

Ms. Mary Logan Remedial Project Manager USEPA, Region 5 77 W. Jackson Boulevard Chicago, Illinois 60604-3590 September 8, 2006 (1177/13.9)

RE: Completion Report Response to Comments Wisconsin Public Service Corporation Stevens Point, Wisconsin MGP Site CERCLA Docket No.: V-W-'06-C-847

Dear Ms. Logan:

On behalf of Wisconsin Public Service Corporation (WPSC), please find enclosed:

- Written response to Agency comments dated August 7, 2006, with errata for minor comments.
- Revised signed cover sheet with footnote that the June 5, 2006 Report was conditionally approved.

With this submittal we understand WPSC has met conditions for approval of this document and we look forward to completing the Draft Work Plan. Please do not hesitate to contact Mr. Brian Bartoszek (WPSC) at 920-433-2643 if you have any questions regarding these responses.

Sincerely,

NATURAL RESOURCE TECHNOLOGY, INC.

Eric P. Kovatch, PG, PH Senior Hydrogeologist

- Jennier M. Kahler, PE Senior Engineer
- Enc.: Response to Agency Comments & Errata Revised Signed Cover Sheet for the Completion Report
- cc: Mr. Brian Bartoszek, WPSC
 Mr. Tom Hvizdak, WDNR
 Mr. Bill Evans, WDNR
 Mr. Mark Thimke, Foley & Lardner (w/o attachments)

[1177/SP/Completion Report/MLogan trans 060908]

COMPLETION REPORT FORMER MANUFACTURED GAS PLANT WISCONSIN PUBLIC SERVICE CORPORATION STEVENS POINT, WISCONSIN USEPA ID: WIN000509983

Project No: 1177/12.3

Prepared For:

Wisconsin Public Service Corporation 700 N. Adams Street Green Bay, WI 54307

Prepared By:

Natural Resource Technology, Inc. 23713 W. Paul Road, Suite D Pewaukee, WI 53072

June 5, 2006¹

Éric P. Kovatch, PG, PH Senior Hydrogeologist

Laurie L. Parsons, PE, PH Principal Engineer

¹ USEPA Conditionally Approved the June 5, 2006 Draft Completion Report on August 7, 2006. A response to Agency Comments and Errata sheet are included herein and were issued on September 8, 2006.

Response to Agency Comments & Errata Draft Completion Report (dated June 5, 2006) WPSC Stevens Point MGP Site, Wisconsin

Agency Comments Received: August 7, 2006 Response Date: September 8, 2006

Comments from U.S. EPA and Wisconsin DNR (the Agencies) are listed and followed by responses (bulleted).

I. <u>Major Comments</u>

- 1. Groundwater Monitoring Network Figures 5 and 6 from Appendix D show that certain groundwater standards have been exceeded in several sampling rounds in wells OW-10 and OW-12. This may indicate that the downgradient extent of contamination has not been determined. Please evaluate the need for one or more additional wells/nests as part of the RI work planning.
 - The need for additional wells will be evaluated as part of the RI work planning. Groundwater data for the July and October 2006 sampling events will be reviewed and considered in this evaluation.
- 2. Potential Source Areas There are a few areas that may be potential source areas that are not fully addressed in the completion report. If there is insufficient information to eliminate these as potential sources, please plan to address them in the RI work plan.
 - Remedial actions completed to date were intended to address potential known source areas. Additional information by area is provided below. If there is a question of sufficiency of data, it will be addressed in the RI work planning process.
 - a. Purifier On page 1-5, the statement is made that all previously existing MGP-related structures have been removed from the site surface except the purifier. Please clarify the status of the purifier. Please also clarify if there were any sub-surface structures left remaining that may act as sources.
 - The only portion of the former purifier that was on site during activities throughout the 1990s was the purifier base/foundation. The concrete base was located at a depth less than two feet below ground surface and test pit information from various investigations in the vicinity support the conclusion that there is no further source related to the purifier. Locations, visual observations and sample results for prior work in the vicinity of the former purifier will be re-summarized in the RI Work Plan.
 - b. Tar wells Figure 2 in Appendix A shows two tar wells. While they appear to have been located in an area which has since been excavated, there is no specific information on their fate. Please provide any information that may be relevant to the potential for the tar wells or contaminants that migrated from the wells to act as ongoing sources.
 - During prior remediation work, only concrete debris was found in the vicinity of former tar wells (no intact structures) and all of this debris was removed and disposed off-site during soil remediation. The total PAH concentrations and naphthalene concentrations in particular for the excavation base and sidewall samples were summarized on Figures 9 and 10 of Appendix C. These data are indicators of remaining soil quality and the concentrations documented do not suggest this is an ongoing source area.

- c. Slough contaminated soil Boring 210 in the slough contained visibly contaminated soil. Please assess whether this contamination needs to be further assessed in the RI as either a source to groundwater, a source to surface water or a potential human health risk if the material were disturbed.
- Contaminated soil at the base of the former slough will be further assessed in the RI as to its potential for human health risk if excavated or disturbed. It was evaluated in previous work as to whether the soil at the base of the former slough is a source to groundwater or surface water. For ease of review, this assessment will be re-presented with supporting data within the RI Work Plan. This assessment occurred through investigations completed in January 2000 (SB-207 through SB-211) and subsequent installation of piezometer PZ-13B, to serve as a downgradient monitoring point for both the central portion of the site (in particular nest OW-7/PZ-7), as well as the former slough and soil boring SB-210. These actions were discussed with and pre-approved by WDNR in a May 2004 conference call, a summary of which was later provided to the WDNR.

In summary, as presented in the Supplemental Site Investigation Report (April 11, 2002), the conditions at boring SB-210: 1) were noted as a black sheen (not identified as free phase tar); 2) were likely related to the former slough bottom; 3) occurred within an organic silt layer that was less than one foot thick; 4) was not contiguous with other locations where tar was noted; and, 5) was not observed below the base of the former slough (thereby probably not a substantial source contributing to groundwater contamination). Based on these observations, the location of piezometer PZ-13B was approved to assess possible impacts originating from the former slough area and no additional soil borings were deemed necessary to evaluate the former slough.

II. <u>Recommendations</u>

- Recommendations below will be incorporated into future Completions Reports with the response for Comment 5 (bulleted).
- 3. Institutional Controls EPA's policy is that if an area on a site is not suitable for unrestricted use and unlimited access, ICs are required. Based on the reported concentrations in the Completion Report, ICs will be required at the Stevens Point site. The ICs should be evaluated in the FS and implemented after remedy selection. In future Completion Reports, as you discuss the work done to-date, please identify which areas/media are likely to require ICs and discuss what, if anything, has been done to place ICs.
- 4. Monitored Natural Attenuation (MNA) In general, the Completion Report should not make recommendations or draw conclusions about future response actions. Instead, the report is intended to recommend whether WPSC believes that actions which have been completed are sufficiently protective or whether additional work is required. The report contains several statements or inferences that MNA may be the final groundwater remedy. This is best left to later documents such as the FS, where an array of appropriate remedy options (possibly including MNA) can be developed. The RI Work Plan should ensure that the ongoing monitoring (including MNA parameters) provides sufficient information to support the FS assessment.
 - a. Page 3-1, Section 3-1, third sentence This sentence talks about the objective of the soil removal as "meeting established criteria for natural attenuation as a final remedy." It is not clear what "established criteria" were used or whether natural attenuation refers to residuals in the soil or the groundwater.

- Page 6-5, Section 6.2, conclusion 1 This recommendation states that MNA appears to be a viable remedial approach. Such conclusions are inappropriate for this report. The recommendation to continue groundwater monitoring is appropriate.
- 5. Groundwater Trend Analysis The report contains an analysis of groundwater results and trends. There is some concern that modifications of the sampling protocol in 2003 may influence the ability to assess trends. Also, EPA Region 5 conducts trend analysis and it is not clear if the approaches are similar. EPA recommends that an approach to groundwater trend analysis be developed as part of the Multi-Site RI documents and site-specific trend analysis be conducted in the site-specific RI and/or FS, as appropriate.
 - The Mann-Kendall statistical method was used for trend analysis because WDNR guidance currently recommends this method. However, if there is a particular methodology that USEPA Region 5 recommends, WPSC would appreciate specific input on such methodology(ies) prior to completion of the multi-site documents so they can be evaluated appropriately.
- 6. Page 1-2, Section 1.1.1.1 This section is titled "Overview of Remediation Work Completed." However, three of the four bullets relate to investigatory work. In future reports please distinguish between remediation and other response actions by either having separate sections or by re-titling the section by dropping "remediation"
- 7. Page 1-3, Section 1.1.1.3 It is not clear where or how these interim/supplemental actions were identified or how this section integrates with section 6.2. In future reports a brief introductory paragraph might be useful.
- 8. Page 6-1, Section 6.1.1 Please also consider EPA's Soil Screening Guidance in future reports. This guidance can be found at: <u>http://www.epa.gov/superfund/resources/soil/index.htm</u>
- 9. Page 6-2, Sections 6.1.1.1 and 6.1.1.2 The term "site" has a specific definition under CERCLA. As defined in the NCP a site is "the areal extent of contamination and all suitable areas in very close proximity to the contamination necessary for implementation of the response action." In future reports please use a term such as "on/off-property" or "on/off-facility" to distinguish locations.
- 10. Page 6-5, Section 6.1.4 When groundwater above standards has gone beyond the facility boundary the Completion Reports should consider local use and potential groundwater exposures that could occur prior to selection of the final groundwater response action. For example, the report should discuss whether the adjacent properties where contamination is found use private wells for potable or industrial purposes and whether there are any controls on groundwater use.

III. <u>Minor Comments</u>

- 11. Page 1-2, Section 1.1.1.2, first bullet Please review the last sentence. The date 2005 seems to be inserted incorrectly.
 - <u>Errata</u>: The statement should read "Flow is generally to the west away from the Wisconsin River due to the site being upstream of the Main Street Dam."

Wisconsin Public Service

Wisconsin Public Service Corporation

Completion Report

Former Manufactured Gas Plant Stevens Point, Wisconsin

USEPA ID: WIN000509983

NRT Project No: 1177

COMPLETION REPORT FORMER MANUFACTURED GAS PLANT WISCONSIN PUBLIC SERVICE CORPORATION STEVENS POINT, WISCONSIN USEPA ID: WIN000509983

Project No: 1177/12.3

Prepared For:

Wisconsin Public Service Corporation 700 N. Adams Street Green Bay, WI 54307

Prepared By:

Natural Resource Technology, Inc. 23713 W. Paul Road, Suite D Pewaukee, WI 53072

June 5, 2006

Eric P. Kovatch, PG, PH Senior Hydrogeologist Laurie L. Parson, PE Principal Engineer

TABLE OF CONTENTS

1 INTRODUCTION		1-1			
	1.1	Overvie	ew of Prev	viously Completed Activities	1-2
		1.1.1	Site Stat	us Summary	1-2
			1.1.1.1	Overview of Remediation Work Completed	1-2
			1.1.1.2	Status of Site Conditions & Monitoring	1-2
			1.1.1.3	Interim/Supplemental Actions Identified	1-3
	1.2	Genera	al Site Info	ormation	1-3
	1.3	History	of Site U	se	1-4
2	SOIL	INVES	FIGATION	I RESULTS	2-1
	2.1	Overvie	ew		2-1
	2.2	Investi	gation Ch	ronology	2-1
		2.2.1	Investiga	ations Completed Prior to Soil Remediation	2-1
		2.2.2	Supplem	nental Soil Sampling Following Remediation	2-2
	2.3	Overal	l Site Geo	logy	2-2
	2.4				
		2.4.1	Surface	Soil Quality	2-4
		2.4.2	Subsurfa	ace Soil Quality	2-5
	2.5	Post-R	emediatio	n Soil Sampling Results	2-6
		2.5.1	Former	Slough Borings	2-7
		2.5.2	North Bo	oundary Borings	2-8
		2.5.3	Gas Hol	der Boring	2-9
		2.5.4		Pioneer Park Borings	
		2.5.5	Well Bor	ing Sampling Results	2-9

3	REM	EDIAL A	ACTION	1
	3.1	Overvie	ew3-	1
	3.2	Remed	lial Action Objectives and Approach3-	1
	3.3	Pre-Re	medial Action Activities	3
		3.3.1	Permitting	3
		3.3.2	Utility Trenching	3
		3.3.3	Pre-Remedial Test Pits and Hand Augers	3
	3.4	Areas	of Concern	4
	3.5	Surface	e Soil Removal	5
	3.6	Source	Area Excavation and Management	5
		3.6.1	Thermal Treatment and Verification Sampling	6
		3.6.2	Other Remedial Action Activities	6
		3.6.3	Documentation Sampling	7
	3.7	Backfill	ing and Site Restoration	7
	3.8	Materia	al Management Summary	8
4	GRO	UNDWA	TER AND STORM WATER INVESTIGATION RESULTS4-	1
	4.1	Overvie	ew4-	1
	4.2	Ground	dwater Quality Prior to Soil Remediation4-	1
	4.3	Post-R	emediation Groundwater Monitoring4-	1
		4.3.1	Groundwater Flow Direction And Gradients4-	2
		4.3.2	Groundwater Analytical Results and Trends4-	3
		4.3.3	Recommendations4-	5
	4.4	Storm	Sewer Monitoring4-	5
5	SED		NVESTIGATION AND RESULTS	1
	5.1	Wiscor	sin River Investigation5-	1
		5.1.1 5.1.2	Poling Locations and Observations5- Sediment Sampling and Observations5-	
		0.1.2		1

			5.1.2.1	PAH Results5-2
			5.1.2.2	BTEX Results5-3
			5.1.2.3	Cyanide Results5-3
			5.1.2.4	Metals Results5-3
	5.2 5.3			ctivities and Results5-3 5-4
		5.3.1		Method5-4
		5.3.2	Results a	nd Recommendations5-5
6	IDEN	ITIFIED	PATHWAY	S AND CONCLUSIONS6-1
	6.1	Exposu	ure Pathwa	y Analysis6-1
		6.1.1	Direct Co	ntact Evaluation6-1
			6.1.1.1	On-site Surface Soil Quality6-2
			6.1.1.2	Off-site Surface Soil Quality6-2
		6.1.2	Direct Co	ntact Protection6-3
		6.1.3	Groundwa	ater Pathway Evaluation6-4
			6.1.3.1	Source Removal6-4
			6.1.3.2	Post Remedial Action Monitoring6-5
		6.1.4	Groundwa	ater Receptors6-5
	6.2	Additio	nal Work S	ummary6-5
7	REF	ERENCE	ES (RECOF	RD FILE)7-1

APPENDICES

Appendix A:	Figures 1 through 5 and Tables 2 and 3 (Remedial Actions Options Report)	
Appendix B:	Figures 2 through 5 and Tables 5 and 6 (Supplemental Site Investigation an Groundwater Monitoring Report)	d
Appendix C:	Figures 3 through 11, Tables 1 through 8, and Plates 1 through 4 (Remedial Action Documentation Report)	
Appendix D:	Figures 1 through 6 and Tables 1 through 5 (Updated from Previous Annual Monitoring Reports)	
	· · · · · · · · · · · · · · · · · · ·	

draft_st pt completion report 060605.doc

- Appendix E: Groundwater Laboratory Reports (January 2005 through April 2006)
- Appendix F: Mann-Kendall Statistical Analyses for Select Site Wells
- Appendix G: Figure 10 and Tables 3, 4, 10, and 11 (Supplemental Site Investigation and Groundwater Monitoring Report)
- Appendix H: Figure 1 and Tables 1 and 2 (Divers Survey Letter)
- Appendix I: Stevens Point Municipal Well Information and Storm Sewer Correspondence

1 INTRODUCTION

This Completion Report has been prepared on behalf of Wisconsin Public Service Corporation (WPSC) by Natural Resource Technology, Inc. (NRT). The report summarizes environmental investigation and remediation activities completed at the former Steven Point Manufactured Gas Plant (MGP) facility between the mid-1980s and April 2006. Much of the report has been taken from previously provided reports, but it is summarized herein to provide the United States Environmental Protection Agency (USEPA) a summary of site work, conditions, and status.

This Completion Report was prepared in accordance with the Administrative Order on Consent (AOC) and attached Statement of Work (SOW) executed with between USEPA and WPSC in early May 2006 (*SOW Task 1: Project Scoping and RI/FS Planning Documents, Section 1.1.2.2*). The purpose of the report is to:

- Describe areas and/or media that necessary response actions have been completed, prior to the effective date of the AOC;
- Provide documentation to establish that the areas/media addressed do not constitute a threat to public health, welfare or the environment, and that further remedial measures and/or other response actions are not necessary;
- For those areas and/or media that were not addressed by previous work, describe what additional work is necessary, for incorporation into the site-specific RI/FS Planning documents.

Generally, all of the data included herein, with the exception of the groundwater sampling results from January 2005 through April 2006 have previously been provided to either the Wisconsin Department of Natural Resources (WDNR) or the USEPA. Therefore, previously published data and maps will be used to convey the necessary information for this report.

The report is separated into the following seven sections:

- Section 2: Soil Investigation Results
- Section 3: Soil Remedial Action;
- Section 4: Groundwater and Surface Water Investigation Results;
- Section 5: Sediment Investigation Results;
- Section 6: Identified Pathways and Conclusions; and

■ Section 7: References.

Previously published Figures, Tables, and Plates/Drawings are included in the appendices, as appropriate.

1.1 Overview of Previously Completed Activities

A summary of current site conditions was provided to USEPA in August 2005¹. The site status summary included information pertaining to the remediation work completed, the status of site conditions and current monitoring, and interim/supplemental actions that had been identified, as well as a listing of previously issued documents pertaining to the site. The summary items included in the report are reiterated below.

1.1.1 Site Status Summary

1.1.1.1 Overview of Remediation Work Completed

- Upland remediation work was completed by WPSC in 1998, including source area excavation and thermal treatment (16,400 tons), and placement of cover soils for direct contact protection.
- Groundwater monitoring is in progress to assess the feasibility of natural attenuation for residual groundwater quality impacts.
- Annual groundwater monitoring was completed in March 2005. Additional wells were subsequently installed to define residual plume extent as agreed through discussions with the WDNR.
- A sediment quality assessment was completed in 2000 including a small pond (0.2 acres) located in Pfiffner Pioneer Park and the adjacent Wisconsin River. A supplemental diver survey of Wisconsin River sediments was completed in 2002.

1.1.1.2 Status of Site Conditions & Monitoring

- Groundwater depth ranges from 2 feet in Pfiffner Pioneer Park to 10 feet bgs on the south site of the site. Flow is generally to the east away from the Wisconsin River, due to the site being, 2005 upstream of the Main Street Dam.
- Fill is present to a depth of 1 to 15 feet bgs overlying high permeability sand and gravel. The fill is silty sand and gravel mixed with building debris, ash, cinders, slag, sawdust and wood fragments. Fractured granite bedrock occurs at 21 to 33 feet bgs at the site

¹ NRT. August 31, 2005. Upland Site Data Summary. Former Manufactured Gas Plant Site, Stevens Point.

(bedrock was encountered at 13.5 feet bgs during drilling of PZ-13B approximately 400 feet south of the site).

- Post-remediation residual concentrations of petroleum volatile organic compounds (PVOCs), polycyclic aromatic hydrocarbons (PAHs) and cyanide are present in soil and groundwater at the site, as described in the project reports of record.
- Shallow groundwater quality has improved substantially following the source removal actions completed in 1998.
- Deeper groundwater quality is being monitored by a network of eight piezometers and trends are stable or decreasing.
- Water depths in the pond were 2 to 3 feet, with a soft sediment thickness of 2 feet. Water depths in the Wisconsin River vary from about 3 to 21 feet within the areas investigated, with soft sediment thicknesses of 0 to 2 feet based on poling information. The river bottom contained woody debris in many locations with sandy sediments within the interstices.
- Based on sediment surface and core sampling performed in 2000, total PAH concentrations in the pond (Pfiffner Pioneer Park) were 10 to 260 milligrams per kilogram (mg/kg). In the Wisconsin River, concentrations were variable; highest concentrations were 11,000 to 20,000 mg/kg within the upper profile of the sediment in a localized area near the outlet to the former slough (samples T-203A and T-203B). Although tar, odors and sheen were noted on samples from the cores, this area of the river bed was covered by rock, boulders and debris and made core sampling difficult.
- The subsequent diver survey in 2002 identified no visible tar in surface sediments in the vicinity of T-203A and T-203B.

1.1.1.3 Interim/Supplemental Actions Identified

- Continued groundwater monitoring to demonstrate plume definition and stability (in progress).
- Continued evaluation of groundwater discharges to the adjacent perforated storm sewer with respect to receiving stream surface water quality criteria.

1.2 General Site Information

The former Stevens Point MGP site is located in Stevens Point, Portage County, Wisconsin, and encompasses an area of approximately 3 acres (Appendix A, Figure 1). The site is currently an unused, grass-covered lot bounded by Crosby Avenue to the west; a City of Stevens Point parking lot to the south and east; and a residential area, West Street, and apartment buildings to the north (Appendix A, Figure 2). Pfiffner Pioneer Park, owned by the City of Stevens Point, lies west of the site across Crosby Avenue and is bordered on the west by the Wisconsin River.

Owner/Operator:	Wisconsin Public Service Corporation Contact: Mr. Brian Bartoszek (920.433.2643) 700 North Adams Street, P.O. Box 19002 Green Bay, WI 54307-9002
Site Location:	T24N, R8E, Section 32 Crosby Avenue Stevens Point, Wisconsin Portage County
USEPA ID	WIN000509983
WDNR BRRTS #	02-50-000079

1.3 History of Site Use

The Stevens Point MGP operated from approximately the 1890s to the late 1940s or early 1950s, using the carburetted water/gas method to produce gas primarily from oil (SHS, 1994). The plant ceased production in the late 1940s to early 1950s when piped natural gas became readily available to the Stevens Point area (EDI, 1986). The west side of the site was the location of the former MGP process structures, while the east side of the site was generally used as a storage and disposal area for MGP process wastes and other materials.

Review of Sanborn maps identified the following former MGP-related structures at the facility. The approximate locations are shown on Appendix A, Figure 2:

- Materials storage building and garage;
- A naphtha tank of unknown volume;
- Gas and electric plants;
- A purifier;
- A 10,000 gallon crude oil tank;
- Six propane tanks of unknown volume;
- A substation and transformer yard;
- Two tar wells of unknown size; and,
- Eight gas holders with capacities of $4,500 \text{ ft}^3$, $10,000 \text{ ft}^3$, $19,500 \text{ ft}^3$ (2), $40,000 \text{ ft}^3$, $200,000 \text{ ft}^3$, and two of unknown volumes.

draft_st pt completion report 060605.doc

With the exception of the purifier, all previously existing MGP-related structures have been removed from the site surface. However, some former structure foundations were noted during subsurface environmental investigations and the soil remedial action.

A slough was formerly located on the south boundary of the site. The slough represented the remains of Mosses Creek, a former tributary to the Wisconsin River. The slough served as a storm sewer outfall to the Wisconsin River, until a dam was constructed in the Wisconsin River (approximately one half mile downstream of the site) and a retaining wall was built in 1918. The resulting water in the "pond" (see Appendix A, Figure 2) was pumped out to the river by a lift station at the slough outfall. In the 1980's, a new storm sewer main was constructed in the vicinity of the slough, routed away from the Wisconsin River, to an outfall south of the Main Street Dam. As part of the storm sewer reconstruction, the slough was filled.

2.1 Overview

The soil investigations discussed herein were completed to evaluate impacts with respect to the direct contact and groundwater protection pathways. The data were generally compared to standards that were established based on human health assumptions regarding these two pathways. Also, data regarding other possible exposure pathways may have been collected as part of the process, but the results were not compared with any other standards at the time. Specific discussions regarding exposure pathways are included in Section 6, as stated above, and summarize any existing conditions that may pose a concern to human health and/or the environment.

2.2 Investigation Chronology

Soil sampling efforts began in 1986 and continued through June 2000 with a series of separate investigations. Discussion of soil impacts is divided into pre- and post-remedial action, which was completed between February and June 1998. Therefore, a significant portion of the soil impacts identified prior to 1998 were remediated. Soil sampling efforts completed in 2000 focused on evaluating the former slough as well as areas outside of the three major soil excavation areas addressed during remediation (Section 3). Detailed information of the soil investigation activities and results (including boring and well installation logs) summarized herein were discussed in the following reports:

- EDI Science and Engineering (EDI). 1986. Site Investigation, Former Coal Gas Manufacturing Plant, Crosby Avenue, Stevens Point, Wisconsin.
- NRT 1994 May 3, Natural Resource Technology, Inc. Phase II Site Investigation Report, Former Manufactured Gas Plant (MGP), Stevens Point, WI, Project No. 1150.
- NRT. October 2, 1996. Phase II Addendum Investigation Results, Former Stevens Point MGP Site, Stevens Point, Wisconsin. Letter Transmittal.
- NRT. April 11, 2002. Supplemental Site Investigation and Groundwater Monitoring Report, Former MGP, Stevens Point, Wisconsin.

2.2.1 Investigations Completed Prior to Soil Remediation

Soil investigation activities generally focused on areas within and adjacent to the former MGP structures and operating areas. As appropriate, the investigations included potential preferential pathways (i.e. draft st pt completion report 060605.doc NATURAL

2-1

former MGP subsurface piping or existing utilities). Discussion of data obtained during investigations completed through June 1996 focused on observations and analytical results that indicated a soil remedial action was necessary. The various investigation phases are listed below.

- A 1986 Phase I Environmental Site Assessment (ESA) by EDI included collection and analysis of surface and subsurface soil samples and installation and sampling of three groundwater monitoring wells.
- Twin City Testing installed seven additional monitoring wells in 1989.
- In 1990, WPSC personnel excavated test pits to assess the extent and nature of soil impacts on the property.
- A 1994 Phase II Site Investigation Report by NRT defined subsurface geology, hydrogeology, and the nature and extent of organic and inorganic impacts.
- In 1995 and 1996 NRT completed soil investigation, groundwater sampling, and data collection for remedial design purposes.

Soil boring, test pit, surface soil sample, Hydro-PunchTM, monitoring well, and piezometer locations from the various investigations are shown on Appendix A, Figure 3. All investigation data points and former MGP structures are shown on Appendix C, Plate 1 for comparison.

2.2.2 Supplemental Soil Sampling Following Remediation

In January 2000, NRT collected soil samples from 14 locations to evaluate the presence/absence of residual impacts within the former slough and near the south edge of one of the soil remediation excavation areas. Two replacement wells (OW-03R and OW-5R) and one additional well/piezometer nest (OW-11/PZ-11B) were also installed to supplement the monitoring network and facilitate groundwater sampling. Data from this investigation were used to further the understanding of geologic conditions at the site.

2.3 Overall Site Geology

Soil stratigraphy at the former Stevens Point MGP site consists of one to 15 feet of miscellaneous fill material overlying high permeability alluvial sand. The heterogeneous fill material consists of silty sand and gravel with coal fragments, fly ash, broken glass, cinders, bricks, sawdust, and wood chips. Underlying the fill is a predominantly fine- to medium- grained uniform sand or silty sand with gravel. Fractured Precambrian granite bedrock was encountered in several boreholes at depths ranging from 20 to 33 feet below ground surface (bgs), and bedrock extended to depth at all location where encountered.

Updated geologic cross sections were developed after completion of the supplemental site investigation. Cross sections A-A' and B-B' (Appendix B, Figures 3 and 4, respectively) generally trend from the southwest to the east while cross section C-C' trends from the southeast to the northwest (Appendix B, Figure 5). The cross sections indicate that bedrock dips to the west, towards the river. In the vicinity of well nest OW-5R/P-5B (on the east side of the site), bedrock is encountered at an elevation of approximately 1,060 feet mean sea level (MSL). On the west side of the site, the bedrock surface decreases to an elevation of between 1,035 and 1,040 feet MSL in the vicinity of well OW-2/boring SB-210 (Appendix B, cross sections A-A' and B-B'). Cross section C-C' indicates that bedrock also dips slightly to the south. Locally, the area surrounding the site is fairly level, typical of river valleys (Appendix A, Figure 1), but regionally the topography of the area dips west towards the river.

The base of the former slough is approximately 13 to 15 feet bgs where present, with the depth increasing towards the river. Fill material was generally encountered in the upper portion of borings installed along the slough. Beneath the fill material, relatively homogeneous native sand and gravel glacial/alluvial deposits were identified above the upper fractured bedrock surface. Saturated conditions were documented in all locations at depths where the slough base was identified.

2.4 Pre-Remediation Soil Quality

Soil samples were historically analyzed for PAHs and cyanide, which are typically the primary constituents of concern (COCs) at most MGP sites. Samples were also analyzed for VOCs and later reduced to benzene, toluene, ethylbenzene, and xylene (BTEX), as chlorinated VOCs are not typically an issue at MGP sites. Additional samples were also analyzed for a variety of parameters that were required to assess possible remedial alternatives. Discussion of the historic results will largely focus on BTEX, cyanide, and PAHs. The BTEX/cyanide and PAH results are listed on Appendix A, Tables 2 and 3, respectively.

For comparison purposes, Wisconsin Administrative Code Chapter NR 720 generic residual contaminant levels (RCLs) for BTEX, as well as the WDNR interim generic RCLs for PAHs, were included on Appendix A, Tables 2 and 3, respectively. The BTEX RCLs were for the groundwater protection pathway. The PAH RCLs were for the groundwater protection and direct contact pathways. The preliminary remediation goals (PRGs) developed by USEPA Region 9 were also included on Appendix A, Tables 2 and 3. These values were used as guidance in defining areas that required remediation.

Soil quality at the site was divided into surface and subsurface impacts. For the specific conditions at the site, surface impacts were defined as material containing elevated MGP-related constituent concentrations within two feet below land surface. This depth coincided with the depth at which soil disturbance was reasonably expected as a result of the anticipated land use (EPA March 1994), which in the mid-1990s was development of the site for commercial purposes. Subsurface impacts were delimited as the zone between two feet bgs and the upper limit of groundwater fluctuation, which may be possible source areas of groundwater impacts through leaching of contaminants. The approximate extents of surface and subsurface impacts in 1998 are shown on Appendix A, Figures 4 and 5, respectively.

Soil impacts were detected in several areas of the site. Delineation of horizontal and vertical impacts was based on boring logs, field screening results, and observations obtained from previous investigations. The areas that were ultimately remediated (as discussed in Section 3) were based on available site data and best professional judgment.

2.4.1 Surface Soil Quality

Surface soil impacts present at the Stevens Point MGP site represented a potential human health risk through direct exposure. PAHs and cyanide were the main COCs in surface soils (Appendix A, Tables 2 and 3, respectively). Lead was also detected at an elevated concentration in the vicinity of Crosby Avenue (SS-3), but this appeared to be an isolated occurrence based on additional sampling by SHS (1994). Impacted surface soils were located in two distinct areas: on the western portion of the site extending into Pfiffner Pioneer Park, and to the east of the former MGP process structures on the eastern portion of the site (Appendix A, Figure 4).

The former MGP process structures were located on the western part of the site. PAHs, cyanide and, to a lesser extent, lead were the COCs in this area. An elevated total cyanide concentration was found in soil sample B-108. Additionally, Prussian blue wood chips, resulting from oxide box wastes and sometimes indicative of cyanide impacts, were noted at the ground surface at boring SB-201, within the former purifier foundation. Elevated PAH concentrations were detected in surface soil samples SS-1 and SS-2 at 6 to 18 inches bgs. Several PAH compounds were also present at concentrations above the interim generic direct contact RCLs.

Elevated lead concentrations were also detected in some areas, and indicated additional potential direct contact risks. The occurrence of lead may not have been related to former MGP operations, but it co-occurred with the MGP impacts and was thus considered in evaluating remedial options.

High PAH impacts and relatively high cyanide concentrations were detected in samples on the eastern half of the site, which was used as a storage and disposal area for MGP process wastes and other materials. PAH detections may also represent analysis of coal fragments or dust which was noted in the area of B-102. Coal material may have been scattered in this area during unloading of coal from a former railroad spur.

2.4.2 Subsurface Soil Quality

Interpretation of subsurface soil impact areas was based on sample analytical results (Appendix A, Tables 2 and 3) and field observations, and occurred in four main areas (Appendix A, Figure 5). The four areas included the following:

- The largest area of subsurface impacts encompassed sample locations TP-21, TP-26, and TP-23, and B-102 on the eastern portion of the site. Significant levels of PAHs and/or cyanide were detected in this area. Sampling logs indicated odorous, oily soil intermixed with fill material. Free coal tar was encountered during excavation and removal of the storm sewer line in the vicinity of monitoring well OW-5 by the City of Stevens Point in the early 1990s (documentation of the exact locations does not exist). The highest PAH concentrations in groundwater are located in nearby wells, and this area of soil impacts appeared to be a source area. The estimated extent of impacts was increased in this area to allow for the expected subsurface variability and lack of documentation of the exact locations of coal tar encountered during sewer excavation.
- A localized area surrounding test pit TP-7, which was associated with a former gas holder. TP-7 was excavated over a long distance, so three separate locations are shown on the various figures included herein that represent the east and west ends of the excavation as well as the approximate central point. This excavation was extended to evaluate changing conditions over the former gas holder. This location exhibited elevated PAH and cyanide concentrations, and stained, odorous soil was noted on the test pit log. Naphthalene and phenanthrene were the PAHs of primary concern with respect to the groundwater migration pathway.
- A localized area surrounding test pit TP-3, inside a former gas holder, in the northern part of the site adjacent to West Street. High PAH concentrations were present eight feet bgs. The TP-3 log described eight feet of "clean sand" with a 1-2 inch layer of tar on the bottom of the intact holder; the sample was likely from or very near the tar layer.
- A localized area surrounding boring HP-109 in Pfiffner Pioneer Park. Total cyanide was elevated at five feet bgs, and combined with the cyanide level in soil from B-108, was thought to possibly represent a potential source area of cyanide impacts in groundwater previously observed in monitoring well OW-3.

Unsaturated zone soil samples collected across the site between one and seven feet bgs showed no detections exceeding the NR 720 generic RCLs for BTEX. Also, shallow borings analyzed for benzene by the Toxicity Characteristic Leaching Procedure (TCLP) showed no detects (NRT, October 1996).

Although BTEX was present in groundwater, the data available from the investigation activities completed prior to soil remediation suggested that no significant source areas for BTEX were present in the unsaturated zone soils.

Free coal tar resulting from former MGP site operations was noted in several borings and during construction of the sewer line traversing the southern property border, including the following locations:

- B-104 at 12.6 to 12.7 feet bgs, 16.4 to 16.5 feet bgs, and 18.5 feet bgs;
- SB-2 from 8 to 8.5 feet bgs;
- PZ-3B at eight feet (sand seam);
- SB-204 from one to two feet bgs;
- PZ-7B from six to eight feet bgs with wood as well as trace tar noted from 15 to 18 feet bgs; and
- In the vicinity of monitoring well OW-5 during excavation and installation of the sewer line which traversed the property.

The locations and depths noted above indicated the presence of coal tar mainly in the saturated or groundwater fluctuation zone.

2.5 Post-Remediation Soil Sampling Results

The January 2000 sampling effort focused on evaluating the feasibility of natural attenuation and to address specific concerns raised by the WDNR following soil remediation activities (completed in June 1998 and discussed in Section 3).

Ten soil borings and four wells were installed during this effort to evaluate the presence or absence of significant residual impacts and/or to characterize off-site subsurface conditions to identify future use restriction areas. The locations of these borings, shown on Appendix B, Figure 2, include the following:

- <u>SB-207 through SB-211</u> completed within the former slough along the south-southwest boundary of the property and off-site to the south to evaluate the presence of MGP residual;
- <u>SB-212 and SB-213</u> located at the north boundary between the site and the adjacent apartment building property to evaluate soil concentrations for direct contact pathway purposes;
- **SB-214** completed adjacent to the former gas holder on the east side near OW-4; and

■ <u>SB-215 and SB-216</u> – located at the northwest corner of the site, on City park property, northwest beyond EW-106 in the vicinity of B-123 and B-110.

Replacement wells OW-3R (for well OW-3) and OW-5R (for well OW-5) were installed to monitor groundwater quality following the source removal actions. Additionally, well nest OW-11/PZ-11B was installed to evaluate concentrations downgradient of Excavation Area 1 (Appendix B, Figure 2).

Soil samples were collected from each of the borings and from piezometer boring PZ-11B; no other samples were collected from the well borings. The samples were submitted for laboratory analysis of PAHs, BTEX, total cyanide, lead, and total organic carbon (TOC). The results are listed, along with sampling results from previous nearby locations and excavation base and sidewall samples collected during the remedial action described in Section 3, on Appendix B, Tables 5 and 6.

2.5.1 Former Slough Borings

Borings SB-207 through SB-211 were performed to assess soil quality within and beneath the former slough. Borings SB-207, SB-208, and SB-211 were terminated in the native sand while borings SB-209 and SB-210 were terminated at the bedrock surface (36 and 52 feet bgs, respectively). The apparent base of the former slough varied from approximately 13 feet bgs in the eastern portion to 15 feet bgs closer to the pond (Cross Section A-A'), and fill material was generally encountered in the upper portion of borings. Organic or MGP odors and elevated photoionization detector (PID) readings were evident at the approximate depth of the slough bottom in all borings; however, no tar product or oily residuals were encountered at the former slough bottom in any of these borings. Relatively homogeneous native sand and gravel glacial/alluvial deposits were identified beneath the fill material. Saturated conditions were documented in all locations at depths where the slough base was identified.

Evidence of MGP residuals (i.e., odors and/or elevated PID readings) were found in borings SB-208 and SB-209 within saturated native soil beneath the former slough base. These observations corresponded to previously detected groundwater impacts in the lower portion of the aquifer. Slight odors were noted in samples collected from SB-209 within the saturated materials (from approximately 15 to 33 feet bgs). Split-spoon sampling was terminated at 33 feet due to refusal, however, dense hardpan clay was observed on the outer surface of the lower three feet of the augers, representing conditions between approximately 33 and 36 feet bgs. Tar droplets were noted within the hardpan clay and cobbles. No indication of tar-like material was observed above this layer.

Sample results from SB-207 through SB-211 borings that were collected either above or at the base of the former slough contained elevated levels of PAHs and/or BTEX (Appendix B, Tables 5 and 6, respectively). Results from soil samples B-103, B-104, EB-1 (11), and EB-5 (12), collected previously or during remedial action from the slough area, are provided on Appendix B, Tables 5 and 6 for comparison.

Tar-like odors were identified within the slough; however, there was no evidence of oily material present either in collected soil samples or on the drilling equipment. Naphthalene and benzene concentrations were detected, however BTEX and PAH concentrations in soils below the base of the former slough (greater than 18 feet bgs) were at least one order of magnitude or more lower than the concentrations for samples collected from the base of the slough. Therefore, the slough was not considered a source area for groundwater impacts. Additional details of the slough investigation, observations and analytical results are provided in the Supplemental Site Investigation Report (NRT, 2002).

In addition to these observations, the results for samples collected immediately above the bedrock interface from borings SB-209 and SB-210 indicated low levels of PAHs present in the lower unit, with total PAH results of 4.5 mg/kg and 2.5 mg/kg, respectively (Appendix B, Table 5). As indicated previously, tar-like droplets were observed at SB-209, at the interface between unconsolidated material and bedrock (33 to 35 feet, bgs). There was no corresponding detection of BTEX compounds at these intervals (Appendix B, Table 6)

2.5.2 North Boundary Borings

Borings SB-212 and SB-213 were performed to characterize unsaturated soil quality at locations near the north property boundary, in an area historically used for coal storage. Trace black-colored gravel and wood were encountered within fill material in the upper 3 feet of these borings, similar to soil types documented during remedial action. Saturated soils within SB-212 and SB-213 had an organic/tar odor and elevated PID readings at depths corresponding to the groundwater table. Samples collected from these borings focused on relatively shallow soil (one to seven feet bgs) for evaluating potential direct contact exposures.

Samples from SB-212 and SB-213 had no significant detections of PAHS, BTEX or total cyanide (Appendix B, Tables 5 and 6), and lead was below Wisconsin NR 720 levels for non-industrial use. Concentrations were below levels of concern for groundwater pathways. The fill material in this area contains possible coal fragments, wood chips, and other debris from historical industrial sources.

draft_st pt completion report 060605.doc

2.5.3 Gas Holder Boring

Soil boring SB-214 was completed near OW-4 and test pit TP-109 (Appendix B, Figure 2) to further document potential residual impacts near the former gas holder. This boring encountered sandy fill material with no identifiable MGP or other waste residuals. A slight discoloration of soil was noted in the upper foot of saturated material; however, no odors or oils were present in this layer. Analytical results for the sample collected from eight to ten feet bgs indicated that PAHs were below the method detection limits and there was only a slightly elevated total cyanide concentration (Appendix B, Tables 5 and 6).

2.5.4 Pfiffner Pioneer Park Borings

Borings SB-215 and SB-216 were completed in Pfiffner Pioneer Park (Appendix B, Figure 2) to evaluate the lateral extent of residual impacts detected in excavation sidewall sample EW-106 and boring B-110. Boring SB-215 was completed initially to determine the appropriate location of SB-216. SB-215 had no evidence of MGP residuals based on color and appearance. Boring SB-216 was installed between SB-215 and excavation sample EW-106 and also had no visual evidence of MGP residuals. A wood chip layer noted in both borings occurred between 6 to 10 feet bgs and was similar in color (red/brown) to that previously documented during the soil remedial action work in the vicinity of the former excavation extending into Pfiffner Pioneer Park. Remedial excavations in 1998 targeted the removal of wood chips and stained soil that were blue-green in color, typical of purifier box wastes. The source of the wood found at SB-215 and SB-216 is unknown, possibly un-weathered purifier box wood chips (iron impregnated) or may be related to the former historical lumber yard operations in the vicinity of Pfiffner Pioneer Park.

Soil boring SB-216 had elevated total cyanide and PAHs in the sample from 4 to 6 feet bgs, taken from the sandy fill material above the wood chip layer. Select PAH and total cyanide concentrations were above the generic RCL and PRG direct contact values (Appendix B, Tables 5 and 6). The sample from the wood chip layer at SB-215 had significantly lower concentrations of PAHs and total cyanide, indicating that it may not be spent purifier box waste. SB-216 approximately defines the northeastern extent of impacts within Pfiffner Pioneer Park and adjacent to the former excavation area, based on results for SB-215, EB-103, EW-107, and EW-108.

2.5.5 Well Boring Sampling Results

The only soil sample from a well boring was collected at the bedrock interface in the boring for piezometer PZ-11B. Detected PAHs and total cyanide were present at very low concentrations and

BTEX compounds were not detected (Appendix B, Tables 5 and 6). These results indicate that there is no MGP residual material in the vicinity of piezometer PZ-11B.

3 REMEDIAL ACTION

3.1 Overview

The RAOR was completed based on the soil analytical results obtained prior to June 1996, and the remedial alternative selected for the site was source area excavation with medium temperature thermal desorption (MMTD) in a portable unit. This alternative was recommended based on implementability, source removal effectiveness, applicability to site conditions, regulatory requirements at the time, anticipated site use, and economic feasibility. The objective of this alternative was to remove the significant impacts with the goal of meeting established criteria for natural attenuation as a final remedy. This section summarizes the remediation objectives, approach, activities, and results. Specific details of the remedial action are provided in the Remedial Action Documentation Report (NRT, September 1998).

3.2 Remedial Action Objectives and Approach

The remedial action objectives included the following:

- Excavate, thermally treat, and replace the most heavily impacted areas of MGP residuals affecting soil and groundwater quality at the site;
- Sample treated material and soil left in-place to document the remaining on-site soil quality;
- Minimize potential human exposures to MGP residuals by institutional and engineering controls; and
- Restore the site to conditions amenable for development as green space and/or additional parking lots.

These remedial objectives were established to be consistent with the March 1997 WDNR Interim Guidance on Soil Performance Standards.

Excavation and removal of areas of concern were conducted using a combination of analytical screening and performance based criteria, which required continuous field assessment to respond to changing conditions encountered during excavation operations. Subsurface conditions and the extent of contamination posed numerous challenges to meeting key remedial objectives associated with maximizing the removal of contaminant mass and reducing direct contact risks for future site use. The former MGP site contained several underground structures consisting of reinforced concrete foundations, utilities, wood and miscellaneous other debris that were previously unidentified.

Excavation plans were also field modified to address previously unidentified "hot spots" of coal tar contamination. The intent was to remove as much coal tar material as practical. Material was removed to a maximum depth of approximately one to two feet below the water table, to the extent possible. Based on these considerations, a flexible remedial strategy was implemented throughout the course of excavation operations and included the following key elements:

- Visual Assessment of Contaminant Conditions: Areas visually identified to be impacted were targeted for removal. Visual criteria such as bluish soil and/or presence of coal tar was utilized to provide rapid assessment of excavation requirements.
- Groundwater Dewatering: To maximize excavation depths, dewatering wells were installed as needed near on-going excavation operations. Dewatering operations were only conducted with the intent of facilitating the excavation operations and recovery of phase-separated hydrocarbons occasionally encountered in the excavations.
- Field Screening of Soil Samples: Soil samples collected during excavation operations were field screened using a PID to evaluate the need to extend the excavation limits.
- Soil Sample Laboratory Analyses: Laboratory analytical data for samples collected from the remaining soil were used to document that sufficient removal had been conducted. When appropriate, these samples were expedited at the laboratory to assist in determining excavation limits.

In addition, the excavation strategy focused on the delineation and removal of areas where the following conditions were identified through field judgment and observations:

- The presence of underground structures related to historical MGP operations showing visible evidence of impacts either on its surfaces or in material contained within;
- Areas where saturated soil exhibiting sheen, strong odor, or evidence of coal tar was encountered at an accessible depth; and,
- Soil and/or fill material exhibiting obvious blue or black discoloration, characteristic of cyanide or lead impacts, in areas where elevated concentrations were previously measured.

The project plan also included rapid backfilling of excavated areas with treated soil, which was important due to limited space for stockpiling treated and untreated soil and engineering difficulties associated with dust control and routing heavy equipment traffic. Rapid backfilling also aided in reducing odors and vapor phase organics associated with MGP residuals in soil and groundwater. A minimum of two feet of imported clean fill material was placed over areas backfilled with thermally treated soil to minimize direct

contact risks associated with any residual cyanide and/or lead-containing soil. Finally, a minimum four inches of clean imported material was placed across the remainder of the former MGP property, and this was seeded and mulched.

Remedial activities were conducted in general accordance with the RAOR and Remedial Work Plan as described in the Remedial Action Documentation Report, (NRT, September 1998). Site work began on February 16 and ended on June 3, 1998.

3.3 Pre-Remedial Action Activities

3.3.1 Permitting

Necessary air and solid waste permits for completing the remedial action were requested from WDNR. Based on comments received from WDNR, a Pretreatment Soil Sampling Plan, a Perimeter Air Monitoring Plan, and a Fugitive Dust Plan were developed. The plans were submitted to and approved by the Department. A list of additional permits granted by WDNR and City of Stevens Point is included in the Remedial Action Documentation Report (NRT, September 1998).

3.3.2 Utility Trenching

A natural gas main line was installed at the site to provide service for the planned thermal treatment plant in January and February 1998. During installation of the gas line trench, an area of noticeable naphthalene odors was encountered east of the former 40,000 cubic foot gas holder (Appendix C, Plate 1), and a sample was collected for laboratory analysis of BTEX and PAHs. Based on field observations and the laboratory results, soil encountered in this area was identified for excavation and thermal treatment. Therefore, the utility trench was over-excavated in areas of observed impacts during remediation activities and this soil was thermally treated.

3.3.3 Pre-Remedial Test Pits and Hand Augers

Twenty-two test pits (TP-101 through TP-122) were advanced to confirm the excavation limits using discreet sample locations prior to excavation (Appendix C, Plate 1). Groundwater was encountered in most test pits from 6 to 8 feet bgs, although at some of the locations it appeared to be "perched" above the water table. The test pits indicated the following:

draft_st pt completion report 060605.doc

- Planned areas of excavation on the east side of the site and near Pfiffner Pioneer Park did not change appreciably from areas originally proposed in the Remedial Work Plan (NRT, February 1998).
- Surface soil samples (0-6") in Pfiffner Pioneer Park were not above generic direct contact RCLs or PRGs for total cyanide or PAHs (Appendix C, Table 1).
- Test pit TP-101 was advanced adjacent to the OW-7 nest and showed PAH and cyanide contamination at or below-detection limits in soil above groundwater (approximately 5.5 feet bgs).
- Test pit TP-117 located adjacent to Crosby Avenue contained BTEX and PAHs in sufficiently high concentrations to warrant excavation to at least 4 feet bgs. As a result, excavation in the area of TP-117 was deeper than 2 feet bgs, as originally estimated.

Overall, the test pit sampling results were useful for refining and confirming excavation limits, and the data complemented previous soil results for determining degree and extent of impacts.

Prior to excavation, the extent of cyanide contaminated soil in the vicinity of B-108, located in Pfiffner Pioneer Park, was evaluated through four hand auger samples (HA-1 through HA-4, Appendix C, Plate 1). One sample from each hand auger was collected from a depth of 0.5 to 2 feet bgs and analyzed for total cyanide. Results showed cyanide concentrations of 2 mg/kg or less in each sample (Appendix C, Table 1), and it was concluded that cyanide contamination did not extend to the south, west or east of B-108.

3.4 Areas of Concern

The contaminants of concern in soil included BTEX, PAHs, cyanide and lead. Targeted areas included the following:

- Surface soil impacts in Pfiffner Pioneer Park, western and eastern areas of the site, where previous sampling activity indicates the presence of PAHs, cyanide, and lead in surface soils. Cyanide contaminated soil was typically identifiable by Prussian blue stained soil and wood chips.
- Subsurface soils greater than two feet bgs to a depth of one foot below the existing groundwater table in probable source areas of tar and/or cyanide contamination, including near well nests represented by OW-3 and OW-5; and the former 40,000 cubic foot gas holder.
- Soil impacts beneath Crosby Avenue if field conditions indicated a source area of soil contamination during the excavation activities.
- Soil impacts near a former tar well located centrally on the site, based on field conditions encountered while installing a natural gas line at the site.

- Former coal tar or cyanide contaminated structures and their contents.
- Soil impacts extending from planned excavation areas, where direct contact risks appeared to be present, as confirmed by laboratory analytical results.
- Accessible soil impacts extending from planned excavation areas, where leaching to groundwater was probable.

3.5 Surface Soil Removal

COCs, including cyanide and PAHs, were noted to be scattered in some of the remaining site areas as coal fragments, occasional purifier waste wood chips, etc. To address these areas and possible concerns for direct contact at the surface, the top four inches of surface soil from the entire site were removed. In accordance with the Remedial Work Plan, surface soil was scraped, stockpiled, and sampled in a composite fashion (every 100 cubic yards) to determine if the soils should be thermally treated prior to use as subsurface backfill at the site. Samples CLN-1 through CLN-7 represent surface soil composites collected in the areas described below:

- CLN-1 and 2: Southern part of the site, in the location of treated soil stockpiles;
- CLN-3 and 4: East and north of the eastern excavation area;
- CLN-5 and 6: Northwest area, adjacent to residential properties; and
- CLN-7: Beneath Crosby Ave., to be replaced with new sub-base.

The laboratory analytical results for BTEX, PAHs, total cyanide, and total lead were compared to the appropriate regulatory standards or the proposed treatment concentrations to determine if the stockpiles required treatment prior to backfilling (Appendix C, Table 2). The stockpiles represented by samples CLN-1, CLN-2, and CLN-7 required treatment prior to backfilling, based on the PAH concentrations.

3.6 Source Area Excavation and Management

The three areas excavated and treated are shown on Appendix C, Plate 3. Labeled as Excavation Areas 1 through 3, the locations are summarized as follows:

■ Excavation Area 1 (Appendix C, Figures 3 through 5): included surface and subsurface soil in the eastern portion of the site surrounding borings SS-5, SS-2, B-102, TP-23, and the OW-5/OW-5A/P 5B well nest to an average depth of 9 to 10 feet bgs and maximum depth of 14 feet. Approximately 5,000 cubic yards (cy) of soil were excavated from this area.

draft_st pt completion report 060605.doc

- Excavation Area 2 (Appendix C, Figures 6 through 8): included the excavation of subsurface soils to an average depth of 9 to 10 feet (maximum 14 feet) in the area surrounding test pit TP-111 and piezometer PZ-3B. Additionally, surface soil impacts were excavated to a depth of two feet in the northwest portion of the site and Pfiffner Pioneer Park including former borings B-108 and SS-3. Approximately 4,600 cy of soil were excavated from this area.
- Excavation Area 3 (Appendix C, Figures 9 through 11): was identified as the location near the former gas holder sampled by investigation test pit TP-7. Based on field conditions encountered while installing a natural gas line at the site, the volume and area was extended to the southeast from this gas holder to include the area near a former tar well. Excavation depth averaged 9 to 10 feet bgs (with a maximum of 11 feet). Approximately 2,400 cy of soil were excavated from this area.

3.6.1 Thermal Treatment and Verification Sampling

A total of 14,628.21 tons of soil was treated between April 3 and May 21, 1998. Treatment verification samples were collected in accordance with the Remedial Work Plan. Treated soil was stockpiled in 500 ton intervals pending laboratory analytical results at a frequency of one composite sample per stockpile. Post-treatment soil analytical results, along with the treatment soil standards, are listed on Appendix C, Table 5.

Post-treatment cyanide concentrations were below 1.4 mg/kg; however, lead exceeded the 50 mg/kg residential direct contact RCL in most post-treatment samples. In accordance with the Remedial Work Plan, treated soil exceeding the 50 mg/kg residential direct contact value would be managed by re-placing this material only in areas on WPSC property with a minimum 3-foot separation from the groundwater table and 18 inch separation from ground surface. Due to the volume of soil containing elevated lead, it was necessary to backfill a portion at depths less than 3 feet from the groundwater table.

Based on the arithmetic mean of all pre-treatment and post-treatment sample results, thermal treatment achieved 99.4 percent removal of analyzed organics in soil. This is based on results on Appendix C, Tables 4 and 5, where the approximate arithmetic mean of pre-treatment soil concentrations of total BTEX and PAHs were 21 mg/kg and 945 mg/kg, and the average post-treatment soil concentrations were 0.1 mg/kg and 5.4 mg/kg, respectively. Averaged over the 14,628.21 tons treated, the BTEX and PAH mass removed by thermal treatment was approximately 600 pounds and 27,500 pounds, respectively.

3.6.2 Other Remedial Action Activities

As part of implementing the remedial action, the following activities were also performed to meet the objectives of the remedial action:

- Air Monitoring Including treatment system emission levels, ambient air monitoring at the site perimeter to monitor and document ambient air quality during remediation activities and air monitoring in the work zone was also performed during excavation activities to monitor exposure levels and determine the appropriate level of personal protective equipment required for workers; and
- Excavation Dewatering and Treatment To minimize accumulation of contaminated water in the excavations. The water was pre-treated through a system that included solids settling and filtration using bag filters and granular activated carbon (GAC) prior to discharge to the wastewater treatment plant, which was approved by the City of Stevens Point and WDNR.

3.6.3 Documentation Sampling

Excavation and sample depths cited below are relative to pre-remediation site elevations. Sidewall and base samples were collected following excavation to document residual concentrations (Appendix C, Table 3). Excavation sidewall soil samples were collected at approximately 50 foot intervals, and excavation base samples were collected approximately every 2,500 square feet. Samples were collected more frequently in areas of potentially higher impact.

Remaining soil quality for total BTEX/benzene, total PAHs/naphthalene and total cyanide/lead are summarized on Appendix C, Figures 6, 7 and 8, respectively. Documentation samples results were generally low to non-detectable concentrations of BTEX and PAH, indicating the edge of the impacted areas had generally been reached. Relatively moderate total PAH concentrations were detected in sidewall samples from excavations Area 1 and Area 2 and may be attributed to the abundance of cinders and coal fragments in this excavation area.

A sidewall sample collected from Area 3 contained relatively elevated BTEX, total PAH, cyanide, and lead concentrations. However, residual unsaturated impacts in this area did not appear to be contributing to groundwater impacts, as low BTEX and PAH concentrations were detected in an earlier groundwater samples in the vicinity. Additional soil borings (discussed in Section 2) were completed in the area during the supplemental site investigation to further assess the feasibility of groundwater remediation by monitored natural attenuation.

3.7 Backfilling and Site Restoration

Treated soil was replaced in the excavations and compacted following treatment to acceptable levels. Approximately 9,000 tons of clean imported granular backfill was installed above treated backfilled soil to a thickness of 2 feet above the treated soil. A slight slope was developed across Excavation Area 1 prior to placing imported backfill to promote runoff, and the final site grade is shown on Appendix C, Plate 4. The top 4 inches over the entire WPSC property was replaced with fine grained topsoil material, mulched, and seeded.

Upon completion of excavation and thermal treatment activities, disturbed areas of the site including the City of Stevens Point parking lot and West Street were restored, to the extent practical, to pre-remediation conditions with respect to topography, hydrology, and vegetation. Crosby Avenue was replaced and the disturbed areas of Pfiffner Pioneer Park were sodded following the completion of Excavation Area 2.

3.8 Material Management Summary

In summary, the final tonnage of material encountered and/or used at the site, as well as its final disposition is listed below.

Material	Disposition	Approx. Tons
Non-contaminated surface soil	Used as subsurface backfill	300
Contaminated soil thermally treated	Used as subsurface backfill	13,820
Contaminated debris	Crushed, treated, and used as subsurface backfill	810
Contaminated debris	Sent to landfill	1,500
Other materials (including	Sent to landfill	30
groundwater treatment wastes)		
Imported general fill and topsoil	Used for backfill	8,850

4 GROUNDWATER AND STORM WATER INVESTIGATION RESULTS

4.1 Overview

This section summarizes groundwater analytical results through April 2006, when the most recent round of sampling was completed. Results collected prior to soil remediation are discussed for comparison purposes, the majority of the section presents data collected after the 1998 remediation work. This summary updates previous annual groundwater monitoring reports submitted to WDNR. Specific discussions regarding groundwater exposure pathways are included in Section 6.

In addition, this section describes activities to evaluate storm sewers in and around the former MGP site. The activities were completed to evaluate potential for these lines to act as preferential pathways. Details were provided in the Supplemental Site Investigation Report (NRT, 2002) and summarized below.

4.2 Groundwater Quality Prior to Soil Remediation

Originally, groundwater concentrations exceeded the NR 140 Enforcement Standards (ESs) and Preventive Action Limits (PALs) for a number of compounds in two main areas of the site: the northwest corner in the vicinity of former MGP structures and in the south and east portion of the site adjacent to the former slough. Groundwater data collected through 1997 was used to confirm the target source removal areas addressed through soil remediation activities described in Section 3. The historic groundwater analytical results for benzene, naphthalene, and total cyanide are listed on the Appendix D tables.

4.3 Post-Remediation Groundwater Monitoring

Post-remediation monitoring was performed to assess the effectiveness of natural attenuation in addressing groundwater impacts. Groundwater samples have been collected in accordance with WDNR² guidelines. Samples have been collected in accordance with USEPA³ and ASTM⁴ low-flow methods

 ² WDNR, 1996, Groundwater Sampling Desk Reference, September 1996, Publication PUBL DG 03796, WDNR, Madison, Wisconsin, 169 pages.
 WDNR, 1996, Groundwater Sampling Field Manual, September 1996, Publication PUBL DG 03896, WDNR, Madison, Wisconsin, 76 pages.
 ³ USEPA, 1996, Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures.

⁴ ASTM International (ASTM), 2002, ASTM D6771-02, Standard Practice for Low-Flow Purging and Sampling from Wells and Devices Used

since November 2003. The sampling schedule for the wells, generally since early 2004, is listed in the table below.

January, April, July, and	April and October	April
October Sampling	Sampling	Sampling
OW-5R/P-5B, OW-7A/PZ-7B,	OW-6, OW-9/PZ-9B, PZ-11B,	OW-1, OW-2, OW-3R/PZ-3B,
and OW-12/PZ-12B	and PZ-13B	OW-4, OW-8, OW-10/PZ-10B,
		and OW-11

Continued monitoring has focused on nests OW-5R/P-5B, OW-7A/PZ-7B, and OW-12/PZ-12B based on the recent results. Hydrogeologic conditions at the site, which were described in the March 15, 2004 letter, are briefly summarized herein.

4.3.1 Groundwater Flow Direction And Gradients

Groundwater elevation measurements were collected prior to sampling activities each quarter at all wells in the network, regardless of whether analytical samples were being collected. (Appendix D, Table 1). Groundwater elevation contours from the water table wells and piezometers for October 2005 and April 2006 show that flow is generally east away from the Wisconsin River (Appendix D, Figures 1 through 4). This flow pattern is consistent with observations at the site since 1999 and reflects the influence of the dam, which is located about one half (0.5) mile downstream of the site.

This flow also confirms a conceptual groundwater flow net that was constructed for a cross section across a bedrock valley (presented in previous annual monitoring reports) and included as Appendix D, Figure 7. The conceptual model was based on site geology, elevation measurements, and the presence of the dam. The model indicates the Wisconsin River is a losing stream in the vicinity of the site based on the horizontal flow (shallow and within bedrock) away from the river and the river's position relative to the dam (Appendix D, Figure 7). Groundwater and analytical data discussed herein support this model.

Horizontal gradients across the site ranges from approximately $6x10^{-3}$ to $1x10^{-2}$ in the water table wells; however, the horizontal gradient is not calculated for the piezometers as only one elevation can be contoured at the site.

Vertical hydraulic gradients (Appendix D, Table 2) range from strongly upward to downward with the predominant gradients of flat to upward and seasonal weakly down to weakly up as summarized below. The exception is well nest OW-7A/PZ-7B, which has exhibited consistent downward gradients.

Well Nest	Vertical Gradient
OW-3R/PZ-3B	Predominately strongly upward
OW-5R/P-5B	Predominately flat to weakly up
OW-7A/PZ-7B	Downward
OW-9/PZ-9B	Predominately flat, occasional upward gradients
OW-10/PZ-10B	Predominately flat, seasonal weakly down to weakly up
OW-11R/PZ-11B	Weakly up to upward
OW-12/PZ-12B	Predominately flat, one weakly downward

4.3.2 Groundwater Analytical Results and Trends

Groundwater samples have been analyzed for BTEX (and later only benzene), PAHs, and several remediation by natural attenuation (RNA) parameters including methane, dissolved iron, nitrate/nitrite, and sulfate. The analytical results are summarized on Appendix D, Tables 3, 4, and 5, respectively. Benzene and naphthalene concentrations are summarized on Appendix D, Figures 5 and 6 for the shallow groundwater and deep groundwater, respectively. The laboratory reports for sampling events from January 2005 through April 2006, previously not submitted to the agency, are included in Appendix E. In addition to the laboratory parameters, the water temperature, conductivity, pH, dissolved oxygen content, and oxidation/reduction potential were measured in the field (Appendix D, Table 5).

Mann Kendall statistical trend analyses were completed for the wells where the benzene and naphthalene concentrations exceeded the NR 140 ES or PAL (Appendix F) and are summarized below. Only post remediation data, collected since June 1999 is included in the Mann Kendall analyses.

Well	Ben	zene	Napht	thalene			
wen	80% Confidence	90% Confidence	80% Confidence	90% Confidence			
OW-3R	Below NR 1	40 Standards	Decreasing				
OW-5R	No Trend (1	Non-Stable)	Decreasing				
OW-5R (Seasonal)	Decreasing	No Trend	Decreasing				
P-5B	Decre	easing	Decreasing				
OW-6	Decre	easing	Decreasing	No Trend (Stable)			
OW-7A	Decreasing	No Trend (Stable)	No Trend (Stable)				
PZ-7B	Below NP 1	40 Standards	No Trend (Stable)				
PZ-7B (Seasonal)	Delow INK I	40 Stanuarus	Decreasing	No Trend (Stable)			
OW-9	No Treno	d (Stable)	No Trend (Non-Stable)			
OW-9 (Seasonal)	Decre	easing	Decreasing	No Trend (Stable)			
PZ-11B	Decre	easing	Decr	easing			
OW-12	No Trend	d (Stable)	No Trend (Non-Stable)				
PZ-12B	Decreasing	No Trend (Stable)	Decreasing				

draft_st pt completion report 060605.doc

Significant analytical results and concentration trends observed in the wells listed above since June 1999, the first sampling event following completion of the soil remedial action, include the following:

- For the site wells installed prior to 2004, the Mann-Kendall results (either for the most recent 10 rounds of sampling or for seasonal data) indicate that concentrations trends are either decreasing or stable. This is significant because it suggests that the groundwater quality is at an equilibrium, and attenuation is occurring.
- Review of the seasonal data suggest that the variations observed seasonally are enough to mask the fact that concentration trends are either stable or decreasing. Data from the spring of each year (when available) was used for the seasonal trend analysis and indicates stable or decreasing trends. The spring data was used since many of the seasonal high concentrations were observed at this time of year.
- The benzene concentration trend in well OW-12, which was installed in summer 2004, is stable. The data are insufficient for evaluating the seasonal concentration trend for naphthalene. However, a stable naphthalene trend is expected as benzene and naphthalene concentration trends are similar in the other site wells.
- The benzene and naphthalene plumes have largely been defined in site wells and piezometers, and the long-term and/or seasonal concentration trends are stable or decreasing. Water table results indicate centrally located site wells OW-5R, OW-6, OW-7, and OW-9 exhibit concentrations consistently above the NR 140 ES (Appendix D, Figure 5). Data from downgradient off-site wells OW-10 and OW-12 suggest dissolved impacts in the central site wells are attenuating below state groundwater standards without significant off-site migration.
- The benzene and naphthalene concentrations in the bedrock piezometers (P-5B, PZ-9B, BZ-10B, PZ-12B, and PZ-13B) have declined significantly. Although piezometers P-5B and PZ-7B have elevated concentrations, results from the down-and side-gradient are lower in concentration and coupled with the upward vertical gradients, suggests that the plume is defined (Appendix D, Figure 6).
- Ethylbenzene, toluene, and xylene concentrations have steadily declined and remained below NR 140 PALs in water table wells and piezometers since 2000. In light of this trend, BTEX sampling was reduced to benzene only in January 2005.
- Benzo(a)pyrene, benzo(b)fluoranthene, and chrysene concentrations continue to decline in the wells where they were historically detected at concentrations above regulatory standards, predominantly in the central portion of the site (Appendix D, Table 4). Further, concentrations in side to downgradient wells are at or below standards, indicating that these dissolved constituents are not migrating significant distances.
- Methane concentrations across the site are relatively high, suggesting methanogenesis is resulting from biological processes. This is supported by low or decreased sulfate levels, particularly OW-4, OW-7A/PZ-7B, OW-9, OW-11, and OW-12.

4.3.3 Recommendations

Groundwater sampling of the wells and piezometers should continue at the site through the end of 2006 and possibly into 2007. Recent groundwater analytical results for well nests OW-10/PZ-10B and OW-12/PZ-12B suggest that the extent of groundwater impacts exceeding the benzene and naphthalene NR 140 ESs have largely been defined laterally and vertically. At this time, no additional monitoring wells are recommended, especially based on the stable and/or decreasing concentration trends .

4.4 Storm Sewer Monitoring

Following the soil remediation work in 1998, the City indicated that the storm sewer adjacent to the southeast edge of the site was perforated in preparation for sewer construction activities. Video taping of the storm sewer confirmed perforations existed in three segments of the storm sewer adjacent to the site. Based on elevation information provided by the City and groundwater elevations from the 2000 sampling event, it is possible that groundwater elevations are occasionally higher than the elevation of the perforations of the storm sewer over approximately 30 to 50 linear feet, near MH-4 (Appendix I, Figure 11).

In conjunction with groundwater sampling, water elevation, water sampling, and flow observations were performed in five manholes. Sample locations and analytical results are provided in Appendix I. Water quality results were compared to adjacent monitoring well analytical results and the General Wisconsin Pollution Discharge Elimination System (WPDES) permit limits established for remediation sites. Benzene and naphthalene, when detected, were below the General WPDES permit limits at downstream locations.

A storm sewer base flow estimate was provided at WDNR's request to establish preliminary limits for groundwater discharge of PAHs to the perforated storm sewer (Appendix I) and ultimate receiving stream (Wisconsin River). The applicability of this approach needs further evaluation with respect to regulatory requirements.

5 SEDIMENT INVESTIGATION AND RESULTS

Sediment sampling focused on identifying the nature and extent of MGP residuals in river sediments or natural soil material underlying the Wisconsin River and in the pond. Sediment/soil samples were collected from as deep as eight feet below the bottom of the river or pond and are herein referred to as "sediment samples" although in some locations natural soils were encountered and sampled. Specific discussions regarding exposure pathways is included in Section 6.

5.1 Wisconsin River Investigation

In June 2000, WPSC survey crews established seven transect (T-201 through T-207) markers along the Wisconsin River that were used for evaluating the river bathymetry and sediment sampling. Transects were located between approximately 600 feet upstream (*i.e.*, T-201) and 950 feet downstream (*i.e.*, T-207) of the outlet of the former slough (Appendix G, Figure 10). Further details regarding the methods for locating, poling, and sediment sampling are included in the Supplemental Site Investigation and Groundwater Monitoring Report (NRT, 2002). The poling and sediment sampling locations, sediment types, and sediment thickness observations from this effort are summarized on Appendix G, Tables 3 and 4 and shown on Appendix G, Figure 10.

5.1.1 Poling Locations and Observations

The river bathymetry evaluation included poling (using an aluminum pole) the water depth and soft sediment thickness along each transect by an NRT field crew. Sediment encountered closest to shore contained the greatest thickness of soft material. As the water depth and current velocity increased, the relative amount of soft sediment decreased. Fine-grained sediment was largely absent and large gravel, cobbles, and boulders dominated the bottom at poling locations furthest from shore (Appendix G, Table 3). Rocky bottom conditions were present at over half of the poling locations. Soft sediment, when present, ranged from less than one inch up to 22 inches thick. The mean sediment thickness at the 18 locations where sediment was present was approximately 5 inches.

5.1.2 Sediment Sampling and Observations

Locations, distance from shore, depth of core and recovery, sediment type, and field observations are summarized on Appendix G, Table 4.

Sediment collection was performed using direct push methods with a 2-inch diameter, four foot long sample recovery tube, which was transported and positioned on the river by a split-top spud barge. Twelve (12) locations were sampled in the river. Sediment sampling upstream of the former slough outlet was completed to provide an indication of background conditions for the river and site.

Proposed sample locations along several transects were relocated based on field encountered conditions (i.e., currents, rocky substrate, etc.). Sediment sampling proved difficult because of the rocky substrate. Over half of the borings required redeployment of the sample tube to collect additional sample because of rocks (Appendix G, Table 4). Most of the samples taken in the river likely represent sediment that was located between large rocks and boulders that were difficult to sample, and numerous locations required more than one attempt to collect the sample (Appendix G, Table 4). MGP residuals were noted in these sediments during sample collection. Poling and sampling activities also indicate that there is a limited extent of soft sediment.

Sediment samples were submitted for laboratory analysis of BTEX, PAHs, metals, and total cyanide, and the analytical results are summarized in Appendix G, Tables 10 and 11. Results are also shown on Appendix G, Figures ST PT-1 and ST PT-2.

5.1.2.1 PAH Results

Total PAH results for the three transect T-201 sediment samples (upstream of the site) are 0.4 mg/kg or less (Appendix G, Table 10), indicating that background PAH concentrations are relatively low in this portion of the river. Although PAH concentrations from transects T-203, T-204, and T-207 exceed the background results at T-201, impacts are limited to surface sediments very near the former slough outlet.

Higher PAH concentrations are present in surface sediments located near and just downstream of the former slough outlet (Appendix G, Table 10). PAH concentrations decline rapidly with depth and distance from the former slough outlet. Total PAH results for surface sediment along T-203 are two orders of magnitude higher than sediment collected at deeper intervals (Appendix G, Table 10), indicating that the highest PAH concentrations are confined to the surface sediments in this area.

Total PAH results for samples from transect T-204 further indicate that impacts are confined to near-shore sampling locations where soft sediments are present. Total PAH results for samples collected along transect T-207 also indicate that the extent of PAH impacts associated with the former slough outlet are limited.

draft_st pt completion report 060605.doc

5.1.2.2 BTEX Results

Background sediment sample results indicate that BTEX compounds are present upstream of the former slough outlet (Appendix G, Table 11). The highest concentrations are present in the shallow, near shore sample at T-201A, while the BTEX compounds are largely absent in the samples further from the shore.

Similar to the PAH results, the highest BTEX concentrations are found in surface sediments along T-203. Results from deeper samples at these locations also are two orders of magnitude or more lower (Appendix G, Table 11). Further, significantly lower (below background concentrations) results for the T-204 transect indicate the extent of impacts is limited. BTEX concentrations in the near-shore sample from T-207 were also below the background concentrations.

5.1.2.3 Cyanide Results

Two samples from each transect were analyzed for cyanide, and concentrations in these samples were very low. One background sample had a concentration of 0.023 mg/kg while concentrations along T-207 ranged from 0.048 to 0.080 mg/kg (Appendix G, Table 11). Cyanide was not detected in any sample from transects T-203 and T-204, strongly suggesting that the cyanide at transect T-207 is probably not related to the former MGP operations as it does not co-occur with the highest PAH/BTEX concentrations.

5.1.2.4 Metals Results

The highest cadmium, copper, lead, mercury, and zinc concentrations in the river sediments were in either the upstream or downstream transects (Appendix G, Table 11). Similar to cyanide, these results indicate that these metals are not related to MGP residuals.

5.2 Pond Sampling Activities and Results

Sediment samples from pond locations SD-201, SD-202, and SD-203 (Appendix G, Figure 10) were collected in June 2000 using a 4-foot long, 2-inch diameter coring unit that is pounded into the sediment using a weight. Between 16 and 28 inches of sediment were collected from the three locations within the pond (Appendix G, Table 4). Soft sediment thickness determined by poling (Appendix G, Table 3) was generally less than total sediment/soil thickness observed in the collected samples.

Odors of decaying organic material were noticeable in all three sediment cores. Also, a tar odor was noted in the sediment from core SD-201 (Appendix G, Table 4). The highest PAH concentrations were present at SD-202, although there was no odor noted at this location. PAH concentrations in the Pond are

draft_st pt completion report 060605.doc

generally higher than the river sediment samples with the exception of surface sediment concentrations along T-203 (Appendix G, Table 10).

Similar to the PAH results, BTEX concentrations in the pond generally exceed the river sediment results with the exception of the surface sediments at T-203A and T-203B (Appendix G, Table 11). However, unlike the PAH results, the highest BTEX concentrations were present in SD-201 and SD-203 (Appendix G, Table 11).

Cyanide was detected in sample SD-202, and it was approximately two orders of magnitude greater than concentrations observed in river sediments. These results further suggest that cyanide concentrations in the river are not related to impacts within the pond because cyanide was not detected in samples from T-203 or T-204. Metal concentrations in the pond, except for lead, were similar to those observed at the background sampling locations T-201 (Appendix G, Table 11). Lead concentrations in the pond ranged from 26 to 82 mg/kg (Appendix G, Table 11).

5.3 Diver Survey

A diver survey was conducted in the Wisconsin River on September 19, 2002 to supplement the June 2000 sediment sampling data. The purpose of the survey was to further evaluate sediment conditions in the river and specific objectives of this survey included the following:

- Determine the extent of debris on the bottom and the bottom substrate type;
- Document the presence or absence of visual evidence of MGP residuals; and
- Evaluate the horizontal extent of MGP or other residuals, if present.

These objectives were developed based on the fact that sediment samples were difficult to obtain due to rocky substrate and/or high amounts of debris and that the June 2000 samples collected immediately outside of the former slough outlet contained elevated PAH concentrations and MGP odors.

5.3.1 Sampling Method

The diver was equipped with a camera that afforded real-time video and a microphone headset so NRT could direct the diver during the survey. A copy of the videotape was included in the February 2003 letter and can be provided upon with request. The survey was conducted in a pattern of concentric arcs from the center of the bridge. The arcs started with a radius of 20 feet from the shore (Appendix H, Figure 1). The distance increased by 10-foot increments, up to a 90-foot radius arc.

The diver moved slowly along the bottom. Surface sediments were probed often, which removed the thin, flocculent layer of sediments. Diver observations are summarized on Appendix H, Table 1. The line tender and NRT staff person watched the water surface to see if any sheen resulted from the diver's disturbance of the surface sediments. No MGP residuals or sheens were observed.

After completing the eight arcs to 90 feet from shore, two transects perpendicular to shore were extended approximately 140 feet into the river to search farther. Transect ends were located near stations where MGP residuals were encountered during the June 2000 sediment investigation. Two core samples were collected on each transect (Appendix H, Figure 1), in areas that were identified as impacted during the previous survey. Two-foot sections of clear 2-inch PVC tubing were advanced into the river bottom by hand. Cores were advanced up to 22 inches (Appendix H, Table 2). No evidence of MGP residuals (i.e., tar, sheen, or odor) was noted in the samples.

5.3.2 Results and Recommendations

The survey results uncovered no visual evidence of MGP residuals as a result of a diver walking, probing, and removing debris from the river bottom. The condition and type of material encountered on the river bottom is noted on Appendix H, Tables 1 and 2. A significant amount of debris was encountered, including rock, timbers, wood, brick, and general construction rubble. Areas of soft sediment were occasional, and these were typically less than six inches thick when encountered.

No MGP residuals were observed in the push core samples taken near locations where previous MGP residuals were encountered. The need for additional remedial investigation is discussed in Section 6.

6 IDENTIFIED PATHWAYS AND CONCLUSIONS

6.1 Exposure Pathway Analysis

WPSC is in the process of developing a generic conceptual site model (CMS) for applicable exposure pathways associated with their former MGP sites, in accordance with the AOC. Development of the multi-site CSM is in progress and will be used for future work planning and site investigation/feasibility activities for all sites covered under the AOC, including the Stevens Point MGP site. For purposes of this Completion Report, a focused assessment of the exposure pathways addressed for the site is presented below, followed by a discussion of what additional work is necessary to assess other exposure pathways. This assessment can be refined as the multi-site CSM is developed.

The two primary exposure pathways addressed by the remediation work performed to date were:

- Protection of human health from direct contact with contaminated soil during and after the remedial activities; and
- Protection of groundwater from contaminant leaching through soil to groundwater.

Both pathways are discussed below with respect to remaining soil quality at the site.

6.1.1 Direct Contact Evaluation

Protection from long-term direct contact was addressed through the excavation and thermal treatment of contaminated soils within two feet of ground surface, combined with the placement of a surface cover (clean imported backfill). Laboratory analytical results obtained from soil borings, test pits, and excavation samples representing post-remedial surface soil conditions were compared to various screening levels for the COCs for direct contact protection taken from the following sources (Appendix C, Table 8):

- NR 720, Wis. Admin. Code;
- Illinois EPA Tiered Approach to Corrective Action Objectives (TACO), Soil Remediation Objectives (SROs);
- USEPA Region 9 Preliminary Remediation Goals (PRGs)

Remaining soil quality and risk potential were evaluated separately for on- and off-site areas for concentrations in soil less than two feet below the post-remedial ground surface elevations.

6.1.1.1 On-site Surface Soil Quality

Samples collected at depths two feet bgs or less following remediation and on the site (WPSC-owned property) are summarized on the upper section of Appendix C, Table 8 and Figures 3 through 11. Comparison to screening levels indicates following:

- All concentrations detected in on-site samples were well below the ingestion or inhalation short term exposure values (TACO, SROs);
- BTEX concentrations were well below the RCL or PRG screening levels, when detected;
- Several PAHs detected in samples TP-120, EW-118, EW-119 (located near excavation Area 2), and EW-204 (excavation Area 3) exceeded the PRGs and/or generic RCLs but are covered by four to six inches (or more) of clean imported material;
- Lead concentrations detected in samples EW-118 and TP-116 only slightly exceed the generic residential RCL of 50 mg/kg and are substantially below the industrial RCL of 500 mg/kg and the residential PRG of 400 mg/kg; and
- Cyanide concentrations detected in the on-site samples were well below the residential direct contact PRG.

6.1.1.2 Off-site Surface Soil Quality

Samples collected at depths two feet bgs or less following remediation and located off-site in Pfiffner Pioneer Park are summarized on the lower section of Appendix C, Table 8 and Figures 7 through 9. Comparison to screening levels indicates following:

 All concentrations detected in off-site samples were well below the ingestion or inhalation shorter term exposure values (TACO SROs);

- BTEX concentrations were well below screening levels (RCLS/PRGs) or not-detected;
- Concentrations of several PAHs and lead detected in sample EW-120 were above the guidance RCLs and PRGs; however, this area is capped by Crosby Avenue and results may have been affected by the prior presence of asphalt. No visual indications of MGP related impacts were identified.
- Benzo(a)pyrene concentrations exceeded the non-industrial direct contact RCL in samples TP-113, EW-107, and EW-110, but were below or similar to the industrial RCL and residential PRG. Benzo(a)anthracene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene concentrations in sample TP-113 were also above the generic RCLs but below residential PRGs for the respective

compounds. With these exceptions, no other direct contact screening levels were exceeded for PAHs in any of the off-site samples; and

 Cyanide concentrations detected in the off-site samples were also well below the residential direct contact PRG.

The shallow soil profile within the park that was exposed during the remedial activities in Area 2 generally contained 4 to 6 inches of topsoil over one to two feet of a sandy fill material and had no visual evidence of MGP impacts within the profile or on the surrounding grass surface. Any evidence of MGP impacts noted was deeper in the soil profile.

6.1.2 Direct Contact Protection

On the site, in Pfiffner Pioneer Park, and in/under Crosby Avenue measures were taken to eliminate risk for long-term direct contact associated with typical land uses. Four inches of clean imported backfill material were placed throughout the entire site. Crosby Avenue was reconstructed with new sub-base and asphalt, while disturbed areas of Pfiffner Pioneer Park, including the test pits and the excavation areas, were replaced with two feet of clean imported backfill and sodded.

As a result of the above-mentioned restoration procedures, direct contact with surface soils is not expected in ordinary site uses, which include recreation and lawn care. This conclusion is consistent with EPA recommendations that inhalation and ingestion pathways be evaluated at the "0 to 6 inch" depth within a soil profile (Technical Background Document for Draft Soil Screening Level Guidance, March 1994, EPA-540/R-94/018). Short term exposure during maintenance activities such as sprinkler repair or landscaping is not a concern because all concentrations detected in on- and off-site samples above two feet are well below the short-term construction ingestion or inhalation values previously referenced.

For potential future construction involving excavations below two feet from existing grade (e.g. utility lines or foundations), short-term exposure could occur in certain areas on-site and it was recommended that exposure should be evaluated, monitored, and managed accordingly depending on the specific location and nature of the construction plans. Off-site in Pfiffner Pioneer Park, the only area of concern with respect to deeper MGP related impacts documented during this remediation project is in the vicinity of EW-106 near Crosby Avenue (Appendix C, Table 3 and Figures 6 through 8).

WPSC informed the City of Stevens Point that direct contact with subsurface soils and inhalation exposure issues would need to be considered during future site development. Based on these potential exposure issues, the future development of the site will be controlled by WPSC as much as possible, which may include limiting future site use to commercial development.

draft_st pt completion report 060605.doc

6.1.3 Groundwater Pathway Evaluation

6.1.3.1 Source Removal

Protection of groundwater quality was addressed through the excavation and thermal destruction of the COCs in the source areas of the site, including temporary dewatering as discussed in Section 3. The remaining subsurface soil quality is summarized on Appendix C, Figures 3 through 11 for benzene, total BTEX, naphthalene, total PAHs, total cyanide, and lead. Conclusions of the source removal work were:

- Underground structures that were removed and areas that were excavated and treated contained the highest concentrations of MGP related impacts. Because these areas historically correlated to areas of highest groundwater impacts, long term improvement in groundwater quality is expected;
- A substantial mass of organic compounds with highest mobility for leaching to groundwater was removed/treated. For example, typical excavated concentrations were 30 to 40 mg/kg BTEX and 200 to 300 mg/kg naphthalene. Remaining concentrations averaged substantially less than 1 mg/kg for both BTEX and naphthalene;
- Significant cyanide removal was accomplished, particularly in the vicinity of Area 2 and former OW-3, resulting in overall groundwater quality improvement in this area; and
- Coal tar-related impacts may remain south of the Area 1 excavation. From post remediation sampling, it was concluded that these potential impacts were limited to the former slough area from a depth of 10 to 12 feet bgs and were at least partially removed when the City previously installed the storm sewer. Further, the residuals occurred in a relatively thin layer below the water table and could not be practically excavated. Groundwater data for locations surrounding the slough area (HP-119, HP-120 and OW-8) had not indicated significant adverse impact.

In reviewing the PAH data, it was important to consider the significant amount of coal fines that were encountered in the fill material, which in part contributes to the relatively high total organic carbon content (TOC). TOCs were in the range of 1 to 2% in both the remaining soil and treated backfill and were a significant factor in the ability of the site to attenuate organic contaminants.

Since the south side wall of Area 1 was not accessible for sampling due to the presence of the sheet pile it was further evaluated by installation of soil borings within the former slough (Section 2.4) and continued groundwater monitoring to compliment the existing data (Section 4). To this end, a groundwater monitoring program was designed and implemented to assess the effectiveness of the source removal actions and evaluate whether natural attenuation of residual contaminants was feasible as a sole groundwater remedy. Historic and recent groundwater data were discussed in Section 4.

6.1.3.2 Post Remedial Action Monitoring

As discussed in Section 4, the site monitoring wells exhibit stable or decreasing trends for either the 10 most recent sampling rounds or for seasonal data in the cases of wells OW-5R, PZ-7B, and OW-9. In addition, the lateral extent of the groundwater plume has been defined based on the April 2006 sampling results.

6.1.4 Groundwater Receptors

The City of Stevens Point municipal wells are located east of the site, and the locations are shown on the map included in Appendix I. This map was provided by the City of Stevens Point and it indicates that the closest well, Well #4 (which is a stand-by well), is over 2.5 miles from the site (calculated from other city maps). It is unlikely that site conditions would influence groundwater quality at the municipal wells for the following reasons:

- The overall regional groundwater flow is to the west (towards the river) in this area. This is reflected in the changing flow directions measured in site wells and the conceptual flow model; and
- The municipal wells are located near the Plover River, which likely provides the necessary recharge for these locations.

Under the present groundwater use conditions, along with results of ongoing groundwater monitoring, there does not appear to be a threat to the municipal wells.

As discussed in Section 4.4, storm sewers in the vicinity of the site have the potential to intercept groundwater. Concentrations within the storm sewer downstream of the site are low, typically below the General WPDES limits. The significance of this discharge with respect to regulatory standards has not been resolved.

6.2 Additional Work Summary

Areas and media that need further assessment and/or were not fully addressed by previous work with respect to public health, welfare or the environment include the following:

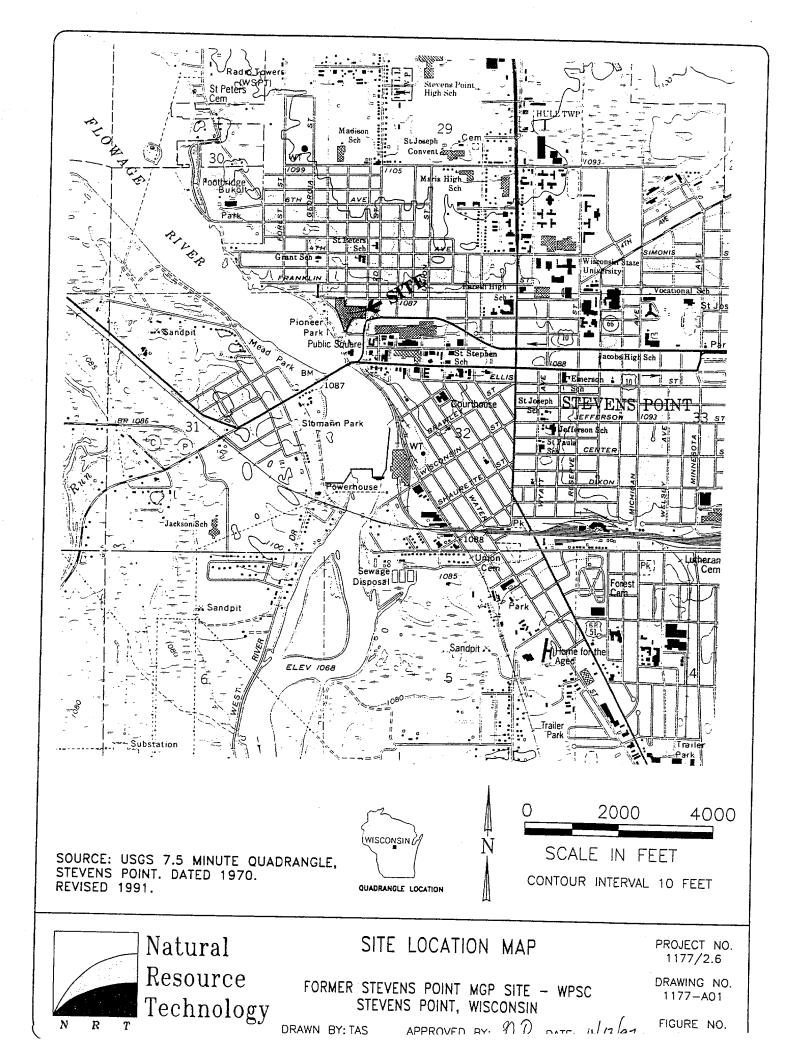
1. <u>Groundwater Monitoring</u>. Based on the stable and declining concentration trends (for both long-term or seasonal results), it appears that natural attenuation is a viable remedial alternative for groundwater quality improvement and protection of groundwater receptors. However, groundwater monitoring will continue for the near-term to provide additional data to confirm these concentration trends.

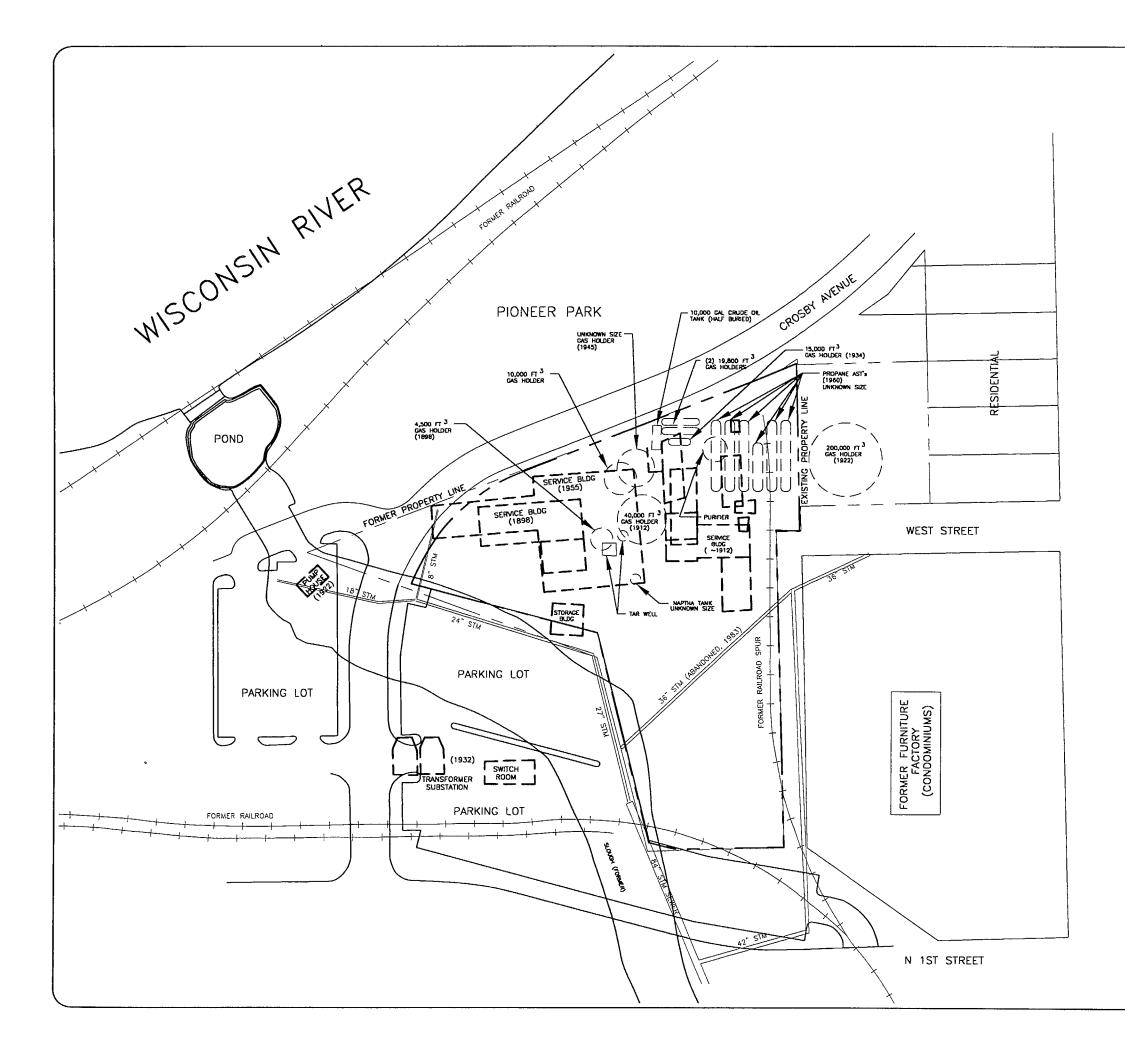
- 2. <u>Storm Sewer Assessment/Regulatory Determination</u>. Evaluate the significance of the groundwater infiltration potential along the storm sewer adjacent to the site with respect to applicable or relevant and appropriate requirements (ARARS).
- 3. <u>Sediment RI/FS</u>. Evaluate further assessment needs, including risk assessment if deemed appropriate, using the multi-site RI/FS Planning Documents currently being developed.

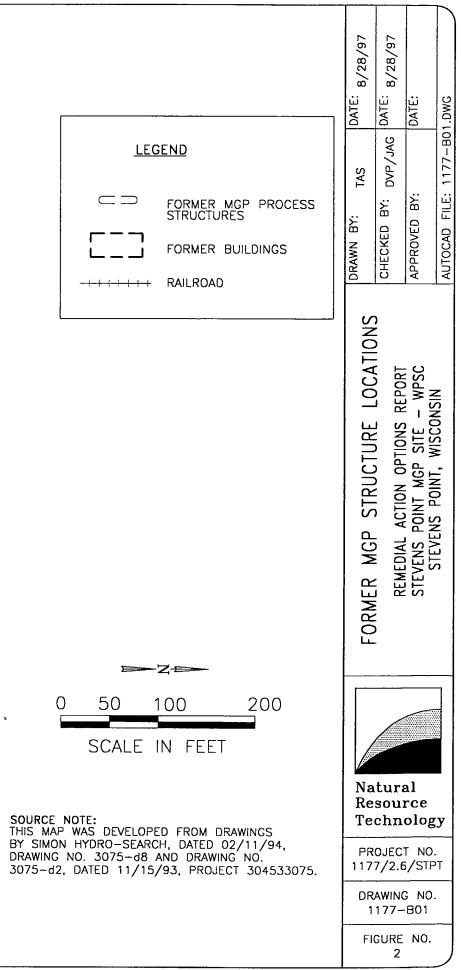
The above work elements will be incorporated into a Site-Specific Work Plan, to be submitted to USEPA in accordance with the established schedule.

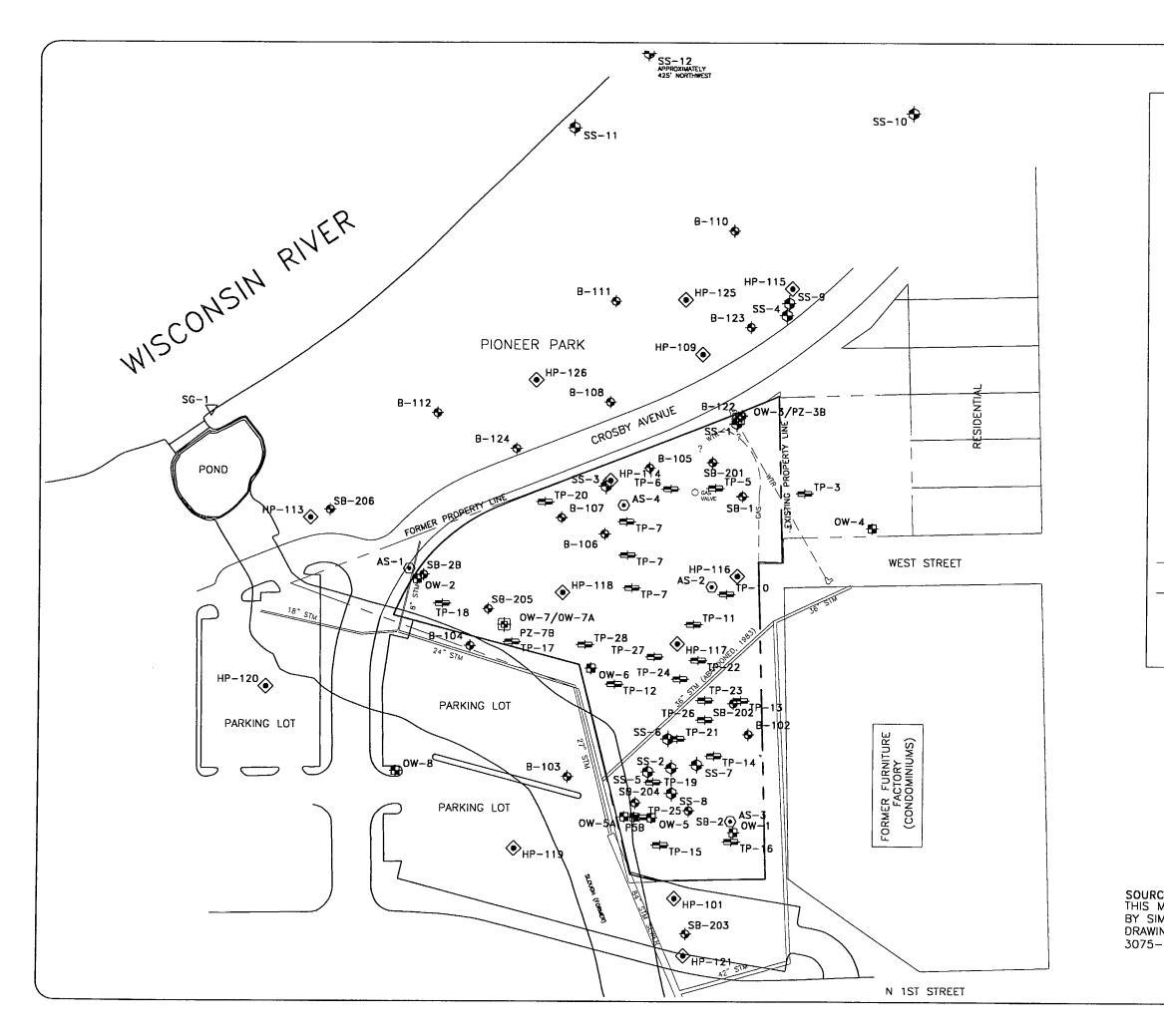
7 REFERENCES (RECORD FILE)

- 1986, EDI Engineering & Science, Inc., Site Investigation, Former Coal Gas Manufacturing Plant, Crosby Avenue, Stevens Point, Wisconsin,
- 1986, October 229, Donahue and Associates, Soils Investigation, Wisconsin Public Service Corporation, Properties in Stevens Point, Wisconsin.
- 1989 Twin City Testing Corporation, Report of Monitoring Well Installation Program, Crosby Avenue Site, Stevens Point, Wisconsin,
- 1990 March 7, Wisconsin Department of Natural Resources, Letter to Wisconsin Public Service Corporation, Request for additional investigation of the Wisconsin Public Service manufactured coal gas site located on Crosby Road in Stevens Point, Wisconsin.
- 1990 March 25, Simon Hydro-Search, Inc., Proposal for Phase II Site Investigation of Manufactured Gas Plant Site, Stevens Point, Wisconsin.
- 1991 February 26, Wisconsin Department of Natural Resources, Letter to Wisconsin Public Service Corporation, Response to the Proposal for Phase II Site Investigation for Phase II Site Investigation of Coal Gas Plant, Stevens Point, Wisconsin.
- 1993 April 6, Simon Hydro-Search, Inc. Phase II Work Plan for Environmental Investigation of Manufactured Gas Plant Site, Stevens Point, Wisconsin.
- 1993 April 26, Wisconsin Department of Natural Resources, Approval Letter to Wisconsin Public Service Corporation, Phase II Work Plan for Former Coal Gas Plant, Crosby Avenue, Stevens Point.
- 1994 May 3, Natural Resource Technology, Inc. Phase II Site Investigation Report, Former Manufactured Gas Plant (MGP), Stevens Point, WI, Project No. 1150.
- 1994 May 6, 1994 Wisconsin Department of Natural Resources, Notice to Proceed Letter to Wisconsin Public Service Corporation, Phase II Site Investigation Report for the Stevens Gas Plant Site, Stevens Point, Wisconsin.
- 1996 October 2, Natural Resource Technology, Inc., Phase II Addendum Investigation Results, Former Manufactured Gas Plant (MGP), Stevens Point, WI, Project No. 1150.
- 1997 November 14, Natural Resource Technology, Inc., Remedial Action Options Report, Former Manufactured Gas Plant Site, Stevens Point, WI, Project No. 1177.
- 1998 February 24, Natural Resource Technology, Inc., Remedial Work Plan, Former Manufactured Gas Plant Site, Stevens Point, WI, Project No. 1177.
- 1998 September 16, Natural Resource Technology, Inc., Remedial Action Documentation Report Former Manufactured Gas Plant Site, Stevens Point, WI, Project No. 1177.


draft_st pt completion report 060605.doc

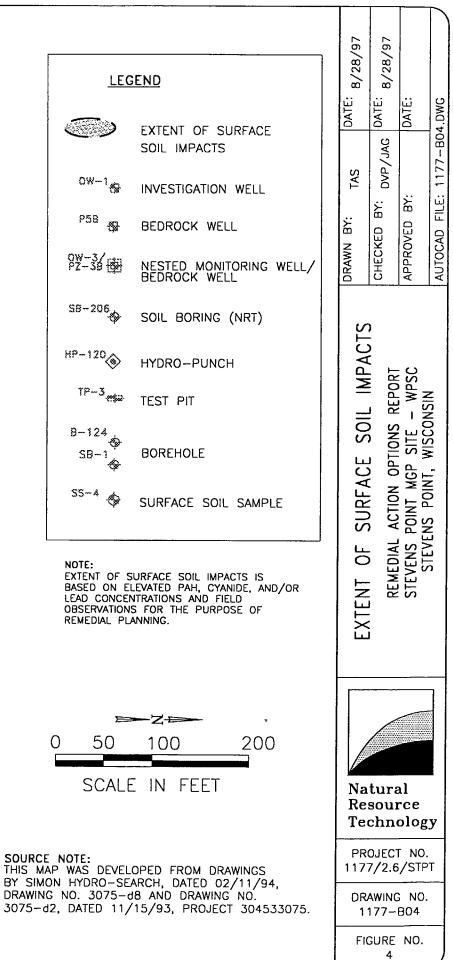

- 1999 January 15, Natural Resource Technology, Inc., Work Plan for Supplemental Site Investigation and Groundwater Monitoring former Manufactured Gas Plant Wisconsin Public Service Corporation, Stevens Point, WI, Project No. 1177.
- 1999 August 25, Natural Resource Technology, Inc., 1999 Groundwater Monitoring, Former Wisconsin Public Service Corporation Manufactured Gas Plane, 111 Crosby Avenue, Stevens Point, Wisconsin, Project No. 1177.
- 1999 December 15, Natural Resource Technology, Inc., Revised Work Plan for Supplemental Site Investigation and Groundwater Monitoring Former Manufactured Gas Plant Wisconsin Public Service Corporation, Stevens Point, WI, Project No. 1177.
- 2000 March 16, Wisconsin Department of Natural Resources, Approval letter to Wisconsin Public Service Corporation Work Plan for Supplemental Site Investigation and Groundwater Monitoring Former Manufactured Gas Plant Site, Stevens Point, Wisconsin.
- 2002 April 11, Natural Resource Technology, Inc., Supplemental Site Investigation Report Former Manufactured Gas Plant, Wisconsin Public Service Corporation, Stevens Point, WI, Project No. 1177.
- 2003 October 27, Natural Resource Technology, Inc., Groundwater Monitoring Update, 1111 Crosby Avenue, Stevens Point, Wisconsin, Wisconsin Public Service Corporation, Former Coal Gas Facility, Stevens Point, Wisconsin BRRTS #02-50-000079 FID #750081200.
- 2003 November 25, Natural Resource Technology, Inc. Site Status and Sampling Schedule Update, Wisconsin Public Service Corporation Manufactured Gas Plant, 1111 Crosby Avenue, Stevens Point, Wisconsin, Project No. 1177.
- 2004 March 15, Natural Resource Technology, Inc., Annual Groundwater Monitoring Report, Former Wisconsin Public Service Corporation Manufactured Gas Plant, 1111 Crosby Avenue, Stevens Point, Wisconsin, BRRTS #02-50-000079 FID #750081200.
- 2005 March 14, Natural Resource Technology, Inc., Annual Groundwater Monitoring Report, Former Wisconsin Public Service Corporation Manufactured Gas Plant, 1111 Crosby Avenue, Stevens Point, Wisconsin BRRTS #02 50 000079 and FID #750081200.

