0, 1, 2}, and consider the

Boolean expression
p = (X1=0v(Xi=1)V((X=1)A=(X=2))

ThenX; is not a critical variable fop, because it is not mentioned in the expressiop.ofs is also
not a critical variable, becaugesimplifies to ; = 0) v (X1 = 1) (sinceDom(X;) = {0, 1,2}). On
the other handx; is a critical variable: by changing; from 0 to 2 we change from true to false
In notation, if9 is the valuatior{(Xz, 0), (X3, 0)}, theng[dU {(X1, 0)}] = true, ¢[0U{(X1, 2)}] = false

The main result in this section is based on the following technical lemma:

Lemma 5.2.4. Letp, ¥ be two Boolean expressions. Then the following two statements are equiva-

lent:

e For every product probability space on the set of variableX, ¢ and y are independent

events.

102

e ¢ andy have no common critical variables.

Proof. The “if” direction is straightforward: iy, use disjoint sets of variables, thety A ¥) =
u(e)u(y), hence they are independent for any choicg.of

The “only if” direction was shown in [119] for the case when all variabigsare Boolean,
i.e. |[Dom(Xj)| = 2. We briefly review the proof here, then show how to extend it to non-Boolean
variables. Given a probability space3dm(Xj), i), denotex; = uj(X; = 1), henceuj(X; = 0) =
1 - Xxj. Thenu(yp) is a polynomial in the variables,, ..., Xn where each variable has degred..
(For example, ifp = (X1 ® X2 ® X3) (exclusive or) thenu(y) = x1X2(1 — X3) + X1(1 — X2)X3 +
(1 — x9)Xox3 + (1 — X)(1 — %2)(1 — x3), which is a polynomial of degree 1 ix, X2, X3.) One can
check that ifX; is a critical variable fog then the degree ofj in the polynomialu(y) is 1; on the
other hand, iX; is not a critical variable, then the degreexpfin the polynomialu(y) is O (in other
words the polynomial does not dependxgi The identityu(p)u(y) = u(p A) must hold for any
values ofx, ..., Xm, because, y are independent for any. If X; were a common critical variable
for bothy andy then the degree of; in the left hand side polynomial is 2, while the right hand side
has degree at most 1, which is a contradiction.

We now extend this proof to non-Boolean domains. In this case a vaiqbtey take values
0,1,...,dj, ford; > 1. Define the variableg;; to bex; = u(X; = i), fori = 1,...,d;j, thus
u(Xj = 0) =1 - X35 — Xj — - -+ — Xq;j- As beforeu(y) is a polynomial of degree 1 in the variables
Xij with the additional property thatif # i> thenx;,j andx;,j cannot appear in the same monomial.
We still have the identity(oy) = u(e)u(y), for all values of the variables; (since the identity
holds on the sex;; > O for all i, j, and}}; x;j < 1, for all j, and this set has a non-empty interior).
If Xj is a critical variable fok thenu(p) must have a monomial containing somg; if it is also
critical for y, thenu(y) has a monomial containing,;. Hence their product containg, - X,j,

contradiction. O

We will use the lemma to prove the main result in this sectionAl,atenote the lineage function

A restricted to tuples i. Thus, @y, u) defines a probabilistic database with a single relation,

Theorem 5.2.5.Let V be atable in a lineage databaék). Then there exists a unique maximal
set of attributes L such that, for any product probability spacehe lineage databasgly, i) is
L-block independent.

103

Proof. Denotety, ..., t, the tuplesv, and letA(ty), . . ., A(ty) their Boolean expressions annotations.

Let L be a set of attributes. We prove the following:

Lemma 5.2.6. The following three statements are equivalent:
1. For anyu, the pdb(dy, u) is L-block independent.
2. For anyy, the pdb(1y, u) is L-block 2-independent.
3. For any two tuples it;, if ti.L # t;.L then the Boolean expressiond;) and A(tj) do not have

any common critical variables.

Proof. Obviously (1) implies (2), and from the Lemma 5.2.4 it follows that (2) implies (3) (since
u(t) = pu(at)) andu(ti, tj) = u(A(t) A A(t;))). For the last implication, lgt be any product prob-
ability space, and consider sometuplest;,, .. ., t; that have distinct values for thdirattributes.
Then, the Boolean expressiond;,), . .., A(ti,,) depend on disjoint sets of Boolean variables, hence

ute, ..o tm) = w@iy, - -5 i) = uleiy) - - - plei,) = u(ta) - - - u(tm), proving that they are independent.
Thus, the three statements above are equivalent. O

Continuing the proof of Theorem 5.2.5, consider two sets of attributelk, such that each
satisfies condition (3) in Lemma 5.2.6. Then their unitp,uU Ly, also satisfies condition (3):
indeed, ift; andt; are two tuples such that(Ly U Lp) # tj.(L1 U L), then eithettj.Ly # tj.L1 or
ti.Lo # tj.Lo, and in either cas&(t;) andA(tj) do not have any common critical tuples. It follows that

there exists a maximal set of attributeshat satisfies condition (3), which proves the theorem.

As an application of this result, we show how to apply it to a viedefined by an FO expression
over a BID database. L& be a relational schema, and RDB = (T,) be a BID database, where

T is a set of possible tuples.

Corollary 5.2.7. For every FO view definition v over the relational schemand for every set of
possible tuples T there exists a unique maximal set of attributes L such that: for any BID database

PDB = (T, u) the probabilistic view (T, 1) is L-block independent.

The proof follows immediately from Theorem 5.2.5 and the observation that thewiaB)
is a lineage database.
We end this section by noting that, in general, no unique minikhakists. For example the

lineage table below has two minimal keys} and{B}:

104

A |B
a; | by | X=1AY=1
a | b | X=1AY=2
a| b | X=2AY=1
| b | X=2AY=2

Therefore, any lineage database defined over this table isAbtbck disjoint, andB-block

disjoint, but it is not)-block disjoint.

5.2.3 Partial Representation of a Conjunctive View

In the previous section we have shown how to compute a partial representation for a given view
(expressed in FO) and a given input BID database. We now study how to compute a partial repre-
sentation given only the view expression, and not the input database. In this case we seek a partial
representationl(K) that is satisfied by the the view fanyinput BID database. This partial repre-
sentation depends only on the view expression, not the data instance, and is computed through static
analysis on the view expression only. Throughout this section we will restrict the view expression
to be a conjunctive query.

Fix the schem®& of a BID database, and Igtbe defined by a conjunctive querpverR. Given
a BID input, PDB, we denote/ = v(PDB) the probabilistic table obtained by evaluating the view

on the BID input. We prove in this section two results.

Theorem 5.2.8.Fix a relational schem.

1. For any conjunctive query v there exists a unique maximal set of attributeAttrs(v) such

that for any BID database PDB over the scheRa/(PDB) is L-block independent.

2. The problenfgiven a conjunctive query andL C Attrs(v) check whether for any BID
databas€’DB, v(PDB) is L-block independent’is in IT,P. Moreover, there exists a schema

R for which this problem i$I,P-hard.

The theorem, in essence, says that there exists a uniqgue maximal set of attrjbatescom-

puting such a set iBl,P-complete in the size of the conjunctive quetyTo obtain a good partial

105

representationl(, K) for the viewv, we also need to compuk& finding K is equivalent to inferring
functional dependencies on the output of a conjunctive view, from the key dependencies in the input
schemaR. This problem is well studied [1], and we will not discuss it further, but note that, in
general, there may not be a unique minimallset

Before proving Theorem 5.2.8 we give some examples of partial representations for conjunctive

views.
Example 5.2.9 1. Consider the schenR(A), S(A, B,C, D), and the view:

V(%Y. = R(X),S(xYy,zu)

DenoteV(X, Y, Z) the schema of the materialized view. A partial representationvfis
(X, XY). To see thaV is X-block independent, notice that if two tuples\irdiffer on theirX
attribute, then the lineage of the two tuples depends on disjoint sets of input tuRlasds.
To see thaV is XY-block disjoint, it sdfices to see that the functional dependeKdy— Z
holds inV (because it holds i8). Thus, ¥, XY) is a partial representation fof, and one can

see that it is the best possible (that is, we cannot incréas® decreasXY).

2. Consider the schen®(A, B, C), S(A, C, B) and the view:
VXY, = R(XY.2),S(x.zY)

HereV is X-block independent. In additiolV, is both XY-block disjoint andXZ-block dis-
joint: but it is notX-block disjoint. There are two “best” partial representatiod§XY) and

(X, X2).

In the remainder of this section we will prove Theorem 5.2.8, and start with Part 1. Fix a BID
probabilistic databaseDB. ThenV = v(PDB) is a lineage database: by Theorem 5.2.5 there exists
a unigue maximal set of attributéspg such thatv is L-block independent (for any choice of the
probability function inPDB). Then the set of attributgSppg Lpps is the unique, maximal set of

attributes claimed by the theorem.

106

Before proving part 2 of Theorem 5.2.8, we need to review the notion of a critical tuple for a

Boolean queryy.

Definition 5.2.10. A ground tuple t is calledritical for a Boolean query q if there exists a (conven-

tional) database instance | s.t(lg # q(l U {t}).

A tuple is critical if it makes a dference for the query. For a simple illustration, consider
the Boolean queryg — R(X, X), S(a, X, y), wherea is a constant. TheR(b, b) (for some constant
b) is a critical tuple because is false on the instanck = {S(a, b, c)} but true on the instance
{R(b,b), S(a, b,c)}. On the other han&(b, c) is not a critical tuple. In general, if the quegyis
a conjunctive query, then any critical tuple must be the ground instantiation of a subgoal. The
converse is not true as the following example shows due to Miklau and Suciu shows [4.19] :
R(x,¥.z z u), R(X, X, X, ¥,). The tuplet = R(a, a, b, b, ¢), which is a ground instantiation of the first
subgoal, is not a critical tuple. Indeed,dfis true onl U {t}, then only the first subgoal can be
mapped td, and therefore the second subgoal is mapped to the groundR(mpke a, a, a), which
must be inl: but thenq is also true orl, hencet is not critical. We review here the main results
Miklau and Suciu [119]. While these results were shown for a relational scRewizere the key
of each relation is the set of all its attributes (in other words, any BID database over skhisraa
tuple-independent probabilistic database), they extend immediately to BID probabilistic databases

(the main step of the extension consists of Lemma 5.2.4).

Theorem 5.2.11. [119] Fix a relational schem&r.

1. Let qgq be two Boolean conjunctive queries over the sch&narlhen the following two
statements are equivalent. (a) g antlltave no common critical tuples, (b) for any BID

probabilistic database over the scheiRag and ¢ are independent events.

2. The problentfgiven two Boolean querieq, ', check whether they have no common critical

tuples”is in TI,P.

3. There exists a schenfasuch that the problerfgiven a Boolean querg and a ground tuple

t, check whethet is not a critical tuple fog”, is I1,P-hard.

107

We now prove part 2 of Theorem 5.2.8. Given a set of attributelse following two conditions
are equivalent: (a) for any inp@®DB, v(PDB) is L-block independent, and (b) for any two distinct
grounded|L|-tupIesaT5, the two Boolean querieda) andv(B) have no common critical tuples.
(Herev(a) denotes the Boolean query where the head variables correspondind_tatthibutes are
substituted witha, while the rest of the head variables are existentially quantified). The equivalence
between (a) and (b) follows from Lemma 5.2.6 (2) and Theorem 5.2.11 (1). Memberdhy®in
follows now from property (b) and Theorem 5.2.11 (2).

To prove hardness fdi,P, we use Theorem 5.2.11 (3): we reduce the problem “given a query
g and a tupla check whethet is not a critical tuple foq” to the problem (b) above. Ld® be the
vocabulary forq andt, and let the ground tuplebe T(ay, ..., ax). Construct a new vocabulafy
obtained fromR by adding two new attributes to each relation name: that R(Af,...,An) is a
relation name irR, thenR'(U,V, A4, ..., Ay) is a relation name iR’. Let U,V be two variables.
Denoteq' (U, V) the query obtained fromg by replacing every subgo&(...) in qwith R'(U,V,...)

(thus, the variabled, V will occur in all subgoals off (U, V)), and define the following view:

viU,V) - qUV), TV Ua,...,a)

We show that is UV-block independenttiit is not a critical tuple fog. For that, we consider
two distinct constant tuplesi{, v1) and {12, v») and examine whether the Boolean queri@s, v1)
andv(uy, v») are independent, or, equivalently, have no common critical tuples. All critical tuples of
v(uz, v1) must have the fornR(uy, vy, ...), or T(vy, Uz, ...); in other words, they must start with the
constantsus, v or with vi, u. Similarly for v(up, v2); hence, if{ui, vi} # {Up, vo} then the queries
v(uz, v1) andv(uy, v2) have no common critical tuples. The only case when they could have common
critical tuples is whenu; = v, anduy = vy (since (i1, v1) # (Up, v2)), and in that case they have a
common critical tupleff T(us,v1,as,...,a) is a critical tuple forg'(uy, v1), and this happendfi

T(as,...,a) is a critical tuple forg. This completes the hardness proof.

108

5.2.4 Querying Partially Represented Views

We have shown how to compute a “best” partial representatiol)(for a materialized viewv:

tuples with distinct values fdr are independent, while tuples that agred<oare disjoint. All other

pairs of tuples, which we calhtertwined have unspecified correlations. In this section we study
the problem of deciding whether a quergan be answered by using only the marginal probabilities

in V: we say thag is well-definedn terms of the view and its partial representation. Intuitively,
does not look at pairs of intertwined tuples. This problem is complementary to the query answering
using views problem [85]: there, we are given a qugiver a conventional database and a set of
views, and we want to check if can be rewritten into an equivalent quearythat uses the views.

We assume that the rewriting has already been donegthlrsady mentions the view(s).

We illustrate with an example:

Example 5.2.12LetV(A, B, C) have the following partial representatidn= A, K = AB. Consider

the following queries:

ql - V(aa ya Z)
q2 - V(X’ b’ y)
q3 = V(X’ y’ C)

Herex,y, zare variables, and, b, c are constants. For example, the view could be that from Exam-
ple 5.2.9 (1) V(X y.2) = R(X), S(x. Y,z u), and the queryn could bedx - R(@), S(ay, z u): after
rewriting g, in terms of the view, we obtain the equivalent expressjpn- V(a, Y, 2).

We argue that), is well-defined, whileys, gz are not. Consider firgl,. Its value depends only
on the tuples of the forme(, b, ¢;), where the constant andc; range over the active domain, and
b is the fixed constant occurring in the query. Partition these tupleg.bifor each = 1,2,.. .,
any two tuples in the set defined Iy are disjoint (becaus¥ satisfies the partial representation
(A, AB), and any two tuples in the same group agree on Bo#ind B): thus, the Boolean query
3z V(a;, b, 2) is a disjunction of the exclusive evertga;, b, c;), and therefore its probability is the

sum of the probabilities(V(a;, b, ¢j)). Moreover, the set of evenfdzV(ay, b, 2), 3zV(ap, b, 2), .. .},

109

is independent, which allows us to compute the probability of the queisince it is the disjunction
of these independent eventgs = Ax.3zV(x, b, 2). Thus, assuming that the view satisfies the
partial representatiomy AB), the probability ofg, depends only on the marginal tuples probabilities
in the viewV.

In contrast, neitheg; nor g, are well-defined. To see this, suppose that the view has exactly
two tuplest: = (a, bs, €) andt, = (a, by, ¢). These tuples are intertwined, i.e.the probabjiifis, t»)
is unknown. Furthen(q:) = u(gs) = u(ty v t2) = u(ty) + u(ty) — p(tatn): u(ty) andu(ty) are well

defined in the view, byi(ts, to) is unknown. So, neither; nor gs is well-defined.

In this section we consider Boolean, monotone queagjeshich includes conjunctive queries.
We assume thatis over a single view/, and mentions no other relations. This is not too restrictive,
sinceq may have self-joins ovey, or unions (since we allow arbitrary monotone queries). It is
straightforward to extend our results to a query expressed over multiple Views, . . ., each with

its own partial representation, assuming that all views are independent.

Definition 5.2.13. Let V be a view with a partial representatigh, K), and let g be a monotone
Boolean query over the single relation name V. We say that q is well-defined given the partial
representatior(L, K), if for any two probabilistic relations P\ (‘W,u) and PV = (W', u’) that
satisfy the partial representatiofl, K), and that have identical tuple probabilit&sthe following

holds: u(q) = x'(0).

Thus,q is well defined ff u(q) depends only on the marginal tuple probabiliti€s (which we
know), and not on the entire distributipr{which we don’t know). We will give now a necessary and
suficient condition forg to be well defined, but first we need to introduce two notions: intertwined

tuples, and a set of critical tuples.

Definition 5.2.14. Let (L, K) be a partial representation of a view V. Let’tbe two ground tuples

of the same arity as V. We call’tintertwinedif t.L = t’.L and tK # t’.K.

Next, we generalize a critical tuple (see Definition 5.2.10) to a set of critical tuplesnstet
P(Tup be the set of (conventional) database instances over the set of groundTtuplego each

Boolean query we associate the real-valued functifyx Inst — R:

2Vt u(t) = w/ ()

110

W) - {1 ifq(l)?strue
0 ifq(l)is false

Definition 5.2.15. Let f : Inst — R be a real-valued function on instances. Tdifferentialof f

w.rt. a set of tuples & Tup is the real-valued functiofis f : Inst —» R defined as follows:

Ao (1)

AgusT(l)

f(1)
Ast(l) —As(f(I - {t}) ift ¢S

Definition 5.2.16. A set of tuples & Tup is critical for f if there exists an instance | s¢ f(l) #

0. A set of tuples C is critical for a Boolean query q if it is critical foy.
We can now state the main result in this section:

Theorem 5.2.17.Let V be a view with a partial representatigh, K).

1. A monotone Boolean query g over V is well defigigfbi any two intertwined tuplest’ the

set{t, t’} is not critical for q.

2. The problenigiven a Boolean conjunctive queryover the viewV, decide whetheq is well
defined”is in ITI,P. Moreover, there exists a view V and partial representaiibyK) for

which this problem i§I,P hard.

Thus, in order to evaluate a quenyusing a viewV with partial representatiorL(K) one pro-
ceeds as follows. First, we checkgfis well defined, by checking if it has no pair of intertwined,
critical tuples: this is dl,P-complete problem in the size of the querySecond, if this holds, then

we evaluatey overV by assuming/ is a BID table with key attributek; or, alternatively, we may

assume a BID table with key attribut&s The well-definedness condition ensures that we obtain

the same answer over any of these two BID tables as over theiew

In the rest of the section we prove Theorem 5.2.17, and for that we give a definition, and three

lemmas.

111

Definition 5.2.18. Let T C Tup be a set of tuples. Thestrictionof a real-valued function f to T

is: fT(1) = f(I n'T). Similarly, the restriction of a Boolean query qto T is:(¢) = q(I N T).

The first lemma establishes some simple properties of critical sets of tuples. Note that a set of

tuplesC is not critical for f iff Acf = 0, meaning/l : Acf(l) = 0.
Lemma 5.2.19.Let C be a set of tuples and suppdsef = 0. Then:

1. Forany setof tuples @ C,Apf = 0.
2. For any set of tuples S\cAsf = 0.

3. For any set of tuples TAcfT = 0.

Proof. (1): we show thatApf(l) = 0 by induction on the size dD. If D = C then it follows
from the assumption thatcf = 0. We show this foD U {t}, wheret ¢ D: Apuwy(l) = Ap(l) —
Ap(I = {t}) =0-0=0. (2): AcAsf(l) = Asucf(l), and the latter is O by the previous claim. (3):
ActT() = Acf(1 nT) =0, becausécf = 0. O

The second lemma gives a series expansion for any real-valued furictimst — R, in terms

of its differentials.

Lemma 5.2.20.For any set of tuples & Tup:

f = ZAsz“HT—S> (5.3)
SCT
As a consequence:
fo= > AsfS (5.4)
SCTup

Equation (5.3) can be written equivalently 88) = Y sct Asf(l — (T — S)). For example, by
settingT = {t} or T = {t3, to} in Eq.(5.3) we obtain:

£(1)
£(1)

f(I = {t) + At (1)

f = {te, t2]) + Ay F(1 = {t2)) + A, F(I = {ta)) + A, (1)

112

Proof. (Sketch) We prove (5.3) by induction on the size of thelsethe first example above shows
the base case. Assumisgz T, we can split the sum ové® C T U {t} into to sums: one iterating

overS whereS C T and the other iterating ov& U {t} whereS C T:

Z As fTup—(TU{t}—S)(I) —

SCTuft}
— Z ASfTup—(TU{t}—S)(I) + Z ASU{t}fTup_(T_S)(I)
ScT ScT
— Z ASfTup—(TU{t}—S)(I) + Z ASfTUp—(T—S)(I) _ Z ASfTup—(T—S)(I _ {t})
ScT ScT ScT
= > AstTUP =9 = £(1)
ScT

The last identity holds becaugéuP-(TUiti=S)(1) = fTuP-(T-S)(| —(t}). This completes the proof of

(5.3). To prove (5.4) we s@t = Tupin (5.3). |

For the third lemma, we fix the partial representatibyk) of the view.

Definition 5.2.21. A set of ground tuples T is non-intertwined, or NITYift’ € T, t and t are not

intertwined. In other wordsYt,t’ € T, eithertL #t’.L ort.K = t".K.

Lemma 5.2.22.Let(L, K) be a partial representation of a view V, and let g be a monotone Boolean
guery over V. Assume g has no critical pairs of intertwined tuples, and let T be a NIT set of tuples.

Then d is well defined given the partial representatign K) of the view V.