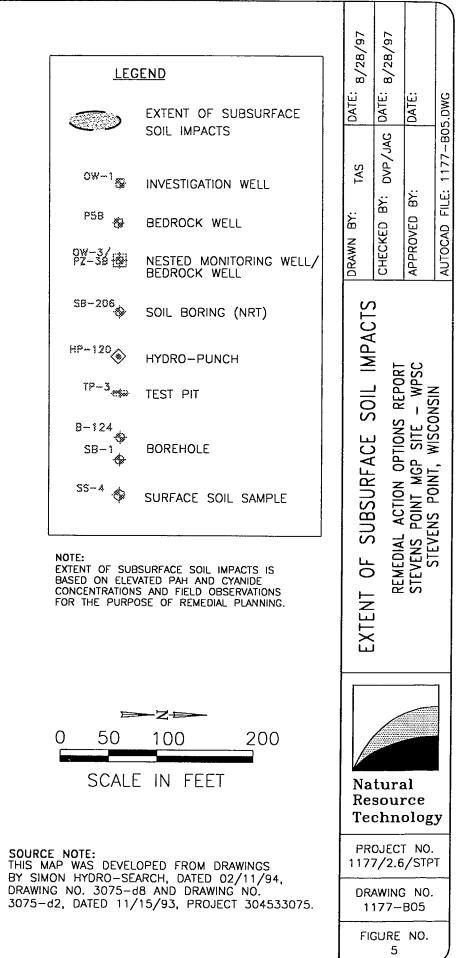

APPENDIX A


۰.

FIGURES 1 THROUGH 5 AND TABLES 2 AND 3 (REMEDIAL ACTIONS OPTIONS REPORT)







			· · · ·	— —	
LEG ow-1	INVESTIGATION WELL	DATE: 8/28/97	DATE: 8/28/97	DATE:	DWG
P-28 PZ-38 ⊕ SB-206 ↔ HP-120	BEDROCK WELL NESTED MONITORING WELL/ BEDROCK WELL SOIL BORING (NRT) HYDRO-PUNCH	DRAWN BY: TAS D	CHECKED BY: DVP/JAG D	APPROVED BY: D	AUTOCAD FILE: 1177-B02.DWG
$TP-3 \implies$ $AS-2 \bigcirc$ $B-124 \Leftrightarrow$ $SB-1 \Leftrightarrow$ $SS-4 \Leftrightarrow$ $SG-1 \bigtriangledown$ $SG-1 \bigtriangledown$ $Cas = -$ STM $?$	TEST PIT AIR SAMPLE BOREHOLE SURFACE SOIL SAMPLE STAFF GAUGE HYDRANT WATER LINE GAS LINE STORM SEWER PRECISE LOCATION UNKNOWN	SAMPLING LOCATIONS	REMEDIAL ACTION OPTIONS REPORT	STEVENS POINT MCP SITE - WPSC	JIEYENJ FUINI, WIJCONJIN
CE NOTE: MAP WAS DEV MON HYDRO ING NO. 3075	100 200 LE IN FEET /ELOPED FROM DRAWINGS SEARCH, DATED 02/11/94, 5-d8 AND DRAWING NO. 1/15/93, PROJECT 304533075.	Re: Teo 1177 DR/ 11	DJEC 7/2.6 AWIN(177-	rce olog T NO. 5/STP G NO.	T

Table 2 - Soil Analytical Results - BTEX, Cyanide, Lead Remedial Action Options Report Wisconsin Public Service Corporation Stevens Point Former Manufactured Gas Plant Site

[(ii)	g/kg)			
Location	Depth (feet, except as noted)		Benzene	Ethylbenzene	Toluene	Xylenes (total)	Cyanide (Total)	Cyanide (Amenable)	Cyanide (Dissociable)	q
	Dep	Date	Ben	Ethy	Toh	Xyl	Cya C	Cya	Cya	Lead
HP-101	1-3	6/8/93	nd	nd	nd	nd	nd	-	-	-
B-102	0-2	6/10/93	nd	nd	0.2	0.9	0.61	-	nd	-
B-103	3-5	6/10/93	nd	nd	nd	nd	-	-	•	-
B-104	5-7	6/10/93	nd	nd	nd	nd	-	-	-	-
B-105	0-2	6/9/93	-	-	-	-	-	-	-	100
B-106	0-2	6/9/93	•	-	-	-	-	•	-	34
B-107	0-2	6/9/93	•	-	-	•		•	-	12
B-108	0-0.5	6/9/93	-	-	-	-	nd	•	-	-
	1-2	6/9/93	-	-	-	•	905		81	-
HP-109	0-0.5	6/9/93	-	-	-	-	nd	•	-	-
	5-6	6/9/93	-	-	-	-	897	-	120	-
B-110	0-0.5	6/9/93	-	-	-	-	nd	-	-	-
	1-2	6/9/93		-	-	-	nd	-	-	
B-111	0-0.5	6/9/93	-	-	-	-	nd	-	-	-
	1-2	6/9/93	•	•	-	•	nd	•	-	-
B-112	0-0.5	6/9/93	-	-	-	-	nd	-	-	-
	2-3	6/9/93	-	-	-	•	0.95	-	nd	-
B-113	0-0.5	6/9/93	-	-	-	-	0.56	-	nd	-
	4-6	6/9/93	-	•	•	•	nd	•	-	-
HP-121	2-4	9/13/93	-	•	-	•	nd	-	•	
B-122	4-6	9/14/93	•			•	22		8.7	•
B-123	4-6	9/14/93	•	-			39	-	12	
B-124	4-6	9/14/93	-	-			3.2		0.78	•
HP-125	4-6	9/14/93	-	-	•	•	5.3	•	0.82	
HP-126	4-6	9/14/93	-		•		13	-	4.8	
TP-5	4	7/10/90	-			•	3.7	-	-	
TP-6	7	7/10/90	-		•		2.5		-	
TP-7	5	7/10/90	-				57.5	-	-	
TP-10	6	7/10/90	-				nd_		-	•
TP-11	5	7/10/90	-	-	•		nd	-	•	
TP-12	4	7/10/90	-	-	-	-	26.8	-	-	
TP-15	13.5	7/19/90	-				13 7.7		-?	
TP-17	4.5	7/10/90	-				7.5			
TP-18		7/10/90	•	-	. Cuida	nea La			•	L
			and Prel						; 200+	400
	Residentia	0.63	230	790	320	ns	ns	i,300*		
1	US EPA Industrial PRGs NR 720.19 Generic RCLs				880	320	ns	ns	1,400*	1,000 50/500**
NR 720.	19 Generi	CRULS	0.0055	2.9	1.3	4.1	ns	ns	ns	30/300

				1			(n	ng/kg)			
	Location	Depth (feet, except as noted)	Date	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Cyanide (Total)	Cyanide (Amenable)	Cyanide (Dissociable)	Lead
ſ	TP-20	4	7/10/90	-	-	-	-	0.4	-	-	-
	TP-23	10	7/19/90	-	-	-	-	110	-	•	-
· [TP-24	6	7/19/90	-	•	-	-	3.1	-	-	-
	TP-25	10	7/19/90	-	-			1.9	-	-	•
	TP-26	2	7/19/90	-		-	-	0.8	-	•	•
	SS-1	surface	5/23/85	-	-	-	-	nd	nd	-	4.4
		6-18"	5/23/85	-	-	-	-	nd	nd	-	21
	SS-2	surface	5/23/85	-	-	-	-	0.69	nd	-	31
		6-18"	5/23/85	-	-	•	-	850	100	-	35
	SS-3	surface	5/23/85	-	-	-	-	nd	nd	-	50
		6-18"	5/23/85		-	-	-	4.2	1.2	-	480
	SS-4	surface	5/23/85	-	-	-	-	nd	nd	-	65
~		6-18"	5/23/85	-	-		•	0.28	nd	-	26
	SS-5	0-4"	10/29/85	-	-	-	-	nd	nd	-	•
		4-12"	10/29/85	-	-	-	-	51	nd	-	-
-		12-24"	10/29/85		-	-	-	130	nd	•	-
	SS-6	0-4"	10/29/85	-	-	-	-	nd	nd	-	-
		4-12"	10/29/85	-	-	-	-	9.5	nd	•	-
		12-24"	10/29/85	-	-	-	-	9.8	nd		-
	SS-7	0-4"	10/29/85	-	-	•	-	4.4	nd	-	-
		4-12"	10/29/85	-	-	-	-	9.8	nd	-	-
		12-24"	10/29/85	-	-	· ·	-	9.4	nd	-	-
	SS-8	0-4"	10/29/85	-	-	-	-	nd	nd	-	-
		4-12"	10/29/85	-	-	-	-	0.49	nd	•	-
<u> </u>		12-24"	10/29/85	•	-	•	•	2.3	nd	-	-
_	SS-9	4" compos.	10/29/85	-	-		-	0.2	nd	•	-
4	SS-10	4" compos.	10/29/85	-	-	-	•	0.2	nd	•	•
L	SS-11	4" compos.	10/29/85	-	•	-	•	1.4	nd		-
1	SS-12	4" compos.	10/29/85	-		-		0.2	nd	-	-
	PZ-3B	30-32	6/25/96	nd	nd	nd	nd				
L	PZ-7B	30-35	6/25/96	nd	nd	nd	nd				-
			Interim	and Prel				<u>els</u>			
Γ	US EP.	A Residential	0.63	230	790	320	ns	ns	1,300*	400	
Γ	US EP	1.4	230	880	320	ns	ns	1,400*	1,000		
Γ	NR 72	0.19 Generic	0.0055	2.9	1.5	4.1	ns	ns	ns	50/500**	

Table 2, continued - Soil Analytical Results - BTEX, Cyanide, Lead Stevens Point Former Manufactured Gas Plant Site

Notes:

nd = parameter not detected above laboratory detection limit.

- = parameter not analyzed.

PRG = US EPA Region 9 Preliminary Remediation Goals for direct contact.

RCL = WDNR generic Residual Contaminant Level.

ns = no guidance level has been established for parameter.

*Assumes all dissociable cyanide as free cyanide.

**NR 720 direct contact RCL for lead is 50 mg/kg for non-industrial and 500 mg/kg for industrial land use.

Table 3 - Soil Analytical Results - PAHs Remedial Action Options Report Wisconsin Public Service Corporation Stevens Point Former Manufactured Gas Plant Site

l							POI	YNUCI	EAR AR	OMATI	CHYDI	ROCARB	ONS (m	g/kg)					
Location	Depth (feet. except as noted)	Date	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Benzo(ghi)perylene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1.2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAHs (mg/kg)
11P-101	1-3	6/8/93	nd	nd	0.219	nd	0.322	0,012	0.645	0.207	0.084	nd	4.03	nd	0.311	5.76	2.65	3.34	17.6
HP-121	2-4	9/13/93	nd	nd	0.67	1.5	nd	nd	nd	nd	1.5	nd	5.0	0,1	nd	nd	2.0	3.8	14.6
B-102	0-2	6/10/93	nd	nd	1.47	7.86	7.37	4.42	19.6	8.23	5.65	1.35	16	0.147	13.5	5.53	5.77	9.09	106.0
B-103	3-5	6/10/93	nd	nd	1.04	1.98	1.25	0.71	1.78	nd	1.88	1.46	7.52	0.502	0.167	0.167	4.08	5.75	28.3
B-104	5-7	6/10/93	nd	nd	0.576	1.49	1.28	0.79	2.13	1.39	1.39	nd	4.16	0.374	1.6	0.097	2.13	2.99	20.4
TP-3	7	12/28/90	nd	nđ	nd	0.029	0.011	0.024	nd	0.135	0.029	nd	0.011	nd	nd	0.061	0.021	0.037	0.4
	. 8	12/28/90	355	120	2.4	34	29	19.7	11.2	7.96	10.7	27.8	16.1	41	5.14	41.2	6.72	18.5	746.4
TP-6	7	7/10/90	0.00198	0.00452	0.921	1.27	2.11	1.37	7.64	1.01	1.47	8.41	2.31	0.791	12.2	0.116	0.657	4.5	44.8
TP-7	5	7/10/90	2.89	41	4.98	4.73	10.6	6.62	2.72	0.81	5.3	66.2	7.13	7.13	37.4	0.776	3.63	14.2	216.1
TP-15	13.5	7/19/90	0.0063	0.033	0.011	0.0073	0.01	0.0067	0.037	0.0056	0.008	0.011	0.017	0.015	0.018	nd	0.0044	0.029	0.2
TP-18	4	7/10/90	0.00035	0.00139	0.0115	0.0121	0.0163	0.0042	0.0065	0.00209		0.0038	0.0213	0.00094	0.00355	0.00055	0.00405	0.014	0.1
TP-23	10	7/19/90	0.0075	0.062	0.011	0.011	0.013	0.0074	0.025	0.0061	0.011	0.052	0.022	0.013	0.024	0.0011	0.0052	0.046	0.3
TP-25	10	7/19/90	0.0038	0.07	0.0073	0.0076	0.015	0.0074	0.027	0.0088	0.009	0.048	0.015	0.013	0.021	nd	0.0041	0.025	0.3
SS-1	surface	5/23/85	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nđ	nd	nd	nd	0
	6-18"	5/23/85	nd	nd	1.6	8,9	nd	35	23	5.6	8.3	6.2	nd	14	5.5	nd	5.3	13	126.4
SS-2	surface	5/23/85	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0
	6-18"	5/23/85	nd	3.7	3.5	90	nd	130	91	45	nd	43	87	nd .	68	6.0	31	73	671.8
SS-3	surface	5/23/85	nd	nđ	nd	nd	nd	nd	nd	nd	nd	nd	1.8	nd	″nd	nđ	1.1	1.7	4.6
	6-18"	5/23/85	nd	nd	nd	2.0	nd	7.5	4.1	3.1	2.7	2.4	4.6	nd	2.7	nd	1.1	nd	30.2
SS-4	surface	5/23/85	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0
	6-18"	5/23/85	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0
PZ-3B	30-32	6/25/96	nd	nd nd	nd nd	nd	nd	nd	. <u>nd</u>	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	0
PZ-7B	30-35	6/25/96	nd	na		nd	nd	nd	nd NARY G		nd	nd	nd	nd	nd	nd	nd	nd	0
<u> </u>													5 00	100	600			0.000	
	er Pathway RO		38	0.7	3,000	17	360	870	18	6,800	37	38	500	100	680	0.4	1.8	8,700	ns
	•	Industrial RCL	900	18	5,000	0.088	0.088	0.88	0.0000	1.8	8.8	0.0088	600	600	0.088	20	18	500	115
		ndustrial RCL	60,000	360	300,000	3.9	3.9	39	0.39	39	390	0.39	40,000	40,000	3.9	,110	390	30,000	ns
	sidential PRG	5	110	ns	5.7	0.61	0.61	6.1	0.061	ns	7.2	0.061	2,600	90	0.61	240	ns	100	ns
US EPA Inc	Instrial PRGs		110	ns	5.7	2.6	2.6	26	0,26	ns	7.2	0.26	27,000	90	2.6	240	0.5	100	0.5

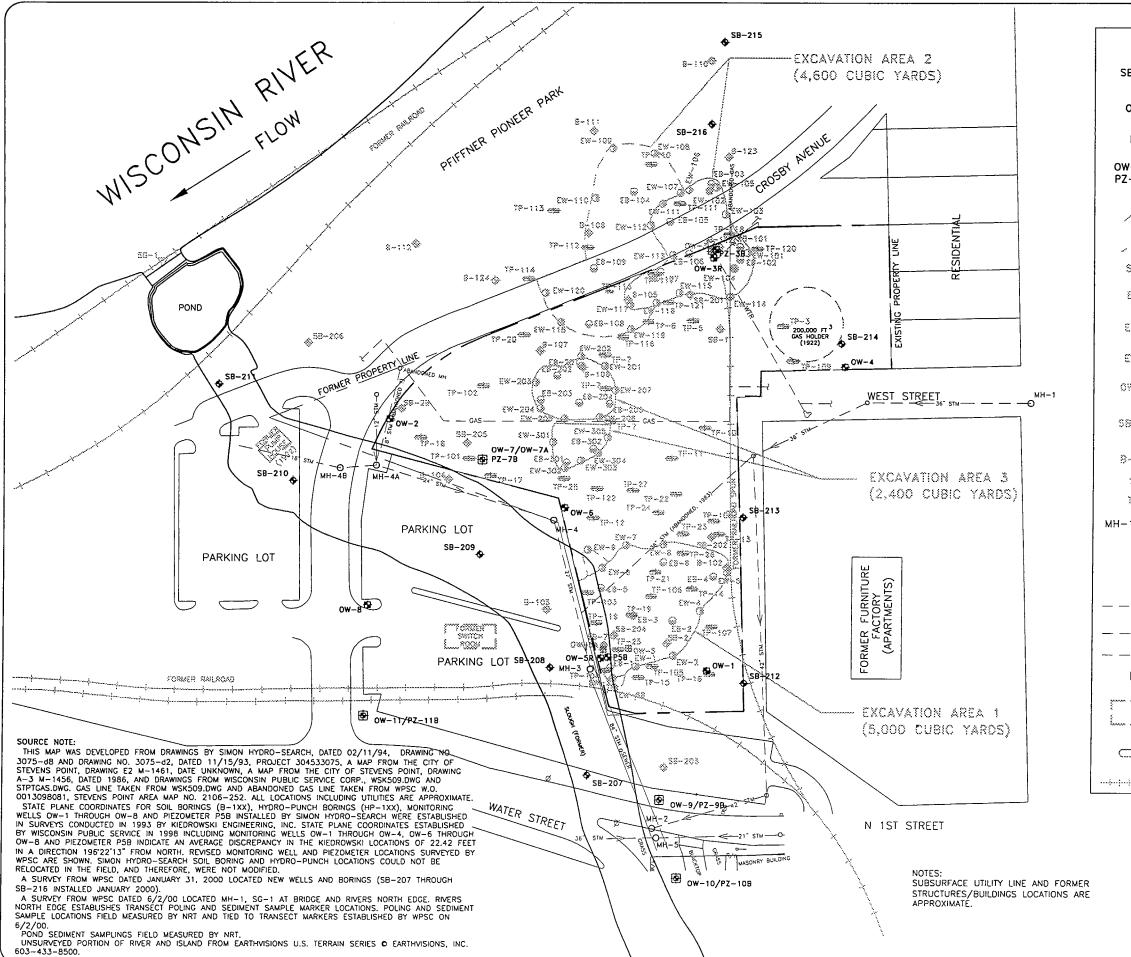
Notes:

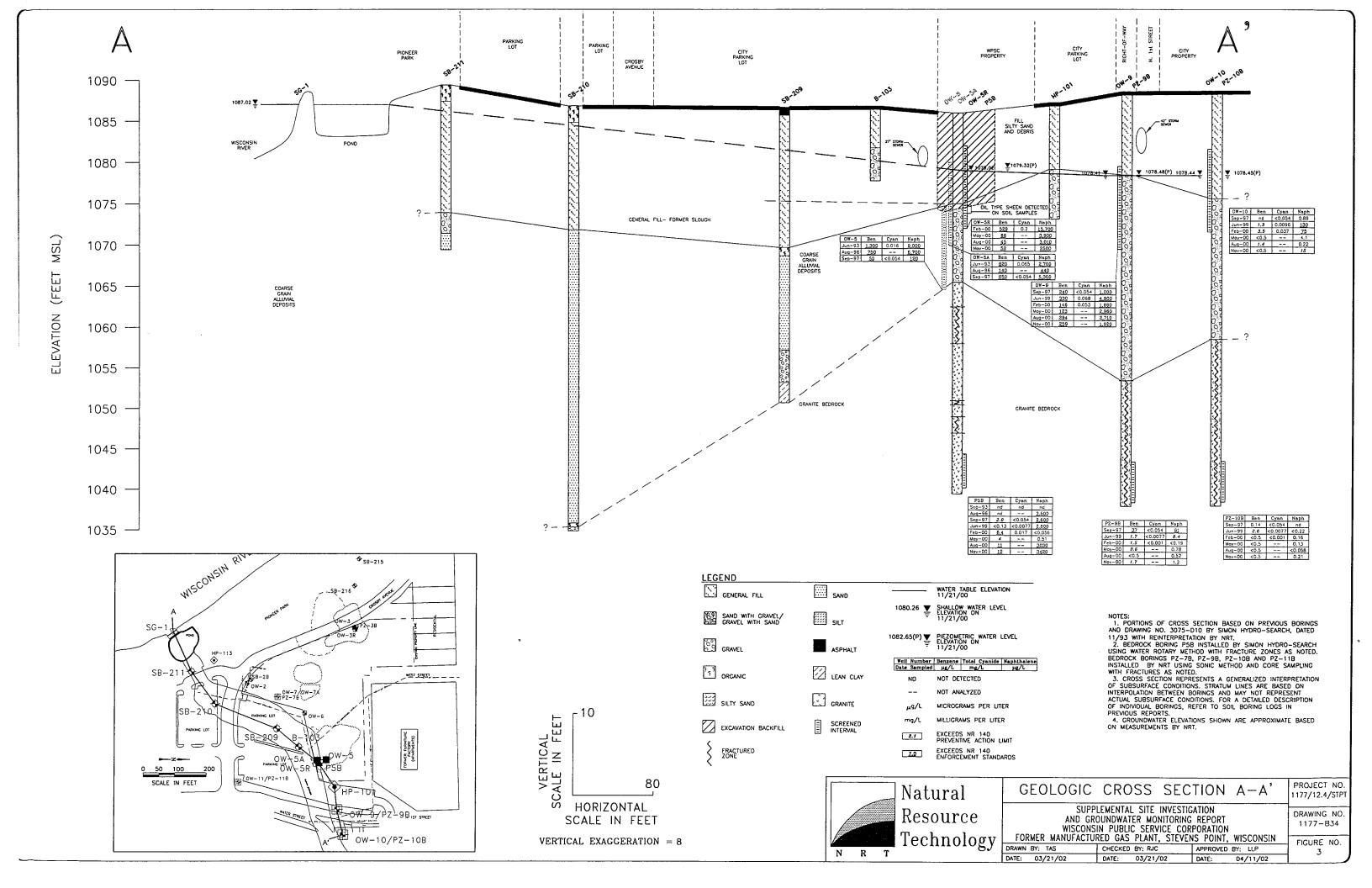
nd = parameter not detected above laboratory detection limit.

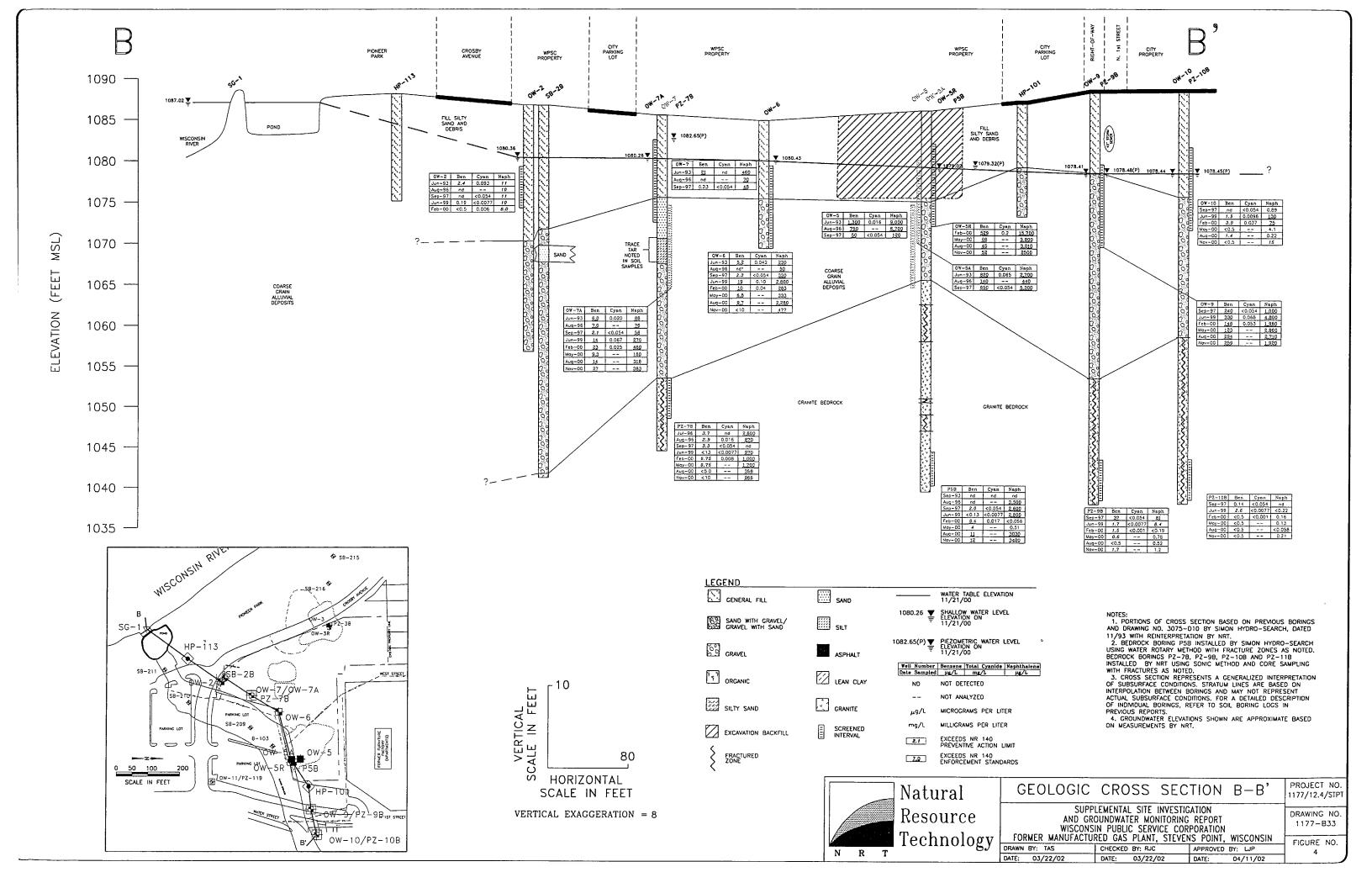
Detection limits for 1985 samples -- 1 mg/kg for all compounds.

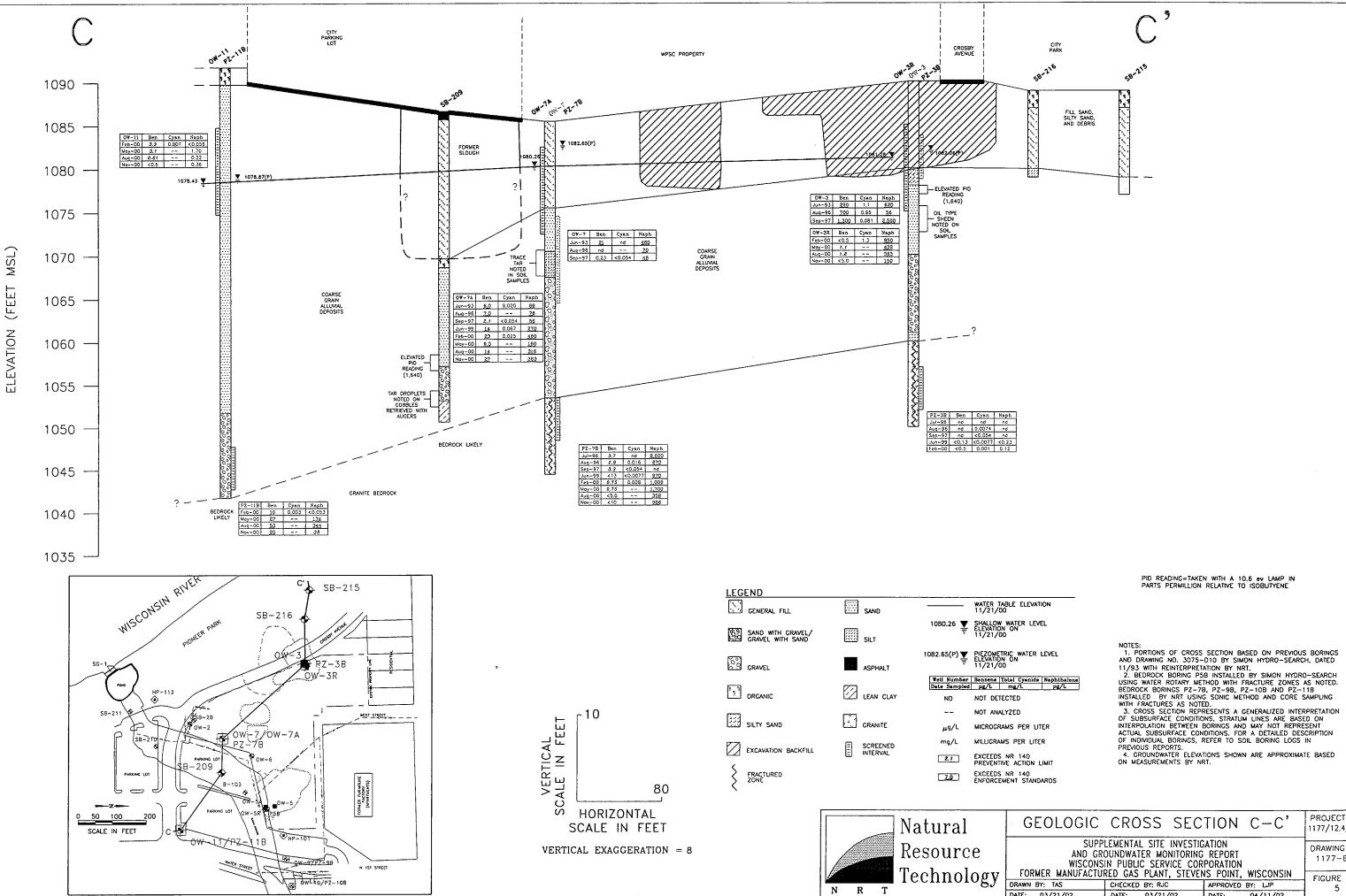
RCLs (generic Residual Contaminant Levels) are suggested to els only, published in WDNR Soil Cleanup Levels for PAHs - Interim Guidance, April 1997.

PRG = US EPA Region 9 Pretiminary Remediation Goals for direct contact.


ins ~ no guidance level has been established for parameter.




APPENDIX B


FIGURES 2 THROUGH 5 AND TABLES 5 AND 6 (SUPPLEMENTAL SITE INVESTIGATION AND GROUNDWATER MONITORING REPORT)

			1	· · · · · · · · · · · · · · · · · · ·	-	
			5	8	N	$\left \right\rangle$
LEGEN	<u>1D</u>		03/21/02	03/21/02	11/0	
B−207	SOIL BORING (NRT)				04/11/02	
ow−1	INVESTIGATION WELL		DATE:	DATE:	DATE:	1177-B20.DWG
P5B 🖶	BEDROCK WELL					-820
N-9∕ Z-98 🖶	NESTED MONITORING WELL/ BEDROCK WELL		TAS	RJC	П	
	- DEEP EXCAVATION (AVERAGE DEPTH IS 9–10 FEET)		U.S.	BY:) BY:	FILE:
	SHALLOW EXCAVATION (AVERAGE DEPTH IS 2 FEET)		WN ΒΥ:	CHECKED	APPROVED	AUTOCAD
^{\$6-1} ▽	STAFF GAUGE		DRAWN	CHE	АРР	AUT
© ⁽⁻⁸³	EXCAVATION BASE SAMPLE					ISIN
88-3 🛞	SOIL SAMPLE WHICH WAS EXCAVATED		AND		z	NISCON
^{€₩~1} ③	EXCAVATION WALL SAMPLE					NI,
`₩~3 ∰	ABANDONED INVESTIGATION WELL		\mathbb{R}^{2}	GATIC	G REPC RPORAT	S POINT
8~206 \$	SOIL BORING (HISTORICAL NRT)		- NG	VESTI VESTI	E CO	TEVEN
}~124 \$9~1	BOREHOLE		AITOR MUL		SERVIC	LANI, S
78-3	TEST PIT		δű N	AL AL		AS PI
⁻¹ O	STORM SEWER MANHOLE					5 0
\heartsuit	HYDRANT		N N N			
Ø	UTILITY POLE		8 8 2	NPP NPP	D GRUI	HAC 1
- wtr	WATER LINE				WISC	MANU
GAS	GAS LINE		50	- ว		
- STM	STORM SEWER		07			L UKMEK
MGP	MANUFACTURED GAS PLANT	ł		-		-
·	FORMER BUILDINGS					
	FORMER MGP PROCESS STRUCTURES					
······································	FORMER RAILROAD		Na	tura	al	
			Res	sour		v
0	50 100 200				- NO. 4/STP	т
	SCALE IN FEET	F	DRA	-	NO.	
			FIC	SURE 2	NO.	
			· · · · · ·			/

GEOLOGIC	CROSS	SECTION	С-С'	PROJECT NO. 1177/12.4/STPT
AND GR WISCONS	IN PUBLIC SERV	ITORING REPORT		DRAWING NO. 1177-B35
FORMER MANUFACTU	RED GAS PLANT,	STEVENS POINT,	WISCONSIN	FIGURE NO.
DRAWN BY: TAS	CHECKED BY: RJC	APPROVED	BY: UP	5
DATE: 03/21/02	DATE: 03/21/	DATE:	04/11/02	

PID READING=TAKEN WITH A 10.6 eV LAMP IN PARTS PERMILLION RELATIVE TO ISOBUTYENE

Table 5. Soil Analytical Results - PAHs

Supplemental Site Investigation and Groundwater Monitoring Report Former Stevens Point Manufactured Gas Plant Site - Wisconsin Public Service Corporation

								<u> </u>		POLYNU	CLEAR A	ROMATI	C HYDRO	CARBON	S (mg/kg)		· · · · · · · · · · · · · · · · · · ·				
Location	Depth (feet ^A)	Date	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Benzo(ghi)perylene	1-Methylnaphthalene	2-Methylnaphthalene	Total PAHs (mg/kg)
									Former S	Slough Are	ea Sample										
B-103	3-5	6/10/1993	0.167	nd	nd	0.502	4.08	1.04	7.52	5.75	1.98	1.88	1.25	0.71	1.78	0.167	1.46	nd			28
B-104	5-7	6/10/1993	0.097	nd	nd	0.374	2.13	0.576	4.16	2.99	1.49	1.39	1.28	0.79	2.13	1.6	nd	1.39			20
EB-1	11	4/1/1998	1.5	0.17	1.2	2.6	5.1	3.2	4.3	3.5	0.66	0.37	0.17	0.14	0.23	0.092	nd	0.097	0.51	0.16	24
EB-5	12	4/7/1998	7.6	nd	31	18	51	13	25	23	11	7.5	5.3	2.9	7.2	2.5	1.1	3.5	5.9	7.9	223
SB-207	12-14	1/17/2000	230	0.071	19.5	2.07	0.599	0.088	0.124	0.144	<0.049	< 0.046	<0.038	<0.068	<0.038	<0.106	<0.097	<0.076	9.38	17	279
	18-20	1/17/2000	2.35	<0.21	0.441	<0.064	0.116	<0.017	<0.047	0.021	<0.022	< 0.020	<0.017	< 0.030	<0.017	<0.047	<0.043	<0.033	0.254	0.366	3.5
SB-208	6-8	1/17/2000	2.64	9.41	2.19	1.48	10.8	10.2	139	117	70.2	65.6	72.6	52.6	67	34.3	11.7	30.3	0.417	0.667	698
	18-20	1/17/2000	0.019	<0.020	0.027	0.037	0.126	0.029	0.089	0.086	< 0.021	<0.019	<0.016	<0.029	<0.016	<0.044	<0.041	<0.032	<0.018	<0.018	0.4
SB-209	16-18	1/19/2000	172	2.35	36.6	18.6	61.1	19.2	56.5	39.9	19.7	20.4	14.8	18.5	19.1	8.55	3.23	8.22	27.5	41	587
	22-24	1/19/2000	0.112	0.107	0.345	0.37	2.28	0.813	2.03	1.6	0.809	0.805	0.585	0.696	0.789	0.372	0.148	0.33	0.096	0.09	12
	33-35	1/19/2000	0.193	0.031	0.176	0.174	0.862	0.294	0.67	0.587	0.251	0.248	0.177	0.199	0.223	0.108	0.047	0.099	0.059	0.102	4.5
SB-210	12-14	1/17/2000	3.51	2.12	9.35	7.7	40	11.4	43.1	31	13.1	13.1	9.32	10.5	11.6	6.49	2.86	6.13	3.06	5.04	229
	40-42	1/17/2000	0.038	0.025	0.108	0.106	0.469	0.139	0.396	0.329	0.164	0.151	0.101	0.132	0.139	0.078	<0.039	0.069	0.037	0.059	2.5
SB-211	14-16	1/19/2000	1.36	0.626	5.93	8.57	26.6	8.48	14.8	13.1	3.72	3.79	2.76	2.34	3.37	1.67	0.695	1.79	1.09	0.525	101
	18-20	1/19/2000	0.08	0.148	0.306	0.381	1.52	0.589	2.2	1.77	0.865	0.803	0.659	0.596	0.765	0.38	0.172	0.344	0.059	0.034	12
										A	indary Sai										
SB-212	1-3	1/19/2000	<0.013	<0.017	<0.015	<0.018	0.019	<0.014	0.045	0.049	0.034	0.037	0.03	0.037	0.037	<0.039	<0.036	0.045	<0.016	<0.016	0.3
	5-7	1/19/2000	<0.021	<0.027	<0:027	<0.028	0.178	<0.022	0.034	0.021	<0.028	<0.026	<0.022	<0.039	<0.022	<0.060	< 0.055	< 0.043	< 0.025	<0.025	0.2
SB-213	1-3	1/19/2000	0.184	0.354	0.049	0.243	0.985	0.427	1.62	1.34	0.783	0.74	0.712	0.655	0.84	0.504	0.209	0.474	0.144	0.196	10
	5-7	1/19/2000	<0.017	0.071	<0.018	0.46	0.436	0.223	0.98	0.817	0.417	0.379	0.258	0.35	0.367	0.17	0.069	0.157	<0.020	<0.020	5.2
SB-214	8-10	1/19/2000	<0.015	< 0.020	< 0.017	<0.021	<0.017	<0.016	<0.012	<0.016	< 0.021	<0.019	<0.016	<0.029	<0.016	<0.045	<0.041	< 0.032	<0.018	<0.018	nd
												ty Samples									
SB-215	6-8	1/19/2000	<0.043	0.063	< 0.047	< 0.058	0.387	0.119	0.654	0.648	0.313	0.359	0.328	0.395	0.361	0.207	<0.114	0.234	< 0.051	< 0.051	4.1
SB-216	4-6	1/19/2000	1.41	1.87	0.895	1.18	9.01	5.48	31.4	28.3	18.8	21	21.7	16.4	17.6	12.1	5.02	11.2	0.332	0.402	204
B-110	0-0.5	6/9/1993																			
B-123	4-6	9/14/1993																			
EB-103	9	4/20/1998	0	nd	nd	nd	0.034	nd	nđ	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.035	nd
EW-105	6	4/20/1998	1.8	1.6	0.75	3.9	9.3	4.7	31	26	19	15	12	18	19	8.2	3.1	7.7	1	nd	182
i	9	4/27/1998	0.14	nd	nd	nd	0.72	0.037	0.24	0.21	0.21	0.19	0.21	0.2	0.23	0.15	0.047	0.18	0.019	nd	2.8
EW-106	5.5	4/21/1998	28	7.2	3.3	25	120	18	120	91	47	41	33	47	35	27	6.8	27	25	17	718
EW-107	1.5	4/21/1998	0.033	nd	nd	nd	0.02	nd	0.045	0.035	0.03	0.025	0.029	0.032	0.039	0.025	nd	0.028	nd	nd	0.3
EW-108	1.5	4/21/1998	nd	nd	nd	nd	nd	nd	nd	nd	<u>nd</u>	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd 0.6
PZ-11B	38-39	1/18/2000	<0.014	<0.018	<0.015	<0.019	0.069	0.016	0.112	0.097	0.049	0.047	0.041	0.051	0.046	0.043	<0.037	0.052	< 0.017	<0.017	0.6
	<u> </u>					100	1.0					els (mg/kg		070	40	600	20	6 000	23	20	
Groundwater			0.4	0.7	38	100	1.8	3,000	500	8,700	17	37	360	870	48	680	38	6,800		20 600	ns
Direct Contac	•		20	18	900	600	18	5,000	600	500	0.088	8.8	0.088	0.88	0.0088	0.088	0.0088	1.8	1,100		ns
Direct Contac			110	360	60,000	40,000	390	300,000	40,000	30,000	<u> </u>	<u> </u>	4 0.62	<u>39</u> 6.2	0.39	<u> </u>	0.39	39	70,000	40,000	ns
US EPA Resi		S	56	ns	3,700	2,600	ns	22,000	2,300	2,300					0.062	2.9	0.082	ns	ns	ns	ns
US EPA Indu	strial PRGs		190	ns	38,000	33,000	ns	1,000,000	30,000	54,000	29	290	29	29	0.29	2.7	0.27	ns	ns	ns	ns

Notes:

1) Generic RCLs for PAHs are suggested levels only, published in Soil Cleanup Levels for PAHs - Interim Guidance, April 1997.

2) Constituent concentrations that exceed one or more standards are shown in bold and underlined

A = All depths are in feet unless otherwise noted.

-- = Parameter analysis was not performed.

Υ.

PRG = 1999 US EPA Region 9 Preliminary Remediation Goals for direct contact.
 ns = Generic interim guidance RCL has not been established for parameter.
 nd = Parameter was not detected above laboratory detection limit.

[DVP/AAS 2-00/HMS 4/01]

Table 6. Soil Analytical Results - BTEX, Cyanide, and LeadSupplemental Site Investigation and Groundwater Monitoring ReportFormer Stevens Point Manufactured Gas Plant Site - Wisconsin Public Service Corporation

			· · · · · · ·	B	ΓĖΧ (μg/k			(mg/kg)		
Location	Depth (feet ^A)	Sample Date	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Total BTEX	Cyanide (Total) ^B	Lead	Total Organic Carbon
_				Former Slo					· ·	
B-103	3-5	6/10/1993	nd	nd	nd	nd	nd			
B-104	5-7	6/10/1993	nd	nd	nd	nd	nd			1
EB-1	11	4/1/1998	0.11	0.1	nd	0.77	1.0	nd		
EB-5	12	4/7/1998	0.24	1.2	nd	1.54	3.0	0.35		
SB-207	12-14	1/17/2000	41	1,160	<4.2	1800	3001	2.3		
	18-20	1/17/2000	25	109	<4.2	187	321	0.046		
SB-208	6-8	1/17/2000	941	229	824	588	2582	62	25	
	18-20	1/17/2000	<9	25	<4.2	61	86.0	2.3		
SB-209	16-18	1/19/2000	45	25	29	204	303	37		
	22-24	1/19/2000	<9	14	<4.2	23	37	0.048		
	33-35	1/19/2000	<9	<4.5	<4.2	<19	nd	0.31		
SB-210	12-14	1/17/2000	39	29	39	151	258	0.45	48	1
	40-42	1/17/2000	<9	<4.5	<4.2	<19	nd	<0.023		271
SB-211	14-16	1/19/2000	<9	<4.5	<4.2	<19	nd	0.19	8.7	
	18-20	1/19/2000	<9	<4.5	<4.2	39	39	0.18	3.4	
			Nor	thern Prop	erty Bound	lary Samp	les			
SB-212	1-3	1/19/2000	12	21	69	155	0	0.75	15	
	5-7	1/19/2000	<9	<4.5	<4.2	<19	nd	0.46		
SB-213	1-3	1/19/2000	103	24	143	189	0	29	19	
	5-7	1/19/2000						2.6		
SB-214	8-10	1/19/2000						31		
				minary Gu			unless as i	r		
NR 720.19			5.5	2,900	1,500	4,100	ns	ns	50/500**	ns
US EPA R			650	230,000	520,000	210,000	ns	11*	400*	ns
US EPA In	dustrial PI	RGs	1,500	230,000	520,000	210,000	ns	35*	750*	ns

Table 6. Soil Analytical Results - BTEX, Cyanide, and LeadSupplemental Site Investigation and Groundwater Monitoring ReportFormer Stevens Point Manufactured Gas Plant Site - Wisconsin Public Service Corporation

				B	ΓEX (µg/k	g)			(mg/kg)	
Location	Depth (feet ^A)	Sample Date	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Total BTEX	Cyanide (Total) ^B	Lead	Total Organic Carbon
			Pfiffner P	ioneer Parl	k and City	Property S	Samples			
SB-215	6-8	1/19/2000	<9	<4.5	54	<19	0	1.0	176	
SB-216	4-6	1/19/2000	102	99	65	73	0	1160	89	
B-110	0-0.5	6/9/1993						nd		
B-123	4-6	9/14/1993					1			
EB-103	9	4/20/1998	nd	nd	nd	nd	nd	3		
EW-105	6	4/20/1998	nd	0.79	nd	0.043	0.8	6.2		
	9	4/27/1998	nd	nd	nd	nd	nd	2.3	4.6	
EW-106	5.5	4/21/1998	0.071	5.1	0.16	0.78	6.1	270	1700	
EW-107	1.5	4/21/1998	nd	nd	nd	nd	nd	0.07	nd	
EW-108	1.5	4/21/1998	nd	nd	nd	nd	nd	0.05	9.5	
PZ-11B	38-39	1/18/2000	<9	<4.5	<4.2	<19	nd	0.11		2,060
Interim and Preliminary Guidance Levels (µg/kg unless as noted)										
NR 720.19	Generic R	.CLs	5.5	2,900	1,500	4,100	ns	ns	50/500**	ns
US EPA R	esidential l	PRGs	650	230,000	520,000	210,000	ns	11*	400*	ns
US EPA In	dustrial PI	∖Gs	1,500	230,000	520,000	210,000	ns	35*	750*	ns

[DVP/AAS 2-00/HMS 4/01]

Notes:

A = All depths are in feet unless otherwise noted.

B = Total cyanide includes complexed and dissociable cyanide, PRGs are for free cyanide.

 $\mu g/kg = micrograms per kilogram$

mg/kg = milligrams per kilogram

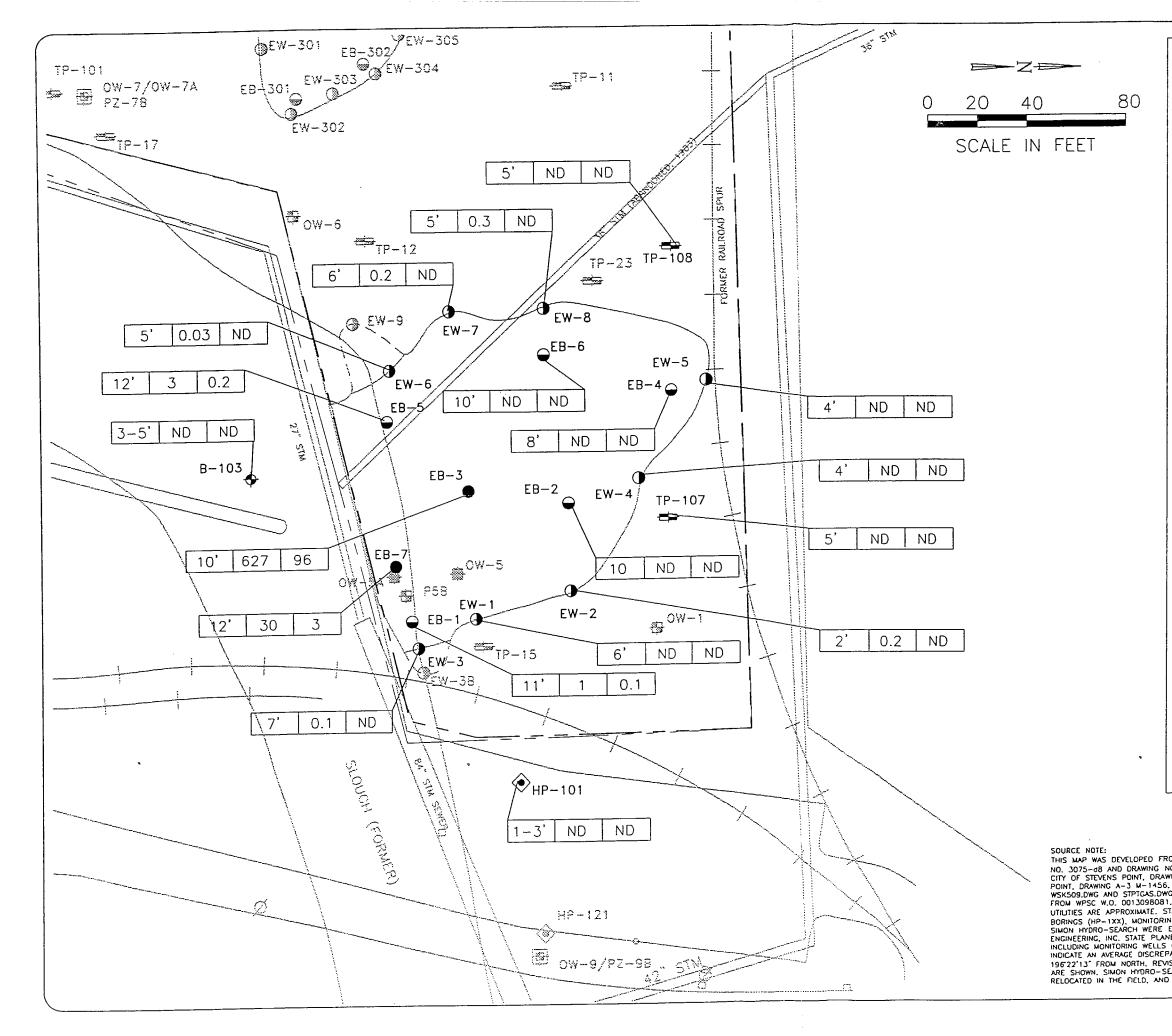
nd = Parameter was not detected above laboratory detection limit.

-- = Parameter analysis was not performed.

PRG = 1999 US EPA Region 9 Preliminary Remediation Goals for direct contact.

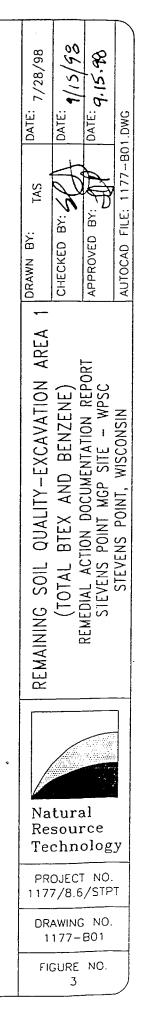
RCL = WDNR generic Residual Contaminant Level.

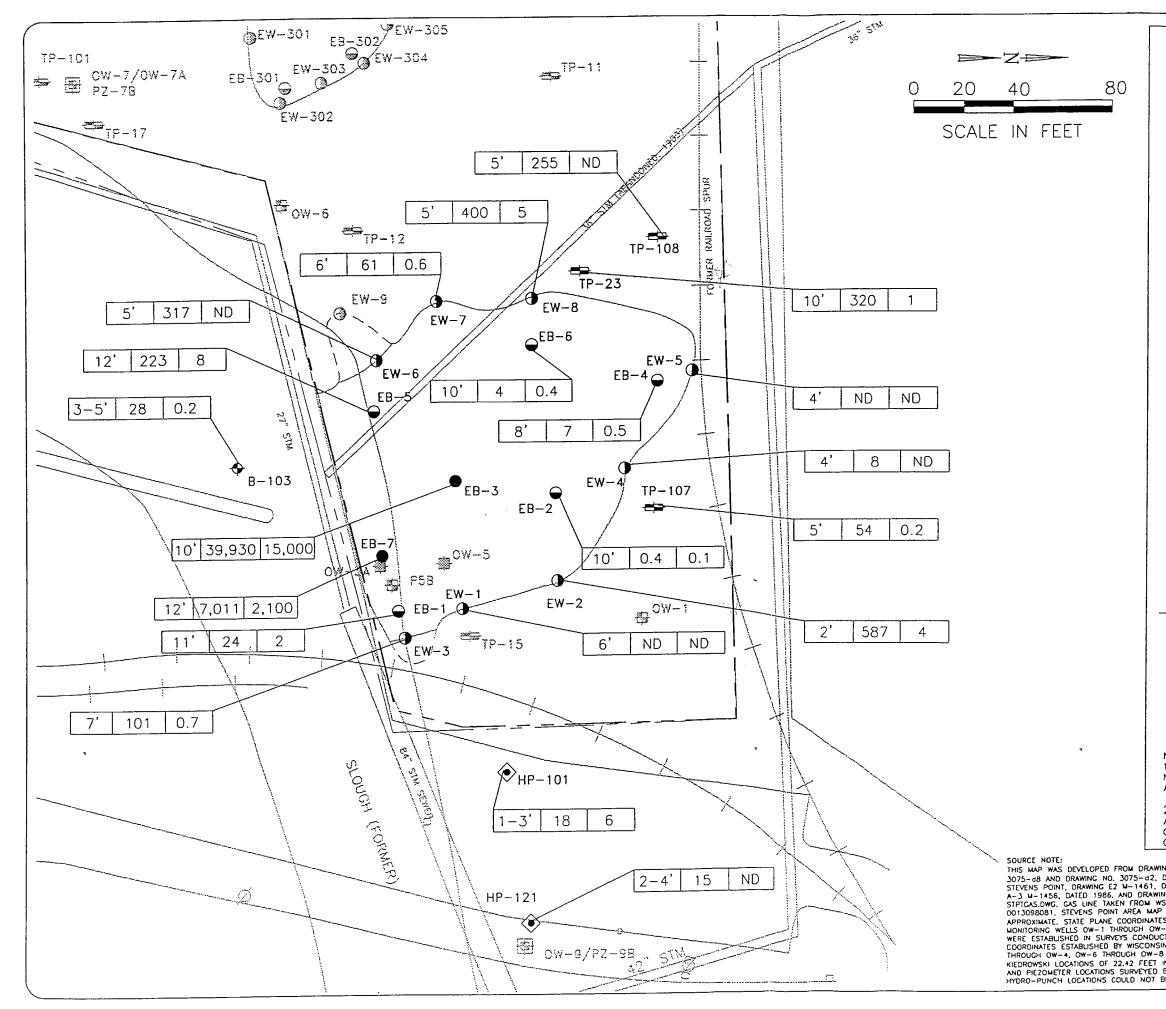
ns = Guidance level has not been established for parameter.


* = mg/kg

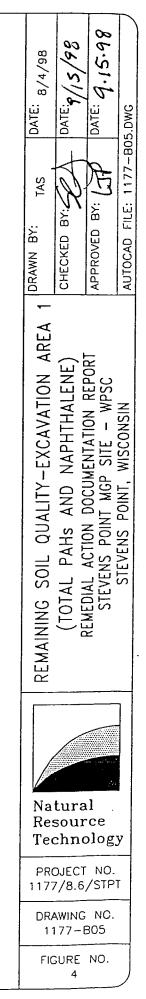
** = NR 720 direct contact RCL for lead is 50 mg/kg for non-industrial and 500 mg/kg for industrial land use.

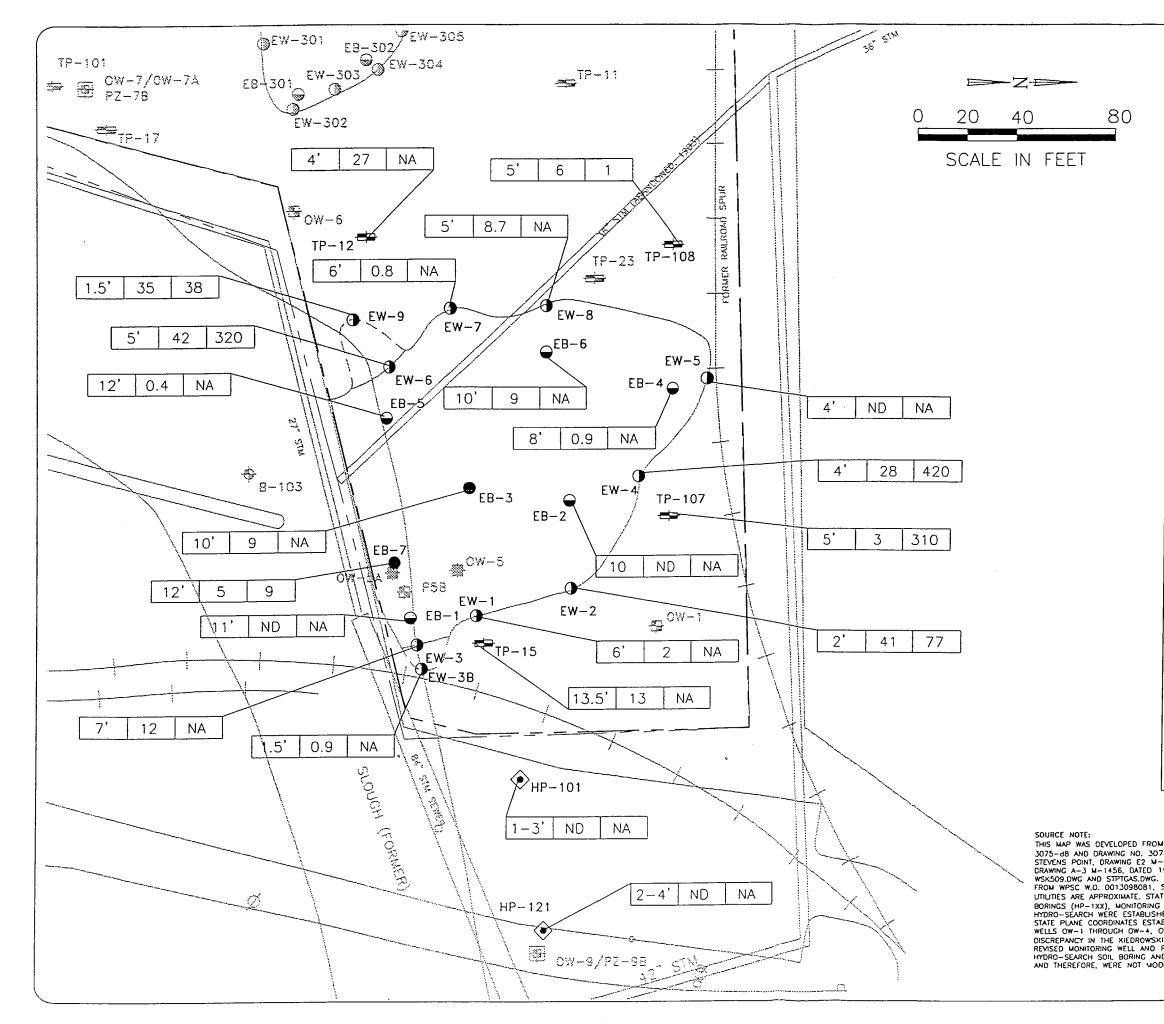
APPENDIX C

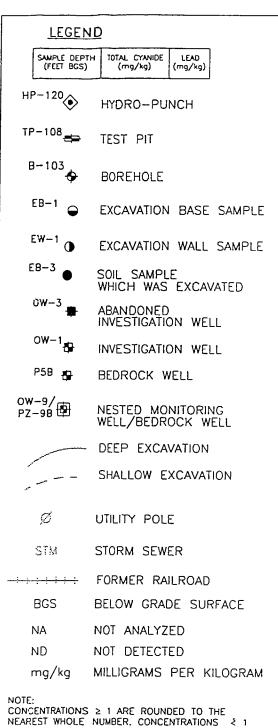

FIGURES 3 THROUGH 11, TABLES 1 THROUGH 8, AND PLATES 1 THROUGH 4 (REMEDIAL ACTION DOCUMENTATION REPORT)


· .

LEGEN	D
SAMPLE DEPTH (FEET BGS)	TOTAL BTEX BENZENE (mg/kg) (mg/kg)
HP-120	HYDRO-PUNCH
TP-108	TEST PIT
8-103	BOREHOLE
^{EB−1} ⊖	EXCAVATION BASE SAMPLE
^{EW−1} ①	EXCAVATION WALL SAMPLE
EB-3 ●	SOIL SAMPLE WHICH WAS EXCAVATED
0₩-3 🖶	ABANDONED INVESTIGATION WELL
OW−1	INVESTIGATION WELL
P58 🙀	BEDROCK WELL
OW-9∕ PZ-98 📴	NESTED MONITORING WELL/BEDROCK WELL
	DEEP EXCAVATION
···	SHALLOW EXCAVATION
STM	STORM SEWER
ø	UTILITY POLE
<u></u>	FORMER RAILROAD
BGS	BELOW GROUND SURFACE
BTEX	BENZENE, TOLUENE, ETHYLBENZENE, XYLENES
ND	NOT DETECTED
mg/kg	MILLIGRAMS PER KILOGRAM
NEAREST WHOLE	2 1 ARE ROUNDED TO THE NUMBER. CONCENTRATIONS < 1 O ONE SIGNIFICANT DIGIT.

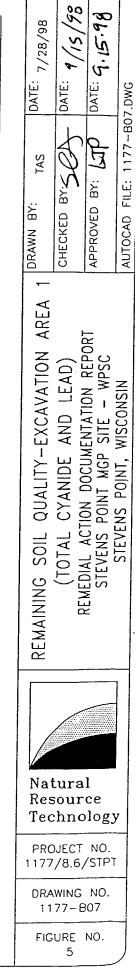

SOURCE NOTE: THIS MAP WAS DEVELOPED FROM DRAWINGS BY SIMON HYDRO-SEARCH, DATED 02/11/94, DRAWING NO. 3075-d8 AND DRAWING NO. 3075-d2, DATED 11/15/93, PROJECT 304533075, A MAP FROM THE CITY OF STEVENS POINT, DRAWING E2 M-1461, DATE UNKNOWN, A MAP FROM THE CITY OF STEVENS POINT, DRAWING A-3 M-1456, DATED 1986, AND DRAWINGS FROM WISCONSIN PUBLIC SERVICE CORP.. WSK509,DWG AND STPTCAS.DWG. GAS LINE TAKEN FRCM WSK509,DWG AND BRANDONED GAS LINE TAKEN FROM WPSC W.O. 0013098081, STEVINS POINT AREA MAP NO. 2106-252, ALL LOCATIONS INCLUDING UTILITIES ARE APPROXIMATE. STATE PLANE COORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS (HP-1XX), MONITORING WELLS OW-1 THROUGH OW-8 AND PIEZOMETER P58 INSTALLED BY SIMON HYDRO-SEARCH WERE ESTABUSHED IN SURVEYS CONDUCTED IN 1993 BY KIEDROWSKI ENGINEERING, INC. STATE PLANE COORDINATES STABLISHED BY WISCONSIN PUBLIC SERVICE IN 1998 INCLUDING MONITORING WELLS OW-1 THROUGH OW-4, OW-6 THROUGH OW-8 AND PIEZOMETER P58 INCLUDING MONITORING WELLS OW-1 THROUGH OW-4, OW-6 THROUGH OW-8 BAND PIEZOMETER P58 INCLUDING MONITORING WELLS OW-1 THROUGH OW-4, OW-6 THROUGH OW-8 BAND PIEZOMETER P58 INCLUDING MONITORING WELLS OW-1 THROUGH OW-4, OW-6 THROUGH OW-8 BAND PIEZOMETER P58 INCLUDING MONTORING WELLS OW-1 THROUGH OW-4, OW-6 THROUGH OW-8 BAND PIEZOMETER P58 INDICATE AN AVERAGE DISCREPANCY IN THE KIEDROWSKI LOCATIONS OF 22.42 FEET IN A DIRECTION 196722'13' FROM NORTH, REVISED MONITORING WELL AND PIEZOMETER LOCATIONS COULD NOT BE RELOCATED IN THE FIELD, AND THEREFORE, WERE NOT MODIFIED.

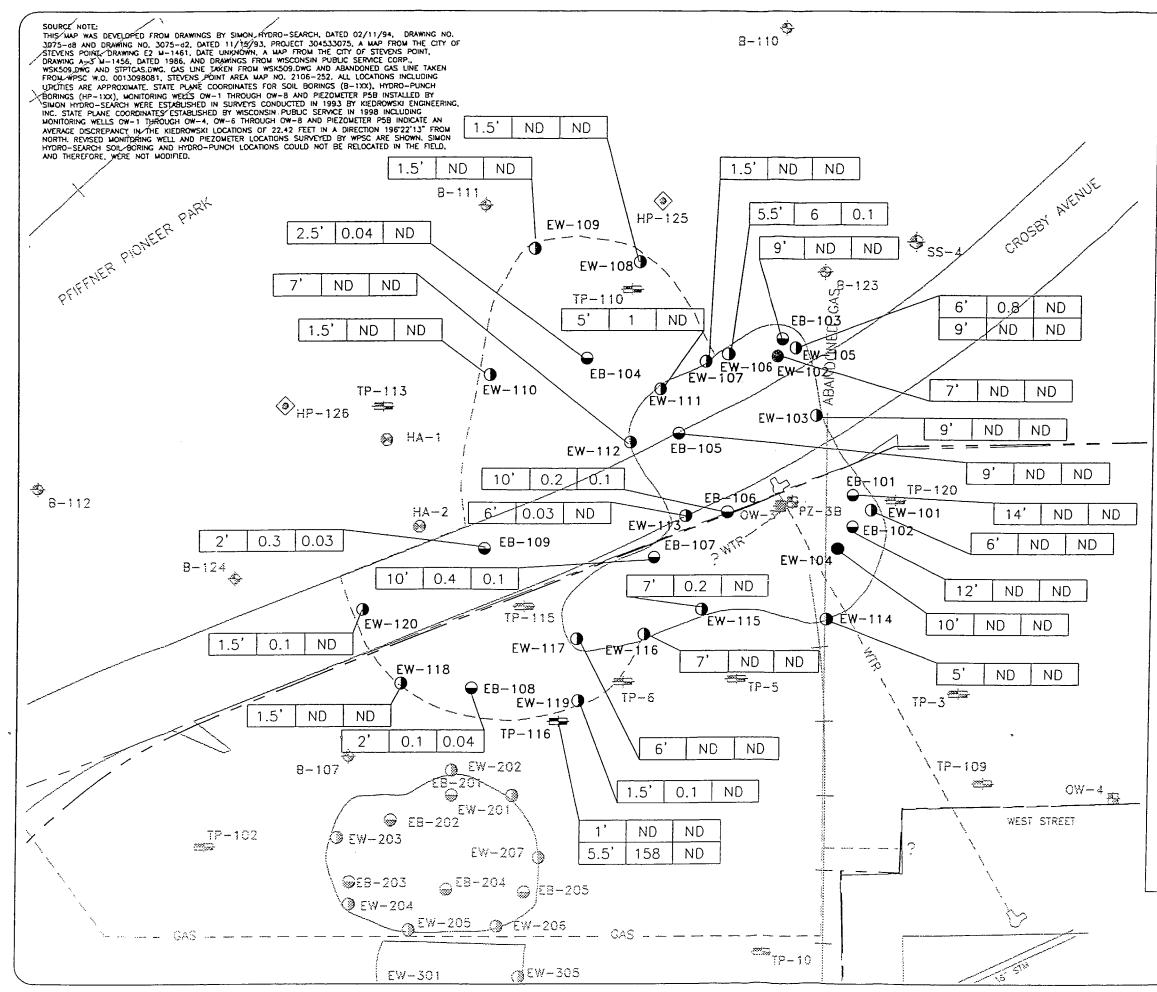


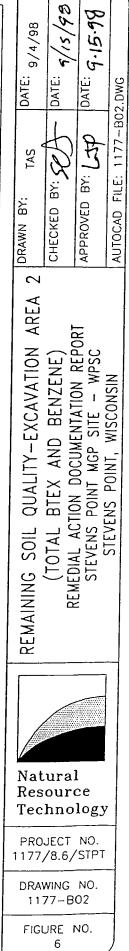


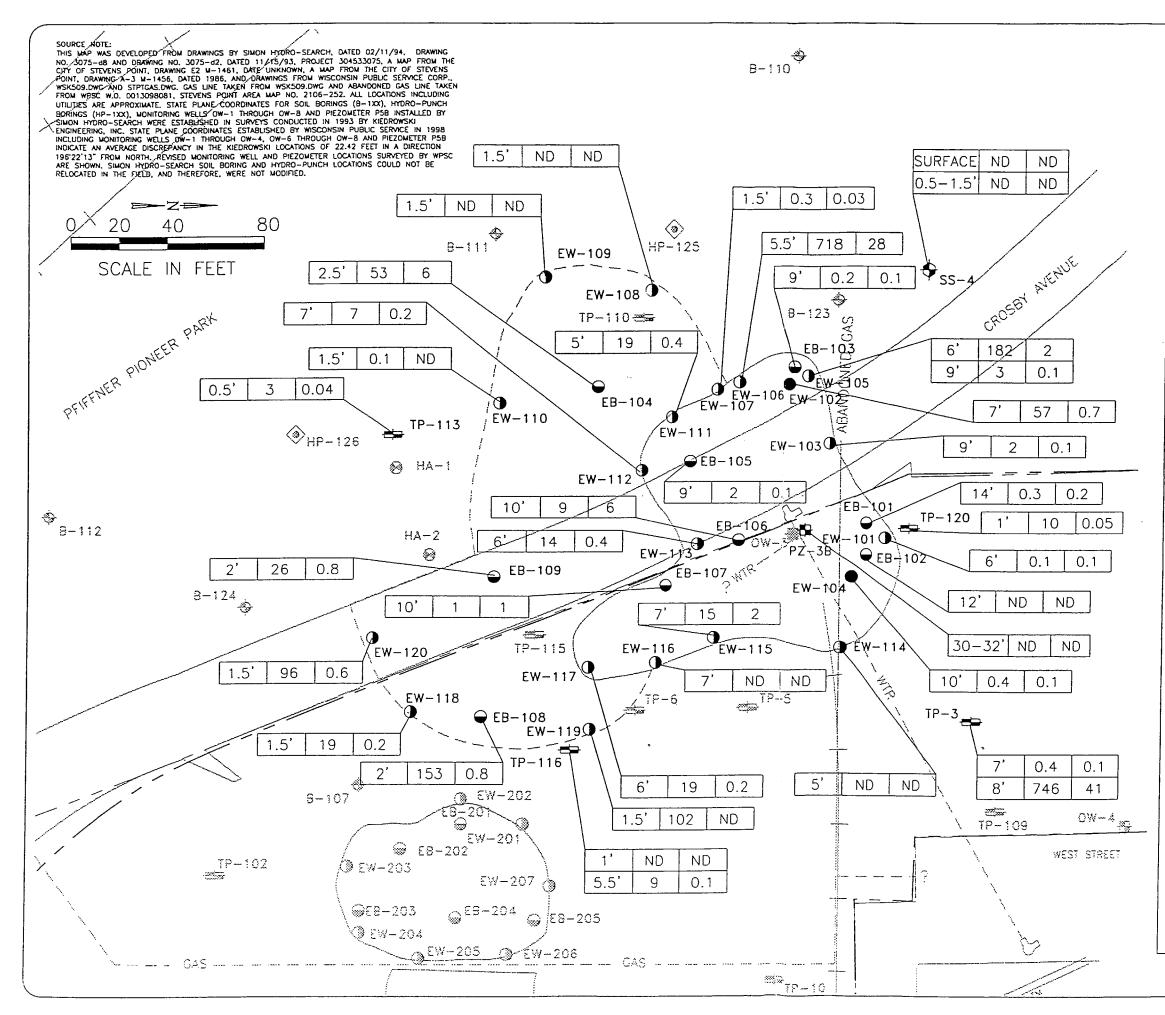
LEGEND	
SAMPLE DEPTH (FEET BGS)	TOTAL PAHS NAPHTHALENE (mg/kg) (mg/kg)
HP-120	HYDRO-PUNCH
TP-108	TEST PIT
B-103	BOREHOLE
EB-1 😜	EXCAVATION BASE SAMPLE
EW−1 ①	EXCAVATION WALL SAMPLE
E8-3 ●	SOIL SAMPLE WHICH WAS EXCAVATED
0₩-3 🖶	ABANDONED INVESTIGATION WELL
0W-1	INVESTIGATION WELL
P5B 🙀	BEDROCK WELL
OW9/ PZ9B 🗗	NESTED MONITORING WELL/BEDROCK WELL
	DEEP EXCAVATION SHALLOW EXCAVATION
Ø	UTILITY POLE
STM	STORM SEWER
╶┊╴╞╴╞┈╞╸┝╍┾╸ ┾	FORMER RAILROAD
BGS	BELOW GRADE SURFACE
	POLYNUCLEAR AROMATIC HYDROCARBONS
NA	NOT ANALYZED
ND	NOT DETECTED
mg/kg	MILLIGRAMS PER KILOGRAM
NOTES: 1. CONCENTRATIONS ≥ 1 ARE ROUNDED TO THE NEAREST WHOLE NUMBER. CONCENTRATIONS < 1 ARE ROUNDED TO ONE SIGNIFICANT DIGIT.	
2. TP-15 PAHS DATA MAY BE IN ERROR, ACCORDING TO THE LABORATORY, AND IS NOT CONSIDERED FOR INTERPRETING REMAINING SITE CONDITIONS.	
NGS BY SIMON HYDRO-SEARCH, DATED 02/11/94, DRAWING NO. DATED 11/15/93, PROJECT 304533075, A MAP FROM THE CITY (DATE UNKNOWN, A MAP FROM THE CITY OF STEVENS POINT, DRAW	

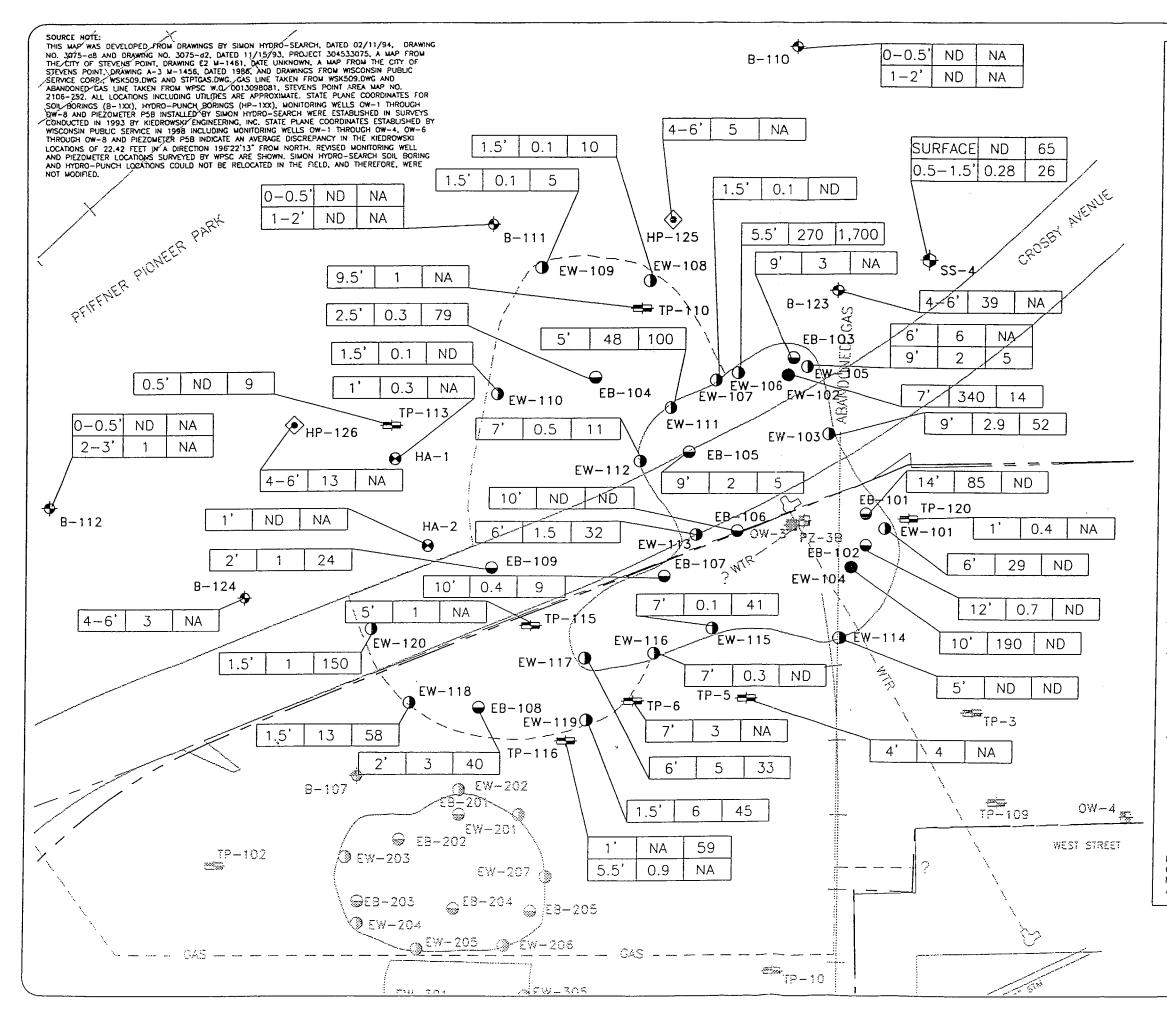
THIS MAP WAS DEVELOPED FROM DRAWINGS BY SIMON HTDRO-SEARCH, DATED 02/11/94, DRAWING NO. 3075-08 AND DRAWING NO. 3075-02, DATED 11/15/93, PROJECT 304533075, A MAP FROM THE CITY OF STEVENS POINT, DRAWING E2 W-1461, DATE UNKNOWN, A MAP FROM THE CITY OF STEVENS POINT, DRAWING A-3 M-1456, DATED 1986, AND DRAWINGS FROM WISCONSIN PUBLIC SERVICE CORP., WSK509,DWG AND STPTCAS.DWG. CAS LINE TAKEN FROM WSK509,DWG AND ABANDONED GAS LINE TAKEN FROM WPSC W.O. 001309801, STEVENS POINT AREA MAP NO. 2106-252. ALL LOCATIONS INCLUDING UTILITIES ARE APPROXIMATE. STATE PLANE COORDINATES FOR SOIL BORINGS (B-1XX), HTDRO-PUNCH BORINGS (HP-1XX), MONITORING WELLS OW-1 THROUGH OW-8 AND PIEZOMETER P58 INSTALLED BY SIMON HTDRO-SEARCH WERE ESTABLISHED IN SURVEYS CONDUCTED IN 1993 BY KIEDROWSKI ENCIDIEGNIG, INC. STATE PLANE COORDINATES ESTABLISHED BY WSCONSIN PUBLIC SERVICE IN 1988 INCLUDING MONITORING WELLS OW-1 THROUGH OW-4, OW-6 THROUGH OW-8 AND PIEZOMETER P58 INDICATE AN AVERAGE DISCREPANCY IN THE KIEDROWSKI LOCATIONS OF 22.42 FEET IN A DIRECTION 196'22'13' FROM NORTH. REVISED MONITORING WELL AND PIEZOMETER LOCATIONS SURVEYED BY WPSC ARE SHOWN. SIMON HTDRO-SEARCH SOIL BORINGS I LOCATIONS OF 21.42 FEET IN A DIRECTION 196'22'13' FROM NORTH. REVISED MONITORING WELL AND PIEZOMETER LOCATIONS COULD NOT BE RELOCATED IN THE FIELD. AND THEREFORE. WERE NOT MODIFIED.



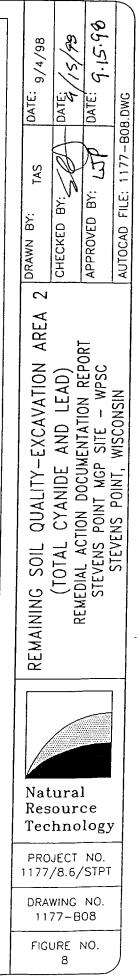


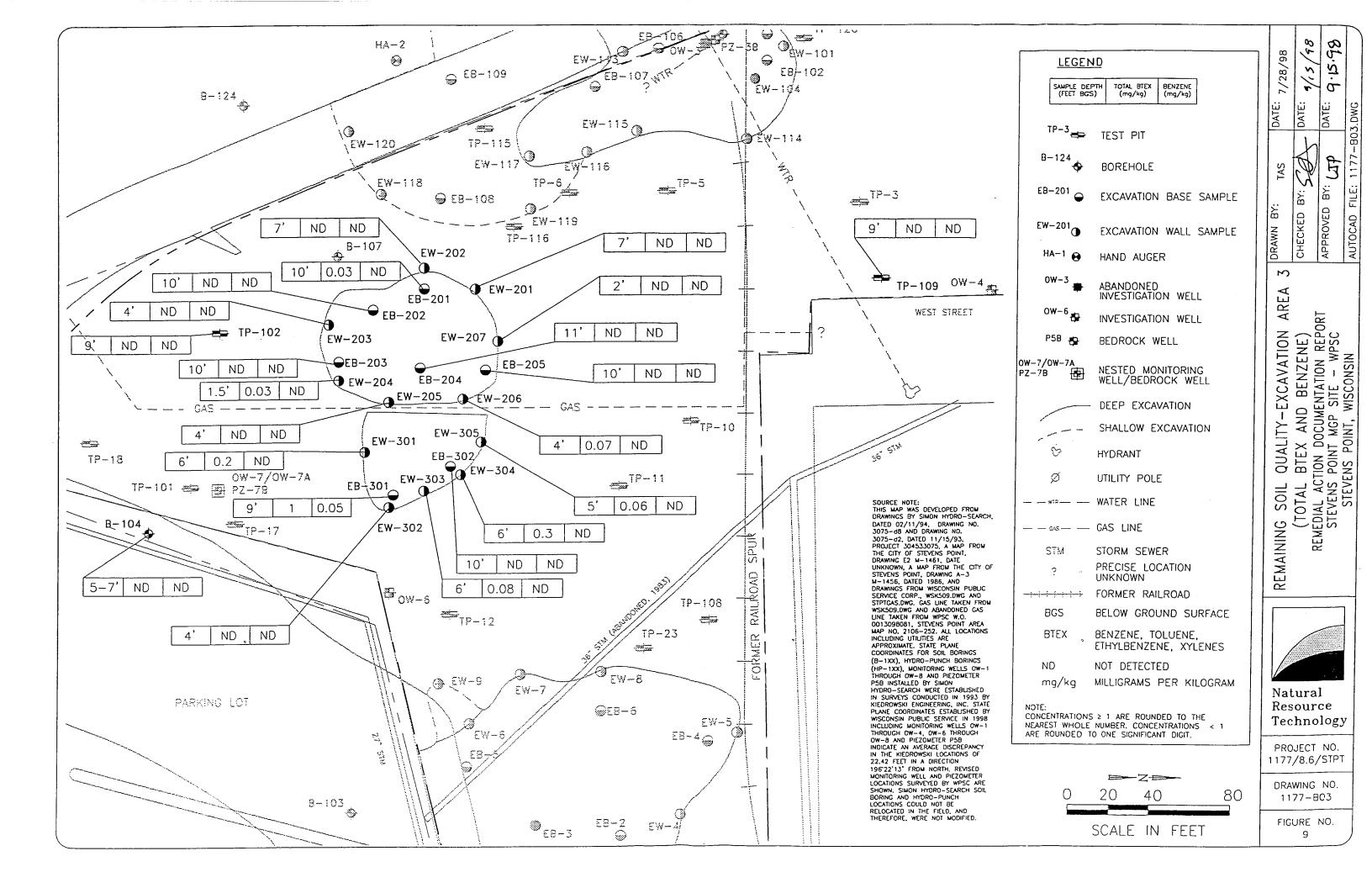

ARE ROUNDED TO ONE SIGNIFICANT DIGIT.

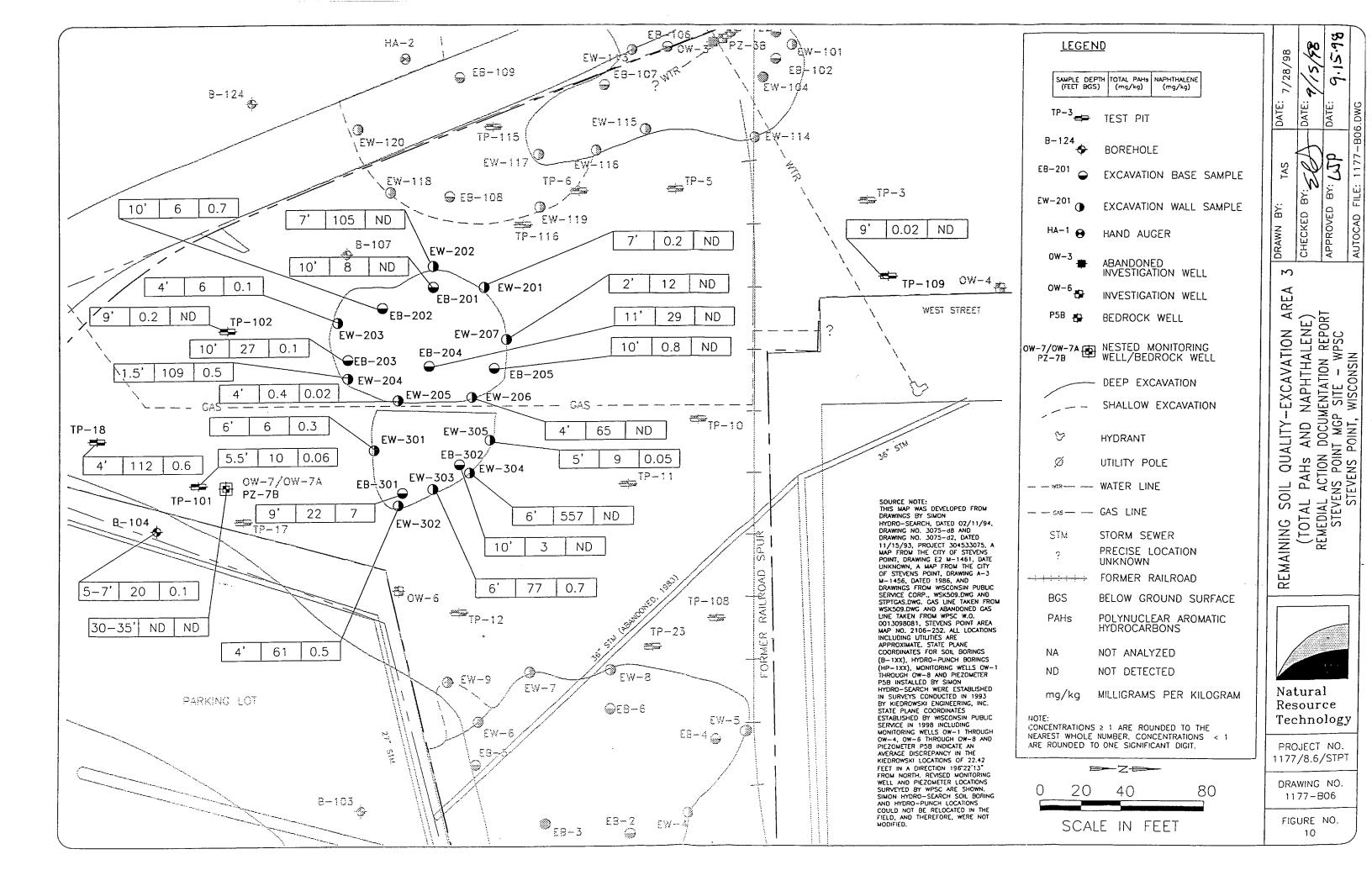

SOURCE NOTE: THIS MAP WAS DEVELOPED FROM DRAWINGS BY SIMON HYDRO-SEARCH, DATED 02/11/94, DRAWING NO. 3075-d8 AND DRAWING NO. 3075-d2, DATED 11/15/93, PROJECT 304533075, A MAP FROM THE CITY OF STEVENS POINT, DRAWING E2 M-1461, DATE UNKNOWN, A MAP FROM THE CITY OF STEVENS POINT, DRAWING A-3 M-1456, DATED 1986, AND DRAWINGS FROM WISCONSIN PUBLIC SERVICE CORP., WISK509,DWG AND STPTCAS.DWG. CAS LINE TAKEN FROM WISCONSIN PUBLIC SERVICE CORP., WISK509,DWG AND STPTCAS.DWG. CAS LINE TAKEN FROM WISCONSIN PUBLIC SERVICE CORP., WISCONG, ON DIJ098081, STEVENS POINT AREA MAP NO. 2106-252. ALL LOCATIONS INCLUDING UTILITES ARE APPROXIMATE. STATE PLANE COORDINATES FOR SOIL BORINGS (B-1XX), HTORO-PUNCH BORINGS (HP-1XX), MONITORING WELLS OW-1 THROUGH OW-8 AND PIEZOMETER P58 INSTALLED BY SIMON HTORO-SEARCH WERE ESTABLISHED IN SURVEYS CONDUCTED IN 1993 BY KIEDROWSKI ENGINEERING, INC. STATE PLANE COORDINATES ESTABLISHED BY WISCONSIN PUBLIC SERVICE IN 1988 INCLUDING MONITORING WELLS OW-1 THROUGH OW-4, OW-6 THROUGH OW-8 AND PIEZOMETER P58 INDICATE AN AVERAGE DISCREPANCY IN THE KIEDROWSKI LOCATIONS OF 22.12 FEET IN A DIRECTION 1952213° FROM NORTH. REVISED MONITORING WELL AND PIEZOMETER LOCATIONS SURVEYED BY WPSC ARE SHOWN, SIMON HTORO-SEARCH SUL BORING AND HYDRJ-PUNCH LOCATIONS COULD NOT BE RELOCATED IN THE FIELD. AND THEREFORE, WERE NOT MODIFIED.



ĺ	LEGEN	1D]	
	SAMPLE DEPTH (FEET BGS)	TOTAL BTEX (mg/kg)	BENZENE (mg/kg)		9/4/98
	HP-120	HYDRO-F	PUNCH		DATE: 9
		TEST PIT			<u> </u>
	B-124	BOREHOL	.E		TAS
	EB-1 🔾	EXCAVATI	ON BASE SAMPLE		ВΥ:
	E₩-102 ●	SOIL SAN WHICH W	IPLE AS EXCAVATED	1	DRAWN B
	^{E₩-1} ①	EXCAVATI	ON WALL SAMPLE		_ DR/
	^{HA−1} ⊖	HAND AU	GER		4
	^{SS−4} ∳	SURFACE	SOIL SAMPLE		ARF
	0₩-3 #	ABANDON INVESTIGA	ED TION WELL		
	OW-1	INVESTIGA	TION WELL		ATI
	P58 🖶	BEDROCK	WELL		SAV
	0W-9/ PZ-98	NESTED N WELL/BED	IONITORING DROCK WELL		~-EXCAVATION
		DEEP EX	CAVATION		Ē
		SHALLOW	EXCAVATION		QUALITY
	Ś	HYDRANT			5
	Ø	UTILITY PO	DLE		S
		WATER LIN	IE		VING
	<u> </u>	GAS LINE			MAIN
	2	STORM SE PRECISE L UNKNOWN			REMAININ
		FORMER F	RAILROAD		
	BGS	BELOW GR	OUND SURFACE		
	BTEX	BENZENE, ETHYLBENZ	TOLUENE, ZENE, XYLENES		
		NOT DETEC			Na
	mg/kg NOTE:	MILLIGRAMS	5 PER KILOGRAM		Re: Teo
	CONCENTRATION: NEAREST WHOLE ARE ROUNDED 1	NUMBER. CC	NCENTRATIONS < 1		PR(177
	02	$rac{20}{20}$) 80		DRA 11
	S	CALE IN	FEET		FIC
-				L	






LEGEN	1 <u>D</u>					90		\square
SAMPLE DEPTH (FEET BGS)	TOTAL PAHS (mg/kg)	NAPHTHALENE (mg/kg)			9/4/98	1/21	15.98	
HP-120	HYDR0-	-PUNCH			DATE: 9/	DATE: 9	DATE: 9.	WG
TP-3	TEST P	IT			70	à	VO	1177-B04.DWG
B-124	BOREHO	DLE			TAS .	Q,	F	1177-
EB−1 ⊖	EXCAVA	TION BASI	E SAMPLE			₽Y:<	В <u>′</u> :	FILE:
E₩-102 ●	SOIL SA	MPLE WAS EXCA	AVATED		N ΒΥ:	KED	APPROVED	1 1
EW-1	EXCAVA	TION WALL	SAMPLE		DRAWN	CHECKED	АРРК	AUTOCAD
HA-1 😝	hand a	UGER			5		<u> </u>	
SS−4	SURFAC	E SOIL SA	AMPLE		AREA			
0₩-3 #	ABANDO	NED SATION WE	ILL		N AR	VE)	OKI	
OW-1	INVESTIC	SATION WE	ILL		10		UN KEPU	_
P58 🔂	BEDROC	K WELL			. AVP			NSI
OW-9∕ PZ-98 🔁		MONITORI EDROCK V			-EXCAVAT	NAPH	SITE	WISCO
	DEEP E>	CAVATION			-YTI.	AND	MGP	INI,
	SHALLOW	/ EXCAVA	TION		QUAL	A No A No A No A No A No A No A No A No		2
5	HYDRANT					AH	S P(KEN,
Ø	UTILITY P	POLE			SOIL			
	WATER L	INE			ING			
	GAS LINE	-			REMAININ		2	
	STORM S				REM			
	PRECISE UNKNOWI	LOCATION	1					
		RAILROAD						
		ROUND S						
PAHs	POLYNUC HYDROCA	LEAR ARC RBONS	MATIC			-		
	NOT ANAL					5-0-1-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-		
ND mg/kg	NOT DETE MILLIGRAN			1 1		ura		
		- /				our hno	ce logy	,
NOTES: 1.CONCENTRATIO	NS ≥ 1 ARE	ROUNDED	TO THE		<u> </u>		-~sJ	_
NEAREST WHOLE	TO ONE SIG	NIFICANT DIG	п.			JECT /8.6/	NO. 'STPT	
2. TP-6 PAHS TO THE LABORA INTERPRETING RI	TORY, AND I	S NOT CON	SIDERED FOR		DRAV	VING	NO.	
					FIGL	JRE I 7	NO.]
								/

LEGEN	ID
SAMPLE DEPTH (FEET BGS)	TOTAL CYANIDE LEAD (mg/kg) (mg/kg)
HP-120	HYDRO-PUNCH
TP−3 🚓	TEST PIT
B−124	BOREHOLE
^{EB−1} ⊖	EXCAVATION BASE SAMPLE
EW-102	SOIL SAMPLE WHICH WAS EXCAVATED
^{EW−1} ①	EXCAVATION WALL SAMPLE
^{HA−1} ⊖	HAND AUGER
^{SS−4} ∳	SURFACE SOIL SAMPLE
0₩-3 🖶	ABANDONED INVESTIGATION WELL
0₩-1	INVESTIGATION WELL
P5B 🖶	BEDROCK WELL
OW-9∕ PZ-9B 🖽	NESTED MONITORING WELL/BEDROCK WELL
	DEEP EXCAVATION
	SHALLOW EXCAVATION
8	HYDRANT
Ø	UTILITY POLE
¥IR	WATER LINE
— c/s—	GAS LINE
STM	STORM SEWER
?	PRECISE LOCATION UNKNOWN
{}-:-:-:	FORMER RAILROAD
BGS	BELOW GROUND SURFACE
NA	NOT ANALYZED
	NOT DETECTED
mg/kg	MILLIGRAMS PER KILOGRAM
NEAREST WHOLE .	≥ 1 ARE ROUNDED TO THE NUMBER, CONCENTRATIONS < 1 ONE SIGNIFICANT DIGIT.
0 20	<u> </u>
SC/	ALE IN FEET

Table 1 - Soil Analytical Results - Test Pits Remedial Action Documentation Report Former Stevens Point Manufactured Gas Plant Site - WPSC

A a a b a				BT	ΈX (μg/					_						PAI	Hs (mg	/kg)									I	norganie	cs (mg/k	(g)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																								1				1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sample ID	Depth	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Total BTEX	A cenaphthene	Acenaphthylene	Anthracene		1		Benzo(g,h,i)perylene			Dibenzo(a)anthracen			Indeno(1,2,	1	1	1		+	Total P	Cyanide		Cyanide (Dissociable)	Lead
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TP-101	5.5	-					nd	0.36		1						ļ				1							· · · · ·		+
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		9	nd	nd	nd	nd	nd	nd	nd	nd	0.022	0.027	0.02	nd	0.022	0.019	nd	0.024	nd	0.022	лd	nd	nd		+	0.18	1	1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	TP-105	1.5															L								1					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	TP-105	5						0.32	nd	1	·			L														1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	TP-107	5	nd	nd	nd	nd	nd	0.19		0.95		·						1										<u> </u>		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TP-108	5	nd	nd	nd	nd	nd	nd	5.4	11	28			·														1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	TP-109	9	nd	nd	nd	nd	nd	nd	nd	nd	nd																			
TP-110 9.5	TP-110	2	nd	nd	nd	nd	nd	лd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd				<u> </u>					
TP-111 6 0.021 0.044 0.078 0.45 0.59 0.6 0.42 0.35 0.47 0.11 0.69 0.022 0.46 nd nd 0.03 0.26 0.55 5.2 0.29 nd nd 44 TP-113 0.5 <td>TP-110</td> <td>9.5</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td><u> </u></td>	TP-110	9.5			-						<u> </u>																			<u> </u>
TP-112 0.5 0.021 0.03 0.03 0.03 0.04 0.03 0	TP-111	6			-					·	1													L						·
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TP-112	0.5							0.044									1						ļ	<u> </u>			1		i
TP-115 5	TP-113	0.5						0.046	nd	0.09	0.17	0.19	0.19	0.14	0.13	0.19	0.034	0.45	0.034	0.15	nd	nd	· · · · ·							
TP-116 1	TP-115	5																			1		<u> </u>					,		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	TP-116	1									1																			<u> </u>
TP-117 4 1,500 120 1,400 1,100 4,120 2.4 5.4 2.0 5.2 50 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.03 0.048 1.1 nd 0.036 0.049 0.46 0.87 10.1 0.37 -	TP-116	5.5	nd	nd	42	116						·																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TP-117	4	1,500	120	1,400	1,100	4,120								1															
HA-1 1 <t< td=""><td>TP-120</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>0.062</td><td>0.036</td><td>0.16</td><td>0.82</td><td>1.4</td><td>1.1</td><td>1.0</td><td>0.82</td><td>0.8</td><td>0.35</td><td>0.97</td><td>0.048</td><td>1.1</td><td>nd</td><td>0.036</td><td>,</td><td></td><td></td><td></td><td></td><td></td><td><u>.</u></td><td><u> </u></td></t<>	TP-120	1						0.062	0.036	0.16	0.82	1.4	1.1	1.0	0.82	0.8	0.35	0.97	0.048	1.1	nd	0.036	,						<u>.</u>	<u> </u>
HA-2 1 <t< td=""><td>HA-1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	HA-1	1																												
HA-3 1 <t< td=""><td>HA-2</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	HA-2	1																												
HA-4 1 <t< td=""><td>HA-3</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ļ</td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td> </td></t<>	HA-3	1												ļ													_			
Groundwater Pathway RCL 0.0055 2.9 1.5 4.1 us 56 0.7 5,000 17 40 0.088 0.08 0.08 0.08 0.088 0.088 0.008 0.088 1.00 0.0 20 18 500 ns	HA-4	1								1	1				<u>.</u>			!							ł_,					
Direct Contact Path-Non-indust. RCL ns			0.0055	2.9	1.5	4.1				•				,		•••									· · ·	\$				
Direct Contact Path-Industrial RCL ns	Direct Contact PathNon-ind	ust. RCL	1							-,											-,								1 1	500
US EPA Residential PRGs 0.03 2.50 7.00 5.20 ns ns ns ns 1.400 1.000		al RCL	1																						100	ns	DS	ns	1,300	400
US EPA Industrial PRGs 1.4 230 880 320 ns 110 ns 5.7 2.6 0.20 2.6 ns 20 7.2 0.20 2.6 ns 20 1.2 0.20 2.6 ns 2.0 ns			1.4	230	880	320	ns	110	ns	5.7	2.6	0.26	2.6	пs	26	7.2	0.26	27,000	90	2.6	ns 💊	ns	240	пs	100	ns	ns	ns	1,400	1,000

Notes:

1. nd = parameter not detected above laboratory detection limit.