Proof. A mintermfor g is a minimal instancd s.t. " (J) is true; that is,J is a set of tuples s.t.
q"(J) is true and for all’ c J, if " (J) is true then) = J’. DenoteM the set of all minterms fay " .
Obviously, each minterm fay" is a subset of . Sinceq' is monotone (becauggis monotone), it

is uniquely determined b:

am = \/@<n

JeM

In other wordsg" is true on an instandkiff the set of tuple$ contains a minternd. Denoter” the

113

Boolean query?(l) = (J c 1), we apply the inclusion-exclusion formula to derive:

p@) = w(\/)= > DNEEUY)
JeM NEM,N#0
Finally, we observe that for eadd C M, the expressiop(rUN) is well defined. Indeed, the set
J = U Nisthe union of minterms i, thus itis a subset &f, hence itisa NIT set. I§ = {t1,t5,.. .},
the queryr’ simply checks for the presence of all tupteds, . . .; in more familiar notation(r”) =
u(tatz---). If the setJd contains two disjoint tupled;(K = t;.K) thenu(titz---) = 0. Otherwise, it
contains only independent tupldsl(# tj.L), henceu(tita - - -) = u(t)u(t2) - - - In either cases it is

well-defined and, hence, soigq"). O
We now prove Theorem 5.2.17

Proof. Part 1: We start with the “only if” direction. Leq be well defined, and assume it has a
pairt,t” of intertwined, critical tuples. By definition there exists an instaheet. fq(l) — fo(l -

{th) — fq(1 = {t'}) + f4(I = {t,t’}) # 0. Sinceq is monotone it follows thafy is monotone, hence
q(l) = true, q(I —{t,t’}) = false and eitheq(l — {t}) = (I — {t'}) = falseorq(l — {t}) = q(I = {t'}) =
true. Without loss of generality, assume thglt — {t}) = g(I — {t'}) = false Then we define
two probabilistic databasddV = (‘W,u) andPV’' = (‘W,u’) as follows. Each has four possible
worlds: I, 1 —{t}, | = {t'},] — {t,t'}. In PV these worlds are assigned probability: (0.5, 0,0, 0.5),
respectively; heret; andt, are positively correlated. IRV, all worlds are assigned probability
0.25 i.e.the two tuples are independent. Observe that in both cases, the marginal probability of any
tuple is the samey(t) = u(t’) = 0.5 and all other tuples have probability 1. Then we haig = 0.5
andy’(q) = 0.25, contradicting the assumption thpis well-defined.

Next we prove the “if” part, so assunmgghas no pair of intertwined, critical tuples. The basic
plan is this. Suppose an instariceontains two intertwined tupldst’ (hence we don’t know their
correlations). Writg(1) = q(I — {t,t'}) + Aq(l — {t'}) + Avq(l — {t}) (becauseé\irq = 0). Thus, we
can “remove’t ort’ or both froml and get a definition off on a smaller instance, and by repeating
this process we can eliminate all intertwined tuples figrinen we apply Lemma 5.2.22

Formally, letqg be a monotone Boolean query that has no critical pair of intertwined tuples for

(L, K). Let PV = (W, u) be a probabilistic database that satisfies the partial representafi€j (

114

and letT upbe the set of possible tuples V. We expandfg using Lemma 5.2.20:

Il
>
_|
—
-

TcTupT is NIT

PN D A (5.5)

TcTupT is NIT S<T

The first line is Eq.(5.4) in Lemma 5.2.20. To show the second line, we start from the fact that
Agryfq = 0 whent, t” are intertwined tuples, because we assumeddtas no critical pair of
intertwined tuples. Then, every sEtthat is not NIT can be written ab = {t,t'} U T wheret,t’
are two intertwined tuples. We apply Lemma 5.2.19 twitgy fq = 0 impliesA v, qu = 0, which
further impliesA+ qu = 0. Thus, the only terms in the first line that are non-zero are those that
correspond to sefE that are NIT: this is what the second line says. Finally, the last line is the direct
definition of At.

Next we apply the expectation on both sides of Eq.(5.5), and use the linearity of expectation plus

p(a) = E[fq]:

(@) = E[fq]

> Y)EE S

TcTupT is NIT ST

> D)@)

TcTupT is NIT ST

The claim of the theorem follows from that fact that by Lemma 5.2.22 each expregsior)
is well defined.

We now prove Part 2, by providing a reduction from the probtgivien a conjunctive query q
and a tuple t check whether t is critical for g"Assume w.l.0.g. that the query and the tuple are
over a vocabulary with a single relation symbol (namély If not, we rename relation symbols by
padding them so that they have the same arities, then adding constants: for example if the vocabulary

is Ri(A B), R(C, D, E, F), R3(G, H, K), then we will rewrite both the query and the tuple using a

115

single relation symboV of arity 5 (the largest of the three arities plus one), and repRi¢e y)
with V(X,y, a, a), replaceRx(X, Y, z u) with V(x, Yy, z u, b), and replacés(x,y, z) with V(X,y, z ¢, c),
wherea, b, c are fixed constants.

Thus, we have a quenry and a ground tuplé, over a single relation symb® of arity k, in
particulart = V(cy, ..., ck) = V(C). We want to check whetheiis a critical tuple forg. We reduce
this problem to the problem of checking whether some qaéry well defined over some vieW’;
the new view will have arityk + 1. Fix two distinct constanta, b. The new queryy’ is obtained
from g by replacing every subgosl(x, y, ...) with V’(a, x, v, .. .), and by adding the constant subgoal
V(b,cy,...,¢c). Thus, querieg andq’ look like this:

V(%) V(X2), . ., V(Xm)

O
Il

q V'(a x1), V'(a X2), ..., V'(a Xm), V'(b, C)

Consider the partial representatidn K) for V’, whereL = Attr(V) andK = Attr(V’). Recall thaty
is well defined over this partial representatidfijtihas no pairs of intertwined, critical tuples. Thus,

to prove the hardness claim itffiges to show that the following two statements are equivalent:

1. There exists two intertwined, critical tuples figr

2. tis a critical tuple form.

We start by showing 1 implies 2. Two tuplést, are intertwined ff they agree on thé at-
tributes,t;.L = to.L, and disagree on th¢ attributes, hencg.A # t,.A, whereA = Attrs(V’) — L
is the extra attribute that was addedwto On the other hand, if the sfit, to} is also critical forg’,
thent;.A = aandt,.A = b (sinceq’ only inspects tuples that have= a or A = b), and, moreover,
t1.L = to.L = c(since the only tuple witl\ = bthat is critical forq’ is V’(b, €)). Letl’ be an instance

that withesses the fact thi, to} is doubly critical:

0=+ Atl,tz fq/(l /)

fo (1) = T (17 = {ta)) = fqe (I = {t2}) + fqr (I" = {ta, t2})
1- (I’ = {t1) —0+0

We used the fact thét, (1) = 1 (otherwise, iffy (1") = 0 thenAy, t,(fy (")) = 0), which implies that

116

to = V/(b,c) € I’. Thus, we have/'(l’) = true andq' (I’ — {t1}) = false We construct from here
an instance such thaty(l) = true andq(l — {t}) = false indeed, takd = {V(d) | V(a,d) € I}, it
obviously satisfies this property. Thuds a witness fot being a critical tuple foq.

To prove 2 implies 1 we use the same argument, in reverse. We start with an inssaicbethat
q(1) = true, (I — {t}) = false and defind’ = {V(a,d) | V(d) € 1} U {V(b,T)}. Itis easy to check that
Ay 1, Ty (1”) # 0. This completes the proof. i

5.3 Practical Query Answering using Probabilistic Views

In this section, we consider practical enhancements to the theory of probabilsitic views. Concretely,
the complexity of the decision problems in the previous section is high. In this section, wdigive e
cient approximation algorithms for both problems that are sound (but not complete). For a restricted
class of queries, we are able to prove that BUIME algorithms are complete. We then discuss

further practical enhancements to our theory, such as coping with dependencies.

5.3.1 Practical Algorithm for Representability

CheckingL-block independence is intractable, and so we give a polynomial time approximation that
is sound, i.e. it says a view is representable only if it is representable, but not complete, the test may
say that a view is nokt-block independent when in fact it is. The central notion ik-eollision,
which intuitively says there are two output tuples which may depend on input tuples that are not
independent (i.e. the same tuple or disjoint).

To make this precise, le&t = 0i,...,0n be a conjunctive query wheie denotes the tuple of

variables and constants in the possible worlds key position of the sutjgéalr example,

a=R(XXY;2,RXY,y;u),S(x,‘a’; 2)

thenky = (X, X, ¥), ko = (X, y,Y), andkz = (X, ‘a’). We say that a valuation : var(q) — D is disjoint
awareif for i,j = 1,...,n, we havev(k) = v(kj) andpred(g) = pred(g;) thenv(g) = v(g;).

The intution is that this is a valuation which is consistent with the possible worlds key constraints.
Above,v(x,y,z U) = (a,b,c,d) is disjoint aware, while/(x,y, z, u) = (& a,c,d) is not: there is no

possible world that contains both of the tupR{g, a, a; ¢) andR(a, &, a; d), since this would violate

117

the possible worlds key constraint.

Definition 5.3.1. A L-collision for a view

VP(L,U) == g1,...,0n

is a pair of disjoint aware valuationé/,w) such that YL) # w(L) but there exists, ij such that g

that is probabilistic pred(g) = pred(g;) and \(ki) = w(k;).

The utility of this definition is that we will show that if we cannot find brcollision, then we

are sure that the output of the view will heindependent.

Example 5.3.2 Consider\/ZF’(C) in Eq. (5.2), if we unify any pair of probabilistic subgoals, we are
forced to unify the head;. This means that a collision is never possible and we concludé/that
is C-block independent. Notice that we can unify eubgoal for distinct values af, sinceS

is deterministic, this is not a collision. I‘vllp(c, r) Eq. (5.1), the following pairy,w), v(c,r,d) =
(‘TD’, ‘D.Lounge’,'Crab Cakes’) anav(c,r,d) = (‘'TD’, ‘P.Kitchen’, ‘Crab Cakes’), is a collision
because(c,r) # w(c, r) and we have unified the keys of tRB subgoal. Since there are no repeated

probabilistic subgoals, we are sure th’é’tis notCR-block independent.

We need the following proposition:

Proposition 5.3.3. If V(L,U) is a view on a BID database without an L-collision. Then for any

tuples st € V such that i.] # t[L] the sets of variables ia(s) and A(t) are disjoint.

Proof. This is immediate from the definition. O

Lemma5.3.4.I1faview (L, U) on a BID table does not have an L-collision, then vis L-independent.

Moreover, if v does not contain repeated predicates then the converse holds as well.

Proof. If there does not exist ao-collision, then for any tuples t such thag[L] # t[L] that appear

in the viewV, thena(s) andA(t) have no common variables. Hence, no critiacl tuple could be shared
between them and so the viewlisindependent. If there are no repeated predicates ihen we
observe thagvery tupldn the image of any valuation is critical. Letw be the valuations provided

by the definition andy;, g; be subgoals such thatk;) = w(k;) andv(L) # w(L). Then, this implies

the tupless(gi) andv(g;) are pair critical. m|

118

The last thing we must observe is that there is an easy, complete testadiisions:

e Create two copies of the quel(L,U) and put them into one queyV(L,U,L",U’) =
V(L, U), V(L U").

e For each pair of subgoats € V andg’ € V’, unify them inVV and then construct the most
general unifier [159] that respects the key constraints in the BID instances. If we can construct
a such that # L’, then reject the query: this unifier encodeslacollision. To see thisy
(resp. w) is the unifier restricted to the variablesVh(resp. V’). If not, then there is no

L-collision.

The second step can be done using the Chase for functioanl dependencies, which is done in
polynomial time [1]. Thus, we can find-collisions in polynomial time. Summarizing, we have the

following theorem:

Theorem 5.3.5.Given a conjunctive view(, U) on a BID instance. The previous algorithm gives
a polynomial-time, sound test for testing L-independence. Moreover, if V does not contain self-joins,

then the test is complete.

5.3.2 Practical Test for Uniqueness

We now give a test in a similar spirit for uniqueness. We say that a pair of disjoint-aware valuations
v, w is compatibleif for i, j = 1,...,n, whenever we havek) = w(k;) andpred(gi) = pred(g;),

then it must be that(gi) = w(g;). Intuitively, if a pair of valuations is compatible it means that
there is somgossibleworld W where both of these valuations can map the query simultaneously,

i.e.v(g)uw(g) € W.

Definition 5.3.6. Given a schema with a single view V that has a partial representdtiok), an
intertwined collisionfor a query H) is a pair of compatible valuation&/, w) such that yH) =

w(H) and there exists a pair of subgoal(s;, g;), such that \g;) and \g;) are intertwined.

The intution of an intertwined collision is that there are two derivations for a tuple in the output
of Q that depend on a pair of intertwined tuples, i.e., tuples whose correlation is not specified by the

partially represent view.

119

Example 5.3.7In V1, K, = {C} andD = {R}. An intertwined collision forQ; is v(c,r) =
(‘TD’, ‘D.Lounge’) andw(c, r) = (‘TD’, ‘P.Kitchen’), thusQ’s value is not uniquely defined. On the

other hand, irQ,, trivially there is no intertwined collision and $@,’s value is uniquely defined.

The algorithm to find an intertwined collision is a straightforward extension of findikg a
collision. The key dierence is that we use the Chase to ensure that the valuations we find are

compatible, not individually disjoint aware.

Theorem 5.3.8.1f no intertwined collisions exist for a conjunctive query Q, then its value is uniquely
defined. If the partially representable view symb@8li¥/not repeated, this test is complete. The test

can be implemented IRTIME.

Proof. First consider the soundness argument in the special case of a BoolearQguafie show

that if there exists a critical intertwined pas; f) for Q, then there must be an intertwined collision.
Let | be the instance provided Definition 5.2.14. Suppbse{s} E Q(). Sincel — {s,t} £ Q(), the
image of any valuatiom that witnesses— {s} = Q() must contairt. By symmetry, the image of any
valuation that witnessds— {t} £ Q() must contairw. It is easy to see that,(w) is compatible and
hence ¥, w) is an intertwined collision. If — {s} ¢ Q() then there is a single valuatismwhich uses
boths t. Thus, ¢, V) is an intertwined collision. It is straightforward to extend to the non-Boolean
case. To see completeness, we observe thaeteay tupldn the image of any valuation is critical.
Hence an intertwined collision finds a pair of intertwined tuples that are critical. We then apply

Theorem 5.2.17. O

5.4 Experiments

In this section we answer three main questions: To what extent do representable and partially rep-
resentable views occur in real and synthetic data sets? How much do probabilistic materialized
views help query processing? How expensive are our proposed algorithms for finding representable

views?

5.4.1 Experimental Setup

Data Description We experimented with a variety of real and synthetic data sets including: a

database from iLike.com [40], the Northwind database (NW) [41], the Adventure Works Database

120

EAnoTRER [FOM T 100 [(pTPC |—— 1000 [APTPC
[PARTIAL T ELG: = @ M
= o100 |OLM
Orer 75% | g |dumw 5 EINOLIN '
B TRIVIAL 1 10 |[ENOLIN noo1g 1
5 g | 7
5086 — - o = g |y
e o b b
o o I s = ”]
|] 5 1 S 01 Al
25 e S 8 ”]
e "] B o o N = 1 B
BB E G & 0.01 Nl
o L 0.1 o4 1] e I Ll 1 I
iLike AW AW2 NW L NW 2 NW 3 o1 o5 1 ol 05 1
Schema Mame TPCH Scale [GEB) TPCH Scale [GE)
(a) (b) (c)

Figure 5.2: (a) Percentage by workload that are representable, non-trivially partially representable
or not representable. We see that almost all views have some non-trivial partial representation.
(b) Running times for Query 10 which is safe. (c) Retrieval times for Query 5 which is not safe.
Performance data is TPC-H (0.1, 0.5, 1G) data sets. All running times in seconds and on logarithmic
scale.

from SQL Server 2005 (AW) [42] and the TPGRIbenchmark (TPCH) [43, 44]. We manually
created several probabilistic schemata based on the Adventure Works [42], Northwind [41] and

TPC-H data which are described in Fig. 5.3.

Queries and Views We interpreted all queries and views with scalar aggregation as probabilistic
existence operators (i.e. computing the probability a tuple is present). iLike, Northwind and Adven-
ture Works had predefined views as part of the schema. We created materialized views for TPC-H
using an exhaustive procedure to find all subqueries that were representable, did not contain cross

products and joined at least two probabilistic relations.

Real data: iLike.com We were given query logs and the relational schema of iLike.com,
which is interesting for three reasons: It is a real company, a core activity of iLike is manipulating
uncertain data (e.g. similarity scores) and the schema contains materialized views. iLike's data,
though not natively probabilistic, is easily mapped to a BID representation. The schema contains
over 200 tables of which a handful contain uncertain information. The workload trace contains over

7 million queries of which more than 100,000 manipulated uncertain information contained in 5

121

Schema| Tables (wP)

AW 18 (6)

AW2 18 (3)

NW1 16 (2) Size (WP) | Tuples (wP)
NW2 16 (5) 0.1 (440M)| 3.3M (2.4M)
NW3 16 (4) 0.5 (2.1G)| 16M (11.6M)
TPC-H 8 (5) 1.0 (4.2G)| 32M (23.2M)

(@) (b)

Figure 5.3: Schema and TPC Data statistigg Number of tables referenced by at least one view and number of
probabilistic tables (i.e. with attributé). (b) Size and (WP) are in Gb. The number of deterministic and probabilistic tuples is in

millions.

views. Of these 100,000 queries, we identified less than 10 query types which ranged from simple

selections to complicated many way joins.

Performance Data All performance experiments use the TPC-H data set with a probabilistic
schema containing uncertainty in thert, orders, customer, supplier andlineitem tables.
We used the TPC-H toalbgen to generate relational data. The data in each table marked as prob-
abilistic was then transformed by uniformly at random injecting additional tuples such that each
key value was expected to occur 2.5 times. We alloweckfuity uncertaintythat is, the sum of

probabilities for a possible worlds key may be less than 1.

System Details Our experimental machine was a Windows Server 2003 machine running SQL
Server 2005 with 4GB of RAM, 700G Ultra ATA drive and dual Xeon (3GHz) processors. The
MystiQ engine is a middleware system that functions as a preprocessor and uses a complete ap-
proach [21,137]. The materialized view tools are implemented using approximately 5000 lines of
OCaml. After importing all probabilistic materialized views, we tuned the database using only the

SQL Server Database Engine Tuning Advisor.

Execution Time Reporting Method We reduced guery time variance by executing each query
seven times, dropping the highest and lowest times and averaging the remaining five times. In all

reported numbers, the variance of the five runs was less than 5% of query execution time.

122

5.4.2 Question 1: Do Representable and Partially Representable views exist?

In Fig. 5.2(a), we show the percentage of views in each workload that is trivially representable be-
cause there are no probabilities in the vieMRIVIAL), representabléREP) non-trivially partially
representabléPARTIAL)or only trivially partially representablNOTREP) In iLike’s workload,

4 of the 5 views (80%) are representable. Further, 98.5% of the over 100k queries that manipulate
uncertain data use the representable views. In synthetic data sets, representable views exist as well.
In fact, 50% or more of the views in each data set except for AW are representable. Overall, 63%
of views are representable. 45% of the representable views are non-trivially representable. Addi-
tionally, almost all views we examined have a non-trivial partial representations (over 95%). We

conclude that that representable and partially representable views exist and can be used in practice.

5.4.3 Question 2: Do our techniques make query processing nfimieet?

The TPC data set is the basis for our performance experiments because it is reproducible and the
data can be scaled arbitrarily. We present queries 5 and 10, because they both have many joins (6
and 4) and they are contrasting: Query 18a$e[46, 135], and so can bdieiently evaluated by a
modified SQL query. Query 5 isnsafeand so requires expensive Monte Carlo techniques. Graphs
5.2(b) and 5.2(c) report the time taken to execute the query and retrieve the results. For query 10,
this is the total time for execution because it is safe. In contrast, query 5 requires additional Monte

Carlo techniques to compute output probabilities.

Graph Discussion In Fig. 5.2(b), we see running times of query 10 without probabilistic seman-
tics (PTPC) as a safe pla(SAFE) with a subview materialized and retaining lineggeN) and the

same subview without linead®OLIN). LIN is equivalent to a standard materialized view optimiza-

tion; the lineage information is computed and stored as a tabIBIOBIN, we discard the lineage

and retain only the probability that a tuple appears in the view. The graph confirms that materializ-
ing the lineage yields an order of magnitude improvement for safe queries because we do not need
to compute three of the four joins at query execution time. Interestingly, the baxObiN show

that precomputing the probabilities and ignoring the lineage yields an additional order of magnitude

improvement. This optimization is correct because the materialized viespissentable This is

123

interesting because it shows that being aware of when we can remove lineage is helpful even for
safe plans.

As a baseline, Fig. 5.2(c) shows the query execution times for query 5 without probabilistic
semantics but using the enlarged probabilistic taiEEPC) Fig. 5.2(c) also shows the cost of
retrieving the tuples necessary for Monte Carlo simula{id). Similarly, we also see the cost
when materializing a view and retaining linea@é¢N) and when we precompute the probabilities
and discard the lineag®OLIN). For (MC) and(LIN), the extra step of Monte Carlo Simulation is
necessary which for TPC 0.1 (resp. TPC 0.5, TPC 1) requires an additios@ 48conds (resp.
62.32s, 1381s). Interestingly, query 5 using the materialized view dussequire Monte Carlo
Simulation because the rewritten query is safe. Thus, the timBl@iIN is an end-to-end run-
ning time and so we conclude that our techniquésrdour order of magnitude improvement over

materializing the lineage alone.B8 + 13821s with lineage v. 003s without).

5.4.4 Question 3: How costly are our algorithms?

All views listed in this paper were correctly classified by our practical algorithm, which always
executes in well under 1 second. Finding all representable or partially representable sub-views for
all but two queries completed in under 145 seconds; the other two queries completed in under an
hour. Materializing views for unsafe queries completed under 1.5 hours for all results reported in
the paper. However, this is afffilne process and can be parallelized because it can utilize multiple

separate Monte Carlo processes.

124

Chapter 6

VIEW-BASED TECHNIQUE II: APPROXIMATE LINEAGE

In probabilistic databasefineageis fundamental to processing probabilistic queries and un-
derstanding the data. Many state-of-the-art systems wssmplete approache.g., Trio [16] or
MysTiQ [46, 137], in which the lineage for a tupteis a Boolean formula which represents all
derivations ot. The central observation in this chapter is that, for many applications, it is often un-
necessary for the system to painstakingly track every derivation. A consequence of ignoring some
derivations is that our system may return an approximate query probability such0ds-1.002,
instead of the true value of D An application may be able to tolerate thiffdience, especially if
the approximate answer can be obtained significantly faster. A second issue is that although a com-
plete lineage approach explains all derivations of a tuple, it does not tell us which facts are the most
influential in that derivation. In large data sets, a derivation may become extremely large because
it aggregates together a large number of individual facts. This makes determining which individual

facts are influential an important and non-trivial task.

With these observations in mind, we advocate an alternative to complete lineageapgtes-
imate lineage Informally, the spirit of approximate lineage is to compress the data by tracking
only the most influential facts in the derivation. This approach allows us to Ilfitieatly answer
queries, since the data is much smaller, and also to directly return the most important derivations.
We motivate our study of approximate lineage by discussing two application domains: (1) large
scientific databases and (2) similarity data. We show that approximate lineage can compress the
data by up to two orders of magnitude, e.g., 100s of MB to 1MB, while providing high-quality

explanations.

6.1 Motivating Scenarios

We discuss some applications of approximate lineage.

125

ProcessK)
Gene Product Process A
(t) AGO2 “Cell Death” X1
(t2) AGO2 “Embryonic Development’| x;
(t3) AGO2 “Gland development” X2
(ta) Aacll “Cell Death” X2
(ts) Aacll “Embroynic Development’]| X3

Annotations (Atoms)

Atom | Code Description P
X1 TAS “Dr. X’'s PubMed PMID:12593804" %
Xo NAS “Dr. Y's RA Private Communication” %1
X3 IEA | “Inferred from Computational Similarity’ %

V(y) .= P(x,y),P(‘Aacll’,y), x # ‘Aacll’
V is a view that asks fdlGene Products that share a process with a product ‘Aac11™
Level | DB (Complete Lineage)
Gene Product A
(te) AGO2 (X1 A X2) V (X1 A X3)

Level Il DB (Approximate Lineage)

Type Lineage Formula
Suficient = XAX
Arithmetization A = xa(1- (1 - x2)(1 - X3))

- 33 , 21 1y, 9 1
Polynomial /1{2 = SD+Zx-1)+(x-32)

Figure 6.1: Process (P) relates each gene product to a process, e.g., AG02 is involved in “cell
death”. Each tuple iRrocess has an annotation from the set of atoms. An atgnfiori = 1,2, 3,

is a piece of evidence that has an associated probability, »g.gs, the proposition that we trust

“Dr. X.!s PubMed article PMID:12593804, which we assign probabilitg. V is a view that asks

for “Gene Products that share a process with a product ‘Aac1BelowV'’s definition is its output

in the original database with a complete approach. At the right examples of approximate lineage
functions we consider are listed. The compressed database is obtained by rephadimgne of

these functions, e.gi,tss. This database is inspired by the Gene Ontology (GO) database [37].The
terms (evel) and Level Il) are specific to our approach and defined in (Section 6.1.1).

126

Application (1): Large Scientific databases In large scientific databases, lineage is used to inte-
grate data from several sources [24]. These sources are combined by both large consortia, e.g., [37],
and single research groups. A key challenge faced by scientists is that facts fiererdisources

may not be trusted equally. For example, the Gene Ontology Database (GO) [37] is a large (4GB)
freely available database of genes and proteins that is integrated by a consortium of researchers.
For scientists, the most important data stored in GO is a set of associations between proteins and
their functions. These associations are integrated by GO from many sources, such as PubMed arti-
cles [134], raw experimental data, data from SWISS-PROT [20], and automatically inferred match-
ings. GO tracks the provenance of each association, using what vegaakk An atom is simply a

tuple that contains a description of the source of a statement. An example &mXs PubMed

article PMID:12593804". Tracking provenance is crucial in GO because much of the data is of
relatively low quality: approximately 96% of the more than 19 million atoms stored in GO are auto-
matically inferred. To model these trust issues, our system associates each atom with a probability

whose value reflects our trust in that particular annotation. Figure 6.1 illustrates such a database.

Example 6.1.1 A statement derivable from GO is, “Dr. X claimed in PubMed PMID:12593804 that
the gene Argonaute2 (AGO?2) is involved in cell death” [77]. In our model, one way to view this is
that there is a facthe gene Argonaute?2 is involved in cell deatid there is an atorr. X made the
claim in PubMed PMID:12593804f we trust Dr. X, then we assign a high confidence value to this
atom. This is reflected in Figure 6.1 since the at@mhas a high probabilitﬁ. More complicated
annotations can bderived e.g., via query processing. An example is the vieim Figure 6.1,

that asks for gene products that share a process with the gene ‘Aacl1’. The tuple, R O&A(
appears irV is derived from the facts that both AGO2 and Aacl11 are involved in “cell de&th” (
andt,) and “embryonic developmentty(andts); these tuples use the atoms(twice), x, and x3

shown in the Annotations table.

A benefit of annotating the data with confidence scores is that the scientist can now obtain the
reliability of each query answer. To compute the reliability value in a complete approach, we may
be forced to process all the lineage for a given tuple. This is challenging, because the lineage
can be very large. This problem is not unique to GO. For example, [30] reports that a 250MB

biological database has 6GB of lineage. In this thesis, we show how tapgseximate lineage

127

to effectively compress the lineage more than two orders of magnitude, even for extremely low
error rates. Importantly, our compression techniques allow us to process queries directly on the
compressed data. In our experiments, we show that this can result in up to two orders of magnitude
more dficient processing than a complete approach.

An additional important activity for scientists is understanding the data; the role of the database
in this task is to provide interactive results to hone the scientist’'s knowledge. As a result, we cannot
tolerate long delays. For example, the lineage of even a single tuple in the gene ontology database
may be 9MB. Consider a scientist who finds the resul @f Fig 6.1 surprising: One of her goals
may be to find out whyg is returned by the system, i.e.she wants fiigent explanation as to
why AGO2 was returned. The system would return thatntiost likely explanatiors that we trust
Dr.X that AGO?2 is related to cell deathy) and Dr.Y’s RA that Aacl1 is also related to cell death
(t2). An alternative explanation usgsand the automatic similarity computatiag)(However, the
first explanation is more likely, since the annotation associatedtyitkp) is more likely than the
annotation ots (x3), herez = p(xz) > p(xs) = 2.

A scientist also needs to understand tiffie@ of her trust policy on the reliability score tf
Specifically, she needs to know which atom is the nirfitentialto computing the reliability fots.

In this case, the scientist is relatively sure that AGO2 is associated with cell death, since itis assigned
a score of%. However, the key new clement leading to this surprising result is that Aacl11 is also
associated “cell death”, which is supported by the aignthe statement of Dr. Y's RA. Concretely,

X2 is the most influential atom because changigig value will change the reliability ag more than
changing any other atom. In our experiments, we show that we can fificiesot explanations with

high precision, e.g., we can find the top 10 influential explanations with between 70% and 100%
accuracy. Additionally, we can find influential atoms with high precision (8@®0% of the top 10
influential atoms). In both cases, we can conduct these exploration tasks without directly accessing

the raw data.

Application (2): Managing Similarity Scores Applications that manage similarity scores can
benefit from approximate lineage. Such applications include managing data from object reconcilia-
tion procedures [6, 89] or similarity scores between users, such as iLike.com. In iLike, the system

automatically assigns a music compatibility score between friends. The similarity score between

128

two users, e.g., Bob and Joe, has a lineage: It is a function of many atomic facts, e.g., which songs
they listen to and how frequently, which artists they like, etc. All of these atomic facts are combined
into a single numeric score which is then converted ppantitativebuckets, e.g., high, medium

and low. Intuitively, to compute such rough buckets, it is unnecessary to precisely maintain every
bit of lineage. However, this painstaking computation is required by a complete approach. In this
chapter, we show how to use approximate lineagdfergvely compress object reconciliation data

in the IMDB database [173].

6.1.1 Overview of our Approach

At a high level, both of our example applications, large scientific data and managing similarity
scores, manage data that is annotated with probabilities. In both applications, we propose a two-level
architecture: Thé.evel |database is a large, high-quality database that uses a complete approach
and is queried infrequently. Theevel Il database is much smaller, and uses an approximate lineage
system. A user conducts her query and exploration tasks drethet [l database, which is the focus

of this chapter.

The key technical idea of this chapterigproximate lineagewhich is a strict generalization of
complete lineage. Abstractly, lineage is a functidhat maps each tuptén a database to a Boolean
formula A; over a fixed set of Boolean atoms. For example in Figure 6.1, the lineage of thegtuple
IS A, = (X1 A X2) V (X1 A X3). In this chapter, we propose two instantiations of approximate lineage:

a conservative approximatiosyficient lineage and a more aggressive approximatipalynomial
lineage

In syficient lineage each lineage function is replaced with a smaller formula that logically
implies the original. For example, af§gient lineage fots is ;lsé = X1 A X2. The advantage of suf-
ficient lineage is that it can be much smaller than standard lineage, which allows query processing
and exploration takes to proceed much mdteiently. For example, in our experiments processing
a query on an uncompressed data took 20 hours, while it completed in 30m on a database using
suficient lineage. Additionally, understanding query reliability is easy witfigant lineage: the
reliability computed for a querg is always less than or equal to the reliability computed on the orig-

inal Level | database. However, only monotone lineage functions can be representediigensu

129

approach.

The second generalization p@lynomial lineagewvhich is a function that maps each tuplan
a database to al-valued polynomiabn Boolean variables, denotéﬂ. An example polynomial
lineage is;lt'fS in Figure 6.1. There are two advantages of using real-valued polynomials instead
of Boolean-valued functions: (1) powerful analytic techniques already exist for understanding and
approximating real-valued polynomials, e.g., Taylor series or Fourier Series, andy(#fheage
function can be represented by polynomial approximate lineage. Polynomial lineage functions can
allow a more accurate semantic tharffimient lineage in the same amount of space, i.e., therdi
ence in value between computiggn the Level | and Level Il database is small. In Section 6.5 we
demonstrate a view in GO such that polynomial lineage achieves a compression ratio of 171 : 1 and
sufficient lineage achieves 27 : 1 compression ratio with error rate less thaC&r. 6.2.10).

Although polynomial lineage can give better compression ratios and can be applied to a broader
class of functions, there are three advantages fifcgnt lineage over polynomial lineage: (1)
suficient lineage is syntactically identical to complete lineage, and so can be processed by existing
probabilistic relational databases without modification, e.g., Trio and Mystiq. (2) The semantic of
suficient lineage is easy to understand since the value of a query is a lower bound of the true value,
while a query may have either a higher or lower value using polynomial lineage. (3) Our experiments
show that sfficient lineage is less sensitive to skew, and can result in better compression ratios when
the probability assignments to atoms are very skewed.

In both lineage systems, there are three fundamental technical challenges: creating it, processing
it and understanding it. In this chapter, we study these three fundamental problems for both forms

of approximate lineage.

6.1.2 Contributions, Validation and Outline

In the remainder of this chapter, we show that we canffigiently construct both types of approxi-
mate lineage, (2) process both types of linedgjeiently and (3) use approximate lineage to explore

and understand the data.

e In Section 6.2, we define the semantics of approximate lineage, motivate the technical prob-

lems that any approximate lineage system must solve and state our main results. The tech-

130

nical problems are: creating approximate lineage (Prob. 3); explaining the data, i.e.finding
suficient explanations (Prob. 4), finding influential variables (Prob. 5); and query processing
with approximate lineage (Prob. 6).

In Section 6.3, we define our implementation for one type of approximate linegfjeient

lineage This requires that we solve the three problems above: we give algorithms to construct
it (Section 6.3.2), to use it to understand the data (Section 6.3.3), and to process further queries
on the data (Section 6.3.4).

In Section 6.4, we define our proposal feolynomial approximate lineageour proposal

brings together many previous results in the literature to give algorithms to construct it (Sec-
tion 6.4.2), to understand it (Section 6.4.3) and to process it.

In Section 6.5, we provide experimental evidence that both approaches work well in practice;
in particular, we show that approximate lineage can compress real data by orders of magnitude
even with very low error, (Section 6.5.2), provide high quality explanations (Section 6.5.3)
and provide large performance improvements (Section 6.5.4). Our experiments use data from
the Gene Ontology database [37,156] and a probabilistic database of IMDB [173] linked with

reviews from Amazon.

6.2 Statement of Results

We first give some background on lineage and probabilistic databases, and then formally state our

problem with examples.

6.2.1 Preliminaries: Queries and Views

In this chapter, we consider conjunctive queries and views written in a datalog-style syntax. A

queryq is a conjunctive rule writteny :— g, ..., gy Where eacly; is a subgoal, that is, a relational

predicate. For examplep — R(X),S(x,y,‘a’) defines a query with a join betwedRandS, a

variabley that is projected away, and a constant ‘a’. For a relational database writeW E qto

denote thaw entailsg.

131

6.2.2 Lineage and Probabilistic Databases

We again adopt a viewpoint of lineage similaradables [82, 93], and we think of lineage as a
constraint that tells us which worlds are possible. We generalize lineage. To make our generalization

clear, we recall the definitions of lineage from Chapter 2.

Definition 6.2.1 (Lineage Function) An atomis a Boolean proposition about the real world, e.qg.,
Bob likes Herbie Hancock. Fix a relational schemaand a set of atoms$A. A lineage function,
A, assigns to each tuple t conforming to some relationrjla Boolean expression ovet, which is
denotedl;. Anassignments a functionA — {0, 1}. Equivalently, it is a subset ofi, denoted A,

consisting of those atoms that are assigned true.

Figure 6.1 illustrates tuples and their lineages. The atoms represent propositions about data
provenance. For example, the atafrin Figure 6.1 represents the proposition that we trust “Dr. X’s
PubMed PMID:12593804". Of course, atoms can also represent more coarsely grained propositions,
“A scientist claimed it was true®dr finely-grained factéDr. X claimed it in PubMed 18166081 on
page 10" In this chapter, we assume that the atoms are given; we briefly discuss this at the end the
current section. This form of lineage is sometimes caledlean pc-tablessince we are restricting
the domain of every atom to be Boolean.

To define the standard semantics of lineage, we defpasaible world Wthrough a two-stage
process: (1) select a subset of atorAs,i.e., an assignment, and (2) For each tuplé 2:(A)
evaluates to true thens included inW. This process results in an unique wovidifor any choice

of atomsA.

Example 6.2.2 If we selectA;3 = {X1, X3}, that is, we trust Dr. X and Dr. Y’s RA, but distrust the
similarity computation, thekiVi2sg = {t1, 12, s, tg} is the resulting possible world. The reason is that
for eacht; € Wiasg, Ay is satisfied by the assignment correspondingdeand for eachj ¢ Wiose,

Ay is false. In contrastWizs = {t1, 12, ts} is not a possible world because W25, we know that

AGO2 and Aacll are both associated with Cell Death, and so AGO2 should appear in thig)view (
In symbols,/ltG(W125) =1, buttg ¢ Wi2s.

We capture this example in the following definition:

132

Definition 6.2.3. Fix a schemar. A world is a subset of tuples conforming #o Given a set of
atoms A and a world W, we say that W ipassible worldnduced by A if it contains exactly those
tuples consistent with the lineage function, that is, for all tupleg(fy) < t € W. Moreover, we
write A1(A, W) to denote the Boolean function that takes valuEW is a possible world induced by

A. In symbols,
def

AAW) Z A\ @ /\ @ 1A) (6.1)

titeW titgW
Eq. 6.1 is important, because it is the main equation that we generalize to get semantics for
approximate lineage.
We complete the construction of a probabilistic database as a distribution over possible worlds.
We assume that there is a functiprithat assigns each atoae A to a probability score denoted
p(a). In Figure 6.1,x; has been assigned a scq(eq) = %, indicating that we are very confident
in Dr. X's proclamations. An important special case is wh#a) = 1, which indicates absolute

certainty.

Definition 6.2.4. Fix a set of atomsA. A probabilistic assignmerg is a function from# to [0, 1]
that assigns a probability score to each atora &. A probabilistic databas®V is a probabilistic

assignment p and a lineage functigthat represents a distributiom over worlds defined as:
def
pw) = " A<A,vv)([] p(a)][[]a- p(aj))]
ACA i:geA j:ajgA

Given any Boolean query g oW, the marginal probability of q denotgdq) is defined as

@ =Y uw) (6.2)

aWkq
i.e., the sum of the weights over all worlds that satisfy q.

Since for anyA, there is a uniqu#V such thati(A, W) = 1, u is a probability measure. In all of

our semantics, the semantic for queries will be defined similarly to Eqg. 6.2.

Example 6.2.5 Consider a simple query on our database:

01() :— P(x, ‘Gland Development,)V(x)

133

This query asks if there exists a gene prodydhat is associated with ‘Gland Development’, and
also has a common function with ‘Aacll’, that is it also appears in the outpdit @hn the data in
Figure 6.1, is satisfied on a worlwV if and only if (1) AGO?2 is associated with Gland development
and (2)AGO2 and Aacll have a common functibere, either Embryonic Development or Cell
Death. The subgoal requires thgtbe present and the second thabe present. The formula
Atz A Ay, simplifies toxg A xp, i.e., we must trust both Dr.X and Dr.Y’s RA to derigg, which has

probability 2 - # = 2 ~ 0.19.

We now generalize the standard (complete) semantics to give approximate semantics; the ap-

proximate lineage semantics are used to give semantics to the compressed Level Il database.

Sufficient Lineage Our first form of approximate lineage is callegficient lineage The idea is
simple: Eachi, is replaced by a Boolean formulg such thati® = 1 is a tautology. Intuitively,
we think ofﬁtS as a good approximation t if /lts andJ; agree on most assignments. We define the

function 13(A, W) following Eq. 6.1:

BAaw E A BE) A @-i5m) (6.15)
titeW titgW
The formula simply replaces each tupkelineage,; with sufficient lineage® and then checks
whetherW is a possible world foA given the sHicient lineage.This, in turn, defines a new proba-

bility distribution on worlds.®:

ASw) =Y AsAw)

ACA

[p(aa)][[]a- p(a,-))]

i eA j:aj¢A
Given a queny, we define.S(q) exactly as in Eq. 6.2, witph syntactically replaced by i.e.,

as a weighted sum over all worlil¥ satisfyingg. Two facts are immediate: (1)°7is a probability

measure and (2) for any a conjunctive (monotone) quer>(q) < u(g). Suficient lineage is

syntactically the same as standard lineage. Hence, it can be used to process queries with existing

relational probabilistic database systems, such as Mystiq and Trio. If the lineage is a large DNF

formula, then any single disjunct is afBaient lineage. However, there is a tradé between

choosing sfficient lineage that is small and lineage that is a good approximation. In some cases,

134

it is possible to get both. For example, the lineage of a tuple may be less than 1% of the original

lineage, but still be a very precise approximation.

Example 6.2.6 We evaluateq from Ex. 6.2.5. In Figure 6.1, a ficient lineage for tupldg is
trusting Dr. X and Dr. Y’s RA, that iﬁtse = X1 A X2. Thus,q is satisfied exactly with this probability
which is~ 0.19. Recall from Ex. 6.2.5 that in the original datareduced to exactly the formula

X1 A X2, and so the dticient lineage approach computes the exact answer. In general, this is not the
case: if we had Chose~7q'36 = X1 A X3, i.e., our explanation was trusting Dr.X and the matching, then

we would have computed tha®(q) = 3 - £ = £ ~ 0.09< 0.19.

One can also consider the dual form offstient lineagenecessary lineagevhere each formula
A¢ is replaced with a Boolean formuﬁi\‘, such thati;, = 71{\‘ is a tautology. Similar properties
hold for necessary lineage: For exampi®, i$ an upper bound fog, which implies that using
necessary and flicient lineage in concert can provide the user with a more robust understanding of
guery answers. For the sake of brevity, we shall focus diiicgent lineage for the remainder of this

chapter.

Polynomial Lineage In contrast to both standard andfcient lineages that map each tuple to a
Boolean function, polynomial approximate lineage maps each tuplegal-walued functionThis
generalization allows us to leverage approximation techniques for real-valued functions, such as
Taylor and Fourier series.

Given a Boolean formuld; on Boolean variablexg,, ..., X, anarithmetizationis a real-valued
polynomial (1, . . . , Xa) in real variables such that (1) each variakléas degree 1 inf and (2)
for any xq,..., X, € {0,1}", we haveii(xi,..., Xn) = /ltA(xl,...,xn) [121, p. 177]. For example,
an arithmetization oky v xzis x(1 — (1 — y)(1 — 2)) and an arithmetization ofy v xzVv yzis
Xy + Xz+ yz— 2xyz Figure 6.1 illustrates an arithmetization of the lineage formuldgfowhich is
denotedif).

In general, the arithmetization of a lineage formula may be exponentially larger than the original
lineage formula. As a result, we do not use the arithmetization directly; instead, we approximate it.

For example, an approximate polynomial fy is /Nltz in Figure 6.1.

135

To define our formal semantics, we defiR®(A, W) generalizing Eq. 6.1 by allowing® to

assign a real-valued, as opposed to Boolean, weight.

Peaw E [T []a-m) (6.1p)

titeW titgW
The first diference in polynomial lineage is that it assigns real-valued weights to worlds, as

opposed to Boolean weights. A seconffalience is that for gficient and exact lineage approaches

once we know the assignment, this determines a unique Wéddch thati(A, W) is non-zero, i.e.,

Ais functional in its second argument. In contrast, in polynomial lineafés a relation:many

worldsmay receive non-zero weight from the same assignment.

Example 6.2.7 In Figure 6.1,Wy2s6 is a possible world sincg(A, Wizsg) = 1 for A = {X1, X3}.

In contrast,iP(A, Wizse) # 1. To see thisiP(A Wizse) simplifies toAf (A, Wizsg), since all other
lineage functions hav®, 1} values. Evaluatingf (A) gives23 + 21(0-)+ %(1- 3) = 15 ~ 0.58.
Further, approximate lineage functions may assign non-zero mass even to worlds which are not

possible. For exampM/y2s is not a possible world, but”(A, Wiz) = 1 — Ay, (A)(1 - %) # 0.