2. -- = parameter not analyzed.

3. TP samples were collected March 3-5, 1998.

4. HA samples were collected March 26, 1998.

5. RCL = WDNR generic Residual Contaminant Level.

6. PRG = US EPA Region 9 Preliminary Remediation Goals for direct contact.

7. PRGs assume all dissociable cyanide as free cyanide.

8. Sample depths measured with respect to pre-remedial ground surface elevations.

.

by: DVP chk'd by: SLF

Table 2 - Soil Analytical Results - Surface Soil **Remedial Action Documentation Report** Former Stevens Point Manufactured Gas Plant Site - WPSC

	4/1/98 Pile 1 solutivest 1 0.0 nd nd 0.07 0.11 0.1 0.28 0.68 3.6 4.2 3.4 2.6 3.5 3.7 1.2 5.1 0.12 2.3 0.19 0.28 0.59 1.1 4/2/98 Pile 2 eastern N 2.4 nd nd 0.04 0.77 0.07 0.27 0.46 2.2 2.1 2 1.8 2.4 0.63 3.2 0.13 1 1.8 2.4 1.6 3.2 2.12<														I		7														
	Sample Date BlEX (link/kg) Sample Date Sample Location Sample Location Sample Location Sample Locat																ł														
Sample ID		Location	Treated prior to Backfill	PID Reading	enzene	nzen	oluene	ylenes	otal BTEX	cenaphthene	Ū,	Anthracene	acene	enzo(a)pyrene	enzo(b)fluoranthene	Benzo(g,h,i)perylene	enzo(k)fluoranthene	ysene	o(a,h)anthracene [C][PO	Fluoranthene	Fluorene	,2,3-cd)pyrene [C][P]-Methylnaphthalene	2-Methy in a phthalene	Naphthalene	Phenanthrene	Pyrene	Total P.	Total Carc. PAHs	Lead (mg/kg)	Cyanide, Total (mg/kg)
San	Sar	Sai	E	L III	ă	Ш	L							<u> </u>			13	17	3.3	38	0,91	7.1	<0.64	0.64	1.6	10	30			37	2
CLN-1	4/1/98	Pile 1 southwest	Y	15.4	nd	nd	·					4.1						5.6		9.3	0.27	3.1	<0.17	<0.15	0.42	2.7	7.7			i	0.33
CLN-2		the second se	Y	3.6	nd	nd				<u></u>		1					_			5.1	0.12	2,3	0.19	0.28	0.33	1.7	4		21.9		0.92
CLN-3		Pile 2 eastern	N	24	nd	1	1			1		L		4.2						3.2	0.13	1	1.8	2.4	1.8				12.13	51	0.28
CLN-4		Pile 2 eastern	N	2.7	nd			· · · · ·		1	<u> </u>			0.05	0.06				nd	0.07	nd	0.03	nd	nd						21	1.2
CLN-5	4/7/98	NW corner of site	e N	1.8			+			<u> </u>								0.49	0.14	0.86	0,06	0.32	0.02	0.29	0.06					21	2.2
CLN-6	4/7/98	NW corner of sit	e N	2.3									12					11	2.8	19	1.4	9.1	0.43	nd	nd	6.2	16	135.2	76.9	9.7	0.67
CLN-7	4/22/98	Crosby Ave.	Y	15.3	nd	nd	nd	nd	nd	0.03		1 4.9	1 12	1				1	1 20	nc	nc	nc	nc	nc	0.4	1.8	nc	50	10	50	50
Thermal T	reatment	Performance Criter	ia		0.03	2.9	1.5	4.1	nc	nc	0.7	nc	nc	nc	nc	nc	nc	nc	nc	1_10_	1 110			L			·				

1. [POM] = Polycyclic Organic Matter according to NR 445, Table 3. Consist of benzo(a)anthracene, benzo(a) pyrene, benzo(b) fluoranthene, dibenzo (a,h) anthracene, indeno (1,2,3 - cd) pyrene.

By: kmz Checked by: slm

2. [C] = Carcinogenic, classified as B2, probable human carcinogen.

3. Backfill RCLs (Residual Contaminant Levels) are the same as the Thermal Treatment Performance Criteria.

4. nc = no backfill RCL criteria

5. Pile 1 is the top 4" of soil from the southwest treated soil staging area.

6. Pile 2 is the top 4" of soil from eastern portion of site (east of eastern excavation).

7. nd = parameter not detected above laboratory detection limit

8. bold indicates concentration above thermal treatment performance criteria

÷

Table 3 - Soil Analytical Data - Excavation Base & Sidewall Remedial Action Documentation Report Former Stevens Point Manufactured Gas Plant Site - WPSC

_

÷ , ----

.

				r	ВТ	EX (mg/kg	<u>;</u>)									Poly	nuclear Arc	omatic Hyd	rocarbons (mg/kg)									H				T
T				T	T						1. A.A.															1			1.00				
		BGS)	(mqq)									ne [C][POM]	cl[PoM]	hene [C][POM]	one	hene [C]		tracene [C][POM]			pyrene [C][POM]	llene	llene					ls (mg/kg)	(mg/kg)	tble (mg/kg)	iable (mg/kg)		arbon (mg/kg)
dic ID	ple Date	mple Depth (feet	PID Reading	IZene	Ethylbenzene	olucne	lenes	Fotal BTEX	enaphthene	cenaphthylene	ıthracene	enzo(a)anthrace	enzo(a)pyrene [enzo(b)fluorant	enzo(g,h,i)peryl	enzo(k)fluorant	hrysene [C]	Oibenzo(a,h)anth	luoranthene	Fluorene	ndeno(1,2,3-cd)	-Methylnaphtha	-Methylnaphth	Japhthalenc	henanthrene	yrene	rotal PAHs	Fotal Carc. PAHs	Сувпіde, Total (Cyanide, Amen	/ Cyanide, Dissoci	Lead (mg/kg)	Total Organic C
Sam	Sarr	San	Field	Bei	Ē	۴ L	Xyle	T	¥	Ā .	×					C PFPRF	SENTING		NG SOIL (<u> </u>				<u> </u>	I			<u> </u>
								-d	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	ba	nd	nd	nd	nd	nd	nd	1.5		-	-	-
EW-1 (6)	3/30/98	6	0.8	nd nd	nd nd	nd 0.06	nd 0.113	nd 0.173	2.3	2.3	11	68	63	61	34	43	60	18	81	2.1	35	0.99	1.6	3.7	32	68	586.99	348	41	-	-	77	
EW-2 (2) EW-3B (1.5)	3/30/98 5/14/98	1.5	1.1		-	-				-	-			-	-	- 6	8.6	2.8	12	0.26	- 7	0.39	0.54	0.65	5	10	101.07	62.4	0.89	0.89	0.16		
EW-3 (7)	4/1/98	7	1.0	nd	nd	0.039	0.044	0.083 nd	0.46 nd	0.37 nd	<u>1.5</u> 0.13	0.95	14	0.83	7.5	0.64	0.77	0.18	1.2	nd	0.45	nd	nd	nd	0.38	0.9	7.87	4.82	28		-	420	
EW-4 (4)	4/6/98	4	9.5	nd nd	nd nd	nd nd	nd nd	nd	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd 104	nd 42				
EW-5 (4) EW-6 (5)	4/6/98	4	8.7 5,9	ba	nd	nd	0.033	0.033	nd	3.1	5.5	41	29 8.4	38 5	4.5	29 4_3	6.5	7	49 6.1	nd nd	16 3.2	nd nd	nd 0.44	nd 0.58	9.7	9.8	<u>317.3</u> 60.56	194 35.1	42 0.8			- 320	13,000
EW-7 (6)	4/14/98	6	3.8	nd	nd	0.063	0.13	0.193	nd nd	0.83	0.91	6.6 59	<u>8.4</u> 50	50	4.5	27	45	7,2	49	nd	18	nd	1.3	5	3.6	41	400	256.2	8.7	-	-		
EW-8 (5)	4/14/98 5/15/98	5	3.2	nd —	nd 		-		-	-	-	-	-	-		-	<u> </u>		-	-		-					-	 nd	35 29	-	-	38 nd	<u> </u>
EW-9 (1.5) EW-101 (6)	4/15/98	6	459	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd 0.29	nd 0.24	nd 0.14	nd 0.18	nd 0,22	nd 0.061	nd 0.28	nd 0.019	nd 0.14	nd nd	nd 0.017	0.11	nd 0.13	nd 0.2	0.11	1.401	2.9	-		52	
EW-103 (9)	4/15/98	9	15.4	nd	nd 0.79	nd nd	nd 0.043	nd 0.833	nd 0,75	0.019	0.05	0.27	19	12	7.7	18	15	3.1	31	3.9	8.2	1	nd	1.8	9.3	26	182.05	94.3	6.2	-			
EW-105 (6)	4/20/98	6	6.9 6.9	nd nd	0.79 nd	nd	nd	nd	nd	nd	0.037	0.21	0.23	0.21	0.18	0.2	0.19	0.047	0.24	nd	0.15	0.019	nd	0.14	0.72	0.21	2.783	1.237	2.3 270		-	4.6	
EW-105 (9) EW-106 (5.5)	4/21/98	5.5	28	0.071	5.1	0.16	0.78	6.111	3.3	7.2	18	47	35 0.039	<u>33</u> 0.029	0.028	47	41	6.8 nd	0.045	25 nd	0.025	25 nd	17 nd	28	0.02	0.035	0.341	0.18	0.07		-	nd	-
EW-107 (1.5)	4/21/98	1.5	57.1	nd	nd nd	nd nd	nd nd	nd nd	nd ba	nd ne	nd nd		nd	nd	nd	nd	nd	nd	nd	ba	nd	nd	nd	nd	nd	nd	nd	nd	0.05	-		9.5	<u> </u>
EW-108 (1.5)	4/21/98	1.5	61.8	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd 0.021	nd	nd	nd	nd nd	nd nd	nd 0.018	nd nd	nd 0.056	nd 0.017	0.05		<u> </u>	4.6 nd	
EW-109 (1.5) EW-110 (1.5)	4/21/98	1.5	32.4	nd	nd	nd	nd	nd	nd 0.12	nd 0.17	nd 0.31	nd 1.6	0.017	 2.2	nd 1.5	1.5	nd 1.6	nd 0.46	2.5	nd 0.2	nd 1.4	nd 0.12	0.15	0.43	. 1.1	1.9	19.06	10.56	48	-		100	
EW-111 (5)	4/27/98	5	19.6	nd nd	l nd	0.18 	0.11 nd	1.29 nd	0.027	0.17	0.12	0.62	0.84	0.78	0.62	0.6	0.56	0.18	0.72	0.05	0.57	0.042	0.058	0.16	0.22	0.62	6.907	4.15	0.48	-		11	
EW-112 (7) EW-113 (6)	4/27/98	7	2.8	nd	nd	nd	0.033	0.033	0.093	0.13	0.31	1.2	1.5 nd	1.2 nd	0.92 nd	1.2 nd	1.1 · · · · · · · · · · · · · · · · · ·	0.29 nd	1.8 nd	0.14 nd	0.9 nd	0.2 nd	0.19 nd	0.36 nd	0.79 nd	1.4 nd	13.723 nd	7.39 nd	1.5 nd	-		32 nd	
EW-114 (5)	4/30/98	5	0.6	nd	nd nd	nd 0.054	nd 0.162	nd 0.216 ·	nd 0,1	nd 0.46	nd 0.56	nd 0.98	1.3	0.98	0.75	0.9	0.82	0.21	1.6	0.4	0.69	0.35	0.48	1.8	1.2	1.4	14.98	5,88	0.12	~	-	41	
EW-115 (7)	4/30/98 5/5/98	7	28.2	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd 19.006	nd 11.22	0.31	-		nd 33	
EW-116 (7) EW-117 (6)	5/5/98	6	0.5	nd	nd	nd	nd	nd .	nd	0.39	0.33	1.4	2.7	1.9	1.6	1.9	1.7	0.52	2.3	nd 0.057	1.1	0.066 nd	0.24	0.15	0.61	2.9 1,9	19.000	11.22	13			58	
EW-118 (1.5)	5/5/98	1.5	0	nd nd	nd nd	nd 0,036	nd 0.071	nd • 0.107	0.047 nd	0.23	0.46 1.2	8.2	12	12	8.9	12	8.4	3.1	12	nd	7.3	nd	0.35	nd	1.2	13	101.65	63	6.2			45	-
EW-119 (1.5) EW-120 (1.5)	5/6/98 5/13/98	1.5	0.9	nd	nd	0.037	0.04	0.077	nd	1	1.5	8.7	11	12	5.5	8.7	8,1	1.9	14	0.47	5.1	nd	nd	0.57	3.4	14 nd	95.94 0.018	55.5	1.3 0.5			150 nd	
EW-120 (1.5) EW-201 (7)	5/12/98	7	4.8	nd	nd	nd	nd	nd	nd	nd	nd 0.51	nd 1.7	nd 27	nd 18	0.018	nd 11	nd 6.6	nd 3.8	nd 1.2	nd nd	nd 13	nd nd	nd nd	nd nd	nd nd	2.3	105.41	81.1	4.3	-		nd	
EW-202 (7)	5+12/98	7	5.9	nd nd	nd	nd nd	nd 	nd nd	nd 0.017	3.3 0.12	0.51	0.47	0.8	0.56	0.62	0,55	0.44	0.16	0.69	0.034	0.51	0.026	0.041	0.1	0.21	0.69	6.138	3.49	0.49	-	-	8.4	
EW-203 (4)	5/12/98		6.4	nd	nd	nd	0.028	0.028	0.37	2.1	1.9	9.2	14	9.7	7.3	9.3	8.6	2.2	13	0.55	5.9	nd	0.98	0.53	4.7 nd	19 0.056	109.33 0.387	58.9 0.24	7.2 nd			34 nd	
EW-204 (1.5) EW-205 (4)	5/14/98	4	5.8	nd	nd	nd	nd	nd	nd	nd 1.2	nd 0.93	0.039	0.061	0.04 5.4	0.033	0.038	0.034	nd 0.87	0.041	nd 0.35	0.028	ba ba	nd 0.49	0.017 nd	2.7	16	65.14	31.67	0.23	-		4.9	
EW-206 (4)	5/14/98		3.2	nd ond	nd nd	0.033 nd	0.035 nd	0.068 nd	nd 0.04	0.25	0.93	0.93	1.2	0.91	0.7	0.7	0.79	0.19	1.4	0.93	0.56	nd	0.086	nd	0.64	2.2	11.726	5.28	nd			6.2	
EW-207 (2)	5/14/98		38.4		0.045	nd	0.142	0.187	0.13	0.57	0.41	0.17	0.16	0.086	0.063	0.085	0.15	nd	0,41	0.4	0.047	0.39	0.46	0.33	1.5	0.85	6.211	0.698	2.7			nd	
EW-301 (6) EW-302 (4)	5/15/98		18.9	nd	nd	nd	bd 0.083	nd	0.18	0.93	0.77	4.8	9.9 9.1	7.1	2.9	5.7 5.4	<u>4.9</u> 6.1	1.8	3.8	0.3	5.3 3.4	nd 0.28	0.42	0.53	1.6 2.9	6.4 9.9	61.43 77.18	39.5 43.2	2.7 10	-	-	<u>52</u> 23	
EW-303 (6)	5/15/98		22.3	nd nd	nd 0.076	nd nd	0.083	0.083	nd 3.5	2.3	13	49	63	39	22	39	42	5.8	76	7	19	2.3	7.5	nd	20	130	557.1	256.8	0.7			nd	
EW-304 (6) EW-305 (5)	5/15/98		10.9	nd	nd	0.031	0.028	0.059	nd	0.19	0.081	0.7	0.97	1.1	0.67	0.76	0.63	0.17	1.1	0.038	0.55	0.018	0.041	0.049	0.15	1.4	8.617	4.88	0.28	-	-	nd	
EW-505 (5)														SAMPLE 330	<u>S REMOV</u> 160	ED THROU 260	UGH ADDI 380	68	EXCAVATI 430	<u>ON</u> nd	170	nd	8	25	73	320	2919	1828	990	990	76	26	
EW-3 (2)	4/1/98		0.0	0.05	nd	0.1 nd	0.075 nd	0.225 nd	nd 0.62	36 0.3	39 2	400	220 4.1	5	2.2	2.0	4.7	0.85	12	0.93	2	0.27	0.26	0.65	6.2	7.4	57.38	24.55	340			14	
EW-102 (7) EW-104 (10)	4/15/98		6.4	nd	nd nd	nd	nd	nd	0.02	nd	nd	nd	nd	nd	nd	nď	nd		0.025	0.049	nd	0.03	0.029	0.095	0.16	nd	0.414	nd	190	-		nd	
											7.000	17		INTERIM 360	AND PRE 6,800	LIMINAR 870	Y GUIDAN 37	<u>38</u>	<u>LS</u> 500	100	680	23	20	0.4	1.8	8,700	лз	DS	85	ns	ns	DS	
Groundwater P:	athway RC	L .		0.0055	2.9	1.5	4.1 ps	ns DS	38 900	0.7 18	3,000 5,000	17 0.088	48 0.0088	0.088	1.8	0.88	. 8.8	0.0088	600	600	0.088	1,100	600	20	18	500	ns	D3	03 D3	ns	ns	50	n\$
Direct Contact I Direct Contact I	Pathway-No	in-industriz	I RCL	ns DS	n5 n5	ns ns	DS	ns	60,000	360	300,000	3.9	0.39	3.9	39	39	390	0.39	40,000	40,000	3.9	70,000	40,000	110	390	30,000	п5	ns	ns	ns	ns	500	ns
US EPA Resider	ntial PRGs			0.63	230	790	320	ns	110	ns	5.7 5.7	0.61 2.6	0.061	0.61 2.6	R3 D3	6.1 26	7.2	0.061 0.26	2,600 27,000	90 90	0.61 2.6	ns ns	DS DS	240 240	ns ns	100 100	ns ns	ns ns	ns DS	ns ns	1,300 1,400	400 1.000	ns ns
US EPA Industr	rial PRGs			1.4	230	880	320	ns	110	ns	5.7		0.26				1.2				~.0						1						
																1																	

.

l of 2

· ·

.

		11 3.2 0.11 0.1 nd 0.77 0.98 1.2 0.17 0.12 0.10 nd nd]																
Sample ID	Sample Date	ample Depth	PID Reading	Benzene	Ethylbenzene	Toluene	Xylenes	Total BTEX	Accnaphthene	Acenaphthylene	Anthracene	acene	nzo(a)pyrene	oranthene	enzo	uoranthene	Chrysene [C]	cene	Fluoranthene	Fluorenc	3-cd)pyrene	I-Methylnaphthalenc	2-Methylnaplıthalene	Naphthalene	Phenanthrene	Pyrene	Total PAHs	Total Carc. PAHs (mg/kg) ,	Cyanide, Total (mg/kg)	Cyanide, Amenable (mg/kg)	Cyanlde, Dissociable (mg/kg)	Lead (mg/kg)	Total Organic Carbon (mg/kg)
	<u> </u>		L				·		· · · · · · · · · · · · · · · · · · ·			EX	CAVATIO	N BASE S	AMPLES K	REPRESEN	TING RE	MAINING	SOIL QUA	LITY													
EB-1 (11)	4/1/98	11	37	0.11	0.1	nd	0.77	0.98	1.2	0.17	3.2	0.66	0.23	0.17	0.097	0.14								1			23.999	1	nd		-		
EB-2 (10)	3/30/98						· nd	nd	0.081	nd	nd	nd	nd	nd	nd												0.376	nd	nd		-		-
EB-2 (10)	4/6/98				nd	nd	nd	nd	3.2	nd	nd	nd	0.29	nd		· · · · · · · · · · · · · · · · · · ·					[7.4	0.29	0.94	-	-		
EB-5 (12)	4/7/98				1.2	nd	1.54	2.98	31	nd	13	11	7.2	5.3					L			·					223.4	37.5	0.35				<u> </u>
EB-6 (10)	4/7/98				nd	nd	nd	nd	0.046	0.042	0.67	nå	nd	nd	nd	nd	nd	nd	0.32	1.1	nd	nd	0.089	0.35			3.797	nd	9.2	9.2	0.27		<u> </u>
EB-101 (14)	4/14/98				nd	nd	nd	nd	0.016	nd	nd	nd	nd	nd	nd						{						0.275	nd	85			nd	<u> </u>
EB-102 (12)	4/14/98				nd	nd	nd	nd	nd	nd	nd	nd	лd														nd	nd	0.7		-	nd	
EB-102 (12)	4/20/98				nd	nd	nd	nd	nd	nd	nd	nd															0.179	nd	2.5				
EB-104 (2.5)	4/21/98	2.5		nd	0.038	nd	nd	0.038	0.39	0.38	1.3																53.15	23.15	0.27	-	-	79	
EB-105 (9)	4/27/98		7.3	nd	nd	nd	nd	nd	nd	nd	0.037								+•								2.135	1.237	2.3	-		4.6	
EB-106 (10)	4/28/98	10	6.1	0.084	nd	nd	0.153		0.08														L				9.34	nd nd	лd 0,44	~		nd 9.2	
EB-107 (10)	4/29/98	10	4.9	0.07	0.11	nd	0.196	0.376	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.026	nd	nd	0.02	0.024	1.2	0.031	0.022	1.52.56	94.2	2.5			40	
EB-108 (2)	5/6/98	2	0.4	0.038	nd	0.062	0.036	0.136	nd	1.1	2.7	14	21	17	9.8	16	13	4	24 2.9	0.29	9.2 1.5	nd	0.56	0.81	2.1	3.2	25.59	13.03	1.1			24	
EB-109 (2)	5/13/98	2		0.031	0,029	0.08	0.179	0.319	0.17	0.38	0,75	2	2.6	3	1.6	1.5	0.08	nd				0.23	0.33	0.04 nd	3.3	0.56	8.496	0.418	0.78			nd 1	
EB-201 (10)	5/12/98	10	272	nd	0.03	nd	nd	0.03	1.5	nd	0.68	0.11	0.11	0.059	nd 0.087	0.059	0.08	0.02	0.53	1.4 0.19	nd 0.071	0.062	0.048	0.7	0.99	1.1	5.575	1.021	nd			nd	
EB-202 (10)	5/12/98	10	20.9	nd	nd	nd	nd	nd	0.13	0.07	0.33	0.28	0.23	0.11	1.2	1.9	1.6	0.31	3.1	0.19	1.1	0.047	0.16	0.12	4	4.3	27.14	11.31	0.44	~~~		6.4	
EB-203 (10)	5/13/98	10	17.6	nd	nd	nd	nd	nd	0.36	0.53	0.92	1.8	1.3	0.56	0.55	0.74	0.95	nd	2.5	1.8	0.43	1.1	1.4	0.12 nd	7.5	4.4	29.17	5.08	0.52			nd	
EB-204 (11)	5/14/98	11	103	nd	nd	nd	nd	nd	0.74	2.3 nd	1.8 0.068	1.1 0.045	0.04	0.36 nd	nd	0.014	0.95	nd	0.11	0.043	nd	nd	nd	nd	0.24	0.2	0.811	0.13	nd			nd	
EB-205 (10)	5/14/98	10	208	nd	nd	nd	nd	nd 0.912	0.02	1.7	1,2		0.04 nd	nd	nd	nd	nd	nd	1.5	2.9	nd	1.3	1.3	7.2	3.8	0.97	22.19	nd	8.5	-		nd	
EB-301 (9)	5/15/98	9	115	0.052	0.23	0.16	0.47		0.032	0.062	0.31	0.11	0.06	0,036	0.021	0.028	0.066	nd	0.33	0.2	nd	0.025	0.025	nd	1.1	0.66	3.071	0.3	0.21			nd	-
EB-302 (10)	5/15/98	10	21.1	nd	nd	nd	nd	nd	0.030	0.002	10.01	0.11							CAVATION	L								ч	•	·	·		
								(07		0(0	2200	620	730	450	310	540	2100	nd	2700	1800	320	1600	2900	15000	5100	2200	39930	4660	8.8			-	_
EB-3 (10)	4/1/98	10	1039	96	110	170	251	627 29.8	400 280	960 210	2300 530	520 240	140	120	61	90	170	29	600	350	61	330	450	2100	900	350	7011	850	5.4			8.6	-
EB-7 (12)	4/13/98	12	1390	2.8	6.3	4.9	15.8	29.8	280	210		140					Y GUIDAN				<u>-</u>				1	1		u]	I		<u>اا</u>	ł	
									70	0.7	7 000	17	48	360	6.800	870	37	38	500	100	680	23	20	0.4	1.8	8,700	ns	DS	ns	ns	ns	ns	BS
Groundwater Pa				0.0055	2.9	1.5	4.1	ns	38 900	0.7 18	3,000 5,000	17 0.088	48 0.0088	0.088	1.8	0.88	8.8	0.0088	600	600	0.088	1,100	600	20	18	500	DS 1	ns	DS	DS	ns	50	ns
Direct Contact P				ns	ns	ns	DS	DS	60,000	360	300,000	3.9	0.0088	3.9	39	39	390	0.39	40,000	40,000	3.9	70,000	40,000	110	390	30,000	DS	ns	DS	DS	DS .	500	ns
Direct Contact P		strial RCI	L	ns	85	DS		ns	110	ns	5.7	0.61	0.061	0.61		6.1	7.2	0.061	2,600	90	0.61	ns	05	240	ns	100	ns	DS I	DS .	ns	1,300	400	ns
US EPA Residen				0.63 1.4	230 230	790 880	320 320	ns ns	110	DS	5.7	2.6	0.26	2.6	115	26	7.2	0.26	27,000	90	2.6	DS	ns	240	DS .	100	ns	ns	ns	ns	1,100	1,000	D 5
US EPA Industri	IAL PRGS			1.4	250	000	510																					·	I				

Notes:

1. [POM] = Polycyclic Organic Matter according to NR 445, Table 3. Consist of benzo(a)anthracene, benzo(a) pyrene, benzo(b) fluoranthene, dibenzo (a,h) anthracene, indeno (1,2,3 - cd) pyrene.

9

2. [C] = Carcinogenic, classified as B2, probable human carcinogen.

3. -- = parameter not analyzed

4. nd = parameter not detected above laboratory detection limit

5. RCL = WDNR generic Residual Contaminant Level

6. PRG = US EPA Region 9 Preliminary Remediation Goals for direct contact.

7. PRGs assume all dissociable cyanide as free cyanide.

8. Sample depths measured with respect to pre-remedial ground surface elevations.

9. Shaded sample results denote sample area was excavated and treated.

By: kmz Checked by: slm

Table 4 - Soil Analytical Results - Pre-Treatment Soil **Remedial Action Documenation Report** Former Stevens Point Manufactured Gas Plant Site - WPSC

			f	r	DTEV P	Ninnhi	halene	(mg/kg)	1							Pol	ynuclea	r Arom	atic Hyd	drocarbo	ons (mg	/kg)								'u'		
		<u> </u>		1 	SIEAO	t Mapin	liaiche	(mg/kg)					7	[I					_			1	1	[1			l	1
ample ID	ample Date	Percent Solids	Moisture Content (by weight)	Benzene	Ethylbenzene	Toluene	Xylenes	Total BTEX	Naphthalene	Accnaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene [C][POM]	Benzo(a)pyrene [C][POM]	Benzo(b)fluoranthene [C][POM]	Benzo(g,h,i)perylene	Benzo(k)fluoranthene {C]	Chrysene [C]	Dibenzo(a,h)anthracene [C][POM]	Fluoranthene	Fluorenc	Indeno(1,2,3-cd)pyrene [C][POM]	1-Methylnaphthalene	2-Methylnaphthalenc	Naphthalene	Phenanthrene	Pyrene	Total PAHs	Total POMs (mg/kg)	Total Organics (mg/kg)	Lead (mg/kg)	Cyanide, Total (mg/kg)
Ň	S I						13.8	24.4	310	67	20	62	66	55	39	22	43	56	12	150	54	22	41	65	260	180	110	1324	194	1348.4	170 70	12 7.2
PRE-0324-N	3/24/98		21.4%	1.6	6.4	2.6	22.2	37.5	550	64	33	77	51	42	27	18	31	48	8,1	110	56	15	46	72	260	180	100	1238.1	143.1	1275.6 1044	170	13
PRE-0324-S	3/24/98	79.8	25.3%	nd	9.3	3.6	16	27.5	330	55	23	49	50	39	32	17	26	40	6.5	110	51	16	37	64	170	150	81	1016.5	143.5	1044	150	17
PRE-0330	3/30/98	79.4	25.9%	1.8	6.1 3.5	2.9	12.8		210	45	43	65	72	56	58	24	28	53	8.9	150	59	24	45	81	190	180	110	1291.9	218.9	2026.6	200	30
PRE-0401	4/1/98	76.2	31.2%	1.0	7.4	6.9	25.3		480	54	81	120	93	71	61	33	49	83	12	210	100	32	78	130	340	280	160	1987 795.1	113.1	800.03	86	46
PRE-0406	4/6/98		24.7% 23.6%	nd nd	0,89	0.5	3.4	4.93	78	26	21	39	42	28	25	14	20	32	5.1	84	34	13	25	47	180	100	60 130	195.1	264	1995.1	86	13
PRE-0408	4/8/98	80.9	20.5%	nd	8,2	7.6	29.3	_	490	57	69	120	99	64	61	29	37	72	12	210	92	28	80	130	390	270		471.3	67.4	483.7	44	25
PRE-0415	4/15/98	83 86,4	15.7%	nd	1.7	1.7	9	12.4	210	16	15	36	23	18	16	6.9	10	17	3	54	24	7.4	20	29	74	68	34			1663.8	110	13
PRE-0416	4/16/98			- nu	3.4	3.3	16.3		300	64	60	120	74	70	51	33	52	59	9.8	170	84	32	71	100	240	230	120	1639.8	236.8			
PRE-0420	4/20/98	81.6	22.5%				7.7	11.2	150	25	65	93	51	55	30	33	48	46	6.3	180	49	28	42	46	85	240	180	1302.3	170.3	1313.5	42	27
PRE-0422	4/22/98	85.3	17.2%	nd	1.7	1.8			92	15	17	36	27	27	19	14	20	23	4.3	64	24	13	24	29	70	74	45	545.3	90,3	552.16	24	34
PRE-0427	4/27/98	84.6	18.2%	nd	0.98	0.98	4.9	6.86	520	13	52	64	36	34	20			28	4.7	88	50	14	47	68	290	120	61	1033.7	-	1111.8	46	36
PRE-0428	4/28/98	74.1	35.0%	8.9	4.2	18	47	78.1	150	15	18	29	22	22	12	_		17	3.8	47	24	10	22	30	120	61	35	515.8	69.8	528.8	48	22
PRE-0505	5/5/98	87.1	14.8%	1.4	2.2	2.4	7.3	13				25	22	25	19	_		17	4	46	22	12	16	21	44	56	36	424	82	431.44	51	30
PRE-0506	5/6/98	85.8	16.6%	0.64		1.2	4.8	7.44	84	13	15				7.2		_	9.1	1.4		4.4	4.9	3.5	4.6	1.2	25	28	159.5	37.2	159.767	16	0,73
PRE-0512	5/12/98	91.2	9.6%	nd	0.052		0.21			4.3	3.8	8.4		_	17	_	_	15	2.8		9.3	8.5	4.7	5.2	5.5	37	32	260.2	66.3	264.16	27	9,6
PRE-0513	5/13/98	89.8	11.4%	0.39		0.66			40	8.3	6.1	10		_				17			12	8.4	9.6	11	19	40	38	310.2	69.3	313,3	31	17
PRE-0519A	5/19/98	91.8	8.9%	nd	0.29	_			49	3	_	36	_		_			33	5.4		32	16	28	38	85	110	79	746.9	134,4	757.3	17	11
PRE-0519B	5/19/98	91.5	9.3%	nd	3	1.4	6	10.4	150	8.5	1 30	1 30	_									nl	nl	nl	nl	l nl	nl	nl	230	10,000	nl	nl
A	ir Permit L	imits		nl	nl	nl	nl	nl	nl	nl	nl	nl	nl		nl	n	nl	nl	nl	nl	nl	<u></u>	u								_H	

1. [POM] = Polycyclic Organic Matter according to NR 445, Table 3. Consist of benzo(a)anthracene, benzo(a) pyrene, benzo(b) fluoranthene, dibenzo (a,h) anthracene, indeno (1,2,3 - cd) pyrene.

By: kmz Checked by: slm

2. [C] = Carcinogenic PAH, classified as B2, probable human carcinogen.

3. Total Organics consists of Total BTEX plus Total PAHs.

4. -- = parameter not analyzed

5. nd = parameter not detected above laboratory detection limit (reference laboratory reports).

6. nl = no air permit limit established for parameter.

Table 5 - Soil Analytical Results - Post-Treatment Soil **Remedial Action Documenation Report** Former Stevens Point Manufactured Gas Plant Site - WPSC

	ſ		BT	EX (mg/l	kg)								Pe	olynucle	ar Arom	atic Hyd	rocarbor	ns (mg/k	g)		·							,
Sample ID	Sample Date	Benzene	Ethylbenzene	Toluene	Xylenes	Total BTEX	Accnaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene [C][POM]	Benzo(a)pyrene [C][POM]	Benzo(b)fluoranthene [C][POM]	Benzo(g,h,i)perylene	Benzo(k)fluoranthene [C]	Chrysene [C]	Dibenzo(a,h)anthracene [C][POM]	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene [C][POM]	I-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene	Total PAHs	Total Carc. PAHs (mg/kg)	Lead (mg/kg)	Cyanide, Total (mg/kg)
PST-0404 (A)	4/4/98	0.034	nd	0.062	0.038		0.34	0.83	4.2	8.1	8.6	6.3	4.9	6.5	7.7	2.2	9.7	1.1	4.5	0.38	0.67	2.5	8.6	7.1	84.22	43.9	290	1.4
PST-0405	4/5/98	0.027	nd	0.086	0.098	0.211	0.088	0.21	0.71	1.1	1.1	0.95	0.84	0.74	0.93	0.24	1.7	0.23	0.68	0.21	0.3	1.1	2	1.2	14.33	5.74	200	0.5
PST-0407	4/7/98	0.031	nd	0.097	0.095		0.05	0.057	0.27	0.46	0.37	0.38	0.26	0.25	0.38	0.092	0.71	0.11	0.22	0.22	0.25	0.46	0.83	0.46	5.829	2.152 0.653	100 110	0.54 0.64
PST-0408	4/8/98	0.035	nd	0.045	0.031		0.029	0.02	0.092	0.12	0.11	0.1	0.08	0.096	0.14	0.028	0.44	0.04	0.059	0.049	0.055	0.27	0.49	0.28 0.24	2.498	0.655	250	0.64 nd
PST-0412	4/12/98	0.03	nd	0.03	nd	0.06	nd	nd	0.068	0.11	0.073	0.11	0.066		0.12	0.018	0.42	0.022	0.045	0.033	0.036	0.37	0.39	0.24	2.193	0.33	290	nd
PST-0413	4/13/98	0.045	nd	0.062	0.039	0.146	nd	0.017	0.1	0.15	0.13	0.13		0.096	0.14	0.038	0.22	0.044	0.086	0.039	0.14	0.25	0.30	0.14	1.87	0.653	94	nd
PST-0415	4/15/98	nd	nd	nd	nd	nd	0.022	nd	0.089	0.13	0.1	0.1	0.088		0.14	0.029	0.22	0.024	0.087	0.039	0.045	0.25	0.32	0.12	2.611	0.82	140	nd
PST-0417	4/17/98	0.036	nd	0.066	0.036	0.138	0.019	0.049	0.14	0.16	0.14	0.18	0.1	0.084	0.14	0.033	1.1	0.00	0.085	0.075	0.18	0.63	1.2	0.10	7.336	2.396	150	nd
PST-0418	4/18/98	0.042	nd	0.062	0.038	0.142	0.05	0.11	0.48	0.47	0.44	0.46	0.28	0.54	0.42	0.070	0.83	0.13	0.23	0.087	0.13	0.5	1.2	0.55	7.494	3.31	140	nd
PST-0420	4/20/98	0.033	nd	0.055	0.035	0.123	0.039	0.058	0.38	0.56 0.75	0.63	0.33	0.52	0.54	0.46	0.15	1.2	0.11	0.42	0.13	0.17	0.58	1.2	0.78	9.632	4.19	170	0.58
PST-0421	4/21/98	0.032	nd	0.06	0.036	0.128	0.062	0.11	0.51	0.75	0.8	0.74	0.32	0.34	0.00	0.062	0.43	0.052	0.18	0.033	0.042	0.15	0.38	0.3	3.541	1.782	53	0.31
PST-0423	4/23/98	nd	nd	0.036	nd	0.036	nd 0.016	0.022	0.14	0.32	0.31	0.16	0.21	0.19	0.19	0.037	0.33	0.032	0.097	0.051	0.061	0.24	0.36	0.22	2.644	1.044	82	0.31
PST-0424	4/24/98	0.029	nd	0.055	0.034	0.118		0.025	0.087	0.093	0.088	0.067		0.071	0.094	0.024	0.18	0.046		0.061	0.072	0.29	0.3	0.13	1.773	0.496	94	0.29
PST-0427	4/27/98	0.047	nd	0.069	0.030 nd	0.132	nd	nd	0.087	0.055	0.065	0.063		0.056	0.072	0.018	0.13	0.026		0.043	0.041	0.17	0.2	0.086	1.199	0.39	150	0.22
PST-0428	4/28/98	nd	nd nd	nd	nd	0.037	nd	nd	0.028	0.037	0.039	0.035		0.034	0.04	nd	0.12	0.02		0.039	0.033	0.27	0.16	0.087	1.007	0.213	48	0.21
PST-0429	4/29/98 5/1/98	nd 0.05	nd	0.039	nd	0.089	0.015	nd	0.020	0.056		0.05		0.051	0.058	0.017	0.1	0.027	0.041	0.054	0.055	0.23	0.18	0.073	1.172	0.334	140	nd
PST-0501	5/1/98	0.044	nd	0.05	0.03	0.124	nd	nd	0.062	0.085		0.076		0.075	0.079	0.024	0.14	0.035	0.062	0.053	0.057	0.25	0.23	0.097	1.501	0.496	110	0.005
PST-0502 PST-0504	5/4/98	0.044	nd	0.03	0.028	0.115	nd	nd	0.055	0.075		0.07		0.068	0.07	0.022	0.14	0.028	0.054	0.048	0.047	0.23	0.21	0.095	1.367	0.443	180	nd
PST-0506A	5/6/98	nd	nd	nd	nd	nd	nd	nd	0.016	0.021	0.021	0.025	0.022	0.018	0.025	nd	0.042	nd	0.018	0.02	0.018	0.1	0.065	0.035	0.446	0.128	72	nd
PST-0506B	5/6/98	nd	nd	nd	nd	nd	nd	nd	0.061	0.089	0.11	0.085	0.081	0.078	0.082	0.025	0.15	0.023	0.066	0.035	0.032	0.14	0.2	0.11	1.367	0.535	47	0.23
PST-0508	5/8/98	nd	nd	0.034	nd	0.034	0.026	0.053	0.15	0.15	0.21	0.18	0.14	0.16	0.16	0.067	0.36	0.082	0.13	0.081	0.12	0.34	0.5	0.22	3.129	1.057	61	0.26
PST-0509	5/9/98	nd	nd	nd	nd	nd	nd	nd	0.039	0.055	0.089	0.077	0.053	0.08	0.065	0.027	0.097	0.015	0.049	0.023	0.024	0.098	0.12	0.066	0.977	0.442	78	nd
PST-0512	5/12/98	nd	nd	nd	nd	nd	0.024	0.069	0.27	0.4	0.46	0.49	0.35	0.39	0.39	0.081	0.78	0.089		0.056	0.091	0.27	0.68	0.54	5.74	2.521	77	0.3
PST-0513	5/12/98		nđ	nd	пd	0.028	nd	0.028	0.1	0.2	0.29	0.21	0.24		0.21	0.05	0.33	0.029	0.2	nd		0.073	0.25		2.751	1.38	27	nd
PST-0514	5/14/98	nd	nd	nd	nd	nd	nd	nd	0.039	0.054		0.068			0.072	лd	0.13	лd	0.039	nd		0.068	0.13	0.12	0.917	0.369	42	nd
PST-0515	5/15/98	~~~	, nd	nd	nd	nd	nd	nd		0.066		0.063			0.072	nd	0.12	nd	0.04	лd	0.016	0.06	0.13	0.13	0.939	0.391	33	0.21
PST-0516	5/16/98		nd	nd	nd	nd	0.045	nd	0.051	0.081					0.085	0.02	0.14		<u>∘0.049</u>		0.15	0.19	0.2	0.14	1.553	0.454	53	nd
PST-0519	5/19/98	nd	nd	nd	nd	nd	nd	nd	0.016	0.027	0.027	0.032	0.027		0.033	nd	0.048	nd	0.023	nd	nd	0.061	0.09	0.05	0.458	0.166	44	nd
PST-0520	5/20/98	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nđ	0.016	nd	лd	nd	nd	0.04	0.032	nd	0.088	nd	66	nd
PST-520A	5/20/98	nd	nd	nd	лd	nd	nd	nd	nd	nd	nd	0.018		nd	0.019	nd	0.03	nd	nd	nd	t	0.034			0.167	0.037	75	nd
PST-0521	5/21/98	nd	nd	nd	nd	nd	nd	nd	nd	0.028	0.027	0.039	0.027	0.026	0.036	лd	0.055	nd	0.022	nd	nd	0.069	0.083	0.056	0.468	0.178	59	nd
Thermal Treatment Per	rf. Criteria	0.025	2.9	1.5	4.1	nc	nc	0.7	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	0.4	1.8	nc	50	10	50	50

Notes:

1. [POM] = Polycyclic Organic Matter according to NR 445, Table 3. Consist of benzo(a)anthracene, benzo(a) pyrene, benzo(b) fluoranthene, dibenzo (a,h) anthracene, indeno (1,2,3 - cd) pyrene.

2. [C] = Carcinogenic, classified as B2, probable human carcinogen.

3. -- = parameter not analyzed

4. nd = parameter not detected above laboratory detection limit

5. bold indicates concentration above thermal treatment performance criteria.

By: Checked by: slm

Table 6 - Ambient Air Analytical Results - Perimeter **Remedial Action Documentation Report** Former Stevens Point Manufactured Gas Plant Site - WPSC

			I		<u> </u>					Polynucl	ear Aromatic	Hydrocarbor	ns (µg/m ³)						
Sample Date	Monitoring Station	Sample Vol. (m ³)	TSP (mg/m ³)	Naphthalene	Acenapthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenzo(a,h)anthracene	Benzo(g,h,i)perylene
2/(26-27)/98	AM-1	325.44	0.025	0.037	<0.009	<0.009	<0.009	0.006	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009	< 0.009	<0.009	<0.009	<0.009	<0.009
3/(2-3)/98	AM-2	326.34	0.005	0.018	<0.009	<0.009	<0.009	0.003	<0.009	<0.009	< 0.009	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009
3/(23-24)/98	AM-3	323.33	0.032	1.794	0.049	0.192	0.111	0.084	0.009	0.006	0.006	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009
3/(25-26)/98	AM-4	310.50	0.104	2.254	0.100	0.216	0.155	0.167	0.026	0.023	0.019	0.006	0.006	0.006	0.003	0.006	0.006	<0.009	0.006
4/(1-2)98	AM-4	325.35	0.015	2.520	0.065	0.144	0.144	0.105	0.015	0.006	0.006	<0.009	<0.009	<0.009	<0.009	<0.009	< 0.009	<0.009	<0.009
4/(2-3)98	AM-3	324.00	0.014	1.883	0.034	0.102	0.105	0.077	0.006	0.003	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009	< 0.009	<0.009	<0.009
4/(6-7)/98	AM-4	339.00	0.098	4.130	0.083	0.295	0.186	0.156	0.021	0.027	0.021	0.009	0.009	0.009	0.003	0.006	0.006	<0.009	0.006
4/(14-15)/98	AM-6	324.00	0.129	3.395	0.127	0.340	0.290	0.309	0.059	0.071	0.059	0.022	0.022	0.022	0.009	0.015	0.012	<0.009	0.012
4/(15-16)/98	AM-7	324.16	0.006	0.025	<0.009	0.003	0.003	0.009	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009
4/(20-21)/98	AM-7	327.15	0.064	1.559	0.034	0.092	0.070	0.073	0.012	0.015	0.012	0.003	0.003	0.003	<0.009	<0.009	<0.009	<0.009	<0.009
4/(21-22)/98	AM-5	317.31	0.094	0.378	0.019	0.047	0.079	0.136	0.019	0.035	0.025	0.006	0.009	0.009	<0.009	0.006	0.006	<.009	0.006
4/(27-28)/98	AM-8	321.75	0.120	0.684	0.016	0.034	0.056	0.078	0.012	0.019	0.016	0.006	0.006	0.009	0.003	0.006	0.003	<.009	0.003
4/(28-29)/98	AM-1	323.10	0.191	1.919	0.102	0.099	0.124	0.152	0.028	0.034	0.025	0.009	0.009	0.009	0.003	0.006	0.006	<.009	0.006
5/(4-5)/98	AM-1	328.90	0.292	1.034	0.070	0.088	0.128	0.222	0.040	0.024	0.018	0.003	0.003	0.006	<0.009	<0.009	<0.009	<0.009	<0.009
5/(5-6)/98	AM-6	320.32	0.284	2.092	0.106	0.150	0.162	0.300	0.053	0.069	0.053	0.016	0.019	0.019	0.009	0.012	0.012	0.003	0.012
5/(12-13)/98	AM-9	324.23	0.276	0.102	0.015	0.046	0.056	0.204	0.046	0.089	0.077	0.015	0.022	0.022	0.006	0.009	0.012	0.003	0.012
5/(13-14)/98	AM-6	333.90	0.131	0.689	0.075	0.120	0.126	0.299	0.033	0.036	0.033	0.006	0.006	0.009	0.003	0.006	0.006	< 0.009	0.006
5/(19-20)/98	AM-6	324.00	0.358	1.204	0.167	0.130	0.247	0.463	0.077	0.108	0.102	0.031	0.031	0.037	0.015	0.028	0.028	0.006	0.028
	PELs		0.2	1,200*				200	200		200		200			200			'
	Odor Tbres	bold	<u> </u>	1,600															

					BTEX	(µg/m³)	
Sample Date	Sample ID	Sample Vol. (mL)	, Sample Vol. (m³)	Вепzene	Ethylbenzene	Toluene	Xylenes (total)
2/26/98	AM-1	18,017	0.01802	<4.2	<4.2	<4.2	<4.2
3/3/98	AM-2	27,000	0.02700	<2.8	<2.8	<2.8	<2.8
3/23/98	AM-3	29,200	0.02920	2.9	3.8	5.5	10.5
3/25/98	AM-4	28,370	0.02837	6.7	4.9	6.3	6.3
4/1/98	AM-4	53,800	0.05380	16.0	11.0	18.0	20.6
4/2/98	AM-3	36,900	0.03690	8.3	9.6	14.0	20.1
4/6/98	AM-4	45,500	0.04550	4.2	6.7	8.6	1.4
4/15/98	AM-7	23,500	0.02350	<3.2	<3.2	<3.2	<6.4
4/22/98	AM-5	44,700	0.04470	<1.7	<1.7	<1.7	<3.4
4/29/98	AM-7	56,623	0.05662	2.1	<2	2.0	<4
4/29/98	AM-8	59,700	0.05970	<1.3	<1.3	<1.3	<2.6
5/5/98	AM-1	31,700	0.03170	<2.4	<2.4	<2.4	<4.8
5/12/98	AM-9	14,367	0.01437	<5.2	<5.2	9.1	<5.2
5/13/98	AM-6	29,600	0.02960	2.9	5	7,1	1,25
5/15/98	AM-1	42,000	0.04200	19	13	25	62
5/19/98	AM-6	17,100	0.01710	<4.4	<4.4	9.2	12.9
5/27/98**	AM-4	21,500	0.02150	<3.5	<3.5	<3.5	<3.5
	PELs			3,250	441,000	383,000	441,000
	Odor Thres	hold		4,800	399	600	86,800

Notes:

AM-1 is located on the north central property boundary approximately 100 ft south of fire hydrant adjacent to West Street (near former AS-2 sample). AM-2 is located on the northeast corner property boundary. AM-3 is located on the eastern property boundary - east of HP-101. AM-4 is located on the north central property boundary - north of TP-13. AM-5 is located on the southeast corner of the property. AM-6 is located on the east side of the work area in the city of Stevens Point parking lot. AM-7 is located on the northwest corner of the property, near Crosby Ave. AM-8 is located in Pioneer Park, at the west extent of the site perimeter fence.

AM-9 is located on the north central property boundary adjacent to OW-4. *denotes NR 445 compound limit of 2.5 percent of PEL

**Naphthalene also analyzed and not detected (detection limit = $3.5 \ \mu g/m^3$). PEL = permissible exposure limit.

Table 7 - Water Analytical Results - Wastewater Pretreatment System Remedial Action Documentation Report Former Stevens Point Manufactured Gas Plant Site - WPSC

	-												Polyn	uclear A	romatic	Hydroca	rbons (µ	g/L)									·			
Sample ID	Sample Date	Benzene	Ethylbenzene	£X (μg/L	Xylenes	Total BTEX	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Finoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	1-Methyinaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Рутеле	Total PAHs	Cyanide, Total (mg/L)	Cyanide, Amenable (mg/L)	Cyanide, Dissociable (mg/L)	Total Suspended Solids (mg/L)	Oil & Grease (mg/L)
ů.	S		ш.			L																						r	510	
INFLUENT				r						1	1																		510	18
INF-0324	3/24/98					272	42	12	3.5	0.9	0.95	1	1	0.47	0.93	nd	4.7	17	3	39	51	390	34	4.4	606	0.110				2.3
INF-0326	3/26/98	80	53	38.0	101	510	70	13	8.9	0.33	0.37	0.31	nd	nd	nd	nd	3.8	28	0.61	64	12	nd	43	2.8		0.076				1.6
INF-0330	3/30/98	170	72	100	120	280	56	nd	14	5.6	7.2	5.1	4.1	2.6	5.1	4	16	25	14	33	7.4	nd	47	13		0.150				nd
INF-0401	4/1/98	64	56	40	240	686	75	29	8.4	0.96	0.91	0.82	0.8	0.44	0.78	0.61	7.5	33	2.2	78	110	530	61	6.5		0.086				
INF-0408	4/8/98	210	86	150		664	82	56	18	4.6	3.6	3.1	2.7	1.8	4.3	2.9	22	49	5.9	89	140	530	89	17	1121	0.093				1.4
INF-0414	4/14/98	190	74	160	240	161	33	nd	3.6	nd	nd	nd	nd	nd	nđ	nd	3.3	13	nd	32	37	140	16	2.9	281	0.120		<u> </u>		nd 0.22
INF-0421	4/21/98	37	21	28	75	221	26	8.5	3.2	0.28	nd	nd	nd	nd	nd	nd	3.2	9.5	nd	21	20	82	14	3	191	0.170	4			
INF-0428	4/28/98	71	21	55	74	33.3	nd	nd	1.2	0.49	0.52	0.41	0.38	0.22	0.45	0.21	1.6	nd	0.97	nd	nd	nd	0.84	1.2						
INF-0504	5/4/98	9	2.2	10	12.1	15.3	68	17	4.1	0.66	0.85	0.33	0.62	0.25	0.53	0.42	3.5	28	1.2	65	73	49	42	5	359	0.046				
INF-0513	5/13/98	2.8	1.7	3.2	1.0	15.5	08	1	<u> </u>	1 0.00																				
EFFLUENT									0.21	0.39	0.45	0.46	0.48	0.24	0.43	0.46	0.6	0.31	1.4	0.7	nd	nd	0.87	0.6	8.5	0.032		<u> </u>	12	
EFF-0326	3/26/98	0.87		_	1.65	1	0.9	nd	0.21	nd	0.31	0.31	nd	nd	nd	nd	0.78	nd	0.71	nd	nd	nd	nd	0.65		0.079			36	
EFF-0330	3/30/98	14	5.9	7.7	13.9	41.5	nd	nd	1.5	1.4	1.6	1.4				1.3	3.3	1.9	3.7	nd	nd	nd	2.1	2.7	24	1	3 0.043		14	
EFF-0401	4/1/98	11	10		23.2	50.7	nd	nd	2.1	2.1	2.9	2.6		_		1.8	4.3	nd	6.8	nd	nd	nd	1.4	4		0.07			33	<u> </u>
EFF-0408	4/8/98	10	2.5		8.1	26.2	nd nd	nd	9.5	6	5.4	4.6	_	3.2		4	17	3.9	12	nd	nd	nd	6.9	13		0.07			26	
EFF-0414		88	_	73	95	277	12	nd	1.1	0.29		nd		_	nd	nd	1.9	3.7	nd	nd	nd	nd	1.7	1.5		0.11			5	
EFF-0421	and the second se	14			26.2	56 90.3	20	nd	1.1	nd	nd	nd	_	_	nd	nd	2.3	7.9	nd	14	9.5	13	6.4	2	76.9		_		40	
EFF-0428		21			40	15.8	nd	nd	1.1	0.66				9 0.3	0.6	0.58	3 1.7	nd	1.4	nd	nd	nd	0.64		10.2				40	
EFF-0504		4.1			0.2	0.37	18	4.6	_	0.36	_			8 0.2	2 0.4	0.6	3 1.2	4.3	1.2	16	9.6	nd	2.4	1.6					250	
EFF-0513		nd			-	n1	nl	nl	nl	l nl	nì	nl	nl	nl	nl	nl	ni	nl	nl	nl	nl	nl	nl	nl	nl	nl	nl	nl	250	
SPWW	TP Limits	nl	nl	n	nl		1	<u> </u>						i																

Notes:

1. -- = parameter not analyzed

2. nd = parameter not detected above laboratory detection limit.

3. nl = no effluent limit established for parameter.

4. cyanide samples are not field filtered.

lofl

By: KMZ Checked by: SLF

Table 8 - Soil Analytical Results - Surface Soil Quality Remedial Action Documentation Report Former Stevens Point Manufactured Gas Plant Site - WPSC

		Г		BT	EX (mg/	ko)						· · · ·		Poly	muclear	Aroma	atic Hyc	lrocarbo	ons (mg	/kg)										
Sample ID	Sample Date	Sample Depth (feet BGS)	Benzene	Ethylbenzene	Toluene	Xylenes	Total BTEX	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	I-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene	Total PAHs	Cyanide, Total (mg/kg)	Cyanide, Amenable (mg/kg)	Cyanide, Dissociable (mg/kg)	Lead (mg/kg)
				L		I	1	A		· · · · · · · · · · · · · · · · · · ·	<u></u>	-SITE	SURF	ACE SC	IL OU	<u>UITY</u>											·		······	
D 107	6/9/93	0-2			-	_				- 1									-			-	—				-			12
B-107	3/4/98	1															-				-	-								59
TP-116	3/4/98	1				_		0.062	0.036	0.16	0.82	1.4	1.1	1.0	0.82	0.8	0.35	0.97	0.048	1.1	nd	0.036	0.049	0.46	0.87	10	0.37		-	
TP-120		1.5													-		-					-	-				0.89	0.89	0.16	
EW-3B (1.5)	5/14/98	1.5													-		-				-	-					35			38
EW-9 (1.5)		1.5	nd	nd	nd	nd	nd	0.047	0.23	0.46	1.4	2.1	2.4	1.4	2.1	1.6	0.63	2.3	0.057	1.3	лd	0.1	0.2	0.68	1.9	19	13			58
EW-118 (1.5)	5/5/98			nd	0.036	0.071	0.1	nd	2	1.2	8.2	12	12	8.9	12	8.4	3.1	12	nd	7.3	nd	0.35	nd	1.2	13	102	6.2			45
EW-119 (1.5)	5/6/98	1.5	nd	nd	nd	0.028	0.03	0.37	2.1	1.9	9.2	14	9.7	7.3	9.3	8.6	2.2	13	0.55	5.9	nd	0.98	0.53	4.7	19	109	7.2	-		34
EW-204 (1.5)	5/13/98	1.5	nd	Ind	1	0.020	0.05	0.57			OF	F-SITE	SURF	ACES	DIL QÜ	ALITY														
	3/26/98	1								1				T T								-					0.31			
HA-1	3/26/98	1										-											-				nd			
HA-2	5/23/85	surface						nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-		nd	nd	nd	nd	nd	nd		65
SS-4	5/23/85	6-18"						nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-		nd	nd	nd	nd	0.28	nd		26
<u>SS-4</u>	6/9/93	0-0.5																			-	-	-				nd			
B-110	6/9/93	0-0.5		-																	-	-	-				nd			
B-111	6/9/93	0-0.5						<u> </u>															-		—		nd		-	
B-112	6/9/93	0-0.5			<u>+</u>			<u>├</u>														-					0.56			
HP-113/B-113 TP-113	3/4/98	0-0.5						0.046	nd	0.09	0.17	0.19	0.19	0.14	0.13	0.19	0.034	0.45	0.034	0.15	nd	ba	0.036		0.36	3	nd	nd	nd	8.9
	4/21/98	1.5	nd	лd	nd	nd	nd	nd	nd	nd	0.03	0.039	0.029	0.028	0.032	0.025	nd	0.045	nd	0.025	nd	nd	0.033	0.02	0.035	0.3	0.07			nd
EW-107 (1.5) EW-108 (1.5)	4/21/98	1.5	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nđ	nd	лd	nd	лd	nd	nd	nd	0.05		-	9.5
EW-108 (1.5) EW-109 (1.5)	4/21/98	1.5	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.05			4.6
EW-109 (1.5) EW-110 (1.5)	4/21/98	1.5	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.017	nd	nd	nd	nd	nd	0.021	nd	лd	nd	nd	nd	0.018	nd	0.06	0.05		-	nd
EW-110 (1.5) EW-120 (1.5)	5/13/98	1.5	nd	nd	0.037	0.04	0.08	nd	1	1.5	8.7	11	12	5.5	8.7	8.1	1.9	14	0.47	5.1	nd	nd	0.57	3.4	14	96	1.3	-	-	150
Ew-120 (1.5)	5/15/70	1.5										VTERIM	AND P.					the second s											r	
Groundwater Pathway	RCL		0.0055	2.9	1.5	4.1	ns	38	0.7	3,000	17	48	360	6,800	870	37	38	500	100	680	23	20	0.4	1.8 18	8,700 500	ns	ns ns	ns ns	ns ns	ns 50
Direct Contact Pathwa	y-Non-indust	rial RCL	ns	ns	ns	ns	ns	900	18	5,000	0.088	0.0088	0.088	1.8	0.88 39	8.8 390	0.0088 0.39	600 40,000	600 40,000	0.088 3.9	1,100 70,000	600 40,000	20 110	390	30,000	ns ns	ns	ns	ns	500
Direct Contact Pathwa	y-Industrial H	RCL	ns	ns	ns	ns	ns	60,000	360	300,000	3.9	0.39	3.9	39 ns	6.1	7.2	0.061	2,600	90	0.61	ns	ns	240	ns	100	ns	ns	DS	1,300	400
US EPA Residential P			0.63	230	790	320	ns	110	ns	5.7 5.7	0.61 2.6	0.061 0.26	2.6	115	26	7.2	0.26	27,000	90	2.6	ns	115	240	ns	100	ns	ns	ns	1,400	1,000
US EPA Industrial PR	the second s		1.4	230	880	320	ns	110	ns	610,000	170	17	170	ns	1,700	37,000	17	82,000	82,000	170	03	15	8,200	n3	61,000	ns	ns	4,100	DS	400
TACO - Construction	Worker SRO		2.1	58	42	410	83	120,000	ns	010,000	1/0				· · ·										A					

Notes:

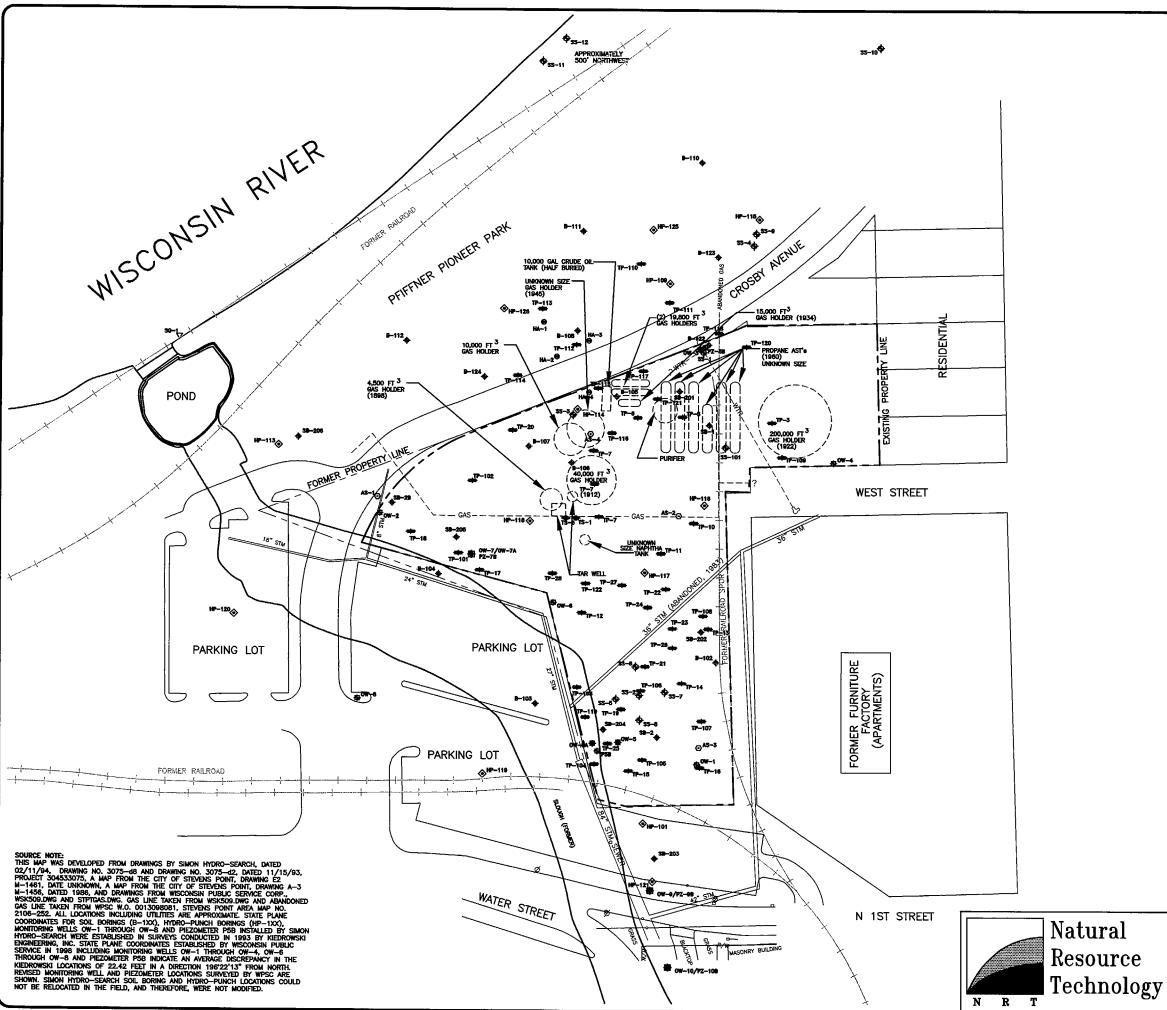
1. -- = parameter not analyzed

2. nd = parameter not detected above laboratory detection limit

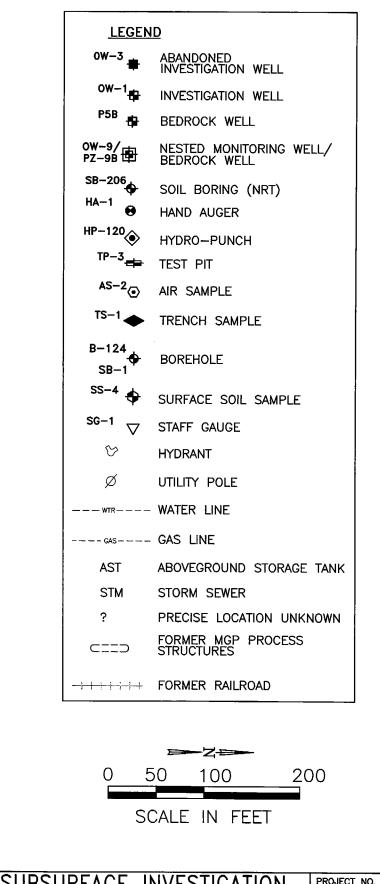
3. RCL = WDNR generic Residual Contaminant Level.

4. PRG = US EPA Region 9 Preliminary Remediation Goals for direct contact.

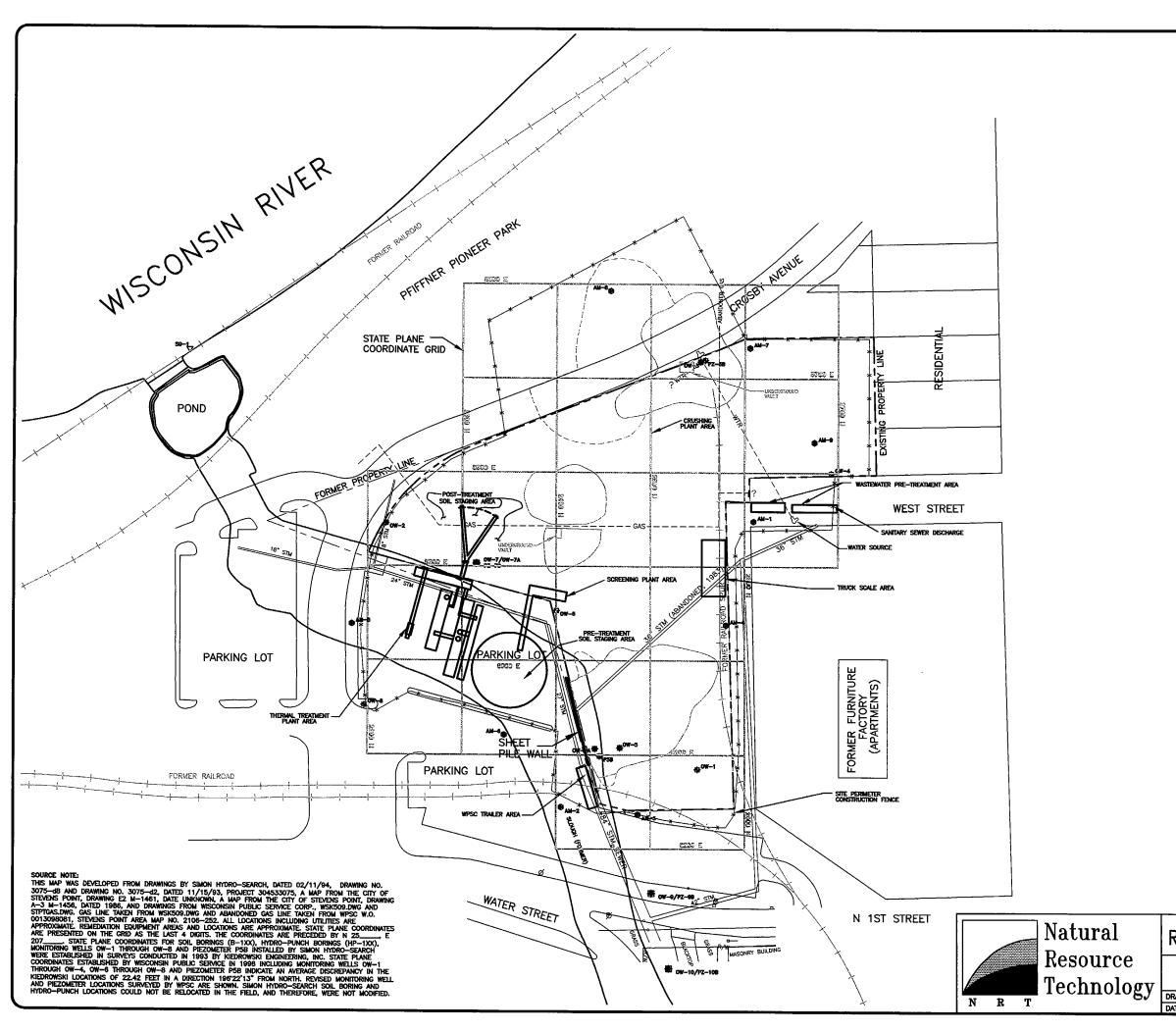
5. PRGs assume all dissociable cyanide as free cyanide.

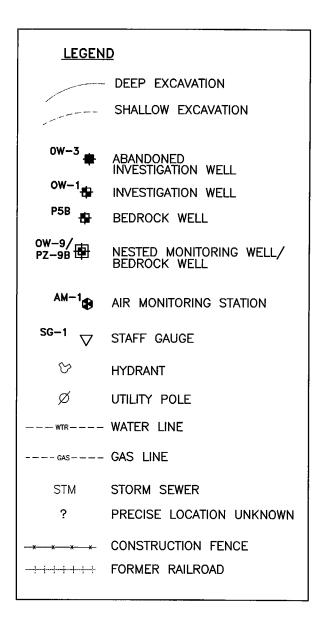

6. TACO = Illinois Tiered Approach to Corrective Objectives, Title 35 IL Admin. Code.

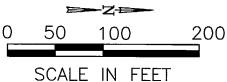
7. SRO = Soil Remediation Objectives for inhalation (BTEX) and ingestion (PAHs, cyanide, lead).

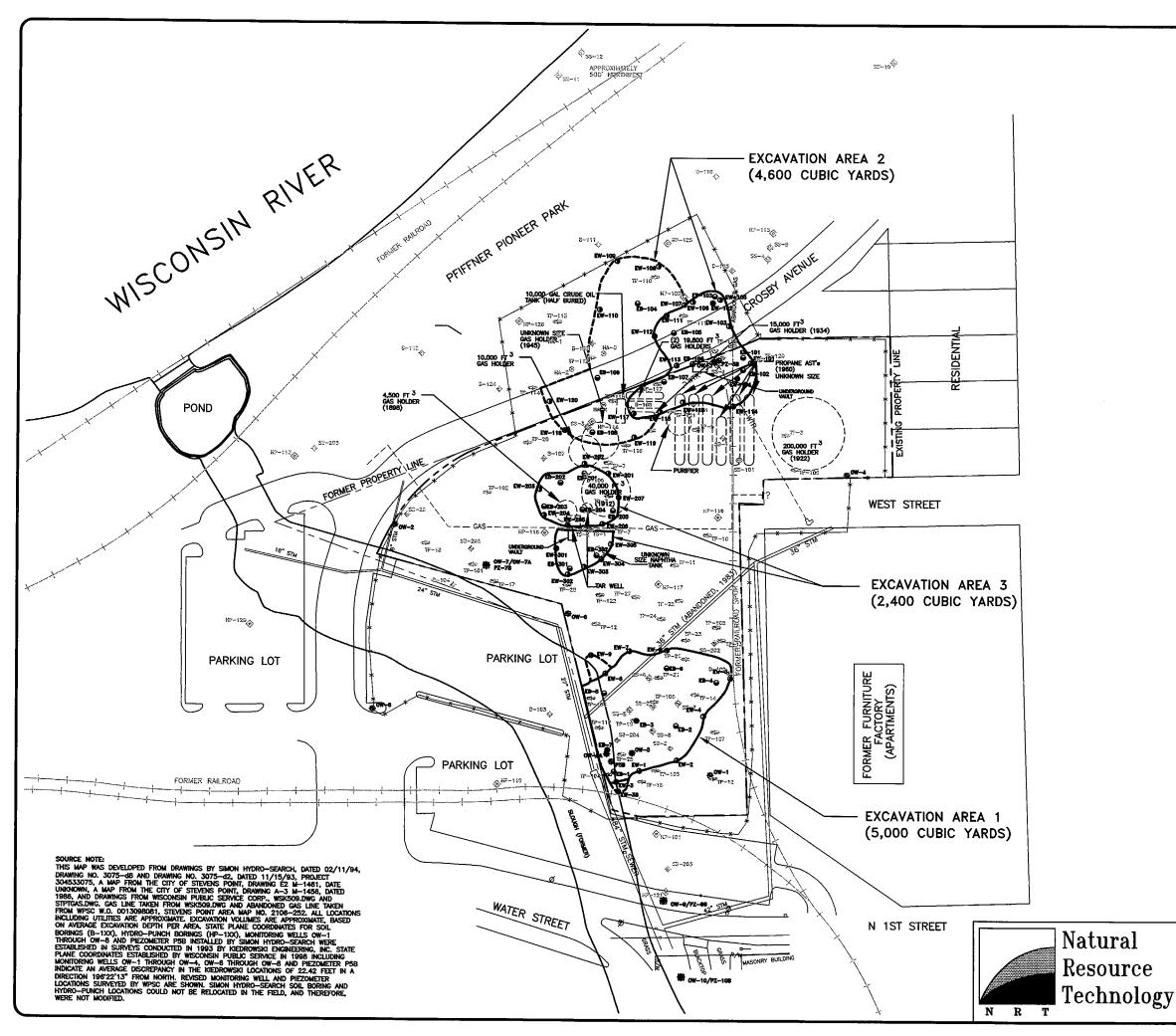

8. Sample depths measured with respect to pre-remedial ground surface elevations.

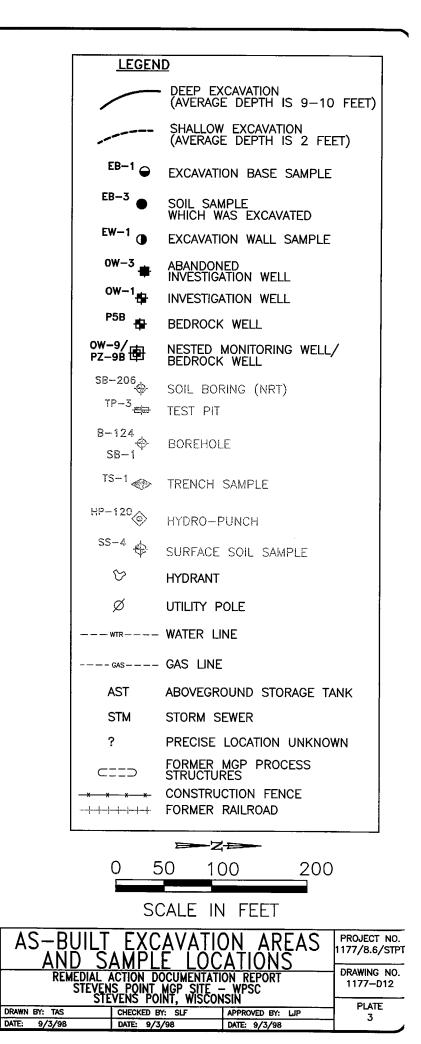
9. ns = no interim or guidance level has been established.

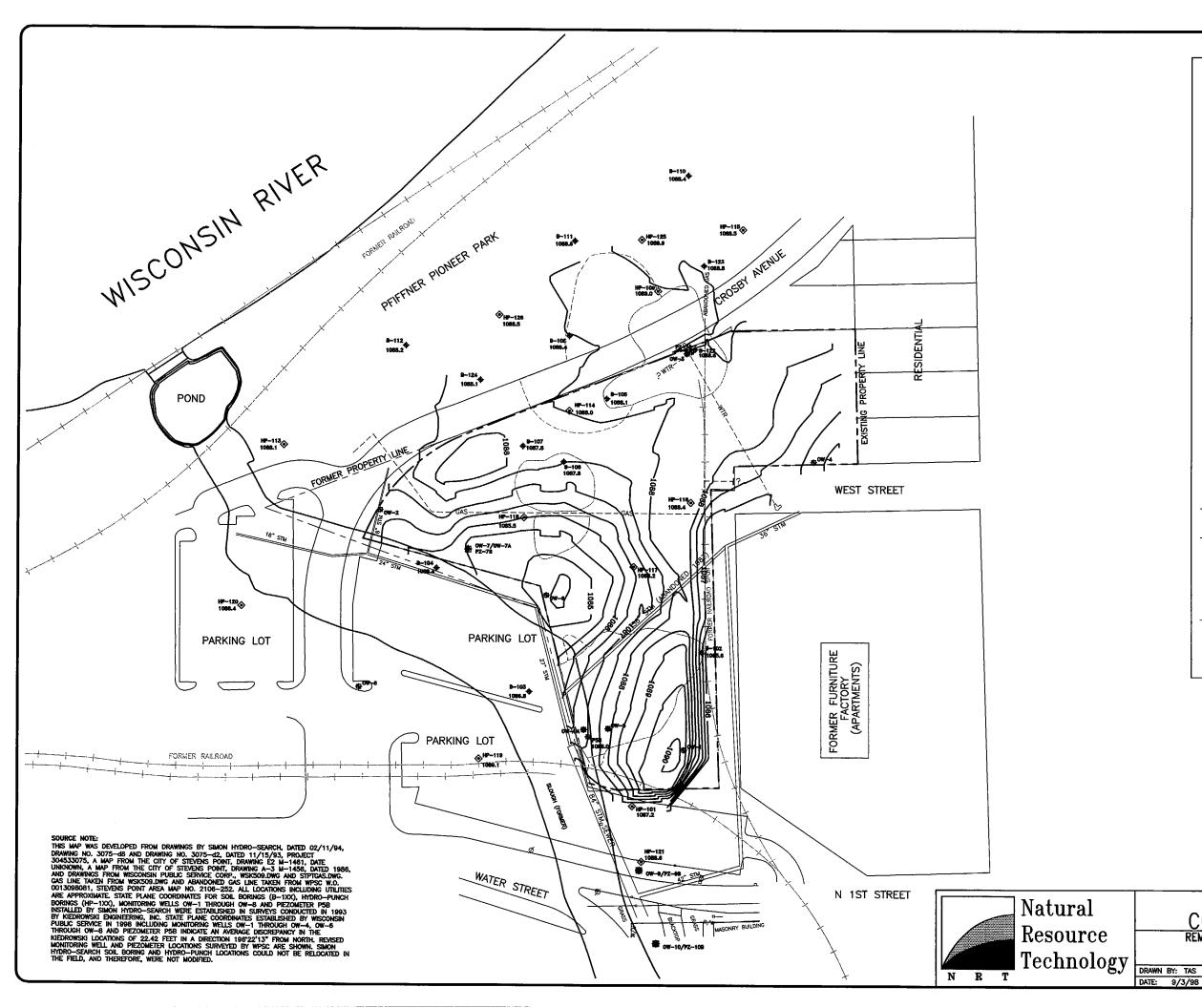

10. HP-113 and B-113 appear to be the sample sample location, based on survey data presented in the Phase II Investigation Report by Simon Hydro-Search. Location is shown as HP-113 in Plates 1 through 4.

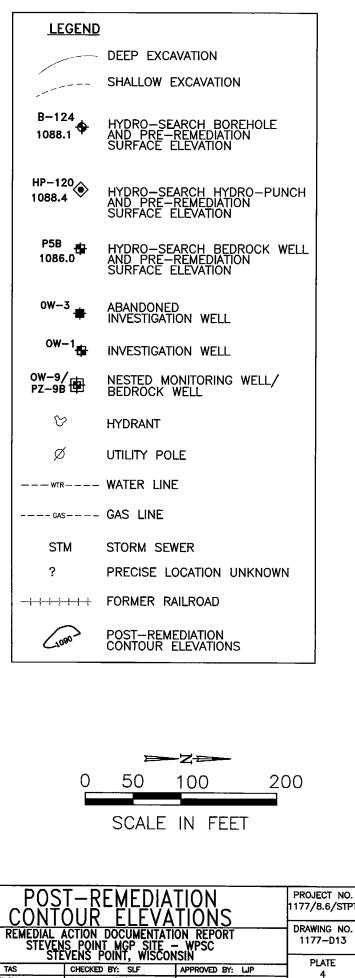



DRATE

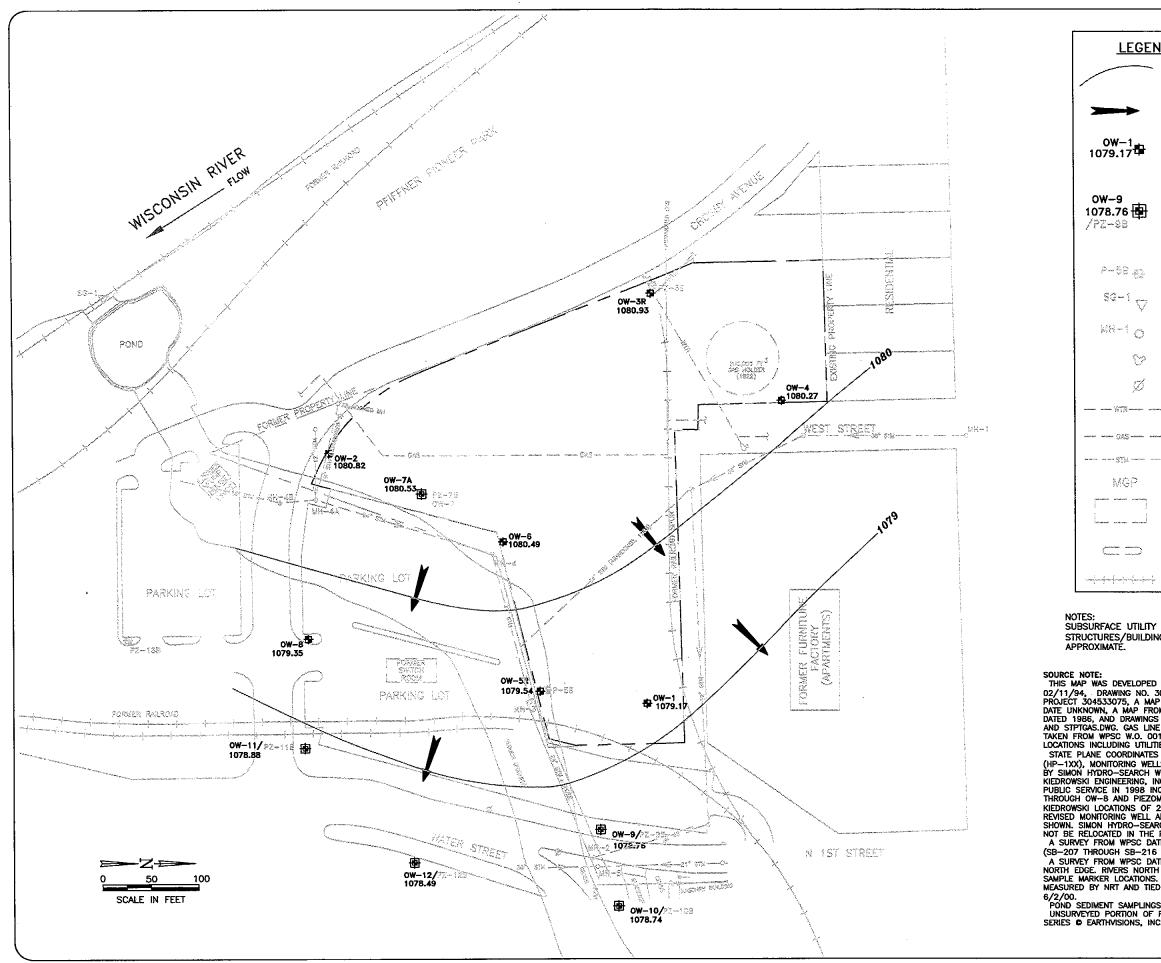

SUBSURE	ACE INVE LING LOC	STIGATION	PROJECT NO. 1177/8.6/STPT
REMEDIAL A STEVEN	ACTION DOCUMENT S POINT MGP SIT VENS POINT, WIS	ATION REPORT E – WPSC CONSIN	DRAWING NO. 1177-D10
316	VENS FUINT, WIS	LUNSIN	PLATE
AWN BY: TAS	CHECKED BY: SLF	APPROVED BY: LJP	
TE: 9/3/98	DATE: 9/3/98	DATE: 9/3/98	<u>」」ノ</u>



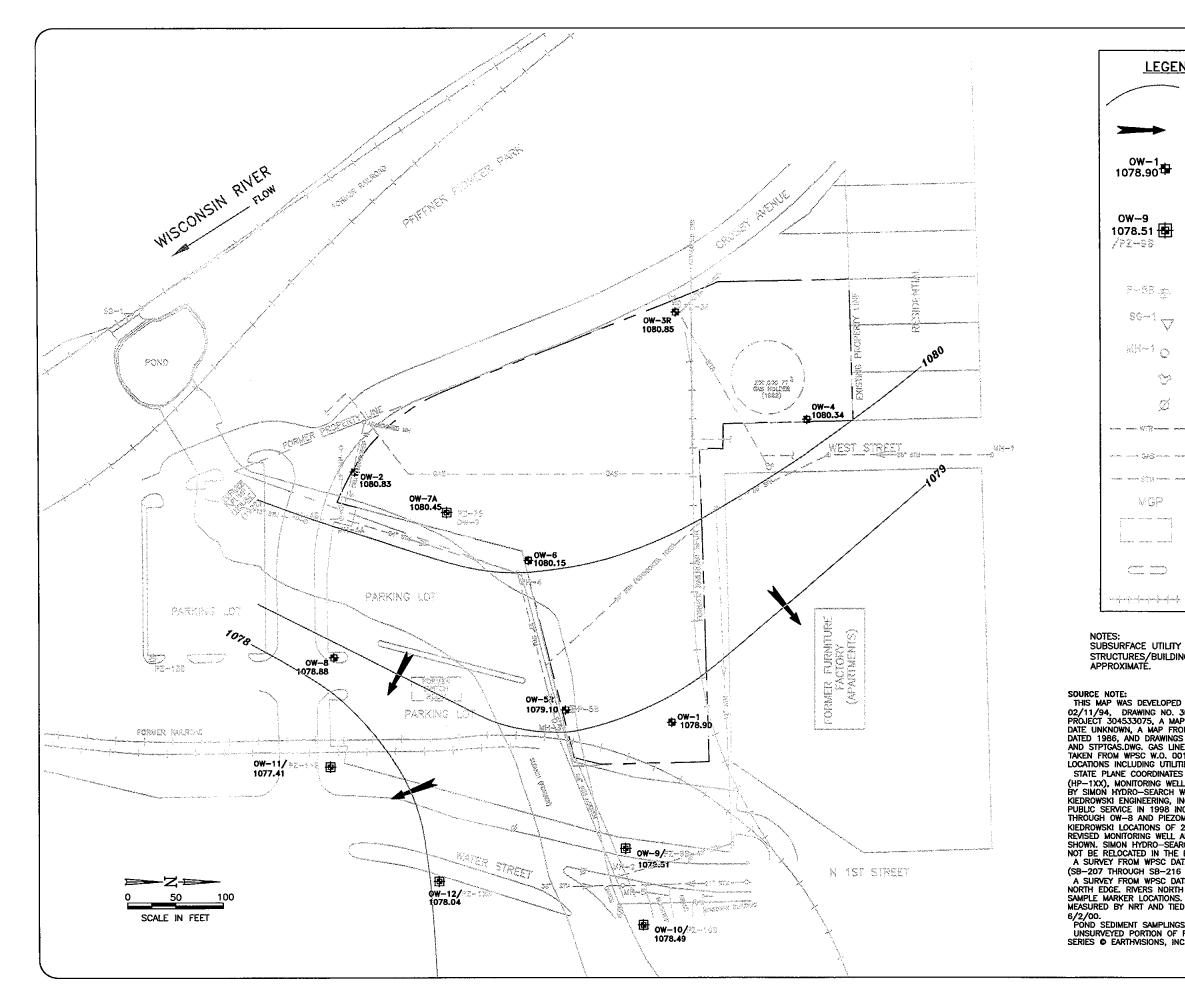




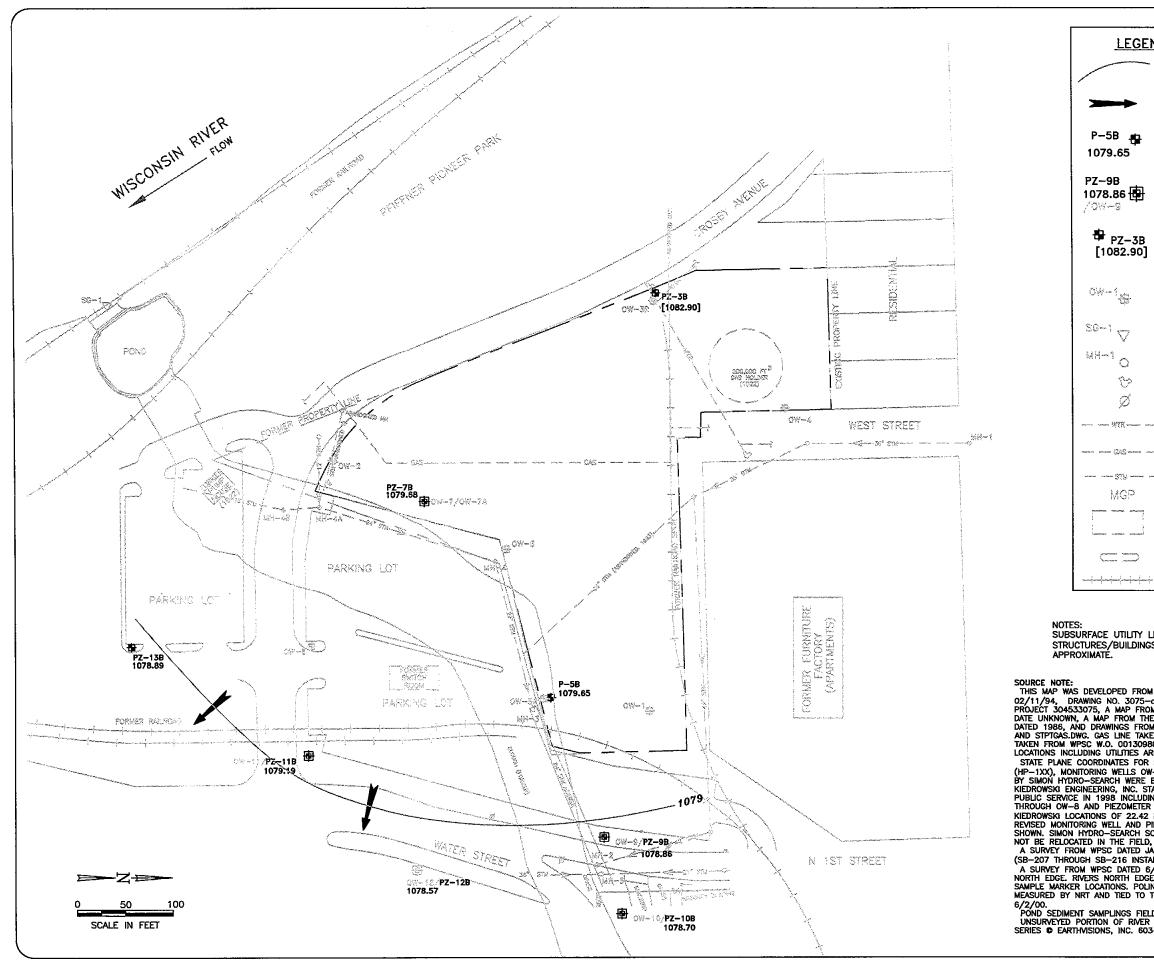
REMEDIATION EQUIPMENT LOCATIONS 1177/8.6/STPT REMEDIAL ACTION DOCUMENTATION REPORT STEVENS POINT MCP SITE - WPSC STEVENS POINT, WISCONSIN TAS CHECKED BY: SLF APPROVED BY: LIP 2		
REMEDIAL ACTION DOCOMENTATION REPORT 1177-D11 STEVENS POINT, WISCONSIN PLATE 2AWN BY: TAS CHECKED BY: SLF APPROVED BY: LIP 2	REMEDIATION EQUIPMENT LOCAT	TONS PROJECT NO.
RAWN BY: TAS CHECKED BY: SLF APPROVED BY: LIP 2	REMEDIAL ACTION DOCUMENTATION REPORT STEVENS POINT MGP SITE - WPSC	
RAWN BY: TAS CHECKED BY: SLF APPROVED BY: LIP 2	SIEVENS POINT, WISCONSIN	DIATE
ATE: 9/3/98 DATE: 9/3/98 DATE: 9/3/98 2	RAWN BY: TAS CHECKED BY: SLF APPROVED BY:	
	ATE: 9/3/98 DATE: 9/3/98 DATE: 9/3/98	4

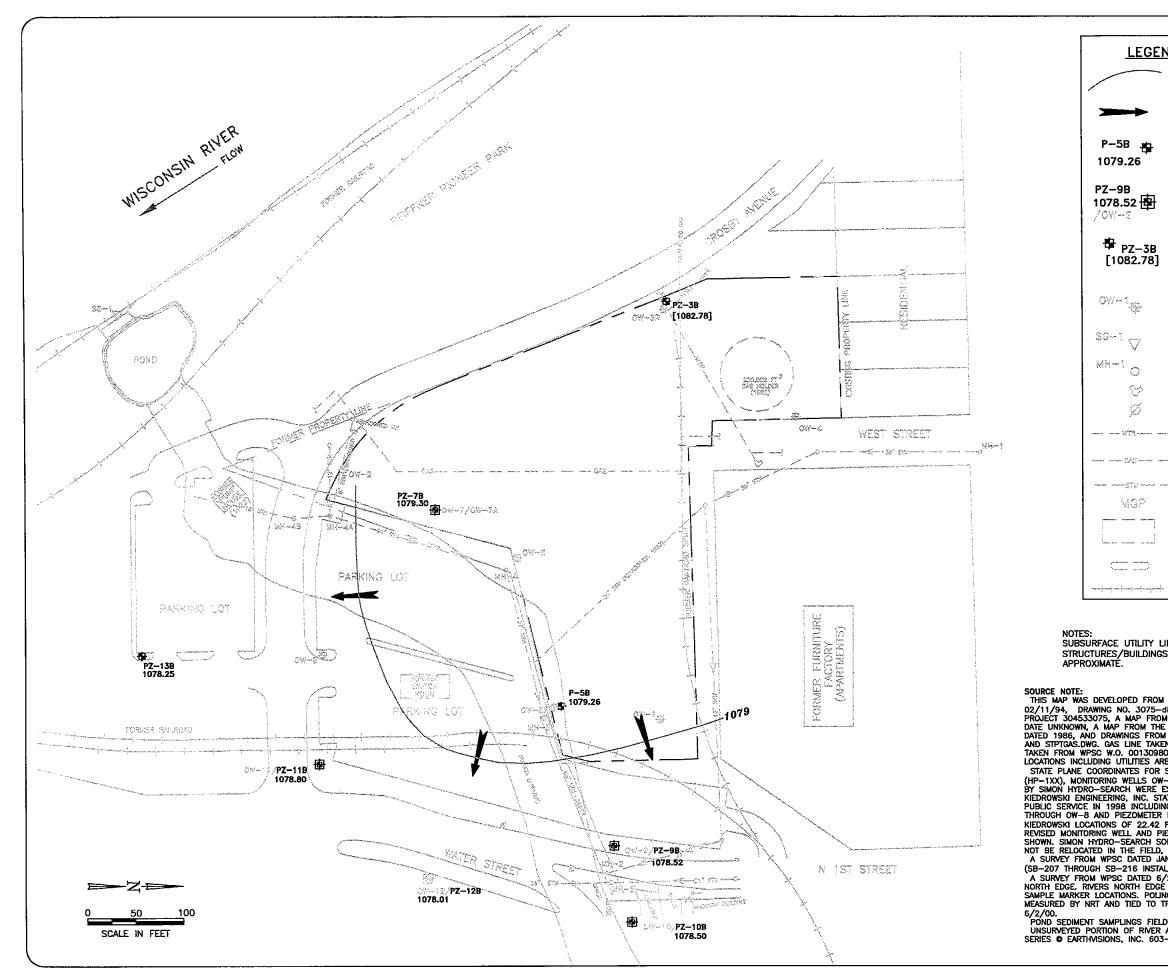


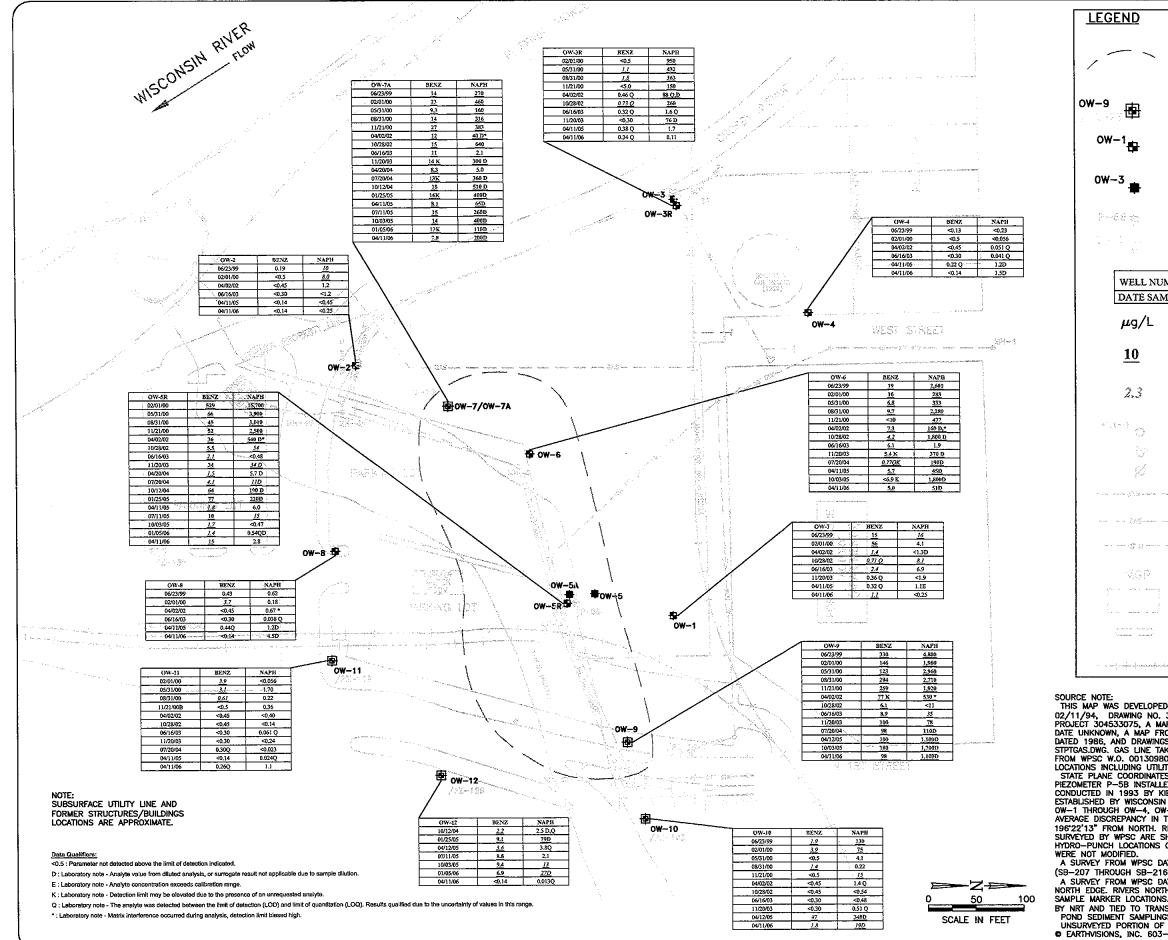
DATE: 9/3/98


DATE: 9/3/98

APPENDIX D


FIGURES 1 THROUGH 7 AND TABLES 1 THROUGH 5 (UPDATED FROM PREVIOUS ANNUAL MONITORING REPORTS)