The second step in the standard construction is to define a probability meadeé 6.2.4);
In approximate lineage, we define a functj@h = which may not be a probability measusethat
assigns arbitrary real-valued weights to worlds. Heres p(a;) wherepis a probability assignment

as in Def. 6.2.4:

W<y i(AW)([pi)[[Ta- p,-)J (6.3)

ACA i;geA j:ajgA
Our approach is to search faf that is a good approximation, that is if for aoy we have
a(q) ~ u(q), i.e., the value computed using approximate lineage is close to the standard approach.
Similar to suficient lineage, we get a query semantic by syntactically replacimg® in Eq. 6.2.
However, the semantics for polynomial lineage is more general than the two previous semantics,

since an assignment is allowed maprianyworlds.

Example 6.2.8 Continuing Ex. 6.2.7, in the original data(Wi2s6) = %3. However,.® assigns

136

Wios6 a different weight:

fi”(Wi2sg) = 2P (Wi2s9) (i—:) (%) (1 - 3—’1) = 17_258

Recallg; from Ex. 6.2.5; its value ig(q;) ~ 0.19. Using Eqg. 6.3, we can calculate that the value of

g1 on the Level Il database using polynomial lineage in Figure 6uf(g:) ~ 0.17. In this case the

error is~ 0.02. If we had treated the tuples in the database independently, we would get the value
%1 * é—% ~ 0.06 — an error of (13, which is an order of magnitude larger error than an approach using

polynomial lineage. FurtheiP is smaller than the original Boolean formula.

6.2.3 Problem Statements and Results

In our approach, the original Level | database, that uses a complete lineage system, is lossily com-
pressed to create a Level Il database, that uses an approximate lineage system; we then perform
all querying and exploration on the Level Il database. To realize this goal, we need to solve three
technical problems (1) create a “good” Level Il database, (2) provide algorithms to explore the data

given the approximate lineage, and (3) process queries using the approximate lineage.

Internal Lineage Functions Although our algorithms apply to general lineage functions, many

of our theoretical results will consider an important special case of lineage functionsin&diethl

lineage functiong146]. In internal linage functions, there are some tables (base tables) such that
every tuple is annotated with a single atom, eedn Figure 6.1. The database also contains derived
tables (views), e.g¥ in Figure 6.1. The lineage for derived tables is derived using the definition of

V and tuples in base tables. For our purposes, the significance of internal lineage is that all lineage
is a special kind of Boolean formula,kamonotone DNFs (k-mDNF). A Boolean formula iska

MDNF if it is a disjunction of monomials each containing at mokterals and no negations. The

GO database is captured by an internal lineage function.

Proposition 6.2.9.1f t is a tuple in a view V such that, when unfolded, references k (not necessarily

distinct) base tables, then the lineage functipiis a k-mDNF.

Proof. The proof is the same as Proposition 2.3.5 in Chapter 2 with one minor twist: We have

137

restricted all atoms to occur only positively (since they are Boolean) and so the resulting lineage

formula, A is monotone in these atoms. O

One consequence of this is thais typically small. And so, as in data complexity [1], we con-
siderk a small constant. For example, an algorithm is consideffegdant if it is at most polynomial

in the size of the data, but possibly exponentigt.in

Creating Approximate Lineage

Informally, approximate lineage is good if (1) for each tupthe function?; is a close approxima-
tion of A, i.e., A; and1; are close on many assignments, and (2) the sizg if small for every
t. Here, we writel; (without a superscript) when a statement applies to either type of approximate

lineage.

Definition 6.2.10. Fix a set of atomsA. Given a probabilistic assignment p fo&, we say thatl,
is ane-approximation ofi; if

Epl(d - W) <&
whereE, denotes the expectation over assignments to atoms induced by the probability function p.

Given a probabilistic assignmept our goal is to ensure that the lineage function éeery
tuple in the database has arapproximation. Def. 6.2.10 is used in computational learning, e.g.,

[114,151], because anapproximation of a function disagrees on only a few inputs:

Example 6.2.11Let y; andy, be atoms such thai(y;) = 0.5 fori = 1,2. Consider the lineage
function for some, A¢(y1, y2) = Y1Vy2 and an approximate lineage functifb?(yl, yo) = itp(yl, Vo) =
y1. Here,4; and A5 (or A) differ on precisely one of the four assignments, ke 0 andy; = 1.
Since all assignments are equally weighté%ijs a 1/4-approximation forl. In general, if1; and
Ao are Boolean functions on atoms= {yi, ..., ¥} such thatp(y;) = 0.5 fori = 1,...,n, thena; is

ang approximation ofl, if 21 andA, differ on less than asfraction of assignments.

Ouir first problem is constructing lineage that has arbitrarily small error approximation and oc-

cupies a small amount of space.

138

Problem 3 (Constructing Lineage)Given a linage functiom; and an input parametes, can we

gfficiently construct ar-approximation fori; that is small?

For internal lineage functions, we show how to construct approximate liné¢agiemtly that is
provably small for both dticient lineage (Section 6.3.2) and polynomial lineage (Section 6.4.2),
under the technical assumption that the atoms have probabilities bounded away from 0 and 1, e.g.,
we do not allow probabilities of the forrm™t wheren is the size of the database. Informally,
provably small means that the lineage for a tugbes not depend on the size of the databdse
lineage of a tuple in the output of a viewmay, however, depend (exponentially) on the size of the
description ofV. Further, we experimentally verify thatffigient lineage fiers compression ratios
of up to 60 : 1 on real datasets and polynomial lineaffiers up to 171 : 1 even with stringent error

requirements, e.gs, = 1073

Understanding Lineage

Recall our scientist from the introduction, she is skeptical of an answer the database produces, e.g.,
ts in Figure 6.1, and wants to understand why the system believe; tissn answer to her query.

We informally discuss the primitive operations our system provides to help her undetstamdi

then define the corresponding formal problems that we need to solve to apply approximate lineage

to this problem.

Sufficient Explanations She may want to know the possil@eplanationdor a tuple, i.e.,"why
was tuple ¢ returned?”. Since there are many possible explanations (or derivations), our

technical goal is to find the best orost likely(top) explanations.

Finding influential atoms Our scientist may want to know which atoms contributed to returning
the surprising tuplets. In a complicated query, the query will depend on many atoms, but
some atoms are moiafluential in producing the query result than others. Informally, an
atomyx is influential if it there are many assignments such that it is the “deciding vote”, i.e.,
changing the assignment ®f changes whethdg is returned. In contrast, an atom that does
not efect the answer to the query has no influence. This motivates our technical goal, which

is to return the most influential atoms.

139

The technical challenge in both situation is to perform these actions using approximate lineage

on the Level Il database, without retrieving the much larger Level | database.

Sufficient Explanations An explanationfor a lineage functiom; is a minimal conjunction of
atomsr; such that for any assignmeatto the atoms, we havga(a) = A(a). The probability

of an explanationt, is u[7]. A solution would be straightforward on the original, Level | database:
Execute the query, produce a lineage formula, and simply select the most highly probable monomials
in the answer. Our goal is morefiiicult: we need to retrieve thop-k explanations, ranked by

probability, from the lossily-compressed, Level Il data.

Problem 4. Given a tuple t, calculate the top-k explanations, ranked by their probability using only

the Level Il database.

This problem is straightforward when usingitient lineage, but is more challenging for poly-
nomial lineage. The first reason is that polynomials seem to throw away information about mono-
mials. For examplélti in Figure 6.1 does not mention the termsaofy monomial. Further compli-
cating matters is that even computing the expectatioiﬁcmay be intractable, and so we have to
settle for approximations which introduce error. As a result, we must resort to statistical techniques
to guess if a formulay is a suficient explanation. In spite of these problems, we are able to use
polynomial lineage to retrieve flicient explanations with a precision of up to 70% kot 10 with

error in the lineages = 1072,

Finding Influential Atoms The technical question is: Given a formula, egj,, which atom is

most influential in computingy,’s value? We define thiafluenceof x; on ¢, denoted Inf, (1), as:
def .
Infy (&) S u[A(A) # (A (i})] (6.4)

whered denotes the symmetricféerence. This definition, or a closely related one, has appeared has
appeared in wide variety of work, e.g., underling causality in the Al literature [86, 131], influential

variables in the learning literature [114], and critical tuples in the database literature [119, 136].

Example 6.2.12What influence does have on tuplés presence, i.e., what is the value of,lj{fi,)?

Informally, x, can only change the value af if x; is true andxz is false. This happens with prob-

140

ability 3(1-) = Z. As we will see later, it is no coincidence this is the fiiméent ofx, in A7 : our

polynomial representation uses the influence to define iticimats.

The formal problem is to find the tdpmost influential variables, i.e., the variables with the

highest influences:

Problem 5. Given a tuple t, giciently calculate the k most influential variablesinusing only the

level Il database.

This problem is challenging because the Level Il database is a lossily-compressed version of
the database and so some information needed to exactly answer Prob. 5 is not present. The key
observation for polynomial lineage is that the fiments we retain are the cieients of influential
variables; this allows us to compute the influential variabfsiently in many cases. We show that
we can achieve an almost-perfect average precision for the top 10. fRciesu lineage, we are

able to give an approach with bounded error to recover the influentifldeats.

Query Processing with Approximate Lineage

Our goal is to éiciently answer queries directly on the Level Il database, using sampling ap-

proaches:

Problem 6. Given an approximate lineage functidrand a query q, giciently evaluatei(q) with

low-error.

Processing dticient lineage is straightforward using existing complete techniques; However,
we are able to prove that the error will be small. We verify experimentally that we can answer
queries with low-error 1%, 2 orders of magnitude more quickly than a complete approach. For
polynomial lineage, we are able to directly adapt techniques form the literature, such agBlum

al. [19].

6.2.4 Discussion

The acquisition of atoms and trust policies is an interesting future research direction. Since our focus

is on large databases, it is impractical to require users to label each atom manual. One approach is

141

to define a language for specifying trust policies. Such a language could do double duty, by also
specifying correlations between atoms. We consider the design of a policy language to be important
future work. In this chapter, we assume that the atoms are given, the trust policies are explicitly

specified, and all atoms are independent.
6.3 Sufficient Lineage

We define our proposal for flicient lineage that replaces a complicated lineage formylay a

simpler (and smaller) formulﬁts. We construcﬁtS using several dticient explanations fod;.

6.3.1 Syficient Lineage Proposal

Given an internal lineage function for a tupleéhat is, a monotonk-DNF formulaAy, our goal is to
efficiently find a sfficient lineagel? that is small and is as-approximation of; (Def. 6.2.10). This
differs fromL-minimality [15] that looks for a formula that is equivalent, but smaller. In contrast,
we look for a formula that may only approximate the original formula. More formally, the size of
a suficient lineagel? is the number of monomials it contains, and so is small if it contains few
monomials. The definition of-approximation (Def. 6.2.10) simplifies for ficient lineage and

gives us intuition how to find good ficient lineage.

Proposition 6.3.1. Fix a Boolean formulal; and IetfltS be a sificient explanation forl;, that is,
for any assignment A, we haﬁé(A) = A(A). In this situation, the error function simplifies to

E[A] - E[1]]; formally, the following equation holdB[(; — %)?] = E[A;] — E[1]]

Proof. The formula ; — A7)? is non-zero only ifl; # A7, which means that; = 1 andi$ = 0,
sinceAS(A) = A(A) for any A. Because bothl; and AP are Boolean, 4 — A%)? € {0, 1} and

simplifies to; — 71?. We use linearity ok to conclude. O

Proposition 6.3.1 tells us that to getcient lineage with the low error, it is enough to look for

sufficient formulad; with high probability.

Scope of our Analysis In this section, our theoretical analysis considers only internal lineage

functions with constant bounded probability distributions; a distributi@orstant boundeidthere

142

is a constang such that for any atora, p(a) > 0 implies thatp(a) > 3. To justify this, recall that

in GO, the probabilities are computed based on the type of evidence: For example, a citation in
PubMed is assigned® while an automatically inferred matching is assigned Here 8 = 0.1

and is independent of the size of the data. In the following discusgiwiil] always stand for this
bound andk will always refer to the maximum number of literals in any monomial of the lineage
formula. Further, we shall only considerfBaient lineage which are subformulaef This choice
guarantees that the resulting formula ifigient lineage and is also simple enough for us to analyze

theoretically.

6.3.2 Constructing Sficient Lineage

The main result of this section is an algorithm (Alg. 6.3.2.1) that constructs gdlcient lineage,
solving Prob. 3. Given an error term, and a formulat;, Alg. 6.3.2.1 diciently produces an
approximate sflicient lineage formulai;S with error less thag. Further, Theorem 6.3.3 shows that
the size of the formula produced by Alg. 6.3.2.1 depends only, &rands — not on the number of
variables or number of terms i; implying that the formula is theoretically small.

Before diving into the algorithm, we consider a simple, alternative approach to constructing a

suficient lineage formula to build intuition on the technical.

Example 6.3.2 Given a monoton&-DNF formula, suppose that to construct afigcient lineage
formula, we simply select the highest probability monomials. Consider then the following 2-DNF

formula, callg; fort=1,...,n,....

Lete = 0.1 (for concreteness), then we set the probabilities as follpfwg] = 1[z;] = 0.5 for
i=0,...,tandj=1,...,t. Then,sey; =05+&efori=1,...,t.

In ¢ the highest probability monomiald; will be H = {(Xo A y1),... (X A Vt)}. Now, each of
these monomials contains the same variakjeand squ[H] < Pr[xg] = 0.5. On the other hand,
the probability ofg; approaches 1, since the other monomials are all independent. Thus, the error

of usingH approaches.B8 and in particular cannot be made smaller than a constant. Hence, this

143

approach would not be a solution for construction fdfisient lineage.

In this example, we should have selected the large independent block — its probability tends to
1. Indeed, this is the general rule: Pick as many independent as you can. What we show next is that
when there isn't a dficiently large independent set then there must be a small set of bottlenecks

like X, i.e., a small cover, and we can use this cover to recurse.

Algorithm 6.3.2.1 SUf(4;, €) constructs stlicient lineage
Input: A monotonek+1-DNF formulad; and an erroe > 0
Output: ;lts, a small sificient lineages-approximation.
1: Find a matchingM, greedily. (* A subset of monomials *)
2 if p[AP] — u[M] < e then (* If A is a 1-mDNF always true *)
3 LetM=mV---vms.ti<jimpliesu[m] > u[m]

4: return M def my,...,my, rismins.tufid] — u[M] < e.

5: else

6: Select a small covel = {Xq,..., X} C var(M)

7: Arbitrarily assign each monomial toxa € C that covers it

8: foreachx € Cdo

9 /lis «— SUuff(A4i[x — 1],&/c). (* Ai[x% — 1] setsx; = 1 and recurses, and ikeDNF *)

10: return Vg o 4>,

.....

Algorithm Description Alg. 6.3.2.1 is a recursive algorithm, whose input ig-enDNF 2; and

an errore > 0, it returnsflts, a suficient e-approximation. For simplicity, we assume that we can
compute the expectation of monotone formula exactly. In practice, we estimate this quantity using
sampling, e.g., using Luby-Karp [101]. The algorithm has two cases: In case (l) on lines 2-4,
there is a large matching, that is, a set of monomidlsuch that distinct monomials il do not
contain common variables. For example, in the formiaA(y1) vV (X1 A Y2) V (X2 A ¥2) @ matching

is (X1 Ay1) V (X2 Vy2). In Case (ll) lines 6-10, there is a small cover, that is a set of variables
C = {X1,..., X} such that every monomial in; contains some element @. For example, in

(X1 Ay1) V(X1 AY2) V (X1 AYa), the singletorix; } is a cover. The relationship between the two cases

is that if we find a maximal matching smaller thamthen there is a cover of size smaller tham

(all variables inM form a cover).

Case I: (lines 2-4) The algorithm greedily selects a maximal matchiig= {m,...,m}. If Misa

144

good approximation, i.eg[/lts] —u[Vmen M < & then we trimM to be as small as possible
so that it is still a good approximation. Observe tRaY/ .\ M| can be computedficiently
since the monomials iM do not share variables, and so are independent. Further, for any

sizel the subset oM of sizel with the highest probability is exactly thénighest monomials.

Case ll: (lines 6-10) Let var(M) be the set of all variables in the maximal matching we found.
SinceM is a maximal matchingyar(M) forms a coverxy, ..., X.. We then arbitrarily assign
each monomiam to one element that covers. For eachx;, let ; be the set of monomials
associated to an element of the covegr, The algorithm recursively evaluates on eagh
with smaller errorg/c, and returns their disjunction. We choase so that our result is an

approximate lineage.

Theorem 6.3.3(Solution to Prob. 3)For anye > 0, Alg. 6.3.2.1 computes smalsyficient lineage.
Formally, the output of the algorithmi; satisfies two properties: (]:)ts is an e-approximation of
A and (2) the number of monomials i is less than k-0 logh(2) + O(Iogk‘1(§)), which is

independent of the size &f

Proof. Claim (1) follows from the preceding algorithm description. To prove claim (2), we inspect
the algorithm. In Case I, the maximum size of a matching is upper bounded"lh@g(g) since

a matching of sizen in a k-dnf has probability at least 4 (1 — gX)™; if this value is greater than

1 - &, we can trim terms; combining this inequality and that X < e™* for x > 0, completes
Case I. In Case Il the size of the cowesatisfiesc < k3*log(2). If we let S(k + 1,) denote the
size of our formula at depth + 1 with parametek, then it satisfies the recurren&k + 1,¢) =

(k+ 1)~ ®Dlog(2) - S(k, &/c), which grows no faster than the claimed formula. O

The recurrence of our algorithm is linear, since no monomial is replicated on each recursion and
the depth of the recursion at mdstthe recurrence has cad9(k|1;|) steps. But, we must at each
stage compute the probability of a DNF formuldPahard problem. For this, we use a randomized
solution (either Luby-Karp [101] or a Cherfiddound on naive random sampling). Randomization
introduces the possibility of failure, which we cope by in the standard way: a slight increase in

running time.

145

We observe that the running time of the randomized solution is a function of two things (1) the
error, which we can take to be a small constant depending and (2) the probability of failure,
6. We sets so small that the algorithm succeeds with high probability.dle¢ the number of calls
to the randomized algorithm (steps) during execution, then the probability that all of the succeed is
- %)S. Hence, we need to takke< s™*. To see thefect on the running time: Létbe the running
time of iteration andm be the number of terms in the approximation on calien,t = O(mlog %).

Now, we observe thgf; m; = k|| as above, and so the running timeijst; = k|| log||.

Completeness Our goal is to construct lineage that is small as possible; one may wonder if we
can dficiently produce substantially smaller lineage with fiedent, but still &icient, algorithm.
We give evidence that no such algorithm exists by showing that the key step in Alg. 6.3.2.1 is
intractable NP-hard) even if we restrict to internal lineage functions with 3 subgoals, ttkati8.

This justifies our use of a greedy heuristic above.

Proposition 6.3.4. Given a k-mDNF formulal, finding a subformula?ltS with d monomials such

that?lts has largest probability among all subformula.gfis NP-Hard, even if k= 3.

Proof. We reduce from the problem of finding &runiform k-regular matching in a 3-hypergraph,
which isNP-hard, see [88]. GiverM%, V2, V3, E) such thatE ¢ V! x V2 x V2, let eachv € V'
have probability%. We observe that if there is a matching of stkethen there is a function;
with probability 1— (1 — X9, and every other sizd formula that is not a matching has strictly
smaller probability. Since we can compute the probability of a matcHiingjently, this completes

the reduction. O

The reduction is from of finding a matching inkauniform k-regular hypergraph. The greedy
algorithm is essentially an optimal approximation for this hypergraph matching [88]. Since our
problem appears to be mordfutult, this suggests — but does not prove — that our greedy algorithm

may be close to optimal.

6.3.3 Understanding $ficient Lineage

Both Prob. 4, finding dficient explanations, and Prob. 5, finding influential variables deal with

understanding the lineage functions: Our proposal f@icgeant lineage makes Prob. 4 straightfor-

146

ward: SinceltS is a list of suficient explanations, we simply return the highest ranked explanations
contained irﬁts. As aresult, we focus on computing the influence of a variable given offigisunt
lineage. The main result is that we can compute influence with only a small error usiriest
lineage. We do not discuss finding the topfkaently; for which we can use prior art, e.g., [137].
We restate the definition of influence in a computationally friendly form (Proposition 6.3.5) and then

prove bounds on the error of our approach.

Proposition 6.3.5. Let % be an atom with probability () and criz = p(%)(L - p(x)). If 1;isa

monotone lineage formula:

Infy (A0) = oy 2ELA(x — p(x;))]

Proof. We first arithmetizel; and then factor the resulting polynomial with respecttdhat isA; =
fixi+ fo where neithef; nor fo containx;. We then observe that InfAt) = E[A(AU{X;})— A (A—{x})]
for monotonet;. Using the factorization above and linearity, we have that () = E[fi]. On the
other handE[A(X — p(%))] = E[fixi (% — p(%)) + (X — p(x)) fo], sincef; and fg do not contairx;, this
reduces ta&[filE[X (X — p(x))] + 0. Observing thaE[x (X — p(Xi))] = 0'i2 proves the claim. O

The use of Proposition 6.3.5 is that to show that we can compute influence fflboest lineage

with small error:

Proposition 6.3.6. Let 71? be a syficiente-approximation of1;, then for any xe A s.t. gx) €

(0, 1), we have the following pair of inequalities
~ & ~ &
Infy (A7) — —5P(x) < Infi () < Infy (A7) + —5 (1 p(x))

Proof. E[4(x — p(%))] = E[(A — AZ)(% — p(x)) + A5 (x — p(x))]. The first term is lower bounded
by —ep(x) and upper bounded (1 — p(x)). Multiplying by O'i_z, completes the bound, since the

second term is Inf(17). O

This proposition basically says that we can calculate the influencenfoertainatoms. With

nave random sampling, we can estimate the influence ficéent lineage to essentially any desired

147

precision. The number of relevant variables iffisient lineage is small, so simply evaluating the

influence of each variable and sorting is d@fictent solution to solve Prob. 5.

6.3.4 Query Processing

Existing systems such as Mystiq or Trio can directly procefiscgnt lineage since it is syntacti-
cally identical to standard (complete) lineage. However, usifiicgnt lineage in place of complete
lineage introduces errors during query processing. In this section, we show that the error introduced
by query processing is at most a constant factor worse than the error in a siffglesulineage
formula.

Processing a queryon a database with lineage boils down to building a lineage expression for
g by combining the lineage functions of individual tuples, iietensional evaluatiof68, 137]. For
example, a join producing a tupiérom t; andt, produces lineage fdr Ay = A, A At,. We first prove
that the error in processing a queyis upper bounded by the number of lineage functions combined
by q (Proposition 6.3.7). N&ely applied, this observation would show that the error grows with the
size of the data. However, we observe that the lineage function for a conjunctive query depends on
at most constantly many variables; from these two observations it follows that the query processing

error is only a constant factor worse.

Proposition 6.3.7.1f A5 and A3 are syficiente approximations forl; and A, then, bothi$ A A5

anda$ v 25 are 2 syficient approximations.

Proof. Both formulae are clearly siicient. We writd|A142 — 325 || = [[41(12 — 25) + A5 (41 - 23)||,

each term is less thaf) completing the bound. O

This proposition is essentially an application of a union bound [121]. From this proposition and
the fact that a query that produces tuples and hak subgoals hakn logical operations, we can
conclude that if all lineage functions asg approximations, thep(q) — /i°(q) < eskn. This bound
depends on the size of the data. We want to avoid this, because it implies that to answer queries as
the data grows, we would need to continually refine the lineage. The following proposition shows
that sometimes there is a choice offmient lineage that can do much better job; this is essentially

the same idea as in Section 6.3.2:

148

Lemma 6.3.8. Fix a query q with k subgoals and > 0, there exists a database with/gcient

approximate lineage functiohsuch that the the lineage for each tupldtjs of constant size and

u(@) - 5@ <e

Proof. As we have observed, we can evaluate a query by producing an internal lineage function.
This means that we can apply Theorem 6.3.3 to show that foé ang, there exists a sub-formula
 of size f(k, §) such thaj(q) — E[#] < 6. We must only ensure that the atoms in these monomials

are present. O

This shows that sficient lineage can bdfectively utilized for query processing, solving Prob. 6.

It is an interesting open question to find such lineage that works for many queries simultaneously.

Example 6.3.9 Our current lineage approach uses only local knowledge, but we illustrate why
some global knowledge may be required to construct lineage that is good for even simple queries.
Consider a database withtuples and a single relatioR = {ti,...,t,} and the lineage of tuple

A, = Xo V X. A sufficient lineage database could J?b@ = Xo for eachi. Notice, that the query

g :— R(X) on the stficient lineage database is thenwhile the formulas on the level | database is

Xo V X1---V X A potentially much larger probability.
6.4 Polynomial Lineage

In this section, we propose an instantiation of polynomial lineage based on sparse low-total-degree
polynomial series. We focus on the problems of constructing lineage and understanding lineage,
since there are existing approaches, [19], that solve the problem of sampling from lineage, which is

suficient to solve the query evaluation problem (Problem 6).

6.4.1 Sparse Fourier Series

Our goal is to write a Boolean function as a sum of smaller terms; this decomposition is similar to
Taylor and Fourier series decompositions in basic calculus. We recall the basics of Fourier Series

on the Boolean Hypercube

1For more details, see [114,125]

149

In our discussion, we fix a set of independent random variagles., X, €.9., the atoms, where
pi = E[%] (the expectation) and-i2 = pi(1 - p) (the variance). LeB be the vector space of real-
valued Boolean functions amvariables; a vector in this space is a functibn{0, 1}" — R. Rather
than the standard basis & we define the Fourier basis for functions. To do so we eduigith
an inner product that is defined via expectation, thatisg,1,) def E[A1 - A2]. This inner product
induces a normjj¢/|? def (A1,). This norm captures our error function (see Def. 6.2.10) since
E[(A - D) = || - /NltPHz. We can now define an orthonormal basis for the vector space using the

set ofcharacters

Definition 6.4.1. For eachz € {0, 1}", thecharacteassociated witlzis a function from0, 1}" - R

denotedpz and defined as:

9z l_[(x - p)o;

iiz=1
Since the set of all characters is an orthonormal basis, we can write any func#oasia sum

of the characters. The cfiigient of a character is given by projection on to that character, as we

define below.

Definition 6.4.2. The Fourier transformof a function; is denoteds,, and is a function from
{0, 1}" — R defined as:
def
F(2) = (4 02) = E[4o7]

TheFourier seriesf f is defined a§’ 7. 10 F1,(2¢ z(A).

The Fourier series capturds that is, for any assignmew, f(A) = > z010 F1,(2¢9z(A). An
important coéficient is#,,(0), which is the probability (expectation) af. We give an example of

to illustrate the computation of Fourier series:

Example 6.4.3Let A = X1 V- -+ V Xy, that is, the logical or of independemtandom variables. The

..........

150

p(x)) and forz # O:

ﬂt(z) =

|
m
=
N
—
H
|
—
'i
>
3.
[E
|
X
p—
—

.....

E [¢Z - (Hi:z;:l ¢e, (l - X!)) (Hj:zj:O(l - Xj))]
(Mi:z=1 01) (ITjiz=0(1 = P(X))))

where fori = 1,...,n, o2 = p(x)(1 - p(x)) (the variance ok;).

Our goal is to get a small, but good approximation; we make this goal precise using sparse

Fourier series:

Definition 6.4.4. An ssparse serieis a Fourier series with at most s non-zero gmgents. We say
A has an(s,) approximation if there exists an s-sparse approximafiﬁrsuch that||/1t - ;ltPHZ <e.

A bests-sparse series for a functionis the s-sparse series that minimizes

Our approach for polynomial lineage is to approximate the lineage for atupleby a sparse
Fourier seriesif, ideally an §, £)-sparse approximation for smalande. Additionally, we wanﬁf

to have low total degree (constant) so we can describe ifficieats succinctly (in constant space).

Selecting an approximation The standard approach to approximation using series is to keep only

the largest caicients, which is optimal in this case:

Proposition 6.4.5. For any Boolean functiol; and any s> 0, a best s-spare approximation fay

is the s largest cggcients in absolute value, ties broken arbitrarily.

Proof. Let g be anyt term approximation an&g be its non-zero cdicients then we can write:

If =gl = s, (Fa(S) — F(S))? + Y5, F4.(S)?. Notice thatS € Sq implies thatF,(S) = F4,(S),

else we could get a strictly better approximation — thus, the best approximation consists of a subset
of codficients in the Fourier expansion. If it does not contain the largest in magnitude, we can
switch a term from the right to the left sum, and get a strictly better approximation. Thus, all best

approximations are of this form. |

151

6.4.2 Constructing Lineage

We construct polynomial lineage by searching for the largesffictents using the KM algorithm

[107]. The KM algorithm is complete in the sense that if there issan)(sparse approximation it

finds an only slightly worseg & + £2/s) approximation. The key technical insight, is tlkaDNFs

do have sparse (and low-total-degree) Fourier series, [114, 151]. This implies we only need to keep

around a relatively few cdicients to get a good approximation. More precisely,

Theorem 6.4.6([107,114,151]) Given a set of atom# = {3, ..., X,} and a probabilistic assign-

ment p, leB = mini—1__a{pP(X), 1 — p(x)} and A; be a (not necessarily monotone) k-DNF function

over A, then there exists afs, €)-approximationl? where s< ko 109G) and the total degree of
any term infltp is bounded byoﬁ‘lklog(é) where @ is a constant. Further, we can constru}f’[in

randomized polynomial time.

The KM algorithm is an elegant recursive search algorithm. However, a key practical detalil
is at each step it requires that we use a two-level estimator, that is, the algorithm requires that at
each step, we estimate a quantityia sampling; to compute each sampleypfwe must, in turn,
estimate a second quantiy via sampling. This can be very slow in practice. This motivates us
to purpose a cheaper heuristic: For each monomjatle estimate the cdéiécient corresponding to
each subset of variables of For example, ifn = x; A Xp, then we estimat6, e;, & ande,. This
heuristic takes time*21|, but can be orders of magnitude mofaent in practice, as we show in

our evaluation section (Section 6.5.2). This is linear with respect to data complexity.

6.4.3 Understanding Approximate Lineage

Our goal in this section is to find ficient explanations and influential variables, solving Problem 4

and Problem 5, respectively.

Sufficient Explanations Let 1 be a lineage formula such thaf 4] € (0, 1) andAf be a polyno-
mial approximation oft;. Given a monomiaim, our goal is to test imis a suficient explanation
for A;. The key idea is thahis a suficient explanation if and only ifi[1; A m] = u[m], since this

implies the implication holds for every assignment.

152

If Z{’ is exactly the Fourier series fdg, then we can compute each value in tidgX), since

E[fm = > ﬂ(Z)[[o-}[[] m] (6.5)

Zz=1= iem iem:Z=1 jem:Zj=0

However, oftent; is complicated, which forces us to use sampling to approximate théaieets

of AF. Sampling introduces noise in the ¢heients. To tolerate noise, we relax our test:

Definition 6.4.7. Lett > 0, the tolerance, and > 0, the confidence, then we say that a monomial

m is a(r, 6) suficient explanatiorfor ;ltp if:

unTIELA] - m] —E[m]| < 7] > 1-6 (6.6)
(1)

whereN denotes the distribution of the sampling noise.

The intuition is that we want thaE[?lfm] and E[m] to be close with high probability. For
independent random sampling, tNeis a set of normally distributed random variables, one for each
codficient. Substituting Eq. 6.5 into Eq. 6.6 shows thatié a sum of # normal variables, which
is again normal; we use this fact to estimate the probability thas(ess tham.

Our heuristic is straightforward, given a tolerancand a confidencé: For each monomiah,
compute the probability in Eq. 6.6, if it is withifithen declaren a suficient explanation. Finally,

rank each sfiicient explanation by the probability of that monomial.

Influential tuples The key observation is that the influencexpis determined by its cdicient

in the expansion [114, 151]:

Proposition 6.4.8. Let A; be an internal lineage function; &n atom andy-i2 = p(%)(1- p(x)) then
Infy () = o5 Fa (&)

This gives us a simple algorithm for finding influential tuples using polynomial lineage, simply
scale eaclr),(e), sort them and return them. Further, the term correspondiagnahe transform

iSs Fa,. (&) = Infy () (X — p(Xi)), as was shown in Figure 6.1.

153

[Query [Tables [#Evidence| # Tuples | Avg. Lin. Size [Size |

V1 8 2 1 234 12k
V2 6 2 1119 1211 141M
V3 6 1 295K 3.36 104M
V4 7 1 28M 7.68 31G

Figure 6.2: Query statistics for the GO DB [37].

6.5 Experiments

In this section, we answer three main questions about our approach: (1) In Section 6.5.2, do our
lineage approaches compress the data? (2) In Section 6.5.3, to what extent can we recover ex-
planations from the compressed data? (3) In Section 6.5.4, does the compressed data provide a
performance improvement while returning high quality answers? To answer these questions, we ex-
perimented with the Gene Ontology database [37] (GO) and similarity scores from a movie matching

database [137,173].

6.5.1 Experimental Details

Primary Dataset The primary dataset is GO, that we described in the introduction. We assigned
probability scores to evidence tuples based on the type of evidence. For example, we assigned a
high reliability score (®) to a statement in a PubMed article, while we assigned a low scdneg0

an automated similarity match. Although many atoms are assigned the same score, they are treated
as independent events. Additionally, to test the performance of our algorithms, we generated several
probability values that were obtained from more highly skewed distributions, that are discussed in

the relevant sections.

Primary Views We present four views which are taken from the examples and view definitions
that accompany the GO database [37]. The first wiévasks for all evidence associated with a fixed

pair of gene productsv2 looks for all terms associated with a fixed gene produatis a view of

all annotations associated with the Drosophila fly (via FlyBase [6&])s a large view of all gene
products and associated terms. Figure 6.2 summarizes the relevant parameters for each view: (1)

the number of tables in the view definition (2) the number of sources evidence, that is, how many

154

1 1
0.001 0.01 0.1 1 0 100 200 300 400 500 600
Error Rank

(@) (b)

Figure 6.3: (a) Compression ratio as error increases in log scale for gReip) Distribution of
size of DNF forv2 with and without compressiorx-axis is sorted by size, e.,= 1 is the largest
DNF (823K).

times it joins with the evidence table (3) the number of tuples returned (4) the average of the lineage

sizes for each tuple, and (5) the storage size of the result.

Secondary Dataset To verify that our results apply more generally than the GO database, we
examined a database that (fuzzily) integrated movie reviews from Amazon [174] that have been
integrated with IMDB (the Internet Movie Database) [173]. This data has two sources of impreci-
sion: matches of titles between IMDB and Amazon, ratings assigned to each movie by automatic

sentiment analysis, that is, a classifier.

Experimental Setup All experiments were run on a Fedora core Linux machine (2.6.23-14 SMP)
with Dual Quad Core 2.66GHz 16Gb of RAM. Our prototype implementation of the compression
algorithms was written in approximately 2000 lines of Caml. Query performance was done using
a modified G-+/caml version of the MstiQ engine [21] backed by databases running SQL Server

2005. The implementation was not heavily optimized.

6.5.2 Compression

We verify that our compression algorithms produce small approximate lineage, even for stringent
error requirements. We measured the compression ratios and compression times achieved by our

approaches for both datasets at varying errors.

155

Suf Poly
Q PT PT

V1 || 0.23s | 0.50s
, v2 || 35h | 3.5h
of \ v3 | 10.3m| 24.3m
o @ & o« o | V4| 50.3h| 67.4h

(@) (b)

Figure 6.4: (a) The compression ratio versus the mean of the distributidn f@uficient is more
stable, though the polynomial lineage can provide better approximation ratios. (b) The compression
time for each view, the processing time (PT).

ession Ratio (y:1)

Compr

Compression Ratios Figure 6.3(a) shows the compression ratio versus error tridechieved
by polynomial and sficient lineage fov2. Specifically, for a fixed error on the-axis they axis
shows the compression ratio of the lineage (in log scale). As the graph illustrates, in the best case,
V2, the compression ratio for the polynomial lineage is very large. Specifically,even for extremely
small error rates, 18, the compressed ratio 171 : 1 for polynomial lineage versus 27 : 1 times
smaller for stficient lineage. In contrast3 is our worst case. The absolute maximum our methods
can achieve is a ratio of 36 : 1, which is the ratio we would get by keeping a single monomial for
each tuple. At an errar = 0.01, polynomial lineage achieves 81 1 ratio, while stficient lineage
betters thiswith a 2 : 1 ratio.

The abundance of large lineage formulavih contain redundant information, which allows
our algorithms to compress thenflieiently. Figure 6.3(b) shows the distribution of the size of
the original lineage formulae and below it the size after compression. There are some very large
sources in the real data; the largest one contains approximately 823k monomials. Since large DNFs
have probabilities very close to one, polynomial lineage can achieyeapproximation can use the

constant 1. In contrast, ficient lineage cannot do this.

Effect of Skew We investigate theffect of skew, by altering the probabilistic assignment, that
is, the probability we assigned to each atom. Specifically, we assigned an atom a score drawn
from a skewed probability distribution. We then compresgedavith the skewed probabilitiesi1

contains only a single tuple with moderate sized lineage (234 monomials). Figure 6.4(a) shows the

156

£ Suf | Poly
0.1 40 | 45
005 | 27 | 26
001 | 14 | 15
0.001| 1.07| 13

(@)

Number of Monomials [Logscale]

Figure 6.5: (a) Compression Ratiﬁ%g (b) The distribution of lineage size in IMDB view,
by rank.

compression ratio as we vary the skew from small meafg, @o larger means,®. More formally,
the probability we assign to an atom is drawn from a Beta distribution gvithl anda taking the
value on thex axis. Sificient lineage provides lower compression ratios for extreme means, that is

close to 002 and 0b, but is more consistent in the less extreme cases.

Compression Time Figure 6.4(b) shows the processing time for each view we consider. For views
V2, V3 andVv4, we used 4 dual-core CPUs and 8 processes simultaneously. The actual end-to-end
running times are about a factor of 8 faster, €1g.took less than 30m to compress. It is interesting

to to note that the processor time & is much larger than the comparably siZ8] the reason is

that the complexity of our algorithm grows non-linearly with the largest DNF size. Specifically, the
increase is due to the cost of sampling.

The compression times for polynomial lineage anflisient lineage are close; this is only true
because we are using the heuristic of Section 6.4.2. The generic algorithm is orders of magnitude
slower: It could not compresgl in an hour, compared to only8s using the heuristic approach.

Our implementation of the generic search algorithm could be improved, but it would require orders

of magnitude improvement to compete with theaency the simple heuristic.

IMDB and Amazon dataset Using the IMDB movie data, we compressed a view of highly rated
movies. Figure 6.5(a) shows the compression ratio for versus error rate. Even for stringent error
requirements, our approach is able to obtain good compression ratios for both instantiations of

approximate lineage. Figure 6.5(b) shows the distribution of the lineage size, sorted by rank, and its

157

suficient compression size. Compared to Figure 6.3, there are relatively few large lineage formulae,
which means there is less much opportunity for compression. On a single CPU, the time taken to
compress the data was always between 180 and 210s. This confirms that our results our more general

than a single dataset.

6.5.3 Explanations

o

[N I -]

inTop K

inTop K

Mean ——
-1 Std. Dev e
+1 Std. Dev

0 20 40 60 80 100
Number of Coeffs (Size) Epsilon (Error)

@) (b)

Number of Explanations
Number of Derivati
co N & o ®

Figure 6.6: (a) Shows the precision of the fopxplanations versus the number of terms in the
polynomial expansion (c) The number (precision) of influential variables in the top 10 returned
using stificient lineage that are in the top 10 of the uncompressed function.

We assess how well approximate lineage can solve the explanation tasks in practice, that is
finding suficient explanations (Prob. 4) and finding influential variables (Prob. 5). Specifically, we
answer two questions: (1) How well canfBcient lineage compute influential variables? (2) How
well can polynomial lineage generateistient explanations?

To answer question (1), we created 10 randomly generated probabilistic assignment for the
atoms inv1; we ensured that the resulting lineage formula had non-trivial reliability, i.e., InG®).
We then tested precision: Out of the top 10 influential variables, how many were returned in the top
10 using sfiicient lineage (Section 6.3.3)? Figure 6.6(b) shows that for high error rate€).1,
we still are able to recover 6 of the top 10 influential variables and for lower error eate$,01,
we do even better: the average number of recovered top 10 valués @ precision trails{bfor
very small error rates due to small swaps in rankings near the bottom of the top 10, e.g., all top 5
are within the top 10.

To answer question (2), we used the same randomly generated probabilistic assignments for the

atoms inV1 as in the answer to question (1). Figure 6.6(a) shows the average number of terms in

158

the topk explanations returned by the method of Section 6.4.3 that are acffialent explanations
versus the number of terms retained by the formula. We have an average recall of approximately
0.7 (with low standard deviation), while keeping only a few fimgents. Here, we are using the
heuristic construction of polynomial lineage. Thus, this experiment should be viewed as a lower
bound on the quality of using polynomial lineage for providing explanations.

These two experiments confirm that botHfgient and polynomial lineage are able to provide

high quality explanations of the data directly on the compressed data.

6.5.4 Query Performance

100000 300

250

10000
200 [

1000 T 150

Time (s)
Time (s)

100
100 ¢
Uncompressed ——— 50 | Uncompressed ——
Suff e SUFF e
Pol POLY

10 Y

0.001 0.01 0.1 0.001 0.01 0.1

Error Error

(@) (b)

Figure 6.7: Query performance on (&). (b) IMDB data.

Figure 6.7 shows thefiict of compression on execution timewaf, The query asks to compute
each tuple in the view. Thg-axis is in log scale, it takes just under 20 hours to run this query on
the uncompressed data. On data compressed wfiibisut lineage at = 0.001, we get an order of
magnitude improvement; the query takes approximately 35m to execute. Using the data compressed
with polynomial lineage, we get an additional order of magnitude; the query now rursnm 1

Figure 6.7(b) shows thefect of compression on query performance for the IMDB movie dataset
where the compression was not as dramatic. Again our query was to compute the lineage for each
tuple in the view. The time taking is to perform Monte Carlo sampling on the now much smaller
query. As expected, the data with higher error, and so smaller, allows up to a five time performance

gain. In this example both running times scale approximately with the size of compression.

159

Chapter 7
RELATED WORK

We begin by discussing work that deals with managing imprecision in a broad sense, and then

we discuss work whose technical details or approach are related.
7.1 Broadly Related Work

We begin with the most closely related work.

Probabilistic Relational Databases

In recent years, the database community has seen a flurry of work probabilistic databases. Manag-
ing probabilistic data is dlicult, and each of the systems similar problems ifiedént ways. The
MysTiQ project at the University of Washington was started with the paper by Dalvi and Suciu [46]
who showed that a dichotomy holds for conjunctive queries without self-joins: Either the query’s
data complexity iPTIMEor it is #P-hard. Moreover, if the query is iRTIMEthen we can create

an SQL query which simply multiplies or adds probabilities to compute the probatiiityeatly

and correctly. Inspired by this result, in this dissertation, we generalize this dichotomy result to
aggregate queries in Chapter 4. Later, this result was generalized to queries that contained self-
joins; the algorithm was more complicated and the translation to standard SQL queries is currently
unknown [47].

At about the same time, the Trio project began to focus on representation issues for uncertain
databases, calling itself an “Uncertain and Lineage Database” (ULDB) [16,17,145,146,168]. This
project promoted lineage as not only a technical convenience, but an important concept in its own
right [168]. More recently, Das Sarma [146] optimize queries by exploiting common structure in
the lineage of queries at run-time. A similar approach was taken in the context of graphical models
by Seret al.[149]. In contrast, the techniques in this paper are usually docenapile-timesimilar

to a standard query optimizer. Sen’s earlier work [148] in this area was one of the first to suggest

160

that query evaluation could be don&ently by casting the problem in term of graphical models.
One observation made in this work is that sometimes the data may contain structure unknown to the
optimizer (e.g., a functional dependency), which means that a query whidiPfaeta complexity

in general, is actually tractable. His approach discovers such structure at runtime. The MayBMS
system [8,9,91] is also a probabilistic relational database with a representation that is close to the
Mystiq system; they do, however, allow a much richer language than discussed in this dissertation.
In particular, their query language allows direct predication on probabilities,'is.the probability

ofqp < 0.3and @ > 0.47, and is able to introduce uncertainty through tle@air-by-key con-

struct. These enhancements are not superficial: the query language they propose captures exactly
second-order logic; interestingly, they recently announced an algebra to compute it similar to the
relational algebra [106]. Other powerful features of their language allows include expressing con-
ditionals, i.e.,'what is the probability of g given that price 10?”. Additionally, the have focused

on secondary storage issues and begun an interesting research proghasicdl optimization for
probabilistic databasem the context of the SPROUT project [127]. One interesting observation of
this project is that the existence of a safe plan for a query can be exploited — even the plan itself is
not sued. In this context, they also looked at computing probabilities without exact procedures like
Davis-Putnam and Ordered Binary Decision diagrams.