9.17 Th WATER TABLE OBSERVATION WELL AND GROUNDWATER ELEVATION, FT. -9 -9 -76 W WATER TABLE OBSERVATION WELL AND GROUNDWATER ELEVATION, FT./NESTED MONITORING WELL -55 ↔ PIEZOMETER G-1 ♥ STAFF GAUGE H-1 ○ STORM SEWER MANHOLE ♥ HYDRANT Ø UTILITY POLE -55 ← GAS LINE -55 ← FORMER MGP PROCESS -57 COMBOR RAILROAD -55 ← FORMER RAILROAD			
GROUNDWATER FLOW DIRECTION W-1- GROUNDWATER FLOW DIRECTION W-1- SITUE WATER TABLE OBSERVATION WELL AND GROUNDWATER ELEVATION, FT. /NESTED MONITORING WELL STAFF GAUGE H-1 O STORM SEWER MANHOLE H-1 O STORM SEWER MGP MANUFACTURED GAS PLANT FORMER BUILDINGS FORMER BUILDINGS H-1 O STORMER RAILROAD H-1 D STORMER BUILDINGS H-1 D STRUCTURES H-1 D STRUCTURES H		····	00 00
GROUNDWATER FLOW DIRECTION W-1- GROUNDWATER FLOW DIRECTION W-1- SITUE WATER TABLE OBSERVATION WELL AND GROUNDWATER ELEVATION, FT. /NESTED MONITORING WELL STAFF GAUGE H-1 O STORM SEWER MANHOLE H-1 O STORM SEWER MGP MANUFACTURED GAS PLANT FORMER BUILDINGS FORMER BUILDINGS H-1 O STORMER RAILROAD H-1 D STORMER BUILDINGS H-1 D STRUCTURES H-1 D STRUCTURES H	LEGEN	- 1	/19/ /05/
MONITORING WELL MONITORING WELL STAFF GAUGE GAS DIRM SEWER MANHOLE HYDRANT UTILITY POLE GAS LINE GAS LINE GAS LINE GAS LINE FORMER BUILDINGS FORMER BUILDINGS FORMER BUILDINGS FORMER MGP PROCESS STRUCTURES FORMER MGP PROCESS STRUCTURES GROUP DIAMONS FORMER ESYSUE CONSUMME FORMER RAILROAD CE UTILITY LINE AND FORMER ESYSUE CONSUMME CE UTILITY LINE AND FORMER ESYSUE CONSUMME STRUCTURES CONSTANT CONSTA			-B06 -B06
MONITORING WELL MONITORING WELL STAFF GAUGE GAS DIRM SEWER MANHOLE HYDRANT UTILITY POLE GAS LINE GAS LINE GAS LINE GAS LINE FORMER BUILDINGS FORMER BUILDINGS FORMER BUILDINGS FORMER MGP PROCESS STRUCTURES FORMER MGP PROCESS STRUCTURES GROUP DIAMONS FORMER ESYSUE CONSUMME FORMER RAILROAD CE UTILITY LINE AND FORMER ESYSUE CONSUMME CE UTILITY LINE AND FORMER ESYSUE CONSUMME STRUCTURES CONSTANT CONSTA			LH DATE PK DATE PK DATE 7-138-
MONITORING WELL MONITORING WELL STAFF GAUGE GAS DIRM SEWER MANHOLE HYDRANT UTILITY POLE GAS LINE GAS LINE GAS LINE GAS LINE FORMER BUILDINGS FORMER BUILDINGS FORMER BUILDINGS FORMER MGP PROCESS STRUCTURES FORMER MGP PROCESS STRUCTURES GROUP DIAMONS FORMER ESYSUE CONSUMME FORMER RAILROAD CE UTILITY LINE AND FORMER ESYSUE CONSUMME CE UTILITY LINE AND FORMER ESYSUE CONSUMME STRUCTURES CONSTANT CONSTA	₩-1 9.17	WELL AND GROUNDWATER	¹⁷ : RI BY: EF D BY: EF NO: 117 CE: .
UTILITY POLE WATER LINE WATER LINE STUDENCE STRUCTURES GAS LINE STORM SEWER MGP MANUFACTURED GAS PLANT FORMER BUILDINGS FORMER BUILDINGS FORMER MGP PROCESS STRUCTURES FORMER RAILROAD CE UTILITY LINE AND FORMER ES/BUILDINGS LOCATIONS ARE FORMER RAILROAD CE UTILITY LINE AND FORMER ES/BUILDINGS LOCATIONS ARE ATE. DEVELOPED FROM DRAWINGS BY SIMON HYDRO-SEARCH, DATED WINC NO. 3075-dB AND DRAWING NO. 3075-dC JACED WINC NO. 3075-dB AND DRAWING NO. 3075-dC JACED WINC HOUSE JACED SC W.O. 00130960B, STEVENS POINT AREA MAY NO. 2106-252 ALL JOORDINATES FOR SOLI BORINGS (B-1XX), HYDRO-PUNCH BORINGS SC W.O. 00130960B, STEVENS POINT AREA MAY NO. 2106-252 ALL JOORDING THE FEED IN SURVEYS CONDUCTED IN 1933 BY MINERING, INC. STATE FLANE COORDINATES STABLISHED BY WISCONSIN IN 1988 INCLUDING MONTORING WELLS OW-1 THROUGH DY WINC ARE AND PEZOMERE PSB INSTALLED SEARCH WERE ESTABLISHED BY WISCONSIN IN THE FIELD JANUARY 2000). WINSC DATE AND APPEADED WELLS AND BORINGS GH SB-216 INSTALLED JANUARY 2000). WINSC DATE OF JANUARY 2000). WINSC DATE OF JANUARY 2000). WINSC DATE OF DIMENT SOLUCED NEW WELLS AND BORINGS GH SB-216 INSTALLED JANUARY 2000). WINSC DATE OF DIMENT SOLUCE DATED WELLS AND SEDIMENT I SAMPLINGS FIELD MARSEED BY INT. OCOTIONS FORMER AND READER ESTABLISHED BY WISCONS IN JACED AND READER AND READER AND FROM EARTHMISIONS U.S. TERRAIN VISIONS, INC. 603-433-B500.	–9 3.76 ╋ –≌8	WELL AND GROUNDWATER ELEVATION, FT./NESTED	
UTILITY POLE WATER LINE WATER LINE STUDENCE STRUCTURES GAS LINE STORM SEWER MGP MANUFACTURED GAS PLANT FORMER BUILDINGS FORMER BUILDINGS FORMER MGP PROCESS STRUCTURES FORMER RAILROAD CE UTILITY LINE AND FORMER ES/BUILDINGS LOCATIONS ARE FORMER RAILROAD CE UTILITY LINE AND FORMER ES/BUILDINGS LOCATIONS ARE ATE. DEVELOPED FROM DRAWINGS BY SIMON HYDRO-SEARCH, DATED WINC NO. 3075-dB AND DRAWING NO. 3075-dC JACED WINC NO. 3075-dB AND DRAWING NO. 3075-dC JACED WINC HOUSE JACED SC W.O. 00130960B, STEVENS POINT AREA MAY NO. 2106-252 ALL JOORDINATES FOR SOLI BORINGS (B-1XX), HYDRO-PUNCH BORINGS SC W.O. 00130960B, STEVENS POINT AREA MAY NO. 2106-252 ALL JOORDING THE FEED IN SURVEYS CONDUCTED IN 1933 BY MINERING, INC. STATE FLANE COORDINATES STABLISHED BY WISCONSIN IN 1988 INCLUDING MONTORING WELLS OW-1 THROUGH DY WINC ARE AND PEZOMERE PSB INSTALLED SEARCH WERE ESTABLISHED BY WISCONSIN IN THE FIELD JANUARY 2000). WINSC DATE AND APPEADED WELLS AND BORINGS GH SB-216 INSTALLED JANUARY 2000). WINSC DATE OF JANUARY 2000). WINSC DATE OF JANUARY 2000). WINSC DATE OF DIMENT SOLUCED NEW WELLS AND BORINGS GH SB-216 INSTALLED JANUARY 2000). WINSC DATE OF DIMENT SOLUCE DATED WELLS AND SEDIMENT I SAMPLINGS FIELD MARSEED BY INT. OCOTIONS FORMER AND READER ESTABLISHED BY WISCONS IN JACED AND READER AND READER AND FROM EARTHMISIONS U.S. TERRAIN VISIONS, INC. 603-433-B500.	- SB 42	PIEZOMETER	JRS NSIN
UTILITY POLE WATER LINE WATER LINE STUDENCE STRUCTURES GAS LINE STORM SEWER MGP MANUFACTURED GAS PLANT FORMER BUILDINGS FORMER BUILDINGS FORMER MGP PROCESS STRUCTURES FORMER RAILROAD CE UTILITY LINE AND FORMER ES/BUILDINGS LOCATIONS ARE FORMER RAILROAD CE UTILITY LINE AND FORMER ES/BUILDINGS LOCATIONS ARE ATE. DEVELOPED FROM DRAWINGS BY SIMON HYDRO-SEARCH, DATED WINC NO. 3075-dB AND DRAWING NO. 3075-dC JACED WINC NO. 3075-dB AND DRAWING NO. 3075-dC JACED WINC HOUSE JACED SC W.O. 00130960B, STEVENS POINT AREA MAY NO. 2106-252 ALL JOORDINATES FOR SOLI BORINGS (B-1XX), HYDRO-PUNCH BORINGS SC W.O. 00130960B, STEVENS POINT AREA MAY NO. 2106-252 ALL JOORDING THE FEED IN SURVEYS CONDUCTED IN 1933 BY MINERING, INC. STATE FLANE COORDINATES STABLISHED BY WISCONSIN IN 1988 INCLUDING MONTORING WELLS OW-1 THROUGH DY WINC ARE AND PEZOMERE PSB INSTALLED SEARCH WERE ESTABLISHED BY WISCONSIN IN THE FIELD JANUARY 2000). WINSC DATE AND APPEADED WELLS AND BORINGS GH SB-216 INSTALLED JANUARY 2000). WINSC DATE OF JANUARY 2000). WINSC DATE OF JANUARY 2000). WINSC DATE OF DIMENT SOLUCED NEW WELLS AND BORINGS GH SB-216 INSTALLED JANUARY 2000). WINSC DATE OF DIMENT SOLUCE DATED WELLS AND SEDIMENT I SAMPLINGS FIELD MARSEED BY INT. OCOTIONS FORMER AND READER ESTABLISHED BY WISCONS IN JACED AND READER AND READER AND FROM EARTHMISIONS U.S. TERRAIN VISIONS, INC. 603-433-B500.	°-1 🗸	STAFF GAUGE	
UTILITY POLE WATER LINE WATER LINE STUDENCE STRUCTURES GAS LINE STORM SEWER MGP MANUFACTURED GAS PLANT FORMER BUILDINGS FORMER BUILDINGS FORMER MGP PROCESS STRUCTURES FORMER RAILROAD CE UTILITY LINE AND FORMER ES/BUILDINGS LOCATIONS ARE FORMER RAILROAD CE UTILITY LINE AND FORMER ES/BUILDINGS LOCATIONS ARE ATE. DEVELOPED FROM DRAWINGS BY SIMON HYDRO-SEARCH, DATED WINC NO. 3075-dB AND DRAWING NO. 3075-dC JACED WINC NO. 3075-dB AND DRAWING NO. 3075-dC JACED WINC HOUSE JACED SC W.O. 00130960B, STEVENS POINT AREA MAY NO. 2106-252 ALL JOORDINATES FOR SOLI BORINGS (B-1XX), HYDRO-PUNCH BORINGS SC W.O. 00130960B, STEVENS POINT AREA MAY NO. 2106-252 ALL JOORDING THE FEED IN SURVEYS CONDUCTED IN 1933 BY MINERING, INC. STATE FLANE COORDINATES STABLISHED BY WISCONSIN IN 1988 INCLUDING MONTORING WELLS OW-1 THROUGH DY WINC ARE AND PEZOMERE PSB INSTALLED SEARCH WERE ESTABLISHED BY WISCONSIN IN THE FIELD JANUARY 2000). WINSC DATE AND APPEADED WELLS AND BORINGS GH SB-216 INSTALLED JANUARY 2000). WINSC DATE OF JANUARY 2000). WINSC DATE OF JANUARY 2000). WINSC DATE OF DIMENT SOLUCED NEW WELLS AND BORINGS GH SB-216 INSTALLED JANUARY 2000). WINSC DATE OF DIMENT SOLUCE DATED WELLS AND SEDIMENT I SAMPLINGS FIELD MARSEED BY INT. OCOTIONS FORMER AND READER ESTABLISHED BY WISCONS IN JACED AND READER AND READER AND FROM EARTHMISIONS U.S. TERRAIN VISIONS, INC. 603-433-B500.	H-1 O	STORM SEWER MANHOLE	
FORMER MGP PROCESS STRUCTURES FORMER RAILROAD CE UTILITY LINE AND FORMER ES/BUILDINGS LOCATIONS ARE ATE. DEVELOPED FROM DRAWINGS BY SIMON HYDRO-SEARCH, DATED WING NO. 3075-dB AND DRAWING NO. 3075-d2. DATED 11/15/93, 5075, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 62 M-1451, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 62 M-1451, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 63 LINE DD DRAWINGS FROM WISCONSIN PUBLIC SERVICE CORP., WSKS09.DWG G, GAS LINE TAKEN FROM WISCONSIN PUBLIC SERVICE CORP., WSKS09.DWG SG, WO, OD130980B1, STEVENS POINT, AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG, WO, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG, WO, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS GM SB-216 INSTALLED IN A DIRECTION 1952213' FROM NORTH. NIN 1998 INCLUDING MONITORING WHALS OW-1 THROUGH OW-4, OW-6 AND PIEZOMETER LOCATION SURVEYED BY WISCONSIN IN THE FIELD, AND THEEFORE, WERE NOT MODIFIED. M WPSC DATED JANUARY 31, 2000 LICCATED NH-923213' FROM NORTH. UCATIONS OF 2/200 LOCATED NH-1, SG-1 AT BRIDGE AND BORINGS GH SB-216 INSTALLED JANUARY 2000). M WPSC DATED JANUARY 31, 2000 LICCATED NEW WELLS AND BORINGS GH SB-216 INSTALLED JANUARY 2000). M WPSC DATED JANUARY 31, 2000 LICCATED NEW WELLS AND BORINGS GH SB-216 INSTALLED JANUARY SILL DATIONS FIELD RT AND TED TO TRAVASECT MARKERS ESTABLISHED BY WPSC ON T SAMPLINGS FIELD MEASURED BY NRT. ORTION OF RVER AND SEIJMENT SAMPLE LICCATIONS FIELD RT AND TED TO TRAVASECT MARKERS ESTABLISHED BY WPSC ON T SAMPLINGS	€>	HYDRANT	POINTIC C
FORMER MGP PROCESS STRUCTURES FORMER RAILROAD CE UTILITY LINE AND FORMER ES/BUILDINGS LOCATIONS ARE ATE. DEVELOPED FROM DRAWINGS BY SIMON HYDRO-SEARCH, DATED WING NO. 3075-dB AND DRAWING NO. 3075-d2. DATED 11/15/93, 5075, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 62 M-1451, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 62 M-1451, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 63 LINE DD DRAWINGS FROM WISCONSIN PUBLIC SERVICE CORP., WSKS09.DWG G, GAS LINE TAKEN FROM WISCONSIN PUBLIC SERVICE CORP., WSKS09.DWG SG, WO, OD130980B1, STEVENS POINT, AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG, WO, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG, WO, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS GM SB-216 INSTALLED IN A DIRECTION 1952213' FROM NORTH. NIN 1998 INCLUDING MONITORING WHALS OW-1 THROUGH OW-4, OW-6 AND PIEZOMETER LOCATION SURVEYED BY WISCONSIN IN THE FIELD, AND THEEFORE, WERE NOT MODIFIED. M WPSC DATED JANUARY 31, 2000 LICCATED NH-923213' FROM NORTH. UCATIONS OF 2/200 LOCATED NH-1, SG-1 AT BRIDGE AND BORINGS GH SB-216 INSTALLED JANUARY 2000). M WPSC DATED JANUARY 31, 2000 LICCATED NEW WELLS AND BORINGS GH SB-216 INSTALLED JANUARY 2000). M WPSC DATED JANUARY 31, 2000 LICCATED NEW WELLS AND BORINGS GH SB-216 INSTALLED JANUARY SILL DATIONS FIELD RT AND TED TO TRAVASECT MARKERS ESTABLISHED BY WPSC ON T SAMPLINGS FIELD MEASURED BY NRT. ORTION OF RVER AND SEIJMENT SAMPLE LICCATIONS FIELD RT AND TED TO TRAVASECT MARKERS ESTABLISHED BY WPSC ON T SAMPLINGS	Ø	UTILITY POLE	
FORMER MGP PROCESS STRUCTURES FORMER RAILROAD CE UTILITY LINE AND FORMER ES/BUILDINGS LOCATIONS ARE ATE. DEVELOPED FROM DRAWINGS BY SIMON HYDRO-SEARCH, DATED WING NO. 3075-dB AND DRAWING NO. 3075-d2. DATED 11/15/93, 5075, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 62 M-1451, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 62 M-1451, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 63 LINE DD DRAWINGS FROM WISCONSIN PUBLIC SERVICE CORP., WSKS09.DWG G, GAS LINE TAKEN FROM WISCONSIN PUBLIC SERVICE CORP., WSKS09.DWG SG, WO, OD130980B1, STEVENS POINT, AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG, WO, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG, WO, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS GM SB-216 INSTALLED IN A DIRECTION 1952213' FROM NORTH. NIN 1998 INCLUDING MONITORING WHALS OW-1 THROUGH OW-4, OW-6 AND PIEZOMETER LOCATION SURVEYED BY WISCONSIN IN THE FIELD, AND THEEFORE, WERE NOT MODIFIED. M WPSC DATED JANUARY 31, 2000 LICCATED NH-923213' FROM NORTH. UCATIONS OF 2/200 LOCATED NH-1, SG-1 AT BRIDGE AND BORINGS GH SB-216 INSTALLED JANUARY 2000). M WPSC DATED JANUARY 31, 2000 LICCATED NEW WELLS AND BORINGS GH SB-216 INSTALLED JANUARY 2000). M WPSC DATED JANUARY 31, 2000 LICCATED NEW WELLS AND BORINGS GH SB-216 INSTALLED JANUARY SILL DATIONS FIELD RT AND TED TO TRAVASECT MARKERS ESTABLISHED BY WPSC ON T SAMPLINGS FIELD MEASURED BY NRT. ORTION OF RVER AND SEIJMENT SAMPLE LICCATIONS FIELD RT AND TED TO TRAVASECT MARKERS ESTABLISHED BY WPSC ON T SAMPLINGS	• <u>812</u>	WATER LINE	
FORMER MGP PROCESS STRUCTURES FORMER RAILROAD CE UTILITY LINE AND FORMER ES/BUILDINGS LOCATIONS ARE ATE. DEVELOPED FROM DRAWINGS BY SIMON HYDRO-SEARCH, DATED WING NO. 3075-dB AND DRAWING NO. 3075-d2. DATED 11/15/93, 5075, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 62 M-1451, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 62 M-1451, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 63 LINE DD DRAWINGS FROM WISCONSIN PUBLIC SERVICE CORP., WSKS09.DWG G, GAS LINE TAKEN FROM WISCONSIN PUBLIC SERVICE CORP., WSKS09.DWG SG, WO, OD130980B1, STEVENS POINT, AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG, WO, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG, WO, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS GM SB-216 INSTALLED IN A DIRECTION 1952213' FROM NORTH. NIN 1998 INCLUDING MONITORING WHALS OW-1 THROUGH OW-4, OW-6 AND PIEZOMETER LOCATION SURVEYED BY WISCONSIN IN THE FIELD, AND THEEFORE, WERE NOT MODIFIED. M WPSC DATED JANUARY 31, 2000 LICCATED NH-923213' FROM NORTH. UCATIONS OF 2/200 LOCATED NH-1, SG-1 AT BRIDGE AND BORINGS GH SB-216 INSTALLED JANUARY 2000). M WPSC DATED JANUARY 31, 2000 LICCATED NEW WELLS AND BORINGS GH SB-216 INSTALLED JANUARY 2000). M WPSC DATED JANUARY 31, 2000 LICCATED NEW WELLS AND BORINGS GH SB-216 INSTALLED JANUARY SILL DATIONS FIELD RT AND TED TO TRAVASECT MARKERS ESTABLISHED BY WPSC ON T SAMPLINGS FIELD MEASURED BY NRT. ORTION OF RVER AND SEIJMENT SAMPLE LICCATIONS FIELD RT AND TED TO TRAVASECT MARKERS ESTABLISHED BY WPSC ON T SAMPLINGS	- 045	GAS LINE	ATI ICE R 2
FORMER MGP PROCESS STRUCTURES FORMER RAILROAD CE UTILITY LINE AND FORMER ES/BUILDINGS LOCATIONS ARE ATE. DEVELOPED FROM DRAWINGS BY SIMON HYDRO-SEARCH, DATED WING NO. 3075-dB AND DRAWING NO. 3075-d2. DATED 11/15/93, 5075, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 62 M-1451, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 62 M-1451, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 63 LINE DD DRAWINGS FROM WISCONSIN PUBLIC SERVICE CORP., WSKS09.DWG G, GAS LINE TAKEN FROM WISCONSIN PUBLIC SERVICE CORP., WSKS09.DWG SG, WO, OD130980B1, STEVENS POINT, AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG, WO, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG, WO, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS GM SB-216 INSTALLED IN SURVEYS CONDUCTED IN 1993 BY TYRO-SEARCH SOIL BORINGS AND HYDRO-PUNCH LOCATIONS COULD DESTRUCTUDING MONTORING WHALSOW IN THE AND PEROFERIES TARD TED JANUARY 31, 2000 LICCATED NH=% WELLS AND BORINGS GH SB-216 INSTALLED JANUARY 2000). M WPSC DATED JANUARY 31, 2000 LICCATED NH= WELLS AND BORINGS GH SB-216 INSTALLED JANUARY 2000). M WPSC DATED JANUARY 31, 2000 LICCATED NH=W SELD BY MPSC ON T SAMPLINGS FIELD MEASURED BY NRT. ORTION OF RIVER AND SEIMENT SAMPLE LICCATIONS FIELD RT AND TED TO TRANSECT MARKERS ESTABLISHED BY WPSC ON T SAMPLINGS FIELD MEASURED BY NRT. ORTION OF RIVER AND SIJAND FROM EARTHYISIONS U.S. TERRAIN MISIONS, INC. 603-433-8500. FIGURE NO.		STORM SEWER	ANT N <
FORMER MGP PROCESS STRUCTURES FORMER RAILROAD CE UTILITY LINE AND FORMER ES/BUILDINGS LOCATIONS ARE ATE. DEVELOPED FROM DRAWINGS BY SIMON HYDRO-SEARCH, DATED WING NO. 3075-dB AND DRAWING NO. 3075-d2. DATED 11/15/93, 5075, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 62 M-1451, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 62 M-1451, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 63 LINE DD DRAWINGS FROM WISCONSIN PUBLIC SERVICE CORP., WSKS09.DWG G, GAS LINE TAKEN FROM WISCONSIN PUBLIC SERVICE CORP., WSKS09.DWG SG, WO, OD130980B1, STEVENS POINT, AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG, WO, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG, WO, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS GM SB-216 INSTALLED IN SURVEYS CONDUCTED IN 1993 BY TYRO-SEARCH SOIL BORINGS AND HYDRO-PUNCH LOCATIONS COULD DESTRUCTUDING MONTORING WHALSOW IN THE AND PEROFERIES TARD TED JANUARY 31, 2000 LICCATED NH=% WELLS AND BORINGS GH SB-216 INSTALLED JANUARY 2000). M WPSC DATED JANUARY 31, 2000 LICCATED NH= WELLS AND BORINGS GH SB-216 INSTALLED JANUARY 2000). M WPSC DATED JANUARY 31, 2000 LICCATED NH=W SELD BY MPSC ON T SAMPLINGS FIELD MEASURED BY NRT. ORTION OF RIVER AND SEIMENT SAMPLE LICCATIONS FIELD RT AND TED TO TRANSECT MARKERS ESTABLISHED BY WPSC ON T SAMPLINGS FIELD MEASURED BY NRT. ORTION OF RIVER AND SIJAND FROM EARTHYISIONS U.S. TERRAIN MISIONS, INC. 603-433-8500. FIGURE NO.	MGP	MANUFACTURED GAS PLANT	NPLE S PL
FORMER MGP PROCESS STRUCTURES FORMER RAILROAD CE UTILITY LINE AND FORMER ES/BUILDINGS LOCATIONS ARE ATE. DEVELOPED FROM DRAWINGS BY SIMON HYDRO-SEARCH, DATED WING NO. 3075-dB AND DRAWING NO. 3075-d2. DATED 11/15/93, 5075, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 62 M-1451, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 62 M-1451, A MAP FROM THE CITY OF STEVENS POINT, DRAWING 63 LINE DD DRAWINGS FROM WISCONSIN PUBLIC SERVICE CORP., WSKS09.DWG G, GAS LINE TAKEN FROM WISCONSIN PUBLIC SERVICE CORP., WSKS09.DWG SG, WO, OD130980B1, STEVENS POINT, AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG, WO, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG, WO, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS SG WJ, OD130980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS GM SB-216 INSTALLED IN SURVEYS CONDUCTED IN 1993 BY TYRO-SEARCH SOIL BORINGS AND HYDRO-PUNCH LOCATIONS COULD DESTRUCTUDING MONTORING WHALSOW IN THE AND PEROFERIES TARD TED JANUARY 31, 2000 LICCATED NH=% WELLS AND BORINGS GH SB-216 INSTALLED JANUARY 2000). M WPSC DATED JANUARY 31, 2000 LICCATED NH= WELLS AND BORINGS GH SB-216 INSTALLED JANUARY 2000). M WPSC DATED JANUARY 31, 2000 LICCATED NH=W SELD BY MPSC ON T SAMPLINGS FIELD MEASURED BY NRT. ORTION OF RIVER AND SEIMENT SAMPLE LICCATIONS FIELD RT AND TED TO TRANSECT MARKERS ESTABLISHED BY WPSC ON T SAMPLINGS FIELD MEASURED BY NRT. ORTION OF RIVER AND SIJAND FROM EARTHYISIONS U.S. TERRAIN MISIONS, INC. 603-433-8500. FIGURE NO.	enderme microsce	FORMER BUILDINGS	E E PUBLO
CE UTILITY LINE AND FORMER ES/BUILDINGS LOCATIONS ARE ATE. DEVELOPED FROM DRAWINGS BY SIMON HYDRO-SEARCH, DATED WING NO. 3075-dB AND DRAWING NO. 3075-d2, DATED 11/15/93, 5075, A MAP FROM THE CITY OF STEVENS POINT, DRAWING A-3 M-1456, D DRAWINGS FROM WISCONSIN PUBLIC SERVICE CORP., WSK509.DWG G, GAS LINE TAKEN FROM WISCONSIN PUBLIC SERVICE CORP., WSK509.DWG G, GAS LINE TAKEN FROM WISCONSIN PUBLIC SERVICE CORP., WSK509.DWG G, GAS LINE TAKEN FROM WISCONSIN PUBLIC SERVICE CORP., WSK509.DWG G, GAS LINE TAKEN FROM WISCONSIN PUBLIC SERVICE CORP., WSK509.DWG SC W.O. 0013098DB1, STEVENS POINT, DRAWING A-3 M-1456, D DRAWINGS FROM WISCONSIN PUBLIC SERVICE CORP., WSK509.DWG SC W.O. 0013098DB1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS TORING WELLS OW-1 THROUGH OW-8 AND PIEZOMETER P5B INSTALLED D-SEARCH WERE ESTABLISHED BY WISCONSIN IN 1998 INCLUDING WONTORING WELLS OW-1 THROUGH OW-4, OW-6 AND PIEZOMETER P5B INDICATE AN AVERAGE DISCREPANCY IN THE ATIONS OF 22.42 FEET IN A DIRECTION 196'22'13" FROM NORTH. RING WELL AND PIEZOMETER LOCATIONS SURVEYED BY WPSC ARE HYDRO-SEARCH SOIL BORING AND HYDRO-PUNCH LOCATIONS COULD ED IN THE FIELD, AND THEREFORE, WERE NOT MODIFIED. M WPSC DATED 6/2/00 LOCATED MH-1, SC-1 AT BRIDGE AND RIVERS VERS NORTH EDGE ESTABLISHED TRANSECT POLING AND SEDIMENT LOCATIONS FOLING AND SEDIMENT SAMPLE LOCATIONS FIELD M WPSC DATED 6/2/00 LOCATED MH-1, SC-1 AT BRIDGE AND RIVERS VERS NORTH EDGE ESTABLISHED TRANSECT POLING AND SEDIMENT LOCATIONS, FOLING AND SEDIMENT SAMPLE LOCATIONS FIELD RT AND THED TO TRANSECT MARKERS ESTABLISHED BY WPSC ON T SAMPLINGS FIELD MEASURED BY NRT. ORTION OF RIVER AND ISLAND FROM EARTHYISIONS U.S. TERRAIN VISIONS, INC. 603-433-B500. FIGURE NO.		FORMER MGP PROCESS STRUCTURES	
CE UTILITY LINE AND FORMER ES/BUILDINGS LOCATIONS ARE ATE. DEVELOPED FROM DRAWINGS BY SIMON HYDRO-SEARCH, DATED WING NO. 3075-dB AND DRAWING NO. 3075-d2, DATED 11/15/93, 5075, A MAP FROM THE CITY OF STEVENS POINT, DRAWING A-3 M-1456, D DRAWINGS FROM WISCONSIN PUBLIC SERVICE CORP., WSK509.DWG G, GAS LINE TAKEN FROM WISCONSIN PUBLIC SERVICE CORP., WSK509.DWG G, GAS LINE TAKEN FROM WISCONSIN PUBLIC SERVICE CORP., WSK509.DWG G, GAS LINE TAKEN FROM WISCONSIN PUBLIC SERVICE CORP., WSK509.DWG G, GAS LINE TAKEN FROM WISCONSIN PUBLIC SERVICE CORP., WSK509.DWG SC W.O. 0013098DB1, STEVENS POINT, DRAWING A-3 M-1456, D DRAWINGS FROM WISCONSIN PUBLIC SERVICE CORP., WSK509.DWG SC W.O. 0013098DB1, STEVENS POINT AREA MAP NO. 2106-252. ALL DOORDINATES FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS TORING WELLS OW-1 THROUGH OW-8 AND PIEZOMETER P5B INSTALLED D-SEARCH WERE ESTABLISHED BY WISCONSIN IN 1998 INCLUDING WONTORING WELLS OW-1 THROUGH OW-4, OW-6 AND PIEZOMETER P5B INDICATE AN AVERAGE DISCREPANCY IN THE ATIONS OF 22.42 FEET IN A DIRECTION 196'22'13" FROM NORTH. RING WELL AND PIEZOMETER LOCATIONS SURVEYED BY WPSC ARE HYDRO-SEARCH SOIL BORING AND HYDRO-PUNCH LOCATIONS COULD ED IN THE FIELD, AND THEREFORE, WERE NOT MODIFIED. M WPSC DATED 6/2/00 LOCATED MH-1, SC-1 AT BRIDGE AND RIVERS VERS NORTH EDGE ESTABLISHED TRANSECT POLING AND SEDIMENT LOCATIONS FOLING AND SEDIMENT SAMPLE LOCATIONS FIELD M WPSC DATED 6/2/00 LOCATED MH-1, SC-1 AT BRIDGE AND RIVERS VERS NORTH EDGE ESTABLISHED TRANSECT POLING AND SEDIMENT LOCATIONS, FOLING AND SEDIMENT SAMPLE LOCATIONS FIELD RT AND THED TO TRANSECT MARKERS ESTABLISHED BY WPSC ON T SAMPLINGS FIELD MEASURED BY NRT. ORTION OF RIVER AND ISLAND FROM EARTHYISIONS U.S. TERRAIN VISIONS, INC. 603-433-B500. FIGURE NO.	- f fffffff	FORMER RAILROAD	T/ ISCC
WING NO. 3075–d8 AND DRAWING NO. 3075–d2, DATED 11/15/93, 5075, A MAP FROM THE CITY OF STEVENS POINT, DRAWING E2 M–1456, D DRAWINGS FROM WISCONSIN PUBLIC SERVICE CORP., WSK509.DWG G, GAS LINE TAKEN FROM WSK509.DWG AND ABANDONED GAS LINE SC W.O. 0013098081, STEVENS POINT AREA MAP NO. 2106–252. ALL JDING UTILITIES ARE APPROXIMATE. SCORDINATES FOR SOIL BORINGS (B–1XX), HYDRO–PUNCH BORINGS TORING WELLS OW–1 THROUGH OW–8, OW–6 AND PIEZOMETER P5B INDICATE AN AVERAGE DISCREPANCY IN THE ATIONS OF 22.42 FEET IN A DIRCETION 196'22'13" FROM NORTH. RING WELL AND PIEZOMETER P5B INDICATE AN AVERAGE DISCREPANCY IN THE ATIONS OF 22.42 FEET IN A DIRCETION 196'22'13" FROM NORTH. RING WELL AND PIEZOMETER LOCATIONS SURVEYED BY WPSC CARE HYDRO–SEARCH SOIL BORING AND HYDRO–PUNCH LOCATIONS COULD TED IN THE FIELD, AND THEREFORE, WERE NOT MODIFIED. M WPSC DATED JANUARY 31, 2000 LOCATED NEW WELLS AND BORINGS GH SB–216 INSTALLED JANUARY 2000). M WPSC DATED 6/2/00 LOCATED MH–1, SG–1 AT BRIDGE AND RIVERS VERS NORTH EDGE ESTABLISHED BY NPSC ON T SAMPLINGS FIELD MEASURED BY NRT. ORTION OF RIVER AND ISLAND FROM EARTHVISIONS U.S. TERRAIN VISIONS, INC. 603–433–8500. FIGURE NO.			A A
T SAMPLINGS FIELD MEASURED BY NRT. ORTION OF RIVER AND ISLAND FROM EARTHVISIONS U.S. TERRAIN VISIONS, INC. 603-433-8500. FIGURE NO.	AWING NO. 30 5075, A MAP A MAP FROM D DRAWINGS G. GAS LINE 'SC W.O. 001. JDING UTILITIE JOORDINATES TORING WELLS OORDINATES TORING WELLS AND PIEZOMI ATIONS OF 22 RING WELL AN ATIONS OF 22 RING WELL AN 'HORO-SEARC FED IN THE F M WPSC DATE GH SB-216 I M WPSC DATE VERS NORTH	75-dB AND DRAWING NO. 3075-d2, DATED 11/15/93, FROM THE CITY OF STEVENS POINT, DRAWING E2 M-1461, THE CITY OF STEVENS POINT, DRAWING A-3 M-1456, FROM WISCONSIN PUBLIC SERVICE CORP., WSK509.DWG TAKEN FROM WSK509.DWG AND ABANDONED GAS LINE 30980B1, STEVENS POINT AREA MAP NO. 2106-252. ALL S ARE APPROXIMATE. FOR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS ; OW-1 THROUGH OW-8 AND PIEZOMETER PSB INSTALLED IN SURVEYS CONDUCTED IN 1993 BY C. STATE PLANE COORDINATES ESTABLISHED BY WISCONSIN LUDING MONITORING WELLS OW-1 THROUGH OW-4, OW-6 ETER P5B INDICATE AN AVERAGE DISCREPANCY IN THE 4.24 FFET IN A DIRECTION 196'22'13" FROM NORTH. ID PIEZOMETER LOCATIONS SURVEYED BY WPSC ARE H SOIL BORING AND HYDRO-PUNCH LOCATIONS COULD IELD, AND THEREFORE, WERE NOT MODIFIED. D JANUARY 31, 2000 LOCATED NEW WELLS AND BORINGS NSTALLED JANUARY 2000). D 6/2/00 LOCATED MH-1, SC-1 AT BRIDGE AND RIVERS EDGE ESTABLISHES TRANSECT POLING AND SEDIMENT POLING AND SEDIMENT SAMPLE LOCATIONS FIELD	RESOURCE TECHNOLOGY PROJECT NO.
	ORTION OF R	IVER AND ISLAND FROM EARTHVISIONS U.S. TERRAIN	FIGURE NO.


	· · · · · · · · · · · · · · · · · · ·				· · ·	<u> </u>
ND			05/19/06	06/05/06	06/05/06	
	WATER TABLE ELEVATION CONTOURS, FT.					-B26
	GROUNDWATER FLOW DIRECTION		RLH DATE:	K DATE:	K DATE:	7-138-
	WATER TABLE OBSERVATION WELL AND GROUNDWATER ELEVATION, FT.		BY: RL	BY: EPK	D BY: EPK	DRAWING NO: 1177-138- REFERENCE: .
	WATER TABLE OBSERVATION WELL AND GROUNDWATER ELEVATION, FT./NESTED MONITORING WELL		DRAWN	CHECKED	APPROVED	DRAWING NO REFERENCE:
	PIEZOMETER		52			NISN
S	STAFF GAUGE		CONTOURS			WISCONSIN
!	STORM SEWER MANHOLE		NO			
	HYDRANT		õ			ICE CORPORATION
	UTILITY POLE		z	ഗ	RT	RPO INS
·······	WATER LINE		LEVATION	2006	REPORT	E CORPO
	GAS LINE		AT	200	Z Z	<u>ы</u> К.
******	STORM SEWER		\geq	•		ANT
	MANUFACTURED GAS PLANT			ЯL	MPLI	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1	FORMER BUILDINGS			APRIL	2006 COMPLETION	PUBLIC GAS
:	FORMER MGP PROCESS STRUCTURES		TABLE	~	200(ŽE
è.	FORMER RAILROAD		Ĥ			WISCO
	IE AND FORMER LOCATIONS ARE		WATER			W FORMER MAN
3075 AP FF ROM 1 SS FR NE TA 101300 TRES ES FO LLS (WERF INCLU 22.4 AND ARCH E FIEL ATED 6 INS ATED 6 INS NATED 5. PO CED TC CSS FI	DM DRAWINGS BY SIMON HYDRO-SEARCH, DATED d8 AND DRAWING NO. 3075-d2, DATED 11/15/93, KOM THE CITY OF STEVENS POINT, DRAWING E2 M-146 HE CITY OF STEVENS POINT, DRAWING A-3 M-1456, OM WISCONSIN PUBLIC SERVICE CORP., WSK509,DWG KEN FROM WSK509,DWG AND ABANDONED GAS LINE 98081, STEVENS POINT AREA MAP NO. 2106-252. ALL ARE APPROXIMATE. R SOLL BORINGS (B-1XX), HYDRO-PUNCH BORINGS DW-1 THROUGH OW-8 AND PIEZOMETER P58 INSTALLED ESTABLISHED IN SURVEYS CONDUCTED IN 1993 BY STATE PLANE COORDINATES ESTABLISHED BY WISCONSIN DING MONITORING WELLS OW-1 THROUGH OW-4, OW-6 2 FEBT IN A DIRECTION 196'22'13" FROM NORTH. PIEZOMETER LOCATIONS SURVEYED BY WFSC ARE SOLL BORING AND HYDRO-PUNCH LOCATIONS COULD D, AND THEREFORE, WERE NOT MODIFIED. JANUARY 31, 2000 LOCATED NEW WELLS AND BORINGS TALLED JANUARY 2000). 6/2/00 LOCATED MH-1, SG-1 AT BRIDGE AND RIVERS GE ESTABLISHES TRANSECT POLING AND SEDIMENT LING AND SEDIMENT SAMPLE LOCATIONS FIELD) TRANSECT MARKERS ESTABLISHED BY WFSC ON ELD MEASURED BY NRT. R AND ISLAND FROM EARTHVISIONS U.S. TERRAIN OM SAND THRE STABLISHED BY WFSC ON	D N S	RE TE P	SOL CHI ROJI	RA JRO NOI ECT 7/1: RE	CE _OGY NO. 3.8
-			Г	1901	2	,u. J

		<u> </u>	 ·				1
ELEVA GROU DIREC PIEZO ELEVA PIEZO ELEVA MONIT	METRIC SURFACE TION CONTOURS, NDWATER FLOW TION METER AND PIEZ ATION, FT. METER AND PIEZ TION, FT./NESTE TORING WELL MEDIATE PIEZOMI	FT. ZOMETRIC ZOMETRIC D	DRAWN BY: RLH DATE: 05/19/06	CHECKED BY: EPK DATE: 06/05/06	APPROVED BY: EPK DATE: 06/05/06	DRAWING NO: 1177-138-B07	KEFEKENCE: .
I ELEVA CONT WATE STAFF STOR HYDR UTILIT WATE GAS GAS GAS FORM FORM	ATION IS NOT UT OURING R TABLE OBSERV F GAUGE M SEWER MANHO ANT Y POLE R LINE LINE IFACTURED GAS I ER BUILDINGS ER MGP PROCES CTURES ER RAILROAD	ILIZED FOR ATION WELL DLE	OMETRIC SURFACE EL	CONTOURS, OCTOBER, 2005	2006 COMPLETION REPORT	WISCONSIN PUBLIC SERVICE CORPORATION	FORMER MANUFACTURE GAS PLANI, STEVENS POINT, WISCONSIN
-d8 AND DRA OM THE CITY IN THE CITY OF S OM WISCONSIN KEN FROM WS 98081, STEVEN ARE APPROXIM W-1 THROUGI C STABLISHED DING MONITORT IN FSB INDICA 2 FEET IN A I PIEZOMETER L SOIL BORING D, AND THERE JANUARY 31, SOIL BORING 1, AND THERE JANUARY 31, 6/2/00 LOCA GE ESTABLISHI UNG AND SED TRANSECT M ELD MEASURED	SS (B-1XX), HYDROPUN H OW-B AND PIEZOMETER IN SURVEYS CONDUCTED COORDINATES ESTABLISHED NG WELLS OW-1 THROUG DIRECTION 196'22'13" FRC OCATIONS SURVEYED BY 1 AND HYDRO-PUNCH LOCA FORE, WERE NOT MODIFIE 2000 LOCATED NEW WELL RY 2000). TED MH-1, SG-1 AT BRIE ISTRANSECT POLING AND IMENT SAMPLE LOCATIONS MIKERS ESTABLISHED BY 1 D BY NRT. FROM EARTHMISIONS U.S.	D 11/15/93, ING E2 M-1461, ING E2 M-1466, ING E2 M-1466, WSK509.DWG D GAS LINE 2106-252. ALL CH BORINGS P5B INSTALLED IN 1993 BY P5B INSTALLED IN 1993 BY P5B INSTALLED IN 1993 BY P5B INSTALLED IN 1993 BY P5B INSTALLED IN 1993 COM-4, OW-6 NCY IN THE MORTH. WPSC ARE TIONS COULD D. S AND BORINGS SEDIMENT FIELD WPSC ON	P	SOL CHI ROJI		CE _OG NO. 3.8	SY

				T	~
ND PIEZOMETRIC SURFACE ELEVATION CONTOURS, FT. GROUNDWATER FLOW DIRECTION PIEZOMETER AND PIEZOMETRIC ELEVATION, FT. PIEZOMETER AND PIEZOMETRIC ELEVATION, FT./NESTED MONITORING WELL INTERMEDIATE PIEZOMETER,	DRAWN BY: RLH DATE: 05/19/06	CHECKED BY: EPK DATE: 06/05/06	APPROVED BY: EPK DATE: 06/05/06	DRAWING NO: 1177-138-B27	REFERENCE: .
ELEVATION IS NOT UTILIZED FOR CONTOURING WATER TABLE OBSERVATION WELL STAFF GAUGE STORM SEWER MANHOLE HYDRANT UTILITY POLE WATER LINE GAS LINE GAS LINE STORM SEWER MANUFACTURED GAS PLANT FORMER BUILDINGS FORMER MGP PROCESS STRUCTURES FORMER RAILROAD	PIEZOMETRIC SURFACE ELEVATION	CONTOURS, APRIL, 2006	2006 COMPLETION REPORT	WISCONSIN PUBLIC SERVICE CORPC	FORMER MANUFACTURE GAS PLANT, STEVENS POINT, WISCONSIN
M DRAWINGS BY SIMON HYDRO-SEARCH, DATED -d8 AND DRAWING NO. 3075-d2, DATED 11/15/93, DM THE CITY OF STEVENS POINT, DRAWING A-3 M-1456, W WISCONSIN PUBLIC SERVICE CORP., WSK509,DWG EN FROM WSK509,DWG AND ABANDONED GAS LINE BOB1, STEVENS POINT AREA MAP NO. 2106-252. ALL RE APPROXIMATE. SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS W-1 THROUGH OW-8 AND PIEZOMETER P5B INSTALLED ESTABLISHED IN SURVEYS CONDUCTED IN 1993 BY TATE PLANE COORDINATES ESTABLISHED BY WISCONSIN ING MONITORING WELLS OW-1 THROUGH OW-4, OW-6 R P5B INDICATE AN AVERAGE DISCREPANCY IN THE FEET IN A DIRECTION 196'22'13" FROM NORTH. "IEZOMETER LOCATIONS SURVEYED BY WPSC ARE SOIL BORING AND HYDRO-PUNCH LOCATIONS COLLD , AND THEREFORE, WERK NOT MODIFIED. ANUARY 31, 2000 LOCATED NEW WELLS AND BORINGS ALLED JANUARY 2000). 3/2/00 LOCATED MH-1, SG-1 AT BRIDGE AND RIVERS 4 E STABLISHES TRANSECT POLING AND SEDIMENT ING AND SEDIMENT SAMPLE LOCATIONS FIELD TRANSECT WARKERS ESTABLISHED BY WPSC ON LD MEASURED BY NRT. AND SEDIMENT SAMPLE LOCATIONS U.S. TERRAIN 3-433-8500.	Re Te P	SO CH ROJ 117		CE LOC NO. 3.8	_

ESTIMATED EXTENT OF SHALLOW GROUNDWATER WITH BENZENE AND NAPHTHALENE CONCENTRATIONS ABOVE THE NR140 ES

NESTED MONITORING WELL

WATER TABLE OBSERVATION WELL

ABANDONED WATER TABLE **OBSERVATION WELL**

PIEZOMETER

STAFF GAUGE

NUMBER	BENZENE	NAPHTHALENE
SAMPLED	µg/L	μg/L

MICROGRAMS PER LITER

CONCENTRATION ATTAINS/EXCEEDS NR 140 ENFORCEMENT STANDARDS CONCENTRATION ATTAINS/EXCEEDS NR 140 PREVENTIVE ACTION LIMIT

STORM SEWER MANHOLE

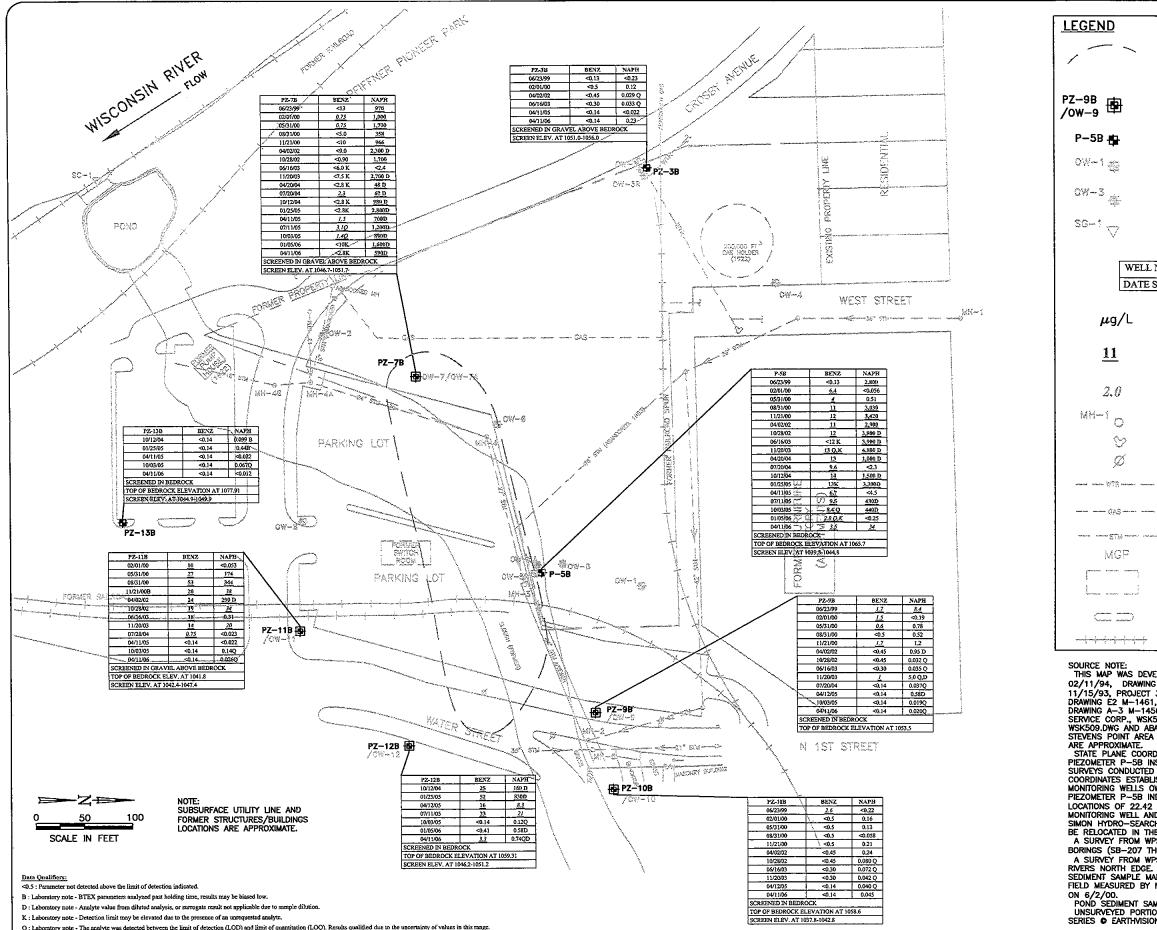
HYDRANT UTILITY POLE

- WATER LINE
- GAS LINE
- STORM SEWER

MANUFACTURED GAS PLANT

FORMER BUILDINGS

FORMER MGP PROCESS STRUCTURES

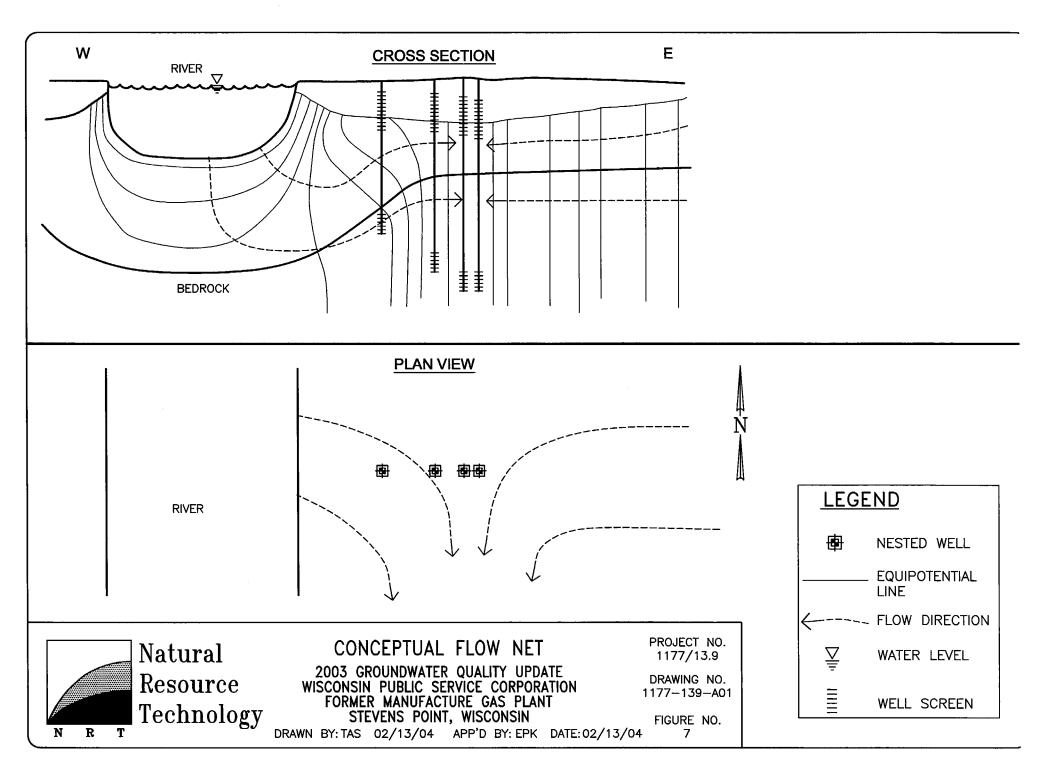

FORMER RAILROAD

SOURCE NOTE: THIS MAP WAS DEVELOPED FROM DRAWINGS BY SIMON HYDRO-SEARCH, DATED 02/11/94, DRAWING NO. 3075-d8 AND DRAWING NO. 3075-d2, DATED 11/15/93, PROJECT 304533075, A MAP FROM THE CITY OF STEVENS POINT, DRAWING E2 M-1461, DATE UNKNOWN, A MAP FROM THE CITY OF STEVENS POINT, DRAWING A-3 M-1456, DATED 1986, AND DRAWINGS FROM WISCONSIN PUBLIC SERVICE CORP., WSK509.DWG AND STPTGAS.DWG. GAS LINE TAKEN FROM WSK509.DWG AND ABANDONED GAS LINE TAKEN FROM WPSC W.O. 0013098081, STEVENS POINT AREA MAP NO. 2106-252. ALL LOCATIONS INCLUDING UTILITIES ARE APPROXIMATE. STATE PLANE COORDINATES FOR MONTORING WELLS OW-1 THROUGH OW-8 AND PIEZOMETER P-5B INSTALLED BY SIMON HYDRO-SEARCH WERE ESTABLISHED IN SURVEYS CONDUCTED IN 1993 BY KIEDROWSKI ENGINEERING, INC. STATE PLANE COORDINATES ESTABLISHED BY WISCONSIN PUBLIC SERVICE IN 1998 INCLUDING MONITORING WELLS OW-1 THROUGH OW-4, OW-6 THROUGH OW-8 AND PIEZOMETER P-5B INDICATE AN AVERAGE DISCREPANCY IN THE KIEDROWSKI LOCATIONS OF 22.42 FEET IN A DIRECTION 196'22'13" FROM NORTH. REVISED MONITORING WELL SOLD PIEZOMETER LOCATIONS SURVEYED BY WPSC ARE SHOWN. SIMON HYDRO-SEARCH SOL BORING AND HYDRO-PUNCH LOCATIONS COULD NOT BE RELOCATED IN THE FIELD, AND THEREFORE, WERE NOT MOUTH. REVISED MONITORING WELL AND PIEZOMETER, NOT MONG AND HYDRO-PUNCH LOCATIONS COULD NOT BE RELOCATED IN THE FIELD, AND THEREFORE, WERE NOT MOUTH REVISED MONITORING WELL AND DIEZOMETER, MON THA REVISED MON HYDRO-SEARCH SOL BORING AND HYDRO-PUNCH LOCATIONS COULD NOT BE RELOCATED IN THE FIELD, AND THEREFORE, WERE NOT MODIFIED. A SURVEY FROM WPSC DATED JANUARY 31, 2000 LOCATED NEW WELLS AND BORINGS

A SURVEY FROM WPSC DATED JANUARY 31, 2000 LOCATED NEW WELLS AND BORINGS

(SB-207 THROUGH WISC DATED GALLA JANUARY 2000). A SURVEY FROM WISC DATED 6/2/00 LOCATED MIH-1, SG-1 AT BRIDGE AND RIVERS NORTH EDGE. RIVERS NORTH EDGE ESTABLISHES TRANSECT POLING AND SEDIMENT SAMPLE MARKER LOCATIONS. POLING AND SEDIMENT SAMPLE LOCATIONS FIELD MEASURED SMAFLE MALER EDUCATIONS. FOLLOW AND SEDIMENT SEMANTLE EDUCATIONS FIELD MEASURED BY NRT AND TIED TO TRANSECT MARKERS ESTABLISHED BY WPSC ON 6/2/00. POND SEDIMENT SAMPLINGS FIELD MEASURED BY NRT. UNSURVEYED PORTION OF RIVER AND ISLAND FROM EARTHVISIONS U.S. TERRAIN SERIES © EARTHVISIONS, INC. 603-433-8500.

- 1	DRAWN BY: RLH DATE: 05/24/06	CHECKED BY: EPK DATE: 06/05/06	APPROVED BY: EPK DATE: 06/05/06	DRAWING NO: 1177-138-B08	REFERENCE: CAD Table 060503.xls
	SHALLOW GROUNDWATER QUALITY	1999-2006	2005 GROUNDWATER OUALITY UPDATE	WISCONSIN PUBLIC SERVICE CORPORATION	FORMER MANUFACTURED GAS PLANT, STEVENS POINT, WISCONSIN REFERENCE: CAD Table 060503.xIs
	Re	SO	RA	CE	GY
	P	ROJ 117	ECT 7/13 RE 1	NO 3.8	


A SURVEY FROM WP BORINGS (SB-207 TH A SURVEY FROM WP RIVERS NORTH EDGE SEDIMENT SAMPLE MA FIELD MEASURED BY

 \heartsuit

 \oslash

SERIES O EARTHVISIO

			,06	,06	,06)
~	ESTIMATED EXTENT OF DEEP GROUNDWATER WITH BENZENE AND NAPHTHALENE CONCENTRATIONS ABOVE THE NR140 ES		E: 05/19/06	E: 06/05/06	E: 06/05/06	DRAWING NO: 1177–138–809 REFERENCE: CAD Table 060503.xIs
3	NESTED PIEZOMETER WELL		H DATE:	R DATE:	EPK DATE:	-138 able (
ł	PIEZOMETER		RLH	i		1177 AD T
e S	WATER TABLE OBSERVATION WELL		BY:	BY:	D BY:	CE: C
iya San	ABANDONED WATER TABLE OBSERVATION WELL		DRAWN 8	CHECKED	APPROVED	DRAWING NO: 1177–138–809 REFERENCE: CAD Table 06050
7	STAFF GAUGE		Ъ.	풍	Α	
	IUMBER BENZENE NAPHTHALENE AMPLED µg/L µg/L					WISCONSIN
j/L	MICROGRAMS PER LITER		QUALITY			_
L	CONCENTRATION ATTAINS/EXCEEDS NR 140 ENFORCEMENT STANDARDS		QUA		PDATE	WISCONSIN PUBLIC SERVICE CORPORATION NUFACTURED GAS PLANT, STEVENS POINT,
0	CONCENTRATION ATTAINS/EXCEEDS NR 140 PREVENTIVE ACTION LIMIT				groundwater ouality upda'	E CORPO
0	STORM SEWER MANHOLE		Ē	2	UAL	ыN
♡ Ø	HYDRANT UTILITY POLE		MA	1999-2006	ER OI	PLANT,
	WATER LINE			99	TAWC	UBLIC CAS P
÷	GAS LINE		0	<u>–</u>	OUNE	BU D D
138 	STORM SEWER				GR	SIN P URED
GP	MANUFACTURED GAS PLANT				2005	WISCON
	FORMER BUILDINGS		Ы		2	
)	FORMER MGP PROCESS STRUCTURES					ER MA
н	FORMER RAILROAD					FORMER
DRAWING PROJECT 3 2 M-1461, -3 M-1456 G AND ABA DINT AREA SG AND ABA DINT AREA INE COORDI : P-5B INS OF 22.42 1 WELL AND RO-SEARCH FROM WPS B-207 THH FROM WPS IB-207 THH EFROM WPS IB-207 THH INT SAM	.0PED FROM DRAWINGS BY SIMON HYDRO-SEARCH, DATE NO. 3075-d8 AND DRAWING NO. 3075-d2, DATED 04533075, A MAP FROM THE CITY OF STEVENS POINT, DATE UNKNOWN, A MAP FROM THE CITY OF STEVENS POINT, DATE UNKNOWN, A MAP FROM THE CITY OF STEVENS POINT, DATED 1986, AND DRAWINGS FROM WISCONSIN PUBLIC 30.DWG AND STPTGAS.DWG, GAS LINE TAKEN FROM NDONED GAS LINE TAKEN FROM WPSC W.O. 0013098081 NATES FOR MONITORING WELLS OW-1 THROUGH OW-88 /A TAILED BY SIMON HYDRO-SEARCH WERE ESTABLISHED IN TAILED BY SIMON HYDRO-SEARCH WERE ESTABLISHED IN HED BY WISCONSIN PUBLIC SERVICE IN 1998 INCLUDING OCATE AN AVERAGE DISCREPANCY IN THE KIEDROWSKI FEET IN A DIRECTION 196722'13" FROM NORTH. REVISED ISOIL BORING AND HYDRO-PUNCH LOCATIONS COULD IN FIELD, AND THEREFORE, WERE NOT MODIFIED. SC DATED JANUARY 31, 2000 LOCATED NEW WELLS AND ROUGH SB-216 INSTALLED JANUARY 2000). CC DATED 16/2/00 LOCATED MH-1, SG-1 AT BRIDGE AN REVERS NORTH EDGE ESTABLISHES TRANSECT POLING AND RKER LOCATIONS. POLING AND SEDIMENT SAMPLE LOCATIC RIVERS NORTH EDGE STABLISHES TRANSECT POLING AND RKER LOCATIONS. POLING AND SEDIMENT SAMPLE LOCATIC RIVERS NORTH EDGE STABLISHES TRANSECT POLING AND RAVERS NORTH EDGE AND SEDIMENT SAMPLE LOCATIC RIVERS AND THE AND THEASED BY NRT. N OF RIVER AND ISLAND FROM EARTHVISIONS U.S. TERRA S, INC. 603-433-B500.	DINT,	Re Te P	SOI CH ROJ 117	RA UR(NOI ECT 7/1: RE	DE LOGY NO. 3.8
					<u> </u>	

Table 1. Groundwater Elevation SummaryWisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site1111 Crosby Avenue, Stevens Point, WisconsinUSEPA WIN000509983 / BRRTS # 02-50-000079 / FID # 750081200

12.5 5 1085	1	V-1 15.6 5	2	OW- 15.6			OW-		
5			2	15.6	6		13.9	9	
5			2	15.6	5		13.98		
		5					1010	-	
		5		5			_		
1085				5			5		
	.8	1085	.8	1086	.9		1088	.6	
1088 -	21	1091	32	1089	74		1091	58	
1000.	21	1001.	02	1005.	1 -		1001.	<u></u>	
1080	7	1080	7	1079	1/		1082	6	
1000.	.1	1000	.1	1073.	14		1002	.0	
1075	7	1075	7	1074	14		1077	6	
1073.		1073		1074.			1077	Water	
Denth to Water		Depth to Water		Depth to Water			Depth to Water	Elevation	
								(MSL)	
			(· /	*		1082.73	
8.94	1079.27			9.21	1080.53	*	9.49	1082.09	
9.08	1079.13			9.35	1080.39	*	10.44	1081.14	
9.20	1079.01	Casing	added	9.46	1080.28	*	10.67	1080.91	
9.29	1078.92	to the top of	of the well	9.26	1080.48	*	10.57	1081.01	
Casing	added	not meas	sured	9.00	1080.74	*	Abandoned	April 1998	
to the top of	of the well	12.87	1078.45	9.45	1080.29	*	Replaced w	ith OW-3R	
		13.00	1078.32	9.08	1080.66	*			
		12.15	1079.17	9.10	1080.64	*			
		12.82	1078.50	9.38	1080.36	*			
			1078.99		1080.68	*			
				-		*			
						*			
						*			
						*			
				-		*			
						*			
						*			
						*			
						*			
						*			
						*			
						*			
	1080 1075 Depth to Water rom TOC (feet) 8.88 8.94 9.08 9.20 9.29 Casing	rom TOC (feet) (MSL) 8.88 1079.33 8.94 1079.27 9.08 1079.13 9.20 1079.01	1080.7 1080 1075.7 1075 Depth to Water rom TOC (feet) Elevation (MSL) Depth to Water from TOC (feet) 8.88 1079.33 8.94 1079.27 9.08 1079.01 9.29 1078.92 to the top of the well 12.87 13.00 12.15	1080.7 1080.7 1075.7 1075.7 Depth to Water rom TOC (feet) Elevation (MSL) Depth to Water from TOC (feet) Water Elevation (MSL) 8.88 1079.33	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1080.7 1080.7 1075.7 1075.7 1075.7 1075.7 1074.14 1082.7 Depth to Water rom TOC (feet) Water (MSL) Depth to Water from TOC (feet) Depth to Water (MSL) Depth to Water from TOC (feet) Depth to Water fr	

Table 1. Groundwater Elevation Summary Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

Well Data	ow-:	BR	PZ-3	B	OW-	4	OW-	5	
Well Depth from									
TOC (feet)	17.2	1	41.7	6	16.9	8	22.5	1	
Screen Length (feet)	10		5		10		10		
Surface Elevation (MSL)	1088	.5	1090	.1	1086.8		1085	.5	
Top of Casing Elevation (MSL)	1090.	60	1092.	77	1090.	16	1088.	39	
Top of Screen Elevation (MSL)	1083	.4	1056	5.0	1083	.2	1075	.9	
Bottom of Screen Elevation (MSL)	1073	.4	1051	.0	1073	.2	1065	.9	
Data	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	
Date 09/16/93	from TOC (feet)	(MSL)	from TOC (feet) Constructe	(MSL)	from TOC (feet) 9.56	(MSL) 1080.60	from TOC (feet) 8.88	(MSL) 1079.51 *	
09/16/93	4		9.74	1083.03 *	9.56	1080.80	8.93	1079.51	
08/16/97	1		9.74	1083.03	9.89	1080.30	9.03	1079.36 *	
09/03 & 04/97	1		9.87	1083.01	9.96	1080.20	9.05	1079.35 *	
02/26/98	1		10.79	1082.90	9.66	1080.50	9.31	1079.08 *	
06/22/99	Constructed	lanuary 2000	9.74	1083.03 *	9.88	1080.28	Abandoned		
01/31/00	9.97	1080.63	10.18	1082.59 *	10.04	1080.12	Well Was No		
05/31/00	9.75	1080.85	9.91	1082.86 *	9.95	1080.21		i ropiacoa	
08/31/00	9.68	1080.92	9.78	1082.99 *	9.92	1080.24			
11/21/00	9.32	1081.28	10.71	1082.06 *	10.04	1080.12			
04/01/02	9.69	1080.91	9.92	1082.85 *	9.81	1080.35			
07/22/02	9.72	1080.88	9.90	1082.87 *	9.90	1080.26			
10/28/02	9.65	1080.95	9.90	1082.87 *	9.85	1080.31	1		
06/16/03	9.48	1081.12	9.76	1083.01 *	9.66	1080.50	1		
11/20/03	9.76	1080.84	10.08	1082.69 *	10.83	1079.33	1		
04/20/04	9.71	1080.89	9.92	1082.85 *	9.80	1080.36			
07/20/04	9.54	1081.06	9.71	1083.06 *	9.78	1080.38			
10/12/04	9.89	1080.71	10.01	1082.76 *	10.10	1080.06			
01/25/05	9.91	1080.69	10.11	1082.66 *	10.02	1080.14			
04/11/05	9.71	1080.89	9.70	1083.07 *	9.84	1080.32			
07/11/05	9.89	1080.71	10.09	1082.68 *	10.19	1079.97			
10/03/05	9.67	1080.93	9.87	1082.90 *	9.89	1080.27	-		
01/05/06	9.86	1080.74	10.04	1082.73 *	9.88	1080.28			
04/11/06	9.75	1080.85	9.99	1082.78 *	9.82	1080.34			

Table 1. Groundwater Elevation Summary Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

Well Data	OW-5A		OW-5R		P-5E	3	ow	6	
Well Depth from			10.05					10.01	
TOC (feet)	18.14		16.35		48.7	8	18.0	18.04	
Screen Length (feet)	10		10		5		10	10	
Surface Elevation (MSL)	1085.5		1086.9		1086	.0	1084	.7	
Top of Casing Elevation (MSL)	1088.39		1089.	21	1088.0	62	1087.	62	
Top of Screen Elevation (MSL)	1080.3		1082.9		1044.	.8	1079	.6	
Bottom of Screen Elevation (MSL)	1070	0.3	1072.9		1039	.8	1069.6		
		Water		Water	Water			Water	
Date	Depth to Water from TOC (feet)	Elevation (MSL)	Depth to Water from TOC (feet)	Elevation (MSL)	Depth to Water from TOC (feet)	Elevation (MSL)	Depth to Water from TOC (feet)	Elevation (MSL)	
09/16/93	8.88	1079.51			8.73	1079.89	6.99	1080.63 *	
08/15/96	8.93	1079.46			8.76	1079.86	7.10	1080.52 *	
08/16/97	9.03	1079.36			8.88	1079.74	7.16	1080.46 *	
09/03 & 04/97	9.14	1079.25			8.99	1079.63	7.19	1080.43 *	
02/26/98	9.31	1079.08	1		9.22	1079.40	7.36	1080.26 *	
06/22/99	Abandoned	Abandoned April 1998		January 2000	9.00	1079.62	7.10	1080.52 *	
01/31/00	Replaced w	vith OW-5R	10.60	1078.61	9.70	1078.92	7.71	1079.91 *	
05/31/00			9.92	1079.29	9.32	1079.30	7.41	1080.21 *	
08/31/00			9.73	1079.48	8.97	1079.65	7.15	1080.47 *	
11/21/00			10.19	1079.02	9.30	1079.32	7.44	1080.18 *	
04/01/02			10.16	1079.05	9.33	1079.29	7.47	1080.15 *	
07/22/02			9.75	1079.46	9.00	1079.62	7.18	1080.44 *	
10/28/02			9.62	1079.59	8.85	1079.77 '	7.10	1080.52 *	
06/16/03			9.28	1079.93	9.85	1078.77	6.97	1080.65 *	
11/20/03			10.04	1079.17	9.26	1079.36	7.39	1080.23 *	
04/20/04									
07/20/04			9.48	1079.73	8.62	1080.00	6.90	1080.72 *	
10/12/04			10.02	1079.19	9.06	1079.56	7.25	1080.37 *	
01/25/05]		10.15	1079.06	9.33	1079.29	7.44	1080.18 *	
04/11/05			9.95	1079.26	9.24	1079.38	7.37	1080.25 *	
07/11/05]		10.01	1079.20	9.16	1079.46	7.30	1080.32 *	
10/03/05			9.67	1079.54	8.97	1079.65	7.13	1080.49 *	
01/05/06			10.18	1079.03	9.38	1079.24	7.49	1080.13 *	
04/11/06			10.11	1079.10	9.36	1079.26	7.47	1080.15 *	

Table 1. Groundwater Elevation Summary Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

Well Data	ow-	7A	OW-7		PZ-7B ^A			OW-8		
Well Depth from TOC (feet)	18.1	5	27.	1	43.17			17.62		
Screen Length (feet)	10		10		5	5			10	
Surface Elevation (MSL)	1085.4		1085.6		1087.2			1089.9		
Top of Casing Elevation (MSL)	1088.76		1088.	46	1086.	60		1092.:	26	
Top of Screen Elevation (MSL)	1080	1.6	1071	.4	1048	.4		1084.6		
Bottom of Screen Elevation (MSL)	1070	0.6	1061.4		1043.4			1074.6		
Date	Depth to Water from TOC (feet)	Water Elevation (MSL)	Depth to Water from TOC (feet)	Water Elevation (MSL)	Depth to Water from TOC (feet)	Water Elevation (MSL)		Depth to Water from TOC (feet)	Water Elevation (MSL)	
09/16/93	8.94	1079.82	7.84	1080.62 *	Constructed in 1996			12.54	1079.72	
08/15/96	8.73	1080.03	7.93	1080.53 *	8.12	1078.48	*	12.60	1079.66	
08/16/97	8.80	1079.96	8.04	1080.42 *	8.35	1078.25	*	12.68	1079.58	
09/03 & 04/97	8.90	1079.86	8.11	1080.35 *	8.47	1078.13	*	12.81	1079.45	
02/26/98	8.75	1080.01	8.36	1080.10 *	8.71	1077.89	*	13.17	1079.09	
06/22/99	8.25	1080.51	Abandoned	April 1998	6.88	1079.72	*	12.87	1079.39	
01/31/00	8.63	1080.13	Well Was N	ot Replaced	7.56	1079.04	*	13.72	1078.54	
05/31/00	8.35	1080.41			7.22	1079.38	*	13.34	1078.92	
08/31/00	8.35	1080.41			6.89	1079.71	*	12.90	1079.36	
11/21/00	8.50	1080.26			7.22	1079.38	*	13.30	1078.96	
04/01/02	8.35	1080.41			7.29	1079.31	*	13.42	1078.84	
07/22/02	8.33	1080.43			6.88	1079.72	*	12.90	1079.36	
10/28/02	8.30	1080.46			6.80	1079.80	*	12.80	1079.46	
06/16/03	8.31	1080.45			6.79	1079.81	*	12.82	1079.44	
11/20/03	8.28	1080.48			7.20	1079.40	*	13.31	1078.95	
04/20/04	8.24	1080.52			7.15	1079.45	*	13.19	1079.07	
07/20/04	8.21	1080.55			6.50	1080.10	*	12.37	1079.89	
10/12/04	8.30	1080.46			7.02	1079.58	*	12.96	1079.30	
01/25/05	8.40	1080.36			7.28	1079.32	*	13.29	1078.97	
04/11/05	8.24	1080.52			7.20	1079.40	*	13.27	1078.99	
07/11/05	8.29	1080.47			7.10	1079.50	*	13.06	1079.20	
10/03/05	8.23	1080.53			6.92	1079.68	*	12.91	1079.35	
01/05/06	8.41	1080.35			7.31	1079.29	*	13.26	1079.00	
04/11/06	8.31	1080.45			7.30	1079.30	*	13.38	1078.88	

Table 1. Groundwater Elevation SummaryWisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site1111 Crosby Avenue, Stevens Point, Wisconsin

Well Data	OW-9		PZ-9	В	OW-1	10	PZ-10B		
Well Depth from TOC (feet)	21.18		53.65		12.3		53.3		
Screen Length (feet)	10		5		10		5		
Surface Elevation (MSL)	1088.6		1088.5		1088	1088.6		.6	
Top of Casing Elevation (MSL)	1090.92		1090.91		1091.	04	1091.09		
Top of Screen Elevation (MSL)	1079).7	1042.3		1088.7		1042.8		
Bottom of Screen Elevation (MSL)	1069	1069.7		1037.3		1078.7		1037.8	
Date	Depth to Water from TOC (feet)	Water Elevation (MSL)							
08/16/97	Constructed	August 1997	Constructed	August 1997	Constructed August 1997		Constructed August 1997		
09/03 & 04/97	12.25	1078.67	12.17	1078.74 *	12.30	1078.74	12.44	1078.65	
02/26/98	12.37	1078.55	12.37	1078.54 *	12.55	1078.49	12.51	1078.58	
06/22/99	12.24	1078.68	12.25	1078.66 *	12.38	1078.66	13.14	1077.95	
01/31/00	12.85	1078.07	12.85	1078.06 *	13.05	1077.99	12.95	1078.14	
05/31/00	12.55	1078.37	12.47	1078.44 *	12.63	1078.41	12.70	1078.39	
08/31/00	12.98	1077.94	12.08	1078.83 *	11.26	1079.78	11.29	1079.80	
11/21/00	12.51	1078.41	12.43	1078.48 *	12.60	1078.44	12.64	1078.45	
04/01/02	12.42	1078.50	12.36	1078.55 *	12.44	1078.60	12.54	1078.55	
07/22/02	12.20	1078.72	12.10	1078.81 *	12.28	1078.76	12.16	1078.93	
10/28/02	12.00	1078.92	11.90	1079.01 *	12.10	1078.94	12.12	1078.97	
06/16/03	11.92	1079.00	11.87	1079.04 *	11.97	1079.07	12.20	1078.89	
11/20/03	12.28	1078.64	12.30	1078.61 *	12.40	1078.64	12.48	1078.61	
04/20/04	12.17	1078.75	12.15	1078.76 *	12.21	1078.83	12.36	1078.73	
07/20/04	12.79	1078.13	11.70	1079.21 *	11.94	1079.10	11.77	1079.32	
10/12/04	12.28	1078.64	12.23	1078.68 *	12.43	1078.61	12.23	1078.86	
01/25/05	12.44	1078.48	12.41	1078.50 *	12.72	1078.32	12.43	1078.66	
04/12/05	12.33	1078.59	12.32	1078.59 *	12.34	1078.70	12.55	1078.54	
07/11/05	12.32	1078.60	12.27	1078.64 *	12.38	1078.66	12.64	1078.45	
10/03/05	12.16	1078.76	12.05	1078.86 *	12.30	1078.74	12.39	1078.70	
01/05/06	12.49	1078.43	12.38	1078.53 *	12.49	1078.55	12.80	1078.29	
04/11/06	12.41	1078.51	12.39	1078.52 *	12.55	1078.49	12.59	1078.50	

Table 1. Groundwater Elevation SummaryWisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site1111 Crosby Avenue, Stevens Point, Wisconsin

Well Data	ow-	11	PZ-1	1B	OW-1	2 ^A	PZ-12	B ^A
Well Depth from TOC (feet)	16.07		51.42		18.35		43.8	
Screen Length (feet)	10		5		10	10		
Surface Elevation (MSL)	1091.92		1091.8		1090.	1090.33		31
Top of Casing Elevation (MSL)	1094.14		1093.78		1090.06	1089.92	1090.02	1089.97
Top of Screen Elevation (MSL)	1088.1		1047.4		1081	1081.7		.2
Bottom of Screen Elevation (MSL)	1078.1		1042.4		1071.7		1046.2	
Date	Depth to Water from TOC (feet)	Water Elevation (MSL)						
06/22/99	Constructed	January 2000	Constructed J	January 2000	Constructed Se	ptember 2004	Constructed Se	ptember 2004
01/31/00	16.07	1078.07	15.43	1078.35 *				
05/31/00	15.76	1078.38	14.95	1078.83 *				
08/31/00	14.25	1079.89	14.60	1079.18 *				
11/21/00	15.71	1078.43	14.91	1078.87 *				
04/01/02	15.82	1078.32	14.94	1078.84 *				
07/22/02	15.23	1078.91	14.53	1079.25 *				
10/28/02	15.05	1079.09	14.40	1079.38 *				
06/16/03	15.20	1078.94	14.39	1079.39 *				
11/20/03	15.70	1078.44	14.88	1078.90 *				
04/20/04	15.54	1078.60	14.75	1079.03 *				
07/20/04	14.65	1079.49	14.13	1079.65 *	1			
10/12/04	15.30	1078.84	14.71	1079.07 *	11.42	1078.64	11.36	1078.66 *
01/25/05	15.70	1078.44	14.95	1078.83 *	11.56	1078.50	11.69	1078.33 *
4/11 & 12/05	15.61	1078.53	14.88	1078.90 *	11.87	1078.05	11.79	1078.18 *
07/11/05	15.41	1078.73	14.77	1079.01 *	11.60	1078.32	11.51	1078.46 *
10/03/05	15.26	1078.88	14.59	1079.19 *	11.43	1078.49	11.40	1078.57 *
01/05/06	15.56	1078.58	14.90	1078.88 *	11.68	1078.24	11.59	1078.38 *
04/11/06	16.73	1077.41	14.98	1078.80 *	11.88	1078.04	11.96	1078.01 *

Table 1. Groundwater Elevation SummaryWisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site1111 Crosby Avenue, Stevens Point, WisconsinUSEPA WIN000509983 / BRRTS # 02-50-000079 / FID # 750081200

	-	
Well Data	PZ-1	3 ^A
Well Depth from TOC (feet)	45.5	55
Screen Length (feet)	5	
Surface Elevation (MSL)	1090	.91
Top of Casing Elevation (MSL)	1090.47	1090.44
Top of Screen Elevation (MSL)	1049	9.9
Bottom of Screen Elevation (MSL)	1044	1.9
Date	Depth to Water from TOC (feet)	Water Elevation (MSL)
10/12/04	11.63	1078.84 *
01/25/05	12.11	1078.36 *
04/11/05	12.05	1078.39 *
07/11/05	11.78	1078.66 *
10/03/05	11.55	1078.89 *
01/05/06	11.95	1078.49 *
04/11/06	12.19	1078.25 *

[U-EPK/JTB 1/05][U-EPK/PAR 5/05][U-PAR/RLH 8/05][U-EPK/PAR 6/06]

TOC : Top of PVC well casing

OW : Water table monitoring well

--: Not measured

Water level stopped functioning during field activities on 4/20/04.

*: Water level elevation above top of screen elevation

P/PZ : Piezometer

MSL: Elevations are referenced to feet above Mean Sea Level

A: Elevations for these wells determined by NRT field crew on Jan. 25, 2005. Survey was updated by WPSC personnel in Spring 2005.

Table 2. Vertical GradientsWisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site1111 Crosby Avenue, Stevens Point, WisconsinUSEPA WIN000509983 / BRRTS # 02-50-000079 / FID # 750081200

Monitoring Location	TOC ^A Elevation (feet) ^B	Well Depth from TOC (feet)	Base of Well Elevation ^B	Screen Length (feet)	Top of Screen Elevation (feet) ^B	Middle of Screen Elevation ^B	Monitoring Date	Depth to Water from TOC (feet)	Groundwater Elevation ^B	Change in Head (dH)	Change in Distance (dL)	-	Iraulic Gradient H/dL)
Well Nest OW-3 OW-3	3 R(OW-3) / PZ 1091.58	-3B 14.0	1077.6	5.0	1082.6	na	09/16/93	8.85	1082.73	na	na	na	na
							08/15/96	9.49	1082.09	-0.94	28.58	-3.3E-02	up
							08/16/97 09/03 & 04/97	10.44 10.67	1081.14 1080.91	-1.87 -1.99	27.63 27.40	-6.8E-02 -7.3E-02	strongly up strongly up
							02/26/98	10.57	1081.01	-0.97	27.50	-3.5E-02	up
OW-3R	1090.60	17.2	1073.4	10.0	1083.4	na	06/22/99 01/31/00	9.97	Abandoned in 1 1080.63	998 and 0 -1.96	DW-3R was r 27.12	not yet constru -7.2E-02	cted strongly up
011-31	1090.00	17.2	1073.4	10.0	1063.4	Пd	05/31/00	9.97	1080.85	-1.90	27.12	-7.2E-02 -7.4E-02	strongly up
							08/31/00	9.68	1080.92	-2.07	27.41	-7.6E-02	strongly up
							11/21/00 04/01/02	9.32 9.69	1081.28 1080.91	-0.78 -1.94	27.77 27.40	-2.8E-02 -7.1E-02	up strongly up
							07/22/02	9.72	1080.88	-1.94	27.40	-7.3E-02	strongly up
							10/28/02	9.65	1080.95	-1.92	27.44	-7.0E-02	strongly up
							06/16/03 11/20/03	9.48 9.76	1081.12 1080.84	-1.89 -1.85	27.61 27.33	-6.8E-02 -6.8E-02	strongly up
							04/20/04	9.70	1080.84	-1.96	27.38	-0.3E-02 -7.2E-02	strongly up strongly up
							07/20/04	9.54	1081.06	-2.00	27.55	-7.3E-02	strongly up
							10/12/04 01/25/05	9.89 9.91	1080.71 1080.69	-2.05 -1.97	27.20 27.18	-7.5E-02 -7.2E-02	strongly up strongly up
							04/11/05	9.71	1080.89	-2.18	27.38	-8.0E-02	strongly up
							07/11/05	9.89	1080.71	-1.97	27.20	-7.2E-02	strongly up
							10/03/05	9.67	1080.93	-1.97	27.42	-7.2E-02	strongly up
							01/05/06 04/11/06	9.86 9.75	1080.74 1080.85	-1.99 -1.93	27.23 27.34	-7.3E-02 -7.1E-02	strongly up strongly up
PZ-3B	1092.77	41.8	1051.0	5.0	1056.0	1053.5	09/16/93	not construct					0, 1
- 							08/15/96	9.74	1083.03				
							08/16/97	9.76	1083.01				
							09/03 & 04/97 02/26/98	9.87 10.79	1082.90 1081.98				
							02/20/98	9.74	1083.03				
							01/31/00	10.18	1082.59				
							05/31/00	9.91 0.78	1082.86				
							08/31/00 11/21/00	9.78 10.71	1082.99 1082.06				
							04/01/02	9.92	1082.85				
							07/22/02	9.90	1082.87				
							10/28/02 06/16/03	9.90 9.76	1082.87 1083.01				
							11/20/03	10.08	1082.69				
							04/20/04	9.92	1082.85				
							07/20/04	9.71	1083.06				
							10/12/04 01/25/05	10.01 10.11	1082.76 1082.66				
							04/11/05	9.70	1083.07				
							07/11/05	10.09	1082.68				
							10/03/05 01/05/06	9.87 10.04	1082.90 1082.73				
							04/11/06	9.99	1082.78				
Well Nest OW-5	. ,		4070.0	10.0	1000.0		00/40/00	0.00	1070 51	0.00	07.47		
OW-5A	1088.39	18.1	1070.3	10.0	1080.3	na	09/16/93 08/15/96	8.88 8.93	1079.51 1079.46	-0.38 -0.40	37.17 37.12	-1.0E-02 -1.1E-02	up up
							08/16/97	9.03	1079.36	-0.38	37.02	-1.0E-02	up up
							09/03 & 04/97	9.14	1079.25	-0.38	36.91	-1.0E-02	up
								9.31	1079.08	-0.32	36.74	-8.7E-03	weakly up
							02/26/98	3.51	Abandoned in 1	998 and (W-5R was r	not vet constru	
OW-5R	1089.21	16.4	1072.9	10.0	1082.9	na	02/26/98 06/22/99 01/31/00	10.60	Abandoned in 1 1078.61	998 and 0 -0.31	DW-5R was r 36.27	not yet constru -8.5E-03	weakly up
OW-5R	1089.21	16.4	1072.9	10.0	1082.9	na	06/22/99 01/31/00 05/31/00	10.60 9.92	1078.61 1079.29	-0.31 -0.01	36.27 36.95	-8.5E-03 -2.7E-04	flat
OW-5R	1089.21	16.4	1072.9	10.0	1082.9	na	06/22/99 01/31/00 05/31/00 08/31/00	10.60 9.92 9.73	1078.61 1079.29 1079.48	-0.31 -0.01 -0.17	36.27 36.95 37.14	-8.5E-03 -2.7E-04 -4.6E-03	flat flat
OW-5R	1089.21	16.4	1072.9	10.0	1082.9	na	06/22/99 01/31/00 05/31/00	10.60 9.92 9.73 10.19	1078.61 1079.29 1079.48 1079.02	-0.31 -0.01 -0.17 -0.30	36.27 36.95 37.14 36.68	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03	flat flat weakly up
OW-5R	1089.21	16.4	1072.9	10.0	1082.9	na	06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02	10.60 9.92 9.73	1078.61 1079.29 1079.48	-0.31 -0.01 -0.17	36.27 36.95 37.14	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03	flat flat weakly up weakly up flat
OW-5R	1089.21	16.4	1072.9	10.0	1082.9	na	06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02	10.60 9.92 9.73 10.19 10.16 9.75 9.62	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18	36.27 36.95 37.14 36.68 36.71 37.12 37.25	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03	flat flat weakly up weakly up flat flat
OW-5R	1089.21	16.4	1072.9	10.0	1082.9	na	06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 4.3E-03 4.3E-03	flat flat weakly up weakly up flat flat flat
OW-5R	1089.21	16.4	1072.9	10.0	1082.9	na	06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04	10.60 9.92 9.73 10.19 10.16 9.75 9.62	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18	36.27 36.95 37.14 36.68 36.71 37.12 37.25	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03	flat flat weakly up weakly up flat flat
OW-5R	1089.21	16.4	1072.9	10.0	1082.9	na	06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03	flat flat weakly up flat flat flat weakly up weakly up
OW-5R	1089.21	16.4	1072.9	10.0	1082.9	na	06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.37	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02	flat flat weakly up flat flat flat weakly up weakly up up
OW-5R	1089.21	16.4	1072.9	10.0	1082.9	na	06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03	flat flat weakly up flat flat flat weakly up weakly up
OW-5R	1089.21	16.4	1072.9	10.0	1082.9	na	06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 07/11/05	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.06 1079.20	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03	flat flat weakly up flat flat flat weakly up weakly up up weakly up flat weakly up
OW-5R	1089.21	16.4	1072.9	10.0	1082.9	na	06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 07/11/05 10/03/05	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01 9.67	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.06 1079.20 1079.20 1079.54	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26 -0.11	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86 37.20	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03 -3.0E-03	flat flat weakly up flat flat flat weakly up weakly up up weakly up flat weakly up flat
OW-5R	1089.21	16.4	1072.9	10.0	1082.9	na	06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 07/11/05	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.06 1079.20	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03	flat flat weakly up flat flat flat weakly up weakly up up weakly up flat weakly up
							06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 07/11/05 01/05/06 04/11/06	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01 9.67 10.18 10.11	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.06 1079.20 1079.20 1079.54 1079.03 1079.10	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26 -0.11 -0.21	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86 37.20 36.69	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03 -3.0E-03 -5.7E-03	flat flat weakly up flat flat flat weakly up weakly up up weakly up flat weakly up flat weakly up
OW-5R P-5B	1089.21	16.4 48.8	1072.9	10.0	1082.9	na 1042.3	06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 07/11/05 10/03/05 01/05/06	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01 9.67 10.18	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.06 1079.20 1079.20 1079.54 1079.03	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26 -0.11 -0.21	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86 37.20 36.69	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03 -3.0E-03 -5.7E-03	flat flat weakly up flat flat flat weakly up weakly up up weakly up flat weakly up flat weakly up
							06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 07/11/05 10/03/05 01/05/06 04/11/06 09/16/93 08/15/96 08/16/97	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01 9.67 10.18 10.11 8.73 8.76 8.88	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.06 1079.20 1079.20 1079.54 1079.03 1079.10 1079.89 1079.86 1079.74	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26 -0.11 -0.21	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86 37.20 36.69	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03 -3.0E-03 -5.7E-03	flat flat weakly up flat flat flat weakly up weakly up up weakly up flat weakly up flat weakly up
							06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 07/11/05 10/03/05 01/05/06 04/11/06 09/16/93 08/15/96 08/16/97 09/03 & 04/97	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01 9.67 10.18 10.11 8.73 8.76 8.88 8.99	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.06 1079.26 1079.20 1079.54 1079.33 1079.10 	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26 -0.11 -0.21	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86 37.20 36.69	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03 -3.0E-03 -5.7E-03	flat flat weakly up flat flat flat weakly up weakly up up weakly up flat weakly up flat weakly up
							06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 07/11/05 10/03/05 01/05/06 04/11/06 09/16/93 08/15/96 08/16/97	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01 9.67 10.18 10.11 8.73 8.76 8.88	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.06 1079.20 1079.20 1079.54 1079.03 1079.10 1079.89 1079.86 1079.74	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26 -0.11 -0.21	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86 37.20 36.69	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03 -3.0E-03 -5.7E-03	flat flat weakly up flat flat flat weakly up weakly up up weakly up flat weakly up flat weakly up
							06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 07/11/05 01/05/06 04/11/06 09/16/93 08/15/96 08/16/97 09/03 & 04/97 02/26/98 06/22/99 01/31/00	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01 9.67 10.18 10.11 8.73 8.76 8.88 8.99 9.22 9.00 9.70	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.06 1079.26 1079.20 1079.54 1079.03 1079.89 1079.89 1079.89 1079.83 1079.40 1079.62 1078.92	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26 -0.11 -0.21	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86 37.20 36.69	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03 -3.0E-03 -5.7E-03	flat flat weakly up flat flat flat weakly up weakly up flat weakly up flat weakly up
							06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 07/11/05 01/05/06 04/11/06 09/16/93 08/15/96 08/16/97 09/03 & 04/97 02/26/98 06/22/99 01/31/00 05/31/00	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01 9.67 10.18 10.11 8.73 8.76 8.88 8.99 9.22 9.00 9.70 9.32	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.06 1079.26 1079.20 1079.54 1079.30 1079.89 1079.89 1079.89 1079.63 1079.40 1079.62 1079.30	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26 -0.11 -0.21	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86 37.20 36.69	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03 -3.0E-03 -5.7E-03	flat flat weakly up flat flat flat weakly up weakly up flat weakly up flat weakly up
							06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 07/11/05 07/11/05 01/05/06 04/11/06 09/16/93 08/15/96 08/16/97 09/03 & 04/97 02/26/98 06/22/99 01/31/00 05/31/00 08/31/00	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01 9.67 10.18 10.11 8.73 8.76 8.88 8.99 9.22 9.00 9.70 9.32 8.97	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.06 1079.20 1079.20 1079.20 1079.54 1079.03 1079.89 1079.89 1079.89 1079.83 1079.40 1079.62 1079.30 1079.65	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26 -0.11 -0.21	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86 37.20 36.69	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03 -3.0E-03 -5.7E-03	flat flat weakly up flat flat flat weakly up weakly up flat weakly up flat weakly up
							06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 07/11/05 01/05/06 04/11/06 09/16/93 08/15/96 08/16/97 09/03 & 04/97 02/26/98 06/22/99 01/31/00 05/31/00	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01 9.67 10.18 10.11 8.73 8.76 8.88 8.99 9.22 9.00 9.70 9.32	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.06 1079.26 1079.20 1079.54 1079.30 1079.89 1079.89 1079.89 1079.63 1079.40 1079.62 1079.30	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26 -0.11 -0.21	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86 37.20 36.69	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03 -3.0E-03 -5.7E-03	flat flat weakly up flat flat flat weakly up weakly up up weakly up flat weakly up flat weakly up
							06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 07/11/05 10/03/05 01/05/06 04/11/06 09/16/93 08/15/96 08/16/97 09/03 & 04/97 02/26/98 06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01 9.67 10.18 10.11 8.73 8.76 8.88 8.99 9.22 9.00 9.70 9.32 8.97 9.30 9.33 9.00	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.06 1079.20 1079.20 1079.20 1079.54 1079.03 1079.89 1079.89 1079.89 1079.89 1079.63 1079.40 1079.62 1079.30 1079.32 1079.29 1079.62	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26 -0.11 -0.21	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86 37.20 36.69	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03 -3.0E-03 -5.7E-03	flat flat weakly up flat flat flat weakly up weakly up up weakly up flat weakly up flat weakly up
							06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 07/11/05 10/03/05 01/05/06 04/11/06 09/16/93 08/15/96 08/16/97 09/03 & 04/97 02/26/98 06/22/99 01/31/00 05/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01 9.67 10.18 10.11 8.73 8.76 8.88 8.99 9.22 9.00 9.70 9.32 8.97 9.30 9.33 9.00 8.85	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.06 1079.20 1079.20 1079.20 1079.54 1079.03 1079.89 1079.89 1079.89 1079.83 1079.40 1079.63 1079.40 1079.62 1079.32 1079.29 1079.29 1079.29 1079.62 1079.77	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26 -0.11 -0.21	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86 37.20 36.69	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03 -3.0E-03 -5.7E-03	flat flat weakly up flat flat flat weakly up weakly up up weakly up flat weakly up flat weakly up
							06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 07/11/05 10/03/05 01/05/06 04/11/06 08/15/96 08/16/97 09/03 & 04/97 02/26/98 06/22/99 01/31/00 05/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01 9.67 10.18 10.11 8.73 8.76 8.88 8.99 9.22 9.00 9.70 9.32 8.97 9.30 9.33 9.00 8.85 8.85	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.06 1079.20 1079.20 1079.54 1079.03 1079.10 1079.89 1079.86 1079.74 1079.63 1079.62 1079.30 1079.32 1079.32 1079.29 1079.62 1079.77 1079.77	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26 -0.11 -0.21	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86 37.20 36.69	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03 -3.0E-03 -5.7E-03	flat flat weakly up flat flat flat weakly up weakly up up weakly up flat weakly up flat weakly up
							06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 07/11/05 10/03/05 01/05/06 04/11/06 09/16/93 08/15/96 08/16/97 09/03 & 04/97 02/26/98 06/22/99 01/31/00 05/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01 9.67 10.18 10.11 8.73 8.76 8.88 8.99 9.22 9.00 9.70 9.32 8.97 9.30 9.33 9.00 8.85	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.06 1079.20 1079.20 1079.20 1079.54 1079.03 1079.89 1079.89 1079.89 1079.83 1079.40 1079.63 1079.40 1079.62 1079.32 1079.29 1079.29 1079.29 1079.62 1079.77	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26 -0.11 -0.21	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86 37.20 36.69	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03 -3.0E-03 -5.7E-03	flat flat weakly up flat flat flat weakly up weakly up up weakly up flat weakly up flat weakly up
							06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 10/03/05 01/05/06 04/11/06 09/16/93 08/15/96 08/16/97 09/03 & 04/97 02/26/98 06/22/99 01/31/00 05/31/00 01/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01 9.67 10.18 10.11 8.73 8.76 8.88 8.99 9.22 9.00 9.70 9.32 8.97 9.30 9.33 9.00 8.85 8.85 9.26 8.62	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.26 1079.20 1079.20 1079.20 1079.54 1079.89 1079.89 1079.89 1079.80 1079.74 1079.62 1079.30 1079.62 1079.29 1079.62 1079.77 1079.77 1079.77 1079.77 1079.36 1080.00	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26 -0.11 -0.21	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86 37.20 36.69	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03 -3.0E-03 -5.7E-03	flat flat weakly up flat flat flat weakly up weakly up up weakly up flat weakly up flat weakly up
							06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 07/11/05 07/11/05 07/11/05 01/05/06 04/11/06 09/16/93 08/15/96 08/16/97 09/03 & 04/97 02/26/98 06/22/99 01/31/00 05/31/00 05/31/00 05/31/00 05/31/00 05/31/00 05/31/00 05/31/00 05/31/00 05/31/00 05/31/00 01/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01 9.67 10.18 10.11 8.73 8.76 8.88 8.99 9.22 9.00 9.70 9.32 8.97 9.30 9.33 9.00 8.85 8.85 9.26 8.62 9.06	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.26 1079.20 1079.20 1079.54 1079.89 1079.89 1079.89 1079.83 1079.74 1079.63 1079.40 1079.62 1079.32 1079.32 1079.29 1079.62 1079.29 1079.62 1079.77 1079.77 1079.77 1079.76 1079.77	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26 -0.11 -0.21	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86 37.20 36.69	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03 -3.0E-03 -5.7E-03	flat flat weakly up flat flat flat weakly up weakly up up weakly up flat weakly up flat weakly up
							06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 10/03/05 01/05/06 04/11/06 09/16/93 08/15/96 08/16/97 09/03 & 04/97 02/26/98 06/22/99 01/31/00 05/31/00 01/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01 9.67 10.18 10.11 8.73 8.76 8.88 8.99 9.22 9.00 9.70 9.32 8.97 9.30 9.33 9.00 8.85 8.85 9.26 8.62	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.26 1079.20 1079.20 1079.20 1079.54 1079.89 1079.89 1079.89 1079.80 1079.74 1079.62 1079.30 1079.62 1079.29 1079.62 1079.77 1079.77 1079.77 1079.77 1079.36 1080.00	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26 -0.11 -0.21	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86 37.20 36.69	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03 -3.0E-03 -5.7E-03	flat flat weakly up flat flat flat weakly up weakly up up weakly up flat weakly up flat weakly up
							06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 07/11/05 07/11/05 01/05/06 04/11/06 09/16/93 08/15/96 08/16/97 09/03 & 04/97 02/26/98 06/22/99 01/31/00 05/31/00 05/31/00 05/31/00 05/31/00 05/31/00 05/31/00 05/31/00 05/31/00 05/31/00 05/31/00 05/31/00 01/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01 9.67 10.18 10.11 8.73 8.76 8.88 8.99 9.22 9.00 9.70 9.32 8.97 9.30 9.33 9.00 8.85 8.85 9.26 8.62 9.06 9.33	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.26 1079.20 1079.20 1079.20 1079.54 1079.30 1079.89 1079.89 1079.63 1079.74 1079.62 1079.29 1079.62 1079.29 1079.62 1079.77 1079.77 1079.77 1079.77 1079.77 1079.76 1080.00 1079.29	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26 -0.11 -0.21	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86 37.20 36.69	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03 -3.0E-03 -5.7E-03	flat flat weakly up flat flat flat weakly up weakly up up weakly up flat weakly up flat weakly up
							06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 07/11/05 08/16/97 09/03 & 04/97 02/26/98 06/22/99 01/31/00 05/31/00 08/31/00 05/31/00 00 05/31/00 00 05/31/00 00 05/31/00 00/00 00/00 00/00 00/00 00/00 00/00 00/00 00/00 00/00 00/00 0	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01 9.67 10.18 10.11 8.73 8.76 8.88 8.99 9.22 9.00 9.70 9.32 8.97 9.30 9.33 9.33 9.33 9.33 9.33 9.33 9.33	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.06 1079.20 1079.20 1079.20 1079.54 1079.30 1079.89 1079.89 1079.80 1079.74 1079.62 1079.30 1079.62 1079.32 1079.32 1079.77 1079.36 1080.00 1079.56 1079.29 1079.38 1079.77 1079.36 	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26 -0.11 -0.21	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86 37.20 36.69	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03 -3.0E-03 -5.7E-03	flat flat weakly up flat flat flat weakly up weakly up up weakly up flat weakly up flat weakly up
							06/22/99 01/31/00 05/31/00 08/31/00 11/21/00 04/01/02 07/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04 01/25/05 04/11/05 07/11/05 08/16/97 09/03 & 04/97 02/26/98 06/22/99 01/31/00 05/31/00 08/31/00 05/31/00 08/31/00 05/31/00 01/22/02 10/28/02 06/16/03 11/20/03 04/20/04 07/20/04 10/12/04	10.60 9.92 9.73 10.19 10.16 9.75 9.62 9.28 10.04 9.48 10.02 10.15 9.95 10.01 9.67 10.18 10.11 8.73 8.76 8.88 8.99 9.22 9.00 9.70 9.32 8.97 9.30 9.33 9.30 9.33 9.00 8.85 8.85 9.26 8.62 9.06 9.33 9.24 9.16	1078.61 1079.29 1079.48 1079.02 1079.05 1079.46 1079.59 1079.93 1079.17 1079.73 1079.19 1079.06 1079.20 1079.20 1079.54 1079.30 1079.89 1079.89 1079.80 1079.80 1079.74 1079.62 1079.30 1079.62 1079.32 1079.77 1079.36 1080.00 1079.56 1079.29 1079.38 1079.40	-0.31 -0.01 -0.17 -0.30 -0.24 -0.16 -0.18 0.16 -0.19 -0.27 -0.27 -0.23 -0.23 -0.12 -0.26 -0.11 -0.21	36.27 36.95 37.14 36.68 36.71 37.12 37.25 37.59 36.83 37.39 36.85 36.72 36.92 36.86 37.20 36.69	-8.5E-03 -2.7E-04 -4.6E-03 -8.2E-03 -6.5E-03 -4.3E-03 -4.8E-03 4.3E-03 -5.2E-03 -7.2E-03 -1.0E-02 -6.3E-03 -3.3E-03 -7.1E-03 -3.0E-03 -5.7E-03	flat flat weakly up flat flat flat weakly up weakly up up weakly up flat weakly up flat weakly up