Although there is a lot of recent work on probabilistic relational databases, the problems of
imprecision and uncertainty in data are not new: they have a long history within the database com-
munity [13, 28,57, 144] . For example Barbaat al. [13] discussed a probabilistic model that is
very close to the BID model we discuss here. To keep the evaluation tractable, they did not allow
duplicate elimination in their queries; the techniques in this dissertation attempt to continue this line
of work by dficiently evaluating a larger set of SQL queries, notably aggregates. Predating this
work by more than a decade was Cavallo and Piterali [28] who studied a probabilistic database that
captured a single alternative world. In the ProbView system [144], an alternate approach t was taken
which allowed interval probabilities to be returned. This had the benefit that a much richer class of
gueries and aggregates can be handled. In some cases, the intervals may degenethtevtodd
gives little information to the user.

At the same time, there were approaches to study a problem cpitg reliability which im-

plicitly used a probabilistic database [78]. The idea was to understand to what extent a queries

161

depends on the answers in the database, formally it was a tuple independent database where every
tuple was given a probability cé‘ The reliability is then the probability that the (Boolean) query is

true.

Inconsistent and Incomplete Databases

An alternative approach to probabilistic databases from which this thesis drew inspiration is the area
of incomplete and inconsistent databases. For example, we may have two databases who individu-
ally are consistent, but when we merge them some dependencies fail, such as a key constraint. In
one database, John lives in Seattle, and in the other he lives in New York. Although each is indi-
vidually consistent, when merged together they become inconsistent. In this context, there has been
a great deal of work [18, 69, 79, 93, 165]. The typical query semantic of this work is greatest lower
bound or least upper bound on the set of all minimal repairs. Also known attenor possible

answer semantics. One particular relevant piece of related work is Ae¢aag11] who consider

the complexity of aggregate queries, similaHXVING queries, over data which violates functional
dependencies. They also consider multiple predicates, which we do not. There is a deep relationship
between the repair semantics and probabilistic approaches. A representative work in this direction is
Andristoset al.[7]. No discussion of incomplete databases would be complete without the seminal
work of Imielinski and Lipski [93] who formalized the notion oftables and initiated the study of

incomplete and inconsistent databases.

Lineage and Provenance

Lineage is central to the Trio system [168], who identifies lineage as a central concept [129]. Our
thinking of lineage was influenced by a paper of Green and Tannen [82], which spelled out the
connections of the various models in the literature — notably te#ables of Imielinski and Lip-

ski [93] — to the model we presented here. In addition, view of lineage in this paper was heavily
influenced by a paper of Greenal.[81] who explained that semirings were the right mathematical
structure needed to unify the various concepts of lineage. In this dissertation we view lineage as
a formal language to precisely explain our algorithms. In recent years, however, there has been

work on the practical utility of provenance and lineage for applications, especially, in scientific

162

databases [25, 30,53, 80]. There has been work in the systems community on entire architectures
that are provenance aware, e.g., provenance-aware storage systems [122]. This speaks to the funda-

mental nature of the concept of provenance or lineage.

Succinct models

While the BID formalism is complete, Markov Networks [45] and Bayesian Networks [130], and
their extensions to Probabilistic Relational Models [67], allow some discrete distributions to be
expressed much more succinctly. The trafleiothat query answering becomes correspondingly
more dificult. For example, Roth suggests that inference in even very simply Bayes nets do not
admit ficient approximation algorithms. There is active work in the database community about
adopting these more succinct models, which represent an interesting alternative approach to the
techniques of this dissertation [148, 167]. One clear advantage of this approach is that we it can
leverage the very interesting and deep work that has gone on in the graphical model community,
such as variational methods [98]fldirential inference [50], and lifted inference [52, 153]. On the
other hand, we contend that by choosing a more restrictive model, we can more fully concentrate
on scale. In particular, we are unaware of any of these approaches which runs with comparably
performance to a standard relational database, as we have demonstrated in this thesis in Chapter 5.

That said, there is a huge opportunity to merge the two approaches in the next few years.

Continuous attributes

In this work, we do not consider continuous attribute values, e.g., the techniques in this disserta-
tion cannot handle the case where the attrimgteperature has a normal distribution with mean

40. Representing this kind of uncertainty is central to approaches that integrate sensor data such
as the BBQ project [55], or the Orion System [34]. More recently the MCDB project has advo-
cated an approaching based on Monte-Carlo sampling which can generate much more sophisticated
distributions [95]. This supports, for example, the ability to “what-if” answer queries suth as

we had lowered our prices by 5%, would would our profit have begiitérnally, the user has
specified a demand curve that relates price changes to expected demand, and the system samples

from the resulting distribution many times. This expressive power comes at a price, and the cen-

163

tral challenge here is performance. The performance challenge is nfidcaltithan in our setting,
because the sampling procedure is a black-box; nonetheless, by bundling samples together and late-
materialization strategies the MCDB system can achieve good performance. Deséil{86] in

the BBQ project consider probabilistic databases resulting from sensor networks so that the database
models continuous values, such as temperature. The focus in this work is on rich correlation models,

but simpler querying.

Semistructured Models

There is also a wealth of work in non-relational systems, notably in semi-structured XML-based
systems [3,36,92,104,124,150]. As with relational probabilistic databases, there have been a num-
ber of diferent variants of probabilistic XML proposed in the literature. We refer the reader to
Kimelfeld [103, Chapter 4] for a comprehensive taxonomy and comparison of expressive power of
these models. One compelling reason to consider probabilistic XML is that there may be ambi-
guity in the structure of the data, and as noted by Nieretaal. [124], XML gracefully captures
incompleteness. This property makes XML a particularly appropriate model for data integration
applications [163]. Hun@gt al. [92] defines a formal, probabilistic XML algebra that is similar in

spirit to the intensional algebra of Fuhr for relational databases [68].

Sequential Models

Another line of work in the database area deals with sequential, relational modelshdatleal/ian
Streams or Sequencf®9, 138]. These streams arise from tasks including RFID networks [138],
Radar monitoring systems [157], and speech-recognition systems [111]. The work of Kanagal and
Deshpande [99] maps a SQL query to operations on a graphical model representing the input, which
allows them to leverage the extensive work in the graphical model community [98]. In the the
SASE projectet al. [157] and Lahar projects [138], a regular-expression-like language is used.
These projects both build on earlier work in the event processing literature such as Caygua [22]
and SnooplB [4]. The processing techniques are automaton-based, which allows near-real-time
performance in some situations. More recently, there has been work on creating indexes for these

models such as the Markov Chain Index [112] and its generalization to tree-structured models [100].

164

The key idea in both approaches is to save or cache some portion of the probabilistic inference that

recurs.

Applications

There has been a wealth of interest in probabilistic models in the database community. The Conquer
system [7] allowed users to cope with uncertainty arising from entity resolution. Their focus was on
efficient evaluation on probabilistic data, which is a common goal of therl® project. Gupta and
Sarawagi [84] showed that they could model the output of information extraction tasks using the BID
model. A key argument they made for using a probabilistic database to manage these tasks is that
throwing away low-scoring extractions negatively impacted recall. One major motivation for prob-
abilistic databases is to increase the recall, without losing too much precision. More sophisticated
probabilistic models for information extraction are an area of interesting ongoing work, notably the
Avatar group [96, 116]. This project is building rich probabilistic models to increase the recall of
hand-written extractors. Another important application for probabilistic relational databases is man-
aging the output of entity-resolution or deduplication tasks [6, 10, 32,65, 71, 83,89, 169, 170], as we

discussed in Chapter 3.

7.2 Specific Related Work

In this section, we discuss work that is very closely to specific technical contributions of this disser-

tation.

Top-k and Ranking

Solimanet al.[154] consider combining togwith measures, such &8Y, for example' Tell me the

ten highest ranked products by total sales®hen the underlying data is imprecise. This combines
both the uncertainty of the probabilities along with the measure dimension and has surprisingly
subtle semantics that have been the subject of interesting debate within the community [38, 172].
This work is similar in spirit to OUHAVING (Chapter 4) and toj-processing based on probabili-

ties (Chapter 3). In the original paper of Solimainal, they considered a rich correlation model

(essentially arbitrary Bayes networks), but they do not focus on complex queries involving joins.

165

This work has inspired a large amount of follow-up work including mdieient algorithms for
restricted models [73, 90, 171]. In addition, combining probabilistic data and skyline operators is
considered by Pei [132]. There is very interesting recent work that combines ranking (and cluster-

ing) in one unified framework with an approach based on generating functions [113].

Materialized Views

Materialized views are a fundamental technique used to optimize queries [2, 33, 75, 85] and as a
means to share, protect and integrate data [117, 160] that are currently implemented by all major
database vendors. Because the complexity of deciding when a query can use a view is high, there
has been a considerable amount of work on making query answering using views algorithms scal-
able [75, 133]. In the same spirit, we provid@aent practical algorithms for our representability
problems. As there are technical connections between our problem and the view-security problem,
an interesting problem is to apply the work by Machanavajjhala [115] on expanding the syntactic
boundary of tractability to the view setting. In prior art [51], the following question is studied:
Given a class of querieg is a particular representation formalism closed foat Q? In contrast,

our test is more fine-grained: For any fixed conjunct@eis theBID formalism closed unde®?

A related line of work on World Set Decompositions [9] which allow complete representations by

factoring databases; applying the techniques to this representation system is an interesting problem.

Aggregation

Aggregation is a fundamental operation in databases, and it should come as no surprise that ag-
gregation has been considered for probabilistic data many times. In the OLAP setting, Batrdick

al. [26, 27] give dficient algorithms forvalue aggregation a model that is equivalent to the single

table model. Their focus is on the semantics of the problem. As such, they consider how to assign
the correct probabilities, calletthe allocation problemand handling constraints in the data. The
allocation problem is an interesting and important problem. Rbsé [144] describe an approach

to computing aggregates on a probabilistic database, by computing bounding intervals (&%, the

is between [560(700]). They consider a richer class of aggregation functions than we discuss, but

with an incomparable semantics. Their complexity results show that computing bounding intervals

166

exactly isNP-Hard. In contrast, we are interested in a more fine-grained static analysis: our goal is

to find the syntactic boundary of hardness. Trio also uses a bounded interval style approach [123].

There is work on value aggregation on a streaming probabilistic databases [97]. In addition,
they consider computing value approximations aggregates, sudlGam a streaming manner. In
contrast, computing th&VG for predicate aggregates (as we do in Chapter 4) on a single table is
#P-Hard. One way to put these results together is that computing a value aggregate is the first mo-
ment (expectation) while BAVING aggregate allows us to capture the complete distribution (in the
exact case). Kanagal and Deshpande [99] also work in the streaming context of aggregation that
computes an expected value style of aggregation. This work does not look at complex queries, like
joins. Koch [105] formalizes a language that allows predication on probabilities and discusses ap-
proximation algorithms for this richer language, though he does not corliti&NG aggregation.

This is in part due to the fact that his aim is to create a fully compositional language for proba-
bilistic databases [106]. Extending our style of aggregation to a fully compositional language is an
interesting open problem. The problem of generating a random world that satisfies a constraint is
fundamental and is considered by Cotetral. [35]. They point out that many applications for this
task, and use it to answer rich queries on probabilistic XML databases. In this papeffevendi

the constraint language we choose and that we use our sampling algorithm as a basisrforsan

Our trichotomy results are based on the conjectureiBieg does not have arprras. Evidence
of this conjecture is given by Dyer [58, 59] by establishing that this problem is complete for a class
of problems with respect tapproximation preserving reductionst this point, it would be fair to
say that this conjecture is less well established fifa@ P. Any positive progress, i.e., showing that
#BIS does have aretrAS, could be adapted to our setting. As we have shown, some problems are
as hard to approximate as any problenifne.g., as hard g&€LIQUE. An interesting open problem
is to find if there is a corresponding syntactic boundary of hardness: is it true that either a query is
#BIS-easy offCLIQUE-hard? We conjecture that such a syntactic boundary exists, though it remains

open.

167

Compression and Approximation

There is long, successful line of work that compresses (deterministic) data to speed up query pro-
cessing [54,72,76,155, 166]. In wavelet approaches, probabilistic techniques are used to achieve a
higher quality synopses, [54]. In contrast, lineage in our setting contains probabilities, which must
be captured. The fact that the lineage is probabilistic raises the complexity of compression. For
example, the approach of Garofalakisal. [72] assumes that the entire wavelet transform can be
computed #iciently. In our work, the transform size is exponential in the size of the data. Proba-
bilistic query evaluation can be reduced to calculating a singl&icant of the transform, which
implies exact computation of the transform is intractable [46, 78]. Atedl. [60] advocate an
approach to operate directly on compressed data to optimize queries on Biological sequences. How-
ever, this approach is not lineage aware and so cannot extract explanations from the compressed
data.

In probabilistic databases, lineage is used for query processing in Mystiq [46,137] and Trio [168].
However, neither considers approximate lineageeRal.[137] consider approximately computing
the probability of a query answer, but do not consider the problem of storing the lineage of a query
answer. These techniques are orthogonal: We can use the techniques of [137] to compute the top-k
guery probabilities from the Level Il database usinffisient lineage. Approximate lineage is used
to materialize views of probabilistic data; this problem has been previously considered [136], but
only with an exact semantics.

Senet al. [148] consider approximate processing of relational queries using graphical models,
but not approximate lineage. In the graphical model literature [45, 98] approximate representation is
considered, where the goal is to compress the model for improved performance. However, the data
and query models of the our approaches fBedént. Specifically, our approach leverages the fact

that lineage is database is oftieernal.

Learning Theory

Our approach to computing polynomial lineage is based on computational learning techniques, such
as the seminal paper by Liniet al.[114], and others, [19, 23, 125]. A key ingredient underlying

these results argwitching lemmatg[14, 87, 147]. For the problem of ficient lineage, we use use

168

the implicit in both Segerlinet al. [147] and Trevisan [158] that either a few variables in a DNF
matter (hit every clause) or the formulasisarge. The most famous (and sharpest) switching lemma
due to Hastad [87] underlies the Fourier results. So far, learning techniques have only been applied
to compressing the data, but have not compressed the lineage [12, 74ffereniie between our

approach and this prior art is that we do not discard any tuples, but may discard lineage.

Explanation

Explanation is an important task for probabilistic databases that we only briefly touched on in Chap-
ter 6. Explanation is a well-studied topic in the Artificial Intelligence community [86, 131]. The
definition of explanation of a fact is a formula that is a minimal anflicient to explain a fact —
which is similar to our definition — but they additionally require that the formulanblenownto

the user. We do not model the knowledge of users, but such a semantic would be very useful for

scientists.

169

Chapter 8
CONCLUSION AND FUTURE WORK

This thesis demonstrates that it is possible fieaively manage large, imprecise databases
using a generic approach based on probability theory. The technical contributions are two query-
time techniguegop-k query processingndaggregate evaluatigrand two view-based techniques:
materialized viewandapproximate lineageWe demonstrated that a systemydiQ, based on the
techniques in this dissertation was able to support rich, structured queries on probabilistic databases

that contain tens of gigabytes of data with performance comparable to a standard relational engine.

Future Work

The management of uncertainty will be an increasingly important area over the next several years as
businesses, governments, and scientific researchers contend with an ever-expanding amount of data.
Although the space of applications will be diverse, there will be fundemental primitives common
to many of these applications (just as there with standard, deterministic data). As a result, there
will be a ned for a general-purpose data management frameworks that can answer queries, explain
results, and perform advanced analytics on large collections of imprecise data. The timing is right
for such a system because of two complementary forcésclnology pustand anapplication
pull. Thetechnology pusis that there are a diverse and increasingly large set of technologies that
produce imprecise data, such as entity matching, information extraction and inexpensive sensors.
The application pullis the wide-variety of applications that require the ability to query, transform
and process uncertain data, such as data integration, data exploration and preventive health-care
monitoring applications. The critical problems of these future systems are of scale, performance
and maintainability which are the cornerstones of the data management field.

An immediate challenge is to understand the traffedoetween the expressive power of proba-
bilistic models and their ability to process large datasets. Consider an application that tracks thou-

sands of users equipped with RFID sensors. Ideally, we would capture not only low-level physical

170

constraints, such & user’s current location is correlated with their previous locatigrifut also
higher-level correlation information, such ke database group has lunch together on Wednes-

day”. An interesting question is: to what extent do specific types of correlatidest dhe output

of a particular application? If our application only asks questions about groups of individuals, we
could optimize our model to disregard low-level correlation information about any single individ-

ual. Dropping correlation information can vastly improve query performance both because we must
process a much smaller amount of data, but also because we may be able to use more aggressive pro-
cessing strategies. In the context of a database of RFID sensors, our preliminary results suggest that
for some queries, not tracking correlations allows orders of magnitude performance improvement,
e.g., we can process thousands more streams using the same resources. At the same, time there is
only a small decrease in quality, e.g., our detection rates for events decreases only slightly. There
are many other opportunities for aggressive approximations in probabilistic query processing. Ap-
proximation techniques for query processing will be crucial in probabilistic database applications,

but our understanding of its limits is still in its infancy.

Long-term work Current database management systems are well-suited to informing users of the
who, what, and where of data processing, €wghich of my stores has a projected profitut do

a poor job of informing users about tidhy andhow of data processing, e.dwhy does store six

have a projected profit2"Worse still, the next generation of data products, such as forecasting data,
similarity scores or information extraction tools; dess precise¢han traditional relational data and
so,more djficult to understandA transparent database would allow me to tackle current data man-
agement problems, such esplaining the provenance of dataut alsoemerging data management
problems such as debugging the output of information extraction tools. For example, consider the
database of a large retailer that contains standard relational data, such as current inventory levels
and orders, and also contains imprecise data, such as the result of forecasting software. In response
to the query above, the system would returneaplanationsuch as'we predict a large profit in

store six because predictive model 10 says that cameras will sell well in the Southwest where store
10 is located.” A facility for explanations is the necessary primitive to build a system that allows an
analyst to interactively explore and understand a large collection of imprecise data. A transparent

database could also supp@rhat-if analysesvhere our goal is to understand how changes in the

171

underlying data fiect the final output. Adapting existing notions of explanations from the artificial
intelligence community [29, 131] to the problem of explaining the results of complex queries on

large-scale data products is a major open challenge.

172

BIBLIOGRAPHY

[1] S. Abiteboul, R. Hull, and V. VianuFoundations of Database#ddison-Wesley, 1995.

[2] Serge Abiteboul and Oliver M. Duschka. Complexity of answering queries using materialized
views. InPODS pages 254-263, 1998.

[3] Serge Abiteboul and Pierre Senellart. Querying and updating probabilistic information in
xml. In EDBT, pages 1059-1068, 2006.

[4] Raman Adaikkalavan and Sharma Chakravarthy. Snoopib: Interval-based event specification
and detection for active databas@sata Knowl. Eng.59(1):139-165, 2006.

[5] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated selection of materi-
alized views and indexes in sqgl databasesVILDB 2000, Proceedings of 26th International
Conference on Very Large Data Bases, September 10-14, 2000, Cairo, fages 496-505.
Morgan Kaufmann, 2000.

[6] Rohit Ananthakrishna, Surajit Chaudhuri, and Venkatesh Ganti. Eliminating fuzzy duplicates
in data warehouses. MLDB, pages 586—-596, 2002.

[7] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers over dirty databasd€DH,
2006.

[8] L. Antova, C. Koch, and D. Olteanu. World-set decompositions: Expressivenessfiaighé
algorithms. InICDT, pages 194-208, 2007.

[9] Lyublena Antova, Christoph Koch, and Dan Olteanu.1q60worlds and beyond: fRcient
representation and processing of incomplete informatiohCDE, pages 606—615, 2007.

[10] Arvind Arasu, Christopher & and Dan Suciu. Large-scale deduplication with constraints
using Dedupalog (full research paper).IGDE, 2009.to appear

[11] Marcelo Arenas, Leopoldo E. Bertossi, Jan Chomicki, Xin He, Vijay Raghavan, and Jeremy
Spinrad. Scalar aggregation in inconsistent databdde=or. Comput. SGi296(3):405-434,
2003.

[12] S. Babu, M. Garofalakis, and R. Rastogi. Spartan: A model-based semantic compression
system for massive data tables.StGMOD, pages 283—-294, 2001.

173

[13] D. Barbara, H. Garcia-Molina, and D. Porter. The management of probabilistic |EE&
Trans. Knowl. Data Eng4(5):487-502, 1992.

[14] P. Beame. A switching lemma primer. Technical Report 95-07-01, University of Washington,
Seattle, WA, 1995.

[15] O. Benjelloun, A. Das Sarma, A. Y. Halevy, M. Theobald, and J. Widom. Databases with
uncertainty and lineag&/LDB J, 17(2):243—-264, 2008.

[16] O. Benjelloun, A. Das Sarma, C. Hayworth, and J. Widom. An introduction to ULDBs and
the Trio systemlEEE Data Eng. Bull29(1):5-16, 2006.

[17] Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, and Jennifer Widom. Uldbs: Databases
with uncertainty and lineage. MLDB, pages 953-964, 2006.

[18] L. Bertossi and J. Chomicki. Query answering in inconsistent databases. In G. Saake
J. Chomicki and R. van der Meyden, editdregics for Emerging Applications of Databases
Springer, 2003.

[19] A.Blum, M. L. Furst, J C. Jackson, M J. Kearns, Y. Mansour, and S. Rudich. Weakly learning
dnf and characterizing statistical query learning using fourier analysB8TOG pages 253—
262, 1994.

[20] B. Boeckmann, A. Bairoch, R. Apweiler, M. C. Blatter, A. Estreicher, E. Gasteiger, M. J.
Martin, K. Michoud, C. O’'Donovan, I. Phan, S. Pilbout, and M. Schneider. The swiss-prot
protein knowledgebase and its supplement trembl in 2R08leic Acids Re31(1):365-370,
January 2003.

[21] Jihad Boulos, Nilesh N. Dalvi, Bhushan Mandhani, Shobhit Mathur, Christopherii Dan
Suciu. Mystiq: a system for finding more answers by using probabilities (demonstration). In
FatmaOzcan, editorSIGMOD Conferengeages 891-893. ACM, 2005.

[22] Lars Brenna, Alan J. Demers, Johannes Gehrke, Mingsheng Hong, Joel Ossher, Biswanath
Panda, Mirek Riedewald, Mohit Thatte, and Walker M. White. Cayuga: a high-performance
event processing engine. 8iIGMOD Conferenggrages 1100-1102, 2007.

[23] N. Bshouty and C. Tamon. On the fourier spectrum of monotone functichsACM
43(4):747-770, 1996.

[24] P. Buneman, A. Chapman, and J. Cheney. Provenance management in curated databases. In
SIGMOD, pages 539-550, 2006.

[25] Peter Buneman, James Cheney, Wang Chiew Tan, and Stijn Vansummeren. Curated
databases. IRODS pages 1-12, 2008.

174

[26] D. Burdick, P. M. Deshpande, T. S. Jayram, R. Ramakrishnan, and S. Vaithyanathan. Olap
over uncertain and imprecise datd.DB J, 16(1):123-144, 2007.

[27] Douglas Burdick, Prasad Deshpande, T. S. Jayram, Raghu Ramakrishnan, and Shivakumar
Vaithyanathan. Olap over uncertain and imprecise dat&LIDB, pages 970-981, 2005.

[28] Roger Cavallo and Michael Pittarelli. The theory of probabilistic databaseRroreedings
of VLDB, pages 71-81, 1987.

[29] Urszula Chajewska and Joseph Y. Halpern. Defining explanation in probabilistic systems. In
Dan Geiger and Prakash P. Shenoy, editdi, pages 62—71. Morgan Kaufmann, 1997.

[30] A. Chapman and H. V. Jagadish. Issues in building practical provenance syHigR<Data
Eng. Bull, 30(4):38-43, 2007.

[31] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust afidient fuzzy match for
online data cleaning. IACM SIGMOD San Diego, CA, 2003.

[32] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani. Robusffaneis
fuzzy match for online data cleaning. 8iIGMOD, pages 313—-324, 2003.

[33] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseok Shim. Optimizing
queries with materialized views. ICDE, pages 190-200, 1995.

[34] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries over imprecise
data. InProc. of SIGMODO032003.

[35] Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. Incorporating constraints in probabilistic
xml. In PODS pages 109-118, 2008.

[36] Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. Running tree automata on probabilistic
xml. In PODS pages 227-236, 2009.

[37] The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. In
Nature Genet.pages 25-29, (2000).

[38] Graham Cormode, Feifei Li, and Ke Yi. Semantics of ranking queries for probabilistic data
and expected ranks. ICDE, pages 305-316, 2009.

[39] Garage Band Corfphttp://www.garageband.com/.
[40] Garage Band Corpiww.ilike.com.

[41] Microsoft Corp. Northwind for sqgl server 2000.

175

[42] Microsoft Corp. Sql server 2005 samples (feb. 2007).

[43] Transaction Processing Performance Council. Tpc-h (ad-hoc, decision support) benchmark.
httpy//www.tpc.org.

[44] Transaction Processing Performance Council. Tpc-r (decision support) benchmark (obso-
lete). http//www.tpc.org.

[45] R. G. Cowell, S. L. Lauritzen, A. P. David, and D. J. SpiegelhalBmobabilistic Networks
and Expert System$&pringer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[46] N. Dalvi and D. Suciu. Hicient query evaluation on probabilistic databases.VILDB,
Toronto, Canada, 2004.

[47] N. Dalvi and D. Suciu. The dichotomy of conjunctive queries on probabilistic structures. In
PODS pages 293-302, 2007.

[48] N. Dalvi and D. Suciu. Management of probabilisitic data: Foundations and challenges. In
PODS pages 1-12, 2007.

[49] Nilesh Dalvi, Christopher B, and Dan Suciu. Queries and materialized views on probabilistic
databasesJCS$2009.

[50] Adnan Darwiche. A dferential approach to inference in bayesian networkis. ACM,
50(3):280-305, 2003.

[51] A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working models for uncertain data.
In ICDE, 2006.

[52] Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth. Lifted first-order probabilistic inference.
In 1IJCAI, pages 1319-1325, 2005.

[53] Special issue on data provenanteEE Data Eng. Bull. 30(4), 2007.

[54] A. Deligiannakis, M. Garofalakis, and N. Roussopoulos. Extended wavelets for multiple
measuresACM Trans. Database SysB82(2):10, 2007.

[55] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong. Model-driven data
acquisition in sensor networks. WWLDB, pages 588-599, 2004.

[56] Amol Deshpande, Carlos Guestrin, Samuel Madden, Joseph M. Hellerstein, and Wei Hong.
Model-driven data acquisition in sensor networks. In M.A. Nascimento, 8z5u, D. Koss-
mann, R.J. Miller, J.A. Blakeley, and K.B. Schiefer, editarkPDB, pages 588-599. Morgan
Kaufmann, 2004.

176

[57] Debabrata Dey and Sumit Sarkar. Generalized normal forms for probabilistic relational data.
IEEE Trans. Knowl. Data Eng14(3):485-497, 2002.

[58] Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, and Mark Jerrum. On the
relative complexity of approximate counting problems AIRPROX pages 108-119, 2000.

[59] Martin E. Dyer, Leslie Ann Goldberg, and Mark Jerrum. An approximation trichotomy for
boolean #cspCoRR abg0710.4272, 2007.

[60] M. Eltabakh, M. Ouzzani, and W. G. Aref. bdbms - a database management system for
biological data. INCIDR, pages 196-206, 2007.

[61] Herbert B. Enderton A Mathematical Introduction To LogicAcademic Press, San Diego,
1972.

[62] Oren Etzioni, Michele Banko, and Michael J. Cafarella. Machine readingAlal, 2006.
[63] Ronald Fagin and Joseph Y. Halpern. Reasoning about knowledge and probability. In
Moshe Y. Vardi, editorProceedings of the Second Conference on Theoretical Aspects of

Reasoning about Knowledgeages 277-293, San Francisco, 1988. Morgan Kaufmann.

[64] Ronald Fagin, Joseph Y. Halpern, and Nimrod Megiddo. A logic for reasoning about proba-
bilities. Information and Computatiqr87(%/2):78—-128, 1990.

[65] I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the American
Statistical Societyvolume 64, pages 1183-1210, 1969.

[66] http://flybase.bio.indiana.edu/.

[67] N. Friedman, L .Getoor, D. Koller, and A. Rfer. Learning probabilistic relational models.
In IJCAI, pages 1300-1309, 1999.

[68] Norbert Fuhr and ThomasdReke. A probabilistic relational algebra for the integration of
information retrieval and database syste®&M Trans. Inf. Syst15(1):32-66, 1997.

[69] A. Fuxman and R. J. Miller. First-order query rewriting for inconsistent databaséSDIR,
pages 337-351, 2005.

[70] Ariel Fuxman, Elham Fazli, and Réa J. Miller. Conquer: ficient management of incon-
sistent databases. 81IGMOD Conferenceages 155-166, 2005.

[71] Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon, and Cristian-Augustin
Saita. Declarative data cleaning: Language, model, and algorithmélL DB, pages 371—
380, 2001.

177

[72] M. Garofalakis and P. Gibbons. Probabilistic wavelet synop&€d1 Trans. Database Syst.
29:43-90, 2004.

[73] Tingjian Ge, Stanley B. Zdonik, and Samuel Madden. Kapieries on uncertain data: on
score distribution and typical answers.3iGMOD Conferenggpages 375—-388, 2009.

[74] L. Getoor, B. Taskar, and D. Koller. Selectivity estimation using probabilistic models. In
SIGMOD, pages 461-472, 2001.

[75] J. Goldstein and P. Larson. Optimizing queries using materialized views: a practical, scalable
solution. InNSIGMOD 2001 pages 331-342, New York, NY, USA, 2001. ACM Press.

[76] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing relations and indekeBEIn
pages 370-379, 1998.

[77] S.M. Gorski, S. Chittaranjan, E.D. Pleasance, J.D. Freeman, C.L. Anderson, R.J. Varhol, S.M.
Coughlin, S.D. Zuyderduyn, S.J. Jones, and M.A. Marra. A SAGE approach to discovery of
genes involved in autophagic cell dea@urr. Biol., 13:358-363, Feb 2003.

[78] Erich Gradel, Yuri Gurevich, and Colin Hirsch. The complexity of query reliabilityPl@DS
pages 227-234, 1998.

[79] G. Grahne. Lncs 554: The problem of incomplete information in relational databases. 1991.

[80] T. Green, G. Karvounarakis, N. E. Taylor, O. Biton, Z. G. Ives, and V. Tannen. Orchestra:
facilitating collaborative data sharing. 8iGMOD, pages 1131-1133, 2007.

[81] T.J. Green, G. Karvounarakis, and V. Tannen. Provenance semiring®D&§ pages 31-40,
2007.

[82] Todd Green and Val Tannen. Models for incomplete and probabilistic informatieEE
Data Engineering Bulletin29(1):17-24, 2006.

[83] Lifang Gu, Rohan Baxter, Deanne Vickers, and Chris Rainsford. Record linkage: Current
practice and future directions. {dMIS Technical Report No. &3, 2003.

[84] R. Guptaand S. Sarawagi. Curating probabilistic databases from information extraction mod-
els. InProc. of the 32nd Int’'l Conference on Very Large Databases (VL.RB8)6.

[85] Alon Halevy. Answering queries using views: A surveyLDB Journal 10(4):270-294,
2001.

[86] J. Halpern and J. Pearl. Causes and explanations: A structural-model approach - part Il
Explanations. INJCAI, pages 27-34, 2001.

178

[87] J. Hastad. Computational limitations for small depth circuitsM.I.T Press, Cambridge,
Massachusetts, 1986.

[88] E.Hazan, S. Safra, and O. Schwartz. On the hardness of approximating k-dimensional match-
ing. ECCC 10(020), 2003.

[89] M. Hernandez and S. Stolfo. The mefigarge problem for large databases. StGMOD,
pages 127-138, 1995.

[90] Ming Hua, Jian Pei, Wenjie Zhang, and Xuemin Linfli&ently answering probabilistic
threshold top-k queries on uncertain datal@DE, pages 1403—-1405, 2008.

[91] Jiewen Huang, Lyublena Antova, Christoph Koch, and Dan Olteanu. Maybms: a probabilistic
database management systemSIGMOD Conferenceages 1071-1074, 2009.

[92] Edward Hung, Lise Getoor, and V. S. Subrahmanian. Pxml: A probabilistic semistructured
data model and algebra. IGDE, pages 467—, 2003.

[93] T. Imielinski and W. Lipski. Incomplete information in relational databasksirnal of the
ACM, 31:761-791, October 1984.

[94] 1SO. Standard 9075. Information Processing Systems. Database Languagd $8JL

[95] Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher M. Jermaine, and
Peter J. Haas. MCDB: a monte carlo approach to managing uncertain daBiGNMOD
Conferencepages 687—-700, 2008.

[96] T. S. Jayram, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar Vaithyanathan, and
Huaiyu Zhu. Avatar information extraction systenfEEE Data Eng. Bull. 29(1):40-48,
2006.

[97] T.S. Jayram, S. Kale, and E. VeeffiEient aggregation algorithms for probabilistic data. In
SODA 2007.

[98] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to variational methods
for graphical modelsMachine Learning37(2):183-233, 1999.

[99] Bhargav Kanagal and Amol Deshpande. Online filtering, smoothing and probabilistic mod-
eling of streaming data. I'CDE, pages 1160-1169, 2008.

[100] Bhargav Kanagal and Amol Deshpande. Indexing correlated probabilistic databases. In
SIGMOD Conferencgpages 455-468, 2009.

179

[101] Richard Karp and Michael Luby. Monte-carlo algorithms for enumeration and reliability
problems. INSTOG 1983.

[102] Richard M. Karp and Michael Luby. Monte-carlo algorithms for enumeration and reliability
problems. INFOCS pages 56-64, 1983.

[103] Benny Kimelfeld. Querying Paradigms for the WelPhD thesis, The Hebrew University,
August 2008.

[104] Benny Kimelfeld, Yuri Kosharovsky, and Yehoshua Sagiv. Qudiigiency in probabilistic
xml models. INSIGMOD Conferenggpages 701-714, 2008.

[105] Christoph Koch. Approximating predicates and expressive queries on probabilistic databases.
In PODS pages 99-108, 2008.

[106] Christoph Koch. A compositional query algebra for second-order logic and uncertain
databases. IICDT, pages 127-140, 2009.

[107] E. Kushilevitz and Y. Mansour. Learning decision trees using the fourier spec8LAM J.
Comput, 22(6):1331-1348, 1993.

[108] L. Lakshmanan, N. Leone, R. Ross, and V.S. Subrahmanian. Probview: A flexible proba-
bilistic database system\CM Trans. Database Sys22(3), 1997.

[109] Serge LangAlgebra Springer, January 2002.

[110] J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Hannaford. A hybrid discrimina-
tive/generative approach for modeling human activitiedJDAI, pages 766—772, 2005.

[111] Julie Letchner, ChristopherdRMagdalena Balazinska, and Mathai Philipose. Lahar demon-
stration: Warehousing markovian streamsVIiDB, 2009.

[112] Julie Letchner, ChristopheréRMagdalena Balazinska, and Matthai Philipose. Access meth-
ods for markovian streams. IG@DE, pages 246—257, 2009.

[113] Jian Li, Barna Saha, and Amol Deshpande. A unified approach to ranking in probabilistic
databases. INLDB, 2007.

[114] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, fourier transform, and learn-
ability. J. ACM 40(3):607-620, 1993.

[115] A. Machanavajjhala and J .Gehrke. On tligceency of checking perfect privacy. In Stijn
Vansummeren, editoRODS pages 163-172. ACM, 2006.

180

[116] Eirinaios Michelakis, Rajasekar Krishnamurthy, Peter J. Haas, and Shivakumar
Vaithyanathan. Uncertainty management in rule-based information extraction systems. In
SIGMOD Conferencgrages 101-114, 20009.

[117] G. Miklau and D. Suciu. A formal analysis of information disclosure in data exchange. In
SIGMOD, 2004.

[118] Gerome Miklau.Confidentiality and Integrity in Data Exchang®hD thesis, University of
Washington, Aug 2005.

[119] Gerome Miklau and Dan Suciu. A formal analysis of information disclosure in data exchange.
J. Comput. Syst. Scir3(3):507-534, 2007.

[120] Katherine F. Moore, Vihbor Rasogi, Christophedr,Rnd Dan Suciu. Query containment of
tier-2 queries over a probabilsitic databaseManagment of Uncertain DatabaseX)09.

[121] Rajeev Motwani and Prabhakar RaghavBandomized AlgorithmsCambridge University
Press, 1997.

[122] Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun, and Margo |. Seltzer.
Provenance-aware storage system&l$fENIX Annual Technical Conference, General Track
pages 43-56, 2006.

[123] Raghotham Murthy, Robert Ikeda, and Jennifer Widom. Making aggregation work in uncer-
tain and probabilistic databases. Technical Report 2007-7, Stanford InfoLab, June 2007.

[124] Andrew Nierman and H. V. Jagadish. Protdb: Probabilistic data in xm\LUDB, pages
646-657, 2002.

[125] R.W. O’'Donnell.Computational Applications of Noise SensitiviBhD thesis, M.I.T., 2003.

[126] O.Etzioni, M.J. Cafarella, D. Downey, S. Kok, A. Popescu, T. Shaked, S. Soderland, D.S.
Weld, and A. Yates. Web-scale information extraction in knowitall: (preliminary results). In
S.1. Feldman, M. Uretsky, M. Najork, and C.E. Wills, editovyWW pages 100-110. ACM,
2004.

[127] Dan Olteanu, Jiewen Huang, and Christoph Koch. SPROUT: Lazy vs. eager query plans for
tuple-independent probabilistic databasesPioc. of ICDE 20092009.

[128] Christos PapadimitriouComputational ComplexityAddison Wesley Publishing Company,
1994.

[129] A. Parag, O. Benjelloun, A.D. Sarma, C. Hayworth, S. Nabar, T. Sugihara, and J. Widom.
Trio: A system for data uncertainty and lineage MinDB, 2006.

181

[130] J. Pearl. Probabilistic Reasoning In Intelligent Systems: Networks of Plausible Inference
Morgan Kaufmann Publishers, Inc, 1988.

[131] Judea PearlCausality : Models, Reasoning, and Inferendgambridge University Press,
March 2000.

[132] Jian Pei, Bin Jiang, Xuemin Lin, and Yidong Yuan. Probabilistic skylines on uncertain data.
In VLDB, pages 15-26, 2007.

[133] Rachel Pottinger and Alon Y. Halevy. Minicon: A scalable algorithm for answering queries
using views.VLDB J, 10(2-3):182—-198, 2001.

[134] http://www.pubmed. gov.

[135] C. Re, N. Dalvi, and D. Suciu. Query evaluation on probabilistic databaeEE Data
Engineering Bulletin29(1):25-31, 2006.

[136] C. Re and D. Suciu. Materialized views in probabilistic databases for information exchange
and query optimization. INLDB, pages 51-62, 2007.

[137] Christopher B, Nilesh N. Dalvi, and Dan Suciu.flicient top-k query evaluation on proba-
bilistic data (full research paper). I€DE, pages 886—895. IEEE, 2007.

[138] Christopher R, Julie Letchner, Magdalena Balazinska, and Dan Suciu. Event queries on
correlated probabilistic streams. BiGMOD Conferenceages 715-728, 2008.

[139] Christopher R and Dan Suciu. fcient evaluation oHAVING queries. InDBPL, pages
186-200, 2007.

[140] Christopher R and Dan Suciu. Materialized views in probabilistic databases for information
exchange and query optimization. DB, pages 51-62, 2007.

[141] Christopher R and Dan Suciu. Approximate lineage for probabilistic databggesmally,
VLDB) PVLDB 1(1):797-808, 2008.

[142] Christopher R and Dan Suciu. Managing probabilistic data with Mystig: The can-do, the
could-do, and the can’t-do. IBUM, pages 5-18, 2008.

[143] Christopher R and Dan Suciu. The trichotomyBAVING queries on a probabilistic database.
VLDB Journa) 2009.

[144] Robert Ross, V. S. Subrahmanian, and John Grant. Aggregate operators in probabilistic
databases]. ACM 52(1):54-101, 2005.

182

[145] A.D. Sarma, O. Benjelloun, A.Y. Halevy, and J. Widom. Working models for uncertain data.
In Ling Liu, Andreas Reuter, Kyu-Young Whang, and Jianjun Zhang, edit6BE, page 7.
IEEE Computer Society, 2006.

[146] Anish Das Sarma, Martin Theobald, and Jennifer Widom. Exploiting lineage for confidence
computation in uncertain and probabilistic database$CDE, pages 1023-1032, 2008.

[147] N. Segerlind, S. R. Buss, and R. Impagliazzo. A switching lemma for small restrictions and
lower bounds for k-dnf resolutiorS1AM J. Comput.33(5):1171-1200, 2004.

[148] P. Sen and A. Deshpande. Representing and querying correlated tuples in probabilistic
databases. IRroceedings of ICDE2007.

[149] Prithviraj Sen, Amol Deshpande, and Lise Getoor. Exploiting shared correlations in proba-
bilistic databasesPVLDB, 1(1):809-820, 2008.

[150] Pierre Senellart and Serge Abiteboul. On the complexity of managing probabilistic xml data.
In PODS pages 283-292, 2007.

[151] R. Servedio. On learning monotone dnf under product distributiohsComput, 193(1):57—
74,2004.

[152] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and rapidly
mixing markov chainsinf. Comput, 82(1):93-133, 1989.

[153] Parag Singla and Pedro Domingos. Lifted first-order belief propagatioMAR, pages
1094-1099, 2008.

[154] M. Soliman, I.F. llyas, and K. Chen-Chaun Chang. Top-k query processing in uncertain
databases. IRroceedings of ICDE2007.

[155] M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin,
S. Madden, E. O'Neil, P. O'Neil, A. Rasin, N. Tran, and S. Zdonik. C-store: A column-
oriented dbms. IWLDB, pages 553-564, 2005.

[156] Go database v. go200801.

[157] Thanh Tran, Charles Sutton, Richard Cocci, Yanming Nie, Yanlei Diao, and Prashant J.
Shenoy. Probabilistic inference over rfid streams in mobile environmentsCD&, pages
1096-1107, 2009.

[158] L. Trevisan. A note on deterministic approximate counting for k-&héctronic Colloquium
on Computational Complexity (ECCGP69), 2002.

183

[159] Jdtrey D. Ullman.Principles of Database and Knowledgebase Systef@sminputer Science
Press, Rockville, MD 20850, 1989.

[160] Jedfrey D. Ullman. Information integration using logical views. In Foto N. Afrati and
Phokion G. Kolaitis, editorspatabase Theory - ICDT '97, 6th International Conference,
Delphi, Greece, January 8-10, 1997, Proceedingdume 1186 ofLecture Notes in Com-
puter Sciencegpages 19-40. Springer, 1997.

[161] Patrick Valduriez. Join indice®dCM Trans. Database Sys12(2):218-246, 1987.

[162] L.G. Valiant. The complexity of enumeration and reliability problens8AM J. Comput.
8(3):410-421, 1979.

[163] Maurice van Keulen, Ander de Keijzer, and Wouter Alink. A probabilistic xml approach to
data integration. IMCDE, pages 459-470, 2005.

[164] M. Y. Vardi. The complexity of relational query languages. Aroceedings of 14th ACM
SIGACT Symposium on the Theory of Computirages 137-146, San Francisco, California,
1982.