Table 2. Vertical GradientsWisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site1111 Crosby Avenue, Stevens Point, WisconsinUSEPA WIN000509983 / BRRTS # 02-50-000079 / FID # 750081200

lonitoring Location	TOC ^A Elevation (feet) ^B	Well Depth from TOC (feet)	Base of Well Elevation ^B	Screen Length (feet)		Middle of Screen Elevation ^B	Monitoring Date	Depth to Water from TOC (feet)	Groundwater Elevation ^B	Change in Head (dH)	Change in Distance (dL)	-	draulic Gradie IH/dL)
ell Nest OW-7 OW-7A		18.2	1070.6	10.0	1080.6	na	08/15/96	8.73	1080.03	1.55	34.10	4.5E-02	down
							08/16/97	8.80	1079.96	1.71	34.03	5.0E-02	strongly down
							09/03 & 04/97 02/26/98	8.90 8.75	1079.86 1080.01	1.73 2.12	33.93 34.08	5.1E-02 6.2E-02	strongly down
							06/22/99	8.25	1080.51	0.79	34.58	2.3E-02	down
							01/31/00	8.63	1080.13	1.09	34.20	3.2E-02	down
							05/31/00	8.35	1080.41	1.03	34.48	3.0E-02	down
							08/31/00 11/21/00	8.35 8.50	1080.41 1080.26	0.70 0.88	34.48 34.33	2.0E-02 2.6E-02	down down
							04/01/02	8.35	1080.41	1.10	34.48	3.2E-02	down
							07/22/02	8.33	1080.43	0.71	34.50	2.1E-02	down
							10/28/02	8.30	1080.46	0.66	34.53	1.9E-02	down
							06/16/03 11/20/03	8.31 8.28	1080.45 1080.48	0.64 1.08	34.52 34.55	1.9E-02 3.1E-02	down down
							04/20/04	8.24	1080.52	1.07	34.59	3.1E-02	down
							07/20/04	8.21	1080.55	0.45	34.62	1.3E-02	down
							10/12/04 01/25/05	8.30	1080.46	0.88	34.53	2.5E-02	down
							01/25/05	8.40 8.24	1080.36 1080.52	1.04 1.12	34.43 34.59	3.0E-02 3.2E-02	down down
							07/11/05	8.29	1080.47	0.97	34.54	2.8E-02	down
							10/03/05	8.23	1080.53	0.85	34.60	2.5E-02	down
							01/05/06 04/11/06	8.41 8.31	1080.35 1080.45	1.06 1.15	34.42 34.52	3.1E-02 3.3E-02	down down
PZ-7B	1086.60	43.2	1043.4	5.0	1048.4	1045.9	08/15/96	8.12	1078.48				
-							08/16/97	8.35	1078.25				
							09/03 & 04/97	8.47	1078.13				
							02/26/98 06/22/99	8.71	1077.89				
							06/22/99 01/31/00	6.88 7.56	1079.72 1079.04				
							05/31/00	7.22	1079.38				
							08/31/00	6.89	1079.71				
							11/21/00	7.22	1079.38				
							04/01/02 07/22/02	7.29	1079.31				
							10/28/02	6.88 6.80	1079.72 1079.80				
							06/16/03	6.79	1079.81				
							11/20/03	7.20	1079.40				
							04/20/04	7.15	1079.45				
							07/20/04	6.50	1080.10				
							10/12/04 01/25/05	7.02 7.28	1079.58 1079.32				
							04/11/05	7.20	1079.40				
							07/11/05	7.10	1079.50				
							10/03/05	6.92	1079.68				
							01/05/06 04/11/06	7.31 7.30	1079.29 1079.30				
Nest OW-9		21.2	1000 7	10.0	1070 7		00/02 8 04/07	10.05	1079.67	0.07	29.01	1 85 02	flot
OW-9	1090.92	21.2	1069.7	10.0	1079.7	na	09/03 & 04/97 02/26/98	12.25 12.37	1078.67 1078.55	-0.07 0.01	38.91 38.79	-1.8E-03 2.6E-04	flat flat
							06/22/99	12.24	1078.68	0.02	38.92	5.1E-04	flat
							01/31/00	12.85	1078.07	0.01	38.31	2.6E-04	flat
							05/31/00	12.55	1078.37	-0.07	38.61	-1.8E-03	flat
							08/31/00 11/21/00	12.98 12.51	1077.94 1078.41	-0.89 -0.07	38.18 38.65	-2.3E-02 -1.8E-03	up flat
							04/01/02	12.31	1078.50	-0.07	38.74	-1.3E-03	flat
							07/22/02	12.20	1078.72	-0.09	38.96	-2.3E-03	flat
							10/28/02	12.00	1078.92	-0.09	39.16	-2.3E-03	flat
							06/16/03	11.92	1079.00	-0.04	39.24	-1.0E-03	flat
							11/20/03 04/20/04	12.28 12.17	1078.64 1078.75	0.03 -0.01	38.88 38.99	7.7E-04 -2.6E-04	flat flat
							07/20/04	12.17	1078.13	-0.01	38.37	-2.8E-04 -2.8E-02	flat up
							10/12/04	12.28	1078.64	-0.04	38.88	-1.0E-03	flat
							01/25/05	12.44	1078.48	-0.02	38.72	-5.2E-04	flat
							04/12/05 07/11/05	12.33 12.32	1078.59 1078.60	0.00 -0.04	38.83 38.84	0.0E+00 -1.0E-03	flat flat
							10/03/05	12.16	1078.76	-0.04	39.00	-2.6E-03	flat
							01/05/06 04/11/06	12.49 12.41	1078.43 1078.51	-0.10 -0.01	38.67 38.75	-2.6E-03 -2.6E-04	flat flat
PZ-9B	1090.91	53.7	1037.3	5.0	1042.3	1039.8	09/03 & 04/97	12.41	1078.51		00.70	<u>-</u> .∪∟⁻∪4	iiat
							02/26/98	12.37	1078.54				
							06/22/99 01/31/00	12.25	1078.66				
							01/31/00 05/31/00	12.85 12.47	1078.06 1078.44				
							08/31/00	12.08	1078.83				
							11/21/00	12.43	1078.48				
							04/01/02	12.36	1078.55				
							07/22/02 10/28/02	12.10 11.90	1078.81 1079.01				
							06/16/03	11.90	1079.01				
							11/20/03	12.30	1078.61				
							04/20/04	12.15	1078.76				
							07/20/04	11.70	1079.21				
							10/12/04 01/25/05	12.23 12.41	1078.68 1078.50				
							01/25/05 04/12/05	12.41 12.32	1078.50 1078.59				
							07/11/05	12.32	1078.64				
							10/03/05	12.05	1078.86				
								12.00	1010.00				
							01/05/06 04/11/06	12.38 12.39	1078.53 1078.52				

Table 2. Vertical GradientsWisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site1111 Crosby Avenue, Stevens Point, WisconsinUSEPA WIN000509983 / BRRTS # 02-50-000079 / FID # 750081200

Location	TOC ^A Elevation (feet) ^B	Depth from TOC (feet)	Base of Well Elevation ^B	Screen Length (feet)	Top of Screen Elevation (feet) ^B	Middle of Screen Elevation ^B	Monitoring Date	Depth to Water from TOC (feet)	Groundwater Elevation ^B		Change in Distance (dL)	Vertical Hyd (d	raulic Gradie H/dL)
ell Nest OW-10 OW-10	& PZ-10B 1091.04	12.3	1078.7	10.0	1088.7	na	09/03 & 04/97	12.30	1078.74	0.09	38.45	2.3E-03	flat
							02/26/98	12.55	1078.49	-0.09	38.20	-2.4E-03	flat
							06/22/99 01/31/00	12.38 13.05	1078.66 1077.99	0.71 -0.15	38.37 37.70	1.9E-02 -4.0E-03	down flat
							05/31/00	12.63	1078.41	0.02	38.12	5.2E-04	flat
							08/31/00	11.26	1079.78	-0.02	39.49	-5.1E-04	flat
							11/21/00	12.60	1078.44	-0.01	38.15	-2.6E-04	flat
							04/01/02	12.44	1078.60	0.05	38.31	1.3E-03	flat
							07/22/02	12.28	1078.76	-0.17	38.47	-4.4E-03	flat
							10/28/02 06/16/03	12.10 11.97	1078.94 1079.07	-0.03 0.18	38.65 38.78	-7.8E-04 4.6E-03	flat flat
							11/20/03	12.40	1078.64	0.03	38.35	4.0L-03 7.8E-04	flat
							04/20/04	12.21	1078.83	0.10	38.54	2.6E-03	flat
							07/20/04	11.94	1079.10	-0.22	38.81	-5.7E-03	weakly up
							10/12/04	12.43	1078.61	-0.25	38.32	-6.5E-03	weakly up
							01/25/05	12.72	1078.32	-0.34	38.03	-8.9E-03	weakly up
							04/12/05 07/11/05	12.34 12.38	1078.70 1078.66	0.16 0.21	38.41 38.37	4.2E-03 5.5E-03	flat weakly dov
							10/03/05	12.30	1078.74	0.21	38.45	1.0E-03	flat
							01/05/06	12.49	1078.55	0.26	38.26	6.8E-03	weakly dov
							04/11/06	12.55	1078.49	-0.01	38.20	-2.6E-04	flat
PZ-10B	1091.09	53.3	1037.8	5.0	1042.8	1040.3	09/03 & 04/97	12.44	1078.65	•			
	1001100	0010		0.0	101210	101010	02/26/98	12.51	1078.58				
							06/22/99	13.14	1077.95				
							01/31/00	12.95	1078.14				
							05/31/00	12.70	1078.39				
							08/31/00 11/21/00	11.29 12.64	1079.80 1078.45				
							04/01/02	12.64	1078.45				
							07/22/02	12.34	1078.93				
							10/28/02	12.12	1078.97				
							06/16/03	12.20	1078.89				
							11/20/03	12.48	1078.61				
							04/20/04	12.36	1078.73				
							07/20/04 10/12/04	11.77 12.23	1079.32 1078.86				
							01/25/05	12.23	1078.66				
							04/12/05	12.55	1078.54				
							07/11/05	12.64	1078.45				
							10/03/05	12.39	1078.70				
							01/05/06	12.80	1078.29				
							04/11/06	12.59	1078.50				
II Nest OW-11 OW-11	& PZ-11B 1094.14	16.1	1078.1	10.0	1088.1	22	01/31/00	16.07	1078.07	-0.28	33.21	-8.4E-03	weakly up
000-11	1094.14	10.1	1070.1	10.0	1066.1	na	05/31/00	15.76	1078.38	-0.28 -0.45	33.52	-8.4E-03 -1.3E-02	weakiy u up
							08/31/00	14.25	1079.89	0.71	35.03	2.0E-02	down
							11/21/00	15.71	1078.43	-0.44	33.57	-1.3E-02	up
							04/01/02	15.82	1078.32	-0.52	33.46	-1.6E-02	up
							07/22/02	15.23	1078.91	-0.34	34.05	-1.0E-02	weakly u
							10/28/02	15.05	1079.09	-0.29	34.23	-8.5E-03	weakly u
							06/16/03 11/20/03	15.20 15.70	1078.94 1078.44	-0.45 -0.46	34.08 33.58	-1.3E-02 -1.4E-02	up
							04/20/03	15.70	1078.60	-0.48	33.56	-1.4E-02 -1.3E-02	up up
							07/20/04	14.65	1079.49	-0.16	34.63	-4.6E-03	flat
							10/12/04	15.30	1078.84	-0.23	33.98	-6.8E-03	weakly u
							01/25/05	15.70	1078.44	-0.39	33.58	-1.2E-02	up
							04/11/05	15.61	1078.53	-0.37	33.67	-1.1E-02	up
							07/11/05	15.41	1078.73	-0.28	33.87	-8.3E-03	weakly u
							10/03/05 01/05/06	15.26 15.56	1078.88 1078.58	-0.31 -0.30	34.02 33.72	-9.1E-03 -8.9E-03	weakly u weakly u
							04/11/06	16.73	1077.41	-1.39	32.55	-4.3E-02	up
D7 44 D	4000 70	EA A	4040.4		4047.4	4044.00					02.00		чþ
PZ-11B	1093.78	51.4	1042.4	5.0	1047.4	1044.86	01/31/00 05/31/00	15.43 14.95	1078.35 1078.83				
							08/31/00	14.95	1078.83				
							11/21/00	14.91	1078.87				
							04/01/02	14.94	1078.84				
							07/22/02	14.53	1079.25				
							10/28/02	14.40	1079.38				
							06/16/03 11/20/03	14.39 14.88	1079.39				
							11/20/03 04/20/04	14.88 14.75	1078.90 1079.03				
							07/20/04	14.73	1079.65				
							10/12/04	14.71	1079.07				
							01/25/05	14.95	1078.83				
							04/11/05	14.88	1078.90				
							07/11/05	14.77	1079.01				
							10/03/05 01/05/06	14.59 14.90	1079.19 1078.88				
							04/11/06	14.98	1078.80				
I Nest OW-12	& PZ-12B												
OW-12	1089.92	18.35	1071.6	10.0	1081.6	na	10/12/04	11.42	1078.50	-0.11	29.83	-3.7E-03	flat
							01/25/05	11.56	1078.36	0.08	29.69	2.7E-03	flat
							4/11 & 12/05	11.87 11.60	1078.05 1078.32	-0.13 -0.14	29.38 29.65	-4.4E-03	flat flat
							07/11/05 10/03/05	11.60 11.43	1078.32 1078.49	-0.14 -0.08	29.65 29.82	-4.7E-03 -2.7E-03	flat flat
							01/05/06	11.43	1078.24	-0.08	29.82 29.57	-2.7E-03 -4.7E-03	flat
							04/11/06	11.88	1078.04	0.03	29.37	1.0E-03	flat
PZ-12B	1089.97	43.80	1046.2	5.0	1051.2	1048.67	10/12/04	11.36	1078.61	-			
							01/25/05	11.69	1078.28				
							4/11 & 12/05	11.79	1078.18				
							07/11/05	11.51	1078.46				
							10/03/05	11.40	1078.57				
							01/05/06	11.59	1078.38				
es: A)	TOC is the t	on of the	llooping				04/11/06	11.96	1078.01			(U-PAR/JTB 05/04)(U-PAR	

weakly down: 0.01 to 0.005 flat: 0.005 to -0.005

weakly up: -0.01 to -0.005 flat: -0.005 to 0.005

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

			BTEX	Parameters	(µg/L)		C	yanide (mg/	L)	
Well	Date	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Total BTEX	Cyanide (Total Dissolved) [≜]	Cyanide (Amenable) ^A	Cyanide (Weak Acid Dissociable) ^A	Lead, dissolved (mg/L) ^A
			NR 140 Wise	consin Grou	undwater Qu	ality Stand	ards (2004)			
NR 140 PAL		<u>0.5</u>	<u>140</u>	<u>200</u>	<u>1,000</u>	ns	ns	ns	<u>0.04</u>	<u>0.0015</u>
NR 140 ES		<u>5</u>	<u>700</u>	<u>1,000</u>	<u>10.000</u>	ns	ns	ns	<u>0.2</u>	<u>0.015</u>
OW-1	06/02/93	nd	nd	nd	nd	nd	0.011	0.011	nd	nd
	08/16/96	nd	nd	nd	nd	nd				
	09/03/97	0.4	nd	1.3	2.1	3.8	< 0.054			
	06/23/99	<u>15</u>	<0.22	0.28	1.2	16	0.042	<0.0077	0.01	<u>0.002</u>
	02/01/00	<u>56</u>	<0.6	<0.6	<1.7	56	0.043	0.043	0.017	
	04/02/02 10/28/02	<u>1.4</u>	<0.82	<0.68	<1.7	1.4	0.050	0.050	0.0040 Q	0.0012
	06/16/03	<u>0.71 Q</u>	<0.82	<0.68	3.3 1.1	4.0 4.4		 0.037	 0.0054 Q	
	11/20/03	<u>2.4</u>	0.91 Q	<0.58 <0.58	<1.2	4.4 0.4	0.037	0.037	0.0054 Q	<u>0.0350</u>
		0.36 Q	<0.60	<0.50	<1.2					 <0.0015
Dup (QC-2)	04/11/05 04/11/05	0.26Q 0.32Q								<0.0013
Dup (Q0-2)	04/11/05	0.32Q 1.1								
OW-2	06/03/93	2.4	nd	nd	nd	2.4	0.093	0.093	nd	nd
	08/16/96	nd	nd	nd	nd	nd				
	09/03/97	nd	nd	nd	nd	nd	<0.054			
	06/23/99	0.19	<0.22	<0.2	0.59	0.8	<0.0077	<0.0077	<0.0077	<0.0012
	02/01/00	<0.5	<0.6	<0.6	<1.7	nd	0.006	0.006	0.005	
	04/02/02	<0.45	<0.82	<0.68	<1.7	nd	0.018	0.017	<0.0021	
	06/16/03	<0.30	<0.60	<0.58	<1.2	nd	0.024	0.024	0.0021 Q	
	04/11/05	<0.14								
	04/11/06	<0.14								
OW-3	06/04/93	<u>220</u>	<u>200</u>	90	400	910	1.1	1.1	<u>0.083</u>	nd
	08/16/96	<u>700</u>	<u>220</u>	170	540	1,630	0.95	0.20	<u>0.048</u>	
	09/03/97	<u>1,300</u>	<u>650</u>	<u>520</u>	<u>1,500</u>	3,970	0.081	nd	<u>0.062</u>	
	00/04/00						replaced with			0 00070
OW-3R	02/01/00	<0.5	2.0	<0.6	12	14 5 0	1.3	1.3	<u>0.093</u>	<0.00073
	05/31/00	<u>1.1</u>	1.1	<0.6	3.7	5.9				
	08/31/00	<u>1.8</u> <5.0	5.7 <6.0	24	51 ~17	83 nd				
	11/21/00 04/02/02	<5.0 0.46 Q	<6.0 <0.82	<6.0 <0.68	<17 <1.7	nd 0.5	 <0.0021 N,J	 <0.0021	 <0.0021	 <0.00039
	10/28/02	0.48 Q <u>0.73 Q</u>	<0.82 11	<0.68 23	<1.7 61	0.5 85	<0.0021 N,J 	<0.0021	<0.0021	<0.00039
	06/16/03	0.32 Q	0.65 Q	<0.58	<1.2	65 1.0	 0.18	 0.18	0.023	 <0.0012
dup (QC-001)	06/16/03	0.32 Q 0.37 Q	0.63 Q 0.68 Q	< 0.58	<1.2	1.0	0.18	0.18	0.023	<0.0012
	11/20/03	<0.30	3.8	2.2	10.5	1.1				
	04/11/05	<0.30 0.38Q								
	04/11/05	0.34 Q								

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

			BTEX	Parameters	(µg/L)		C	yanide (mg/l	_)	
Well	Date	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Total BTEX	Cyanide (Total Dissolved) ^A	Cyanide (Amenable) ^A	Cyanide (Weak Acid Dissociable) ^A	Lead, dissolved (mg/L) ^A
			NR 140 Wis	consin Grou	undwater Qu	uality Stand	ards (2004)			
NR 140 PAL		<u>0.5</u>	<u>140</u>	<u>200</u>	1,000	ns	ns	ns	<u>0.04</u>	<u>0.0015</u>
NR 140 ES		<u>5</u>	<u>700</u>	<u>1.000</u>	<u>10.000</u>	ns	ns	ns	<u>0.2</u>	<u>0.015</u>
PZ-3B	07/09/96	nd	nd	nd	nd	nd	nd	nd	nd	
	08/16/96	nd	nd	nd	nd	nd	0.0074	nd	nd	
	09/03/97	nd	nd	nd	nd	nd	<0.054			
	06/23/99	<0.13	<0.22	<0.2	<0.23	nd	<0.0077	<0.0077	<0.0077	<0.0012
	02/01/00	<0.5	<0.6	<0.6	<1.7	nd	0.001	0.001	<0.001	
	04/02/02	<0.45	<0.82	<0.68	<1.7	nd	0.0050 Q	0.0047 Q	<0.0021	
	06/16/03	<0.30	<0.60	<0.58	<1.2	nd	<0.0015	<0.0015	<0.0019	
	04/11/05	<0.14								
	04/11/06	<0.14								
Dup (QC01)	04/11/06	<0.14								
OW-4	06/10/93	nd	nd	nd	nd	nd	0.122	nd	<u>0.51</u>	
	08/16/96	nd	nd	nd	nd	nd				
	09/03/97	nd	nd	nd	nd	nd	<0.054			
	06/23/99	<0.13	<0.22	<0.2	<0.23	nd	0.029	<0.0077	<0.0077	<0.0012
	02/01/00	<0.5	<0.6	<0.6	<1.7	nd	0.014	0.014	0.007	
	04/02/02	<0.45	<0.82	<0.68	<1.7	nd	0.022	0.022	0.0027 Q	
	06/16/03	<0.30	<0.60	<0.58	<1.2	nd	0.031	0.031	0.0019 Q	
	04/11/05	0.23Q								
Dup (QC-1)	04/11/05	0.22Q								
	04/11/06	<0.14								
OW-5	06/03/93	<u>1,300</u>	<u>690</u>	<u>390</u>	<u>1,200</u>	3,580	0.016	0.016	nd	nd
	08/16/96	<u>750</u>	<u>300</u>	<u>230</u>	700	1,980				
	09/04/97	<u>50</u>	2.4	1.5	13	67	<0.054			
							ell was not rep			
OW-5A	06/03/93	<u>820</u>	<u>260</u>	90	470	1,640	0.065	0.065	nd	nd
	08/16/96	<u>140</u>	20	3.3	51	214				
	09/04/97	<u>650</u>	<u>230</u>	<u>210</u>	490	1,580	<0.054			
							l replaced with			
OW-5R	02/01/00	<u>529</u>	<u>490</u>	<u>542</u>	<u>1,060</u>	2,621	0.2	0.2	0.039	<0.00073
Dup (OW-99)	02/01/00	<u>633</u>	<u>521</u>	<u>631</u>	<u>1,120</u>	2,905	0.23	0.23	0.036	
	05/31/00	<u>66</u>	13	111	458	648				
	08/31/00	<u>45</u>	90	33	204	372				
	11/21/00	<u>52</u>	<u>160</u>	28	435	675				
	04/02/02	<u>36</u>	24 Q	<6.8	37	97	0.11	<0.0021	0.0046 Q	<0.00039
	10/28/02	<u>5.5</u>	6.1	<0.68	8.5 Q	14				
	06/16/03	<u>2.1</u>	1.5 Q	<0.58	0.83 Q	4.4	0.033	0.033	0.0046 Q	<0.0012
	11/20/03	<u>34</u>	17	1.4 Q	13.3	66				
	04/20/04	<u>1.5</u>	5.0	0.65 Q	7.0	14				

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

			BTEX	Parameters	s (µg/L)		(Cyanide (mg/	L)	
Well	Date	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Total BTEX	Cyanide (Total Dissolved) ^A	Cyanide (Amenable) ^A	Cyanide (Weak Acid Dissociable) ^A	Lead, dissolved (mg/L) ^A
			NR 140 Wis	consin Gro	undwater Qu	ality Stand	ards (2004)			
NR 140 PAL		<u>0.5</u>	<u>140</u>	<u>200</u>	1,000	ns	ns	ns	<u>0.04</u>	<u>0.0015</u>
NR 140 ES		<u>5</u>	<u>700</u>	<u>1,000</u>	<u>10,000</u>	ns	ns	ns	<u>0.2</u>	<u>0.015</u>
OW-5R cont.	07/20/04	<u>4.1</u>	4.7	0.48Q	5.5Q	15				
	10/12/04	<u>64</u>	28	4.3	40	136				
Dup (QC-1)	10/12/04	<u>65</u>	28	4.4	39	136				
	01/25/05	<u>77</u>	54	3.8	46	181				
Dup (QC-1)	01/25/05	<u>75</u>	50	3.6	41	170				
	04/11/05	<u>1.8</u>								
	07/11/05	<u>10</u>								
	10/03/05	<u>1.7</u>								
	01/05/06	<u>1.4</u>								
	04/11/06	<u>15</u>								
P-5B	09/17/93	nd	50	10	96	156	nd	nd	nd	
	08/16/96	nd	80	8.7	170	259				
	09/04/97	<u>2.0</u>	63	8.9	140	214	<0.054			
	06/23/99	<0.13	66	21	130	217	<0.0077	<0.0077	<0.0077	<0.0012
Dup (OW-99)	06/23/99	<u>1.9</u>	18	4.1	32	56	<0.0077	<0.0077	<0.0077	<0.0012
	02/01/00	<u>6.4</u>	58	9.2	105	179	0.017	0.017	0.002	
	05/31/00	<u>4</u>	19	10	53	86				
Dup(MW-98)	05/31/00	<u>4.3</u>	18	9.8	49	81				
	08/31/00	<u>11</u>	86	<12	163	260				
	11/21/00	<u>12</u>	76	<12	152	240				
	04/02/02	<u>11</u>	75	<14	139	225	0.018	<0.0021	0.0026 Q	
	10/28/02	<u>12</u>	68	6.2	136	222				
	06/16/03	<12 K	69 Q,K	<23 K	141 Q,K	210	0.018	0.018	0.0031 Q	
	11/20/03	<u>13 Q,K</u>	77 K	<14 K	156 K	246				
	04/20/04	<u>13</u>	68	15	107	203				
Dup (QC-1)	04/20/04	<u>11</u>	57	13	93	174				
	07/20/04	<u>9.6</u>	42	10 Q	73 Q	135				
	10/12/04	<u>14</u>	61	11 Q	110	196				
	01/25/05	<u>13 K</u>	57K	<8.9K	120K	190				
	04/11/05	<u>6.7</u>								
	07/11/05	<u>9.5</u>								
	10/03/05	<u>8.4Q</u>								
Dup (QC02)	10/03/05	<u>7.8Q</u>								
	01/05/06	<u>2.8 QK</u>								
	04/11/06	<u>3.5</u>								
OW-6	06/03/93	<u>5.2</u>	6.0	5.0	18	34	0.042	0.042	nd	nd
	08/16/96	nd*	2.3	nd*	nd*	2.3				
	09/03/97	<u>2.3</u>	3.0	nd	4.7	10	<0.054			
	06/23/99	<u>19</u>	<0.22	21	37	77	0.10	<0.0077	0.028	<0.0012

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

			BTEX	Parameters	s (µg/L)		(Cyanide (mg/	L)	
Well	Date	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Total BTEX	Cyanide (Total Dissolved) ^A	Cyanide (Amenable) ^A	Cyanide (Weak Acid Dissociable) ^A	Lead, dissolved (mg/L) ^A
					undwater Qu					
NR 140 PAL		<u>0.5</u>	<u>140</u>	<u>200</u>	<u>1,000</u>	ns	ns	ns	<u>0.04</u>	<u>0.0015</u>
NR 140 ES		<u>5</u>	<u>700</u>	<u>1.000</u>	<u>10,000</u>	ns	ns	ns	<u>0.2</u>	<u>0.015</u>
OW-6 cont.	02/01/00	<u>10</u>	23	1.9	30	65	0.04	0.04	0.01	
	05/31/00	<u>6.8</u>	17	2.6	27	53				
	08/31/00	<u>9.7</u>	12	13	47	82				
	11/21/00	<10	16	<12	<34	16				
	04/02/02	<u>7.3</u>	17	2.4	26	53	0.054	<0.0021	0.0034 Q	
	10/28/02	<u>4.2</u>	12	5.3	32	54				
	06/16/03	<u>6.1</u>	14	2	17.3	39	0.096	0.096	0.0061	
	11/20/03	<u>5.4 K</u>	10 K	<2.9 K	18.2 Q,K	34				
	07/20/04	<u>0.77 Q,K</u>	2.9 Q,K	<1.8 K	3.0 Q,K	6.7				
	04/11/05	<u>5.7</u>								
	10/03/05	<6.9 K								
	04/11/06	<u>5.0</u>								
OW-7	06/04/93	<u>21</u>	61	35	130	247	nd			nd
	08/16/96	nd	3.7	1.2	5.0	9.9				
	09/03/97	0.23	2.3	0.93	2.8	6.3	<0.054			
011/ 74	00/00/00						ell was not re	-		
OW-7A	06/02/93	<u>6.0</u>	28	nd	14	48	0.020	0.020	nd	nd
	08/16/96	<u>7.0</u>	28	nd	11.0	46				
	09/03/97	<u>2.1</u>	8.7	0.27	3.6	15	< 0.054			
	06/23/99	<u>14</u>	52	3.1	48	117	0.067	<0.0077	<0.0077	<0.0012
	02/01/00	<u>23</u>	55	2.9	78	159	0.025	0.025	0.007	<0.73
	05/31/00	<u>9.3</u>	<0.6	1.6	52	63				
	08/31/00	<u>14</u> 27	56	2	62	134				
	11/21/00	<u>27</u>	77	2.7	112	219				
	04/02/02	<u>12</u>	33 50	2.5	47	95 130	0.028	<0.0021	0.0028 Q	0.0012
	10/28/02	<u>15</u>	50 40	1.7 Q 3.6	74 42	139			 0.0061 N	
	06/16/03	<u>11</u> 14 K	40 22 K		42 46 K	97 02	0.078	0.078	0.0061 N	<0.0012
	11/20/03 04/20/04	<u>14 K</u>	33 K	<2.9 K	46 K	93 70				
		<u>8.3</u>	27 47K	2.8	32 20K	70 00				
	07/20/04	<u>13 K</u>	47K	<1.8K	39K	99 170				
	10/12/04	<u>18</u> 16 K	71 51K	1.5 <1.8K	88 56K	179 123				
	01/25/05 04/11/05	<u>16 K</u> <u>8.1</u>	51K	<1.0N	56K	123				
	07/11/05									
		<u>15</u>								
Dup (QC01)	10/03/05 10/03/05	<u>14</u> <u>14</u>								
Dup(QUDI)	01/05/06									
		<u>13 K</u> 7 9								
	04/11/06	<u>7.8</u>								

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

			BTEX	Parameters	s (µg/L)		C	yanide (mg/L	-)	
Well	Date	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Total BTEX	Cyanide (Total Dissolved) ^A	Cyanide (Amenable) ^A	Cyanide (Weak Acid Dissociable) ^A	Lead, dissolved (mg/L) ^A
					undwater Qu	ality Stand	ards (2004)			
NR 140 PAL		<u>0.5</u>	<u>140</u>	<u>200</u>	<u>1,000</u>	ns	ns	ns	<u>0.04</u>	<u>0.0015</u>
NR 140 ES		<u>5</u>	<u>700</u>	<u>1.000</u>	<u>10,000</u>	ns	ns	ns	<u>0.2</u>	<u>0.015</u>
PZ-7B	07/09/96	<u>3.7</u>	54	4.9	150	213	nd	nd	nd	
	08/16/96	<u>2.9</u>	36	nd	66	105	0.016	0.016	nd	
	09/03/97	<u>3.3</u>	45	4.7	130	183	< 0.054			
	06/23/99	<13	40	<20	120	160	<0.0077	<0.0077	<0.0077	<0.0012
	02/01/00	<u>0.75</u> 0.75	71	4.6	150	226	0.008	0.008	<0.001	
	05/31/00 08/31/00	<u>0.75</u>	59	4	128	192				
		<5.0	54	<6.0	93	147				
	11/21/00	<10	63 64	<12	146	209				
	04/02/02 10/28/02	<9.0 <0.90	64 55	<14 4.2 Q	179 146	243 205	<0.0021	<0.0021	<0.0021	
	06/16/03	<0.90 <6.0 K	49 K	4.2 Q <12 K		203 174	 <0.0015	 <0.0015	 <0.0019	
Dup(QC-002)	06/16/03	<6.0 K	49 K 49 K	<12 K <12 K	125 Q,K 128 Q K		<0.0015		<0.0019	
Dup(QC-002)	11/20/03	<0.0 K <7.5 K		<12 K <14 K	128 Q,K 127 O K	177 176	<0.0015	<0.0015	<0.0019	
	04/20/03	<7.5 K <2.8 K	49 Q,K 77 K	<14 K <7.1 K	127 Q,K 154 K	231				
	07/20/04	<u>2.3</u>	51	3.9	99	156				
	10/12/04	<u>2.3</u> <2.8 K	64 K	3.9 <7.1 K	99 118 K	182				
	01/25/05	<2.8K	70K	<7.1K	170K	240				
	04/11/05	<u>1.5</u>	701	S7.1K	1701					
	07/11/05	<u>1.5</u> <u>3.1 Q</u>								
Dup(QC-1)	07/11/05	<u>-2.8 K</u>								
Dup(QO-1)	07/11/05	<u>3.1 Q</u>								
	10/03/05	<u>0.7 Q</u> <u>1.4 Q</u>								
	01/05/06	<u>-1.4 @</u> <10 K								
Dup(QC01)	01/05/06	<8.2 K								
Dap(QOOI)	04/11/06	<2.8 K								
OW-8	06/02/93	nd	nd	nd	nd	nd	nd			nd
	06/23/99	0.43	<0.22	<0.2	0.25	0.7	<0.0077	<0.0077	<0.0077	<0.0012
	02/01/00	<u>3.7</u>	<0.6	<0.6	<1.7	3.7	0.009	0.009	0.001	<0.00073
	04/02/02	< 0.45	<0.82	<0.68	<1.7	nd	0.0036 Q	<0.0021	<0.0021	<0.00039
	06/16/03	< 0.30	<0.60	<0.58	<1.2	nd	0.0048	0.0048	<0.0019	<0.0012
	04/11/05	0.44Q								
	04/11/06	<0.14								
OW-9	09/04/97	<u>240</u>	72	19	87	418	<0.054			
	06/23/99	<u>330</u>	120	37	180	667	0.068	<0.0077	0.011	
Dup (OW-98)	06/23/99	<u>300</u>	100	21	150	571	0.062	<0.0077	0.013	<0.0012
	02/01/00	<u>146</u>	48	8.1	79	281	0.053	0.053	0.018	<0.00081
	05/31/00	<u>123</u>	113	27	152	415				
	08/31/00	<u>294</u>	<u>179</u>	<12	129	602				
Dup (OW-99)	08/31/00	<u>409</u>	<u>228</u>	9.5	140	787				

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

			BTEX	Parameters	(µg/L)		C	Syanide (mg/L	-)	
Well	Date	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Total BTEX	Cyanide (Total Dissolved) ^A	Cyanide (Amenable) ^A	Cyanide (Weak Acid Dissociable) ^A	Lead, dissolved (mg/L) ^A
					undwater Qu	ality Stand	ards (2004)			
NR 140 PAL		<u>0.5</u>	<u>140</u>	<u>200</u>	<u>1,000</u>	ns	ns	ns	<u>0.04</u>	<u>0.0015</u>
NR 140 ES		<u>5</u>	<u>700</u>	<u>1.000</u>	<u>10,000</u>	ns	ns	ns	<u>0.2</u>	<u>0.015</u>
OW-9 cont.	11/21/00	<u>259</u>	<u>154</u>	13	106	532				
Dup (OW-99)	11/21/00	<u>259</u>	<u>154</u>	13	106	532				
	04/02/02	<u>77 K</u>	56 K	<6.8 K	58 Q,K	191	0.033	<0.0021	0.0041 Q	<0.00039
Dup (OW-98)	04/02/02	<u>100</u>	73	3.7	70	247	0.028	0.028	0.0029 Q	
	10/28/02	<u>6.1</u>	8.0	<0.68	2.7	17				
	06/16/03	<u>8.9</u>	1.5 Q	<0.58	2.3	13	0.041	0.041	0.0035 Q	<0.0012
	11/20/03	<u>100</u>	32	1.9 Q	20.4	154				
Dup (QC-1)	11/20/03	<u>100</u>	35	1.8 Q	20.1	157				
	07/20/04	<u>98</u>	66	4.2	29	197				
	04/12/05	<u>100</u>								
	10/03/05	<u>180</u>								
	04/11/06	<u>98</u>								
PZ-9B	09/04/97	<u>37</u>	8.1	1.9	9.6	57	< 0.054			
	06/23/99	<u>1.7</u>	0.4	0.46	4	6.6	<0.0077	<0.0077	<0.0077	<0.0012
	02/01/00	<u>1.5</u>	<0.6	<0.6	3.2	4.7	<0.001	<0.001	<0.001	
	05/31/00	<u>0.6</u>	<0.6	<0.6	<1.7	0.6				
	08/31/00	<0.5	<0.6	<0.6	<1.7	nd				
	11/21/00	<u>1.7</u>	<0.6	<0.6	3.6	5.3				
	04/02/02	<0.45	<0.82	<0.68	<1.7	nd	<0.0021	<0.0021	<0.0021	
	10/28/02	<0.45	<0.82	<0.68	<1.7	nd				
	06/16/03	<0.30	<0.60	<0.58	<1.2	nd	<0.0015 Q	<0.0015 Q	<0.0019	
	11/20/03	<u>1</u>	<0.60	<0.58	2.9	3.9				
	07/20/04	<0.14	<0.40	<0.36	<0.74	nd				
Dup(QC-1)	07/20/04	<0.14	<0.40	<0.36	<0.74	nd				
	04/12/05	<0.14								
	10/03/05	<0.14								
OW-10	04/11/06 09/04/97	<0.14 nd	 nd	 nd	nd	 nd	 <0.054			
011-10	06/23/99	<u>1.9</u>	5.1	1.1	8.6	17	0.0096	<0.0077	<0.0077	<0.0012
	02/01/00	<u>1.9</u> <u>3.9</u>	2.5	<0.6	0.0 1.9	8.3	0.0030	0.036	0.013	
	05/31/00	<u>-0.5</u>	<0.6	<0.6	<1.7	nd				
	03/31/00	<u>1.4</u>	<0.0 1.4	<0.6	2.5	5.3				
	11/21/00	<u>-1.+</u> <0.5	<0.6	<0.6	<1.7	nd				
Dup (OW-98)	11/21/00 ^B	<0.5	<0.6	<0.6	<1.7	nd				
(011 00)	04/02/02	<0.45	<0.82	<0.68	<1.7	nd	0.011	0.011	0.0049 Q	
Dup (OW-99)	04/02/02	<0.45	<0.82	<0.68	<1.7	nd	0.0097	0.0097	0.0043 Q 0.0027 Q	
(0 00)	10/28/02	<0.45	<0.82	<0.68	<1.7	nd				
	06/16/03	<0.40	<0.62	<0.58	<1.2	nd	0.015	0.015	<0.0019	
	11/20/03	<0.30	<0.60	<0.58	<1.2	nd				
Dup (QC-2)	11/20/03	<0.30	<0.60	<0.58	<1.2	nd				
Dup (20-2)	11/20/00	NO.00	NO.00	~0.00	N1.4	nu				

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

			BTEX	Parameters	(µg/L)		(Cyanide (mg/L	_)	
Well	Date	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Total BTEX	Cyanide (Total Dissolved) ^A	Cyanide (Amenable) ^A	Cyanide (Weak Acid Dissociable) ^A	Lead, dissolved (mg/L) ^A
					undwater Qu	-				
NR 140 PAL		<u>0.5</u>	<u>140</u>	<u>200</u>	<u>1,000</u>	ns	ns	ns	<u>0.04</u>	<u>0.0015</u>
NR 140 ES		<u>5</u>	<u>700</u>	<u>1,000</u>	<u>10,000</u>	ns	ns	ns	<u>0.2</u>	<u>0.015</u>
OW-10 cont.	04/12/05	<u>47</u>								
D7 40D	04/11/06	<u>1.8</u>								
PZ-10B	09/04/97	0.14	nd	nd	nd	0.1	<0.054			
	06/23/99	<u>2.6</u>	<0.22	0.24	<0.23	2.8	<0.0077	<0.0077	<0.0077	<0.0012
	02/01/00	<0.5	<0.6	<0.6	<1.7	nd	<0.001	<0.001	<0.001	
	05/31/00	<0.5	<0.6	<0.6	<1.7	nd				
	08/31/00	<0.5	<0.6	<0.6	<1.7 <1.7	nd				
	11/21/00 04/02/02	<0.5	<0.6	<0.6	<1.7 <1.7	nd				
$D_{\rm UD}$ (OM(07)	04/02/02	<0.45 <0.45	<0.82 <0.82	<0.68 <0.68	<1.7 <1.7	nd	<0.0021 <0.0021	<0.0021	<0.0021	
Dup (OW-97)	10/28/02	<0.45 <0.45	<0.82 <0.82	<0.68	<1.7 <1.7	nd	<0.0021	<0.0021	<0.0021	
	06/16/03	<0.45 <0.30		<0.68 <0.58		nd				
	11/20/03	<0.30 <0.30	<0.60	<0.58 <0.58	<1.2	nd	<0.0015	<0.0015	<0.0019	
	04/12/05	<0.30 <0.14	<0.60	<0.56	<1.2 	nd 				
	04/12/03									
OW-11	02/01/00	<0.14 <u>3.9</u>	2.5	<0.6	1.9	8.3	0.007	0.007	0.002	
000-11	05/31/00	<u>3.1</u>	<0.6	<0.6	<1.7	3.1	0.007			
	08/31/00	<u>0.61</u>	<0.6	<0.6	<1.7	0.6				
Dup (OW-98)	08/31/00	<u>1.3</u>	<0.6	<0.6	<1.7	1.3				
Dup (011 00)	11/21/00 ^B	<0.5	<0.6	<0.6	<1.7	nd				
Dup (OW-98)	11/21/00 ^B	<0.5	<0.6	<0.6	<1.7	nd				
Dup (011 00)	04/02/02	<0.45	<0.82	<0.68	<1.7	nd	0.018	0.018	<0.0021	
	10/28/02	<0.45	<0.82	<0.68	<1.7	nd				
	06/16/03	<0.30	<0.60	<0.58	<1.2	nd	0.0092	0.0092	<0.0019	
	11/20/03	<0.30	<0.60	<0.58	<1.2	nd				
	07/20/04	0.30Q	<0.40	<0.36	<0.74	0.3				
	04/11/05	<0.14								
	04/11/06	0.26 Q								
PZ-11B	02/01/00	<u>10</u>	7.7	2.2	38	58	0.003	0.003	<0.001	
	05/31/00	27	43	4.3	78	152				
	08/31/00	53	113	8.6	156	331				
	11/21/2000 ^B	<u>20</u>	38	3.9	63	125				
	04/02/02	24	52	5.0	74	155	<0.0021	<0.0021	<0.0021	
	10/28/02	<u>19</u>	40	2.3	54	115				
	06/16/03	<u>18</u>	16	1.3 Q	27.5	63	<0.0015	<0.0015	<0.0019	
	11/20/03	14	19	1.4 Q	27	61				
	07/20/04	0.75	<0.40	<0.36	<0.74	0.75				
	04/11/05	<0.14								
	10/03/05	<0.14								
	04/11/06	<0.14								

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

USEPA WIN000509983 / BRRTS # 02-50-000079 / FID # 750081200

			BTEX	Parameters	s (μg/L)		(Syanide (mg/	L)	
Well	Date	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Total BTEX	Cyanide (Total Dissolved) ^A	Cyanide (Amenable) ^A	Cyanide (Weak Acid Dissociable) ^A	Lead, dissolved (mg/L) ^A
			NR 140 Wis	consin Grou	undwater Qu	ality Stand	ards (2004)			
NR 140 PAL		<u>0.5</u>	<u>140</u>	<u>200</u>	1,000	ns	ns	ns	<u>0.04</u>	<u>0.0015</u>
NR 140 ES		<u>5</u>	<u>700</u>	<u>1,000</u>	<u>10,000</u>	ns	ns	ns	<u>0.2</u>	<u>0.015</u>
OW-12	10/12/04	<u>2.2</u>	<0.40	<0.36	0.51 Q	2.7				
	01/25/05	<u>9.1</u>	0.88Q	<0.36	4.2Q	14.2				
	04/12/05	<u>3.6</u>								
	07/11/05	<u>8.8</u>								
	10/03/05	<u>9.4</u>								
	01/05/06	<u>6.9</u>								
	04/11/06	<0.14								
Dup (QC02)	04/11/06	<0.14								
PZ-12B	10/12/04	<u>25</u>	56	2.9 Q	44	128				
	01/25/05	<u>52</u>	<u>190</u>	7.7Q	114	364				
	04/12/05	<u>16</u>								
	07/11/05	<u>33</u>								
	10/03/05	<0.14								
	01/05/06	<0.41								
	04/11/06	<u>3.3</u>								
PZ-13B	10/12/04	<0.14	<0.40	<0.36	<0.74	nd				
	01/25/05	<0.14	<0.40	<0.36	<0.74	nd				
	04/11/05	<0.14								
	10/03/05	<0.14								
	04/11/06	<0.14								

Notes:

[U-EPK/JTB 2/05][U-EPK/PAR 5/05][U-PAR/RLH 8/05]

1) Concentrations that attain/exceed an NR 140 Preventive Action Limit (PAL) are shown underlined/italicized.

2) Concentrations that attain/exceed an NR 140 Enforcement Standard (ES) are shown bold/underlined.

<0.5 : Parameter not detected above the limit of detection indicated.

--: Analysis not performed

nd : not detected

ns : NR 140 groundwater standards have not been established.

µg/L : Micrograms per liter.

mg/L: Milligrams per liter.

Dup (OW-98) : Field duplicate sample with field identity in parentheses.

- A : Cyanide and lead samples were field filtered.
- B: Laboratory note BTEX parameters analyzed past holding time, results may be biased low.
- J: Laboratory note Duplicate analysis not within control limits.
- K: Laboratory note Detection limit may be elevated due to the presence of an unrequested analyte.
- N: Laboratory note Spiked sample recovery not within control limits.
- Q : Laboratory note The analyte was detected between the limit of detection (LOD) and limit of quantitation (LOQ). Results qualified due to the uncertainty of values in this range.
- *: Laboratory note Matrix interference occurred during analysis, detection limit biased high.

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

								F	POLYNUCLEA	AR AROMAT	IC HYDROCA	RBONS (µg/	L)						
Location	Date	Acenaphthene	Acenaphthylene	Anthracene	Benz(a) anthracene	Benzo(a)pyrene	Benzo(b) fluoranthene	Benzo(ghi) perylene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd) pyrene	1-Methyl- naphthalene	2-Methyl- naphthalene	Naphthalene	Phenanthrene	Pyrene
								NR 140 Grou	ndwater Qual	ity Standard	s (µg/L)								•
NR 140 PAL		ns	ns	<u>600</u>	ns	<u>0.02</u>	<u>0.02</u>	ns	ns	<u>0.02</u>	ns	<u>80</u>	<u>80</u>	ns	ns	ns	<u>8</u>	ns	<u>50</u>
NR 140 ES		ns	ns	<u>3,000</u>	ns	<u>0.2</u>	<u>0.2</u>	ns	ns	<u>0.2</u>	ns	<u>400</u>	<u>400</u>	ns	ns	ns	<u>40</u>	ns	<u>250</u>
OW-1	06/02/93	nd	nd	nd	0.36	nd	<u>0.12</u>	nd	nd	<u>0.30</u>	nd	0.80	0.54	nd			nd	nd	0.56
	08/16/96	nd	nd	nd	0.20	<u>0.32</u>	<u>0.10</u>	0.35	0.10	<u>0.19</u>	nd	0.28	nd	0.28	nd	nd	nd	nd	0.21
	09/03/97	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	06/23/99 02/01/00	7.7 30	<0.55 0.47	<0.018 0.39	<0.017 1.3	<0.027	<0.043	<0.1 1.4	<0.029 <0.11	<0.013	<0.16 0.28	<0.1 2.2	0.13 7.1	<0.083 1.5	3.9 13	0.71 <0.072	<u>16</u> 4.1	0.035 1.7	<0.047
	02/01/00	30 13D	0.47	0.39	0.37	<u>3.2</u> <u>0.47</u>	<u>2.0</u> <u>0.37</u>	0.32	<0.11 0.32	<u>1.1</u> <u>0.30</u>	0.28	0.49	<1.1D	0.28	3.0QD	<0.072	4.1 <1.3D	0.29	2.7 0.44
	10/28/02	59D	<1.8	<1.6	<1.5	<0.96	<1.1	<1.2	<1.0	<u>0.30</u> <1.4	<1.4	<2.2	11	<1.1	3.000	<2.2	<1.3D <u>8.1</u>	8.9	<1.6
	06/16/03	28D	0.50Q	<0.41	<0.25	<0.29	<0.27	<0.33	<0.39	<0.29	<0.33	<0.27	2.4	<0.44	15D	<0.35	<u>6.9</u>	1.4	<0.35
	11/20/03	27	<1.5	<1.6	<.96	<1.1	<1.0	<1.3	<1.5	<1.1	<1.3	<1.0	1.6 Q	<1.7	5.9	<1.4	<1.9	1.5 Q	<1.4
	04/11/05	14	<0.97	<0.88	<0.98	<0.91	<0.89	<1.0	<0.97	<0.82	<1.1	<0.82	<1.1	<0.85	<1.0	<1.1	<1.1	<1.0	<0.81
Dup (QC-2)	04/11/05	18D	0.29	0.029Q	<0.020	<0.018	<0.018	<0.021	<0.019	<0.016	<0.022	0.020Q	1.0E	<0.017	0.92E	0.036Q	1.1E	0.58E	<0.016
	04/11/06	25 D	0.58	<0.23	<0.31	<0.37	<0.31 Z	<0.39	<0.39 Z	<0.38	<0.38	<0.31	4.1	<0.38	3.4	<0.22	<0.25	2.2	<0.29
OW-2	06/03/93	nd	nd	0.41	nd	nd	nd	nd	nd	<u>0.44</u>	nd	1.4	5.0	nd			<u>11</u>	2.8	0.38
	08/16/96	1.3	nd	nd	0.46	nd	nd	nd	nd	nd	nd	0.39	3.1	nd	nd	1.6	<u>10</u>	2.3	0.35
	09/03/97	7.8	nd	0.41	0.37	nd	nd	nd	nd	nd	nd	0.66	5.2	nd	nd	nd	<u>11</u>	2.4	0.25
	06/23/99	14	<0.55	0.77	0.7	<u>0.34</u>	<u>0.22</u>	0.26	0.13	<u>0.23</u>	<0.16	1.3	7	0.31	0.77	2.5	<u>10</u>	3.3	0.31
	02/01/00	14	<0.15	0.52	<0.11	< 0.013	<u>0.24</u>	0.39	0.16	<u>0.57</u>	<0.068	0.87	7.1	0.91	2.9	1.0	<u>8.0</u>	3.2	0.28
	04/02/02 06/16/03	7.8 12 D	2.7	<0.40 <1.0 D	< 0.38	0.26Q	< 0.28	<0.30 0.12	0.30Q	< 0.36	< 0.34	<0.56 0.50	3.3 4.6 D	<0.28	0.71Q 0.32	0.68 Q 0.031 Q	1.2 <1.2	1.8 3.0 D	0.41Q 0.45
	06/16/03	7.7	0.10 <0.39	<1.0 D 0.59Q	0.18 <0.39	<u>0.15</u> <0.36	<u>0.17</u> <0.36	0.12 <0.41	0.14 <0.39	<u>0.15</u> <0.33	0.036 Q <0.44	0.50 0.36 Q	4.6 D 3.0	0.11 <0.34	0.32 0.41Q	<0.45	<1.2 <0.45	3.0 D 1.8	0.45 <0.33
	04/11/05	4.2	<0.39 <0.16	0.39Q 0.27 Q	< 0.39	< 0.30	<0.30 <0.31 Z	<0.41	<0.39 <0.39 Z	< 0.33	<0.44	<0.30 Q	3.0 1.6	<0.34	0.41Q 0.21 Q	<0.45	<0.45 <0.25	0.93	<0.33
OW-3	06/04/93	28	nd	nd	nd	<0.37 nd	nd	<0.39 nd	<0.39 Z nd	nd	<0.38 nd	0.45	2.0	<0.38 nd		<0.22	<u>620</u>	3.4	<0.29 nd
0.1.0	08/16/96	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	4.2	3.1	<u>56</u>	nd	nd
	09/03/97**	94	580	nd	nd	nd	nd	nd	nd	nd	nd	nd	4.4	nd	130	119	2,500	2.3	nd
Abandoned. V	Vell was replace	d with OW-3R	λ.																
OW-3R	02/01/00	203	119	124	126	<u>75</u>	<u>73</u>	27	17	<u>36</u>	5	<u>202</u>	<u>244</u>	24	158	428	<u>950</u>	390	<u>146</u>
	05/31/00	115	70	145	64	<u>86</u>	<u>137</u>	27	71	<u>36</u> 55 34	6.9	<u>254</u>	<u>208</u>	25	82	235	<u>432</u>	424	<u>219</u>
	08/31/00	43	21	77	163	<u>28</u>	<u>25</u>	17	12	<u>34</u>	5.7	<u>190</u>	<u>87</u>	17	32	68	<u>363</u>	240	<u>98</u>
	11/21/00	5.5	31	27	44	<u>2.1</u>	<u>1.4</u>	0.36	0.81	<u>5.3</u>	<0.068	29	32	0.32	19	34	<u>150</u>	70	24
	04/02/02	<22	34 Q,D	84 D	120 D	<u>110 D</u>	<u>63 D</u>	51 Q,D	75 D	<u>98 D</u>	<20 D	<u>240 D</u>	30 Q,D	46 Q,D	<32 D	<34 D	<u>88 Q,D</u>	160 D	<u>200 D</u>
	10/28/02	<14	<18	<16	<15	<9.6	<11	<12	<10	<14	<14	<22	<17	<11	<22	<22	<u>260</u>	21 Q	<16
	06/16/03	1.2 Q	1.1 Q	3.0	3.4	<u>2.7</u>	<u>1.9</u>	1.4	2.1	<u>3.0</u>	<0.41	7.7	2.1	1.2 Q	0.60 Q	<0.44	1.6 Q	3.6	6.0
Dup (QC-001)	06/16/03	1.2 Q	1.1 Q	4.2	3.5	<u>2.5</u>	<u>1.7 Q</u>	1.4 Q	2.3 Q	<u>3.6</u>	<0.80	11 5 5	2.5 Q	1.2 Q	<0.90	0.86 Q	2.9 Q	5.1	8.3
	11/20/03	9.0 1.6	2.1	4.6	1.3	<u>0.95 Q</u>	<u>0.67 Q</u>	0.50 Q	0.92 Q	<u>1.3</u>	<0.40	5.5	7.7	< 0.52	8.4	9.4	<u>76 D</u>	12	3.9
	04/11/05	1.6 0.47	0.36	0.68	0.24Q 0.040 Q	<u>0.15Q</u>	<u>0.11Q</u> <0.031.7	<0.10	0.13Q <0.039 Z	<u>0.17Q</u>	<0.11	1.1	0.89	<0.085	0.98 0.27	0.15Q	1.7 0.11	2.0	0.82
	04/11/06	0.47	0.12	0.35	0.040 Q	<0.037	<0.031 Z	<0.039	<0.039 Z	<0.038	<0.038	0.54	0.36	<0.038	0.27	<0.022	0.11	0.42	0.33

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

								F	POLYNUCLE			ARBONS (µg/	'L)						
Location	Date	Acenaphthene	Acenaphthylene	Anthracene	Benz(a) anthracene	Benzo(a)pyrene	Benzo(b) fluoranthene	Benzo(ghi) perylene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd) pyrene	1-Methyl- naphthalene	2-Methyl- naphthalene	Naphthalene	Phenanthrene	Pyrene
				000		0.00			ndwater Qua			00	00						50
NR 140 PAL NR 140 ES		ns	ns	<u>600</u> 3,000	ns	<u>0.02</u> 0.2	<u>0.02</u> 0.2	ns	ns	<u>0.02</u> <u>0.2</u>	ns	<u>80</u> 400	<u>80</u> 400	ns	ns	ns	<u>8</u> 40	ns	<u>50</u> 250
PZ-3B	07/09/96	ns nd	ns nd		ns nd	nd	<u>0.2</u> nd	ns nd	ns nd	<u>0.2</u> nd	ns nd		400 nd	ns nd	ns nd	ns	40 nd	ns	<u>230</u> nd
PZ-3D	07/09/96 08/16/96	nd	nd	nd nd	nd	nd	nd	nd	nd	nd	nd	nd nd	nd	nd	nd	nd nd	nd	nd nd	nd
	09/03/97	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	06/23/99	<0.23	<0.57	<0.019	0.06	<u>0.12</u>	<u>0.049</u>	<0.10	< 0.030	<u>0.047</u>	<0.17	<0.10	< 0.030	<0.086	<0.42	<0.62	<0.23	0.055	<0.049
	02/01/00	<0.13	<0.15	<0.010	<0.11	<0.013	<0.055	<0.10	<0.11	<0.059	<0.068	<0.066	<0.11	<0.080	<0.082	<0.02	0.12	< 0.035	<0.032
	04/02/02	<0.10	<0.023	<0.020	0.049 Q	<u>0.062</u>	<0.050 <u>0.050</u>	0.046 Q	0.047	<u><0.033</u> <u>0.049Q</u>	<0.000	<0.000 0.055 Q	<0.021	<0.000 0.038 Q	<0.027	<0.028	0.029 Q	<0.040 0.021Q	<0.052 Q
	06/16/03	<0.018	<0.019	<0.020	0.016 Q	0.016 Q	<0.013	<0.016	<0.019	<0.014	<0.016	0.026 Q	<0.017	<0.021	<0.018	<0.017	0.033 Q	< 0.016	0.025 Q
	04/11/05	<0.010	<0.019	<0.020	<0.020	<0.018	<0.018	<0.021	<0.019	<0.014	<0.022	< 0.016	<0.022	<0.021	<0.020	<0.023	<0.022	<0.020	<0.016
	04/11/06	0.078	<0.0082	0.014 Q	<0.016	<0.019	<0.016 Z	<0.019	<0.020 Z	<0.019	< 0.019	<0.016	0.045	<0.019	0.054	0.056	0.23	0.062	< 0.015
Dup (QC01)	04/11/06	0.022 Q	<0.0081	<0.012	<0.016	<0.018	<0.016 Z	<0.019	<0.019 Z	<0.019	<0.019	<0.015	0.015 Q	<0.019	0.014 Q	0.021 Q	0.098	0.027 Q	<0.015
OW-4	06/10/93	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd			nd	nd	nd
	08/16/96	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	09/03/97	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	06/23/99	<0.23	<0.57	<0.019	<0.018	<0.028	<0.045	<0.10	<0.030	<0.014	<0.17	<0.10	< 0.030	<0.086	<0.42	<0.62	<0.23	<0.015	<0.049
	02/01/00	<0.13	<0.15	<0.020	<0.11	<0.013	<0.055	<0.074	<0.11	<0.059	<0.068	<0.066	<0.11	<0.080	<0.082	<0.072	<0.056	<0.045	<0.032
	04/02/02	0.033Q	<0.023 *	<0.020 *	<0.019	<u>0.022 Q</u>	0.015 Q	<0.015	0.015 Q	<0.018	<0.017	<0.028 *	<0.021 *	<0.014	<0.027	<0.028	0.051 Q	0.029 Q	0.023 Q
	06/16/03	0.020Q	<0.019	<0.020	0.013 Q	0.016 Q	0.014 Q	<0.016	<0.019	<0.014	<0.016	0.018 Q	<0.017	<0.021	<0.018	<0.017	0.041 Q	0.019 Q	0.018 Q
	04/11/05	0.030Q	<0.019	<0.018	<0.020	<0.018	<0.018	<0.021	<0.019	<0.016	<0.022	<0.016	<0.022	<0.017	0.020Q	<0.023	0.38	<0.020	<0.016
Dup (QC-1)	04/11/05	0.078Q	<0.039	<0.035	<0.039	< 0.036	<0.036	<0.041	<0.039	<0.033	<0.044	<0.033	<0.044	<0.034	0.11Q	<0.045	1.2D	<0.041	<0.033
	04/11/06	0.059	0.0092 Q	<0.012	<0.016	<0.018	<0.016 Z	<0.019	<0.019 Z	<0.019	<0.019	<0.015	<0.0091	<0.019	0.093	0.017 Q	1.5 D	<0.011	<0.015
OW-5	06/03/93	450	810	56	44	<u>46</u>	<u>21</u>	18	15	<u>27</u>	0.97	<u>210</u>	<u>260</u>	25			<u>9,000</u>	330	<u>74</u>
(dup.)	06/03/93	340	600	75	88	<u>80</u>	<u>35</u>	32	26	<u>55</u>	1.7	<u>350</u>	<u>260</u>	41			<u>5,600</u>	430	<u>100</u>
	08/16/96**	710	1,800	100	60	<u>47</u>	<u>22</u>	36	27	<u>28</u>	nd	<u>280</u>	<u>270</u>	34	1,300	1,500	<u>6,700</u>	350	<u>69</u>
	09/04/97**	20	46	16	26	<u>1.2</u>	<u>8.3</u>	19	9.6	<u>12</u>	nd	54	23	15	110	97	<u>120</u>	37	34
Abandoned Ap	ril 1998. Well wa	as not replace	d.																
OW-5A	06/03/93	350	240	45	78	<u>68</u>	<u>30</u>	26	20	<u>36</u>	nd	<u>260</u>	<u>140</u>	35			<u>2,700</u>	220	<u>96</u>
	08/16/96**	60	230	23	22	<u>18</u>	<u>8.1</u>	18	5.9	<u>9.1</u>	nd	67	31	15	190	110	<u>440</u>	63	24
	09/04/97**	240	nd	40	20	<u>15</u>	<u>6.1</u>	13	7.1	<u>10</u>	nd	<u>87</u>	<u>170</u>	9.8	900	880	<u>5,300</u>	170	36
Abandoned April																			
OW-5R	02/01/00	1,180	1,020	<u>882</u>	37	<u>541</u>	<u>256</u>	181	126	<u>223</u>	<0.34	<u>1,610</u>	<u>1,390</u>	192	34	17	<u>15,700</u>	2,360	<u>1,190</u>
Dup (OW-99)	02/01/00	1,470	1,080	<u>1,160</u>	346	<u>579</u>	<u>450</u>	453	371	<u>324</u>	85	<u>2,640</u>	<u>1,960</u>	303	1,340	2,640	<u>14,700</u>	3,130	<u>1,600</u>
	05/31/00	305	341	194	74	<u>102</u>	<u>64</u>	87	64	<u>56</u>	9.1	<u>304</u>	<u>317</u>	48	303	580	<u>3.900</u>	527	<u>221</u>
	08/31/00	373	222	513	419	<u>101</u>	<u>218</u>	138	104	<u>253</u>	<3.4	<u>909</u>	<u>472</u>	127	294	566	<u>3,010</u>	1,110	<u>694</u>
	11/21/00	328	155	410	320	<u>244</u>	<u>142</u>	87	66	<u>252</u>	29	<u>683</u>	<u>393</u>	103	247	423	<u>2,500</u>	1150	<u>461</u>
	04/02/02	180 D*	170 Q,D*	420 D*	410 D	<u>370 D</u>	<u>250 D</u>	200 D	310 D	<u>370 D</u>	64 Q,D	<u>990 D*</u>	<u>180 Q,D*</u>	210 D	100 Q,D*	<90D*	<u>540 D*</u>	1,000 D*	<u>720 D</u>
	10/28/02	24 Q	23 Q	57	57	<u>58</u>	<u>51</u>	36	49	<u>63</u>	10Q	<u>140</u>	19 Q	32	16Q	<14	<u>54</u>	140	<u>100</u>
	06/16/03	< 0.36	0.47 Q	0.99 Q	1.6	<u>1.6</u>	<u>1.1</u>	0.76 Q	1.4	<u>1.5</u>	< 0.32	4.4	<0.34	0.75 Q	< 0.36	< 0.34	<0.48	1.6	3.1
	11/20/03	31 D	11 D	9.2	6.9	<u>6.5</u>	<u>4.8</u>	2.9	4.9	<u>5.2</u>	1.0 Q	18 D	13 D	3.0	32 D	0.70 Q	<u>34 D</u>	30 D	13 D
	04/20/04	4.2 D,&	1.5 D,&	1.1 D,Q	1.0 D	<u>1.1 D,&</u>	<u>0.63 D,Q</u>	0.35	0.41	<u>0.88 D,Q,&</u>	0.12	2.1 D	1.4 D,&	0.37	2.8 D,&	0.13	5.7 D	1.3 D,&	1.5 D

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

								F	OLYNUCLE	AR AROMAT	IC HYDROCA	RBONS (µg/	L)		-	-		-	
Location	Date	Acenaphthene	Acenaphthylene	Anthracene	Benz(a) anthracene	Benzo(a)pyrene	Benzo(b) fluoranthene	Benzo(ghi) perylene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd) pyrene	1-Methyl- naphthalene	2-Methyl- naphthalene	Naphthalene	Phenanthrene	Pyrene
NR 140 PAL		20	20	600	20	0.02			ndwater Qual	-		90	00	20			0		50
NR 140 FAL NR 140 ES		ns ns	ns ns	<u>600</u> 3,000	ns ns	<u>0.02</u> 0.2	<u>0.02</u> <u>0.2</u>	ns ns	ns ns	<u>0.02</u> <u>0.2</u>	ns ns	<u>80</u> 400	<u>80</u> 400	ns ns	ns ns	ns ns	<u>8</u> 40	ns ns	<u>50</u> 250
OW-5R cont.	07/20/04	8.6D	5.5D	1.2QD	0.13	<u>0.050</u>	<u>0.034Q</u>	0.020Q	0.040Q	0.079	< 0.015	1.9 D	4.4 D	<0.020	9.5D	0.082	<u>+0</u> <u>11 D</u>	5.0D	1.2QD
	10/12/04	48 D,Q	<15 D	6.9	0.52 Q	< 0.36	< 0.36	<0.41	<0.39	<u>0.43 Q</u>	<0.44	7.6	<17 D	<0.34	73 D	1.6	<u>190 D</u>	25 D,Q	4.6
Dup (QC-1)	10/12/04	57 D	15 D.Q	<7.1	0.47	<u>0.12</u>	0.082	0.035 Q	0.090	0.23	<0.022	<6.6 D	9.9 D,Q	0.039 Q	85 D	<9.1 D	230 D	28 D	<6.5 D
	01/25/05	68D	21	22	18	18	12	7.6	13	<u>15</u>	2.3Q	46 D	22	7.6	77D	2.6Q	220 D	48 Q,D	29
Dup (QC-1)	01/25/05	78D	24	30	29	26	17	11	19	19	3.1Q	75 D	32	11	85D	7.5Q	200 D	88 D	<u>51 D</u>
	04/11/05	6.9	3.8	1.5	<0.39	< 0.36	< 0.36	<0.41	<0.39	< 0.33	<0.44	2.3	3.6	<0.34	6.8	<0.45	6.0	4.6	1.6
	07/11/05	10	4.9	1.7 Q	<0.78	<0.92	<0.78 Z	<0.96	<0.97 Z	<0.95	<0.94	1.9 Q	5.0	<0.94	11	<0.56	<u>15</u>	3.8	1.3 Q
	10/03/05	2.3	0.99	0.18 Q	<0.16	<0.18	<0.16 Z	<0.19	<0.19 Z	<0.19	<0.19	1.1	0.46	<0.19	1.2	<0.11	<0.47	<0.11	0.67
	01/05/06	5.3 D	2.7 D	1.3 D	0.11	<u>0.033 Q</u>	0.019 QZ	<0.019	<0.39 ZD	<u>0.059 Q</u>	<0.019	1.4 D	2.9 D	<0.019	4.2 D	0.026 Q	0.54 QD	3.3 D	1.1 D
	04/11/06	6.6	2.1	0.92	<0.31	<0.37	<0.31 Z	<0.39	<0.39 Z	<0.38	<0.38	1.8	2.9	<0.38	5.3	<0.22	2.8	2.4	1.1
P-5B	09/17/93	nd	nd	20	0.71	nd	nd	nd	nd	<u>0.23</u>	nd	17	<u>130</u>	nd			nd	110	5.7
	08/16/96**	nd	nd	12	0.25	nd	nd	nd	nd	nd	nd	11	<u>97</u>	nd	660	390	<u>3,500</u>	76	3.2
	09/04/97**	110	770	110	nd	nd	nd	nd	nd	nd	nd	11	<u>110</u>	nd	630	300	<u>2,600</u>	67	3.5
	06/23/99	190	180	13	< 0.17	< 0.27	<0.43	<1.0	<0.29	<0.13	<1.6	17	<u>130</u>	<0.83	250	530	<u>2,800</u>	84	5.3
Dup (OW-99)	06/23/99 02/01/00	220	240	13	<0.17	< 0.27	< 0.43	<1.0	<0.29	< 0.13	<1.6	9.6	<u>130</u>	< 0.83	280	580	<u>4,200</u>	80	4.8
	02/01/00	4.3 29	<0.15 <0.15	<0.020 <0.020	<0.11 <0.11	<0.013 <0.013	<0.055 <0.055	<0.074 <0.074	<0.11 <0.11	< 0.059	<0.068 <0.069	<0.066 0.72	1.3 13	<0.080 <0.081	<0.082 <0.072	<0.072 29	< 0.056	<0.045 2.6	<0.032 0.42
Dup (OW-98)	05/31/00	0.53	<0.15 <0.15	<0.020 0.08	<0.11 <0.11	<0.013	<0.055	<0.074 <0.074	<0.11	<u>0.06</u> <0.059	<0.069	0.72	<0.11	<0.081	<0.072	<0.072	0.51 0.53	0.32	0.42
Dup (011-98)	08/31/00	262	<0.15 <0.15	18	2.4	<u>0.85</u>		<0.074	<0.11	< <u>0.039</u>	<0.068	14	<u>159</u>	<0.080	340	134	<u>3,030</u>	93	10
	11/21/00	266	141	15	1.3	<0.013	<u>0.5</u> <u>0.26</u>	0.18	0.14	<u>0.65</u>	<0.068	7.4	<u>156</u>	<0.080	326	94	<u>3,030</u> <u>3,420</u>	103	7.8
	04/02/02	<220 D	<280 D	<240 D	0.55 Q	<u>0.34 Q</u>	<0.28	< 0.30	<0.26	< 0.36	<0.34	5.7	<250 D	<0.28	<320 D	<340 D	2,900	<230 D	3.6
	10/28/02	230 Q	<120	<100	<95	<60	<70	<75	<65	<90	<85	<140	<110	<70	320 Q	<140	<u>3,800 D</u>	110 Q	<100
	06/16/03	260 Q,D	<95 D	<100 D	0.29 Q	<0.28	<0.26	< 0.32	<0.38	<0.28	< 0.32	8.1	110 Q.D	<0.42	360 D	130 Q,D	3,900 D	100 Q.D	6.5
	11/20/03	260 Q,D	82	17 Q	<6.0	<7.0	<6.5	<8.0	<9.5	<7.0	<8.0	8.0 Q	120	<10	370 Q,D	170	4,800 D	110	<8.5
	04/20/04	79 D,Q,*	<65 D,*	4.2	<0.48	<0.56 *	<0.52	<0.64	<0.76	<0.56 &	<0.64	2.0	<58 D	<0.84	91 D,Q,*	18	1,000 D	<54 D,*	1.2 Q
Dup (QC-1)	04/20/04	<140 D,*	<150 D,*	7.0	<1.2	<1.4 *	<1.3	<1.6	<1.9	<1.4 &	<1.6	3.2 Q	<140 D	<2.1	140 D,Q,*	36	<u>1,700 D</u>	38 *	2.0 Q
	07/20/04	62D	6.0Q	2.0Q	<1.1	<1.3	<1.2	<1.5	<1.8	<1.3	<1.5	2.5 Q	20	<2.0	24	<1.6	<2.3	5.8	1.7Q
	10/12/04	<160 D	32	8.2	<2.0	<1.8	<1.8	<2.1	<1.9	<1.6	<2.2	6.7	<170 D	<1.7	<160 D	42	<u>1.500 D</u>	<160 D	4.4 Q
	01/25/05	210E	66	18	<3.9	<3.6	<3.6	<4.1	<3.9	<3.3	<4.4	10 Q	<u>100 E</u>	<3.4	270E	140E	<u>3,300D</u>	95	5.6 Q
	04/11/05	94	12Q	<3.5	<3.9	<3.6	<3.6	<4.1	<3.9	<3.3	<4.4	<3.3	21	<3.4	38	<4.5	<4.5	<4.1	<3.3
	07/11/05	100 D	21	5.8 Q	<3.1	<3.7	<3.1 Z	<3.9	<3.9 Z	<3.8	<3.8	<3.1	35	<3.8	92 D	18	<u>430 D</u>	22	<2.9
	10/03/05	130 D	21	5.2 Q	<3.1	<3.7	<3.1 Z	<3.9	<3.9 Z	<3.8	<3.8	<3.1	44	<3.8	130 D	31	<u>440 D</u>	30	<2.9
Dup (QC02)	10/03/05	120 D	18	4.7 Q	<3.1	<3.7	<3.1 Z	<3.9	<3.9 Z	<3.8	<3.8	<3.1	39	<3.8	110 D	29	<u>390 D</u>	24	<2.9
	01/05/06	80 D	4.4	1.0	<0.31	< 0.37	<0.31 Z	<0.39	<0.39 Z	<0.38	<0.38	0.93 Q	12 D	<0.38	8.8	<0.22	<0.25	<0.23	0.59 Q
0.00	04/11/06	90	7.8	3.2 Q	<3.1	<3.7	<3.1 Z	<3.9	<3.9 Z	<3.8	<3.8	<3.1	29	<3.8	57	5.3 Q	<u>34</u>	11	<2.9
OW-6	06/03/93 08/16/96	63 8.6	47 44	13 4.3	nd 1.4	<u>1.1</u> 0.35	<u>0.68</u>	nd	0.46	<u>0.93</u> 0.39	nd nd	35 14	38 8 2	nd	 4.6		<u>230</u> 50	100 32	18 11
	09/03/97**	6.6 5.2	44 110	4.3 12	1.4 1.6	<u>0.35</u> nd	<u>0.06</u> nd	nd nd	nd nd	<u>0.39</u> 0.41	nd nd	22	8.2 42	nd nd	4.6 340	2.8 35	<u>50</u> <u>330</u>	32 99	19
	06/23/99	5.2 78	450	12	<0.34	<0.54	<0.86	<2.0	<0.58	<u>0.41</u> <0.26	nd <3.2	22	42 79	<1.7	250	270	<u>330</u> 2,600	99 98	19 16
	00/23/99	10	400	12	<0.34	<0.04	<0.00	<2.0	<0.02	<0.20	<۵.८	23	19	<1./	200	270	2,000	90	10

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

								F	POLYNUCLE	AR AROMATI	IC HYDROCA	RBONS (µg/	L)						
Location	Date	Acenaphthene	Acenaphthylene	Anthracene	Benz(a) anthracene	Benzo(a)pyrene	Benzo(b) fluoranthene	Benzo(ghi) perylene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd) pyrene	1-Methyl- naphthalene	2-Methyl- naphthalene	Naphthalene	Phenanthrene	Pyrene
NR 140 PAL			20	600	20	0.02			ndwater Qual			90	00	20			0		50
NR 140 FAL NR 140 ES		ns ns	ns ns	<u>600</u> 3,000	ns ns	<u>0.02</u> <u>0.2</u>	<u>0.02</u> 0.2	ns ns	ns ns	<u>0.02</u> <u>0.2</u>	ns ns	<u>80</u> 400	<u>80</u> 400	ns ns	ns ns	ns ns	<u>8</u> 40	ns ns	<u>50</u> 250
OW-6 cont.	02/01/00	40	21	<u>9.7</u>	1.6			6.2	<0.11	<0.059	<0.068	<u>400</u> 9.7	<u>400</u> 19	6.5	38	28		31	8.8
	02/01/00	40 25	34	9.7 5.1	3.5	<u>3.8</u> 0.68	<u>1.4</u> <u>1.6</u>	2.1	<0.11 0.68	<0.059 <u>3.3</u>	<0.008	9.7 9.1	19	0.5 2.5	36	28	<u>283</u> <u>333</u>	20	0.0 9
	03/31/00	23 87	275	20	<0.11	<u>0.00</u> <u>4.5</u>	2.8	2.1	<0.11	<u>3.5</u> <u>4.5</u>	<0.068	33	<u>84</u>	3.1	238	218	<u>2,280</u>	140	30
	11/21/00	50	42	20 9.1	2.6	<u>4.5</u> 2.3	<u>1.5</u>	2.0 1.7	1.2		0.38	11	<u>04</u> 25	1.7	53	39	477	50	13
	04/02/02	31 D,*	4.2 *	4.4 *	2.6	<u>2.0</u> 2.1	<u>1.4</u>	0.91 Q	1.5	<u>1.7</u> <u>1.9</u>	0.39 Q	7.3 *	14 Q,D,*	0.94	22 Q,D*	15 Q,D*	<u>160 D,*</u>	27 Q,D,*	8.6
	10/28/02	88 Q,D	150 Q.D	9.0	<1.9	<1.2	<1.4	<1.5	<1.3	<1.8	<1.7	8.0 Q	41	<1.4	170 Q,D	<110 D	<u>1,800 D</u>	100 Q,D	10
	06/16/03	29 D	4.9	2.4	0.64 Q	<u>0.44 Q</u>	<u>0.33 Q</u>	<0.32	0.39 Q	0.56 Q	<0.32	2.9	10 D	<0.42	10	0.39 Q	1.9	2.3	4.4
	11/20/03	31	20	3.8 Q	<1.2	<1.4	<1.3	<1.6	<1.9	<1.4	<1.6	3.5 Q	14	<2.1	33	25	370 D	21	3.9 Q
	07/20/04	46	26	13	<1.1	<1.3	<1.2	<1.5	<1.8	<1.3	<1.5	8.4	28	<2.0	59D	18	190 D	88D	10
	04/11/05	9.6QD	0.49Q	1.3	<0.39	<0.36	<0.36	<0.41	<0.39	< 0.33	<0.44	1.2	4.5	<0.34	7.2	5.1	45 D	4.0	1.1
	10/03/05	79	120 QD	5.1 Q	<3.1	<3.7	<3.1 Z	<3.9	<3.9 Z	<3.8	<3.8	<3.1	21	<3.8	130 QD	100 E	1,800 D	40	<2.9
	04/11/06	11 D	0.31 Q	1.6	<0.31	<0.37	<0.32 Z	<0.39	<0.39 Z	<0.38	<0.38	1.1	5.2	<0.38	7.3	6.3	<u>51 D</u>	6.2	0.84 Q
OW-7	06/04/93	40	70	9.0	2.5	<u>1.8</u>	<u>0.85</u>	nd	0.97	<u>1.6</u>	nd	23	33	1.2			460	64	9.7
	08/16/96	nd	22	3.1	0.40	nd	nd	nd	nd	nd	nd	2.3	14	nd	26	46	<u>70</u>	18	1.0
	09/03/97	2.0	nd	1.8	0.30	<u>0.18</u>	nd	nd	nd	<u>0.12</u>	nd	2.6	7.5	nd	18	19	<u>48</u>	10	1.3
	02/26/98								Aba	ndoned. Well	was not repla	ced.			-				
OW-7A	06/02/93	26	nd	24	nd	<u>12</u>	<u>3.9</u>	5.1	2.0	<u>7.4</u>	nd	<u>82</u>	25	5.4			<u>88</u>	170	<u>65</u>
	08/16/96	nd	nd	25	33	<u>9.9</u>	<u>1.8</u>	6.9	3.1	<u>7.1</u>	nd	72	24	4.4	87	100	<u>76</u>	130	<u>66</u>
Dup	08/16/96	nd	nd	17	33	<u>9.4</u>	<u>2.0</u>	7.5	3.2	<u>6.8</u>	nd	66	8.5	4.9	43	41	<u>14</u>	55	<u>60</u>
	9/3/97**	14	nd	14	9.2	<u>5.9</u>	<u>1.2</u>	5.2	1.6	<u>4.2</u>	nd	43	15	3.1	110	5.9	<u>56</u>	78	<u>51</u>
	06/23/99	40	3.3	15	13	<u>13</u>	<u>4.3</u>	11	4.8	<u>6.2</u>	1.1	67	27	5.3	28	56	<u>270</u>	60	<u>63</u>
	02/01/00	49	7.5	23	3	<u>18</u>	<u>6.4</u>	6.7	2.7	<u>6.1</u>	5.9	57	27	5.2	31	28	<u>460</u>	80	<u>74</u>
	05/31/00	38	<0.15	17	13	<u>5.6</u>	<u>6.8</u>	5.7	3.2	<u>26</u>	1.6	50	40	6.9	21	20	<u>160</u>	62	<u>69</u>
	08/31/00	56	<0.15	29	21	<u>11</u>	<u>11</u>	14	11	<u>24</u>	2.1	61	39	12	35	26	<u>316</u>	93	<u>102</u>
	11/21/00	49	3.8	14	13	<u>4.7</u>	<u>2.8</u>	3.2	1.2	<u>15</u>	<0.068	23	32	1.8	32	29	<u>383</u>	51	32
	04/02/02	35 D,*	5.2 *	16 D,*	15 D	<u>11 D</u>	<u>5.6</u>	6.6	5.4	<u>13 D</u>	1.6	34 D,*	21 D,*	4.7	18 D*	12 Q,D*	<u>40 D*</u>	55 D,*	<u>60 D</u>
	10/28/02	48	<2.3	5.1 Q	<1.9	<1.2	<1.4	<1.5	<1.3	<1.8	<1.7	5.1 Q	23	<1.4	49	48	<u>640</u>	34	6.0 Q
	06/16/03	29 D	1.7 3.2 Q	3.7	1.8	<u>1.6</u>	<u>0.85</u>	0.96 Q	0.84 Q	<u>1.7</u>	< 0.32	4.7	13 D	0.63 Q	11 D	4.7	2.1	5.6	9.0
	11/20/03	46 15 D °		10	5.1	<u>5.1</u>	<u>3.0 Q</u>	3.2 Q	3.0 Q	<u>5.6</u>	<1.6	16	25	<2.1	33	32	<u>300 D</u>	45	23
	04/20/04 07/20/04	15 D,&	0.68 Q,&	2.0 4.0 Q	0.7 Q <1.1	<u>0.61 Q,&</u> <1.3	<u>0.26 Q</u> <1.2	0.33 Q	<0.37 <1.8	<u>0.51 Q,&</u> <1.3	<0.31	2.1 2.7 Q	7.0 & 16	<0.40 <2.0	7.8 & 34	3.8 16	5.0 360 D	2.4 & 22	2.7 2.5 Q
	07/20/04 10/12/04	38 42	<1.8 <1.9	4.0 Q 4.0 Q	<1.1 <2.0	<1.3 <1.8	<1.2 <1.8	<1.5 <2.1	<1.8 <1.9	<1.5 <1.6	<1.5 <2.2	2.7 Q 3.0 Q	18	<2.0 <1.7	34 43	16 42	<u>360 D</u> 510 D	22	2.5 Q 2.7 Q
	01/25/05	42 45	<1.9 6.7Q	4.0 Q 18	₹2.0 9.9 Q	<u>9.8 Q</u>	<u>5.0 Q</u>	<2.1 5.9 Q	<1.9 5.4 Q	<1.6 <u>10 Q</u>	<2.2 <4.4	28	24	<1.7 3.5Q	43 33	42 31	400 D	25 56	38
	04/11/05	43 20	<1.9	4.0 Q	9.9 Q <2.0	<u>3.8 Q</u> <1.8	<u></u>	<2.1	<1.9	<1.6	<2.2	2.7Q	8.9	<1.7	13	11	<u>400 D</u> 65 D	9.2	3.8 Q
	07/11/05	20 31	<1.6	4.0 Q 4.9 Q	<2.0 <3.1	<3.7	<3.1 Z	<3.9	<3.9 Z	<3.8	<3.8	<3.1	0.9 11	<3.8	30	27	260 D	9.2 16	2.9 Q
	10/03/05	40	<1.6	4.9 Q 3.8 Q	<3.1	<3.7	<3.1 Z	<3.9	<3.9 Z <3.9 Z	<3.8	<3.8	<3.1	17	<3.8	34	36	400 D	21	<2.9
Dup (QC01)	10/03/05	40 39 D	0.87	4.5	<0.31	<0.37	<0.31 Z	<0.39	<0.39 Z	< 0.38	<0.38	2.8	14 QD	<0.38	33 QD	29 QD	400 D	20 QD	2.5
	01/05/06	24 D	0.57 E	4.5 2.5 QD	0.20	<0.37 <u>0.059 Q</u>	<u>0.033 QZ</u>	0.023 Q	<0.33 Z <2.4 ZD	<u>0.11</u>	<0.019	1.7 E	14 QD	<0.019	18 D	29 QD 20 D	<u>400 D</u>	9.6 D	1.8 E
	04/11/06	24 D 26 D	0.69	2.9	<0.31	<0.37	<0.31 Z	<0.39	<0.39 Z	<0.38	<0.38	1.7	11 QD	<0.38	17 QD	15 QD	200 D	12 QD	1.4

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

								F	POLYNUCLE	AR AROMAT	IC HYDROCA	RBONS (µg/	_)						
Location	Date	Acenaphthene	Acenaphthylene	Anthracene	Benz(a) anthracene	Benzo(a)pyrene	Benzo(b) fluoranthene	Benzo(ghi) perylene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd) pyrene	1-Methyl- naphthalene	2-Methyl- naphthalene	Naphthalene	Phenanthrene	Pyrene
								NR 140 Grou	ndwater Qua	ity Standard	s (µg/L)	•				•			
NR 140 PAL		ns	ns	<u>600</u>	ns	<u>0.02</u>	<u>0.02</u>	ns	ns	<u>0.02</u>	ns	<u>80</u>	<u>80</u>	ns	ns	ns	<u>8</u>	ns	<u>50</u>
NR 140 ES		ns	ns	<u>3,000</u>	ns	<u>0.2</u>	<u>0.2</u>	ns	ns	<u>0.2</u>	ns	<u>400</u>	<u>400</u>	ns	ns	ns	<u>40</u>	ns	<u>250</u>
PZ-7B	07/09/96**	440	nd	10	nd	nd	nd	nd	nd	nd	nd	5.6	<u>130</u>	nd	1,700	350	<u>2,600</u>	87	nd
	08/16/96	390	450	1.4	nd	nd	nd	nd	nd	nd	nd	1.5	36	nd	620	180	<u>870</u>	15	0.76
	09/03/97**	290	350	2.4	nd	nd	nd	nd	nd	nd	nd	nd	32	nd	110	53	nd	15	nd
Dup	09/03/97	140	340	3.1	nd	nd	nd	nd	nd	nd	nd	2.6	36	nd	390	100	<u>210</u>	20	nd
	06/23/99	190	100	2.7	<0.017	< 0.027	< 0.043	< 0.1	<0.029	< 0.013	<0.16	2.2	52	< 0.083	170	170	<u>970</u>	23	1.0
	02/01/00	223	<0.15	3.1 11	<0.11	<0.013	< 0.055	< 0.074	<0.11	<u>0.13</u>	<0.068	3.4	54	<0.080	219	224	<u>1,000</u>	20	1.8
	05/31/00 08/31/00	154 173	207 195	11	0.23 0.36	<0.013 <0.013	<0.055 <0.055	<0.074 <0.074	<0.11 <0.11	<u>0.09</u> <u>0.15</u>	<0.068 <0.068	6.2 7.3	<u>164</u> <u>181</u>	<0.080 <0.080	289 300	348 324	<u>1,700</u> <u>358</u>	101 93	6.2 7.8
	11/21/00	173	195	17	0.30	<0.013	<0.055 <0.055	<0.074 <0.074	<0.11	<u>0.15</u> 0.11	<0.068	8.3	<u>101</u> 111	<0.080	300	324	<u>356</u> 966	93 98	7.8
	04/02/02	160 Q.D	<170 D	8.3	<0.23	<0.013	<0.033	<0.30	<0.11	<u>-0.71</u> <0.36	<0.008	2.9	<150 D	<0.28	270 Q.D	350 Q,D	<u>300</u> 2,300 D	<140 D	4.5
	10/28/02	160 Q,D	130 Q	7.4	<1.9	<1.2	<1.4	<1.5	<1.3	<1.8	<1.7	3.3 Q	<84	<1.4	300 Q	380	<u>1,700</u>	98 Q	4.0 5.4 Q
	06/16/03	150 Q	25	11	<1.2	<1.4	<1.3	<1.6	<1.9	<1.4	<1.6	2.9 Q	50 D	<2.1	190 D	5.5	<2.4	87 D	6.0
Dup(QC-002)	06/16/03	160 Q.D	110 Q.D	8.7	<0.24	<0.28	<0.26	< 0.32	< 0.38	<0.28	< 0.32	3.4	<68 D	<0.42	300 D	310 D	630 D	100 Q.D	6.9
	11/20/03	<180 D	<190 D	15 Q	<3.0	<3.5	<3.2	<4.0	<4.8	<3.5	<4.0	<3.2	56	<5.2	310 Q,D	400 Q,D	2,700 D	95	5.2 Q
	04/20/04	140 D,&	32 D,&	1.3 Q	<0.46	<0.53 &	<0.50	<0.61	<0.72	<0.53 &	<0.61	<0.50	30 D,&	<0.80	160 D,&	140 D	<u>48 D</u>	18 &	<0.65
	07/20/04	50 D	8.5	<1.9	<1.1	<1.3	<1.2	<1.5	<1.8	<1.3	<1.5	<1.2	8.6	<2.0	52D	46	<u>62 D</u>	11	<1.6
	10/12/04	<78	9.8	<1.8	<2.0	<1.8	<1.8	<2.1	<1.9	<1.6	<2.2	<1.6	7.9	<1.7	<80 D	<91 D	<u>980 D</u>	5.9 Q	<1.6
	01/25/05	140E	170E	15	<3.9	<3.6	<3.6	<4.1	<3.9	<3.3	<4.4	4.4Q	55	<3.4	290E	390E	<u>2,800 D</u>	88	6.3 Q
	04/11/05	84	41	16	<3.9	<3.6	<3.6	<4.1	<3.9	<3.3	<4.4	<3.3	19	<3.4	120QD	130QD	<u>700 D</u>	39	<3.3
	07/11/05	77	26	4.2 Q	<3.1	<3.7	<3.1 Z	<3.9	<3.9 Z	<3.8	<3.8	<3.1	10	<3.8	95 D	98 D	<u>810 D</u>	8.6	<2.9
Dup(QC-1)	07/11/05	73 Q,D	33	3.9	<1.6	<1.8	<1.6 Z	<1.9	<1.9 Z	<1.9	<1.9	<1.5	13	<1.9	110 Q,D	96 Q,D	<u>1,200 D</u>	14	<1.5
	10/03/05	72	20	<2.3	<3.1	<3.7	<3.1 Z	<3.9	<3.9 Z	<3.8	<3.8	<3.1	9.5	<3.8	97 D	85 QD	<u>890 D</u>	7.9	<2.9
	01/05/06	94	26	<4.6	<6.2	<7.3	<6.3 Z	<7.7	<7.7 Z	<7.6	<7.5	<6.2	12	<7.5	120	160	<u>1,600 D</u>	9.6 Q	<5.8
Dup (QC01)	01/05/06	97 QD	28	3.3 Q	<1.6	<1.8	<1.6 Z	<1.9	<1.9 Z	<1.9	<1.9	<1.5	15	<1.9	150 QD	87 QD	<u>1,100 D</u>	14	<1.5
OW-8	04/11/06 06/02/93	78 D	30 nd	1.4 Q	<1.6	<1.8	<1.6 Z nd	<1.9	<1.9 Z	<1.9	<1.9	<1.5 nd	13 nd	<1.9	110 D	100 D	<u>590 D</u>	9.1	<1.5 5.4 Q
000-0	08/16/96	nd nd	nd nd	nd nd	nd nd	nd nd	nd	nd nd	nd nd	nd nd	nd nd	nd	nd nd	nd nd	 nd	nd	nd 1.9	nd nd	nd
	09/03/97	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	5.4 Q
	06/23/99	0.66	<0.56	0.089	<0.017	<0.027	<0.043	<0.1	<0.029	<0.013	<0.16	0.11	0.032	<0.084	<0.4	<0.6	0.62	0.62	nd
	02/01/00	<0.13	<0.15	< 0.020	<0.11	<0.013	<0.055	<0.074	<0.11	< 0.059	<0.068	<0.066	<0.11	<0.080	<0.082	<0.072	0.18	< 0.045	5.4 Q
	04/02/02	0.69 *	0.046 Q*	0.070 *	0.047 Q	<u>0.050</u>	<u>0.040 Q</u>	0.031 Q	0.039 Q	<u>0.041 Q</u>	<0.017	0.13 *	0.15 *	0.027 Q	0.33 *	0.063 Q*	0.67 *	0.58 *	nd
	06/16/03	0.50	<0.019	0.071	0.021 Q	<u>0.020 Q</u>	0.017 Q	<0.016	<0.019	0.019 Q	<0.016	0.14	0.059	<0.021	<0.018	<0.017	0.038 Q	0.63 D	0.14
	04/11/05	1.0D	0.029Q	0.046Q	<0.020	<0.018	<0.018	<0.021	<0.019	<0.016	<0.022	0.047Q	0.33	<0.017	0.61D	0.090	1.2 D	0.52D	0.053 Q
	04/11/06	2.1 D	0.080	0.13	<0.016	<0.018	<0.016 Z	<0.019	<0.019 Z	<0.019	<0.019	0.063	0.76 D	<0.019	1.6 D	0.21	4.5 D	0.95 D	0.055

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

								F	POLYNUCLE	AR AROMAT		ARBONS (µg/	_)						
Location	Date	Acenaphthene	Acenaphthylene	Anthracene	Benz(a) anthracene	Benzo(a)pyrene	Benzo(b) fluoranthene	Benzo(ghi) perylene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd) pyrene	1-Methyl- naphthalene	2-Methyl- naphthalene	Naphthalene	Phenanthrene	Pyrene
			1	1					ndwater Qual	lity Standard	s (µg/L)							1	
NR 140 PAL		ns	ns	<u>600</u>	ns	<u>0.02</u>	<u>0.02</u>	ns	ns	0.02	ns	<u>80</u>	<u>80</u>	ns	ns	ns	<u>8</u>	ns	<u>50</u>
NR 140 ES		ns	ns	<u>3,000</u>	ns	<u>0.2</u>	<u>0.2</u>	ns	ns	<u>0.2</u>	ns	<u>400</u>	<u>400</u>	ns	ns	ns	<u>40</u>	ns	<u>250</u>
OW-9	09/04/97**	61	200	1.7	nd	nd	nd	nd	nd	nd	nd	nd	23	nd	140	75	<u>1,000</u>	17	nd
	06/23/99	260	210	15	<0.34	<0.54	<0.86	<2.0	<0.58	<0.26	<3.2	22	<u>160</u>	<1.7	340	680	<u>4,800</u>	110	7.2
Dup (OW-98)	06/23/99	130	120	8	<0.34	<0.54	<0.86	<2.0	<0.58	<0.26	<3.2	10	<u>92</u>	<1.7	180	360	<u>2,500</u>	59	3.2
	02/01/00	203	163	28	<0.11	<u>4.3</u>	<u>1.9</u>	9.3	<0.11	<0.059	<0.068	48	49	13	291	42	<u>1,980</u>	153	25
	05/31/00	200	190	11	<0.11	<u>0.33</u>	<u>0.6</u>	0.13	0.71	<0.059	<0.068	19	<u>101</u>	0.27	277	63	<u>2,960</u>	84	8.7
	08/31/00	269	85	10	<0.11	<u>2.0</u>	<0.055	1.3	<0.11	<0.059	<0.068	17	<u>111</u>	3.8	268	42	<u>2,710</u>	91	8.5
Dup (OW-99)	08/31/00	278	<0.15	13	<0.11	<0.013	<u>0.20</u>	<0.074	<0.11	<0.059	<0.068	14	<u>121</u>	<0.080	279	44	<u>2,990</u>	99	9.7
	11/21/00	215	77	11	<0.11	<u>1.7</u>	<u>0.19</u>	<0.074	<0.11	<0.059	<0.068	7.7	<u>89</u>	3.8	223	<0.072	<u>1,920</u>	87	5.8
	04/02/02	160 *	35 Q*	4.5 *	0.32 Q	<u>0.32 Q</u>	<0.28	<0.30	<0.26	<0.36	<0.34	<34 *	48 Q*	<0.28	150 *	1.8 *	<u>530 *</u>	70 Q*	6.8
Dup (OW-98)	04/02/02	130 D	<32 D	6.2	0.51 Q	<u>0.75 Q</u>	<u>0.54 Q</u>	0.53 Q	0.51 Q	<u>0.55 Q</u>	<0.34	<39 D	39 Q,D	0.47 Q	140 D	1.6 Q	<u>590 D</u>	66 Q,D	<0.40 D
	10/28/02	110	<9.2	<8.0	<7.6	<4.8	<5.6	<6.0	<5.2	<7.2	<6.8	<11	25 Q	<5.6	63	<11	<11	52	<8.0
	06/16/03	85 D	6.7	<2.1	<1.3	<1.5	<1.4	<1.7	<2.0	<1.5	<1.7	3.4 Q	7.2	<2.2	38	<1.8	<u>35</u>	21	2.4 Q
	11/20/03	110	7.7 Q	<5.0	<3.0	<3.5	<3.2	<4.0	<4.8	<3.5	<4.0	5.4 Q	9.8 Q	<5.2	62	<4.2	<u>78</u>	28	<4.2
Dup (QC-1)	11/20/03	85 D	6.4	1.5	<0.24	<0.28	<0.26	<0.32	<0.38	<0.28	<0.32	6.8	8.4	<0.42	42 D	<0.34	<u>44 D</u>	22 D	3.9
	07/20/04	92D	8.7	2.4Q	<1.1	<1.3	<1.2	<1.5	<1.8	<1.3	<1.5	4.1	14	<2.0	63D	<1.6	<u>110D</u>	27	2.5 Q
	04/12/05	100QD	31	5.2Q	<2.0	<1.8	<1.8	<2.1	<1.9	<1.6	<2.2	4.9Q	42	<1.7	130E	20	<u>1,100D</u>	56E	2.7 Q
	10/03/05	120 QD	50	6.3 Q	<3.1	<3.7	<3.1 Z	<3.9	<3.9 Z	<3.8	<3.8	5.8 Q	59	<3.8	160 QD	49	<u>1,700 D</u>	72	3.7 Q
D7 0D	04/11/06	76 QD	39	3.8 Q	<1.6	<1.8	<1.6 Z	<1.9	<1.9 Z	<1.9	<1.9	5.3	37	<1.9	92 QD	15	<u>1.100 D</u>	48 E	2.6 Q
PZ-9B	09/04/97 06/23/99	nd 32	nd	nd 0.58	nd <0.017	nd <0.027	nd	nd <0.1	nd <0.029	nd <0.013	nd <0.16	nd 0.89	2.0 3.9	nd	14 12	6.6 29	<u>81</u>	0.95 0.85	nd 0.33
	06/23/99	32 2.1	<0.55	0.58 <0.067			<0.043	<0.1 <0.25	<0.029		<0.16	<0.89	3.9 <0.38	<0.083 <0.27	<0.28	29 <0.24	<u>8.4</u> <0.19		
		2.1 17	<0.51 <0.15		< 0.38	<0.045	<0.18	<0.25 <0.074		<0.2		<0.22 0.56		<0.27 <0.08		-	<0.19 0.78	<0.15	<0.11 0.35
	05/31/00 08/31/00	2.1	<0.15 <0.15	0.39 <0.020	<0.11 <0.11	<0.013 <0.013	<0.055 <0.055	<0.074 <0.074	<0.11 <0.11	<0.059 <0.059	<0.068 <0.068	<0.066	<0.11 <0.11	<0.08 <0.080	5.7 0.78	<0.072 0.12	0.78	0.23 0.12	0.35 <0.032
	11/21/00	40	<0.15	<0.020 0.95	<0.11 <0.11	<0.013	<0.055	<0.074 <0.074	<0.11	<0.059 <0.059	<0.068	<0.066	2.2	<0.080	11	<0.12	1.2	<0.12	<0.032
	04/02/02	40 1.1D	0.15	0.95	<0.11	<0.013	<0.055	<0.074 <0.015	<0.11	<0.039	< 0.008	<0.000 0.15	0.12	<0.080 <0.014	0.49	<0.072	0.95 D	<0.045 0.17	<0.032 0.15
	10/28/02	0.059	<0.023	<0.070	<0.019	<0.012	<0.014	<0.015	< 0.013	<0.018	< 0.017	0.15 0.052 Q	<0.021	<0.014	<0.49	<0.028	0.93 D 0.032 Q	<0.019	0.13
	06/16/03	0.039 0.036 Q	<0.023	<0.020 0.063 Q	<0.019	<0.012	<0.014	<0.013	<0.013	<0.018	< 0.017	0.052 Q	<0.021	<0.014	<0.027	<0.028	0.032 Q 0.035 Q	<0.019	0.11
	11/20/03	0.030 Q 34 D	0.25	0.46	<0.012	<0.014	<0.013	<0.010	<0.019	<0.014	<0.010	0.13	<0.017 0.056 Q	<0.021	<0.010 14 D	0.13	5.0 Q,D	0.069	0.39
	07/20/04	0.15	<0.23	<0.40	<0.013	<0.013	<0.014	<0.017	<0.020	<0.013	< 0.017	<0.012	<0.030 Q <0.016	<0.022	0.032Q	<0.016	0.037 Q	<0.003	<0.016
Dup(QC-1)	07/20/04	0.16	<0.018	<0.019	<0.011	<0.013	<0.012	<0.015	<0.018	<0.013	< 0.015	< 0.012	<0.016	<0.020	0.032Q 0.018Q	<0.016	<0.023	<0.015	<0.016
	04/12/05	0.10	<0.010 0.021Q	<0.013	<0.011	<0.013	<0.012	<0.013	<0.010	<0.015	<0.022	<0.012	<0.010	<0.020	0.018	<0.010	<0.025 0.58 D	<0.013	<0.010
	10/03/05	1.6 D	0.0210	0.014 Q	<0.020	<0.018	<0.016 Z	<0.019	<0.019 Z	<0.010	<0.022	<0.015	<0.022 0.023 Q	<0.019	0.72 D	<0.025 0.034 Q	1.2 D	0.019 Q	<0.015
	04/11/06	1.0 D 1.4 D	0.044	0.014 Q	<0.010	<0.010	<0.016 Z	<0.019	<0.019 Z	<0.019	<0.019	<0.015	0.023 Q 0.024 Q	<0.019	0.72 D	0.029 Q	0.75 D	0.010 Q	<0.015
U		1.40	0.040	0.010 Q	~0.010	~0.010	<0.010 Z	NO.013	NO.013 Z	NO.013	NO.013	~0.010	0.024 Q	20.013	0.00 D	0.023 Q	0.150	0.020 Q	~0.010

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

								F	POLYNUCLE	AR AROMAT	IC HYDROCA	ARBONS (µg/	L)						
Location	Date	Acenaphthene	Acenaphthylene	Anthracene	Benz(a) anthracene	Benzo(a)pyrene	Benzo(b) fluoranthene	Benzo(ghi) perylene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd) pyrene	1-Methyl- naphthalene	2-Methyl- naphthalene	Naphthalene	Phenanthrene	Pyrene
		i				1		NR 140 Grou	ndwater Qua	- <u> </u>	ls (µg/L)	1		1	1	1	1	1	
NR 140 PAL		ns	ns	<u>600</u>	ns	<u>0.02</u>	<u>0.02</u>	ns	ns	<u>0.02</u>	ns	<u>80</u>	<u>80</u>	ns	ns	ns	<u>8</u>	ns	<u>50</u>
NR 140 ES		ns	ns	<u>3,000</u>	ns	<u>0.2</u>	<u>0.2</u>	ns	ns	<u>0.2</u>	ns	<u>400</u>	<u>400</u>	ns	ns	ns	<u>40</u>	ns	<u>250</u>
OW-10	09/04/97	nd	nd	0.84	1.0	<u>0.62</u>	<u>0.24</u>	0.46	0.24	<u>0.51</u>	nd	2.8	1.2	0.40	nd	nd	0.89	3.7	1.6
	06/23/99	6.6	6.1	0.28	0.51	<u>0.5</u>	<u>0.24</u>	0.51	0.27	<u>0.37</u>	<0.16	1.8	0.45	0.31	11	5.2	<u>130</u>	0.71	1.6
	02/01/00	10	4.0	1.0	<0.11	<u>3.9</u>	<u>2.9</u>	1.0	0.69	<u>2.0</u>	<0.068	5.9	2.8	1.1	9.2	<0.072	<u>75</u>	2.7	4.6
	05/31/00	1.2	0.37	0.17	0.28	<u>0.28</u>	<u>0.11</u>	0.21	0.18	<u>0.35</u>	<0.068	0.79	0.27	0.24	0.78	<0.072	4.1	0.44	0.65
	08/31/00	32	6.9	1.2	3.3	<u>1.7</u>	<u>5.9</u>	1.1	1.9	<u>1.9</u>	<0.068	4.4	4.6	1.2	26	<0.072	0.22	3.1	4.1
	11/21/00	14	2.0	0.64	1.6	<u>0.83</u>	<u>0.46</u>	0.3	0.18	<u>0.59</u>	<0.068	1.7	4.7	0.39	7.2	<0.072	<u>15</u>	1.7	1.5
Dup (OW-98)	11/21/00	13	2.0	0.69	0.7	<0.013	<u>0.45</u>	0.28	0.19	<u>0.58</u>	0.07	2.5	2.7	0.28	6.8	<0.072	<u>17</u>	1.3	2
	04/02/02	3.5	0.73 Q	0.94 Q	3.0	<u>2.9</u>	<u>1.8</u>	1.5	2.3	<u>2.7</u>	0.49 Q	5.5	0.61 Q	1.3	0.80 Q	<0.56	1.4 Q	3.0	4.7
Dup (OW-99)	04/02/02	1.8	0.38 Q	0.50 Q	1.4	<u>1.3</u>	<u>0.88</u>	0.65	1.1	<u>1.2</u>	0.22 Q	2.6	0.23 Q	0.60	0.51 Q	<0.22	1.3	1.4	2.2
	10/28/02	4.7	<0.46	<0.40	<0.38	<0.24	<0.28	<0.30	<0.26	<0.36	<0.34	<0.56	<0.42	<0.28	<0.54	<0.56	<0.54	<0.38	<0.40
	06/16/03	0.43Q	0.59 Q	0.56 Q	2.7	<u>2.4</u>	<u>2.1</u>	1.4	2.0	<u>2.5</u>	0.48 Q	3.9	<0.34	1.30	<0.36	<0.34	<0.48	1.4	4.3
	11/20/03	2.1	<0.38	<0.40	1.3	<u>1.2</u>	<u>1.0</u>	0.68 Q	1.1 Q	<u>1.3</u>	<0.32	2.7	<0.34	0.59 Q	0.47 Q	<0.34	0.51 Q	1.2	2.0
Dup (QC-2)	11/20/03	2.6	0.42 Q	0.47 Q	1.5	<u>1.5</u>	<u>1.3</u>	0.84 Q	1.3	<u>1.5</u>	<0.32	3.0	<0.34	0.75 Q	0.41 Q	<0.34	<0.48	1.2	2.4
	04/12/05	20QD	7.1	<0.35	<0.39	<0.36	<0.36	<0.41	<0.39	<0.33	<0.44	<0.33	4.0	<0.34	30QD	3.3	<u>340 D</u>	<0.41	<0.33
	04/11/06	2.4	0.37 Q	<0.23	<0.31	<0.37	<0.31 Z	<0.39	<0.39 Z	<0.38	<0.38	<0.31	0.50 Q	<0.38	2.8	0.35 Q	<u>19 D</u>	<0.23	<0.29
PZ-10B	09/04/97	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	06/23/99	<0.22	<0.55	<0.018	<0.017	<0.027	<0.043	<0.1	<0.029	<0.013	<0.16	<0.1	<0.029	<0.083	<0.4	<0.6	<0.22	<0.014	<0.047
	02/01/00	<0.12	<0.14	<0.019	<0.11	<0.012	<0.052	<0.069	<0.11	<0.056	<0.064	<0.062	<0.11	<0.076	<0.077	<0.068	0.16	<0.043	<0.030
	05/31/00	<0.13	<0.15	<0.02	<0.11	<0.013	<0.055	<0.074	<0.11	<0.059	<0.068	<0.066	<0.11	<0.08	<0.082	<0.072	0.13	<0.045	<0.032
	08/31/00	<0.14	<0.16	<0.021	0.23	<0.014	<0.057	<0.077	<0.12	<u>0.21</u>	<0.071	<0.069	<0.12	<0.086	<0.084	<0.075	<0.058	<0.048	<0.034
	11/21/00	<0.19	<0.21	<0.028	<0.16	<0.019	<0.077	<0.1	<0.16	<0.084	<0.096	<0.093	<0.16	<0.11	<0.12	<0.1	0.21	<0.064	<0.045
	04/02/02	0.26	<0.023	<0.020	0.034 Q	<u>0.033 Q</u>	<u>0.037 Q</u>	0.029 Q	0.031 Q	<u>0.040 Q</u>	<0.017	0.087 Q	<0.021	0.024 Q	0.039 Q	<0.028	0.24	0.048 Q	0.070
Dup (OW-97)	04/02/02	0.23	<0.046	<0.040	0.039 Q	<u>0.045 Q</u>	<u>0.047 Q</u>	0.039 Q	0.036 Q	<u>0.053 Q</u>	<0.034	0.11 Q	<0.042	0.029 Q	0.11 Q	<0.056	0.61	0.084 Q	0.093 Q
	10/28/02	0.021 Q	<0.023	<0.020	<0.019	0.017 Q	<u>0.020 Q</u>	0.018 Q	0.013 Q	<0.018	<0.017	0.032 Q	<0.021	<0.014	<0.027	<0.028	0.080 Q	0.027 Q	0.027 Q
	06/16/03	0.046 Q	<0.019	<0.020	<0.012	<0.014	<0.013	<0.016	<0.019	<0.014	<0.016	0.019 Q	<0.017	<0.021	0.034 Q	0.022 Q	0.072 Q	0.038 Q	0.019 Q
	11/20/03	<0.018	<0.019	<0.020	0.015 Q	0.019 Q	<u>0.021 Q</u>	0.016 Q	<0.019	<u>0.22 Q</u>	<0.016	0.037 Q	<0.017	<0.021	<0.018	<0.017	0.042 Q	0.024 Q	0.028 Q
	04/12/05	0.033Q	<0.019	<0.018	<0.020	<0.018	<0.018	<0.021	<0.019	<0.016	<0.022	0.018Q	<0.022	<0.017	<0.020	<0.023	0.040 Q	<0.020	<0.016
	04/11/06	<0.0083	<0.0083	<0.012	<0.016	<0.019	<0.016 Z	<0.020	<0.020 Z	<0.019	<0.019	0.020 Q	<0.0092	<0.019	<0.010	0.013 Q	0.045	<0.012	0.016 Q

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

								F	POLYNUCLEA	AR AROMAT	IC HYDROCA	ARBONS (µg/	L)						
Location	Date	Acenaphthene	Acenaphthylene	Anthracene	Benz(a) anthracene	Benzo(a)pyrene	Benzo(b) fluoranthene	Benzo(ghi) perylene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd) pyrene	1-Methyl- naphthalene	2-Methyl- naphthalene	Naphthalene	Phenanthrene	Pyrene
		-				•	Ν	NR 140 Grou	ndwater Qual	lity Standard	s (µg/L)								
NR 140 PAL		ns	ns	<u>600</u>	ns	<u>0.02</u>	<u>0.02</u>	ns	ns	<u>0.02</u>	ns	<u>80</u>	<u>80</u>	ns	ns	ns	<u>8</u>	ns	<u>50</u>
NR 140 ES		ns	ns	<u>3,000</u>	ns	<u>0.2</u>	<u>0.2</u>	ns	ns	<u>0.2</u>	ns	<u>400</u>	<u>400</u>	ns	ns	ns	<u>40</u>	ns	<u>250</u>
OW-11	02/01/00	<0.13	<0.15	<0.020	<0.11	<0.013	<0.055	<0.074	<0.11	<0.059	<0.068	<0.066	<0.11	<0.080	<0.082	<0.072	<0.056	<0.045	<0.032
	05/31/00	6.3	<0.15	0.4	0.29	0.013	<0.055	<0.074	<0.11	<u>0.20</u>	<0.068	0.95	1.7	<0.08	0.6	0.22	1.70	0.45	0.95
	08/31/00	3.4	<0.16	0.25	0.7	<u>0.21</u>	<u>0.48</u>	0.33	<0.12	<u>0.43</u>	<0.070	1.0	<0.12	0.55	<0.084	<0.074	0.22	0.33	0.96
Dup (OW-98)	08/31/00	3.1	<0.15	0.27	0.9	<0.013	<0.055	<0.074	<0.11	<u>0.49</u>	<0.068	1.1	0.51	0.50	0.27	<0.072	0.38	0.41	1.20
	11/21/00	3.3	<0.15	0.13	<0.11	<0.013	<u>0.29</u>	0.17	<0.11	<u>0.16</u>	<0.068	0.42	0.48	0.27	0.32	<0.072	0.36	0.13	0.41
Dup (OW-99)	11/21/00	3.2	<0.15	0.11	0.15	<0.013	<u>0.14</u>	0.11	<0.11	<u>0.13</u>	<0.069	0.35	0.68	<0.081	0.39	<0.072	0.09	<0.046	0.35
	04/02/02	4.2	<0.34	<0.30	<0.28	<0.18	<0.21	<0.23	<0.20	<0.27	<0.26	<0.42	0.90 Q	<0.21	<0.40	<0.42	<0.40	<0.28	<0.30
	10/28/02	1.9	<0.11	<0.100	0.096	<u>0.093 Q</u>	<u>0.095 Q</u>	<0.075	0.077 Q	<u>0.092 Q</u>	<0.085	0.21 Q	0.52	<0.070	<0.14	<0.14	<0.14	<0.095	0.24 Q
	06/16/03	4.3 D	0.14	0.059 Q	0.075	<u>0.071</u>	<u>0.058</u>	0.045 Q	0.060 Q	<u>0.060</u>	<0.016	0.17	1.2 D	0.041 Q	0.060	0.024 Q	0.061 Q	0.053	0.22
	11/20/03	2.6	<0.19	<0.20	<0.12	<0.14	<0.13	<0.16	<0.19	<0.14	<0.16	<0.13	0.63	<0.21	0.36 Q	<0.17	<0.24	<0.16	<0.17
	07/20/04	2.5D	0.072	0.027Q	<0.011	<0.013	<0.012	<0.015	<0.018	<0.013	<0.015	0.054	0.85D	<0.020	0.022Q	<0.016	<0.023	<0.015	0.068
	04/11/05	1.3D	0.043Q	0.025Q	<0.020	<0.018	<0.018	<0.021	<0.019	<0.016	<0.022	0.044Q	0.19	<0.017	0.023Q	<0.023	0.024Q	<0.020	0.068
	04/11/06	2.0	0.078 Q	<0.058	<0.079	<0.093	<0.079 Z	<0.097	<0.098 Z	<0.096	<0.095	<0.078	0.47	<0.095	0.14 Q	<0.057	1.1	<0.057	<0.073
PZ-11B	02/01/00	6.6	<0.14	0.40	<0.11	<0.012	<0.052	<0.069	<0.11	<0.056	<0.064	0.17	<0.11	<0.076	<0.077	<0.068	<0.053	0.16	0.29
	05/31/00	30	6.2	0.12	<0.11	<0.013	<0.055	<0.074	<0.11	< 0.059	<0.068	<0.066	4.7	<0.08	30	11	<u>174</u>	0.50	0.12
	08/31/00	54	<0.15	0.44	<0.11	<0.013	<0.055	<0.074	<0.11	< 0.059	<0.068	<0.066	11	<0.080	52	25	<u>344</u>	4.00	< 0.032
	11/21/00	17	<0.15	0.11	<0.11	<0.013	<0.055	<0.074	<0.11	< 0.059	<0.068	<0.066	3.3	<0.080	14	6.4	<u>38</u>	1.5	< 0.032
	04/02/02	46 Q,D	3.7	0.69 Q	<0.38	<0.24	<0.28	<0.30	<0.26	<0.36	<0.34	<0.56	7.3	<0.28	44 Q,D	<28 D	<u>290 D</u>	7.3	<0.40
	10/28/02	68 D	2.0 Q	<1.6	<1.5	< 0.96	<1.1	<1.2	<1.0	<1.4	<1.4	<2.2	8.5	<1.1	55 D	5.2 Q	<u>34</u>	7.9	<1.6
	06/16/03	20 D	<1.9 D	0.16	<0.012	< 0.014	< 0.013	<0.016	< 0.019	< 0.014	<0.016	0.032 Q	<1.7 D	<0.021	0.23	0.058	0.31	0.19	0.061
	11/20/03	23	< 0.95	<1.0	< 0.60	<0.70	< 0.65	< 0.80	< 0.95	<0.70	< 0.80	< 0.65	2.1 Q	<1.0	16	< 0.85	<u>20</u>	< 0.80	< 0.85
	07/20/04	0.018Q	<0.018	< 0.019	<0.011	< 0.013	< 0.012	< 0.015	<0.018	< 0.013	< 0.015	< 0.012	<0.016	< 0.020	< 0.017	< 0.016	< 0.023	< 0.015	<0.016
	04/11/05	0.034Q	<0.019	< 0.018	< 0.020	< 0.018	< 0.018	< 0.021	< 0.019	< 0.016	< 0.022	< 0.016	<0.022	< 0.017	< 0.020	< 0.023	< 0.022	< 0.020	< 0.016
	10/03/05	0.023 Q	0.0096 Q	< 0.012	< 0.016	<0.018	<0.016 Z	< 0.019	<0.019 Z	< 0.019	< 0.019	< 0.015	0.0091 Q	< 0.019	0.019 Q	< 0.011	0.14 Q	0.015 Q	< 0.015
	04/11/06	<0.0082	<0.0082	<0.012	<0.016	<0.019	<0.016 Z	<0.019	<0.020 Z	<0.019	<0.019	<0.016	<0.0091	<0.019	<0.010	<0.011	0.026 Q	0.013 Q	<0.015

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

USEPA WIN000509983 / BRRTS # 02-50-000079 / FID # 750081200

								F	POLYNUCLE	AR AROMATI		ARBONS (µg/	L)						
Location	Date	Acenaphthene	Acenaphthylene	Anthracene	Benz(a) anthracene	Benzo(a)pyrene	Benzo(b) fluoranthene	Benzo(ghi) perylene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd) pyrene	1-Methyl- naphthalene	2-Methyl- naphthalene	Naphthalene	Phenanthrene	Pyrene
								NR 140 Grou	ndwater Qua	ity Standard	s (µg/L)		•						
NR 140 PAL		ns	ns	<u>600</u>	ns	<u>0.02</u>	<u>0.02</u>	ns	ns	<u>0.02</u>	ns	<u>80</u>	<u>80</u>	ns	ns	ns	<u>8</u>	ns	<u>50</u>
NR 140 ES	2	ns	ns	<u>3,000</u>	ns	<u>0.2</u>	<u>0.2</u>	ns	ns	<u>0.2</u>	ns	<u>400</u>	<u>400</u>	ns	ns	ns	<u>40</u>	ns	<u>250</u>
OW-12	10/12/2004 ^D	23 D	0.36	<1.8 D	0.046 Q	<u>0.030 Q</u>	<u>0.025 Q</u>	<0.021	0.022 Q	<u>0.039 Q</u>	<0.022	2.3 D,Q	13 D	<0.017	4.1 D,Q	0.094 B	2.5 D,Q	19 D	<1.6 D
	01/25/05	24	<2.0	2.7Q	<2.0	<1.8	<1.8	<2.1	<2.0	<1.7	<2.2	2.1Q	8.5	<1.7	19	7.7Q	<u>79D</u>	15	<1.7
	04/12/05	20	<1.9	5.0Q	<2.0	<1.8	<1.8	<2.1	<1.9	<1.6	<2.2	2.0Q	7.2Q	<1.7	6.6Q	<2.3	3.8 Q	12	<1.6
	07/11/05	16	<0.41	1.6 Q	<0.78	<0.92	<0.78 Z	<0.96	<0.97 Z	<0.95	<0.94	1.3 Q	4.7	<0.94	7.5	<0.56	2.1	6.2	0.82 Q
	10/03/05	14	<0.41	1.7 Q	<0.78	<0.92	<0.78 Z	<0.96	<0.97 Z	<0.95	<0.94	2.3 Q	6.6	<0.94	4.5	<0.56	<u>13</u>	13	1.5 Q
	01/05/06	21 D	0.46	4.1 D	0.18	<u>0.16</u>	<u>0.15 Z</u>	0.10	<1.9 ZD	<u>0.14</u>	0.020 Q	2.7 QD	8.8 D	0.084	9.3 D	1.5 QD	<u>27 D</u>	17 D	2.0 QD
	04/11/06	<0.0082	0.022 Q	< 0.012	0.026 Q	<u>0.023 Q</u>	0.017 QZ	< 0.019	0.020 QZ	<u>0.023 Q</u>	< 0.019	0.042 Q	< 0.0091	< 0.019	<0.010	< 0.011	0.013 Q	0.012 Q	0.037 Q
Dup (QC02)	04/11/06	<0.0082	0.017 Q	< 0.012	0.038 Q	<u>0.031 Q</u>	<u>0.021 QZ</u>	< 0.019	0.027 QZ	<u>0.034 Q</u>	< 0.019	0.064	<0.0091	< 0.019	<0.010	<0.011	<0.012	0.014 Q	0.054
PZ-12B	10/12/04	26 D	6.7 D,Q	0.21	<0.020	<0.018	<0.018	<0.021	<0.019	<0.016	<0.022	0.047 Q	<5.4 D	<0.017	36 D	<5.7 D	<u>160 D</u>	<5.1 D	0.041 Q
	01/25/05 04/12/05	160D 39	42 5.3 Q	7.6 1.9 Q	<2.0 <2.0	<1.8 <1.8	<1.8 <1.8	<2.1 <2.1	<1.9 <1.9	<1.6 <1.6	<2.2 <2.2	<1.6 <1.6	35 5.5 Q	<1.7 <1.7	160QD 24	14 <2.3	<u>830 D</u>	47 7	<1.6 <1.6
	04/12/05	39 91 D	5.3 Q 14	7.2	<2.0 <1.6	<1.0 <1.8	<1.6 Z	<2.1 <1.9	<1.9 <1.9 Z	<1.6 <1.9	<2.2	<1.6 <1.5	5.5 Q 15	<1.7 <1.9	24 88 D	<2.3 14	<u>8.3</u> <u>21</u>	28	<1.6 <1.5
	10/03/05	0.016 Q	0.038	0.024 Q	0.066	<u>0.064</u>	<u>0.057 Z</u>	0.051 Q	0.044 QZ	0.065	<0.019	0.13	<0.0091	0.039 Q	0.016 Q	<0.011	0.12 Q	0.069	0.18
	01/05/06	0.010 Q	0.033	0.024 Q 0.012 Q	<0.000	0.019 Q	<u>0.037 Z</u> <u>0.024 QZ</u>	0.031 Q 0.021 Q	<0.044 QZ	<0.019	<0.019	0.13 0.045 Q	0.055	<0.039 Q <0.019	0.010 Q	0.030 Q	0.12 Q 0.58 D	0.009	0.18 0.046 Q
	04/11/06	9.9 D	0.033	1.2 QD	<0.016	<0.019 Q	<0.016 Z	<0.021 Q	<0.020 Z <0.019 Z	<0.019	<0.019	1.3 QD	6.0 D	<0.019	1.8 D	0.030 Q	0.38 D 0.74 QD	5.1 D	0.040 Q 0.94 E
PZ-13B	10/12/04	<0.019	<0.019	<0.018	0.032 Q	<u>0.026 Q</u>	<u>0.021 Q</u>	<0.013	0.020 Q	<u>0.026 Q</u>	<0.013	0.045 Q	< 0.022	<0.013	0.033 B,Q	<0.023	0.099 B	0.022 Q	0.046 Q
	01/25/05	0.028Q	<0.020	<0.018	<0.022 @	<0.018	<0.018	<0.021	<0.019	0.018 Q	<0.022	0.031Q	<0.022	<0.017	0.059Q	<0.020 0.045Q	0.44B	0.022 Q	0.027Q
	04/11/05	0.055Q	< 0.019	< 0.018	0.025Q	0.029Q	0.039Q	0.026Q	0.029Q	0.035 Q	<0.022	0.058	< 0.022	0.021Q	<0.020	< 0.023	<0.022	0.046Q	0.055
	10/03/05	0.040	<0.0081	< 0.012	< 0.016	< 0.018	<0.016 Z	< 0.019	<0.019 Z	< 0.019	< 0.019	< 0.015	0.010 Q	< 0.019	0.015 Q	0.022 Q	0.067 Q	0.012 Q	< 0.015
	04/11/06	<0.0082	<0.0081	<0.012	<0.016	<0.018	<0.016 Z	<0.019	<0.019 Z	<0.019	<0.019	0.029 Q	<0.0091	<0.019	<0.010	<0.011	<0.012	0.014 Q	0.023 Q

Notes:

1) Concentrations that attain/exceed an NR 140 Preventive Action Limit (PAL) are shown underlined/italicized.

2) Concentrations that attain/exceed an NR 140 Enforcement Standard (ES) are shown bold/underlined.

<1.9 : Parameter not detected above the limit of detection indicated.

*: Laboratory note - Duplicate analyses not within control limits.

&: Laboratory note - Laboratory Control Spike recovery not within control limits.

B : Laboratory note - Analyte present in the method blank.

D: Laboratory note - Analyte value from diluted analysis, or surrogate result not applicable due to sample dilution. The may put the LOD above the NR 140 Standards.

E: Laboratory note - Analyte concentration exceed calibration range.

Q: Laboratory note - The analyte was detected between the limit of detection (LOD) and limit of quantitation (LOQ). Results qualified due to the uncertainty of values in this range.

Z: Laboratory note - The analyte was separated in the check standard, but it did not meet the resolution criteria as set forth in SW846.

nd : Not detected

ns: NR 140 groundwater standards have not been established.

--: Analysis not performed

Dup (OW-98) : Field duplicate sample with field identity in parentheses.

µg/L : Micrograms per liter.

mg/L : Milligrams per liter.

[O-?, U-EPK/PAR 5/05][U-PAR/RLH 8/05][U-EPK/PAR 6/06]

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

					N	atural Attenuation	Monitoring Pa	rameters			
			Labor	atory Analytical F	Parameters				Id Measurement Pa	arameters	
Location	Date	Nitrate + Nitrite (mg/L) ²	Sulfate (mg/L)	Iron, Dissolved (mg/L)	Methane (µg/L)	Alkalinity (mg/L)	pH (s.u.)	Temperature (°C)	Conductivity (Ohms/cm)	Dissolved Oxygen (mg/L)	Oxidation / Reduction Potential (mV)
		-	· · · · ·	NF	R 140 Wisconsin Gr	oundwater Quality	v Standards				
NR 140 PAL		<u>2</u>	<u>125</u>	<u>0.15</u>	ns	ns	ns	ns	ns	ns	ns
NR 140 ES		<u>10</u>	<u>250</u>	<u>0.3</u>	ns	ns	ns	ns	ns	ns	ns
OW-1	06/23/99						7.90	20.94	0.047	1.32	179
	05/31/00						6.24	15.25	0.000	4.48	300
	08/31/00							Instrument malf	unction, measureme	ents were not collect	ed
	04/02/02						6.94	9.13	0.002	4.81	499
	10/28/02						6.85	13.26	0.732	5.93	350
	06/16/03							9.58	0.478	1.35	100
	04/11/05	<0.061	<0.83	<u>30</u>	150	230	6.84	9.57	1.17	0.47	237
	04/11/06	0.25 Q	<u>240</u>	<u>20</u>	260	260	6.32	10.03	1.121	0.48	-125
OW-2	06/23/99						8.49	15.07	0.33	1.96	146
	05/31/00						6.70	11.87	0.148	3.67	212
	08/31/00							Instrument malf	unction, measureme	ents were not collect	ed
	04/02/02	0.031 Q	9.4	<u>12</u>	7,400		7.37	6.53	0.412	1.4	316
	10/28/02	0.39 H	2.5 Q	<u>17</u>	5,300		7.14	15.62	0.294	3.29	332
	06/16/03	<0.047 A	19	<u>9.4</u>	4,100			11.64	0.214	1.51	91
	11/20/03	0.055 Q	3.5 Q	<u>14</u>	4,300						
	04/11/05	<0.061	2.4Q	<u>11</u>	6,200	120	6.77	5.82	0.56	0.28	148
	04/11/06	<0.11	3.7	<u>11</u>	3,800	100	6.76	8.31	0.522	0.21	119
OW-3R	02/01/00	<0.069	4.3	<u>28</u>	3,420	176				ents were not collect	ed
	05/31/00	<0.069	<u>866</u>	<u>9.5</u>	3,320	264	7.24	11.11	4.674	2.46	146
	08/31/00	<0.069	<u>626</u>	<u>61</u>	976	244	6.89	15.89	3.176	1.35	204
	11/21/00	<0.069	9.1	<u>48</u>	2,080	137	6.47	13.04	0.582	2.8	174
	04/02/02	0.057	<u>910</u>	<u>4.4</u>	350		7.13	6.98	3.183	3.4	291
	10/28/02	0.14 H	<u>200</u>	<u>31</u>	750		6.93	13.47	1.263	2.4	303
	06/16/03	0.42 A	<u>270</u>	<u>3.6</u>	150			12.85	1.15	1.58	105
	11/20/03	0.060 Q	<u>380</u>	<u>63</u>	1,400						
	04/11/05	<0.061	<u>320</u>	<u>33</u>	950	450	6.90	7.76	4.76	0.40	227
	04/11/06	<0.11	<u>250</u>	<u>16</u>	260	490	6.79	8.47	0.616	0.24	93

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

		I			N	atural Attenuation	Monitoring Pa	rameters			
			Labo	ratory Analytical P	arameters				ld Measurement Pa	arameters	
Location	Date	Nitrate + Nitrite (mg/L) ²	Sulfate (mg/L)	(mg/L)	Methane (µg/L)	Alkalinity (mg/L)	pH (s.u.)	femperature (°C)	Conductivity (Ohms/cm)	Dissolved Oxygen (mg/L)	Oxidation / Reduction Potential (mV)
	2410	2 🤇	0		140 Wisconsin Gr			F	00		<u>OFF</u>
NR 140 PAL		<u>2</u>	<u>125</u>	<u>0.15</u>	ns	ns	ns	ns	ns	ns	ns
NR 140 ES		<u>10</u>	<u>250</u>	<u>0.3</u>	ns	ns	ns	ns	ns	ns	ns
PZ-3B	07/09/96							12	0.378	4.95	335
	09/03/97	0.23	6.2	<u>6.4</u>			7.21	16.95	0.172	4.95	335
	06/23/99	na	na	2.34			7.59	15.12	0.17	3.48	214
	02/01/00	<0.069	<0.26	<u>6</u>		63		Instrument malf	unction, measureme	ents were not collect	ed
	05/31/00	<0.069	<0.38	<u>10</u>		70	7.16	12.02	0.162	3.08	198
	08/31/00	<0.069	<0.38	<u>4.0</u>	2,200	61	7.28	15.89	0.246	1.83	151
	04/02/02	0.017 Q,A	3.3 A	<u>7.2</u>	1,400		7.41	8.27	0.171	3.19	246
	10/28/02	<0.022 H	<1.1	<u>9.1</u>	1,400		7.45	15.04	0.131	2.8	265
	06/16/03	<0.047 A	<1.1	<u>8.5</u>	410			9.86	0.089	2.16	90
dup (QC-01)	06/16/03	0.53	<u>370</u>	<u>2.7</u>	270						
	11/20/03	0.048 Q	<1.1	7.7	1,400						
	04/11/05	0.12 Q	<0.83	<u>5.8</u>	190	78	7.09	9.53	0.19	2.60	267
	04/11/06	0.26 Q	9.9	<0.050	14	45	6.41	8.98	0.181	0.38	-50
dup (QC01)	04/11/06	0.27 Q	2.9	<0.050	<10	49					
OW-4	06/23/99	0.07	15	<u>15</u>		64	8.86	13.95	0.203	1.39	106
	02/01/00	0.069	<0.26	<u>6.8</u>		63		Instrument malf	unction, measureme	ents were not collect	ed
	05/31/00	<0.069	<0.38	<u>9.9</u>		64	6.85	10.57	0.3	1.59	143
	08/31/00	<0.069	<0.38	<u>12</u>		54	6.78	15.62	0.287	1.02	222
	11/21/00	<0.069	<0.38	<u>12</u>		65	6.84	11.32	0.26	5.15	169
	04/02/02	0.029 Q,A	8.9	<u>5.1</u>			7.32	6.53	0.317	3.39	269
	10/28/02	<0.022 H	2.7 Q	<u>15</u>			7.36	12.99	0.38	3.69	314
	06/16/03	<0.047 A	2.6 Q	<u>5.6</u>				10.32	0.111	0.36	82
	11/20/03	0.052 Q	<1.1	<u>11</u>							
	04/11/05	<0.061	1.6 Q	<u>18</u>	2,800	140	6.96	7.51	0.50	0.39	259
Dup (QC-1)	04/11/05	<0.061N	1.5 Q	<u>19</u>	2,700	100					
	04/11/06	<0.11	2.3 Q	22	2,300	110	6.84	8.26	2.54	0.24	117
OW-5A	08/16/96			<u>0.17</u>							
	09/04/97	0.069	6.7	<u>14</u>			5.73	15.85	0.687	2.66	189

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

						atural Attenuation	Monitoring Par				
			Labor	ratory Analytical P	arameters				Id Measurement Pa	arameters	
Location	Date	Nitrate + Nitrite (mg/L) ²	Sulfate (mg/L)	(mg/L)	Methane (µg/L)	Alkalinity (mg/L)	pH (s.u.)	Temperature (°C)	Conductivity (Ohms/cm)	Dissolved Oxygen (mg/L)	Oxidation / Reduction Potential (mV)
				NR	140 Wisconsin Gro	oundwater Quality	/ Standards				
NR 140 PAL		<u>2</u>	<u>125</u>	<u>0.15</u>	ns	ns	ns	ns	ns	ns	ns
NR 140 ES		<u>10</u>	<u>250</u>	<u>0.3</u>	ns	ns	ns	ns	ns	ns	ns
OW-5R	02/01/00	<0.069	<u>2,220</u>	<u>154</u>	293	388		Instrument malf	unction, measureme	ents were not collect	ed
	05/31/00	<0.069	<u>2,030</u>	<u>49</u>	153	346	6.66	10.78	3.811	1.91	164
	08/31/00	<0.069	<u>2,070</u>	<u>52</u>	264	352	6.65	17.12	3.972	4.66	270
	11/21/00	0.13	<u>989</u>	<u>69</u>	349	357	6.50	11.21	3.811	2.84	201
	04/02/02	0.044 Q,A	<u>1,400</u>	<u>32</u>	150		7.30	6.56	2.754	3.67	194
	10/28/02	0.38 H	<u>940</u>	<u>16</u>	120		7.35	13.34	1.100	0.77	373
	06/16/03	1.8	<u>270</u>	0.024	11			10.07	0.639	2.22	102
	11/20/03	<0.047	<u>770</u>	<u>33</u>	420						
	04/20/04	0.30	420	<u>8.7</u>	42	320	6.86	8.41	1.297	1.74	-76
	07/20/04	0.94	<u>470</u>	<u>8.4</u>	45	360	7.23	14.11	1.520	0.67	11
	10/12/04	<0.063	<u>480</u>	<u>34</u>	690	300	7.40	13.15	1.550	0.59	213
dup (QC-1)	10/12/04	<0.063	<u>450</u>	<u>37</u>	1,500	320					
	01/25/05	<0.063	<u>310</u>	<u>27</u>	1,100	300	7.98	9.23	0.392	1.22	139.3
dup (QC-1)	01/25/05	0.065Q	<u>690</u>	<u>26</u>	700	300	7.98	9.23	0.392	1.22	139.3
	04/11/05	<0.061	<u>410</u>	<u>30</u>	190	360	6.82	10.21	0.36	0.32	269
	07/11/05	<0.061	<u>340</u>	<u>23</u>	34	350	7.68	14.06	1.41	2.06	75
	10/03/05	<0.061	<u>400</u>	<u>11</u>	49	350	7.48	18.25	1.39	1.10	-8
	01/05/06	0.083 Q	<u>380</u>	<u>20</u>	55	300	7.11	6.70	1.40	1.25	283
	04/11/06	<0.11	<u>250</u>	22	97	350	6.57	8.06	1.311	1.06	-153

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

						atural Attenuation	Monitoring Par				
			Labor	atory Analytical P	arameters				Id Measurement Pa	arameters	
Location	Date	Nitrate + Nitrite (mg/L) ²	Sulfate (mg/L)	Iron, Dissolved (mg/L)	Methane (µg/L)	Alkalinity (mg/L)	Hq (s.u.)	Temperature (°C)	Conductivity (Ohms/cm)	Dissolved Oxygen (mg/L)	Oxidation / Reduction Potential (mV)
		-			140 Wisconsin Gro	oundwater Quality	/ Standards				
NR 140 PAL		<u>2</u>	<u>125</u>	<u>0.15</u>	ns	ns	ns	ns	ns	ns	ns
NR 140 ES		<u>10</u>	<u>250</u>	<u>0.3</u>	ns	ns	ns	ns	ns	ns	ns
P-5B	09/04/97	0.022	6.2	2.2			6.7	14.95	0.26	3.36	139
	06/23/99	0.07	5.4	2.3	1,200	100	8.95	12.92	0.199	2.43	84
dup (OW-99)	06/23/99	0.089	13	<u>2.9</u>	410	120					
	02/01/00	<0.069	8.3	<u>1.9</u>	1,140	107		Instrument malf	unction, measureme	ents were not collect	ed
	05/31/00	<0.069	0.8	0.032	62	118	7.27	11.18	0.282	2.98	107
dup (MW-98)	05/31/00	<0.069	<0.32	0.041	214	115	7.27	11.18	0.282	2.98	107
	08/31/00	<0.069	1.9	2.7	1,430	119	7.28	15.05	0.306	1.84	175
	11/21/00	<0.069	2.2	<u>1.2</u>	1,210	121	7.00	12.33	0.329	3.80	174
	04/02/02	<0.014	12	<u>1.1</u>	780		7.65	8.23	0.345	3.81	168
	10/28/02	<0.022 H	<1.1	<u>4.1</u>	610		7.81	13.46	0.235	0.28	367
	06/16/03	<0.047 A	13	<u>2.9</u>	290			9.18	0.187	1.28	104
	11/20/03	<0.047	<1.1	<u>4.7</u>	750						
	04/20/04	< 0.063	0.71 Q	<u>2.5</u>	380	150	6.98	9.60	0.355	1.60	-83
dup (QC-1)	04/20/04	< 0.063	0.73 Q	<u>2.5</u>	630	150					
	07/20/04	<0.063	1.3	<u>3.5</u>	460	150	6.91	12.68	0.370	0.83	180
	10/12/04	<0.063	0.77 Q	<u>3.3</u>	640	140	7.64	10.08	0.370	2.58	245
	01/25/05	<0.063	0.69Q	<u>6.4</u>	800	150	7.92	8.97	0.370	1.81	132.4
	04/11/05	<0.061	<0.83	<u>1.5</u>	160	150	6.94	6.89	1.23	0.75	94
	07/11/05	<0.061	<0.83	<u>3.6</u>	250	140	7.53	11.52	0.37	0.77	79
	10/03/05	<0.061	<0.83	3.5 E	560	140	6.55	13.90	0.35	0.30	-389
	01/05/06	0.080 Q	1.8 Q	0.88	270	140	7.10	8.93	0.35	0.40	83
	04/11/06	<0.11	1.9 Q	<u>1.7</u>	230	140	6.74	10.07	0.361	0.22	84

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

					N	atural Attenuation	Monitoring Par	ameters			
			Labora	atory Analytical F				Fie	Id Measurement Pa	rameters	
Location	Date	Nitrate + Nitrite (mg/L) ²	Sulfate (mg/L)	Iron, Dissolved (mg/L)	Methane (µg/L)	Alkalinity (mg/L)	pH (s.u.)	Temperature (°C)	Conductivity (Ohms/cm)	Dissolved Oxygen (mg/L)	Oxidation / Reduction Potential (mV)
				NR	140 Wisconsin Gr	oundwater Quality	/ Standards				
NR 140 PAL		<u>2</u>	<u>125</u>	<u>0.15</u>	ns	ns	ns	ns	ns	ns	ns
NR 140 ES		<u>10</u>	<u>250</u>	<u>0.3</u>	ns	ns	ns	ns	ns	ns	ns
OW-6	06/23/99						8.82	13.12	0.522	2.14	94
	05/31/00						6.21	12.04	0.239	3.4	281
	08/31/00						6.83	14.34	1.034	3.6	196
	11/21/00						6.49	12.00	0.337	5.73	199
	04/02/02						7.28	6.47	0.380	4.58	234
	10/28/02						7.05	13.41	0.484	4.19	290
	06/16/03							9.19	0.171	1.78	120
	07/20/04	<0.063	3.7	<u>9.3</u>	2,000	130	7.49	11.68	0.353	0.41	-2
	04/11/05	<0.061	4.9	<u>12</u>	4,900	110	6.66	7.44	0.001	0.38	119
	10/03/05	<0.061	11	<u>4.1</u>	1,600	350	6.96	16.93	0.88	0.34	-329
	04/11/06	<0.11	6.2	<u>11</u>	6,800	95	5.98	7.40	0.494	0.33	-126
OW-7	09/03/97	0.066	1.5	<u>10</u>			6.44	16.52	0.175	2.43	140
	04/20/04				At	pandoned April 199	8. Well was not	replaced.			
OW-7A	06/23/99	0.2	18	<u>19</u>	6,500	180	8.85	12.53	0.66	1.27	104
	02/01/00	0.071	<0.26	<u>8.7</u>	12,000	94		Instrument malf	unction, measureme	ents were not collect	ed
	05/31/00	<0.069	<0.38	<u>5.3</u>	8,300	106	6.55	10.54	0.343	2.72	178
	08/31/00	<0.069	<0.38	<u>14</u>	7,140	223	6.81	7.35	1.081	8.65	192
	11/21/00	<0.069	<0.38	<u>8.4</u>	8,820	127	6.47	10.81	0.44	4.53	193
	04/02/02	0.026 Q,A	5.4 A	<u>6.4</u>	7,800		7.21	6.57	0.391	2.96	226
	10/28/02	<0.022 H	<1.1	<u>20</u>	5,200		7.14	13.96	0.507	4.92	385
	06/16/03	<0.047 A	3.0 Q	<u>4.3</u>	2,600			8.82	0.278	1.05	110
	11/20/03	0.060 Q	<1.1	<u>12</u>	5,700						
	04/20/04	<0.063	2.3	<u>8.4</u>	3,200	94	6.72	7.17	0.487	2.75	-119
	07/20/04	<0.063	0.67Q	<u>20</u>	3,500	250	7.33	13.03	0.973	0.46	20
	10/12/04	<0.063	3.5	<u>25</u>	6,400	210	7.42	14.64	0.910	1.13	195
	01/25/05	<0.063	0.96 Q	<u>12</u>	4,900	130	8.07	9.28	1.447	1.21	92.0
	04/11/05	<0.061	1.3Q	<u>8.3</u>	6,100	110	6.67	7.77	0.54	0.26	113
	07/11/05	<0.061	<0.83	<u>16.0</u>	5,400	150	7.64	14.69	0.25	0.73	70
	10/03/05	<0.061	<0.83	<u>26</u>	7,100	210	6.18	17.49	1.26	0.44	-319
dup (QC-01)	10/03/05	<0.061	<0.83	<u>27</u>	3,400	210					
	01/05/06	<0.061	1.9 QN	<u>13</u>	4,900	130	6.68	8.82	0.61	0.78	237
	04/11/06	<0.11	2.2 Q	<u>8.2</u>	7,100	100	6.40	7.29	0.507	0.70	-157

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

						atural Attenuation	Monitoring Pa						
			Labor	atory Analytical P	arameters			Field Measurement Parameters					
Location	Date	Nitrate + Nitrite (mg/L) ²	Sulfate (mg/L)	Iron, Dissolved (mg/L)	Methane (µg/L)	Alkalinity (mg/L)	pH (s.u.)	Temperature (°C)	Conductivity (Ohms/cm)	Dissolved Oxygen (mg/L)	Oxidation / Reduction Potential (mV)		
		-		NR	140 Wisconsin Gr	oundwater Quality	/ Standards						
NR 140 PAL		<u>2</u>	<u>125</u>	<u>0.15</u>	ns	ns	ns	ns	ns	ns	ns		
NR 140 ES		<u>10</u>	<u>250</u>	<u>0.3</u>	ns	ns	ns	ns	ns	ns	ns		
PZ-7B	07/09/96							13	0.278				
	09/03/97	0.051	14	<u>4.3</u>			6.88	16.9	0.235	2.83	190		
	06/23/99	0.17	11	<u>0.22</u>	1,600	130	8.85	11.69	0.177	1.97	113		
	02/01/00	<0.069	<0.26	<u>0.16</u>	1,530	113		Instrument malf	unction, measureme	ents were not collect	ed		
	05/31/00	<0.069	<0.38	0.065	1,520	125	7.19	10.6	0.207	3.2	189		
	08/31/00	<0.069	<0.38	0.064	1,820	116	7.35	9.8	0.298	5.28	172		
	11/21/00	<0.069	2.6	0.091	1,250	120	6.91	12.89	0.23	4.18	173		
	04/02/02	<0.014 *	3.3 A	<u>0.63</u>	960		7.66	7.23	0.241	3.92	189		
	10/28/02	<0.022 H	<1.1	<u>1.5</u>	850		7.35	14.80	0.150	4.64	281		
	06/16/03	<0.047 A	<1.1	<u>1.7</u>	710			8.56	0.132	1.11	112		
Dup (QC-02)	06/16/03	<0.047	<1.1	<u>1.3</u>									
	11/20/03	<0.047	<1.1	<u>2</u>	1,000								
	04/20/04	< 0.063	0.72 Q	<u>2</u>	1,000	99	7.25	9.63	0.227	1.29	-109		
	07/20/04	< 0.063	<0.37	2.9	1,100	97	7.05	11.79	0.236	2.73	188		
	10/12/04	<0.063	53	<u>3.1</u>	1,500	47	7.58	12.30	0.240	0.55	222		
	01/25/05	< 0.063	<0.36	<u>2.2</u>	980	120	8.05	9.70	0.229	2.00	86.7		
	04/11/05	<0.061	<0.83	<u>1.6</u>	1,500	110	6.92	10.96	0.25	0.37	337		
	07/11/05	<0.061	<0.83	<u>3</u>	1,200	100	7.61	12.59	0.25	0.81	54		
Dup(QC-1)	07/11/05	<0.061	<0.83	<u>3.1</u>	1,400	100							
	10/03/05	<0.061	<0.83	<u>3</u>	1900	96	7.31	16.57	0.26	0.54	-83		
	01/05/06	<0.061	<0.83	<u>3</u>	1200	95	7.33	10.01	0.25	0.40	63		
dup (QC-01)	01/05/06	<0.061	<0.83	<u>3</u>	2100	96 Q							
	04/11/06	<0.11	<0.77	<u>2</u>	830	94	6.53	9.19	0.251	0.17	99		

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

		Natural Attenuation Monitoring Parameters											
			Labor	atory Analytical F			Ŭ	Fie	Id Measurement Pa	arameters			
Location	Date	Nitrate + Nitrite (mg/L) ²	Sulfate (mg/L)	(mg/L)	Methane (µg/L)	Alkalinity (mg/L)	pH (s.u.)	Temperature (°C)	Conductivity (Ohms/cm)	Dissolved Oxygen (mg/L)	Oxidation / Reduction Potential (mV)		
			•,	= =	140 Wisconsin Gro	oundwater Quality				- v	<u>v</u> E E		
NR 140 PAL		<u>2</u>	<u>125</u>	<u>0.15</u>	ns	ns	ns	ns	ns	ns	ns		
NR 140 ES		<u>10</u>	<u>250</u>	<u>0.3</u>	ns	ns	ns	ns	ns	ns	ns		
OW-8	09/03/97	0.12	6.6	<u>31</u>			6.37	15.17	0.237	1.45	129		
	06/23/99	0.33	4.9	<u>29</u>		56	8.8	14.85	0.26	2.48	116		
	02/01/00	<0.069	<0.26	<u>15</u>		85		Instrument malf	unction, measureme	ents were not collecte	ed		
	05/31/00	<0.069	0.52	<u>20</u>		107	6.92	11.82	0.395	2.2	141		
	08/31/00	<0.069	5.8	<u>28</u>		101	6.87	14.31	0.465	3.52	159		
	11/21/00	<0.069	0.51	<u>19</u>		95	6.84	12.89	0.294	8.73	166		
	04/02/02	0.028 Q,A	4.4 A	<u>11</u>			7.48	7.29	0.225	3.42	212		
	10/28/02	<0.022 H	<1.1	<u>23</u>			6.97	14.19	0.277	2.40	266		
	06/16/03	<0.047 A	<1.1	<u>14</u>				12.21	0.118	1.52	67		
	11/20/03	0.050 Q	<1.1	<u>35</u>									
	04/11/05	<0.061	<0.83	<u>24</u>	2,300	70	6.63	7.47	0.32	0.62	236		
	04/11/06	<0.11	<0.77	<u>40</u>	2,900	58	6.23	8.50	0.227	0.46	-169		
OW-9	06/23/99	0.62	42	<u>21</u>		140	8.59	11.01	0.517	0.64	125		
dup (OW-98)	06/23/99	0.71	42	<u>19</u>		160							
	02/01/00	0.079	6.1	<u>14</u>		127		Instrument malf	unction, measureme	ents were not collecte	ed		
	05/31/00	<0.069	68	<u>23</u>		197	6.62	11.01	0.775	2.53	143		
	08/31/00	<0.069	73	<u>28</u>		107	7.04	13.98	0.562	3.41	201		
dup (OW-99)	08/31/00	<0.069	71	<u>30</u>		128							
	11/21/00	<0.069	75	<u>24</u>		163	6.49	13.39	0.811	2.31	208		
	04/02/02	0.043 Q,A	250	<u>14</u>			7.62	10.07	1.005	3.82	258		
dup (OW-98)	04/02/02	0.026 Q	<u>220</u>	<u>12</u>									
	10/28/02	<0.022 H	<u>270</u>	<u>20</u>			6.95	13.13	0.680	3.45	201		
	06/16/03	0.34 A	<u>200</u>	<u>16</u>				9.59	0.589	0.58	124		
	11/20/03	0.048 Q	<u>230</u>	<u>13</u>									
dup (QC-1)	11/20/03	<0.047	<u>240</u>	<u>13</u>									
	07/20/04	<0.063	<u>250</u>	<u>12</u>	750	210	7.29	11.80	1.111	0.66	34		
	04/12/05	<0.061	2.2 Q	<u>8.8</u>	1,900	210	6.81	9.76	0.63	0.80	153		
	10/03/05	<0.061	15	<u>11</u>	3,300	230	6.24	15.05	0.67	0.28	-372		
	04/11/06	<0.11	15	<u>10</u>	2,100	250	6.56	10.17	0.793	0.14	68		

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

			Natural Attenuation Monitoring Parameters Laboratory Analytical Parameters Field Measurement Parameters												
			Labo	ratory Analytical Pa	arameters				Id Measurement Pa	arameters					
Location	Date	Nitrate + Nitrite (mg/L) ²	Sulfate (mg/L)	Iron, Dissolved (mg/L)	Methane (µg/L)	Alkalinity (mg/L)	(.u.s) Hq	Femperature (°C)	Conductivity (Ohms/cm)	Dissolved Oxygen (mg/L)	Oxidation / Reduction Potential (mV)				
					140 Wisconsin Gr						011				
NR 140 PAL		<u>2</u>	<u>125</u>	<u>0.15</u>	ns	ns	ns	ns	ns	ns	ns				
NR 140 ES		<u>10</u>	<u>250</u>	<u>0.3</u>	ns	ns	ns	ns	ns	ns	ns				
PZ-9B	06/23/99	<0.017	10	<0.024		110	7.78	12.07	0.424	3.55	181				
	02/01/00	<0.069	10	0.12		108		Instrument malf	unction, measureme	ents were not collect	ed				
	05/31/00	<0.069	9.4	0.041		107	7.45	11.41	0.533	5.48	179				
	08/31/00	<0.069	7.6	<u>1.0</u>	86	106	6.62	12.80	0.717	2.38	206				
	11/21/00	<0.069	4.9	0.12		111	7.50	12.89	0.559	11.2	402				
	04/02/02	<0.014	12	0.13	40		7.54	9.92	0.577	4.65	225				
	10/28/02	<0.022 H	19	<61	<10		7.00	13.59	0.381	3.26	267				
	06/16/03	<0.047 A	18	0.10	13			10.18	0.328	0.81	131				
	11/20/03	<0.047		<u>0.20</u>	120										
	07/20/04	<0.063	9.1	<u>0.8</u>	<10	110	6.91	13.46	0.532	2.73	356				
Dup(QC-1)	07/20/04	<0.063	9.0	0.65	<10	110									
	04/12/05	0.12Q	11	<u>3.3</u>	<10	120	7.20	9.45	0.55	7.77	451				
	10/03/05	0.066 Q	11	<u>3.4</u>	<10	110	7.28	15.15	0.57	4.08	33				
	04/11/06	<0.11	11	<u>3.2</u>	18	110	7.18	10.76	0.577	4.64	5				
OW-10	06/23/99	0.35	73	<u>0.34</u>		880	8.45	11.53	0.659	1.94	133				
	02/01/00	0.099	2.2	<u>5.5</u>		988		Instrument malf	unction, measureme	ents were not collect	ed				
	05/31/00	<0.069	32	<u>0.89</u>		1030	7.07	11.05	6.251	3.02	178				
	08/31/00	<0.069	31	<u>1.9</u>		704	7.11	13.61	6.588	0.91	155				
	11/21/00	<0.069	11	<u>0.88</u>		921	6.91	13.39	6.220	2.50	150				
dup (OW-98)	11/21/00	0.099	10	<u>4.5</u>		912									
	04/02/02	0.16	16	<u>1.2</u>			7.52	8.88	7.364	5.01	296				
dup (OW-99)	04/02/02	0.12	18	<u>11</u>											
	10/28/02	0.041 H, Q	51	<u>1.5</u>			6.95	13.26	1.412	1.98	275				
	06/16/03	0.14 Q,A	<u>210</u>	<0.018				10.39	3.390	1.24	52				
	11/20/03	0.061 Q	9.5	<u>44</u>											
dup (QC-2)	11/20/03	<0.047	10	<u>45</u>											
	04/12/05	<0.061	16	<u>13</u>	2,000	670	7.20	8.44	6.82	0.22	67				
	04/11/06	<0.11	4.4	<u>17</u>	3,200	890	6.76	8.99	9.13	0.51	101				

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

		Natural Attenuation Monitoring Parameters Laboratory Analytical Parameters Field Measurement Parameters												
			Labo	ratory Analytical Pa	arameters				Id Measurement Pa	arameters				
Location	Date	Nitrate + Nitrite (mg/L) ²	Sulfate (mg/L)	Iron, Dissolved (mg/L)	Methane (µg/L)	Alkalinity (mg/L)	pH (s.u.)	Temperature (°C)	Conductivity (Ohms/cm)	Dissolved Oxygen (mg/L)	Oxidation / Reduction Potential (mV)			
				NR	140 Wisconsin Gro	oundwater Quality	/ Standards							
NR 140 PAL		<u>2</u>	<u>125</u>	<u>0.15</u>	ns	ns	ns	ns	ns	ns	ns			
NR 140 ES		<u>10</u>	<u>250</u>	<u>0.3</u>	ns	ns	ns	ns	ns	ns	ns			
PZ-10B	06/23/99	0.34	54	0.082		180	7.25	11.9	0.405	1.76	215			
	02/01/00			<0.0089				Instrument malf	function, measureme	ents were not collect	ed			
	05/31/00	<0.069	20	<u>0.2</u>		84	7.59	10.86	0.357	5.04	246			
	08/31/00	<0.069	18	0.066		118	7.83	11.55	0.375	8.47	172			
	11/21/00	0.097	15	<0.015		123	7.21	12.36	0.368	7.26	155			
	04/02/02	0.096	28	0.047 Q			8.54	11.13	0.391	3.62	224			
dup (OW-97)	04/02/02	0.13	20	<u>81</u>										
	10/28/02	0.12 H	18	<0.061			7.40	14.04	0.302	7.72				
	06/16/03	0.12 Q,A	16	<u>0.29</u>				11.69	0.213	2.89	89			
	11/20/03	0.16	16	0.11										
	04/12/05	0.11Q	15	<0.017	<10	150	7.17	9.17	0.42	8.27	4.61			
	04/11/06	0.17 Q	16	<0.050	<10	120	7.62	10.32	0.442	0.49	-18			
OW-11	02/01/00	<0.069	<0.26	<u>7.9</u>	975	74		Instrument malf	unction, measureme	ents were not collect	ed			
	05/31/00	<0.069	1.2	<u>16</u>	591	120	6.86	9.21	0.654	1.72	149			
	08/31/00	<0.069	15	<u>30</u>	1,550	94	6.92	16.37	0.368	1.81	197			
dup (OW-98)	08/31/00	<0.069	16	<u>25</u>	1,460	99								
	11/21/00	<0.069	3.4	<u>17</u>	1,040	99	6.76	14.18	0.542	2.10	146			
dup (OW-99)	11/21/00	<0.069	4.1	<u>13</u>	1,580	98								
	04/02/02	0.043 Q	5.0	<u>12</u>	610		7.47	6.98	0.597	3.25	164			
	10/28/02	0.10 H	7.2	<u>14</u>	360		6.92	16.59	0.489	2.31	2.68			
	06/16/03	<0.047	5.7	<u>16</u>	820			9.73	0.373	1.18	84			
	11/20/03	<0.047	<1.1	<u>22</u>	1,200									
	07/20/04	0.38	16	<u>18</u>	410	150	6.80	14.13	0.858	1.29	163			
	04/11/05	<0.061	4.1	<u>34</u>	420	170	6.98	7.77	1.12	0.52	77			
	04/11/06	<0.11	5.0	26	670	110	6.50	8.72	1.275	0.32	74			

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

			Natural Attenuation Monitoring Parameters Laboratory Analytical Parameters Field Measurement Parameters												
			Labor	atory Analytical Pa	arameters				ld Measurement Pa	arameters					
Location	Date	Nitrate + Nitrite (mg/L) ²	Sulfate (mg/L)	lron, Dissolved (mg/L)	Methane (µg/L)	Alkalinity (mg/L)	Hq (s.u.)	Temperature (°C)	Conductivity (Ohms/cm)	Dissolved Oxygen (mg/L)	Oxidation / Reduction Potential (mV)				
				NR	140 Wisconsin Gro	oundwater Quality				— -					
NR 140 PAL		<u>2</u>	<u>125</u>	<u>0.15</u>	ns	ns	ns	ns	ns	ns	ns				
NR 140 ES		<u>10</u>	<u>250</u>	<u>0.3</u>	ns	ns	ns	ns	ns	ns	ns				
PZ-11B	02/01/00	0.094	0.81	<u>0.22</u>	243	116		Instrument malf	unction, measureme	ents were not collect	ed				
	05/31/00	<0.069	<0.38	<u>0.3</u>	141	145	7.38	10.84	0.286	4.46	205				
	08/31/00*	<0.069	<u>5,920</u>	<u>3.0</u>	4,250	<5.8	7.56	17.20	0.318	3.64	165				
	11/21/00	<0.069	3.4	2.6	1,980	155	7.10	14.71	0.300	5.44	128				
	04/02/02	0.044 Q	5.1 A	<u>1.5</u>	5,500		7.55	9.20	0.339	3.34	195				
	10/28/02	0.041 H, Q	5.8	<u>0.27</u>	970		7.07	15.74	0.214	3.19	251				
	06/16/03	<0.047	3.8	<u>1.3</u>	490			10.85	0.156	1.59	72				
	11/20/03	<0.047	5.4	<u>4.0</u>	590										
	07/20/04	0.091Q	7.8	<0.017	<10	150	7.76	17.25	0.332	3.22	48				
	04/11/05	0.11Q	7.9	<0.017	<10	160	6.86	7.28	0.33	6.41	352				
	10/03/05	0.17 Q	8.3	0.054	<10	140	7.15	16.51	0.34	3.87	278				
	04/11/06	0.17 Q		<0.050	<10		7.47	8.98	0.353	0.82	4				
OW-12	10/12/04	<0.063	6.6	<u>11</u>	1,300	180	7.50	15.51	0.860	0.48	219				
	01/25/05	<0.063	2.5	<u>15</u>	2,200	170	7.51	10.34	0.730	2.13	139.7				
	04/12/05	<0.061	3.1	<u>28</u>	1,600	97 N	6.97	8.27	1.68	1.14	56				
	07/11/05	<0.061	3.4	<u>17</u>	1,300	170 N	6.8	13.71	1.54	1.47	91				
	10/03/05	<0.061	<0.83	<u>19</u>	1,700	150	7.27	20.13	0.70	0.61	-13				
	01/05/06	0.070 Q	4.4	<u>23</u>	1,800	150	6.72	11.18	1.46	0.52	251				
	04/11/06	0.20 Q	7.0	<0.050	<10	39	6.37	10.14	1.64	4.04	114				
PZ-12B	10/12/04	<0.063	6.2	<u>0.33</u>	330	110	8.00	13.62	0.31	0.36	139				
	01/25/05	<0.063	<0.36	<u>0.51</u>	930	140	7.78	10.96	0.358		125.6				
	04/12/05	<0.061	1.8Q	<u>0.49</u>	120	150	7.08	10.56	0.36	1.09	400				
	07/11/05	<0.061	0.86 Q	<u>0.71</u>	550	150	6.95	13.34	0.36	1.57	94				
	10/03/05	0.24	1.6 Q	0.009 Q	<10	27	6.46	15.7	0.07	0.26	-403				
	01/05/06	0.42	3.5	0.041	<10	14 Q	7.50	10.89	0.09	4.83	140				
	04/11/06	<0.11	10	<u>16</u>	590	140	6.46	8.85	3.01	0.49	-147				

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

USEPA WIN000509983 / BRRTS # 02-50-000079 / FID # 750081200

			Natural Attenuation Monitoring Parameters													
			Labo	ratory Analytical Pa	arameters		Field Measurement Parameters									
Location	Date	Nitrate + Nitrite (mg/L) ² Sulfate (mg/L)		lron, Dissolved (mg/L) Methane (µg/L)		Alkalinity (mg/L)	pH (s.u.)	Temperature (°C)	Conductivity (Ohms/cm)	Dissolved Oxygen (mg/L)	Oxidation / Reduction Potential (mV)					
	NR 140 Wisconsin Groundwater Quality Standards															
NR 140 PAL		<u>2</u>	<u>125</u>	<u>0.15</u>	ns	ns	ns	ns	ns	ns	ns					
NR 140 ES		<u>10</u>	<u>250</u>	<u>0.3</u>	ns	ns	ns	ns	ns	ns	ns					
PZ-13B	10/12/04	<0.063	13	0.093	<10	100	7.85	15.37	0.320	0.57	237					
	01/25/05	<0.063	13	0.053Q	<10	110	7.95	9.23	0.378	1.01	173.2					
	04/11/05	<0.061	13	0.11	<10	190	7.26	10.35	0.26	0.39	155					
	10/03/05	<0.061	13	<u>0.21</u>	36	180	7.47	18.18	0.56	0.88	-96					
	04/11/06	<0.11	17	<0.050	<10	170 N	6.91	8.21	0.569	1.21	157					

Notes:

1) Concentrations that attain/exceed an NR 140 Preventive Action Limit (PAL) are shownunderlined/italicized.

2) Concentrations that attain/exceed an NR 140 Enforcement Standard (ES) are shownbold/underlined.

3) Field parameters values (measured pre and post-purge) conform to WDNR guidelines. When ORP/DO conflicted, the post-purge values of both were used.

4) Wells were sampled with micro-purge pump and low-flow system on 4/20/04. Field parameters collected when the measurements stabilized.

5) Wells were sampled with peristaltic pump and low -flow system on 7/20/04, 10/12/04, 1/25/05 and 4/11-12/05. Field parameters collected when the measurements stabilized.

--: Analysis not performed or field measurement not collected.

*: Laboratory note - Duplicate analysis not within control limits.

--: pH readings for 6/16/03 removed due to meter malfunction and artificially high results.

µg/L : Micrograms per liter.

mg/L: Milligrams per liter.

°C : Degrees Celsius.

s.u.: Standard units.

- A : Laboratory note Analyte detected in method blank.
- H: Laboratory note Nitrate analysis for 10/28/02 samples performed 23 days past holding time.
- \mathbf{Q} : Laboratory note -Analyte detected between the limit of detection (LOD) and limit of quantitation

[U-EPK/JTB 1/05][U-EPK/PAR 5/05][U-PAR/RLH 8/05][U-RTB/PAR 6/06]

- (LOQ). Results qualified due to the uncertainty of values in this range.
- N : Laboratory note Spiked sample recovery not within control limits.

Ohms/cm : Ohms per centimeter.

mV: Millivolts.

APPENDIX E

GROUNDWATER LABORATORY REPORTS (JANUARY 2005 THROUGH APRIL 2006)

1241 Bellevue Street, Suite 9 Green Bay, WI 54302 920-469-2436, Fax: 920-469-8827

A Division of Pace Analytical Services, Inc.

Analytical Report Number: 855626

Client: NATURAL RESOURCE TECHNOLOGY

Lab Contact: Tom Trainor

Project Name: WPSC - STEVENS POINT

Project Number: 1177

Lab Sample Number	Field ID	Matrix	Collection Date
855626-001	OW-5R	GW	01/25/05
855626-002	P-5B	GW	01/25/05
855626-003	PZ-7B	GW	01/25/05
855626-004	OW-7A	GW	01/25/05
855626-005	PZ-13	GW	01/25/05
855626-006	OW-12	GW	01/25/05
855626-007	PZ-12B	GW	01/25/05
855626-008	QC-1	GW	01/25/05
855626-009	TRIP BLANK	WATER	01/25/05

I certify that the data contained in this Final Report has been generated and reviewed in accordance with approved methods and Laboratory Standard Operating Procedure. Exceptions, if any, are discussed in the accompanying sample comments. Release of this final report is authorized by Laboratory management, as is verified by the following signature. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. The sample results relate only to the analytes of interest tested.

Nama On

2/8/05

Approval Signature

Date

Analytical Report Number: 855626

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

A Division of Pace Analytical Services, Inc.

Client : NATURAL RESOURCE TECHNOLOGY Project Name : WPSC - STEVENS POINT

Project Number: 1177

Field ID: OW-5R

Matrix Type : GROUNDWATER Collection Date : 01/25/05 Report Date : 02/07/05 Lab Sample Number : 855626-001

INORGANICS

Alkalinity as CaCO3 300 8.3 28 1 mg/L 01/28/05 EPA 310.2 EPA Nitrogen, NO3 + NO2 < 0.063 0.063 0.21 1 mg/L 01/28/05 EPA 353.2 EPA Sulfate 310 3.6 12 10 mg/L 01/27/05 EPA 300.0 EPA	846 6010B A 310.2 A 353.2 A 300.0 1/31/05 Method 846 M8021 846 M8021
Nitrogen, NO3 + NO2 < 0.063 0.063 0.21 1 mg/L 01/28/05 EPA 353.2 EPA Sulfate 310 3.6 12 10 mg/L 01/27/05 EPA 300.0 EPA	A 353.2 A 300.0 1/31/05 Method 846 M8021
Sulfate 310 3.6 12 10 mg/L 01/27/05 EPA 300.0 EPA	A 300.0 1/31/05 Method 846 M8021
	1/31/05 Method 846 M8021
DTEX Date: 0	Method 846 M8021
BTEX Prep Date: 0	846 M8021
Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl	
Benzene 77 0.14 0.46 1 ug/L- 01/31/05 SW846 5030B SW	846 M8021
Ethylbenzene 54 0.40 1.3 1 ug/L 01/31/05 SW846 5030B SW	
Toluene 3.8 0.36 1.2 1 ug/L 01/31/05 SW846 5030B SW	846 M8021
Xylene, o 22 0.36 1.2 1 ug/L 01/31/05 SW846 5030B SW846 5030	846 M8021
Xylenes, m + p 24 0.74 2.5 1 ug/L 01/31/05 SW846 5030B SW846	846 M8021
a,a,a-Trifluorotoluene 101 1 %Recov 01/31/05 SW846 5030B SW	846 M8021
METHANE Prep Date: 0	2/04/05
Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl	Method
Methane 1100 50 5 ug/L 02/04/05 SW846 M8015 SW8	846 M8015
PAH/ PNA Prep Date: 0	1/28/05
Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl	Method
1-Methylnaphthalene 77 16 53 800 ug/L D 02/01/05 SW846 3510C 8270	0C-SIM
2-Methyinaphthalene 2.6 2.3 7.6 100 ug/L Q 01/28/05 SW846 3510C 8270	0C-SIM
Acenaphthene 68 16 52 800 ug/L D 02/01/05 SW846 3510C 8270	0C-SIM
Acenaphthylene 21 1.9 6.4 100 ug/L 01/28/05 SW846 3510C 8270	0C-SIM
Anthracene 22 1.8 5.9 100 ug/L 01/28/05 SW846 3510C 8270	0C-SIM
Benzo(a)anthracene 18 2.0 6.5 100 ug/L 01/28/05 SW846 3510C 8270	0C-SIM
Benzo(a)pyrene 18 1.8 6.0 100 ug/L 01/28/05 SW846 3510C 8270	0C-SIM
Benzo(b)fluoranthene 12 1.8 6.0 100 ug/L 01/28/05 SW846 3510C 8270	0C-SIM
Benzo(ghi)perylene 7.6 2.1 6.9 100 ug/L 01/28/05 SW846 3510C 8270	DC-SIM
Benzo(k)fluoranthene 13 1.9 6.4 100 ug/L 01/28/05 SW846 3510C 8270	DC-SIM
Chrysene 15 1.6 5.5 100 ug/L 01/28/05 SW846 3510C 8270	0C-SIM
Dibenz(a,h)anthracene 2.3 2.2 7.3 100 ug/L Q 01/28/05 SW846 3510C 8270	DC-SIM
Fluoranthene 46 13 44 800 ug/L D 02/01/05 SW846 3510C 8270	DC-SIM
Fluorene 22 2.2 7.3 100 ug/L 01/28/05 SW846 3510C 8270	DC-SIM
Indeno(1,2,3-cd)pyrene 7.6 1.7 5.7 100 ug/L 01/28/05 SW846 3510C 8270	DC-SIM
	DC-SIM
Phenanthrene 48 16 54 800 ug/L QD 02/01/05 SW846 3510C 8270	DC-SIM
Pyrene 29 1.6 5.4 100 ug/L 01/28/05 SW846 3510C 8270	DC-SIM
*	DC-SIM
	DC-SIM
	DC-SIM

Analytical Report Number: 855626

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

A Division of Pace Analytical Services, Inc.

Client : NATURAL RESOURCE TECHNOLOGY Project Name : WPSC - STEVENS POINT

Project Number: 1177

Field ID: P-5B

Matrix Type : GROUNDWATER Collection Date : 01/25/05 Report Date : 02/07/05 Lab Sample Number : 855626-002

MOROANIOU											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		6400	17	55		1	ug/L		02/03/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		150	8.3	28		1	mg/L		01/28/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.063	0.063	0.21		1	mg/L		01/28/05	EPA 353.2	EPA 353.2
Sulfate		0.69	0.36	1.2		1	mg/L	Q	01/27/05	EPA 300.0	EPA 300.0
BTEX										Prep Dat	te: 01/31/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
Benzene		13	3.4	11		25	ug/L	К	01/31/05	SW846 5030B	SW846 M8021
Ethylbenzene		57	10	33		25	ug/L	к	01/31/05	SW846 5030B	SW846 M8021
Toluene	<	8.9	8.9	30		25	ug/L	к	01/31/05	SW846 5030B	SW846 M8021
Xylene, o		54	9.0	30		25	ug/L	к	01/31/05	SW846 5030B	SW846 M8021
Xylenes, m + p		66	19	62		25	ug/L	к	01/31/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		103				1	%Recov		01/31/05	SW846 5030B	SW846 M8021
METHANE										Prep Dat	te: 02/04/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
Methane		800			50	5	ug/L		02/04/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	te: 01/28/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		270	4.0	13		200	ug/L	E	01/28/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		140	4.5	15		200	ug/L	Е	01/28/05	SW846 3510C	8270C-SIM
Acenaphthene		210	3.9	13		200	ug/L	Е	01/28/05	SW846 3510C	8270C-SIM
Acenaphthylene		66	3.9	13		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Anthracene		18	3.5	12		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	3.9	3.9	13		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	3.6	3.6	12		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	3.6	3.6	12		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	4.1	4.1	14		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	3.9	3.9	13		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Chrysene	<	3.3	3.3	11		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	4.4	4.4	15		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Fluoranthene		10	3.3	11		200	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Fluorene		100	4.4	15		200	ug/L	E	01/28/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	3.4	3.4	11		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
		3300	450	1500		20000	ug/L	D	02/01/05	SW846 3510C	8270C-SIM
Naphthalene		3300	400				-				
• • • • • • •		95	4.1	14		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Naphthalene Phenanthrene				14 11		200 200	ug/L ug/L	Q	01/28/05 01/28/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM
Naphthalene		95	4.1				-	Q D			
Naphthalene Phenanthrene Pyrene		95 5.6	4.1			200	ug/L		01/28/05	SW846 3510C	8270C-SIM

Analytical Report Number: 855626

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

A Division of Pace Analytical Services, Inc.

Client: NATURAL RESOURCE TECHNOLOGY
Project Name: WPSC - STEVENS POINT

Project Number: 1177 Field ID: PZ-7B Matrix Type : GROUNDWATER Collection Date : 01/25/05 Report Date : 02/07/05 Lab Sample Number : 855626-003

INORGANICS

INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
Iron - Dissolved		2200	17	55		1	ug/L		02/03/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		120	8.3	28		1	mg/L		01/28/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.063	0.063	0.21		1	mg/L		01/28/05	EPA 353.2	EPA 353.2
Sulfate	<	0.36	0.36	1.2		1	mg/L		01/27/05	EPA 300.0	EPA 300.0
BTEX										Prep Da	te: 01/31/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
Benzene	<	2.8	2.8	9.2		20	ug/L	к	01/31/05	SW846 5030B	SW846 M8021
Ethylbenzene		70	8.0	27		20	ug/L	к	01/31/05	SW846 5030B	SW846 M8021
Toluene	<	7.1	7.1	24		20	ug/L	к	01/31/05	SW846 5030B	SW846 M8021
Xylene, o		71	7.2	24		20	ug/L	к	01/31/05	SW846 5030B	SW846 M8021
Xylenes, m + p		99	15	49		20	ug/L	к	01/31/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		101				1	%Recov		01/31/05	SW846 5030B	SW846 M8021
METHANE										Prep Da	te: 02/04/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		980			100	10	ug/L		02/04/05	SW846 M8015	SW846 M8015
PAH/ PNA		-								Prep Da	te: 01/28/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		290	4.0	13		200	ug/L	E	01/28/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		390	4.5	15		200	ug/L	Е	01/28/05	SW846 3510C	8270C-SIM
Acenaphthene		140	3.9	13		200	ug/L	Е	01/28/05	SW846 3510C	8270C-SIM
Acenaphthylene		170	3.9	13		200	ug/L	Е	01/28/05	SW846 3510C	8270C-SIM
Anthracene		15	3.5	12		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	3.9	3.9	13		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	3.6	3.6	12		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	3.6	3.6	12		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	4.1	4.1	14		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	3.9	3.9	13		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Chrysene	<	3.3	3.3	11		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	4.4	4.4	15		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Fluoranthene		4.4	3.3	11		200	ug/Ł	Q	01/28/05	SW846 3510C	8270C-SIM
Fluorene		55	4.4	15		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	3.4	3.4	11		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Naphthalene		2800	360	1200		16000	ug/L	D	02/01/05	SW846 3510C	8270C-SIM
Phenanthrene		88	4.1	14		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Pyrene		6.3	3.3	11		200	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Nitrobenzene-d5		0				200	%Recov	D	01/28/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0				200	%Recov	D	01/28/05	SW846 3510C	8270C-SIM
Terphenyl-d14		0				200	%Recov	D	01/28/05	SW846 3510C	8270C-SIM
·											

Analytical Report Number: 855626

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

A Division of Pace Analytical Services, Inc.

Client: NATURAL RESOURCE TECHNOLOGY Project Name: WPSC - STEVENS POINT

Project Number: 1177

Field ID: OW-7A

Matrix Type : GROUNDWATER Collection Date : 01/25/05 Report Date : 02/07/05 Lab Sample Number : 855626-004

INORGANICS

Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		12000	17	55		1	ug/L		02/03/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		130	8.3	28		1	mg/L		01/28/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.063	0.063	0.21		1	mg/L		01/28/05	EPA 353.2	EPA 353.2
Sulfate		0.96	0.36	1.2		1	mg/L	Q	01/27/05	EPA 300.0	EPA 300.0
BTEX										Prep Da	te: 01/31/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene		16	0.69	2.3		5	ug/L	К	01/31/05	SW846 5030B	SW846 M8021
Ethylbenzene		51	2.0	6.7		5	ug/L	к	01/31/05	SW846 5030B	SW846 M8021
Toluene	<	1.8	1.8	6.0		5	ug/L	к	01/31/05	SW846 5030B	SW846 M8021
Xylene, o		20	1.8	6.0		5	ug/L	к	01/31/05	SW846 5030B	SW846 M8021
Xylenes, m + p		36	3.7	12		5	ug/L	к	01/31/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		104				1	%Recov		01/31/05	SW846 5030B	SW846 M8021
METHANE										Prep Da	te: 02/04/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		4900			500	50	ug/L		02/04/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	te: 01/28/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		33	4.0	13		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		31	4.5	15		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Acenaphthene		45	3.9	13		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Acenaphthylene		6.7	3.9	13		200	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Anthracene		18	3.5	12		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene		9.9	3.9	13		200	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene		9.8	3.6	12		200	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene		5.0	3.6	12		200	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene		5.9	4.1	14		200	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene		5.4	3.9	13		200	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Chrysene		10	3.3	11		200	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	4.4	4.4	15		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Fluoranthene		28	3.3	11		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Fluorene		24	4.4	15		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene		3.5	3.4	11		200	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Naphthalene		400	22	75		1000	ug/L	D	02/01/05	SW846 3510C	8270C-SIM
Phenanthrene		56	4.1	14		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Pyrene		38	3.3	11		200	ug/L		01/28/05	SW846 3510C	8270C-SIM
Nitrobenzene-d5		0				200	«Recov	D	01/28/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0				200	%Recov	D	01/28/05	SW846 3510C	8270C-SIM
Terphenyl-d14		0				200	%Recov	D	01/28/05	SW846 3510C	8270C-SIM

Analytical Report Number: 855626

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

A Division of Pace Analytical Services, Inc.

Client : NATURAL RESOURCE TECHNOLOGY Project Name : WPSC - STEVENS POINT

Project Number : 1177

Field ID : PZ-13

Matrix Type : GROUNDWATER Collection Date : 01/25/05 Report Date : 02/07/05 Lab Sample Number : 855626-005

INORGANICS

Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		53	17	55		1	ug/L	Q	02/03/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		110	8.3	28		1	mg/L		01/28/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.063	0.063	0.21		1	mg/L		01/28/05	EPA 353.2	EPA 353.2
Sulfate		13	0.36	1.2		1	mg/L		01/27/05	EPA 300.0	EPA 300.0
BTEX										Prep Da	te: 01/31/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene	<	0.14	0.14	0.46		1	ug/L		01/31/05	SW846 5030B	SW846 M8021
Ethylbenzene	<	0.40	0.40	1.3		1	ug/L		01/31/05	SW846 5030B	SW846 M8021
Toluene	<	0.36	0.36	1.2		1	ug/L		01/31/05	SW846 5030B	SW846 M8021
Xylene, o	<	0.36	0.36	1.2		1	ug/L		01/31/05	SW846 5030B	SW846 M8021
Xylenes, m + p	<	0.74	0.74	2.5		1	ug/L		01/31/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		103				1	%Recov		01/31/05	SW846 5030B	SW846 M8021
METHANE										Prep Dat	te: 02/04/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane	<	10			10	1	ug/L		02/04/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	te: 01/28/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		0.059	0.020	0.067		1	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		0.045	0.023	0.076		1	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Acenaphthene		0.028	0.020	0.065		1	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Acenaphthylene	<	0.020	0.020	0.065		1	ug/L		01/28/05	SW846 3510C	8270C-SIM
Anthracene	<	0.018	0.018	0.059		1	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.020	0.020	0.066		1	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.018	0.018	0.061		1	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.018	0.018	0.060		1	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.021	0.021	0.069		1	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.019	0.019	0.065		1	ug/L		01/28/05	SW846 3510C	8270C-SIM
Chrysene		0.018	0.017	0.055		1	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.022	0.022	0.074		1	ug/L		01/28/05	SW846 3510C	8270C-SIM
Fluoranthene		0.031	0.017	0.055		1	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Fluorene	<	0.022	0.022	0.073		1	ug/L		01/28/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.017	0.017	0.057		1	ug/L		01/28/05	SW846 3510C	8270C-SIM
Naphthalene		0.44	0.023	0.075		1	ug/L	в	01/28/05	SW846 3510C	8270C-SIM
Phenanthrene		0.029	0.021	0.069		1	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Pyrene		0.027	0.016	0.055		1	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Nitrobenzene-d5		63				1	%Recov		01/28/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		49				1	%Recov		01/28/05	SW846 3510C	8270C-SIM
Terphenyl-d14		82				1	%Recov		01/28/05	SW846 3510C	8270C-SIM

Analytical Report Number: 855626

920-469-2436

A Division of Pace Analytical Services, Inc.

Client: NATURAL RESOURCE TECHNOLOGY Project Name : WPSC - STEVENS POINT

Project Number: 1177

En Chem

Field ID : OW-12

Matrix Type : GROUNDWATER Collection Date: 01/25/05 Report Date : 02/07/05 Lab Sample Number: 855626-006

INORGANICS

INURGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		15000	17	55		1	ug/L		02/03/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		170	8.3	28		1	mg/L		01/28/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.063	0.063	0.21		1	mg/L		01/28/05	EPA 353.2	EPA 353.2
Sulfate		2.5	0.36	1.2		1	mg/L		01/27/05	EPA 300.0	EPA 300.0
BTEX										Prep Da	te: 01/31/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene		9.1	0.14	0.46		1	ug/L		01/31/05	SW846 5030B	SW846 M8021
Ethylbenzene		0.88	0.40	1.3		1	ug/L	Q	01/31/05	SW846 5030B	SW846 M8021
Toluene	<	0.36	0.36	1.2		1	ug/L		01/31/05	SW846 5030B	SW846 M8021
Xylene, o		2.3	0.36	1.2		1	ug/L		01/31/05	SW846 5030B	SW846 M8021
Xylenes, m + p		1.9	0.74	2.5		1	ug/L	Q	01/31/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		104				1	%Recov		01/31/05	SW846 5030B	SW846 M8021
METHANE										Prep Da	te: 02/04/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		2200			250	25	ug/L		02/04/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Da	te: 01/28/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		19	2.0	6.8		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		7.7	2.3	7.7		100	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Acenaphthene		24	2.0	6.6		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Acenaphthylene	<	2.0	2.0	6.6		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Anthracene		2.7	1.8	6.0		100	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	2.0	2.0	6.7		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	1.8	1.8	6.2		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	1.8	1.8	6.1		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	2.1	2.1	7.0		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	2.0	2.0	6.6		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Chrysene	<	1.7	1.7	5.6		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	2.2	2.2	7.5		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Fluoranthene		2.1	1.7	5.6		100	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Fluorene		8.5	2.2	7.4		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	1.7	1.7	5.8		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Naphthalene		79	9.1	30		400	ug/L	D	02/01/05	SW846 3510C	8270C-SIM
Phenanthrene		15	2.1	6.9		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Pyrene	<	1.7	1.7	5.5		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Nitrobenzene-d5		0				100	%Recov	D	01/28/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0				100	%Recov	D	01/28/05	SW846 3510C	8270C-SIM
Terphenyl-d14		0				100	%Recov	D	01/28/05	SW846 3510C	8270C-SIM

1241 Bellevue Street Green Bay, WI 54302

Analytical Report Number: 855626

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

A Division of Pace Analytical Services, Inc.

Client: NATURAL RESOURCE TECHNOLOGY Project Name: WPSC - STEVENS POINT Project Number: 1177

Field ID : PZ-12B

Matrix Type : GROUNDWATER Collection Date : 01/25/05 Report Date : 02/07/05 Lab Sample Number : 855626-007

INURGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved	_	510	17	55		1	ug/L		02/03/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		140	8.3	28		1	mg/L		01/28/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.063	0.063	0.21		1	mg/L		01/28/05	EPA 353.2	EPA 353.2
Sulfate	<	0.36	0.36	1.2		1	mg/L		01/27/05	EPA 300.0	EPA 300.0
BTEX										Prep Date: 01/31/05	
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene		52	1.4	4.6		10	ug/L		01/31/05	SW846 5030B	SW846 M8021
Ethylbenzene		190	4.0	13		10	ug/L		01/31/05	SW846 5030B	SW846 M8021
Toluene		7.7	3.6	12		10	ug/L	Q	01/31/05	SW846 5030B	SW846 M8021
Xylene, o		64	3.6	12		10	ug/L		01/31/05	SW846 5030B	SW846 M8021
Xylenes, m + p		50	7.4	25		10	ug/L		01/31/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		108				1	%Recov		01/31/05	SW846 5030B	SW846 M8021
METHANE										Prep Dat	te: 02/04/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		930			100	10	ug/L		02/04/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	te: 01/28/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		160	50	170		2500	ug/L	QD	02/01/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		14	2.3	7.6		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Acenaphthene		160	48	160		2500	ug/L	D	02/01/05	SW846 3510C	8270C-SIM
Acenaphthylene		42	1.9	6.4		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Anthracene		7.6	1.8	5.9		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	2.0	2.0	6.5		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	1.8	1.8	6.0		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	1.8	1.8	6.0		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	2.1	2.1	6.9		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	1.9	1.9	6.4		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Chrysene	<	1.6	1.6	5.5		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	2.2	2.2	7.3		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Fluoranthene	<	1.6	1.6	5.5		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Fluorene		35	2.2	7.3		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	1.7	1.7	5.7		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Naphthalene		830	56	190		2500	ug/L	D	02/01/05	SW846 3510C	8270C-SIM
Phenanthrene		47	2.0	6.8		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Pyrene	<	1.6	1.6	5.4		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Nitrobenzene-d5		0				100	%Recov	D	01/28/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0				100	%Recov	D	01/28/05	SW846 3510C	8270C-SIM
		0				100	%Recov	D	01/28/05	SW846 3510C	8270C-SIM
Terphenyl-d14		U				100	%Recov	U	01/20/00	30040 33100	02100-31W

Analytical Report Number: 855626

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

A Division of Pace Analytical Services, Inc.

Client : NATURAL RESOURCE TECHNOLOGY

Project Name : WPSC - STEVENS POINT

Project Number: 1177

Matrix Type : GROUNDWATER Collection Date : 01/25/05 Report Date : 02/07/05 Lab Sample Number : 855626-008

Field ID: QC-1

INORGANICS										
Test	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved	26000	17	55		1	ug/L		02/03/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3	300	8.3	28		1	mg/L		01/28/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	0.065	0.063	0.21		1	mg/L	Q	01/28/05	EPA 353.2	EPA 353.2
Sulfate	690	3.6	12		10	mg/L		01/27/05	EPA 300.0	EPA 300.0
BTEX									Prep Dat	te: 01/31/05
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene	75	0.14	0.46		1	ug/L		01/31/05	SW846 5030B	SW846 M8021
Ethylbenzene	50	0.40	1.3		1	ug/L		01/31/05	SW846 5030B	SW846 M8021
Toluene	3.6	0.36	1.2		1	ug/L		01/31/05	SW846 5030B	SW846 M8021
Xylene, o	20	0.36	1.2		1	ug/L		01/31/05	SW846 5030B	SW846 M8021
Xylenes, m + p	21	0.74	2.5		1	ug/L		01/31/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene	102				1	%Recov		01/31/05	SW846 5030B	SW846 M8021
METHANE									Prep Dat	te: 02/04/05
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane	700			100	10	ug/L		02/04/05	SW846 M8015	SW846 M8015
PAH/ PNA									Prep Dat	te: 01/28/05
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene	85	16	53		800	ug/L	D	02/01/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene	7.5	2.3	7.6		100	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Acenaphthene	78	16	52		800	ug/L	D	02/01/05	SW846 3510C	8270C-SIM
Acenaphthylene	24	1.9	6.4		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Anthracene	30	1.8	5.9		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	29	2.0	6.5		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	26	1.8	6.0		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	17	1.8	6.0		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	11	2.1	6.9		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	19	1.9	6.4		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Chrysene	19	1.6	5.5		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	3.1	2.2	7.3		100	ug/L	Q	01/28/05	SW846 3510C	8270C-SIM
Fluoranthene	75	13	44		800	ug/L	D	02/01/05	SW846 3510C	8270C-SIM
Fluorene	32	2.2	7.3		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	11	1.7	5.7		100	ug/L		01/28/05	SW846 3510C	8270C-SIM
Naphthalene	200	18	60		800	ug/L	D	02/01/05	SW846 3510C	8270C-SIM
Phenanthrene	88	16	54		800	ug/L	D	02/01/05	SW846 3510C	8270C-SIM
Pyrene	51	13	43		800	ug/L	D	02/01/05	SW846 3510C	8270C-SIM
Nitrobenzene-d5	0				100	%Recov	D	01/28/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl	0				100	%Recov	D	01/28/05	SW846 3510C	8270C-SIM
Terphenyl-d14	0				100	%Recov	D	01/28/05	SW846 3510C	8270C-SIM

Analytical Report Number: 855626

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

A Division of Pace Analytical Services, Inc.

Client : NATURAL RESOURCE TECHNOLOGY Project Name : WPSC - STEVENS POINT Project Number : 1177 Field ID : TRIP BLANK Matrix Type : WATER Collection Date : 01/25/05 Report Date : 02/07/05 Lab Sample Number : 855626-009

BTEX										Prep Dat	te: 01/31/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Ani Date	Prep Method	Anl Method
Benzene	<	0.14	0.14	0.46		1	ug/L		01/31/05	SW846 5030B	SW846 M8021
Ethylbenzene	<	0.40	0.40	1.3		1	ug/L		01/31/05	SW846 5030B	SW846 M8021
Toluene	<	0.36	0.36	1.2		1	ug/L		01/31/05	SW846 5030B	SW846 M8021
Xylene, o	<	0.36	0.36	1.2		1	ug/Ł		01/31/05	SW846 5030B	SW846 M8021
Xylenes, m + p	<	0.74	0.74	2.5		1	ug/L		01/31/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		103				1	%Recov		01/31/05	SW846 5030B	SW846 M8021

A Division of Pace Analytical Services, Inc.

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

Lab Number	TestGroupID	Field ID	Comment
855626-005	PAH+-W	PZ-13	B - Naphthalene present in Extraction Blank at 0.0318ug/l.

Qualifier Codes

Flaq	Applies To	Explanation
A	Inorganic	Analyte is detected in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
в	Inorganic	The analyte has been detected between the method detection limit and the reporting limit.
В	Organic	Analyte is present in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
С	All	Elevated detection limit.
D	All	Analyte value from diluted analysis or surrogate result not applicable due to sample dilution.
E	Inorganic	Estimated concentration due to matrix interferences. During the metals analysis the serial dilution failed to meet the established control limits of 0-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP-MS. The result was flagged with the E qualifier to indicate that a physical interference was observed.
Е	Organic	Analyte concentration exceeds calibration range.
F	Inorganic	Due to potential interferences for this analysis by Inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method.
F	Organic	Surrogate results outside control criteria.
н	All	Preservation, extraction or analysis performed past holding time.
HF	Inorganic	This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time.
J	Inorganic	The analyte has been detected between the method detection limit and the reporting limit.
J	Organic	Concentration detected is greater than the method detection limit but less than the reporting limit.
к	Inorganic	Sample received unpreserved. Sample was either preserved at the time of receipt or at the time of sample preparation.
к	Organic	Detection limit may be elevated due to the presence of an unrequested analyte.
L	All	Elevated detection limit due to low sample volume.
М	Organic	Sample pH was greater than 2
Ν	All	Spiked sample recovery not within control limits.
0	Organic	Sample received overweight.
Р	Organic	The relative percent difference between the two columns for detected concentrations was greater than 40%.
Q	All	The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.
S	Organic	The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.
U	All	The analyte was not detected at or above the reporting limit.
v	All	Sample received with headspace.
W	All	A second aliquot of sample was analyzed from a container with headspace.
х	All	See Sample Narrative.
&	All	Laboratory Control Spike recovery not within control limits.
*	All	Precision not within control limits.
<	All	The analyte was not detected at or above the reporting limit.
1	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.
2	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.
3	Inorganic	BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.
4	Inorganic	BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
5	Inorganic	BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
6	Inorganic	BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
7	Inorganic	BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.

Analysis Summary by Laboratory

A Division of Pace Analytical Services, Inc.

1241 Bellevue Street Green Bay, WI 54302

1090 Kennedy Avenue Kimberly, WI 54136

Test Group Name	855626-001	855626-002	855626-003	855626-004	855626-005	855626-006	855626-007	855626-008	855626-009
ALKALINITY AS CACO3	G	G	G	G	G	G	G	G	
BTEX	G	G	G	G	G	G	G	G	G
IRON - DISSOLVED	G	G	G	G	G	G	G	G	
METHANE	G	G	G	G	G	G	G	G	
NITROGEN, NO3 + NO2	G	G	G	G	G	G	G	G	
PAH/ PNA	G	G	G	G	G	G	G	G	
SULFATE	G	G	G	G	G	G	G	G	

Wisconsin Certification							
G = En Chem Green Bay	405132750 / DATCP: 105 000444						
K = En Chem Kimberly	445134030						
S = En Chem Superior	Not Applicable						
C = Subcontracted Analysis							
I = Other Pace Lab Analysis							

En Chem, Inc. Cooler Receipt Log

Batch No.	855626	En Chem, Inc. Co	boler Receipt	Log		
Project Nam	e or ID//_7	No. of	Coolers:	Temps:	ROF	
A. Receipt Ph	ase: Date cooler was opened:	1-27-05	ву:			
1: Were samp	les received on ice? (Must be ≤ 6	С)	YES	NO ²	NA	
2. Was there	a Temperature Blank?	· · · · · · · · · · · · · · · · · · ·	YES	NO		
3: Were custo	dy seals present and intact on coo	ler? (Record on COC)	YES (, NO		
4: Are COC d	ocuments present?		YES	NO ²		
5: Does this F	roject require quick turn around an	alysis?	YES /	NO		
6: Is there any	/ sub-work?		YES	NO		
7: Are there a	ny short hold time tests?		YES	NO		
8: Are any sai	nples nearing expiration of hold-tin	ne? (Within 2 days)	YES1) NO	Contacted by/Who	SVOC
9: Do any san	nples need to be Filtered or Preser			NO	Contacted by/Who	
B. Check-in P	hase: Date samples were Check	ed-in: 1-27-05	Ву:		<u>.</u>	
1: Were all sa	mple containers listed on the COC	received and intact?	YES	NO ²	NA	
2: Sign the CO	DC as received by En Chem. Com	pleted	YES	NO		
3: Do sample	labels match the COC?		YES	NO ²		
	pH check on preserved samples nent does not apply to water: VOC			NO	NA	
5: Do samples	s have correct chemical preservation nent does not apply to water: VOC	n?	YES	NO ²	NA	
	ed parameters field filtered?			NO ²	NA	
7: Are sample	volumes adequate for tests reque	sted?	YES	NO ²		
8: Are VOC sa	amples free of bubbles >6mm		YES	NO ²	NA	
9: Enter samp	les into logbook. Completed		YES	NO		
10: Place labo	ratory sample number on all conta	iners and COC. Completed.	YES	NO		
11: Complete	Laboratory Tracking Sheet (LTS).	Completed	YES	NO	NA	
12: Start None	conformance form.		YES	NO	NA	
13: Initiate Su	bcontracting procedure. Complete	d		NO (NA	
14: Check lab	oratory sample number on all conta	ainers and COC <u>Ú</u>	187 PAYES	NO	NA	
			-			

Short Hold-time tests:

.

24 Hours or less	48 Hours	7 days	Footnotes
Coliform	BOD	Ash	1 Notify proper lab group
Corrosivity = pH	Color	Aqueous Extractable Organics- ALD	immediately.
Dissolved Oxygen	Nitrite or Nitrate	Flashpoint	2 Complete nonconformance
Hexavalent Chromium	Ortho Phosphorus	Free Liquids	memo.
HPC	Surfactants	Sulfide	
Ferrous Iron	Turbidity	TDS	
Eh	En Core Preservation	TSS	
Odor	Power stop preservation	Total Solids	
Residual Chlorine		TVS	
Sulfite		TVSS	
		Unpreserved VOC's	

Rev. 2/05/04, Attachment to 1-REC-5. Subject to QA Audit.