[165] M. Y. Vardi. On the integrity of databases with incomplete informationPloceedings of
5th ACM Symposium on Principles of Database Systpages 252—-266, 1986.

[166] J. Vitter and M. Wang. Approximate computation of multidimensional aggregates of sparse
data using wavelets. I8IGMOD, pages 193-204, 1999.

[167] Daisy Zhe Wang, Eirinaios Michelakis, Minos N. Garofalakis, and Joseph M. Hellerstein.
Bayesstore: managing large, uncertain data repositories with probabilistic graphical models.
PVLDB, 1(1):340-351, 2008.

[168] Jennifer Widom. Trio: A system for integrated management of data, accuracy, and lineage.
In CIDR, pages 262-276, 2005.

[169] Stephen E. Fienberg William W. Cohen, Pradeep Ravikumar. A comparison of string distance
metrics for name-matching tasks. lliVeb, pages 73—78, 2003.

[170] William Winkler. The state of record linkage and current research problem$edmical
Report, Statistical Research Division, U.S. Bureau of the Cei9$9.

[171] Ke Yi, Feifei Li, George Kollios, and Divesh Srivastavdti&ent processing of top-k queries
in uncertain databases. IBDE, pages 1406-1408, 2008.

[172] XiZhangand Jan Chomicki. On the semantics and evaluation of top-k queries in probabilistic
databases. ICDE Workshopspages 556-563, 2008.

184

[173] http://imdb.com.

[174] http://www.amazon. com.

185

Appendix A
PROOF OF RELAXED PROGRESS

A.1 Bounding the Violations of Progress

The high level goal of this section is to establish that after a negligible number of steps with respect
to the optimal, the progress assumption holds. The result contained here, allows us to show that with
extremely high probability our algorithm takes®RT + o(OPT)) steps, thus achieving our stated
competitive ratio of 2.

To achieve this goal, our technical tool is an exponentially small upper bound on the probability
that progress is violated. Further, we do not assume anything about the underlying distribution of
true probabilities, thus keeping our competitive result free of distributional assumptions. Specifi-
cally, in what follows, all random choices are on the results of the experiment with the underlying
probabilities chosen adversarial.

We first introduce some notation and define our random variables, an estimation lemma and

prove our main result.
A.1.1 Notation and Random Variables
We letn be the number of iterations on the current interval, and consider for adixdtht is the

probability that progress is violated after we taigesteps. We denote the (fixed) true probabifity

Interval Size Function Let f(n,) be the bounding function,

2m 2
f(n,6) = % Iogg

Random Variables We have two main random variablggn) and X(ng). p(n) represents the
value of our estimator aftardraws.X(ng) represents the value o random draws after the We

observe that all though we have described them as sequential, they are actually independent random

186

variables because they are sums of independent trials. We summatrize the properties of these random

variables below.

rv.a | E[a] | As Sums of Indicators
p(n) p % Zing]_ Yi

X(no) | nop 1 X

Notation An obvious extension is(n + ng), the estimate after + ng steps. This random variable

can be written in terms of the other two (independent) rvs as,

p(n) * n + X(no)

p(n+no) = . (A1)
And the following decompositions are helpful later
_ X(no) — p(Mno
p(n+no) —p(n) = ———— ~ (A.2)
and,
_ p(nng — X(no)
p(n) = p(n+1o) = ———— ~ (A.3)
Progress Conditions Progress is violated when either of two conditions are met
1. p(n) < p(n+ np) and
p(nN) + f(n,8) < p(n+ng) + f(n+ng, ")
2. p(n) > p(n+ ng) and
p(n) = f(n,6) > p(n+ ng) — f(n+ Ny, &)
A.1.2 Helpful Lemma
Lemma A.1.1. Let p = n® andB be a constant such thgt> 1. Then the following holds,
1 1
— - O(ne-3/2 A.4
7 e (A.4)

187

Proof. We first factor oun~'/2 and rearrange the second term to get the inequality
el < 1— (—)12 < ot
n+nNp

We prove thag(n) = 1 - (:2-)¥2 € ®(n™!). We observe that ifiy = n?, factoring will yield

n+1
g(n~®). Using composition we get thgfn~*) = ®(n®-1), which implies our lemma.
Written another way, we are comparing £ = =1 and /-2
(n—1)2 n
o
n? n+1

& n-1%N+1)«nd

A.1.3 Cherng Version of Bounds

The idea here is to exponentiate the bounds, &) and then apply a Markov inequality. We then

optimize our choice of to get a minimize the probability.

P[Progress is violatedi(ng, 6) < P[(f(n,8) — f(n+ ng,d)) < (o(n+ ng) — p(n))] +

P[(f(n,8) — f(n+ g, d)) < (o(n) —p(n+ng))] Union Bound

IA

2P[—elf(n)-f(n+n0.6)) < gle(n+no)-p(m)?] Dual is the same

INA

2E[e(p(n+no)—p(n))] e (f(n.6)-f(n+no.0)) Markov aftere

The dual case is E[e¢M-r(+N0))]g-t(f(0)-T(+M00)) - \We will see that it is no worse than the

case we have chosen.

The Expectation term

Lemma A.1.2. If t << n+ ng thenE[e(™0)-~(M)] and E[e(M-+("+Mo))] gre both Q1).

188

Proof. We do the calculation foE[el(Mo)-£(M)],

(X(ng) ngp(n)

E[et</)(r1+no)—p(n))] - E[e

™o n+no)] Decomposition in Eq.. A.2

tX(ng) tngo(n)

E[e™]E[e ™% | independence ak(no), p(n)

Thus we only need to establish that €< n + ng then

tX(ng)

1. E[e™] € O(1)

tngp(n)

2. E[e™] € O(1)

. X(ng)
Firstterm: E[e™Mo]

tX(np)

E[e n+ng]

o _—
E[ezi:1 n+o | Definition of X(ng)

X
[T, E[e™™] independence ofx;}

Hi”jl(eﬁ p+1-p) Expectation

Hinﬁl((e”*ti”o - 1)p+1) factoringp

A

_t
e, e 1p 1+x<€

_t
ghop(e™ -1) exp rules

We observe that far<< n + ng, then this term goes te? = 1 as desired.

tnge(n)

Second Term: He ™] We deal with the second expectation term.

E[¢VEw] = E[e*Y]

t
expgnp(e™m) — 1)) Same argument

189

Now, we observe that fdr<< n(n + ng) this term will also go to 1. |

The Denominator

Lemma A.1.3. For any choice of t,

g t(f(no)-f(n+no.s)) o eZtmIog%n“*/z

Proof.

e i(f(no)-f(n+no.s)) _ g2tmlog 5 (2~ (n+ng)~4/2)

g2mtlog gn®~%/2 LemmaA.1.1

IA

The Punchline

Combining lemma A.1.3 and A.1.2, we have

. . 2a-3/2
t<<n+ny = P[Progress is violatedi(ny, §) < 2e?Mlog 5"

We taket = ng = n® for a < 1, which satisfie$ << n + ng.

P[Progress is violated(ng, §) < 2e°™°9 U

If we taket = n* = 3 + o, for @’ € [0, 7) then our probability simplifies to:

Pviolation](n, o/, 8) < 2e~2mlog §n” (A.5)

Since this is exponentially small probability, the number and variance of errors are exponen-

tially small. Thus by applying a Chebyshev inequality we can conclude with exponentially high

190

probability there are no errors aftet steps from any fixed.

Theorem A.1.4. The probability that progress holds after some negligible number of steps tends to

1 exponentially quickly.

Remark A.1.5. Also as long as < 1, our optimality ratio is preserved.

191

Appendix B
PROOFS FOR EXTENSIONAL EVALUATION

B.1 Properties of Safe Plans

We formalize the properties that hold in safe extensional plans in the following proposition:

Proposition B.1.1. Let P = z' ,P; be a safe plan then for any tuples t..,t, € par(Pl that
disagree on X, i.e., such that4 j implies that {f[var(P)] = t;[var(P)] and {[X] # t;[x] and then for

any s,..., S € S we have independence, that is the following equation holds:

M{_ /\ wp,s(t) = S]

T #est) =) (B.1)

Similarily, let P= 7PP; then we have disjointness:

,U[/\ west) = OJ = > plwpst)=0-(n-1) (B.2)
i=1,...n i=1..,n
Let P = Py » Py, then for any tuples te DV ()l for i = 1,2 then and 5,5, € S, we have
independence:
p(wps(ty) = s1 A wp, s(t2) = S2) = p(wp, s(tr) = s1) pu(wpys(t2) = 2) (B.3)

Proof. We prove Eq. B.1. To see this observe that, directly from the definition, the set of tuples that
contribute tot; andt; (i # j) do not share the same value for a keyaimy relation. It is not hard
to see that; andt; are functions of independent tuples, hence are independent. The equation then
follows by definition of independence.

We prove Eq. B.2. Assume for contradiction that the tuples are not disjoint, that is there exists

some possible worlaV such that for some# | {ti, tj} C W. By the definition, there must exist some

192

key goalg such thakey(g) < var(P). Thus, fort; andt; to be present iW it must be that there are

two distinct tuples with the same key value — bufelient values for the attribute corresponding to

X. This is a contradiction to the key condition, hence the tuples are disjoint and the equation follows.
We prove Eqg. B.3. In a safe plagoal(P1) ngoal(P2) = 0 and distinct relations are independent.

As a result, the tuples themselves are independent.]

B.2 Appendix: Full Proof for COUNT(DISTINCT)

Theorem B.2.1(Restatement of Theorem 4.4.14)t Q beCOUNT(DISTINCT)-safe then its evalu-

ation problem is irP.

Proof. SinceQ is COUNT(DISTINCT)-safe, then there is a safe pl&nfor the skeleton ofQ. In
the following letP; < P, denote the relationship th&; is a descendant iR of P, (alternatively,
containment). LePy be a subplan which satisfi¢s, = 7r'_y(P’) < PorPy = nE’y(P') < P.
P_y is a safe plan, hencg-safe forS = Z, i.e., theEXISTS algebra. For each we can write
(I)P,y(t) = (1-p, p), i.e.,t is present with probabilitp. From this, create a marginal vectorzh'?,
as inCOUNT, m' such thatm![0] = 1 - p andm'[1] = p and all other entries 0. Notice thattif t’
thent[y] # t[y’]. Informally, this means al values are distinct “afterPy.

Compute the remainder &fas follows: IfPg is not a proper ancestor or descendargfthen
computePq as if you were using thEXISTS algebra. To emphasize thBy should be computed
this way, we shall denote the valuetafnderPy asa}llo,EXISTS(t)' SinceP is COUNT(DISTINCT)-safe,
any proper ancestd?o of P_y is of the formPg = n?xPl orPg = Py > Po. If Pg = n?XPl then
&)Po(t) = [vep, &)Pl(t); this is correct because the tuples we are combining are disjoint, so which
values are present does not matter. Else, we may asByimd®; < P, and without loss we assume

thatPy < P4, thus we compute:

~ _ A ~J
wPl,COUNT(DISTINCT)(t) = Wp, (t)® wF’g,EXISTS(tZ)

This is an abuse of notation since we intend ﬂaé} € Z, is first mapped int&y,1 and then the
convolution is performed. Since we are either multiplying our lossy vector by the annihilator or the
multiplicative identity, this convolution has théfect of multiplying by the probability thatis in

P2, since these events are independent this is exactly the value of their conjunction. O

193

B.2.1 Complexity

Proposition B.2.2(Second Half of Prop. 4.4.15)he followingHAVING queries arefP-hard for
i>1

Q2,i[COUNT(DISTINCTY) 6 K] :— R1(X;Y), ..., Ri(XY)

Proof. We start withi = 1. The hardness d@,; is shown by a reduction counting the number
of set covers of siz&. The input is a set of elements = {uy,...,uy} and a family of sets =
{S1,...,Sm}. A cover is a subset of such that for eacln € U there isS € S such thau € S.
For each element € U, letS, = {S € # | u € S}, add a tupleR(u; S; |Su|"1) whereS e S,.
Every possible world corresponds to a set cover and hen®d i§ the number of covers of size

k thenu(Q) = Wk([Tueu ISul™). Notice that if use the same reductios 1, we have that(Q) =
Wk(nueu |Su|_i)- O

We show that ifQ contains self joins and is n@UNT(DISTINCT)-safe, thenQ hasfiP data

complexity. First, we observe a simple fact:

Proposition B.2.3. Let Q be aHAVING query with an unsafe skeleton then Q Hi#&shard data
complexity. Further, if Q is connected and safe but@@IINT(DISTINCT)-safe then there must exist

X # Yy such that/g € goal(Q), x € key(g).

Proof. We simply observe that the count of distinct variablesid exactly when the query is
satisfied, which igP-hard. The other aggregates follow easily. Since the skeletQri®afe, there
is a safe plan foQ that is notCOUNT(DISTINCT)-safe. This implies that there is some projection

independent' , on all variables. O

Definition B.2.4. For a conjunctive query q, letE be the least fixed point of £FJ, ..., where
Fg = {x|3g € goal(Q) s.t.key(g) = 0 A x € var(g)}

and

Fd . ={x|3g e goalQ) s.t.key(g) C Fi A x e var(g)}

i+1

Intuitively, FY is the set of variables “fixed” in a possible world.

194

Proposition B.2.5. If q is safe and x FJ, then there is a safe plan P such thé, € P and for all

ancestors ofrE’X they are eithewE’ZPl for some z or P > P»5.

Proof. Consider the smallest querysuch that the proposition fails where the order is given by
number of subgoals then number of variables variablesxd,et., x, according to the partial order

X < x; if exists F such that; € Fl butx; ¢ F). If g = qu02 such thatx € var(qgs) and
var(qs) N var(gy) = 0 thenP; satisfies the claim aniy < P; is a safe plan. Otherwise |&4 be

a safe plan fog[x; — a] for some fresh constamt Since this has fewer variabl®; satisfies the

claim andr_,P; is safe immediately from the definition. O

We now define a set of rewrite rules which transform the skeleton and preserve hardness. We

use these rewrite rules to show the following lemma:

Lemma B.2.6. Let Q be aHAVING query usingCOUNT(DISTINCT) such that o= sk(Q) is safe, but
Q is NotCOUNT(DISTINCT)-safe; and let there be some g such that key(g) and y¢ F2 then Q
hasfP-hard data complexity.

For notational convenience, we shall work with the skeletonRAWING queryQ[a(y) 6 k] and
assume tha is a distinguished variable.
1) gq=0qz—d ifze FJ
2) gq=>q if g = qu02 andvar(qg:) N var(gz) = @ andy € var(da)
3) g=qz— X if x,ze key(g) andz+y
4) a9=099 if key(g) = key(g'), var(g) = var(g') andarity (g) < arity (g)’
5 ag9=q if key(g) = var(g)
We letq =" ¢ denote thaty’ is the result of any finite sequence of rewrite rules appliegl to

Proposition B.2.7. If g =* g and d has#P-hard data complexity, then so does q.

Proof. For rule 1, we can simply restrict to instances where c. For rule 2, ifq; is hard then
g is hard because we can fill out each relatiorginwith a single tuple and usg to answerq.

Similarly, for rule 3 we can consider instances where x so q will answerq;. For rule 4, we
apply the obvious mapping on instances (to the new subgoal). For rule 5, we linotht tuples of

probability 1 and use this to answer O

195

Prop. B.2.6.By Prop. B.2.3, there is somesuch thatx € key(g) for anyg € goalQ). Letq =

sk(Q), we apply rule 1 and 2 to a fixed point, which removes any products. We then apply the rule 3
asVvz # Y, q[z— X]. Thus, all subgoals have two variablesandy. We then apply rule 4 to a fixed
point and finally rule 5 to a fixed point. It is easy to see that all remaining subgoals are of the form

R(x; y) which is the hard pattern. Further, it is easy to seedhat’ R (x;y) for somei. |
We can now prove the main result:

Lemma B.2.8. If Q is a HAVING query without self joins and Q is nGQODUNT(DISTINCT)-safe then

the evaluation problem for Q #P-hard.

Proof. If qis unsafe, the® hasfiP-hard data complexity. Thus, we may assume thiatsafe but
Qis notCOUNT(DISTINCT)-safe. IfQ containgg € goallQ) such thaly € var(g) buty ¢ key(g) then
Q hasfiP-hard data complexity by Lemma B.2.6. Thus, we may assumeytiypears only in key
positions.

First apply rewrite rule 2, to remove any products and so we may asusieonnected. 1)
is a connected angle key(g) for everyg thenQ is COUNT(DISTINCT)-safe. Thus, there are at least
two subgoals and one contains a variabldistinct fromy call themg andg’ respectively. Apply
the rewrite rule 3 ag[z — X] for eachz € var(q) — {x, y}. Using rules 4 and 5, we can then drop all

subgoals bug), g’ to obtain the patterR(x), S(x, y), which is hard. |
B.3 Appendix: Full Proofs for SUM and AVG

B.3.1 AVG hardness

Definition B.3.1. Given a set of nonnegative integers a. , an,
the {NONNEGATIVE SUBSET-AVG problem is to count the number of non-empty subsetsisS.. ., n

such that)«.s a¢/S|™ = B for some fixed integer B.
Proposition B.3.2. {NONNEGATIVE SUBSET-AVGis #{P-hard.

Proof. We first observe that if we allow arbitrary integers, then we can reducéNONWWEGATIVE
SUBSET-SUM with B = 0, which is{P-hard. Since the summation of any set is 0 if and only if their

average is 0. Thus, we reduce from this unrestricted version of the probleng +ehin; a then

196

we simply makes; = & + B, now all values are positive, we then ask if the averadg Sor any set

S we have :
Dlaysi™t = > (as+B)ISI™ = D (as+ B)ISI™ =) IS a5+ B
seS seS seS seS
Thus, it is clear that the average is satisfied only whgr as = 0. O

B.3.2 Proof of Theorem 4.4.21

It is sufficient to show the following lemma:

Lemma B.3.3. Let g= sk(Q), if If g is safe, but Q is na§UM-safe then there is an instance | then for

any set of valuesyy...,ynletg = gly —» yil and SC 1,...,n we haves(ALg ds) = [Tscs u(0s) =
271SI, Further, on any world W and;dhere is a single valuation v for, guch thaim(g;) € W.

Armed with his lemma we can always construct the distribution used in Prop. 4.4.20.

Proof. We observe thay ¢ FJ, else there would be $UM- andAVG-safe plan by Prop. B.2.5. Now
consider the rewriting[x — 'a’] for any x € F,, andq[x — V] if x ¢ F. Thus, in any subgoal
y = var(g). Pick one and add eagh value with probability% independently. Notice that every
relation either containg in each tuple or the constaat Since there are no self joins, this implies
in any valuation either it must use a tuple containyngr the relation contains a single tuple with
a for every attribute. Hence, the multiplicity §f is < 1 in any possible world. Since there is only
one relation with probabilistic tuples and all tuples hay® = 0.5, we haveu(Assqs) = 2715 as

required. |

Proposition B.3.4. If Q[SUM(y) = K] is not SUM-safe and on a tuple independent instance, then Q

does not have arpTras.

Proof. We observe thatSQM, =) is hard to approximate on even a single tuple-independent as a
consequence of the previous reduction, which gives a one-to-one reduction shswing)(is as
hard as

#SUBSET-SUM, anNP-hard problem and so has aexras. O

197

B.4 Convergence Proof of Lemma 4.6.8

In the proof of this lemma, we need a technical proposition:

Proposition B.4.1. Let q be a conjunctive query without self joins and R any relation contained in

goal(g), then W, 1) = >1crq((W - R) U {t}, 7). Here, the summation is in the semiring S.

Proof. By definition, the value of the quer(W) can be written agi(W, 7) = Yy [1geg 7(V(9))-
Sinceg does not contain self joins, each valuation contains exactly one memBeH&nce, there
is a bijection between the between the two sums. Since semirings are associative, this completes the

proof. O
We can now prove Lemma 4.6.8.

; < 1. To see

the other inequality, we construct a functibn WR — WO such that for anyv € W°, ‘% >

(n+1)"18~1. This is sifficient to prove the claim. We descrilieif W € WO then f(W) = W else,
W e WR — WO then we show that there is a tugle W such thatW — {t} € W°, f(W) = W — {t}.

Lemma 4.6.8 We first observe thatv® ¢ WR, by Lemma 4.6.6, which sho #\\fv’i

Since there are at mostpossible tuples to remove, this shows thatl(\/\/)| < (n+ 1), Using the
bounded odds equation, we have t# -Y{)\N)) > (n+ 1)"187L. Thus, all that remains to be shown is
that we can always find such a tuple,

ConsidetW € WR — WO, which means thay(W, 7°) > k andq(W, 7%) < n?. There must exist a
tuplet such thag(W, °) — q(W — {t}, 7°) > k/n otherwiseq(W, 7°) < k, which is a contradiction.

To see this, consider any relati®in the query, we apply the above proposition to observe that:

DlAw-{1,7% = > > aW-RuU{s},7°)

teR teR seR:s#t

(IR-1)> qW-RuUt},7°)

teR

(IR - 1)q(W, r°)

The second to last equality follows by counting how many times each term appears in the summation

and that the semiring is embeddable in the rational numi@ats (

198

q(W. 7°) — q(W - {t},7°) < k/n

= IRQW %)+ > aW—{t}, %) <k
teR
= [RgW) + (R - 1)qW r°) = W 7°) <k

The second line follows by summing ovan R, using the previous equation, and using tRak n.
Thus, we can conclude there is sotrgich thag(W, 7°) — q(W — {t}, 7°) > k/n. By Lemma 4.6.6
we have:

2
G <P = TaWrR) -5 <’

Wheres € [0, n). In turn, this implies
k k

o}
gW, T)Sﬁ6+ksk+ﬁ

Since,q(W. °) — q(W — {t},) > k/n, we have thag(W — {t},7°) < k and soW — {t} E Q° and
henceW — {t} € WP°. O

199

VITA

Christopher R was born in Los Angeles, California and raised in nearby Pasadena, California.
He received a B.A. with a double major in Mathematics and Computer Science from Cornell Uni-
versity in 2001, an M.Eng in Computer Science in 2003 from Cornell University, and an M.S. in
Computer Science in 2005 from the University of Washington. Starting in August of 2009, he will

be an assistant professor at the University of Wisconsin—Madison.