Reviewed by/date_	TM	1/28/05	_

Samples on HOLD are subject to special pricing and release of liability	E-Mail Address:		Phone Fax E-mail Representation Phone #:	Transmit Prelim Rush Results by (circle):		Rush Turnaround Time Requested (TAI) - Prelim (Rush TAT subject to approval/surcharge)	<u> </u>	008 Qc-1	007 PZ-1213	206 OW-12	as pz-13	ay ow-7A	003 013-7 7 2 -7 B	002 P-5B	001 0W-5R 1.	LABORATORY ID FIELD ID D	EPA Level III (Subject to Surcharge) EPA Level IV (Subject to Surcharge)		ase circle if requested	PO #	Sampled By (Print): Jod + Bar benn	Project State: W T	Project Name: WPSC- Stevens Point	Project Number: 1/177	Telephone: 262.522 - 1208	Project Contact: Cric Kounty	(Please Print Legibly) Company Name: <u>Natural Resource Technology</u> Branch or Location: <u>Permuker</u> , UI 53072
Kelinquisned By:		Relifiquished By:	Relinguished By:	and the second s	Relinquished By:	Relinguished By	K								1-25-05 (2	COLLECTION MATRIX	SI=Sludge WP=Wipe		RCRA W=Water Snwa S=Soil	Sec.			 	 	A Divis		2 E
		•	hn			22	*	×	*	イイ	× *	× +	א א	× ×	×	BA	A LE X	Let C	REQ			FILTERED? (YES/NO)	A=None H=Sodium		A Division of Pace Analytical Services, Inc		
	Dato/Time:	Date/Time:	Date/ I ime:	<u>5072</u>	Date/Time:	Date/Time:		× 7 ×	X X X	メ ブ ド	× ×	ト イ ブ	* * *	× ×		Air	NV.J		کی	Y	2	s S S S	A=None B=HCL C=H2SO4 H=Sodium Bisulfate Solution		of Pace Analytical Services, Inc.	HAC:	HEM
	Depositord D	Received By	Hecalved by:		Received By:	000		× × 10	7 7 10	Y Y 10	X X IO	× × 10	× × 10	x x 1	X X X V	. + .			8015	310.2		NXX	D=HNO3 I=Sodium Thiosu	*Preservation Codes	TONY		
			à Watato			7		0	0	0	0	0	0	0	0	CLIENT COMMENTS	Mail Invoice To:		Add Add	10 0,00 00 00 00 00 00 00 00 00 00 00 00		2 2 2			No 133514		H 1241] Green 92 Fax
	Date/Time:	' Date/Time:	1/27/05-08	7	Date/Time:	- 1)ン400ら (-40 mills	¢							10 YONUB 3-	ENTS	Eric V		Address:	Company Northan Passactic	Yew	Address:	G-NaOH Company:				1241 Bellevue St., Suite 9 Green Bay, WI 54302 920-469-2436 Fax 920-469-8827
Intact / Not intact	Present / Not Present	Cooler Custody Seal	BS WerMetals)	J J L	Sample Receipt Temp.	IDE En Chem Project No.	1BTBLC								-250N & ILAndurt	LAB COMMENTS (Lab Use Only)	Kountch		4 bovc	~ Rovatin	~ C	Address: 23713. Pnul Rond, Suite D		Mail Report To: Cric Kountic	Page of		<u> </u>

1241 Bellevue Street, Suite 9 Green Bay, WI 54302 920-469-2436, Fax: 920-469-8827

A Division of Pace Analytical Services, Inc.

Analytical Report Number: 858083

Client: NATURAL RESOURCE TECHNOLOGY

Lab Contact: Tom Trainor

Project Name: WPSC - STEVENS POINT

F.M

Project Number: 1177

Lab Sample Number	Field ID	Matrix	Collection Date
858083-001	OW-8	GW	04/11/05
858083-002	OW-3R	GW	04/11/05
858083-003	PZ-3B	GW	04/11/05
858083-004	OW-2	GW	04/11/05
858083-005	PZ-13B	GW	04/11/05
858083-006	OW-11	GW	04/11/05
858083-007	PZ-11B	GW	04/11/05
858083-008	OW-4	GW	04/11/05
858083-009	OW-1	GW	04/11/05
858083-010	OW-5R	GW	04/11/05
858083-011	P-5B	GW	04/11/05
858083-012	OW-6	GW	04/11/05
858083-013	OW-7A	GW	04/11/05
858083-014	PZ-7B	GW	04/11/05
858083-015	QC-1	GW	04/11/05
858083-016	QC-2	GW	04/11/05
858083-017	OW-9	GW	04/12/05
858083-018	PZ-9B	GW	04/12/05
858083-019	OW-10	GW	04/12/05
858083-020	PZ-10B	GW	04/12/05
858083-021	OW-12	GW	04/12/05
858083-022	PZ-12B	GW	04/12/05

APR 2 8 2005

MASTER FILE COPY PROJECT # 1177 - 1 CO:

I certify that the data contained in this Final Report has been generated and reviewed in accordance with approved methods and Laboratory Standard Operating Procedure. Exceptions, if any, are discussed in the accompanying sample comments. Release of this final report is authorized by Laboratory management, as is verified by the following signature. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. The sample results relate only to the analytes of interest tested.

Namo Jr

Approval Signature

4-26-05

Date

En Chem			Ana	lytical	Repo	rt Nu	mber: 85	8083		Green Ba	evue Street y, WI 54302
A Division of Pace Analytical S	Service	es, Inc.								920-469-2	2436
Client: NATUR Project Name: WPSC Project Number: 1177 Field ID: OW-8				OLOGY				La	Collecti Rep	rix Type: GROL on Date: 04/11/ ort Date: 04/26/ Number: 85808	05 05
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		24000	17	55		1	ug/L		04/19/05	SW846 6010B	SW846 6010E
Alkalinity as CaCO3		70	6.3	21		1	mg/L		04/25/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		04/14/05	EPA 353.2	EPA 353.2
Sulfate	<	0.83	0.83	2.8		1	mg/L		04/13/05	EPA 300.0	EPA 300.0
BENZENE								•		Prep Dat	te: 04/14/05
Analyte		Result	I.OD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene		0.44	0.14	0.46		1	ug/L	Q	04/14/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene	_	101				1	%Recov		04/14/05	SW846 5030B	SW846 M8021
METHANE										Prep Dat	e: 04/22/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		2300		·······	100	10	ug/L		04/22/05	SW846 M8015	SW846 M8015

FAU/ FNA											
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		0.61	0.10	0.33		5	ug/L	D	04/15/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		0.090	0.023	0.076		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Acenaphthene		1.0	0.097	0.32		5	ug/L	D	04/15/05	SW846 3510C	8270C-SIM
Acenaphthylene		0.029	0.019	0.064		1	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM
Anthracene		0.046	0.018	0.059		1	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.020	0.020	0.065		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.018	0.018	0.060		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.018	0.018	0.060		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.021	0.021	0.069		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.019	0.019	0.064		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Chrysene	<	0.016	0.016	0.055		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.022	0.022	0.073		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Fluoranthene		0.047	0.016	0.055		1	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM
Fluorene		0.33	0.022	0.073		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.017	0.017	0.057		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Naphthalene		1.2	0.11	0.37		5	ug/L	D	04/15/05	SW846 3510C	8270C-SIM
Phenanthrene		0.52	0.10	0.34		5	ug/L	D	04/15/05	SW846 3510C	8270C-SIM
Pyrene		0.053	0.016	0.054		1	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM
Nitrobenzene-d5		62				1	%Recov		04/15/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		53				1	%Recov		04/15/05	SW846 3510C	8270C-SIM
Terphenyl-d14		85				1	%Recov		04/15/05	SW846 3510C	8270C-SIM

A Division of Pace Analytical Services, Inc.

. .

Analytical Report Number: 858083

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Matrix Type : GROUNDWATER Client: NATURAL RESOURCE TECHNOLOGY Collection Date: 04/11/05 Project Name : WPSC - STEVENS POINT Report Date: 04/26/05 Project Number: 1177 Lab Sample Number: 858083-002 Field ID: OW-3R INORGANICS Anl Date Prep Method Anl Method Code Units Dil. LOD LOQ EQL Result Test SW846 6010B 04/19/05 SW846 6010B 1 ug/L 33000 17 55 Iron - Dissolved EPA 310.2 04/25/05 EPA 310.2 5 mg/L 32 110 450 Alkalinity as CaCO3 EPA 353.2 EPA 353.2 04/14/05 1 mg/L 0.061 0.20 < 0.061 Nitrogen, NO3 + NO2 EPA 300.0 EPA 300.0 04/22/05 10 mg/L 28 8.3 320 Sulfate Prep Date: 04/14/05 . BENZENE Anl Method Prep Method Code Anl Date EQL Dil. Units LOD LOQ Result Analyte SW846 5030B SW846 M8021 04/14/05 1 ug/L Q 0.46 0.38 0.14 Benzene SW846 5030B SW846 M8021 04/14/05 1 %Recov 101 a,a,a-Trifluorotoluene Prep Date: 04/22/05 METHANE Anl Method Code Anl Date Prep Method Units LOQ EQL Dil. LOD Result Analyte SW846 M8015 SW846 M8015 04/22/05 50 5 ug/L 950 Methane Prep Date: 04/14/05 PAH/ PNA Prep Method Anl Method Anl Date Units Code LOD EQL Dil. LOQ Result Analyte SW846 3510C 8270C-SIM 04/15/05 5 ug/L 0.33 0.10 0.98 1-Methylnaphthalene SW846 3510C 8270C-SIM 04/15/05 Q 5 ug/L 0.38 0.15 0.11 2-Methylnaphthalene 8270C-SIM SW846 3510C 04/15/05 5 ug/L 1.6 0.097 0.32 Acenaphthene 04/15/05 SW846 3510C 8270C-SIM 5 ug/L 0.097 0.32 0.36 Acenaphthylene 8270C-SIM SW846 3510C 04/15/05 0.29 5 ug/L 0.088 0.68 Anthracene 04/15/05 8270C-SIM SW846 3510C Q 5 ug/L 0.098 0.33 0.24 Benzo(a)anthracene 8270C-SIM 04/15/05 SW846 3510C 5 Q ug/L 0.091 0.30 0.15 Benzo(a)pyrene SW846 3510C 8270C-SIM 04/15/05 Q 5 ug/L 0.11 0.089 0.30 Benzo(b)fluoranthene 8270C-SIM 04/15/05 SW846 3510C 0.10 0.34 5 ug/L < 0.10 Benzo(ghi)perylene 04/15/05 SW846 3510C 8270C-SIM Q 5 ug/L 0.097 0.32 0.13 Benzo(k)fluoranthene 8270C-SIM SW846 3510C 04/15/05 5 ug/L Q 0.27 0.082 0.17 Chrysene 8270C-SIM 04/15/05 SW846 3510C ug/L 5 0.37 0.11 0.11 Dibenz(a,h)anthracene < SW846 3510C 8270C-SIM 04/15/05 5 ug/L 0.082 0.27 1.1 Fluoranthene 8270C-SIM SW846 3510C 04/15/05 5 ug/L 0.11 0.36 0.89 Fluorene SW846 3510C 8270C-SIM 04/15/05 5 ug/L 0.28 0.085 0.085 < Indeno(1,2,3-cd)pyrene SW846 3510C 8270C-SIM 04/15/05 5 ug/L 0.37 0.11 1.7 Naphthalene SW846 3510C 8270C-SIM 04/15/05 5 ug/L 0.34 2.0 0.10 Phenanthrene SW846 3510C 8270C-SIM 04/15/05 5 ug/L 0.081 0.27 0.82 Pyrene SW846 3510C 8270C-SIM 04/15/05 5 %Recov 70 Nitrobenzene-d5 SW846 3510C 8270C-SIM 04/15/05 5 %Recov 51 2-Fluorobiphenyl SW846 3510C 8270C-SIM 04/15/05 5 %Recov 88 Terphenyl-d14

Analytical Report Number: 858083

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

A Division of Pace Analytical Services, Inc.

Client : NAT Project Name : WP Project Number : 117 Field ID : PZ-	TURAL RE SC - STEV 7	SOURCE		OLOGY			,	La	Collecti Rep	rix Type : GROU on Date : 04/11/ ort Date : 04/26/ Number : 85808	/05 /05
INORGANICS								- ·		.	
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
Iron - Dissolved		5800	17	55		1	ug/L		04/19/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		78	6.3	21		1	mg/L		04/25/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2		0.12	0.061	0.20		1	mg/L	Q	04/14/05	EPA 353.2	EPA 353.2
Sulfate	<	0.83	0.83	2.8		1	mg/L		04/13/05	EPA 300.0	EPA 300.0
BENZENE										Prep Da	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene	<	0.14	0.14	0.46		1	ug/L		04/14/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		101				1	%Recov		04/14/05	SW846 5030B	SW846 M8021
METHANE										Prep Da	te: 04/22/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		190			10	1	ug/L		04/22/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	te: 04/14/05
Analyte		Result	LOĐ	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene	<	0.020	0.020	0.066		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene	<	0.023	0.023	0.076		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Acenaphthene	<	0.019	0.019	0.065		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Acenaphthylene	<	0.019	0.019	0.064		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Anthracene	<	0.018	0.018	0.059		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.020	0.020	0.065		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.018	0.018	0.060		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.018	0.018	0.060		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.021	0.021	0.069		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.019	0.019	0.064		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Chrysene	<	0.016	0.016	0.055		1	ug/l_		04/15/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.022	0.022	0.073		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Fluoranthene	<	0.016	0.016	0.055		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Fluorene	<	0.022	0.022	0.073		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.017	0.017	0.057		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Naphthalene	<	0.022	0.022	0.075		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Phenanthrene	<	0.020	0.020	0.068		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Pyrene	<	0.016	0.016	0.054		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Nitrobenzene-d5		59				1	%Recov		04/15/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		32				1	%Recov		04/15/05	SW846 3510C	8270C-SIM
Terphenyl-d14		92				1	%Recov		04/15/05	SW846 3510C	8270C-SIM

· .

.

Analytical Report Number: 858083

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

,

	aal Sonrico	e lac		,	•					920-469-2	436
A Division of Pace Analyti Client : NA Project Name : Wf Project Number : 11 Field ID : OV	TURAL RE PSC - STEV 77	SOURCE		OLOGY				La	Collecti Repo	rix Type : GROU on Date : 04/11/ ort Date : 04/26/ Number : 85808	05 05
INORGANICS								. .	tul Data	Dran Mathad	Apl Mathad
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
ron - Dissolved		11000	17	55		1	ug/L		04/19/05	SW846 6010B	SW846 6010E
Alkalinity as CaCO3		120	32	110		5	mg/L		04/25/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		04/14/05	EPA 353.2	EPA 353.2
Sulfate		2.4	0.83	2.8		1	mg/L	Q	04/13/05	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene	<	0.14	0.14	0.46		1	ug/L		04/14/05	SW846 5030B	SW846 M802
a,a,a-Trifluorotoluene		100				1	%Recov		04/14/05	SW846 5030B	SW846 M802
										Prep Dat	te: 04/22/05
METHANE Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		6200			500	50	ug/L		04/22/05	SW846 M8015	SW846 M801
······································				<u>_</u>						Prep Dat	te: 04/14/05
PAH/ PNA		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Analyte				1.3		20	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM
1-Methylnaphthalene		0.41	0.40			20	ug/L	u	04/15/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene	<	0.45	0.45	1.5		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Acenaphthene		7.7	0.39	1.3		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Acenaphthylene	<	0.39	0.39	1.3		20	ug/L	Q	04/15/05	SW846 3510C	
Anthracene		0.59	0.35	1.2		20		Q	04/15/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<		0.39	1.3		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<		0.36	1.2			ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.36	0.36	1.2		20	ug/L		04/10/00		
						20			04/15/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<		0.41	1.4		20 20	ug/L		04/15/05	SW846 3510C	8270C-SIM 8270C-SIM
	<	0.39	0.39	1.3		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	< <	0.39 0.33	0.39 0.33	1.3 1.1		20 20	ug/L ug/L		04/15/05 04/15/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM
Benzo(k)fluoranthene Chrysene	< <	0.39 0.33 0.44	0.39 0.33 0.44	1.3 1.1 1 <i>.</i> 5		20 20 20	ug/L ug/L ug/L	0	04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM
Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene	< <	0.39 0.33 0.44 0.36	0.39 0.33 0.44 0.33	1.3 1.1 1.5 1.1		20 20 20 20	ug/L ug/L ug/L ug/L	Q	04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene	< <	0.39 0.33 0.44 0.36 3.0	0.39 0.33 0.44 0.33 0.44	1.3 1.1 1.5 1.1 1.5		20 20 20 20 20	ug/L ug/L ug/L ug/L ug/L	Q	04/15/05 04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	< < <	0.39 0.33 0.44 0.36 3.0 0.34	0.39 0.33 0.44 0.33 0.44 0.34	1.3 1.1 1.5 1.1 1.5 1.1		20 20 20 20 20 20	ug/L ug/L ug/L ug/L ug/L	Q	04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	< < <	0.39 0.33 0.44 0.36 3.0 0.34 0.45	0.39 0.33 0.44 0.33 0.44 0.34 0.45	1.3 1.1 1.5 1.1 1.5 1.1 1.5		20 20 20 20 20 20 20	ug/L ug/L ug/L ug/L ug/L ug/L	Q	04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene	< < < <	0.39 0.33 0.44 0.36 3.0 0.34 0.45 1.8	0.39 0.33 0.44 0.33 0.44 0.34 0.45 0.41	1.3 1.1 1.5 1.1 1.5 1.1 1.5 1.1 1.5		20 20 20 20 20 20 20 20	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Q	04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene	< < < <	0.39 0.33 0.44 0.36 3.0 0.34 0.45	0.39 0.33 0.44 0.33 0.44 0.34 0.45	1.3 1.1 1.5 1.1 1.5 1.1 1.5		20 20 20 20 20 20 20 20 20 20	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene Nitrobenzene-d5	< < < <	0.39 0.33 0.44 0.36 3.0 0.34 0.45 1.8	0.39 0.33 0.44 0.33 0.44 0.34 0.45 0.41	1.3 1.1 1.5 1.1 1.5 1.1 1.5 1.1 1.5		20 20 20 20 20 20 20 20 20 20 20	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	< < < <	0.39 0.33 0.44 0.36 3.0 0.34 0.45 1.8 0.33	0.39 0.33 0.44 0.33 0.44 0.34 0.45 0.41	1.3 1.1 1.5 1.1 1.5 1.1 1.5 1.1 1.5		20 20 20 20 20 20 20 20 20 20	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM

.

Analytical Report Number: 858083

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

A Division of Pace Analytical Services, Inc. Matrix Type : GROUNDWATER Client: NATURAL RESOURCE TECHNOLOGY Collection Date: 04/11/05 Project Name: WPSC - STEVENS POINT Report Date : 04/26/05 Project Number: 1177 Lab Sample Number: 858083-005 Field ID: PZ-13B INORGANICS Anl Method LOD LOQ EQL Dil. Units Code Anl Date Prep Method Result Test SW846 6010B 04/21/05 SW846 6010B 110 17 55 1 ug/L Iron - Dissolved 04/25/05 EPA 310.2 EPA 310.2 1 mg/L Alkalinity as CaCO3 190 6.3 21 EPA 353.2 04/14/05 EPA 353.2 1 mg/L < 0.061 0.061 0.20 Nitrogen, NO3 + NO2 04/13/05 EPA 300.0 EPA 300.0 mg/L Sulfate 13 0.83 2.8 1 Prep Date: 04/15/05 BENZENE * Code Anl Date Prep Method Anl Method LOD LOQ EQL Dil. Units Analyte Result SW846 5030B SW846 M8021 04/15/05 < 0.14 0.14 0.46 1 ug/L Benzene SW846 5030B SW846 M8021 1 %Recov 04/15/05 a,a,a-Trifluorotoluene 101 Prep Date: 04/22/05 METHANE Units Code Anl Date Prep Method Anl Method LOD LOQ EQL Dil. Result Analyte 04/22/05 SW846 M8015 SW846 M8015 ug/L 1 Methane < 10 10 Prep Date: 04/14/05 PAH/ PNA Prep Method Anl Method LOQ Dil. Units Code Anl Date LOD EQL Analyte Result 04/15/05 SW846 3510C 8270C-SIM 0.020 0.020 0.066 1 ug/L < 1-Methylnaphthalene SW846 3510C 8270C-SIM 04/15/05 0.076 1 ug/L 2-Methylnaphthalene < 0.023 0.023 SW846 3510C 8270C-SIM 0.055 0.019 0.065 1 ug/L Q 04/15/05 Acenaphthene 8270C-SIM 0.019 0.019 0.064 1 ug/L 04/15/05 SW846 3510C < Acenaphthylene 1 ug/L 04/15/05 SW846 3510C 8270C-SIM 0.018 0.018 0.059 < Anthracene Q 04/15/05 SW846 3510C 8270C-SIM 0.020 0.065 1 ug/L 0.025 Benzo(a)anthracene SW846 3510C 8270C-SIM Q 04/15/05 0.029 0.018 0.060 1 ug/L Benzo(a)pyrene Q 04/15/05 SW846 3510C 8270C-SIM Benzo(b)fluoranthene 0.039 0.018 0.060 1 ug/L SW846 3510C 8270C-SIM 0.026 0.021 0.069 1 ug/L Q 04/15/05 Benzo(ghi)perylene 1 Q 04/15/05 SW846 3510C 8270C-SIM 0.029 0.019 0.064 ug/L Benzo(k)fluoranthene Q 04/15/05 SW846 3510C 8270C-SIM 0.055 1 ug/L 0.035 0.016 Chrysene 04/15/05 SW846 3510C 8270C-SIM 0.022 0.022 0.073 1 ug/L Dibenz(a,h)anthracene < 04/15/05 SW846 3510C 8270C-SIM ug/L 0.058 0.016 0.055 1 Fluoranthene 0.022 0.022 0.073 1 ug/L 04/15/05 SW846 3510C 8270C-SIM < Fluorene ug/L Q 04/15/05 SW846 3510C 8270C-SIM 0.017 0.057 1 0.021 Indeno(1,2,3-cd)pyrene SW846 3510C 0.022 04/15/05 8270C-SIM 0.022 0.075 1 ug/L Naphthalene < Q SW846 3510C 8270C-SIM 04/15/05 ug/L Phenanthrene 0.046 0.020 0.068 1 ug/L 04/15/05 SW846 3510C 8270C-SIM 0.055 0.016 0.054 1 Pyrene 04/15/05 SW846 3510C 8270C-SIM 64 1 %Recov Nitrobenzene-d5 %Recov 04/15/05 SW846 3510C 8270C-SIM 52 1 2-Fluorobiphenyl 8270C-SIM %Recov 04/15/05 SW846 3510C 88 1 Terphenyl-d14

.

, .

.

Analytical Report Number: 858083

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

ype : GROL Date : 04/11/ Date : 04/26/ Iber : 85808 PA 310.2 PA 353.2 PA 300.0 Prep Da ep Method V846 5030B V846 5030B	/05 /05
Date : 04/11/ Date : 04/26/ Iber : 85808 PA 6010B PA 310.2 PA 353.2 PA 300.0 Prep Da ep Method V846 5030B	705 705 33-006 SW846 6010E EPA 310.2 EPA 353.2 EPA 300.0 te: 04/14/05 Anl Method
Date : 04/26/ (ber : 85808 PA Method V846 6010B PA 310.2 PA 353.2 PA 353.2 PA 300.0 Prep Da ep Method V846 5030B	705 33-006 Anl Method SW846 6010E EPA 310.2 EPA 353.2 EPA 300.0 te: 04/14/05 Anl Method
ep Method V846 6010B VA 310.2 VA 353.2 VA 300.0 Prep Da ep Method V846 5030B	Anl Method SW846 6010E EPA 310.2 EPA 353.2 EPA 300.0 te: 04/14/05 Anl Method
ep Method V846 6010B 2A 310.2 2A 353.2 2A 300.0 Prep Da ep Method V846 5030B	Anl Method SW846 6010E EPA 310.2 EPA 353.2 EPA 300.0 te: 04/14/05 Anl Method
V846 6010B 2A 310.2 2A 353.2 2A 300.0 Prep Da ep Method V846 5030B	SW846 6010E EPA 310.2 EPA 353.2 EPA 300.0 te: 04/14/05 Anl Method
V846 6010B 2A 310.2 2A 353.2 2A 300.0 Prep Da ep Method V846 5030B	SW846 6010E EPA 310.2 EPA 353.2 EPA 300.0 te: 04/14/05 Anl Method
2A 310.2 2A 353.2 2A 300.0 Prep Da ep Method V846 5030B	EPA 310.2 EPA 353.2 EPA 300.0 te: 04/14/05 Anl Method
PA 353.2 PA 300.0 Prep Da ep Method V846 5030B	EPA 353.2 EPA 300.0 te: 04/14/05 Anl Method
PA 300.0 Prep Da ep Method V846 5030B	EPA 300.0 te: 04/14/05 Anl Method
Prep Da ep Method V846 5030B	te: 04/14/05 Anl Method
ep Method V846 5030B	Anl Method
V846 5030B	
	CINI0 46 M000
V846 5030B	300040 101002
10100000	SW846 M802
Prep Da	te: 04/22/05
ep Method	Anl Method
V846 M8015	SW846 M801
Prep Da	te: 04/14/05
·	Anl Method
	8270C-SIM
V846 3510C	8270C-SIM
	8270C-SIM
V846 3510C	8270C-SIM
	8270C-SIM
V846 3510C	
V846 3510C V846 3510C	8270C-SIM
	8270C-SIM 8270C-SIM
V846 3510C	
V846 3510C V846 3510C	8270C-SIM
V846 3510C V846 3510C V846 3510C	8270C-SIM 8270C-SIM
V846 3510C V846 3510C V846 3510C V846 3510C V846 3510C	8270C-SIM 8270C-SIM 8270C-SIM
V846 3510C V846 3510C V846 3510C V846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
	ep Method V846 3510C V846 3510C

.

· ·

.

Analytical Report Number: 858083

A Division of Pace Anal	vtical Service	es, Inc.	,	. ,						920-469-	2436
	ATURAL RE		E TECHN	OLOGY					Mat	rix Type : GROl	JNDWATER
Project Name : V										on Date : 04/11	
Project Number: 1									Rep	ort Date: 04/26	/05
Field ID : F								Li	ab Sample	Number : 85808	3-007
INORGANICS		<u> </u>									
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved	<	17	17	55		1	ug/L		04/22/05	SW846 6010B	SW856 6010B
Alkalinity as CaCO3		160	6.3	21		1	mg/L		04/25/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2		0.11	0.061	0.20		1	mg/L	Q	04/14/05	EPA 353.2	EPA 353.2
Sulfate		7.9	0.83	2.8		1	mg/L		04/13/05	EPA 300.0	EPA 300.0
BENZENE		· · · · · ·						-		Prep Da	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene	<	0.14	0.14	0.46		1	ug/L		04/14/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		102				1	%Recov		04/14/05	SW846 5030B	SW846 M8021
METHANE										Prep Da	te: 04/22/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane	<	10	<u></u> .		10	1	ug/L		04/22/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Da	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene	<	0.020	0.020	0.066		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene	<		0.023	0.076		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Acenaphthene		0.034	0.019	0.065		1	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM
Acenaphthylene	<	0.019	0.019	0.064		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Anthracene	<	0.018	0.018	0.059		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.020	0.020	0.065		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.018	0.018	0.060		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.018	0.018	0.060		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.021	0.021	0.069		1	ug/L ·		04/15/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.019	0.019	0.064		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Chrysene	<	0.016	0.016	0.055		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.022	0.022	0.073		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Fluoranthene	<	0.016	0.022	0.055		1	ug/L		04/15/05	SW846 3510C	
Fluorene	<	0.022	0.022	0.073		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
		0.022	0.022	0.073		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
ndeno(1,2,3-cd)pyrene	<	0.017	0.017	0.057		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Naphthalene	<					1			04/15/05	SW846 3510C	8270C-SIM 8270C-SIM
Phenanthrene	<	0.020	0.020	0.068		•	ug/L			SW846 3510C	
^D yrene	<	0.016	0.016	0.054		1	ug/L % De seu		04/15/05		8270C-SIM
Nitrobenzene-d5		64				1	%Recov		04/15/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		48				1	%Recov		04/15/05	SW846 3510C	8270C-SIM
Terphenyl-d14		84				1	%Recov		04/15/05	SW846 3510C	8270C-SIM

. .

.

Analytical Report Number: 858083

	niac	e Inc		,	•					920-469-2	2436
A Division of Pace Analytical Se Client: NATURA Project Name: WPSC -	L RE	SOURCE		OLOGY					Collecti	rix Type: GROU on Date: 04/11/ ort Date: 04/26/	05
Project Number: 1177 Field ID: OW-4								La	-	Number : 85808	
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
ron - Dissolved		18000	17	55		1	ug/L		04/21/05	SW846 6010B	SW846 6010
Alkalinity as CaCO3		140	32	110		5	mg/L		04/25/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		04/14/05	EPA 353.2	EPA 353.2
Sulfate		1.6	0.83	2.8		1	mg/L	Q	04/13/05	EPA 300.0	EPA 300.0
BENZENE										Prep Da	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene		0.23	0.14	0.46		1	ug/L	Q	04/14/05	SW846 5030B	SW846 M802
a.a.a-Trifluorotoluene		101				1	%Recov		04/14/05	SW846 5030B	SW846 M802
METHANE										Prep Da	te: 04/22/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Ani Date	Prep Method	Anl Method
Methane		2800			200	20	ug/L		04/22/05	SW846 M8015	SW846 M801
PAH/ PNA		_								Prep Da	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		0.020	0.020	0.066		1	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene	<	0.023	0.023	0.076		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Acenaphthene		0.030	0.019	0.065		1	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM
Acenaphthylene	<	0.019	0.019	0.064		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Anthracene	<	0.018	0.018	0.059		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.020	0.020	0.065		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.018	0.018	0.060		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.018	0.018	0.060		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.021	0.021	0.069		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.019	0.019	0.064		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Chrysene	<	0.016	0.016	0.055		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.022	0.022	0.073		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Fluoranthene	<	0.016	0.016	0.055		1	ug/L		04/15/05	SW846 3510C	
Fluorene	<		0.022	0.073		1	ug/L		04/15/05	SW846 3510C	
Indeno(1,2,3-cd)pyrene		0.017	0.017	0.057		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Naphthalene		0.38	0.022	0.075		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Phenanthrene	<	0.020	0.020	0.068		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Pyrene		0.016	0.016	0.054		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Nitrobenzene-d5		61				1	%Recov		04/15/05	SW846 3510C	8270C-SIM
		46				1	%Recov		04/15/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		40 86				1	%Recov		04/15/05	SW846 3510C	8270C-SIM
Terphenyl-d14		00									

Analytical Report Number: 858083

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

A Division of Pace Analytical Services, Inc.

Client : NATURAL RESOURCE TECHNOLOGY

Project Name : WPSC - STEVENS POINT

Project Number: 1177

Field ID: OW-1

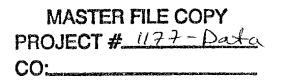
Matrix Type : GROUNDWATER Collection Date : 04/11/05 Report Date : 04/26/05 Lab Sample Number : 858083-009

Iron - Dissolved 30000 83 Alkalinity as CaCO3 230 33 Nitrogen, NO3 + NO2 < 0.061 0 Sulfate < 0.83 0 BENZENE 0 Analyte Result L0 Benzene 0.26 0 a,a,a-Trifluorotoluene 100 100 METHANE Analyte Result L0 Methane 150 PAH/ PNA Acenaphthem 14 0 Acenaphthem 14 0 Acenaphthylene <0.97 0 Anthracene 88 0 Benzo(a)anthracene < 0.97 0	.0D .0D .0 .1 .97	200 110 0.20 2.8 0Q 0.40 LOQ 3.3 3.8 3.2 3.2 3.2 2.9	EQL EQL 10 EQL	Dil. 50 5 1 1 1 Dil. 1 1 Dil. 50 50 50 50	Units ug/L mg/L mg/L units ug/L %Recov Units ug/L Units ug/L ug/L ug/L ug/L ug/L	Code Q Code Qbde	Anl Date 04/22/05 04/25/05 04/14/05 04/13/05 Anl Date 04/14/05 04/14/05 04/14/05 Anl Date 04/22/05 Anl Date 04/15/05 04/15/05	Prep Method 6W846 503 B W846 503 B Prev Dat Prep Method 6W846 M8015 Prep Dat Prep Dat Prep Method SW846 3510C SW846 3510C SW846 3510C	Anl Method SW856 6010B EPA 310.2 EPA 353.2 EPA 300.0 te: 04/14/05 Anl Method SW846 M8021 SW846 M8021 te: 04/22/05 Anl Method SW846 M8015 te: 04/14/05 Anl Method 8270C-SIM 8270C-SIM 8270C-SIM
Alkalinity as CaCO3 230 32 Nitrogen, NO3 + NO2 < 0.061	2 61 .83 .0D .14 .0D .0 .1 97 .88	110 0.20 2.8 0Q 0.40 LOQ 3.3 3.8 3.2 3.2 3.2	EQL 10	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mg/L mg/L mg/L units ug/L Whits ug/L ug/L ug/L ug/L	Q Code	04/25/05 04/14/05 04/13/05 Anl Date 04/14/05 04/14/05 04/14/05 Anl Date 04/22/05 Anl Date 04/15/05 04/15/05	EPA 310.2 EPA 353.2 EPA 300.0 Prep Dat Prep Method 3W846 503 B W846 503 B Prep Dat Prep Method SW846 M8015 Prep Dat Prep Dat SW846 3510C SW846 3510C	EPA 310.2 EPA 353.2 EPA 300.0 te: 04/14/05 Anl Method SW846 M8021 SW846 M8021 te: 04/22/05 Anl Method SW846 M8015 te: 04/14/05 Anl Method 8270C-SIM 8270C-SIM
Nitrogen, NO3 + NO2 < 0.061	.0D .14 .0D .0D .0 .1 .97 	0.20 2.8 0Q 0.40 LOQ 3.3 3.8 3.2 3.2 3.2	EQL 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mg/L mg/L ug/L %Recov Units ug/L Units ug/L ug/L ug/L	Q Code	04/14/05 04/13/05 Anl Date 04/14/05 04/14/05 04/14/05 04/14/05 04/15/05 04/15/05 04/15/05	EPA 353.2 EPA 300.0 Prep Dat Prep Method 500846 503 B W846 503 B W846 503 B Prev Dat Prev Method SW846 M8015 Prep Dat Prep Dat SW846 3510C SW846 3510C	EPA 353.2 EPA 300.0 te: 04/14/05 Anl Method SW846 M802 SW846 M802 te: 04/22/05 Anl Method SW846 M8015 te: 04/14/05 Anl Method 8270C-SIM 8270C-SIM
Nitrogen, NO3 + NO2 < 0.061	.83 .OD .14 .0D .0 .1 .97 .88	2.8 0.40 LOQ 3.3 3.8 3.2 3.2	EQL 10	1 Dil. 1 1 1 J Dil. 50 50 50 50	mg/L ug/L %Recov Units ug/L Units ug/L ug/L ug/L ug/L	Q Code	04/13/05 Anl Date 04/14/05 04/14/05 04/14/05 04/12/05 Anl Dat 04/15/05 04/15/05 04/15/05	EPA 300.0 Prep Dat Prep Method 50V846 503 B W846 503 B Prev Dat Prep Method SW846 M8015 Prep Dat Prep Dat SW846 3510C SW846 3510C SW846 3510C	EPA 300.0 te: 04/14/05 Anl Method SW846 M8021 SW846 M8021 te: 04/22/05 Anl Method SW846 M8015 te: 04/14/05 Anl Method 8270C-SIM 8270C-SIM
Sulfate < 0.83 4 BENZENE Analyte Result L0 Benzene 0.26 0. 0. a,a,a-Trifluorotoluene 100 0. 0. METHANE Result L0 0. Methane 150 0. 0. PAH/ PNA Result L0 0. 1-Methylnaphthalene <	OD .14 .0D .0 .1 .97 .88	0Q 0.42 LOQ 3.3 3.8 3.2 3.2 3.2	EQL 10	1 1 1 Dil. 50 50 50 50	ug/L %Recov Units ug/L Units ug/L ug/L ug/L	Q Code	Anl Date 04/14/05 04/14/05 Anl Date 04/12/05 Anl Date 04/15/05 04/15/05	Prep Dat Prep Method 50/846 503 B 1/846 503 B Prep Dat Prep Method 5/846 M8015 Prep Dat Prep Dat SW846 3510C SW846 3510C SW846 3510C	te: 04/14/05 Anl Method SW846 M8021 SW846 M8021 te: 04/22/05 Anl Method SW846 M8015 te: 04/14/05 Anl Method 8270C-SIM 8270C-SIM
AnalyteResultLdBenzene0.260.a,a,a-Trifluorotoluene100METHANE100AnalyteResultLdMethane150PAH/ PNA150AnalyteResultLd1-Methylnaphthalene< 1.0	.0D .00 .1 .97 .88	0.48 LOQ 3.3 3.8 3.2 3.2 3.2	EQL 10	1 1 1 Dil. 50 50 50 50	ug/L %Recov Units ug/L Units ug/L ug/L ug/L	Q Code	04/14/05 04/14/05 Ar Dote 04/22/05 Anl Dat 04/15/05 04/15/05 04/15/05	Prep Method 6W846 503 B W846 503 B Prev Dat Prep Method 6W846 M8015 Prep Dat Prep Dat Prep Method SW846 3510C SW846 3510C SW846 3510C	Anl Method SW846 M8021 SW846 M8021 te: 04/22/05 Anl Method SW846 M8015 te: 04/14/05 Anl Method 8270C-SIM 8270C-SIM
Benzene0.260.a,a,a-Trifluorotoluene100METHANEAnalyteResultMethane150PAH/ PNAAnalyteResult1-Methylnaphthalene<	.0D .00 .1 .97 .88	0.48 LOQ 3.3 3.8 3.2 3.2 3.2	EQL 10	1 1 1 Dil. 50 50 50 50	ug/L %Recov Units ug/L Units ug/L ug/L ug/L	Q Code	04/14/05 04/14/05 Ar Dote 04/22/05 Anl Dat 04/15/05 04/15/05 04/15/05	000846 503 B 100846 503 B 100846 503 B 100846 00 100846 00 10086 0000000000000000000000000000000000	SW846 M8021 SW846 M8021 te: 04/22/05 Anl Method SW846 M8015 te: 04/14/05 Anl Method 8270C-SIM 8270C-SIM
a,a,a-Trifluorotoluene 100 METHANE Result L0 Analyte Result L0 Methane 150 150 PAH/ PNA Result L0 1-Methylnaphthalene < 1.0	OD .0 .1 .97 .88	LOQ 3.3 3.8 3.2 3.2	10	1 1 Dil. 50 50 50 50	%Recov Units ug/L Units ug/L ug/L ug/L	Code	04/14/05 Ar Date 04/22/05 Anl Dat 04/15/05 04/15/05 04/15/05	VV846 503 B Prep Dat Prep Millod W846 M8015 Prep Dat Prep Method SW846 3510C SW846 3510C SW846 3510C	SW846 M8021 te: 04/22/05 Anl Method SW846 M8015 te: 04/14/05 Anl Method 8270C-SIM 8270C-SIM
METHANEAnalyteResultL0Methane150PAH/ PNAAnalyteResultL01-Methylnaphthalene< 1.0	OD .0 .1 .97 .88	3.3 3.8 3.2 3.2	10	1 Dil. 50 50 50 50	Units ug/L Units ug/L ug/L ug/L		Ari Dote 04/22/05 Anl Dat 04/15/05 04/15/05 04/15/05	Prep Mathod 9W846 M8015 Prep Dat Prep Method SW846 3510C SW846 3510C SW846 3510C	te: 04/22/05 Anl Method SW846 M8015 te: 04/14/05 Anl Method 8270C-SIM 8270C-SIM
AnalyteResultL0Methane150PAH/ PNA150AnalyteResultL01-Methylnaphthalene< 1.0	OD .0 .1 .97 .88	3.3 3.8 3.2 3.2	10	Dil. 50 50 50 50	ug/L Units ug/L ug/L ug/L		04/32/05 Anl Da 04/15/05 04/15/05 04/15/05	Prep Millod SW846 M8015 Prep Dat Prep Method SW846 3510C SW846 3510C SW846 3510C	Anl Method SW846 M8015 te: 04/14/05 Anl Method 8270C-SIM 8270C-SIM
Methane150PAH/ PNAResultAnalyteResult1-Methylnaphthalene<	OD .0 .1 .97 .88	3.3 3.8 3.2 3.2	10	Dil. 50 50 50 50	ug/L Units ug/L ug/L ug/L		04/32/05 Anl Da 04/15/05 04/15/05 04/15/05	BW846 M8015 Prep Dat Prep Method SW846 3510C SW846 3510C SW846 3510C SW846 3510C	SW846 M8015 te: 04/14/05 Anl Method 8270C-SIM 8270C-SIM
PAH/ PNAAnalyteR sult1-Methylnaphthalene<	.0 .1 .97 .88	3.3 3.8 3.2 3.2		Dil. 50 50 50 50	Units ug/L ug/L ug/L	(dpde	Anl Da 04/15/05 04/15/05 04/15/05	Prep Dat Prep Method SW846 3510C SW846 3510C SW846 3510C	te: 04/14/05 Anl Method 8270C-SIM 8270C-SIM
AnalyteResultL1-Methylnaphthalene<	.0 .1 .97 .88	3.3 3.8 3.2 3.2		50 50 50 50	ug/L ug/L ug/L	dbde	04/15/05 04/15/05 04/15/05	Prep Method SW846 3510C SW846 3510C SW846 3510C	Anl Method 8270C-SIM 8270C-SIM
1-Methylnaphthalene<1.01.2-Methylnaphthalene<	.0 .1 .97 .88	3.3 3.8 3.2 3.2		50 50 50 50	ug/L ug/L ug/L	Cibde	04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM
2-Methylnaphthalene<	.1 97 .9 .88	3.8 3.2 3.2	Γ	50 50 50	ug/L ug/L	ζ,	04/15/05 04/15/05	SW846 3510C SW846 3510C	8270C-SIM
Acenaphthem14Acenaphthylene0.97Acenaphthylene0.97Anthracene88Benzo(a)anthracene0.8Benzo(a)pyrene0.97	.97 .97 .88	3.2 3.2		50 50	ug/L 🔍	$\langle \cdot \rangle$	04/15/05	SW846 3510C	
Acenaphthylene< 0.970.Anthracene< 88	.9 .88	3.2	/	50		\mathbf{X}			8270C-SIM
Anthracene< 880.Benzo(a)anthracene< 0.3	.88				ug/L				
Benzo(a)anthracene< 0.430.Benzo(a)pyrene< 0.97		29	/				04/15/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene < 0.97 0.	.98			50	ug/L	X	04/15 05	SW846 3510C	8270C-SIM
		3.3		50	ug/L		041/5/05	SW846 3510C	8270C-SIM
Bonzo/b)fluoranthono	.91	3.0		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(b)Indorantinene	.89	3.0		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene < 1.0 1.	.0	3.4		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene < 0.97	97	3.2		50	g/L		04/15/05	SW846 3510C	8270C-SIM
	.82	2.7		50	ug".		04/15/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene < 1.1 1.	.1	3.7		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Fluoranthene < 0.82 0.1	.82	2.7		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Fluorene < 1.1 1.	.1	3.6		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene < 0.85 0.4	.85	2.8		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Naphthalene < 1.1 1.	.1	3.7		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Phenanthrene < 1.0 1.0	.0	3.4		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
	.81	2.7		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Nitrobenzene-d5 0			•	50	%Recov	D	04/15/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl 0	· /				%Recov	D	04/15/05	SW846 3510C	8270C-SIM
Terphenyl-d14 0				5	%Recov	D	04/15/05	SW846 3510C	8270C-SIM

REVISED

1241 Bellevue Street, Suite 9 Green Bay, WI 54302 920-469-2436, Fax: 920-469-8827

Lab Contact: Tom Trainor


Analytical Report Number: 858083

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - STEVENS POINT

Project Number: 1177

Lab Sample Number	Field ID	Matrix	Collection Date	
858083-009	OW-1	GW	04/11/05	

I certify that the data contained in this Final Report has been generated and reviewed in accordance with approved methods and Laboratory Standard Operating Procedure. Exceptions, if any, are discussed in the accompanying sample comments. Release of this final report is authorized by Laboratory management, as is verified by the following signature. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. The sample results relate only to the analytes of interest tested.

Iname

19/05

Approval Signature

Date

Analytical Report Number: 858083

REVISED

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Pace Analytical Services, Inc.

> Client: NATURAL RESOURCE TECHNOLOGY Project Name: WPSC - STEVENS POINT Project Number: 1177 Field ID: OW-1

Matrix Type : GROUNDWATER Collection Date : 04/11/05 Report Date : 05/19/05 Lab Sample Number : 858083-009

INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
Iron - Dissolved		30000	830	2800		50	ug/L	· · · ·	04/22/05	SW846 6010B	SW856 6010B
Lead - Dissolved	<	1.5	1.5	5.1		1	ug/L		04/21/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		230	32	110		5	mg/L		04/25/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		04/14/05	EPA 353.2	EPA 353.2
Sulfate	<	0.83	0.83	2.8		1	mg/L		04/13/05	EPA 300.0	EPA 300.0
BENZENE										Prep Da	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
Benzene		0.26	0.14	0.46		1	ug/L	Q	04/14/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		100				1	%Recov		04/14/05	SW846 5030B	SW846 M8021
METHANE										Prep Da	te: 04/22/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		150			10	1	ug/L		04/22/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene	<	1.0	1.0	3.3	· · ·	50	ug/L.		04/15/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene	<	1.1	1.1	3.8		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Acenaphthene		14	0.97	3.2		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Acenaphthylene	<	0.97	0.97	3.2		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Anthracene	<	0.88	0.88	2.9		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.98	0.98	3.3		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.91	0.91	3.0	-	50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.89	0.89	3.0		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	1.0	1.0	3.4		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.97	0.97	3.2		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Chrysene	<	0.82	0.82	2.7		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	1.1	1.1	3.7		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Fluoranthene	<	0.82	0.82	2.7		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Fluorene	<	1.1	1.1	3.6		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.85	0.85	2.8		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Naphthalene	<	1.1	1.1	3.7		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Phenanthrene	<	1.0	1.0	3.4		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Pyrene	<	0.81	0.81	2.7		50	ug/L		04/15/05	SW846 3510C	8270C-SIM
Nitrobenzene-d5		0				50	%Recov	D	04/15/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0				50	%Recov	D	04/15/05	SW846 3510C	8270C-SIM
Terphenyl-d14		0				50	%Recov	D	04/15/05	SW846 3510C	8270C-SIM

REVISED

Test Group Name	858083-009
ALKALINITY AS CACO3	В
BENZENE	G
IRON - DISSOLVED	В
LEAD - DISSOLVED	В
METHANE	G
 NITROGEN, NO3 + NO2 	В
PAH/ PNA	В
SULFATE	В

Code	Facility	Address	WI Certification
В	Green Bay Lab (Bellevue St)	1241 Bellevue Street, Suite 9 Green Bay, WI 54302	405132750 / DATCP: 105-444
G	Green Bay Lab (Industrial Dr)	1795 Industrial Drive Green Bay, WI 54302	405132750

En Chem A Division of Pace Analytical Services, Inc.

• .

Analytical Report Number: 858083

Client:NATURAL RESOURCE TECHNOLOGYMatrix Type : GROUNDWATERProject Name :WPSC - STEVENS POINTCollection Date : 04/11/05Project Number :1177Report Date : 04/26/05Field ID :OW-5RLab Sample Number : 858083-010											
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		30000	17	55		1	ug/L	÷	04/21/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		360	63	210		10	mg/L		04/25/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		04/14/05	EPA 353.2	EPA 353.2
Sulfate		410	8.3	28		10	mg/L		04/13/05	EPA 300.0	EPA 300.0
BENZENE										Prep Da	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene		1.8	0.14	0.46		1	ug/L		04/14/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		104				1	%Recov		04/14/05	SW846 5030B	SW846 M8021
METHANE										Prep Da	te: 04/22/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		190			10	1	ug/L	`	04/22/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		6.8	0.40	1.3	· · ·	20	ug/L		04/15/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene	<	0.45	0.45	1.5		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Acenaphthene		6.9	0.39	1.3		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Acenaphthylene		3.8	0.39	1.3		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Anthracene		1.5	0.35	1.2		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.39	0.39	1.3		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.36	0.36	1.2		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.36	0.36	1.2		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.41	0.41	1.4		20	ug/Ł		04/15/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.39	0.39	1.3		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Chrysene	<	0.33	0.33	1.1		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.44	0.44	1.5		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Fluoranthene		2.3	0.33	1.1		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Fluorene		3.6	0.44	1.5		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	• <	0.34	0.34	1.1		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Naphthalene		6.0	0.45	1.5		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Phenanthrene		4.6	0.41	1.4		20	ug/L		04/15/05		8270C-SIM
Pyrene		1.6	0.33	1.1		20	ug/L		04/15/05		8270C-SIM
Nitrobenzene-d5		0				20	%Recov	D	04/15/05		8270C-SIM
2-Fluorobiphenyl		0				20	%Recov	D	04/15/05		8270C-SIM
Terphenyl-d14		0				20	%Recov	D	04/15/05		8270C-SIM

•

Analytical Report Number: 858083

lutical Service	es inc		,	•					920-469-2	2436
NATURAL RI WPSC - STE 1177	ESOURCE	Matrix Type : GROUNDWATER Collection Date : 04/11/05 Report Date : 04/26/05								
P-5B	<u></u>									
										· · · · · ·
	Result	LOD	LOQ	EQL	Dil.	Units	Code			Anl Method
	1500	17	55		1	ug/L				SW846 6010B
	150	6.3	21		1	mg/L		04/25/05		EPA 310.2
<	0.061	0.061	0.20		1	mg/L		04/14/05	EPA 353.2	EPA 353.2
<	0.83	0.83	2.8		1	mg/L		04/13/05	EPA 300.0	EPA 300.0
									• Prep Da	te: 04/14/05
	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
_,	67	0.14	0.46		1	ug/L		04/14/05	SW846 5030B	SW846 M8021
					1	%Recov		04/14/05	SW846 5030B	SW846 M8021
		<u> </u>							Prep Da	te: 04/22/05
	Result		100	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
							<u> </u>	04/22/05	SW846 M8015	SW846 M8015
	160					ug/L		04/22/00		
				EQL			Code			Anl Method
						-				8270C-SIM
<	4.5					-				8270C-SIM
	94									8270C-SIM
	12	3.9	13				Q			8270C-SIM
<	3.5	3.5	12							8270C-SIM
<	3.9	3.9	13		200	ug/L				8270C-SIM
<	3.6	3.6	12		200	ug/L				
<	3.6	3.6	12		200	ug/L				8270C-SIM
<	4.1	4.1	14		200	ug/L				8270C-SIM
<	3.9	3.9	13		200	ug/L		04/15/05		8270C-SIM
<	3.3	3.3	11		200	ug/L				8270C-SIM
<	4.4	4.4	15		200	ug/L		04/15/05		
<	3.3	3.3	11		200	ug/L		04/15/05	SW846 3510C	
	21	4.4	15		200	ug/L		04/15/05	SW846 3510C	
, <		3.4	11		200	ug/L		04/15/05	SW846 3510C	8270C-SIM
		4.5	15		200	ug/L		04/15/05	SW846 3510C	8270C-SIM
<		4.1	14		200	ug/L		04/15/05	SW846 3510C	8270C-SIM
					200	ug/L		04/15/05	SW846 3510C	8270C-SIM
					200		D	04/15/05	SW846 3510C	8270C-SIM
									SW846 3510C	8270C-SIM
								04/15/05		8270C-SIM
	U				200	701 10001	-			
	NATURAL R WPSC - STE 1177 P-5B	WPSC - STEVENS PO 1177 P-5B	Result LOD 1177 P-5B Result LOD 1500 17 150 6.3 <	Result LOD LOQ 1177 P-5B 1500 17 55 150 6.3 21 0.061 0.20 0.83 0.83 2.8 Result LOD LOQ 6.7 0.14 0.46 103 Result LOD LOQ 6.7 0.14 0.46 103 104 104 Result LOD LOQ 6.7 0.14 0.46 103 104 104 103 Result LOD LOQ 105 <th< td=""><td>NATURAL RESOURCE TECHNOLOGY MPSC - STEVENS POINT 1177 P-5B Result LOD LOQ EQL 1500 17 55 150 6.3 21 <</td> 0.061 0.061 0.20 <</th<>	NATURAL RESOURCE TECHNOLOGY MPSC - STEVENS POINT 1177 P-5B Result LOD LOQ EQL 1500 17 55 150 6.3 21 <	NATURAL RESOURCE TECHNOLOGY MPSC - STEVENS POINT 1177 P-5B Result LOD LOQ EQL Dil. 1500 17 55 1 1 <	NATURAL RESOURCE TECHNOLOGY WPSC - STEVENS POINT 1177 P-5B Result LOD LOQ EQL Dil. Units 1500 17 55 1 ug/L 1500 6.3 21 1 mg/L < 0.061	NATURAL RESOURCE TECHNOLOGY MPSC - STEVENS POINT 11/7 P-5B La Result LOQ EQL Dil. Units Code 1500 17 55 1 ug/L Code 0.63 2.1 Img/L Code 0.61 0.061 0.001 Code Result LOD LOQ EQL Dil. Units Code 6.7 0.14 0.06 Code Result LOD LOQ EQL Dil. Units Code 38 4.00 ug/L 4 LOQ EQL Dil.	NATURAL RESOURCE TECHNOLOGY WPSC - STEVENS POINT Mat Collecti Rep Lab Samplei 1177 Rep Lab Samplei 1177 Rep Lab Samplei 1177 S5 1 ug/L 0.4/12/105 1500 17 55 1 ug/L 0.4/12/105 150 6.3 21 1 mg/L 0.4/12/105 < 0.061	NATURAL RESOURCE TECHNOLOGY WPSC - STEVENS POINT Matrix Type : GROU Collection Date : 04/10, Report Date : 04/20, Lab Sample Number : 85808 Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method 1500 17 55 1 ug/L 04/21/05 SW846 6010B 150 6.3 21 1 mg/L 04/21/05 SW846 6010B 150 6.3 21 1 mg/L 04/14/05 EPA 330.2 0.681 0.20 1 mg/L 04/14/05 SW846 6030B 103 . 1 %Recov 04/14/05 SW846 5030B 103 . 1 %Recov 04/14/05 SW846 5030B 103 . 1 wg/L 04/12/05 SW846 5030B 103 . 10 1 ug/L 04/12/05 SW846 5030C 103 LOD LOQ EQL Dil. Units Code Anl Date Prep Method 103 10 </td

En Chem
A Division of Pace Analytical Services, Inc.

Analytical Report Number: 858083

A Division of Pace Analytical S Client : NATUR/ Project Name : WPSC - Project Number : 1177 Field ID : OW-6	AL RE	ESOURCE	La	Matrix Type: GROUNDWATER Collection Date: 04/11/05 Report Date: 04/26/05 Lab Sample Number: 858083-012							
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		12000	17	55	- · ·	1	ug/L		04/21/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		110	32	110		5	mg/L		04/25/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		04/14/05	EPA 353.2	EPA 353.2
Sulfate		4.9	0.83	2.8		1	mg/L		04/13/05	EPA 300.0	EPA 300.0
BENZENE		•								Prep Da	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene		5.7	0.14	0.46		1	ug/L		04/14/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		104		_		1	%Recov		04/14/05	SW846 5030B	SW846 M8021
METHANE										Prep Da	te: 04/22/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
Methane		4900			250	25	ug/L	· · · ·	04/22/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		7.2	0.40	1.3		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		5.1	0.45	1.5		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Acenaphthene		9.6	3.1	10		160	ug/L	QD	04/15/05	SW846 3510C	8270C-SIM
Acenaphthylene		0.49	0.39	1.3		20	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM
Anthracene		1.3	0.35	1.2		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.39	0.39	1.3		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.36	0.36	1.2		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.36	0.36	1.2		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.41	0.41	1.4		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.39	0.39	1.3		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Chrysene	<	0.33	0.33	1.1		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.44	0.44	1.5		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Fluoranthene		1.2	0.33	1.1		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Fluorene		4.5	0.44	1.5		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.34	0.34	1.1		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Naphthalene		45	3.6	12		160	ug/L	D	04/15/05	SW846 3510C	8270C-SIM
Phenanthrene		4.0	0.41	1.4		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Pyrene		1.1	0.33	1.1		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Nitrobenzene-d5		0				20	%Recov	D	04/15/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0				20	%Recov	D	04/15/05	SW846 3510C	8270C-SIM
								-	0 11 101 00	01101000100	02700-010

.

Analytical Report Number: 858083

A Division of Pace Analytica	al Service	s Inc		.,						920-469-3	
Client : NAT Project Name : WPS Project Number : 1177 Field ID : OW-	SOURCE	Matrix Type : GROUNDWATER Collection Date : 04/11/05 Report Date : 04/26/05 Lab Sample Number : 858083-013									
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		8300	17	55		1	ug/L		04/21/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		110	32	110		5	mg/L		04/25/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		04/14/05	EPA 353.2	EPA 353.2
Sulfate		1.3	0.83	2.8		1	mg/L	Q	04/13/05	EPA 300.0	EPA 300.0
BENZENE				-						Prep Da	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene		8.1	0.14	0.46		1	ug/L		04/14/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		104				1	%Recov		04/14/05	SW846 5030B	SW846 M8021
METHANE										Prep Da	te: 04/22/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		6100			500	50	ug/L		04/22/05	SW846 M8015	SW846 M8015
PAH/ PNA					÷ <u></u> -					Prep Dat	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		13	2.0	6.6		100	ug/L		04/15/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		11	2.3	7.6		100	ug/L		04/15/05	SW846 3510C	8270C-SIM
Acenaphthene		20	1.9	6.5		100	ug/L		04/15/05	SW846 3510C	8270C-SIM
Acenaphthylene	<	1.9	1.9	6.4		100	ug/L		04/15/05	SW846 3510C	8270C-SIM
Anthracene		4.0	1.8	5.9		100	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	2.0	2.0	6.5		100	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	1.8	1.8	6.0		100	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	1.8	1.8	6.0		100	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	2.1	2.1	6.9		100	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	1.9	1.9	6.4		100	ug/L		04/15/05	SW846 3510C	8270C-SIM
Chrysene	<	1.6	1.6	5.5		100	ug/L		04/15/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	2.2	2.2	7.3		100	ug/L		04/15/05	SW846 3510C	8270C-SIM
Fluoranthene		2.7	1.6	5.5		100	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM
Fluorene		8.9	2.2	7.3		100	ug/L		04/15/05	SW846 3510C	8270C-SIM
ndeno(1,2,3-cd)pyrene	<	1.7	1.7	5.7		100	ug/L		04/15/05	SW846 3510C	8270C-SIM
Naphthalene		65	4.5	15		200	ug/L	D	04/15/05	SW846 3510C	8270C-SIM
Phenanthrene		9.2	2.0	6.8		100	ug/L		04/15/05		8270C-SIM
^o yrene		3.8	1.6	5.4		100	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM
Nitrobenzene-d5		0	1.0	5		100	%Recov	D	04/15/05	SW846 3510C	
2-Fluorobiphenyl		0				100	%Recov	D	04/15/05	SW846 3510C	
						100	%Recov	D	04/15/05	SW846 3510C	
erphenyl-d14		0				100	%Recov	υ	04/15/05	300040 30106	02700-3111

En Chem A Division of Pace Analytical Si	ervice	es, Inc.	Ana	lytical	Repo	rt Nu	mber: 8	1241 Bellevue Street Green Bay, WI 54302 920-469-2436			
Client : NATUR/ Project Name : WPSC - Project Number : 1177	AL RE	SOURCE		OLOGY				Matrix Type: GROUNDWATE Collection Date: 04/11/05 Report Date: 04/26/05			
Field ID : PZ-7B								L	-	Number : 85808	
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		1600	17	55		1	ug/L		04/21/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		110	6.3	21		1	mg/L		04/25/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		04/14/05	EPA 353.2	EPA 353.2
Sulfate	<	0.83	0.83	2.8		1	mg/L		04/13/05	EPA 300.0	EPA 300.0
BENZENE										Prep Da	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene		1.5	0.14	0.46		1	ug/L		04/14/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		108				1	%Recov		04/14/05	SW846 5030B	SW846 M8021
METHANE										Prep Da	te: 04/22/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		1500			100	10	ug/L		04/22/05	SW846 M8015	SW846 M8015
PAH/ PNA	·									Prep Da	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		120	40	130		2000	ug/L	QD	04/18/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		130	45	150		2000	ug/L	QD	04/18/05	SW846 3510C	8270C-SIM
Acenaphthene		84	3.9	13		200	ug/L		04/15/05	SW846 3510C	8270C-SIM
Acenaphthylene		41	3.9	13		200	ug/L		04/15/05	SW846 3510C	8270C-SIM
Anthracene		16	3.5	12		200	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	3.9	3.9	13		200	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	3.6	3.6	12		200	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	3.6	3.6	12		200	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	4.1	4.1	14		200	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	3.9	3.9	13		200	ug/L		04/15/05	SW846 3510C	8270C-SIM
Chrysene	<	3.3	3.3	11		200	ug/L		04/15/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	4.4	4.4	15		200	ug/L		04/15/05	SW846 3510C	
Fluoranthene	<	3.3	3.3	11		200	ug/L		04/15/05	SW846 3510C	8270C-SIM
Fluorene		19	4.4	15		200	ug/L		04/15/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	3.4	3.4	11		200	ug/L	_	04/15/05		8270C-SIM
Naphthalene		700	45	150		2000	ug/L	D	04/18/05	SW846 3510C	8270C-SIM
Phenanthrene		39	4.1	14		200	ug/L		04/15/05	SW846 3510C	8270C-SIM
Pyrene	<	3.3	3.3	11		200	ug/L	_	04/15/05	SW846 3510C	8270C-SIM
Nitrobenzene-d5		0				200	%Recov	D	04/15/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0				200	%Recov	D	04/15/05	SW846 3510C	8270C-SIM
Terphenyl-d14		0				200	%Recov	D	04/15/05	SW846 3510C	8270C-SIM

En Chem A Division of Pace Analytical Services, Inc.

Analytical Report Number: 858083

Client : NATUF Project Name : WPSC Project Number : 1177 Field ID : QC-1	RAL RE	SOURCE		OLOGY				La	Collecti Repo	ix Type : GROL on Date : 04/11/ ort Date : 04/26/ Number : 85808	05 05
INORGANICS							11.14	C - da	Aul Data	Dran Mathad	Apl Mathad
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		19000	17	55		1	ug/L		04/21/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		100	6.3	21		1	mg/L		04/25/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L	N	04/14/05	EPA 353.2	EPA 353.2
Sulfate		1.5	0.83	2.8		1	mg/L	Q	04/13/05	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Ani Date	Prep Method	Anl Method
Benzene		0.22	0.14	0.46		1	ug/L	Q	04/14/05	SW846 5030B	SW846 M8021
a.a.a-Trifluorotoluene		104				1	%Recov		04/14/05	SW846 5030B	SW846 M8021
METHANE										Prep Dat	te: 04/22/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		2700			250	25	ug/L		04/22/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		0.11	0.040	0.13		2	ug/L	Q	04/18/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene	<	0.045	0.045	0.15		2	ug/L		04/18/05	SW846 3510C	8270C-SIM
Acenaphthene		0.078	0.039	0.13		2	ug/L	Q	04/18/05	SW846 3510C	8270C-SIM
Acenaphthylene	<	0.039	0.039	0.13		2	ug/L		04/18/05	SW846 3510C	8270C-SIM
Anthracene	<	0.035	0.035	0 40		~			04/18/05	SW846 3510C	8270C-SIM
			0.000	0.12		2	ug/L				
Benzo(a)anthracene	<	0.039	0.039	0.12		2 2	ug/L ug/L		04/18/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene Benzo(a)pyrene	< ' <						•		04/18/05 04/18/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM
Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	· <	0.039	0.039	0.13		2	ug/L		04/18/05 04/18/05 04/18/05	SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM
Benzo(a)pyrene	` < <	0.039 0.036	0.039 0.036	0.13 0.12		2 2	ug/L ug/L		04/18/05 04/18/05 04/18/05 04/18/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	< < <	0.039 0.036 0.036	0.039 0.036 0.036	0.13 0.12 0.12		2 2 2	ug/L ug/L ug/L		04/18/05 04/18/05 04/18/05 04/18/05 04/18/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Benzo(a)pyrene Benzo(b)fluoranthene	` < < < <	0.039 0.036 0.036 0.041	0.039 0.036 0.036 0.041	0.13 0.12 0.12 0.14		2 2 2 2	ug/L ug/L ug/L ug/L		04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	` < < < <	0.039 0.036 0.036 0.041 0.039	0.039 0.036 0.036 0.041 0.039	0.13 0.12 0.12 0.14 0.13		2 2 2 2 2	ug/L ug/L ug/L ug/L ug/L		04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.039 0.036 0.036 0.041 0.039 0.033	0.039 0.036 0.036 0.041 0.039 0.033	0.13 0.12 0.12 0.14 0.13 0.11		2 2 2 2 2 2 2	ug/L ug/L ug/L ug/L ug/L		04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.039 0.036 0.036 0.041 0.039 0.033 0.044	0.039 0.036 0.036 0.041 0.039 0.033 0.044	0.13 0.12 0.12 0.14 0.13 0.11 0.15		2 2 2 2 2 2 2 2	ug/L ug/L ug/L ug/L ug/L ug/L		04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	· · · · · · · · · · · · · · · · · · ·	0.039 0.036 0.036 0.041 0.039 0.033 0.044 0.033	0.039 0.036 0.041 0.039 0.033 0.044 0.033	0.13 0.12 0.12 0.14 0.13 0.11 0.15 0.11		2 2 2 2 2 2 2 2 2 2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L		04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	· · · · · · · · · · · · · · · · · · ·	0.039 0.036 0.036 0.041 0.039 0.033 0.044 0.033 0.044	0.039 0.036 0.041 0.039 0.033 0.044 0.033 0.044	0.13 0.12 0.12 0.14 0.13 0.11 0.15 0.11 0.15		2 2 2 2 2 2 2 2 2 2 2 2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	· · · · · · · · · · · · · · · · · · ·	0.039 0.036 0.036 0.041 0.039 0.033 0.044 0.033 0.044 0.034	0.039 0.036 0.041 0.039 0.033 0.044 0.033 0.044 0.034	0.13 0.12 0.12 0.14 0.13 0.11 0.15 0.11 0.15 0.11		2 2 2 2 2 2 2 2 2 2 2 2 2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene		0.039 0.036 0.036 0.041 0.039 0.033 0.044 0.033 0.044 0.034 1.2	0.039 0.036 0.041 0.039 0.033 0.044 0.033 0.044 0.034 0.089	0.13 0.12 0.12 0.14 0.13 0.11 0.15 0.11 0.15 0.11 0.30		2 2 2 2 2 2 2 2 2 2 2 2 4	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene		0.039 0.036 0.036 0.041 0.039 0.033 0.044 0.033 0.044 0.034 1.2 0.041	0.039 0.036 0.041 0.039 0.033 0.044 0.033 0.044 0.034 0.089 0.041	0.13 0.12 0.12 0.14 0.13 0.11 0.15 0.11 0.15 0.11 0.30 0.14		2 2 2 2 2 2 2 2 2 2 2 2 4 2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene		0.039 0.036 0.036 0.041 0.039 0.033 0.044 0.033 0.044 1.2 0.041 0.033	0.039 0.036 0.041 0.039 0.033 0.044 0.033 0.044 0.034 0.089 0.041	0.13 0.12 0.12 0.14 0.13 0.11 0.15 0.11 0.15 0.11 0.30 0.14		2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05 04/18/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM

En Chem A Division of Pace Analytical Se	ervice	es, ínc.	Ana	lytical	Repo	rt Nu	mber: 8	1241 Bellevue Street Green Bay, WI 54302 920-469-2436			
Client : NATURA	AL RE	ESOURCE	E TECHN	OLOGY					Mat	rix Type : GROL	INDWATER
Project Name : WPSC -	STE	VENS PO	INT						Collecti	on Date : 04/11/	05
Project Number: 1177									Rep	ort Date: 04/26/	05
Field ID: QC-2								L	ab Sample	Number: 85808	3-016
BENZENE										Prep Da	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene		0.32	0.14	0.46		1	ug/L	Q	04/14/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		104				1	%Recov		04/14/05	SW846 5030B	SW846 M8021
PAH/ PNA										Prep Da	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Ani Date	Prep Method	Anl Method
1-Methylnaphthalene		0.92	0.020	0.066		1	ug/L	E	04/15/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		0.036	0.023	0.076		1	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM
Acenaphthene		18	1.9	6.5		100	ug/L	D	04/18/05	SW846 3510C	8270C-SIM
Acenaphthylene		0.29	0.019	0.064		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Anthracene		0.029	0.018	0.059		1	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.020	0.020	0.065		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.018	0.018	0.060		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.018	0.018	0.060		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.021	0.021	0.069		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.019	0.019	0.064		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Chrysene	<	0.016	0.016	0.055		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.022	0.022	0.073		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Fluoranthene		0.020	0.016	0.055		1	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM
Fluorene		1.0	0.022	0.073		1	ug/L	Е	04/15/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.017	0.017	0.057		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Naphthalene		1.1	0.022	0.075		1	ug/L	E	04/15/05	SW846 3510C	8270C-SIM
Phenanthrene		0.58	0.020	0.068		1	ug/L	Е	04/15/05	SW846 3510C	8270C-SIM
Pyrene	<	0.016	0.016	0.054		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Nitrobenzene-d5		78				1	%Recov		04/15/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		58				1	%Recov		04/15/05	SW846 3510C	8270C-SIM
Terphenyl-d14		79				1	%Recov		04/15/05	SW846 3510C	8270C-SIM

Analytical Report Number: 858083

.

Analytical Report Number: 858083

A Division of Pace An	alutical Service	es Inc	920-469-2436									
	NATURAL RI WPSC - STE 1177	ESOURCE		OLOGY				Matrix Type: GROUNDWATER Collection Date: 04/12/05 Report Date: 04/26/05 Lab Sample Number: 858083-017				
INORGANICS												
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method	
Iron - Dissolved		8800	17	55		1	ug/L		04/21/05	SW846 6010B	SW846 6010B	
Alkalinity as CaCO3		210	32	110		5	mg/L		04/25/05	EPA 310.2	EPA 310.2	
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		04/14/05	EPA 353.2	EPA 353.2	
Sulfate		2.2	0.83	2.8		1	mg/L	Q	04/13/05	EPA 300.0	EPA 300.0	
BENZENE										Prep Dat	te: 04/14/05	
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method	
Benzene	· · -	100	0.14	0.46		1	ug/L		04/14/05	SW846 5030B	SW846 M8021	
a,a,a-Trifluorotoluene		101				1	%Recov		04/14/05	SW846 5030B	SW846 M8021	
METHANE		·								Prep Dat	te: 04/22/05	
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method	
Methane		1900	==		250	25	ug/L		04/22/05	SW846 M8015	SW846 M8015	
PAH/ PNA									-	Prep Dat	te: 04/14/05	
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method	
1-Methylnaphthalene		130	2.0	6.6		100	ug/L	E	04/15/05	SW846 3510C	8270C-SIM	
2-Methylnaphthalene		20	2.3	7.6		100	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Acenaphthene		100	97	320		5000	ug/L	QD	04/15/05	SW846 3510C	8270C-SIM	
Acenaphthylene		31	1.9	6.4		100	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Anthracene		5.2	1.8	5.9		100	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM	
Benzo(a)anthracene	<		2.0	6.5		100	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Benzo(a)pyrene	<		1.8	6.0		100	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Benzo(b)fluoranthene	<		1.8	6.0		100	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Benzo(ghi)perylene	<		2.1	6.9		100	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Benzo(k)fluoranthene	<		1.9	6.4		100	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Chrysene	<	1.6	1.6	5.5		100	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Dibenz(a,h)anthracene	ə <		2.2	7.3		100	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Fluoranthene		4.9	1.6	5.5		100	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM	
Fluorene		42	2.2	7.3		100	ug/L		04/15/05	SW846 3510C	8270C-SIM	
				5.7		100	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Indeno(1,2.3-cd)pyren	e <	1.7	1.7	5.7								
Indeno(1,2,3-cd)pyren Naphthalene	e <	1.7 1100	1.7 110	370		5000	ug/L	D	04/15/05	SW846 3510C	8270C-SIM	
Indeno(1,2,3-cd)pyren Naphthalene Phenanthrene	e <					5000 100	ug/L ug/L	D E	04/15/05 04/15/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM	
Naphthalene Phenanthrene	e <	1100	110	370								
Naphthalene Phenanthrene Pyrene	e <	1100 56	110 2.0	370 6.8		100	ug/L	Е	04/15/05	SW846 3510C	8270C-SIM	
Naphthalene Phenanthrene	e <	1100 56 2.7	110 2.0	370 6.8		100 100	ug/L ug/L	E Q	04/15/05 04/15/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM	

.

Analytical Report Number: 858083

A Division of Pace Anal	vtical Service	es. Inc.	Апа	iy doar	nopo			00000		920-469-	ay, VVI 54302 2436
	, NATURAL RI		E TECHN	OLOGY					Mat	rix Type: GRO	JNDWATER
Project Name : V				02001						ion Date : 04/12	
Project Number : 1										ort Date: 04/26	
Field ID : F								L	•	Number: 85808	
							· · ·				<u> </u>
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		3300	17	55		1	ug/L		04/21/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		120	6.3	21		1	mg/L		04/25/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2		0.12	0.061	0.20		1	mg/L	Q	04/14/05	EPA 353.2	EPA 353.2
Sulfate		11	0.83	2.8		1	mg/L		04/13/05	EPA 300.0	EPA 300.0
BENZENE										Prep Da	te: 04/15/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene	<	0.14	0.14	0.46		1	ug/L		04/15/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		104				1	%Recov		04/15/05	SW846 5030B	SW846 M8021
METHANE	<u> </u>									Prep Da	te: 04/22/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane	<	10			10	1	ug/L		04/22/05	SW846 M8015	SW846 M8015
PAH/ PNA	- <u> </u>				·. · · · ·					Prep Da	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		0.18	0.020	0.066	••	1	ug/L		04/15/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene	<	0.023	0.023	0.076		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Acenaphthene		0.40	0.019	0.065		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Acenaphthylene		0.021	0.019	0.064		1	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM
Anthracene	<	0.018	0.018	0.059		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.020	0.020	0.065		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.018	0.018	0.060		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.018	0.018	0.060		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.021	0.021	0.069		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.019	0.019	0.064		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Chrysene	<	0.016	0.016	0.055		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.022	0.022	0.073		1	ug/L		04/15/05	SW846 3510C	
Fluoranthene	<	0.016	0.016	0.055		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Fluorene	<	0.022	0.022	0.073		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.017	0.017	0.057		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Naphthalene		0.58	0.045	0.15		2	ug/L	D	04/18/05	SW846 3510C	8270C-SIM
Phenanthrene	<	0.020	0.020	0.068		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Pyrene	<	0.016	0.016	0.054		1	ug/L		04/15/05	SW846 3510C	8270C-SIM
Nitrobenzene-d5	•	58	0.010	0.001		1	%Recov		04/15/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		44				1	%Recov		04/15/05	SW846 3510C	8270C-SIM
Terphenyl-d14		79				1	%Recov		04/15/05	SW846 3510C	8270C-SIM
r siphonyr a r 4		/5				•	701 \C \C \V		0-110/00		02700-01W

,

..

Analytical Report Number: 858083

	ical Sanvice	e Inc		,	•					920-469-2	2436
A Division of Pace Analytical Services, Inc. Client : NATURAL RESOURCE TECHNOLOGY Project Name : WPSC - STEVENS POINT Project Number : 1177 Field ID : OW-10								Matrix Type : GROUNDWATER Collection Date : 04/12/05 Report Date : 04/26/05 Lab Sample Number : 858083-019			
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		13000	17	55		1	ug/L		04/21/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		670	32	110		5	mg/L		04/25/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		04/14/05	EPA 353.2	EPA 353.2
Sulfate		16	0.83	2.8		1	mg/L		04/13/05	EPA 300.0	EPA 300.0
BENZENE										Prep Da	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene		47	0.14	0.46		1	ug/L		04/14/05	SW846 5030B	SW846 M8021
a.a.a-Trifluorotoluene		102	0.11			1	%Recov		04/14/05	SW846 5030B	SW846 M8021
										Prep Da	te: 04/22/05
METHANE		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Analyte					200	20	ug/L		04/22/05	SW846 M8015	SW846 M8015
Methane	<u> </u>	2000			200			······	0-122/00		
PAH/ PNA											te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		30	20	66		1000	ug/L	QD	04/15/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		3.3	0.45	1.5		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Acenaphthene		20	19	65		1000	ug/L	QD	04/15/05	SW846 3510C	8270C-SIM
Acenaphthylene		7.1	0.39	1.3		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Anthracene	<	0.35	0.35	1.2		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.39	0.39	1.3		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.36	0.36	1.2		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.36	0.36	1.2		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.41	0.41	1.4		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.39	0.39	1.3		20	ug/L		04/15/05	SW846 3510C	
Chrysene	<	0.33	0.33	1.1		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.44	0.44	1.5		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Fluoranthene	<	0.33	0.33	1.1		20	ug/L		04/15/05	SW846 3510C	
Fluorene		4.0	0.44	1.5		20	ug/L		04/15/05	SW846 3510C	
Indeno(1,2,3-cd)pyrene	<	0.34	0.34	1.1		20	ug/L		04/15/05	SW846 3510C	
Naphthalene		340	22	75		1000	ug/L	D	04/15/05	SW846 3510C	8270C-SIM
Phenanthrene	<	0.41	0.41	1.4		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Pyrene		0.33	0.33	1.1		20	ug/L		04/15/05	SW846 3510C	8270C-SIM
Nitrobenzene-d5		0				20	«Recov	D	04/15/05	SW846 3510C	8270C-SIM
		0				20	%Recov	D	04/15/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl Terphenyl-d14		0				20	%Recov	D	04/15/05	SW846 3510C	8270C-SIM
copiloliti a l'i											

En Chem A Division of Pace Analytical Services, Inc.

.

Analytical Report Number: 858083

Client : NATURAL RESOURCE TECHNOLOGY Project Name : WPSC - STEVENS POINT Project Number : 1177 Field ID : PZ-10B									Matrix Type: GROUNDWATER Collection Date: 04/12/05 Report Date: 04/26/05 Lab Sample Number: 858083-020			
INORGANICS												
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method	
Iron - Dissolved	<	17	17	55		1	ug/L		04/21/05	SW846 6010B	SW846 6010B	
Alkalinity as CaCO3		150	6.3	21		1	mg/L		04/25/05	EPA 310.2	EPA 310.2	
Nitrogen, NO3 + NO2		0.11	0.061	0.20		1	mg/L	Q	04/14/05	EPA 353.2	EPA 353.2	
Sulfate		15	0.83	2.8		1	mg/L		04/13/05	EPA 300.0	EPA 300.0	
BENZENE								6		Prep Da	te: 04/14/05	
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method	
Benzene	<	0.14	0.14	0.46		1	ug/L		04/14/05	SW846 5030B	SW846 M8021	
a,a,a-Trifluorotoluene		104				1	%Recov		04/14/05	SW846 5030B	SW846 M8021	
METHANE							k 			Prep Da	te: 04/22/05	
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method	
Methane	<	10			10	1	ug/L		04/22/05	SW846 M8015	SW846 M8015	
PAH/ PNA		-								Prep Da	te: 04/14/05	
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method	
1-Methylnaphthalene	<	0.020	0.020	0.066		1	ug/L		04/15/05	SW846 3510C	8270C-SIM	
2-Methylnaphthalene	<	0.023	0.023	0.076		1	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Acenaphthene		0.033	0.019	0.065		1	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM	
Acenaphthylene	<	0.019	0.019	0.064		1	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Anthracene	<	0.018	0.018	0.059		1	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Benzo(a)anthracene	<	0.020	0.020	0.065		1	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Benzo(a)pyrene	<	0.018	0.018	0.060		1	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Benzo(b)fluoranthene	<	0.018	0.018	0.060		1	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Benzo(ghi)perylene	<	0.021	0.021	0.069		1	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Benzo(k)fluoranthene	<	0.019	0.019	0.064		1	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Chrysene	<	0.016	0.016	0.055		1	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Dibenz(a,h)anthracene	<	0.022	0.022	0.073		1	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Fluoranthene		0.018	0.016	0.055		1	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM	
Fluorene	<	0.022	0.022	0.073		1	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Indeno(1,2,3-cd)pyrene	<	0.017	0.017	0.057		1	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Naphthalene		0.040	0.022	0.075		1	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM	
Phenanthrene	<	0.020	0.020	0.068		1	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Pyrene	<	0.016	0.016	0.054		1	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Nitrobenzene-d5		72				1	%Recov		04/15/05	SW846 3510C	8270C-SIM	
2-Fluorobiphenyl		50				1	%Recov		04/15/05	SW846 3510C	8270C-SIM	
Terphenyl-d14		92				1	%Recov		04/15/05	SW846 3510C	8270C-SIM	

Analytical Report Number: 858083

A Division of Pace Analytical S	anvica	es Inc			•					920-469-2	2436	
A Division of Pace Analytical S Client : NATUR			TECHN	OLOGY					Mat	rix Type : GROL	INDWATER	
Project Name : WPSC -				02001						on Date : 04/12/		
Project Number : 1177	0.2								Rep	ort Date: 04/26/	05	
Field ID : OW-12								Lab Sample Number: 858083-021				
INORGANICS		i										
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method	
Iron - Dissolved		28000	17	55		1	ug/L		04/21/05	SW846 6010B	SW846 6010E	
Alkalinity as CaCO3		97	6.3	21		1	mg/L	Ν	04/25/05	EPA 310.2	EPA 310.2	
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		04/14/05	EPA 353.2	EPA 353.2	
Sulfate		3.1	0.83	2.8		1	mg/L		04/13/05	EPA 300.0	EPA 300.0	
BENZENE							•			Prep Dat	te: 04/14/05	
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method	
		3.6	0.14	0.46		1	ug/L		04/14/05	SW846 5030B	SW846 M802	
Benzene a.a.a-Trifluorotoluene		104	0.14	0.10		1	%Recov		04/14/05	SW846 5030B	SW846 M8021	
						··			· · · · · ·	Pren Dat	te: 04/22/05	
METHANE		D It		LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method	
Analyte		Result	LOD						04/22/05	SW846 M8015		
Methane		1600			250	25	ug/L		04/22/05	· _ · · -		
PAH/ PNA										Prep Dat	te: 04/14/05	
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method	
1-Methylnaphthalene		6.6	2.0	6.6		100	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM	
2-Methylnaphthalene	<	2.3	2.3	7.6		100	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Acenaphthene		20	1.9	6.5		100	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Acenaphthylene	<	1.9	1.9	6.4		100	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Anthracene		5.0	1.8	5.9		100	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM	
Benzo(a)anthracene	<	2.0	2.0	6.5		100	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Benzo(a)pyrene	<	1.8	1.8	6.0		100	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Benzo(b)fluoranthene	<	1.8	1.8	6.0		100	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Benzo(ghi)perylene	<	2.1	2.1	6.9		100	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Benzo(k)fluoranthene	<	1.9	1.9	6.4		100	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Chrysene	<	1.6	1.6	5.5		100	ug/L		04/15/05	SW846 3510C	8270C-SIM	
Dibenz(a,h)anthracene	<	2.2	2.2	7.3		100	ug/L		04/15/05	SW846 3510C		
Fluoranthene		2.0	1.6	5.5		100	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM	
		L . O	1.0	0.0		100						
Fluorene			2.2	7.3		100	ug/L	Q	04/15/05	SW846 3510C	8270C-SIM	
	<	7.2					ug/L ug/L	Q	04/15/05 04/15/05	SW846 3510C SW846 3510C		
Indeno(1,2,3-cd)pyrene	<	7.2 1.7	2.2 1.7	7.3 5.7		100	-	Q Q			8270C-SIM	
Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrane	<	7.2 1.7 3.8	2.2 1.7 2.2	7.3 5.7 7.5		100 100	ug/L ug/L		04/15/05	SW846 3510C	8270C-SIM 8270C-SIM	
Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene		7.2 1.7 3.8 12	2.2 1.7 2.2 2.0	7.3 5.7 7.5 6.8		100 100 100	ug/L ug/L ug/L		04/15/05 04/15/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM	
Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene		7.2 1.7 3.8 12 1.6	2.2 1.7 2.2	7.3 5.7 7.5		100 100 100 100 100	ug/L ug/L ug/L ug/L	Q	04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM	
Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene Nitrobenzene-d5		7.2 1.7 3.8 12 1.6 0	2.2 1.7 2.2 2.0	7.3 5.7 7.5 6.8		100 100 100 100 100 100	ug/L ug/L ug/L ug/L %Recov	Q D	04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM	
Indeno(1,2,3-cd)pyrene		7.2 1.7 3.8 12 1.6	2.2 1.7 2.2 2.0	7.3 5.7 7.5 6.8		100 100 100 100 100	ug/L ug/L ug/L ug/L	Q	04/15/05 04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM	

En Chem A Division of Pace Analytical Services, Inc.

Analytical Report Number: 858083

Client : NATURA Project Name : WPSC - Project Number : 1177 Field ID : PZ-128	Matrix Type : GROUNDWATER Collection Date : 04/12/05 Report Date : 04/26/05 Lab Sample Number : 858083-022										
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		490	17	55		1	ug/L		04/21/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		150	6.3	21		1	mg/L		04/25/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		04/14/05	EPA 353.2	EPA 353.2
Sulfate		1.8	0.83	2.8		1	mg/L	Q	04/19/05	EPA 300.0	EPA 300.0
BENZENE										Prep Da	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene		16	0.14	0.46		1	ug/L		04/14/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		105				1	%Recov		04/14/05	SW846 5030B	SW846 M8021
METHANE	-									Prep Dat	te: 04/25/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		120			10	1	ug/L		04/25/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	te: 04/14/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		24	2.0	6.6		100	ug/L		04/15/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene	<	2.3	2.3	7.6		100	ug/L		04/15/05	SW846 3510C	8270C-SIM
		~~	10			100					00700 001
Acenaphthene		39	1.9	6.5		100	ug/L		04/15/05	SW846 3510C	8270C-SIM
Acenaphthene Acenaphthylene		39 5.3	1.9 1.9	6.5 6.4		100	ug/L ug/L	Q	04/15/05 04/15/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM
							-	Q Q			
Acenaphthylene	<	5.3	1.9	6.4		100	ug/L		04/15/05	SW846 3510C	8270C-SIM
Acenaphthylene Anthracene	< <	5.3 1.9	1.9 1.8	6.4 5.9		100 100	ug/L ug/L		04/15/05 04/15/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM
Acenaphthylene Anthracene Benzo(a)anthracene		5.3 1.9 2.0	1.9 1.8 2.0	6.4 5.9 6.5		100 100 100	ug/L ug/L ug/L		04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	<	5.3 1.9 2.0 1.8	1.9 1.8 2.0 1.8	6.4 5.9 6.5 6.0		100 100 100 100	ug/L ug/L ug/L ug/L		04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	< <	5.3 1.9 2.0 1.8 1.8	1.9 1.8 2.0 1.8 1.8	6.4 5.9 6.5 6.0 6.0		100 100 100 100 100	ug/L ug/L ug/L ug/L ug/L		04/15/05 04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	< < <	5.3 1.9 2.0 1.8 1.8 2.1	1.9 1.8 2.0 1.8 1.8 2.1	6.4 5.9 6.5 6.0 6.0 6.9		100 100 100 100 100 100	ug/L ug/L ug/L ug/L ug/L		04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	<pre></pre>	5.3 1.9 2.0 1.8 1.8 2.1 1.9	1.9 1.8 2.0 1.8 2.1 1.9 1.6 2.2	6.4 5.9 6.5 6.0 6.0 6.9 6.4		100 100 100 100 100 100	ug/L ug/L ug/L ug/L ug/L ug/L		04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	< < < < < < < < < < < < < < < < < < <	5.3 1.9 2.0 1.8 1.8 2.1 1.9 1.6 2.2 1.6	1.9 1.8 2.0 1.8 1.8 2.1 1.9 1.6 2.2 1.6	6.4 5.9 6.5 6.0 6.9 6.4 5.5 7.3 5.5		100 100 100 100 100 100 100 100 100	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene	~ ~ ~ ~ ~ ~	5.3 1.9 2.0 1.8 1.8 2.1 1.9 1.6 2.2	1.9 1.8 2.0 1.8 2.1 1.9 1.6 2.2	6.4 5.9 6.5 6.0 6.0 6.9 6.4 5.5 7.3		100 100 100 100 100 100 100 100	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene	~ ~ ~ ~ ~ ~	5.3 1.9 2.0 1.8 1.8 2.1 1.9 1.6 2.2 1.6	1.9 1.8 2.0 1.8 2.1 1.9 1.6 2.2 1.6 2.2 1.7	6.4 5.9 6.5 6.0 6.9 6.4 5.5 7.3 5.5 7.3 5.7		100 100 100 100 100 100 100 100 100	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Q	04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	~ ~ ~ ~ ~ ~ ~	5.3 1.9 2.0 1.8 1.8 2.1 1.9 1.6 2.2 1.6 5.5 1.7 8.3	1.9 1.8 2.0 1.8 2.1 1.9 1.6 2.2 1.6 2.2 1.6 2.2 1.7 2.2	6.4 5.9 6.5 6.0 6.9 6.4 5.5 7.3 5.5 7.3 5.7 7.5		100 100 100 100 100 100 100 100 100 100	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Q	04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	~ ~ ~ ~ ~ ~ ~	5.3 1.9 2.0 1.8 1.8 2.1 1.9 1.6 2.2 1.6 5.5 1.7 8.3 7.0	1.9 1.8 2.0 1.8 2.1 1.9 1.6 2.2 1.6 2.2 1.6 2.2 1.7 2.2 2.0	6.4 5.9 6.5 6.0 6.9 6.4 5.5 7.3 5.5 7.3 5.7 7.5 6.8		100 100 100 100 100 100 100 100 100 100	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Q	04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene	~ ~ ~ ~ ~ ~ ~	5.3 1.9 2.0 1.8 1.8 2.1 1.9 1.6 2.2 1.6 5.5 1.7 8.3	1.9 1.8 2.0 1.8 2.1 1.9 1.6 2.2 1.6 2.2 1.6 2.2 1.7 2.2	6.4 5.9 6.5 6.0 6.9 6.4 5.5 7.3 5.5 7.3 5.7 7.5		100 100 100 100 100 100 100 100 100 100	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Q	04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene Nitrobenzene-d5	~ ~ ~ ~ ~ ~ ~ ~ ~	5.3 1.9 2.0 1.8 1.8 2.1 1.9 1.6 2.2 1.6 5.5 1.7 8.3 7.0	1.9 1.8 2.0 1.8 2.1 1.9 1.6 2.2 1.6 2.2 1.6 2.2 1.7 2.2 2.0	6.4 5.9 6.5 6.0 6.9 6.4 5.5 7.3 5.5 7.3 5.7 7.5 6.8		100 100 100 100 100 100 100 100 100 100	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Q	04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	~ ~ ~ ~ ~ ~ ~ ~ ~	5.3 1.9 2.0 1.8 1.8 2.1 1.9 1.6 2.2 1.6 5.5 1.7 8.3 7.0 1.6	1.9 1.8 2.0 1.8 2.1 1.9 1.6 2.2 1.6 2.2 1.6 2.2 1.7 2.2 2.0	6.4 5.9 6.5 6.0 6.9 6.4 5.5 7.3 5.5 7.3 5.7 7.5 6.8		100 100 100 100 100 100 100 100 100 100	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Q	04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05 04/15/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM

Qualifier Codes

Flag	Applies To	Explanation
A	Inorganic	Analyte is detected in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
В	Inorganic	The analyte has been detected between the method detection limit and the reporting limit.
В	Organic	Analyte is present in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
С	All	Elevated detection limit.
D	All	Analyte value from diluted analysis or surrogate result not applicable due to sample dilution.
E	Inorganic	Estimated concentration due to matrix interferences. During the metals analysis the serial dilution failed to meet the established control limits of 0-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP-MS. The result was flagged with the E qualifier to indicate that a physical interference was observed.
Е	Organic	Analyte concentration exceeds calibration range.
F	Inorganic	Due to potential interferences for this analysis by Inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method.
F	Organic	Surrogate results outside control criteria.
G	All	The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project.
Н	All	Preservation, extraction or analysis performed past holding time.
ΗF	Inorganic	This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time.
J	All	Concentration detected equal to or greater than the method detection limit but less than the reporting limit.
к	Inorganic	Sample received unpreserved. Sample was either preserved at the time of receipt or at the time of sample preparation.
к	Organic	Detection limit may be elevated due to the presence of an unrequested analyte.
L	All	Elevated detection limit due to low sample volume.
М	Organic	Sample pH was greater than 2
N	All	Spiked sample recovery not within control limits.
0	Organic	Sample received overweight.
Р	Organic	The relative percent difference between the two columns for detected concentrations was greater than 40%.
Q	All	The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.
S	Organic	The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.
T :	All	Inadequate sample volume received to perform the method required MS/MSD.
U	All	The analyte was not detected at or above the reporting limit.
V	All	Sample received with headspace.
W	All	A second aliquot of sample was analyzed from a container with headspace.
Х	All	See Sample Narrative.
&	All	Laboratory Control Spike recovery not within control limits.
*	All	Precision not within control limits.
<	All	The analyte was not detected at or above the reporting limit.
1	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.
2	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.
3	Inorganic	BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.
4	Inorganic	BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
5	Inorganic	BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
6	Inorganic	BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
7	Inorganic	BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.

En Chem

Analysis Summary by Laboratory

1241 Bellevue Street Green Bay, WI 54302

A Division of Pace Analytical Services, Inc.

1090 Kennedy Avenue Kimberly, WI 54136

Test Group Name	858083-001	858083-002	858083-003	858083-004	858083-005	858083-006	858083-007	858083-008	858083-009	858083-010	858083-011	858083-012	858083-013	858083-014	858083-015	858083-016	858083-017	858083-018	858083-019	858083-020	858083-021	858083-022	
ALKALINITY AS CACO3	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G		G	G	G	G	G	G	
BENZENE	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	
IRON - DISSOLVED	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G		G	G	G	G	G	G	
METHANE	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G		G	G	G	G	G	G	
NITROGEN, NO3 + NO2	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G		G	G	G	G	G	G	
PAH/ PNA	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	
SULFATE	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G		G	G	G	G	G	G	

Wisc	onsin Certification	
G = En Chem Green Bay	405132750 / DATCP: 105-444	
K = En Chem Kimberly	445134030	
S = En Chem Superior	Not Applicable	
C = Subcontracted Analysis		
I = Other Pace Lab Analysis		

En Chem, Inc. Cooler Receipt Log

Batch No. 85808	ج En Chem,	Inc. Cooler Receipt	Log	
Project Name or ID_WPSC	Stevens Daint	No. of Coolers: 4	Temps:	RAL
	1 12 15	\bigcirc		
A. Receipt Phase: Date cooler	•			
	e? (Must be $\leq 6 \text{ C}$)		NO ²	NA
2. Was there a Temperature Bla	ink?	(YES)	NO	
3: Were custody seals present a	and intact on cooler? (Record on C	OC)YES	MO)	
4: Are COC documents present	?	ÆS	NO ²	
5: Does this Project require quic	k turn around analysis?	YES	MO)	
6: Is there any sub-work?		YES	NO	
7: Are there any short hold time	tests?	ÉS	NO	
8: Are any samples nearing exp.	iration of hold-time? (Within 2 days)) YES ¹	MO)	Contacted by/Who
9: Do any samples need to be F	iltered or Preserved in the lab?		NO	Contacted by/Who
B. Check-in Phase: Date samp	les were Checked-in: 4-12	<u>-05 ву: 84-0</u>	en	
1: Were all sample containers lis	sted on the COC received and intac	t?€\$	NO ²	NA
2: Sign the COC as received by	En Chem. Completed	(ES)	NO	
3: Do sample labels match the C			NO ²	
4: Completed pH check on prese (This statement does not one	erved samples ly to water: VOC, O&G, TOC, DRC	Total Rec. Phenolics	NO	NA
5. Do samples have correct che	mical preservation? y to water: VOC, O&G, TOC, DRC		NO ²	NA
6: Are dissolved parameters field	d filtered?	TES	NO ²	NA
7: Are sample volumes adequate	e for tests requested?		NO ²	
	bles >6mm		NO ²	NA
9: Enter samples into logbook. C	Completed	TES)	NO	
10: Place laboratory sample nun	nber on all containers and COC. C	ompletedYES	NO	
11: Complete Laboratory Trackin	ng Sheet (LTS). Completed	YES	NO /(NA
12: Start Nonconformance form.		YES	NO /	NA
13: Initiate Subcontracting proce	dure. Completed	YES	NO (NA
14: Check laboratory sample nu	mber on all containers and COC.	MRK (YES)	NO	NA
Short Hold-time tests:		\bigcirc		
24 Hours or less	48 Hours	7 days Ash		Footnotes 1 Notify proper lab group
Coliform Corrosivity = pH	BOD Color	Aqueous Extractable Organ	nics-ALL	immediately.
Dissolved Oxygen	Nitrite or Nitrate	Flashpoint		2 Complete nonconformance
Hexavalent Chromium	Ortho Phosphorus	Free Liquids		memo.
HPC	Surfactants Turbidity	Sulfide TDS		·
Ferrous Iron	ranniary			

TSS

TVS

TVSS

Total Solids

Unpreserved VOC's

Rev. 2/05/04, Attachment to 1-REC-5. Subject to QA Audit.

En Core Preservation

Power stop preservation

Residual Chlorine

Eh

Odor

Sulfite

Reviewed by/date TAT 4/15/05

(Please Print Legibly)		·					x						·			/ MR 2
	WAL RESOURCE TE	- CANGC	365									Å	1241 Bellevue	St., Suite 9		V /
	PEWAUKFF			EN		G	H	EN	/		G.	Pr-	Green Bay, WI 920-469-24	54302		* *
	RIC KOUGTIG	r	- _			Way!		IN			<u></u>		Fax 920-469	-8827		٠
_)	·	-	A Divis	ion of Pa	ace Anai	lytical Se	ervices,	Inc.	40	<u>s</u> e				ge7of _	۔ ٦
- 14 -	<u>-523.9000</u>		-	(CH	AIN	VO	FC	US	TO	DY	-	No. 139538		geor _	
Project Number:	1177		_							servatior			200000		r nt To: <u><i>ERIC</i></u>	
Project Name:	SC STEVENS PO	INT				A=Non H=Sodi		=HCL Ifate Solu	C=H2S	04 1	D=HNO3 dium Thio		nCore F=Methanol G-NaOH J=Other		nt lo: <u>EN/C</u>	KOVAICH
Project State:	6.)/							5/NO)	NO/	NOP	155/	NO/	NO /NO /AU/ OU/ OU		7/3 W. K	Paul RD
Sampled By (Print):	RANNY BANNA	all.		P	RESER	VATION	I (CODI	E)* / 1/2	<u>} / </u>	$\frac{1}{D}$	A	-//	$\frac{1}{2} \frac{1}{4} \frac{1}{4}$		ukee w	
PO #:		Regulat		Matrix Codes]		Ľ,	\sim	/ /	5	-	. J.	Invoice	e To:		
Data Package Options	- (please circle if requested	- <u>Progra</u> UST	 GW=	Ground Water		,0	S.	n/	\sum_{i}			ST - Z	Company:			
Sample Results Only (no	o QC)	RCR/ SDW/	A \$	/=Water S=Soil A=Air		Ś	00/	(m)	57		7 Y	S	Address:			
EPA Level II (Subject to EPA Level III (Subject to	• •	NPDE CERCI	ĭ⊼ C=	Charcoal S=Biota		S y	Y	Y_^	SZ L	$\leq \langle$	4/3	S L	41/ <u>8</u> /			
EPA Level IV (Subject to	o'Surcharge)		W	=Sludge P=Wipe	J J		-4	/ <u>```</u> /		Ž		I E	Address: Mail Invoice To: CLIENT COMMENTS			
LABORATORY ID (Lab Use Only)	FIELD ID	COLLE DATE	TIME	MATRIX	$\langle \rangle \sim$	S/	$\sqrt{2}$						CLIENT COMMENTS		LAB COMMENTS (Lab Use Only)	
013	aw-7A	4-11-5	1342	GW	X	X	X	X	X	X	X	8	1-11 ambera, E	27500	Doon 4	-AANIOR
014	PZ-7B	4-11-5	1.1		X	X	X	X	\times	x	K	8			-X++++++++++++++++++++++++++++++++++++	
015	QC-1	4-11-5		Gh	X	X	X	X	X	×	×	8				
A 11	SC - Z	1-11-5		4w	1	X				1	-	3	2-40000			5
0.0	0w-9	412.5	135I	1	-	X	X	×	~	×	\mathbf{x}	8				
1	P2.9B	1		EW	X	X		×	\Box	X	$\overline{\mathbf{\nabla}}$	8				
110	0W-10		1000	GW		X	X				1	8	-	regi i		
020	PZ - 10B	1 1	NIB.		\int	X	$\overline{\mathbf{x}}$	$\widehat{\nabla}$	\mathbf{x}	\mathbf{x}	$\overline{\mathbf{x}}$	8				
621	1561-12		1	Ţ.,	X	× ×	X	X.	1	$\frac{1}{2}$		00			······	
627	PZ- 12B	11.7 <		KW		X	×	X		$\frac{1}{1}$		1 N N			·	
0	pa the	-1-11-2	405	$\frac{G}{D}$	<u> ⊁</u>		+	^_	<u> </u> ^			O.				
	· · · · · · · · · · · · · · · · · · ·		ŕ				<u> </u>				+		· · · · · · · · · · · · · · · · · · ·		ta ta seri di s Seri di seri di	ala da series 1914 - Andrea Carlos, 1917
Rush Turnaround Time	Requested (TAT) - Prelim	Belinge	uished B	 v:	 ~		<u> </u>	Date/	l Time:		Receiyed	- Burn)oto/Time:		
(Rush TAT subject to ap	• • • • • •	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	- Eq	a la se		1/2,	1.12	2.05					Marialin	Date/Time:	En Chem Projec	τ ΝΟ. 7 7
Date Needed:			uishéd/B	y:	<u>``</u>	<i>(</i> .	££	Date/			Received	By:		Date/Time:	Sample Receipt	Temp.
Transmit Prelim Rush Re Phone Fi	3 ()	Belind	Jished B	W: A		·6		Date/	Time:		Received			4	1	<u>101</u>
Phone #:				" 	r Salation -	4/17	ZAX		1. 3:31			<u>'</u>	1 UUA H/12/	Date/Time: 75 13:30	Sample Receipt (Wet/Metals)	pH
Fax #:		Relinqu	uished B	by:	~~~~	420	100	Date/			Received	d By:		Date/Time:	Cooler Custody	Sool
E-Mail Address:			(a) 1 =	· · ·									· · · ·			
	HOLD are subject to g and release of liability	Kelinqu	uished B	sy:				Date/	Time:		Received	d By:	C	Date/Time:	Present / Not Pr	

(Please Print Legibly)						w. e.							· , `				VINKE
	TURAL RESOURCE TELLA	101.06.4							_		14	æ.	1241 Bellevue Green Bay, WI				- 4
Branch or Location:	PEWANKEE		_	EI	N		H		1		୍କ	6	920-469-2 Fax 920-469	436			
Project Contact:	RIC KOVATCH		_	A Divis	ion of P		lytical Se	IN	<u>IC.</u>	.0	R						
Telephone: 26	523-9000								"TIC	∛ \T	›)DY		No. 139540		/	of	
Project Number:	1177		_					Ľ			on Codes		NO. 133340			T.	
Project Name:	DSC STEVENS T	Crw7	_				um Bisul		C=H2SC rtion	94	n <u>i coues</u> D=HNO3 odium Thio		nCore F=Methanol G-NaOH J=Other	/		C. <u>ERIC</u>	
Project State:	ω_{-}						? (YES				<u> YES </u>	<u> NO /</u>	ASS NO NIS			(3. 6). PA	
Sampled By (Print): -	RANDY BAANHI	2 C	_	F	RESER	VATION		1	7	1	$\frac{D}{A}$	- 13				EE W	_
PO #:	<u> </u>	Regulato Program		Matrix Codes]		Ë		\sim	5		\sim	1700 D Star Invoice	e To:			
	ns - (please circle if requested	UST	GW=I W	Ground Water '=Water	r	L.	<u>﴾</u> ﴾ (م		76	1	N S			:			
EPA Level II (Subject	. ,	SDWA NPDES		S=Soil A=Air Charcoal		Ë,	×/	$\langle \rangle$	20P	4 ک		X,	Address:				
EPA Level III (Subject EPA Level IV (Subject	0,	CERCL	" B Sl=	=Biota =Sludge P=Wipe	JA N		1.4	1.0	$\langle g \rangle \langle$			X &	Mail Invoice To:				
LABORATORY ID	FIELD ID	COLLE	CTION	MATRIX	1 2		/-5 /		A CALL	ŠŽ.			Address: Mail Invoice To: CLIENT COMMENTS			LAB COMMENTS	
(Lab Use Only) パムノ	, i i i i i i i i i i i i i i i i i i i	DATE	TIME		¥	<u> </u>	<u>Y</u> ?		1 1	<u> </u>		<u>/</u>				(Lab Use Only)	
<u>6</u> 62	OW-8	4-11-5		rh.	<u> ×</u> _	X	X	X		X	<u> </u>	8	1-llamberA,	3-25	Onla.	c, b, 4 -	40 mers
6/2	GW-3R		0 <u>910</u>		X	×	×	×	×	154	,×	$\left - \right $					
003	PZ-3B		<u>6920</u>		X		X	X	\succ		×			and de la composition de la composition Na composition de la c			
014	-0W-2		59415		<u> X</u>	X	×	X	×	X	<u>×</u>						
<u> </u>	PZ-13B		10/0	$\left \right $		×	× ×	X	X	Y	\times						
6010	0W-11	+	10子		Ļ×_	×	X	X	<u> </u>	×	<u> </u>		· · · · · · · · · · · · · · · · · · ·				<u> </u>
007	PZ-11B	1- 1	140		X	12	×	X	X	$ \times$	×			_			
005	OW-4		1135		X		<u> </u>	\times	14	<u> ×</u>	×						
019	OW-1		1707		<u> ×</u>		<u></u>	X	1	$ \times $. 5	ut		polog.
610	OW-5R		1240		×	×	X	·/-	×	X	$ \times$				<u></u>		
611	MARCA P-5B		1235		$ \times $,×	X	X	K	X	X						
012	0w-6	4-11-05		GW	r	X	$ \times $	$ \times$	X	$ \times$		3	4	6	7		7
Rush Turnaround Tin (Rush TAT subject to a	ne Requested (TAT) - Prelim pproval/surcharge)	Relinquis	/	y:		N.	41-	Date/I /[-5	ſime:		Received	By:	1.40	ate/Time	: E	n Chem Project	
Date Needed:		Relinqui		¥:	- <u>u</u> r	7	/ /	Date/1	lime:		Received			Date/Time	s: Si	ample Receipt 1	
Transmit Prelim Rush	• • •	Relinguj	An an D	- 4	/			/Date/1	Ciera e s		Dession	/	1	/ /		R	$O_{}$
Phone Phone #:	Fax E-mail		le	×.//	d april	. 4	lizh		13.3	30	Received	i by:	11111119	ate/Time		ample Receipt p Vet/Metals)	H :
Fax #:	· · · · · · · · · · · · · · · · · · ·	Relinqui	shed B	y:		-7	1	Date/1			Received	By:	/ [Date/Time	* c	ooler Custody S	ieal
E-Mail Address:	on HOLD are subject to	Relinqui	shed B	y:	·			Date/	Time:		Received	By:	C	Date/Time		resent / Not Pre	sent
	ng and release of liability											-			In	ntact / Not intact	t

1241 Bellevue Street, Suite 9 Green Bay, WI 54302 920-469-2436, Fax: 920-469-8827

Lab Contact: Tom Trainor

Analytical Report Number: 861454

Client: NATURAL RESOURCE TECHNOLOGY Project Name: WPSC - STEVENS POINT

Project Number: 1177/13.5

Lab Sample Number	Field ID	Matrix	Collection Date
861454-001	OW-5R	WATER	07/11/05
861454-002	P-5B	WATER	07/11/05
861454-003	OW-7A	WATER	07/11/05
861454-004	PZ-7B	WATER	07/11/05
861454-005	OW-12	WATER	07/11/05
861454-006	PZ-12B	WATER	07/11/05
861454-007	QC-1	WATER	07/11/05
861454-008	тв	WATER	07/11/05

I certify that the data contained in this Final Report has been generated and reviewed in accordance with approved methods and Laboratory Standard Operating Procedure. Exceptions, if any, are discussed in the accompanying sample comments. Release of this final report is authorized by Laboratory management, as is verified by the following signature. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. The sample results relate only to the analytes of interest tested.

Trainas m

7-28-05

Approval Signature

Date

Services, Inc.				•	•					920-469-2	
Client : NATURA Project Name : WPSC - S Project Number : 1177/13.5 Field ID : OW-5R	STE			OLOGY				Li	Collecti Rep	rix Type: WATE on Date: 07/11/ ort Date: 07/28/ Number: 86145	'05 '05
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		23000	17	55		1	ug/L		07/19/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		350	6.3	21		1	mg/L		07/21/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		07/18/05	EPA 353.2	EPA 353.2
Sulfate		340	8.3	28		10	mg/L		07/14/05	EPA 300.0	EPA 300.0
BENZENE										Prep Da	te: 07/15/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene		10	0.14	0.46		1	ug/L		07/15/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		100				1	%Recov		07/15/05	SW846 5030B	SW846 M8021
METHANE										Prep Da	te: 07/20/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		34			10	1	ug/L		07/20/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	te: 07/15/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		11	0.51	1.7		50	ug/L		07/18/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene	<	0.56	0.56	1.9		50	ug/L		07/18/05	SW846 3510C	8270C-SIM
Acenaphthene		10	0.41	1.4		50	ug/L		07/18/05	SW846 3510C	8270C-SIM
Acenaphthylene		4.9	0.41	1.4		50	ug/L		07/18/05	SW846 3510C	8270C-SIM
Anthracene		1.7	0.58	1.9		50	ug/L	Q	07/18/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.78	0.78	2.6		50	ug/L		07/18/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.92	0.92	3.1		50	ug/L		07/18/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.78	0.78	2.6		50	ug/L	Z	07/18/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.96	0.96	3.2		50	ug/L		07/18/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.97	0.97	3.2		50	ug/L	Z	07/18/05	SW846 3510C	8270C-SIM
Chrysene	<	0.95	0.95	3.2		50	ug/L		07/18/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.94	0.94	3.1		50	ug/L		07/18/05	SW846 3510C	8270C-SIM
Fluoranthene		1.9	0.77	2.6		50	ug/L	Q	07/18/05	SW846 3510C	8270C-SIM
Fluorene		5.0	0.45	1.5		50	ug/L		07/18/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.94	0.94	3.1		50	ug/L		07/18/05	SW846 3510C	8270C-SIM
Naphthalene		15	0.62	2.1		50	ug/L		07/18/05	SW846 3510C	8270C-SIM
Phenanthrene		3.8	0.57	1.9		50	ug/L		07/18/05	SW846 3510C	8270C-SIM
Pyrene		1.3	0.73	2.4		50	ug/L	Q	07/18/05	SW846 3510C	8270C-SIM
Nitrobenzene-d5		0				50	%Recov	D	07/18/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0				50	%Recov	D	07/18/05	SW846 3510C	8270C-SIM
Terphenyl-d14		0				50	%Recov	D	07/18/05	SW846 3510C	8270C-SIM

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

.

Pace Analytical Services, Inc.

Pace Analytical Services, Inc.			Ana	lytical	Repo	ort Nu	mber: 80	61454			evue Street ly, WI 54302 2436
Client : NATURA Project Name : WPSC Project Number : 1177/13.4 Field ID : P-5B	STE			OLOGY				Li	Collecti Rep	rix Type: WATE on Date: 07/11, ort Date: 07/28, Number: 86145	'05 '05
INORGANICS	-										
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		3600	17	55		1	ug/L		07/19/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		140	6.3	21		1	mg/L		07/21/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		07/18/05	EPA 353.2	EPA 353.2
Sulfate	<	0.83	0.83	2.8		1	mg/L		07/14/05	EPA 300.0	EPA 300.0
BENZENE										Prep Da	te: 07/15/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene		9.5	2.8	9.2		20	ug/L		07/15/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		101				1	%Recov		07/15/05	SW846 5030B	SW846 M8021
METHANE										Prep Da	te: 07/20/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Ani Date	Prep Method	Anl Method
Methane		250			10	1	ug/L		07/20/05	SW846 M8015	SW846 M8015
PAH/ PNA							-			Prep Dat	te: 07/15/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Ani Date	Prep Method	Anl Method
1-Methylnaphthalene		92	16	54		1600	ug/L	D	07/18/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		18	2.2	7.5		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Acenaphthene		100	13	44		1600	ug/L	D	07/18/05	SW846 3510C	8270C-SIM
Acenaphthylene		21	1.6	5.4		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Anthracene		5.8	2.3	7.7		200	ug/L	Q	07/15/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	3.1	3.1	10		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	3.7	3.7	12		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	3.1	3.1	10		200	ug/L	Z	07/15/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	3.9	3.9	13		200	ug/L		07/15/05		8270C-SIM
Benzo(k)fluoranthene	<	3.9	3.9	13		200	ug/L	Z	07/15/05	SW846 3510C	8270C-SIM
Chrysene	<		3.8	13		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	3.8	3.8	13		200	ug/L		07/15/05	SW846 3510C	
Fluoranthene	<	3.1 25	3.1	10 6 0		200	ug/L		07/15/05	SW846 3510C	
Fluorene Indeno(1,2,3-cd)pyrene	<	35 3.8	1.8 3.8	6.0 13		200 200	ug/L ug/L		07/15/05 07/15/05	SW846 3510C SW846 3510C	
Naphthalene	`	3.0 430	3.0 20	66		200 1600	ug/L ug/L	D	07/18/05	SW846 3510C	
Phenanthrene		430 22	2.3	7.6		200	ug/L ug/L	U	07/18/05	SW846 3510C	
Pyrene	<	2.9	2.3 2.9	9.7		200	ug/L ug/L		07/15/05	SW846 3510C	
Nitrobenzene-d5	`	0	2.0	0.7		200	%Recov	D	07/15/05	SW846 3510C	
2-Fluorobiphenyl		0				200	%Recov		07/15/05	SW846 3510C	
		U				200	%Recov	D	U// [5/U5	200040 32100	8270C-SIM

Pace Analytical Services, Inc.			Ana	lytical	Repo	ort Nu	mber: 86	61454			evue Street ly, WI 54302 2436
Client : NATUR Project Name : WPSC Project Number : 1177/13 Field ID : OW-7A	- STE 9.5			OLOGY				La	Collecti Rep	rix Type: WATE on Date: 07/11, ort Date: 07/28, Number: 86145	'05 '05
INORGANICS											
Test	•	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		16000	17	55		1	ug/L		07/19/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		150	6.3	21		1	mg/L		07/21/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		07/18/05	EPA 353.2	EPA 353.2
Sulfate	<	0.83	0.83	2.8		1	mg/L		07/14/05	EPA 300.0	EPA 300.0
BENZENE										Prep Da	te: 07/15/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene		15	0.69	2.3		5	ug/L		07/15/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		102				1	%Recov		07/15/05	SW846 5030B	SW846 M8021
METHANE										Prep Da	te: 07/20/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		5400			500	50	ug/L		07/20/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Da	te: 07/15/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		30	2.0	6.8		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		27	2.2	7.5		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Acenaphthene		31	1.6	5.4		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Acenaphthylene	<	1.6	1.6	5.4		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Anthracene		4.9	2.3	7.7		200	ug/L	Q	07/15/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	3.1	3.1	10		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	3.7	3.7	12		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	3.1	3.1	10		200	ug/L	Z	07/15/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	3.9	3.9	13		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	3.9	3.9	13		200	ug/L	Z	07/15/05	SW846 3510C	8270C-SIM
Chrysene	<	3.8	3.8	13		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	3.8	3.8	13		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Fluoranthene	<	3.1	3.1	10		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Fluorene		11	1.8	6.0		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	3.8	3.8	13		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Naphthalene		260	12	41		1000	ug/L	D	07/18/05	SW846 3510C	8270C-SIM
Phenanthrene		16	2.3	7.6		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Pyrene		2.9	2.9	9.7		200	ug/L	Q	07/15/05	SW846 3510C	8270C-SIM
-											
Nitrobenzene-d5		0				200	%Recov	D	07/15/05	SW846 3510C	8270C-SIM
Nitrobenzene-d5 2-Fluorobiphenyl		0 0				200 200	%Recov %Recov	D D	07/15/05 07/15/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM

Services, Inc.				-	-					920-469-2	2436
Client: NATU Project Name: WPSC Project Number: 1177/ [/]	- STE			OLOGY					Collecti	rix Type : WATE on Date : 07/11/ ort Date : 07/28/	/05
Field ID : PZ-78								L		Number : 86145	
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
Iron - Dissolved		3000	17	55		1	ug/L		07/18/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		100	6.3	21		1	mg/L		07/21/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		07/18/05	EPA 353.2	EPA 353.2
Sulfate	<	0.83	0.83	2.8		1	mg/L		07/14/05	EPA 300.0	EPA 300.0
BENZENE										Prep Da	te: 07/15/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene		3.1	2.8	9.2		20	ug/L	Q	07/15/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		102				1	%Recov		07/15/05	SW846 5030B	SW846 M8021
METHANE										Prep Dat	te: 07/20/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		1200			100	10	ug/L		07/20/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	te: 07/15/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		95	25	84		2500	ug/L	D	07/18/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		98	28	93		2500	ug/L	D	07/18/05	SW846 3510C	8270C-SIM
Acenaphthene		77	1.6	5.4		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Acenaphthylene		26	1.6	5.4		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Anthracene		4.2	2.3	7.7		200	ug/L	Q	07/15/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	3.1	3.1	10		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	3.7	3.7	12		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	3.1	3.1	10		200	ug/L	Z	07/15/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	3.9	3.9	13		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	3.9	3.9	13		200	ug/L	Z	07/15/05	SW846 3510C	8270C-SIM
Chrysene	<	3.8	3.8	13		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	3.8	3.8	13		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Fluoranthene	<	3.1	3.1	10		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Fluorene		10	1.8	6.0		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	3.8	3.8	13		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Naphthalene		810	31	100		2500	ug/L	D	07/18/05	SW846 3510C	8270C-SIM
Phenanthrene		8.6	2.3	7.6		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Pyrene	<	2.9	2.9	9.7		200	ug/L		07/15/05	SW846 3510C	8270C-SIM
Nitrobenzene-d5		0				200	%Recov	D	07/15/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0				200	%Recov	D	07/15/05	SW846 3510C	8270C-SIM
Terphenyl-d14		0				200	%Recov	D	07/15/05	SW846 3510C	8270C-SIM

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Pace Analytical Services, Inc.

Services, Inc.	aı		Ana	lytical	Repo	rt Nu	mber: 86	51454		Green Ba 920-469-3	y, WI 54302 2436	
Client : Project Name : Project Number : Field ID :	1177/13.5			OLOGY				La	Matrix Type : WATER Collection Date : 07/11/05 Report Date : 07/28/05 Lab Sample Number : 861454-005			
INORGANICS												
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method	
Iron - Dissolved		17000	17	55		1	ug/L		07/18/05	SW846 6010B	SW846 6010B	
Alkalinity as CaCO3		170	6.3	21		1	mg/L	Ν	07/21/05	EPA 310.2	EPA 310.2	
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		07/27/05	EPA 353.2	EPA 353.2	
Sulfate		3.4	0.83	2.8		1	mg/L		07/14/05	EPA 300.0	EPA 300.0	
BENZENE										Prep Da	te: 07/15/05	
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method	
Benzene		8.8	0.14	0.46		1	ug/L		07/15/05	SW846 5030B	SW846 M8021	
a,a,a-Trifluorotoluene		100				1	%Recov		07/15/05	SW846 5030B	SW846 M8021	
METHANE										Prep Da	te: 07/20/05	
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method	
Methane		1300			100	10	ug/L		07/20/05	SW846 M8015	SW846 M8015	
PAH/ PNA										Prep Da	te: 07/15/05	
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Ani Date	Prep Method	Ani Method	
1-Methylnaphthalene		7.5	0.51	1.7		50	ug/L		07/18/05	SW846 3510C	8270C-SIM	
2-Methylnaphthalene	<	0.56	0.56	1.9		50	ug/L		07/18/05	SW846 3510C	8270C-SIM	
Acenaphthene		16	0.41	1.4		50	ug/L		07/18/05	SW846 3510C	8270C-SIM	
Acenaphthylene	<	0.41	0.41	1.4		50	ug/L		07/18/05	SW846 3510C	8270C-SIM	
Anthracene		1.6	0.58	1.9		50	ug/L	Q	07/18/05	SW846 3510C	8270C-SIM	
Benzo(a)anthracene	<	0.78	0.78	2.6		50	ug/L		07/18/05	SW846 3510C	8270C-SIM	
Benzo(a)pyrene	<	0.92	0.92	3.1		50	ug/L		07/18/05	SW846 3510C	8270C-SIM	
Benzo(b)fluoranthene	<	0.78	0.78	2.6		50	ug/L	Z	07/18/05	SW846 3510C	8270C-SIM	
Benzo(ghi)perylene	<	0.96	0.96	3.2		50	ug/L		07/18/05	SW846 3510C	8270C-SIM	
Benzo(k)fluoranthene	<	0.97	0.97	3.2		50	ug/L	Z	07/18/05	SW846 3510C	8270C-SIM	
Chrysene	<	0.95	0.95	3.2		50	ug/L		07/18/05	SW846 3510C	8270C-SIM	
Dibenz(a,h)anthracene	- <	0.94	0.94	3.1		50	ug/L		07/18/05	SW846 3510C	8270C-SIM	
Fluoranthene		1.3	0.77	2.6		50	ug/L	Q	07/18/05	SW846 3510C	8270C-SIM	
Fluorene		4.7	0.45	1.5		50	ug/L	-	07/18/05	SW846 3510C	8270C-SIM	
Indeno(1,2,3-cd)pyren	e <		0.94	3.1		50	ug/L		07/18/05	SW846 3510C		
Naphthalene		2.1	0.62	2.1		50	ug/L		07/18/05	SW846 3510C		
Phenanthrene		6.2	0.57	1.9		50	ug/L		07/18/05	SW846 3510C		
Pyrene		0.82	0.73	2.4		50	ug/L	Q	07/18/05	SW846 3510C		
Nitrobenzene-d5		0.02	0.70	<u> </u>		50	%Recov	D	07/18/05	SW846 3510C		
2-Fluorobiphenyl						50 50	%Recov	D	07/18/05	SW846 3510C		
		0						D	07/18/05			
Terphenyl-d14		0				50	%Recov	U	07710/05	SW846 3510C	02/00-3114	

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Pace Analytical

								Green Bay, WI 54302 920-469-2436				
STE	SOURCE		OLOGY				La	Collecti Repo	Matrix Type: WATER Collection Date: 07/11/05 Report Date: 07/28/05 b Sample Number: 861454-006			
	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method		
	710	17	55		1	ug/L		07/18/05	SW846 6010B	SW846 6010B		
	150	6.3	21		1	mg/L		07/21/05	EPA 310.2	EPA 310.2		
<	0.061	0.061	0.20		1	mg/L		07/27/05	EPA 353.2	EPA 353.2		
	0.86	0.83	2.8		1	mg/L	Q	07/14/05	EPA 300.0	EPA 300.0		
									Prep Da	te: 07/15/05		
	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method		
	33	1.4	4.6		10	ug/L		07/15/05	SW846 5030B	SW846 M8021		
	101				1	%Recov		07/15/05	SW846 5030B	SW846 M8021		
									Prep Da	te: 07/20/05		
	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method		
	550	,		50	5	ug/L		07/20/05	SW846 M8015	SW846 M8015		
									Prep Dat	te: 07/15/05		
	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method		
	88	4.1	14		400	ug/L	D	07/18/05	SW846 3510C	8270C-SIM		
	14	1.1	3.7		100	ug/L		07/15/05	SW846 3510C	8270C-SIM		
	91	3.3	11		400	ug/L	D	07/18/05	SW846 3510C	8270C-SIM		
	14	0.81	2.7		100	ug/L		07/15/05	SW846 3510C	8270C-SIM		
	7.2	1.2	3.9		100	ug/L		07/15/05	SW846 3510C	8270C-SIM		
<	1.6	1.6	5.2		100	ug/L		07/15/05	SW846 3510C	8270C-SIM		
<	1.8	1.8	6.1		100	ug/L		07/15/05	SW846 3510C	8270C-SIM		
<	1.6	1.6	5.2		100	ug/L	z	07/15/05	SW846 3510C	8270C-SIM		
<	1.9	1.9	6.4		100	ug/L		07/15/05	SW846 3510C	8270C-SIM		
<	1.9	1.9	6.4		100	ug/L	Z	07/15/05	SW846 3510C	8270C-SIM		
<	1.9	1.9	6.3		100	ug/L		07/15/05	SW846 3510C	8270C-SIM		
<	1.9	1.9	6.3		100	•		07/15/05	SW846 3510C	8270C-SIM		
<	1.5	1.5	5.2		100	-		07/15/05	SW846 3510C	8270C-SIM		
		0.91			100				SW846 3510C	8270C-SIM		
<					100			07/15/05				
	21	1.2	4.1		100	ug/L		07/15/05	SW846 3510C	8270C-SIM		
	28		3.8		100	ug/L		07/15/05	SW846 3510C			
	20	1.1	0.0									
<		1.1 1.5				-		07/15/05				
<	1.5	1.5	4.8		100	ug/L	D	07/15/05 07/15/05	SW846 3510C	8270C-SIM		
<						-	D D	07/15/05 07/15/05 07/15/05				
5	STEV 5 < < < < < < < < < < < < < < <	STEVENS PO 5 Result 710 150 < 0.061 0.86 Result 33 101 Result 550 Result 88 14 91 14 7.2 < 1.6 < 1.8 < 1.6 < 1.9 < 1.9 < 1.9 < 1.9 < 1.9 < 1.9 < 1.9	STEVENS POINT Result LOD 710 17 150 6.3 <	STEVENS POINT Result LOD LOQ 710 17 55 150 6.3 21 <	Result LOD LOQ EQL 710 17 55 150 6.3 21 <	Result LOD LOQ EQL Dil. 710 17 55 1 150 6.3 21 1 < 0.061	Result LOD LOQ EQL Dil. Units 710 17 55 1 ug/L 150 6.3 21 1 mg/L 0.061 0.061 0.20 1 mg/L 0.86 0.83 2.8 1 mg/L Result LOD LOQ EQL Dil. Units 33 1.4 4.6 10 ug/L 101 1 %Recov Result LOD LOQ EQL Dil. Units 550 50 5 ug/L Result LOD LOQ EQL Dil. Units 550 50 5 ug/L 14 1.1 3.7 100 ug/L 14 0.81 2.7 100 ug/L 7.2 1.2 3.9 100 ug/L 4.1.6 1.6 5.2 100 ug/L	Stevens point Result LOD LOQ EQL Dil. Units Code 710 17 55 1 ug/L 150 6.3 21 1 mg/L 0.061 0.061 0.20 1 mg/L 0.001 0.001 0.001 1 mg/L 0.001 0.001 0.001 1 mg/L 0.001 0.001 1 1 0 0 0 0.001 0.001 0.001 1 1 0 0.001	STEVENS POINT Collectine Repu- Lab Sample I Result LOD LOQ EQL Dil. Units Code Anl Date 710 17 55 1 ug/L 07/18/05 150 6.3 21 1 mg/L 07/21/05 <	STEVENS POINT Collection Date 07/11// Report Date 5 Collection Date 07/12/05 EPA 30.2 710 17 55 1 ug/L 07/18/05 SW846 6010B 150 6.3 21 1 mg/L 07/12/105 EPA 310.2 < 0.061		

Pace Analytical

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Services, Inc.			Ana	iyucai	Nepu	nt ivu		1454		Green Ba 920-469-2	iy, WI 54302 2436
Client : NATUR Project Name : WPSC	- STE\			OLOGY					Collecti	rix Type: WATE on Date: 07/11/ ort Date: 07/28/	/05
Project Number: 1177/13 Field ID: QC-1	5.5							La		Number: 86145	
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		3100	17	55		1	ug/L		07/18/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		100	6.3	21		1	mg/L		07/21/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		07/27/05	EPA 353.2	EPA 353.2
Sulfate	<	0.83	0.83	2.8		1	mg/L		07/14/05	EPA 300.0	EPA 300.0
BENZENE										Prep Da	te: 07/15/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene	<	2.8	2.8	9.2		20	ug/L	к	07/15/05	SW846 5030B	SW846 M8021
a,a,a-Trifluorotoluene		102				1	%Recov		07/15/05	SW846 5030B	SW846 M8021
METHANE										Prep Da	te: 07/20/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		1400			100	10	ug/L		07/20/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Da	te: 07/15/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		110	51	170		5000	ug/L	QD	07/18/05	SW846 3510C	8270C-SIM
2-Methyinaphthalene		96	56	190		5000	ug/L	QD	07/18/05	SW846 3510C	8270C-SIM
Acenaphthene		73	41	140		5000	ug/L	QD	07/18/05	SW846 3510C	8270C-SIM
Acenaphthylene		33	0.81	2.7		100	ug/L		07/15/05	SW846 3510C	8270C-SIM
Anthracene		3.9	1.2	3.9		100	ug/L		07/15/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	1.6	1.6	5.2		100	ug/L		07/15/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	1.8	1.8	6.1		100	ug/L		07/15/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	1.6	1.6	5.2		100	ug/L	Z	07/15/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	1.9	1.9	6.4		100	ug/L		07/15/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	1.9	1.9	6.4		100	ug/L	Z	07/15/05	SW846 3510C	8270C-SIM
Chrysene	<	1.9	1.9	6.3		100	ug/L		07/15/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	1.9	1.9	6.3		100	ug/L		07/15/05	SW846 3510C	8270C-SIM
Fluoranthene	<	1.5	1.5	5.2		100	ug/L		07/15/05	SW846 3510C	8270C-SIM
Fluorene		13	0.91	3.0		100	ug/L		07/15/05	SW846 3510C	8270C-SIM
	<	1.9	1.9	6.3		100	ug/L		07/15/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene			62	210		5000	ug/L	D	07/18/05	SW846 3510C	8270C-SIM
		1200	ΨL				-				
Naphthalene		1200 14	1.1	3.8		100	ug/L		07/15/05	SW846 3510C	8270C-SIM
Naphthalene Phenanthrene	<	14	1.1	3.8			-			SW846 3510C SW846 3510C	
Naphthalene Phenanthrene Pyrene	<	14 1.5				100	ug/L	D	07/15/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene Nitrobenzene-d5 2-Fluorobiphenyl	<	14	1.1	3.8			-	D D			

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Pace Analytical Services, Inc.

Services, Inc.			Апа	ryucai	Керо	i ci nu		1434		Green Bay, WI 54302 920-469-2436 Matrix Type : WATER Collection Date : 07/11/05							
Client : NATU	JRAL RE	SOURCE		IOLOGY					Mat	rix Type : WATE	ĒR						
Project Name : WPS	C - STEV	VENS PO	INT						Collecti	on Date: 07/11/	/05						
Project Number: 1177/	/13.5								Rep	ort Date: 07/28/	/05						
Field ID: TB								La	ab Sample	Number : 86145	4-008						
BENZENE										Prep Da	te: 07/15/05						
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method						
Benzene	<	0.14	0.14	0.46		1	ug/L		07/15/05	SW846 5030B	SW846 M8021						
a,a,a-Trifluorotoluene		101				1	%Recov		07/15/05	SW846 5030B	SW846 M8021						

Pace Analytical

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Qualifier Codes

Flag	Applies To	Explanation
A	Inorganic	Analyte is detected in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
В	Inorganic	The analyte has been detected between the method detection limit and the reporting limit.
В	Organic	Analyte is present in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
С	All	Elevated detection limit.
D	All	Analyte value from diluted analysis or surrogate result not applicable due to sample dilution.
E	Inorganic	Estimated concentration due to matrix interferences. During the metals analysis the serial dilution failed to meet the established control limits of 0-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP-MS. The result was flagged with the E qualifier to indicate that a physical interference was observed.
Е	Organic	Analyte concentration exceeds calibration range.
F	Inorganic	Due to potential interferences for this analysis by Inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method.
F	Organic	Surrogate results outside control criteria.
G	All	The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project.
н	All	Preservation, extraction or analysis performed past holding time.
HF	Inorganic	This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time.
J	Ali	Concentration detected equal to or greater than the method detection limit but less than the reporting limit.
К	Inorganic	Sample received unpreserved. Sample was either preserved at the time of receipt or at the time of sample preparation.
К	Organic	Detection limit may be elevated due to the presence of an unrequested analyte.
L	All	Elevated detection limit due to low sample volume.
М	Organic	Sample pH was greater than 2
Ν	All	Spiked sample recovery not within control limits.
0	Organic	Sample received overweight.
Ρ	Organic	The relative percent difference between the two columns for detected concentrations was greater than 40%.
Q	All	The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.
S	Organic	The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.
U	All	The analyte was not detected at or above the reporting limit.
V	All	Sample received with headspace.
W	Ali	A second aliquot of sample was analyzed from a container with headspace.
х	All	See Sample Narrative.
Z	Organics	This compound was separated but it did not meet the resolution criteria as set forth in SW846.
&	All	Laboratory Control Spike recovery not within control limits.
*	All	Precision not within control limits.
<	All	The analyte was not detected at or above the reporting limit.
1	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.
2	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.
3	Inorganic	BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.
4	Inorganic	BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
5	Inorganic	BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
6	Inorganic	BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.

.

and try to correct the deficiency.
 7 Inorganic BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.

Test Group Name	861454-001	861454-002	861454-003	861454-004	861454-005	861454-006	861454-007	861454-008		
ALKALINITY AS CACO3	В	В	В	В	В	в	В			
BENZENE	G	G	G	G	G	G	G	G		
IRON - DISSOLVED	В	в	в	В	в	в	в			
METHANE	G	G	G	G	G	G	G			
NITROGEN, NO3 + NO2	В	в	в	В	В	в	в			
PAH/ PNA	В	В	В	В	В	в	в			
SULFATE	в	в	в	в	в	в	в			

Code	Facility	Address	WI Certification
В	Green Bay Lab (Bellevue St)	1241 Bellevue Street, Suite 9 Green Bay, WI 54302	405132750 / DATCP: 105-444
G	Green Bay Lab (Industrial Dr)	1795 Industrial Drive Green Bay, WI 54302	405132750

Sa	mple Condition	Upon Receipt
Pace Analytical Client Nat	me: <u>NR7</u>	Project # <u>861459</u>
Courier: Fed Ex UPS USPS CI		Pace Other Optional
Custody Seal on Cooler/Box Present: U ye		intact: yes no Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap	le Bags 🔲 None	
Thermometer Used <u>NA</u>	Type of Ice: Wet	Blue None Samples on ice, cooling process has begun
Cooler Temperature	Biological Tissue	is Frozen: Yes No Date and Initials of person examining contents: 7-14-7)5 60
Temp should be above freezing to 6°C		Comments: <u>L1 7/14/05</u>
Chain of Custody Present:	Pres INO IN/A	1.
Chain of Custody Filled Out:	Pres INO IN/A	
Chain of Custody Relinquished:		
Sampler Name & Signature on COC:		
Samples Arrived within Hold Time:	BYes No N/A	
Short Hold Time Analysis (<72hr):		
Rush Turn Around Time Requested:		
Sufficient Volume:		
Correct Containers Used:		9.
-Pace Containers Used:	PYes DNo DN/A	
Containers Intact:	Tres INO IN/A	
Filtered volume received for Dissolved tests		
Sample Labels match COC:	∭Yes □No □N/A	12.
-Includes date/time/ID/Analysis Matrix:		
	PYes □No □N/A	13.
All containers needing preservation are found to be in compliance with EPA recommendation.	PYes □No □N/A	
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes □No	Initial when completed
Samples checked for dechlorination:		14.
Headspace in VOA Vials (>6mm):		<u>15.</u>
Trip Blank Present:	Pres Ino In/A	16. SEAL NOT AROUND CAP- PACE-GREENBAY SEAL 7/14/0560
Trip Blank Custody Seals Present	□Yes ØNo □N/A	SEAL TIMESIC
Pace Trip Blank Lot # (if purchased):		1/1/03(4)
Client Notification/ Resolution:	· · · · · · · · · · · · · · · · ·	Field Data Required? Y / N
Person Contacted:	Date/	Time:
Comments/ Resolution:		
<u>.</u>		
Project Manager Review:	191	Date: 7-14-05
Note: Whenever there is a discrepancy affecting North Certification Office (i.e. out of hold, incorrect preserva	n Carolina compliance sai itive, out of temp, incorrec	mples, a copy of this form will be sent to the North Carolina DEHNR t containers)

ALLC003rev 2 10.lune2005

ace Analytical®

1241 Bellevue Street, Suite 9 Green Bay, WI 54302 920-469-2436, Fax: 920-469-8827

Analytical Report Number: 864708

Client: NATURAL RESOURCE TECHNOLOGY

Lab Contact: Tom Trainor

Project Name: WPSC - STEVENS POINT

Project Number: 1177/3.5

Lab Sample Number	Field ID	Matrix	Collection Date
864708-001	OW5R	GW	10/03/05 11:31
864708-002	P-5B	GW	10/03/05 11:30
864708-003	OW6	GW	10/03/05 11:02
864708-004	OW7A	GW	10/03/05 10:28
864708-005	PZ7B	GW	10/03/05 10:23
864708-006	OW9	GW	10/03/05 12:21
864708-007	PZ9B	GW	10/03/05 12:24
864708-008	PZ11B	GW	10/03/05 09:15
864708-009	OW12	GW	10/03/05 13:42
864708-010	PZ12B	GW	10/03/05 13:38
864708-011	PZ13B	GW	10/03/05 09:51
864708-012	QC01	GW	10/03/05
864708-013	QC02	GW	10/03/05
864708-014	TRIP BLANK	WATER	10/03/05

I certify that the data contained in this Final Report has been generated and reviewed in accordance with approved methods and Laboratory Standard Operating Procedure. Exceptions, if any, are discussed in the accompanying sample comments. Release of this final report is authorized by Laboratory management, as is verified by the following signature. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. The sample results relate only to the analytes of interest tested.

Almar 1

10-21-05 Date

Approval Signature

Iron - Dissolved 11000 6.3 21 1 ug/L 10/19/05 SW846 6010B SW846 601 Alkalinity as CaCO3 350 6.3 21 1 mg/L 10/19/05 SW846 6010B SW846 601 EPA 33.0.2 EPA 33.0.0 EPA 33.0.0 EPA 33.0.0 EPA 33.0.2 EPA 33.0.0	Pace Analytical Services, Inc.			Anal	ytical	Repoi	rt Nur	nber: 80	64708			evue Street ly, WI 54302 2436
Field ID : OWSR Lab Sample Number : 864708-001 INORGANICS Tost Result LOD LOD EQL Dil Units Code An1 Date Prep Method An1 Method Alkalinity as CaCO3 350 6.3 21 1 ug/L 10/08/05 EPA 310.2 EPA 310.2 EPA 310.2 EPA 310.2 EPA 310.2 EPA 310.2 EPA 330.0 EPA 30.0 EPA 30.0 <th>Project Name : WPSC</th> <th>- STE</th> <th></th> <th></th> <th>OLOGY</th> <th></th> <th></th> <th></th> <th></th> <th>Collecti</th> <th>on Date : 10/03/</th> <th>05</th>	Project Name : WPSC	- STE			OLOGY					Collecti	on Date : 10/03/	05
Test Result LOQ EQL Dil. Units Code An I Date Prep Method An Method Iron – Dasolved 11000 6.3 21 1 ug/L 10/19/05 SW486 6010B SW486 6	Field ID : OW5R								La			
Iron - Dissolved 11000 6.3 21 1 ug/L 10/19/05 SW846 60108 EPA 310.2 EPA 330.2 EPA 340.2 EPA 340.2 EPA 340.2 EPA 340.2 EPa 340.2 EPA 340.2 <t< th=""><th>INORGANICS</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	INORGANICS											
Alkalinity as CaCO3 350 6.3 21 1 mg/L 100005 EPA 310.2	Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
Aikalinity as CaCO3 360 6.3 21 1 mg/L 10/005 EPA 310.2 EPA 330.2 EPA 330.2 Nitrogen, NO3 + NO2 <	Iron - Dissolved		11000	6.3	21		1	ug/L		10/19/05	SW846 6010B	SW846 6010B
Nitrogen, NO3 + NO2 0.061 0.20 1 mg/L 10/10/05 EPA 353.2 EPA 353.2 <	Alkalinity as CaCO3		350	6.3	21		1	-			EPA 310.2	
Sulfate 400 4.2 14 5 mg/L 10/06/05 EPA 300.0 EPA 300.0 BENZENE Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl Method Benzene 1.7 0.14 0.46 1 ug/L 10/08/05 SW846 5030B SW846 M80 Surrogate LCL UCL	Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	-		10/10/05		
Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl Method Benzene 1.7 0.14 0.46 1 ug/L 10/08/05 SW846 50306 SW846 M81 Surrogate LCL UCL SW846 50306 SW846 M81 A.a. #.Tiffluorotoluene 98 80 124 1 % 10/08/05 SW846 50306 SW846 M81 METHANE Prep Dato: 10/13/05 SW846 M8015	Sulfate		400	4.2	14		5	-				
Analyte Result LOD LOQ EQL Dil. Units Code An I dettod Benzene 1.7 0.14 0.46 1 ug/L 10/08/05 SW846 5030B SW846 M80 Surrogate LCL UCL 1 % 10/08/05 SW846 5030B SW846 M80 Aa,a-triffloorotoluene 98 80 124 1 % 10/08/05 SW846 5030B SW846 M80 METHANE Prep Method AnI Method Analyte Result LOD LOQ EQL Dil. Units Code AnI Date Prep Method AnI Method PAH/ PNA	BENZENE							· · · · · ·			Prep Dat	te: 10/08/05
Surrogate LCL UCL a,a,a-Trifluorotoluene 98 80 124 1 % 10/08/05 SW846 5030B SW846 M80 METHANE Prep Date: 10/13/05 SW846 M8015 SW846 M8015 SW846 M8015 Analyte Result LOD LOQ EQL Dil. Units Code AnI Date Prep Method AnI Method Methane 49 10 1 ug/L 10/13/05 SW846 M8015 SW846 M8015<	Analyte		Result	LOD	LOQ	EQL	Dil.	. Units	Cod	e Anl Date	-	Ani Method
Surrogate LCL UCL a,a,a-Trifluorotoluene 98 80 124 1 % 10/08/05 SW846 5030B SW846 M81 METHANE Prep Date: 10/13/05 SW846 M8015	Benzene		1.7	0.14	0.46		1	ug/L		10/08/05		
METHANE Prep Date: 10/13/05 Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl Method Methane 49 10 1 ug/L 10/13/05 SW846 M8015 SW846 M8015 PAH/ PNA Result LOD LOQ EQL Dil. Units Code Anl Date Prep Date: 10/06/05 1-Methylnaphthalene 1.2 0.10 0.34 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Acenaphthene 2.3 0.082 0.27 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Acenaphthylene 0.99 0.081 0.27 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Acenaphtylene 0.18 0.12 0.39 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Benzo(a)anthracene 0.16 0.16 0.52 10 ug/L 10/10/05 SW846 3510C 8270C-SIM	Surrogate			LCL	UCL							
METHANE Prep Date: 10/13/05 Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl Method Methane 49 10 1 ug/L 10/13/05 SW846 M8015	a,a,a-Trifluorotoluene		98	80	124		1	%		10/08/05	SW846 5030B	SW846 M8021
Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Ani Method Methane 49 10 1 ug/L 10/13/05 SW846 M8015 SW8	METHANE						····				Prep Dat	e: 10/13/05
PAH/ PNA Result LOD LOQ EQL Dil. Units Code Anl Date Prep Date: 10/06/05 Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Date: 10/06/05 1-Methylnaphthalene 1.2 0.10 0.34 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Acenaphthene 2.3 0.082 0.27 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Acenaphthylene 0.99 0.081 0.27 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Acenaphthylene 0.16 0.16 0.52 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Benzo(a)phtracene <	Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	e Anl Date	-	Anl Method
Analyte Result LOD LOQ EQL Dil. Units Code An I Method An I Method 1-Methylnaphthalene 1.2 0.10 0.34 10 ug/L 10/10/05 SW846 3510C 8270C-SIM 2-Methylnaphthalene 2.3 0.082 0.27 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Acenaphthylene 0.99 0.81 0.27 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Acenaphthylene 0.99 0.81 0.27 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Actinaphthylene 0.16 0.16 0.52 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Benzo(a)pyrene <0.16	Methane		49	· · ·		10	1	ug/L		10/13/05	SW846 M8015	SW846 M8015
Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method And Method 1-Methylnaphthalene 1.2 0.10 0.34 10 ug/L 10/10/05 SW846 3510C 8270C-SIM 2-Methylnaphthalene 2.3 0.82 0.27 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Acenaphthylene 0.99 0.81 0.27 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Acenaphthylene 0.99 0.81 0.27 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Acenaphthylene 0.16 0.16 0.52 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Benzo(a)pyrene <0.16	PAH/ PNA										Prep Dat	e: 10/06/05
2-Methylnaphthalene 0.11 0.37 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Acenaphthene 2.3 0.082 0.27 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Acenaphthylene 0.99 0.081 0.27 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Anthracene 0.18 0.12 0.39 10 ug/L 0.1/10/05 SW846 3510C 8270C-SIM Benzo(a)anthracene 0.16 0.16 0.52 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Benzo(a)pyrene <0.16	Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	-	Anl Method
2-Methylnaphthalene < 0.11 0.37 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Acenaphthene 2.3 0.082 0.27 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Acenaphthylene 0.99 0.081 0.27 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Acenaphthylene 0.18 0.12 0.39 10 ug/L Q 10/10/05 SW846 3510C 8270C-SIM Benzo(a)anthracene 0.16 0.12 0.39 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Benzo(a)anthracene 0.16 0.16 0.52 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Benzo(a)pyrene 0.16 0.16 0.52 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Benzo(ghilperylene <	1-Methylnaphthalene		1.2	0.10	0.34		10	ug/L		10/10/05	SW846 3510C	8270C-SIM
Acenaphthene 2.3 0.082 0.27 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Acenaphthylene 0.99 0.081 0.27 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Anthracene 0.18 0.12 0.39 10 ug/L Q 10/10/05 SW846 3510C 8270C-SIM Benzo(a)anthracene <	2-Methylnaphthalene	<	0.11	0.11	0.37		10			10/10/05		
Acenaphthylene 0.99 0.081 0.27 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Anthracene 0.18 0.12 0.39 10 ug/L Q 10/10/05 SW846 3510C 8270C-SIM Benzo(a)anthracene <	Acenaphthene		2.3	0.082	0.27		10			10/10/05		
Anthracene 0.18 0.12 0.39 10 ug/L Q 10/10/05 SW846 3510C 8270C-SIM Benzo(a)anthracene <	Acenaphthylene		0.99	0.081	0.27		10					
Benzo(a)anthracene < 0.16 0.16 0.52 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Benzo(a)pyrene 0.18 0.18 0.61 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Benzo(a)pyrene 0.16 0.16 0.52 10 ug/L Z 10/10/05 SW846 3510C 8270C-SIM Benzo(ghi)perylene 0.19 0.19 0.64 10 ug/L Z 10/10/05 SW846 3510C 8270C-SIM Benzo(k)fluoranthene 0.19 0.64 10 ug/L Z 10/10/05 SW846 3510C 8270C-SIM Benzo(k)fluoranthene 0.19 0.63 10 ug/L Z 10/10/05 SW846 3510C 8270C-SIM Dibenz(a,h)anthracene 0.19 0.63 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Fluoranthene 1.1 0.15 0.52 10 ug/L 10/10/05 SW846 351	Anthracene		0.18	0.12	0.39		10	•	Q			
Benzo(a)pyrene < 0.18 0.18 0.61 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Benzo(b)fluoranthene 0.16 0.16 0.52 10 ug/L Z 10/10/05 SW846 3510C 8270C-SIM Benzo(ghi)perylene 0.19 0.19 0.64 10 ug/L Z 10/10/05 SW846 3510C 8270C-SIM Benzo(k)fluoranthene 0.19 0.19 0.64 10 ug/L Z 10/10/05 SW846 3510C 8270C-SIM Chrysene 0.19 0.19 0.63 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Dibenz(a,h)anthracene 0.19 0.19 0.63 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Fluoranthene 1.1 0.15 0.52 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Fluoranthene 0.46 0.091 0.30 10 ug/	Benzo(a)anthracene	<	0.16	0.16	0.52		10	-	-			
Benzo(b)fluoranthene < 0.16 0.16 0.52 10 ug/L Z 10/10/05 SW846 3510C 8270C-SIM Benzo(ghi)perylene 0.19 0.19 0.64 10 ug/L Z 10/10/05 SW846 3510C 8270C-SIM Benzo(k)fluoranthene 0.19 0.19 0.64 10 ug/L Z 10/10/05 SW846 3510C 8270C-SIM Benzo(k)fluoranthene 0.19 0.63 10 ug/L Z 10/10/05 SW846 3510C 8270C-SIM Dibenz(a,h)anthracene 0.19 0.63 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Fluoranthene 1.1 0.15 0.52 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Fluorene 0.46 0.091 0.30 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Naphthalene 0.47 1.6 10 ug/L 10/10/05 SW846 3510C 8270C	Benzo(a)pyrene	<	0.18	0.18	0.61		10	-				
Benzo(ghi)perylene < 0.19 0.19 0.64 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Benzo(k)fluoranthene 0.19 0.19 0.64 10 ug/L Z 10/10/05 SW846 3510C 8270C-SIM Chrysene 0.19 0.19 0.63 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Dibenz(a,h)anthracene 0.19 0.19 0.63 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Fluoranthene 1.1 0.15 0.52 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Fluorene 0.46 0.091 0.30 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene 0.47 0.47 1.6 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Naphthalene 0.47 0.47 1.6 10 ug/L 10/10/05 SW846 3510C 8270C-S		<	0.16		0.52			-	7			
Benzo(k)fluoranthene < 0.19 0.64 10 ug/L Z 10/10/05 SW846 3510C 8270C-SIM Chrysene 0.19 0.19 0.63 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Dibenz(a,h)anthracene 0.19 0.63 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Fluoranthene 1.1 0.15 0.52 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Fluorene 0.46 0.091 0.30 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene 0.46 0.091 0.30 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Naphthalene 0.47 0.47 1.6 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Pyrene 0.67 0.15 0.48 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Pyrene 0.67		<	0.19		0.64			•				
Chrysene < 0.19 0.19 0.63 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Dibenz(a,h)anthracene < 0.19 0.19 0.63 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Fluoranthene 1.1 0.15 0.52 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Fluorene 0.46 0.091 0.30 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene < 0.19 0.63 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Naphthalene < 0.19 0.19 0.63 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Phenanthrene < 0.47 0.47 1.6 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Pyrene 0.67 0.15 0.48 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Surrogate LCL UCL UCL 10/10/05 SW846 3510C 8270C-SIM P2-Fluorobiphenyl 0.0 136 10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>7</td> <td></td> <td></td> <td></td>								•	7			
Dibenz(a,h)anthracene < 0.19 0.63 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Fluoranthene 1.1 0.15 0.52 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Fluoranthene 0.46 0.091 0.30 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene 0.19 0.63 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Naphthalene 0.47 0.47 1.6 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Phenanthrene 0.47 0.47 1.6 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Pyrene 0.67 0.15 0.48 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Surrogate LCL UCL UCL 10/10/05 SW846 3510C 8270C-SIM 2-Fluorobiphenyl 0.0 10 136 10 % D </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td>								-	-			
Fluoranthene 1.1 0.15 0.52 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Fluorene 0.46 0.091 0.30 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene < 0.19	•							-				
Fluorene 0.46 0.091 0.30 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene < 0.19	Fluoranthene							-				
Indeno(1,2,3-cd)pyrene <	Fluorene							-				
Naphthalene < 0.47 0.47 1.6 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Phenanthrene < 0.11		<										
Phenanthrene < 0.11 0.11 0.38 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Pyrene 0.67 0.15 0.48 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Surrogate LCL UCL UCL UCL SW846 3510C 8270C-SIM Nitrobenzene-d5 0.0 10 136 10 % D 10/10/05 SW846 3510C 8270C-SIM 2-Fluorobiphenyl 0.0 14 130 10 % D 10/10/05 SW846 3510C 8270C-SIM												
Pyrene 0.67 0.15 0.48 10 ug/L 10/10/05 SW846 3510C 8270C-SIM Surrogate LCL UCL UCL D 10/10/05 SW846 3510C 8270C-SIM Nitrobenzene-d5 0.0 10 136 10 % D 10/10/05 SW846 3510C 8270C-SIM 2-Fluorobiphenyl 0.0 14 130 10 M D 10/10/05 SW846 3510C 8270C-SIM	Phenanthrene											
Surrogate LCL UCL Nitrobenzene-d5 0.0 10 136 10 % D 10/10/05 SW846 3510C 8270C-SIM 2-Fluorobiphenyl 0.0 14 130 10 % D 10/10/05 SW846 3510C 8270C-SIM	Pyrene											
Nitrobenzene-d5 0.0 10 136 10 % D 10/10/05 SW846 3510C 8270C-SIM 2-Fluorobiphenyl 0.0 14 130 10 % D 10/10/05 SW846 3510C 8270C-SIM	Surrogate							- <u>-</u>				
2-Fluorobiphenyl 0.0 14 130 10 % D 10/10/05 SW846 3510C 8270C-SIM	Nitrobenzene-d5	····	0.0	10			10	%	D	10/10/05	SW846 3510C	8270C-SIM
	2-Fluorobiphenyl											
	Terphenyl-d14		0.0	46	137		10	%	D	10/10/05	SW846 3510C	8270C-SIM

Services, Inc.										920-469-	2436
Client : NATU Project Name : WPS Project Number : 1177, Field ID : P-5B	C - STE			OLOGY				La	Collecti Rep	rix Type : GROU on Date : 10/03, ort Date : 10/21, Number : 86470	05 05
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		3500	6.3	21	-	1	ug/L	E	10/19/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		140	6.3	21		1	mg/L		10/08/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		10/10/05	EPA 353.2	EPA 353.2
Sulfate	<	0.83	0.83	2.8		1	mg/L		10/06/05	EPA 300.0	EPA 300.0
BENZENE										Prep Da	te: 10/08/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Anl Method
Benzene		8.4	3.4	11		25	ug/L	Q	10/08/05	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		99	80	124		1	%		10/08/05	SW846 5030B	SW846 M8021
METHANE										Prep Dat	e: 10/13/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Anl Method
Methane		560	·		50	5	ug/L		10/13/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 10/06/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Ani Date	Prep Method	Anl Method
1-Methylnaphthalene		130	16	54		160	0 ug/L	D	10/10/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		31	2.2	7.5		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Acenaphthene		130	13	44		160	0 ug/L	D	10/10/05	SW846 3510C	8270C-SIM
Acenaphthylene		21	1.6	5.4		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Anthracene		5.2	2.3	7.7		200	ug/L	Q	10/09/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	3.1	3.1	10		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	3.7	3.7	12		200	0		10/09/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	3.1	3.1	10		200	ug/L	Z	10/09/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	3.9	3.9	13		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	3.9	3.9	13		200	ug/L	Z	10/09/05	SW846 3510C	8270C-SIM
Chrysene	<		3.8	13		200	÷		10/09/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	3.8	3.8	13		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Fluoranthene	<	3.1	3.1	10		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Fluorene		44	1.8	6.0		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	3.8	3.8	13		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Naphthalene		440	75	250		160	0 ug/L	D	10/10/05	SW846 3510C	8270C-SIM
Phenanthrene		30	2.3	7.6		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Pyrene	<	2.9	2.9	9.7		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Surrogate			LCL	UCL							
Nitrobenzene-d5		0	10	136		200	%	D	10/09/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0	14	130		200	%	D	10/09/05	SW846 3510C	8270C-SIM
Terphenyl-d14		0	46	137		200	%	D	10/09/05	SW846 3510C	8270C-SIM

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Pace Analytical Services, Inc.

Pace Analytical Services, Inc.	Ana	alytical	Repor	t Nun	nber: 8	64708			evue Street y, WI 54302 2436
Client: NATURAL RESO Project Name: WPSC - STEVEN		NOLOGY						rix Type : GROU on Date : 10/03/	
Project Number: 1177/3.5								ort Date : 10/21/	
Field ID: OW6						La	•	Number: 86470	
INORGANICS									·
Test Re	sult LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
Iron - Dissolved 41	00 6.3	21		1	ug/L	-	10/19/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3 35	0 6.3	21		1	mg/L		10/08/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2 < 0.0		0.20			mg/L		10/10/05	EPA 353.2	EPA 353.2
Sulfate 11	0.83	2.8			mg/L		10/06/05	EPA 300.0	EPA 300.0
					ing/c			······	
BENZENE				-		. .			e: 10/08/05
	sult LOD	LOQ	EQL	Dil.	Units		e Anl Date	Prep Method	Anl Method
Benzene < 6.9		23		50	ug/L	К	10/08/05	SW846 5030B	SW846 M8021
Surrogate	LCL	UCL							
a,a,a-Trifluorotoluene 99	80	124		1	%		10/08/05	SW846 5030B	SW846 M8021
METHANE								Prep Dat	e: 10/13/05
Analyte Re	sult LOD	LOQ	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Ani Method
Methane 16	00		100	10	ug/L		10/13/05	SW846 M8015	SW846 M8015
PAH/ PNA								Prep Date	e: 10/06/05
Analyte Re	sult LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene 13	51	170		5000	0 ug/L	QD	10/10/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene 10) 2.2	7.5		200	ug/L	E	10/09/05	SW846 3510C	8270C-SIM
Acenaphthene 79	1.6	5.4		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Acenaphthylene 120) 41	140		5000) ug/L	QD	10/10/05	SW846 3510C	8270C-SIM
Anthracene 5.1	2.3	7.7		200	ug/L	Q	10/09/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene < 3.1	3.1	10		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene < 3.7	3.7	12		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene < 3.1	3.1	10		200	ug/L	Z	10/09/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene < 3.9	3.9	13		200	ug/L		10/09/05		8270C-SIM
Benzo(k)fluoranthene < 3.9	3.9	13		200	ug/L	Z	10/09/05	SW846 3510C	8270C-SIM
Chrysene < 3.8		13		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene < 3.8		13		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Fluoranthene < 3.1				200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Fluorene 21	3.1	10							
	3.1 1.8	10 6.0		200	-				
Indeno(1,2,3-cd)pyrene < 3.8	1.8	6.0		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene < 3.8 Naphthalene 180	1.8 3.8	6.0 13		200 200	ug/L ug/L	D	10/09/05 10/09/05	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM
Naphthalene 180	1.8 3.8 00 240	6.0 13 790		200 200 5000	ug/L ug/L) ug/L	D	10/09/05 10/09/05 10/10/05	SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM
Naphthalene 180	1.8 3.8	6.0 13		200 200	ug/L ug/L) ug/L ug/L	D	10/09/05 10/09/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Naphthalene180Phenanthrene40	1.8 3.8 00 240 2.3	6.0 13 790 7.6		200 200 5000 200	ug/L ug/L) ug/L	D	10/09/05 10/09/05 10/10/05 10/09/05	SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Naphthalene180Phenanthrene40Pyrene< 2.9	1.8 3.8 00 240 2.3 2.9	6.0 13 790 7.6 9.7		200 200 5000 200	ug/L ug/L) ug/L ug/L	D	10/09/05 10/09/05 10/10/05 10/09/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Naphthalene180Phenanthrene40Pyrene< 2.9	1.8 3.8 00 240 2.3 2.9 LCL	6.0 13 790 7.6 9.7 UCL		200 200 5000 200 200	ug/L ug/L ug/L ug/L ug/L		10/09/05 10/09/05 10/10/05 10/09/05 10/09/05	SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM

Services, Inc.			Anu	iy noai	Кероі	t nun		54700		Green Ba 920-469-2	y, WI 54302 2436
Client :	NATURAL F	RESOURCE	E TECHN	OLOGY					Mat	rix Type : GROU	INDWATER
Project Name :	WPSC - STI	EVENS PC	INT							on Date : 10/03/	
Project Number :	1177/3.5								Rep	ort Date : 10/21/	05
Field ID :	OW7A							La	ab Sample	Number: 86470	8-004
INORGANICS										_	
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		26000	6.3	21	-	1	ug/L		10/19/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		210	6.3	21		1	mg/L		10/08/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2		< 0.061	0.061	0.20		1	mg/L		10/10/05	EPA 353.2	EPA 353.2
Sulfate		< 0.83	0.83	2.8		1	mg/L		10/06/05	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	te: 10/08/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method
Benzene		14	1.4	4.6		10	ug/L		10/08/05	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		99	80	124		1	%		10/08/05	SW846 5030B	SW846 M8021
METHANE										Prep Dat	e: 10/13/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Ani Method
Methane	<u> </u>	7100			1000	100	ug/L		10/13/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 10/06/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		34	2.0	6.8		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		36	2.2	7.5		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Acenaphthene		40	1.6	5.4		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Acenaphthylene	<	1.6	1.6	5.4		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Anthracene		3.8	2.3	7.7		200	ug/L	Q	10/09/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	¢	3.1	3.1	10		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	3.7	3.7	12		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	3.1	3.1	10		200	ug/L	Z	10/09/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	3.9	3.9	13		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	3.9	3.9	13		200	ug/L	Z	10/09/05	SW846 3510C	8270C-SIM
Chrysene	<	3.8	3.8	13		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	€ <	3.8	3.8	13		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Fluoranthene	<	3.1	3.1	10		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Fluorene		17	1.8	6.0		200	-		10/09/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyren	e <	3.8	3.8	13		200			10/09/05	SW846 3510C	8270C-SIM
Naphthalene		400	75	250		160		D	10/10/05	SW846 3510C	
Phenanthrene		21	2.3	7.6		200			10/09/05	SW846 3510C	
Pyrene	<	2.9	2.9	9.7		200			10/09/05	SW846 3510C	
Surrogate			LCL	UCL							
Nitrobenzene-d5		0	10	136		200	%	D	10/09/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0	14	130		200	%	D	10/09/05	SW846 3510C	8270C-SIM
Terphenyl-d14		0	46	137		200	%	D	10/09/05	SW846 3510C	8270C-SIM

Pace Analytical

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Services, Inc.				,	'J						920-469-2	y, wi 54302 2436
Client :	NATURAL	RE	SOURCE	TECHN	OLOGY					Mat	rix Type : GROL	INDWATER
Project Name :	WPSC - ST	ΓE\	/ENS PO	INT							on Date : 10/03/	
Project Number :	1177/3.5									Rep	ort Date: 10/21/	05
Field ID :	PZ7B								La	ib Sample i	Number: 86470	8-005
INORGANICS												
Test			Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
Iron - Dissolved			3000	6.3	21		1	ug/L		10/19/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3			96	6.3	21		1	mg/L		10/08/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2		<	0.061	0.061	0.20		1	mg/L		10/10/05	EPA 353.2	EPA 353.2
Sulfate		<	0.83	0.83	2.8		1	mg/L		10/06/05	EPA 300.0	EPA 300.0
BENZENE											Prep Dat	e: 10/08/05
Analyte			Result	LOD	LOQ	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Anl Method
Benzene			1.4	1.4	4.6		10	ug/L	Q	10/08/05	SW846 5030B	SW846 M8021
Surrogate				LCL	UCL							
a,a,a-Trifluorotoluene			98	80	124		1	%		10/08/05	SW846 5030B	SW846 M8021
METHANE											Prep Dat	e: 10/13/05
Analyte			Result	LOD	LOQ	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Anl Method
Methane			1900			200	20	ug/L		10/13/05	SW846 M8015	SW846 M8015
PAH/ PNA											Prep Dat	e: 10/06/05
Analyte			Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene			97	25	84		2500) ug/L	D	10/10/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene			85	28	93		2500) ug/L	QD	10/10/05	SW846 3510C	8270C-SIM
Acenaphthene			72	1.6	5.4		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Acenaphthylene			20	1.6	5.4		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Anthracene		<	2.3	2.3	7.7		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene		<	3.1	3.1	10		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene		<	3.7	3.7	12		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene		<	3.1	3.1	10		200	ug/L	Z	10/09/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene		<	3.9	3.9	13		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene		<	3.9	3.9	13		200	ug/L	Z	10/09/05	SW846 3510C	8270C-SIM
Chrysene		<	3.8	3.8	13		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene		<	3.8	3.8	13		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Fluoranthene		<	3.1	3.1	10		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Fluorene			9.5	1.8	6.0		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	!	<	3.8	3.8	13		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Naphthalene			890	120	390		2500	-	D	10/10/05	SW846 3510C	8270C-SIM
Phenanthrene			7.9	2.3	7.6		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Pyrene			2.9	2.9	9.7		200	ug/L		10/09/05	SW846 3510C	
Surrogate				LCL	UCL							
Nitrobenzene-d5			0	10	136		200	%	D	10/09/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl			0	14	130		200	%	D	10/09/05	SW846 3510C	8270C-SIM
Terphenyl-d14			0	46	137		200	%	D	10/09/05	SW846 3510C	8270C-SIM

1241 Bellevue Street Green Bay, WI 54302

Pace Analytical

Client: NATURAL RESOURCE TECHNOLOGY Project Name: WPSC - STEVENS POINT Project Number: 1177/3.5 Field ID: OW9 Matrix Type : GROUNDWATER Collection Date : 10/03/05 Report Date : 10/21/05 Lab Sample Number : 864708-006

INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		11000	6.3	21		1	ug/L		10/19/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		230	6.3	21		1	mg/L		10/08/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		10/14/05	EPA 353.2	EPA 353.2
Sulfate	-	15	0.83	2.8		1	mg/L		10/07/05	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	e: 10/08/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene		180	6.9	23		50	ug/L		10/08/05	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		98	80	124		1	%		10/08/05	SW846 5030B	SW846 M8021
METHANE										Prep Dat	e: 10/13/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		3300			250	25	ug/L		10/13/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 10/06/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		160	81	270		800	0 ug/L	QD	10/10/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		49	2.2	7.5		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Acenaphthene		120	65	220		800	0 ug/L	QD	10/10/05	SW846 3510C	8270C-SIM
Acenaphthylene		50	1.6	5.4		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Anthracene		6.3	2.3	7.7		200	ug/L	Q	10/09/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	3.1	3.1	10		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	3.7	3.7	12		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	3.1	3.1	10		200	ug/L	Z	10/09/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	3.9	3.9	13		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	3.9	3.9	13		200	ug/L	Z	10/09/05	SW846 3510C	8270C-SIM
Chrysene	<	3.8	3.8	13		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	3.8	3.8	13		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Fluoranthene		5.8	3.1	10		200	ug/L	Q	10/09/05	SW846 3510C	8270C-SIM
Fluorene		59	1.8	6.0		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	3.8	3.8	13		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Naphthalene		1700	380	1300		8000) ug/L	D	10/10/05	SW846 3510C	8270C-SIM
Phenanthrene		72	2.3	7.6		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Pyrene		3.7	2.9	9.7		200	ug/L	Q	10/09/05	SW846 3510C	8270C-SIM
Surrogate			LCL	UCL							
Nitrobenzene-d5		0	10	136		200	%	D	10/09/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0	14	130		200	%	D	10/09/05	SW846 3510C	8270C-SIM
Terphenyl-d14		0	46	137		200	%	D	10/09/05	SW846 3510C	
,,			-	-			-	_			

Pace Analytical Services, Inc.			Anal	ytical	Repoi	rt Nur	nber: 86	64708			evue Street y, WI 54302 2436
Client : NATU Project Name : WPS0 Project Number : 1177/3 Field ID : PZ9B	C - STE			DLOGY				Li	Collecti Repo	rix Type : GROU on Date : 10/03/ ort Date : 10/21/ Number : 86470	05 05
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		3400	6.3	21		1	ug/L		10/19/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		110	6.3	21		1	mg/L		10/08/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2		0.066	0.061	0.20		1	mg/L	Q	10/14/05	EPA 353.2	EPA 353.2
Sulfate		11	0.83	2.8		1	mg/L		10/06/05	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	te: 10/08/05
Analyte		Result	LOD	LOQ	EQL	Dil	. Units	Cod	e Ani Date	Prep Method	Ani Method
Benzene	<	0.14	0.14	0.46		1	ug/L		10/08/05	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL			5				
a,a,a-Trifluorotoluene		99	80	124		1	%		10/08/05	SW846 5030B	SW846 M8021
METHANE											e: 10/13/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Ani Method
Methane	<	10		204	10	1	ug/L		10/13/05	SW846 M8015	
		10				•		. <u> </u>	10/10/00		
PAH/ PNA										Prep Dat	e: 10/06/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		0.72	0.051	0.17		5	ug/L	D	10/10/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		0.034	0.011	0.037		1	ug/L	Q	10/08/05	SW846 3510C	8270C-SIM
Acenaphthene		1.6	0.041	0.14		5	ug/L	D	10/10/05	SW846 3510C	8270C-SIM
Acenaphthylene		0.044	0.0081	0.027		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Anthracene		0.014	0.012	0.039		1	ug/L	Q	10/08/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.016	0.016	0.052		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.018	0.018	0.061		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.016	0.016	0.052		1	ug/L	Z	10/08/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.019	0.019	0.064		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.019	0.019	0.064		1	ug/L	Z	10/08/05	SW846 3510C	8270C-SIM
Chrysene		0.019	0.019	0.063		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene		0.019	0.019	0.063		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Fluoranthene	<	0.015	0.015	0.052		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Fluorene		0.023	0.0091	0.030		1	ug/L	Q	10/08/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.019	0.019	0.063		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Naphthalene		1.2	0.24	0.79		5	ug/L	D	10/10/05	SW846 3510C	8270C-SIM
Phenanthrene		0.019	0.011	0.038		1	ug/L	Q	10/08/05	SW846 3510C	8270C-SIM
Pyrene	<	0.015	0.015	0.048		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Surrogate			LCL	UCL							
Nitrobenzene-d5		68	10	136		1	%		10/08/05	SW846 3510C	8270C-SIM
2-Fluorobipheny!		51	14	130		1	%		10/08/05	SW846 3510C	8270C-SIM
Terphenyl-d14		82	46	137		1	%		10/08/05	SW846 3510C	8270C-SIM

Services, Inc.				<i></i>						920-469-2	y, WI 54302 2436
Client : NATU Project Name : WPS0 Project Number : 1177/3 Field ID : PZ118	C - STE' 3.5			DLOGY				1.5	Collecti Rep	rix Type : GROL on Date : 10/03/ ort Date : 10/21/ Number : 86470	05 05
								Le	ab Sample		
INORGANICS Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Drop Mathed	A mi Bilatha ai
				21				Code		Prep Method	Anl Method
Iron - Dissolved		54 140	6.3 6.3	21		1 1	ug/L		10/19/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3 Nitrogen, NO3 + NO2		0.17	0.061	0.20		1	mg/L	0	10/13/05 10/14/05	EPA 310.2 EPA 353.2	EPA 310.2
Sulfate		0.17 8.3	0.001	2.8		1	mg/L mg/L	Q	10/14/05	EPA 353.2 EPA 300.0	EPA 353.2 EPA 300.0
· · ·		0.0					ing/c		10/00/00		
BENZENE		Beault	LOD	LOQ	EQL	Dil	Unite	Cod		•	te: 10/08/05
Analyte		Result						COU	e Anl Date	Prep Method	Anl Method
Benzene	<	0.14	0.14	0.46		1	ug/L		10/08/05	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							·
a,a,a-Trifluorotoluene		99	80	124		1	%		10/08/05	SW846 5030B	SW846 M8021
METHANE										Prep Dat	e: 10/13/05
Analyte		Result	LOD	LOQ	EQL	Dil.	. Units	Code	e Anl Date	Prep Method	Ani Method
Methane	<	10			10	1	ug/L		10/13/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 10/06/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		0.019	0.010	0.034		1	ug/L	Q	10/08/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene	<	0.011	0.011	0.037		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Acenaphthene		0.023	0.0082	0.027		1	ug/L	Q	10/08/05	SW846 3510C	8270C-SIM
Acenaphthylene		0.0096	0.0081	0.027		1	ug/L	Q	10/08/05	SW846 3510C	8270C-SIM
Anthracene	<	0.012	0.012	0.039		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.016	0.016	0.052		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.018	0.018	0.061		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.016	0.016	0.052		1	ug/L	Z	10/08/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.019	0.019	0.064		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.019	0.019	0.064		1	ug/L	Z	10/08/05	SW846 3510C	8270C-SIM
Chrysene	<	0.019	0.019	0.063		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.019	0.019	0.063		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Fluoranthene	<	0.015	0.015	0.052		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Fluorene		0.0091	0.0091	0.030		1	ug/L	Q	10/08/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.019	0.019	0.063		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Naphthalene		0.14	0.047	0.16		1	ug/L	Q	10/08/05	SW846 3510C	8270C-SIM
Phenanthrene		0.015	0.011	0.038		1	ug/L	Q	10/08/05	SW846 3510C	8270C-SIM
Pyrene	<	0.015	0.015	0.048		1	ug/L		10/08/05	SW846 3510C	
Surrogate			LCL	UCL							
Nitrobenzene-d5		70	10	136		1	%		10/08/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		54	14	130		1	%		10/08/05	SW846 3510C	8270C-SIM
Terphenyl-d14		82	46	137		1	%		10/08/05	SW846 3510C	8270C-SIM

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Pace Analytical Services, Inc.

Services, Inc.						• • • • • •				920-469-2	y, wi 54302 2436
Client: N/ Project Name: W Project Number: 11 Field ID: O	PSC - STE 77/3.5			OLOGY				La	Collecti Repo	rix Type : GROL on Date : 10/03/ ort Date : 10/21/ Number : 86470	05 05
											·····
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		19000	6.3	21		1	ug/L		10/19/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		150	6.3	21		1	mg/L		10/13/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		10/14/05	EPA 353.2	EPA 353.2
Sulfate	<	0.83	0.83	2.8		1	mg/L		10/06/05	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	e: 10/08/05
Analyte		Result	LOD	LOQ	EQL	Dil	Units	Code	Anl Date	Prep Method	Anl Method
Benzene		9.4	0.14	0.46		1	ug/L		10/08/05	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		96	80	124		1	%		10/08/05	SW846 5030B	SW846 M8021
METHANE										Prep Dat	e: 10/13/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		1700			250	25	ug/L		10/13/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 10/06/05
Analyte		Result	LOD	LOQ	EQL	Dil	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		4.5	0.51	1.7		50	ug/L		10/10/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene	<	0.56	0.56	1.9		50	ug/L		10/10/05	SW846 3510C	8270C-SIM
Acenaphthene		14	0.41	1.4		50	ug/L		10/10/05	SW846 3510C	8270C-SIM
Acenaphthylene	<	0.41	0.41	1.4		50	ug/L		10/10/05	SW846 3510C	8270C-SIM
Anthracene		1.7	0.58	1.9		50	ug/L	Q	10/10/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.78	0.78	2.6		50	ug/L		10/10/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.92	0.92	3.1		50	ug/L		10/10/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.78	0.78	2.6		50	ug/L	Z	10/10/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.96	0.96	3.2		50	ug/L		10/10/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.97	0.97	3.2		50	ug/L	Z	10/10/05	SW846 3510C	8270C-SIM
Chrysene	<	0.95	0.95	3.2		50	ug/L		10/10/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.94	0.94	3.1		50	ug/L		10/10/05	SW846 3510C	8270C-SIM
Fluoranthene		2.3	0.77	2.6		50	ug/L	Q	10/10/05	SW846 3510C	8270C-SIM
Fluorene		6.6	0.45	1.5		50	ug/L		10/10/05	SW846 3510C	
Indeno(1,2,3-cd)pyrene	<	0.94	0.94	3.1		50	ug/L		10/10/05	SW846 3510C	
Naphthalene		13	2.4	7.9		50	ug/L		10/10/05	SW846 3510C	
Phenanthrene		13	0.57	1.9		50	ug/L		10/10/05	SW846 3510C	
Pyrene		1.5	0.73	2.4		50	ug/L	Q	10/10/05	SW846 3510C	
Surrogate			LCL	UCL							
Nitrobenzene-d5		0	10	136		50	%	D	10/10/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0	14	130		50	%	D	10/10/05	SW846 3510C	
Terphenyl-d14		0	46	137		50	%	D	10/10/05	SW846 3510C	

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Pace Analytical Services, Inc.

Iron - Dissolved9.06.1Alkalinity as CaCO3276.1Nitrogen, NO3 + NO20.240.1	DD LOQ	EQL			La	Collection	ix Type: GROU on Date: 10/03/	
TestResultLCIron - Dissolved9.06.7Alkalinity as CaCO3276.7Nitrogen, NO3 + NO20.240.0		FOI				b Sample I	ort Date : 10/21/0 Number : 864708	05
Iron - Dissolved9.06.1Alkalinity as CaCO3276.1Nitrogen, NO3 + NO20.240.1		FOI						
Alkalinity as CaCO3 27 6.1 Nitrogen, NO3 + NO2 0.24 0.0	2 04		Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Nitrogen, NO3 + NO2 0.24 0.4	3 21		1	ug/L	Q	10/19/05	SW846 6010B	SW846 6010B
	3 21		1	mg/L		10/13/05	EPA 310.2	EPA 310.2
Sulfate 1.6 0.3	061 0.20		1	mg/L		10/14/05	EPA 353.2	EPA 353.2
	83 2.8		1	mg/L	Q	10/06/05	EPA 300.0	EPA 300.0
BENZENE							Prep Dat	e: 10/08/05
Analyte Result L	OD LOQ	EQL	Dil.	Units	Code	Ani Date	Prep Method	Anl Method
	.14 0.46		1	ug/L		10/08/05	SW846 5030B	SW846 M8021
	CL UCL			- 3				
a,a,a-Trifluorotoluene 99 8	0 124		1	%		10/08/05	SW846 5030B	SW846 M8021
METHANE							Prep Date	e: 10/13/05
	OD LOQ	EQL	Dil.	Units	Code	Ani Date	Prep Method	Anl Method
Methane < 10		10	1	ug/L	-	10/13/05	SW846 M8015	SW846 M8015
PAH/ PNA				·		·····	Prep Date	e: 10/06/05
		EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene 0.016 0.	.010 0.034		1	ug/L	Q	10/11/05	SW846 3510C	8270C-SIM
	.011 0.037		1	ug/L	-	10/11/05	SW846 3510C	8270C-SIM
	.0082 0.027		1	ug/L	Q	10/11/05	SW846 3510C	8270C-SIM
•	.0081 0.027		1	ug/L	-	10/11/05	SW846 3510C	8270C-SIM
1 5	.012 0.039		1	ug/L	Q	10/11/05	SW846 3510C	8270C-SIM
	.016 0.052		1	ug/L		10/11/05	SW846 3510C	8270C-SIM
	.018 0.061		1	ug/L		10/11/05	SW846 3510C	8270C-SIM
	.016 0.052		1	ug/L	z	10/11/05	SW846 3510C	8270C-SIM
	.019 0.064		1	ug/L	Q	10/11/05	SW846 3510C	
	.019 0.064		1	ug/L	QZ	10/11/05		8270C-SIM
	.019 0.063		1	ug/L		10/11/05	SW846 3510C	8270C-SIM
5	.019 0.063		1	ug/L		10/11/05		8270C-SIM
	.015 0.052		1	ug/L		10/11/05		8270C-SIM
	.0091 0.030		1	ug/L		10/11/05		8270C-SIM
	.019 0.063		1	ug/L	Q	10/11/05		8270C-SIM
	.047 0.16		1	ug/L	Q	10/11/05	SW846 3510C	8270C-SIM
	.011 0.038	;	1	ug/L	-	10/11/05		8270C-SIM
	.015 0.048		1	ug/L		10/11/05	SW846 3510C	
·	CL UCL			-				
Nitrobenzene-d5 65 10	0 136		1	%		10/11/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl 46 14			1	%		10/11/05	SW846 3510C	
Terphenyl-d14 71 46			1	%		10/11/05	SW846 3510C	

Services, Inc.			,	,						920-469-2	y, wi 54302 2436
Client :	NATURAL F	RESOURCE	E TECHNO	DLOGY					Mat	rix Type : GROL	INDWATER
Project Name :	WPSC - STI	EVENS PC	INT						Collecti	on Date: 10/03/	05
Project Number :	1177/3.5								Rep	ort Date: 10/21/	05
Field ID :	PZ13B							La	b Sample	Number: 86470	8-011
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		210	6.3	21		1	ug/L		10/19/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		180	6.3	21		1	mg/L		10/13/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2		< 0.061	0.061	0.20		1	mg/L		10/14/05	EPA 353.2	EPA 353.2
Sulfate		13	0.83	2.8		1	mg/L		10/06/05	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	e: 10/08/05
Analyte		Result	LOD	LOQ	EQL	Dil	Units	Code	e Ani Date	Prep Method	Anl Method
Benzene		< 0.14	0.14	0.46		1	ug/L		10/08/05	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		99	80	124		1	%		10/08/05	SW846 5030B	SW846 M8021
METHANE										Prep Dat	e: 10/13/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	e Ani Date	Prep Method	Anl Method
Methane		36			10	1	ug/L		10/13/05	SW846 M8015	SW846 M8015
PAH/ PNA						-				Prep Dat	e: 10/06/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		0.015	0.010	0.034		1	ug/L	Q	10/08/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		0.022	0.011	0.037		1	ug/L	Q	10/08/05	SW846 3510C	8270C-SIM
Acenaphthene		0.040	0.0082	0.027		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Acenaphthylene	<	0.0081	0.0081	0.027		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Anthracene	<	< 0.012	0.012	0.039		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.016	0.016	0.052		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.018	0.018	0.061		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.016	0.016	0.052		1	ug/L	Z	10/08/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.019	0.019	0.064		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.019	0.019	0.064		1	ug/L	Z	10/08/05	SW846 3510C	8270C-SIM
Chrysene	<	0.019	0.019	0.063		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.019	0.019	0.063		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Fluoranthene	<	0.015	0.015	0.052		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Fluorene		0.010	0.0091	0.030		1	ug/L	Q	10/08/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene) <	0.019	0.019	0.063		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Naphthalene		0.067	0.047	0.16		1	ug/L	Q	10/08/05	SW846 3510C	8270C-SIM
Phenanthrene		0.012	0.011	0.038		1	ug/L	Q	10/08/05	SW846 3510C	8270C-SIM
Pyrene	<	0.015	0.015	0.048		1	ug/L		10/08/05	SW846 3510C	8270C-SIM
Surrogate			LCL	UCL							
Nitrobenzene-d5		60	10	136		1	%		10/08/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		42	14	130		1	%		10/08/05	SW846 3510C	8270C-SIM
Terphenyl-d14		75	46	137		1	%		10/08/05	SW846 3510C	8270C-SIM

Pace Analytical

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Pace Analytical Services, Inc.			Ana	lytical	Repoi	rt Nun	nber: 86	64708			evue Street y, WI 54302 2436
Client : NATURAL Project Name : WPSC - S Project Number : 1177/3.5 Field ID : QC01				OLOGY				La	Collecti Repo	rix Type : GROL on Date : 10/03/ ort Date : 10/21/ Number : 86470	05 05
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		27000	6.3	21		1	ug/L		10/19/05	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		210	6.3	21		1	mg/L		10/13/05	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		10/14/05	EPA 353.2	EPA 353.2
Sulfate	<	0.83	0.83	2.8		1	mg/L		10/06/05	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	e: 10/08/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Anl Method
Benzene		14	1.4	4.6		10	ug/L		10/08/05	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		98	80	124		1	%		10/08/05	SW846 5030B	SW846 M8021
METHANE						-				Prep Dat	e: 10/13/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Ani Date	Prep Method	Anl Method
Methane		3400			500	50	ug/L		10/13/05	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 10/06/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Ani Date	Prep Method	Anl Method
1-Methylnaphthalene		33	10	34		100	0 ug/L	QD	10/10/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		29	11	37		1000) ug/L	QD	10/10/05	SW846 3510C	8270C-SIM
Acenaphthene		39	8.2	27		1000) ug/L	D	10/10/05	SW846 3510C	8270C-SIM
Acenaphthylene		0.87	0.16	0.54		20	ug/L		10/08/05	SW846 3510C	8270C-SIM
Anthracene		4.5	0.23	0.77		20	ug/L		10/08/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.31	0.31	1.0		20	ug/L		10/08/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.37	0.37	1.2		20	ug/L		10/08/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.31	0.31	1.0		20	ug/L	Z	10/08/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.39	0.39	1.3		20	ug/L		10/08/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.39	0.39	1.3		20	ug/L	Z	10/08/05	SW846 3510C	8270C-SIM
Chrysene	<	0.38	0.38	1.3		20	ug/L		10/08/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.38	0.38	1.3		20	ug/L		10/08/05	SW846 3510C	8270C-SIM
Fluoranthene		2.8	0.31	1.0		20	ug/L		10/08/05	SW846 3510C	8270C-SIM
Fluorene		14	9.1	30		1000) ug/L	QD	10/10/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.38	0.38	1.3		20	ug/L		10/08/05	SW846 3510C	8270C-SIM
Naphthalene		400	47	160		1000) ug/L	D	10/10/05	SW846 3510C	8270C-SIM
Phenanthrene		20	11	38		1000) ug/L	QD	10/10/05	SW846 3510C	8270C-SIM
Pyrene		2.5	0.29	0.97		20	ug/L		10/08/05	SW846 3510C	8270C-SIM
Surrogate			LCL	UCL							
Nitrobenzene-d5		0	10	136		20	%	D	10/08/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0	14	130		20	%	D	10/08/05	SW846 3510C	8270C-SIM
Terphenyl-d14		0	46	137		20	%	D	10/08/05	SW846 3510C	8270C-SIM

Pace Analytical Services, Inc.			Analy	ytical F	Report	Num	ber: 86	4708			evue Street y, WI 54302 436
Client : NATUF Project Name : WPSC Project Number : 1177/3. Field ID : QC02	- STE			OLOGY				Lat	Collectic Repo	ix Type : GROU on Date : 10/03/4 ort Date : 10/21/4 lumber : 864703	05 05
BENZENE										Prep Dat	e: 10/08/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene		7.8	3.4	11		25	ug/L	Q	10/08/05	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		98	80	124		1	%		10/08/05	SW846 5030B	SW846 M8021
PAH/ PNA										Prep Dat	e: 10/06/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		110	16	54		1600	ug/L	D	10/10/05	SW846 3510C	8270C-SIM
2-Methylnaphthalene		29	2.2	7.5		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Acenaphthene		120	13	44		1600	ug/L	D	10/10/05	SW846 3510C	8270C-SIM
Acenaphthylene		18	1.6	5.4		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Anthracene		4.7	2.3	7.7		200	ug/L	Q	10/09/05	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	3.1	3.1	10		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	3.7	3.7	12		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	3.1	3.1	10		200	ug/L	Z	10/09/05	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	3.9	3.9	13		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	3.9	3.9	13		200	ug/L	Z	10/09/05	SW846 3510C	8270C-SIM
Chrysene	<	3.8	3.8	13		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	3.8	3.8	13		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Fluoranthene	<	3.1	3.1	10		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Fluorene		39	1.8	6.0		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	3.8	3.8	13		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Naphthalene		390	75	250		1600	ug/L	D	10/10/05	SW846 3510C	8270C-SIM
Phenanthrene		24	2.3	7.6		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Pyrene	<	2.9	2.9	9.7		200	ug/L		10/09/05	SW846 3510C	8270C-SIM
Surrogate			LCL	UCL							
Nitrobenzene-d5		0	10	136		200	%	D	10/09/05	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0	14	130		200	%	D	10/09/05	SW846 3510C	8270C-SIM
Terphenyl-d14		0	46	137		200	%	D	10/09/05	SW846 3510C	8270C-SIM

Pace Analytical Services, Inc.			Analy	ytical F	Report	Num	ber: 86	4708		evue Street /, WI 54302 436
Client : NATU	JRAL RE	SOURCE	TECHNO	DLOGY				Matr	ix Type:WATE	R
Project Name : WPS	C - STEV	VENS POI	NT					Collectio	on Date : 10/03/0	05
Project Number: 1177/	3.5							Repo	ort Date : 10/21/0)5
Field ID: TRIP	BLANK							Lab Sample N	lumber : 864708	3-014
BENZENE				÷					Prep Dat	e: 10/08/05
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code Anl Date	Prep Method	Anl Method
Benzene	<	0.14	0.14	0.46		1	ug/L	10/08/05	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL						
a,a,a-Trifluorotoluene		100	80	124			%	10/08/05	SW846 5030B	SW846 M8021

ab Number	TestGroupID	Field ID	Comment
864708-	PAH+-W	All Samples	Naphthalene reported to EQL instead of to MI

Qualifier Codes

Flag	Applies To	Explanation		
A	Inorganic	Analyte is detected in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.		
В	Inorganic	The analyte has been detected between the method detection limit and the reporting limit.		
В	Organic	Analyte is present in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.		
С	All	Elevated detection limit.		
D	All	Analyte value from diluted analysis or surrogate result not applicable due to sample dilution.		
E	Inorganic	Estimated concentration due to matrix interferences. During the metals analysis the serial dilution failed to meet the established control limits of 0-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP-MS. The result was flagged with the E qualifier to indicate that a physical interference was observed.		
Ε	Organic	Analyte concentration exceeds calibration range.		
F	Inorganic	Due to potential interferences for this analysis by Inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method.		
F	Organic	Surrogate results outside control criteria.		
G	All	The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project.		
Н	Ali	Preservation, extraction or analysis performed past holding time.		
HF	Inorganic	This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time.		
J	All	Concentration detected equal to or greater than the method detection limit but less than the reporting limit.		
К	Inorganic	Sample received unpreserved. Sample was either preserved at the time of receipt or at the time of sample preparation.		
К	Organic	Detection limit may be elevated due to the presence of an unrequested analyte.		
L	All	Elevated detection limit due to low sample volume.		
М	Organic	Sample pH was greater than 2		
N	All	Spiked sample recovery not within control limits.		
0	Organic	Sample received overweight.		
P	Organic	The relative percent difference between the two columns for detected concentrations was greater than 40%.		
Q	All	The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.		
S	Organic	The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.		
U	All	The analyte was not detected at or above the reporting limit.		
V	All	Sample received with headspace.		
W	All	A second aliquot of sample was analyzed from a container with headspace.		
X	Ali	See Sample Narrative.		
Z	Organics	This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846.		
& *	All	Laboratory Control Spike recovery not within control limits.		
	All	Precision not within control limits.		
+	Inorganic	The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.		
<	All	The analyte was not detected at or above the reporting limit.		
1 2	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.		
	Inorganic Inorganic	BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.		
3 4	Inorganic Inorganic	BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and		
	-	try to correct the deficiency.		
5	Inorganic	BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.		
6	Inorganic	BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.		
7	Inorganic	BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.		

Test Group Name	864708-003 864708-002 864708-001	864708-014 864708-013 864708-012 864708-011 864708-010 864708-009 864708-008 864708-005 864708-005
ALKALINITY AS CACO3	ввв	B B B B B B B B
BENZENE	GGG	G G G G G G G G G G
RON - DISSOLVED	BBB	B B B B B B B B B
METHANE	GGG	G G G G G G G G
ITROGEN, NO3 + NO2	BBB	B B B B B B B B
PAH/ PNA	B B B	B B B B B B B B B
SULFATE	ВВВ	B B B B B B B B

Code	Facility	Address	WI Certification
В	Green Bay Lab (Bellevue St)	1241 Bellevue Street, Suite 9 Green Bay, WI 54302	405132750 / DATCP: 105-444
G	Green Bay Lab (Industrial Dr)	1795 Industrial Drive Green Bay, WI 54302	405132750

~	San	nple Con	dition	Upon Receip	ot		·	
Pace Analytical	Client Nam	ne:	IRT	-	_ Proje	ect # <u>8</u>	4708	
Courier: C Fed Ex C UPS		nt 🗌 Comr		Pace Other_	no 🗌	Proj. I	nal Due Date Name:	
Packing Material: Bubble	Wrap	Bags 🗌 N	lone	Other	_			
Thermometer Used NH		Type of Ice	e: Wat	Blue None	Sar		ooling process has b	
Cooler Temperature 201 Temp should be above freezing to	6°C	Biological	Tissue	is Frozen: Yes M Comments:	No	Date and Initi contents:	als of person examination $10-5-05$ AP)
Chain of Custody Present:		QYes □No	N/A	1.			· · · · · · · · · · · · · · · · · · ·	
Chain of Custody Filled Out:		ĺSγes □No		2.				
Chain of Custody Relinquished	1:			<u>3.</u>				
Sampler Name & Signature on				4.				
Samples Arrived within Hold Ti	me: Ab	Dives Dive		5.				
Short Hold Time Analysis (<7	′2hr):	□Yes QNo	N/A	<u>6.</u>	<u> </u>	,		
Rush Turn Around Time Req	uested:	DYes Dyo	□ N/A	<u>7.</u>				
Sufficient Volume:				8				
Correct Containers Used:) □n/A	9.				
-Pace Containers Used:			N/A					
Containers Intact:) □n/A	10.				
Filtered volume received for Di	ssolved tests		> □n/a	11.				
Sample Labels match COC:		Dixes DNC	□n/a	12.				
-Includes date/time/ID/Analy	ysisMatrix:							
All containers needing preservation h	ave been checked.		o ⊡n/a	13.				
All containers needing preservatior compliance with EPA recommenda		QYes DNc) □n/a	AB				
exceptions: VOA, coliform, TOC, O&G,	WI-DRO (water))	Initial when completed				
Samples checked for dechlorin	ation:	□Yes □No	AN/A	<u>14.</u>				
Headspace in VOA Vials (>6m	ım):) □N/A	<u>15.</u>			<u> </u>	
Trip Blank Present:		QYes □No	n ⊡n/a	<u>16.</u>				
Trip Blank Custody Seals Pres	ent	QYes 🗆 No	> □n/A					
Pace Trip Blank Lot # (if purch	ased):			<u> </u>			<u> </u>	
Client Notification/ Resolutio	n:				Fie	ld Data Requir	ed? Y / N	N
Person Contacted:			Date/	Time: , for 113	ic A	· m111	varia 2	untainur
Comments/ Resolution: 0	2) # (onto)/	UND UN			10 4	<i>,</i>	10-5-15 A	B
					· · · · · · · · · · · · · · · · · · ·	<u> </u>		
						<u></u>	·····	
<u></u>								
		AN		_				
Project Manager Review:		<u> </u>	_			Date:	10-5-05	
AL C AND AL CALLER TO A DEC STREET			Ionoo c		form will be	o cont to the N	orth Carolina DEUND	1

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Samples on HOLD are subject to special pricing and release of liability	Fax #:	Phone Fax E-mail	Date Needed:	Rush Turnaround Time Requested (TAT) - Prelim (Rush TAT subject to approval/surcharge)	117 QCO1	011 PZ 13B	010 PZ/2B	IM OW/2	ONR PZ11B	DOT PZ9B	NUN ON9	8729 510	004 OW7A	003 OWG	82-9 Za	101 OWSR	LABORATORY ID (Lab Use Only) FIELD ID	EPA Level IV (Subject to Surcharge)	EPA Level II (Subject to Surcharge)	Data Package Options - (please circle if requested Sample Results Only (no OC)	PO #	Sampled By (Print): Jandy Darnhill	Project State:	Project Name: CIPSC - CIEVENS	Project Number: 177/3.5	Telephone: 262.523.7000	Project Contact: EKIC KovATCH	Branch or Location:	(Please Print Legibly), Company Name: NATURAL DESSURCE IELH
Relinquished By:	Relinquished By:	Relinquished By:	RelingUshed By:	Reinfquister Ho	1335 - GW V V	X X Y 1560 Y	1338 X X	X X 15451 X	6515 X X	1224 X X	1221 X X	X X 8201	1/128 X X	1 1/0 Z 1 X X	1 1130 T X X	1036 1131 GN X X	DATE TIME MATRIX		a ag	6W=Ground Water W=Water S=Soil	m Codes		FILTERE	A=None H=Sodiu		CHAIN	A Division of Pace Analytical Services, Inc	EN	15ammary
Date/Time: Received B	Date/Time: Received By:	Date/Time: Received B	Date/Time: Received By:	$\frac{\text{Date/Time:}}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}$		XXXXX	XXXXXX	XXXXXXX	XXXXX		XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	A A A A A A A A A A A A A A A A A A A	y Ly and		A W	Co,		0) NO NO	B=HCL C=I m Bisulfate Solution	*Preservation Codes	N OF CUSTODY	alytical Services, Inc.	MEM	
Y:	y:	v:		unn ich												HIZMbur 43-2504	CLIENT COMMENTS	Mail Invoice To:		Address:	N (N) (N) (N) (N) (N) (N) (N) (N) (N) (N		/ on / on / on / ON	E=EnCore F=Methanol G-NaOH		7 No. 138086		920-469-2436 Fax 920-469-8827	1241 Bellevue St., Suite 9
Date/Time: Present Not Present Intact / Not Intact Version 4.0: 09/04	Date/Time: Cooler Custody Seal	Date/Time: Sample Receipt pH	Date/Time: 'Sample Receipt Temp	- Kr	-											11 ACD 4-40 W/10	LAB COMMENTS (Lab Use Only)					Towauter, w/ 53072	23713 W.	1.27.	Mail Report To: ESIC Superior	Page of	-	94002 136 8827	St., Suite 9

E-Mail Address: Samples on HOLD are subject to special pricing and release of liability	Phone #:	ush Results by (Rush Turnaround Time Requested (TAT) - Prelim (Rush TAT subject to approval/surcharge)	(Please Print Legibly) Company Name: ////Turue/Labsonauc
Relinquished By:	Relinquished By:	Relinquished By:	Individuated By:	Regulatory Matrix Program BSGS CERCIA UNTECTION DATE TIME Water SDWA COLLECTION DATE TIME Water Se-Solid B-Solid S-Sol
Date/Time: Rec	_	Date/Time: Reco	540	
Received By: Dat		Received By: Date	- (MMMM) -	No. 138087 E=EnCore F=Methanol G-Na0H sulfate J=Offner Sulfate J=Chiner Hate J=Chiner Hate J=Chiner Hate J=Chiner Hate J=Chiner Hate Company: CLIENT COMMENTS CLIENT COMMENTS CLIENT COMMENTS
Date/Time: Present Not Present Intact / Not intact	Date/Time: Cooler Custody Seal	Date/Time: Sample Receipt pH.	nime:	# Suite 9 54302 Page

1241 Bellevue Street, Suite 9 Green Bay, WI 54302 920-469-2436, Fax: 920-469-8827

Analytical Report Number: 868081

Client: NATURAL RESOURCE TECHNOLOGY

Lab Contact: Tom Trainor

Project Name: WPSC - STEVENS POINT Project Number: 1177

Lab Sample Number	Field ID	Matrix	Collection Date
868081-001	OW5R	GW	01/05/06
868081-002	P5B	GW	01/05/06
868081-003	OW7A	GW	01/05/06
868081-004	PZ7B	GW	01/05/06
868081-005	OW12	GW	01/05/06
868081-006	PZ12B	GW	01/05/06
868081-007	QC01	GW	01/05/06
868081-008	ТВ	WATER	01/05/06

I certify that the data contained in this Final Report has been generated and reviewed in accordance with approved methods and Laboratory Standard Operating Procedure. Exceptions, if any, are discussed in the accompanying sample comments. Release of this final report is authorized by Laboratory management, as is verified by the following signature. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. The sample results relate only to the analytes of interest tested.

Amm

Approval Signature

1-23-06

Date

Pace Analytical Services, Inc.			Anal	ytical	Repoi	't Nur	nber: 80	68081			evue Street y, WI 54302 2436	
Client : NATUR Project Name : WPSC - Project Number : 1177 Field ID : OW5R				OLOGY			La	Matrix Type : GROUNDWATER Collection Date : 01/05/06 Report Date : 01/19/06 Lab Sample Number : 868081-001				
INORGANICS												
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method	
Iron - Dissolved		20000	6.3	21		1	ug/L		01/11/06	SW846 6010B	SW846 6010	
Alkalinity as CaCO3		300	32	110		5	mg/L		01/09/06	EPA 310.2	EPA 310.2	
Nitrogen, NO3 + NO2		0.083	0.061	0.20		1	mg/L	Q	01/18/06	EPA 353.2	EPA 353.2	
Sulfate		380	4.2	14		5	mg/L		01/10/06	EPA 300.0	EPA 300.0	
BENZENE										Prep Dat	e: 01/10/06	
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method	
Benzene		1.4	0.41	1.4		1	ug/L		01/10/06	SW846 5030B	SW846 8260	
Surrogate			LCL	UCL		-	<u> </u>					
4-Bromofluorobenzene		103	64	132		1	%		01/10/06	SW846 5030B	SW846 8260	
Toluene-d8		106	73	102		, 1	%		01/10/06	SW846 5030B	SW846 8260	
Dibromofluoromethane		112	68	122		1	%		01/10/06	SW846 5030B	SW846 8260	
METHANE											e: 01/11/06	
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method	
Methane		55			10	1	ug/L		01/11/06	SW846 M8015		
PAH/ PNA											e: 01/09/06	
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Anl Method	
1-Methylnaphthalene		4.2	0.20	0.68		20	ug/L	D	01/10/06	SW846 3510C	8270C-SIM	
2-Methylnaphthalene		0.026	0.011	0.037		1	ug/L	Q	01/09/06	SW846 3510C	8270C-SIM	
Acenaphthene		5.3	0.16	0.54		20	ug/L	D	01/10/06	SW846 3510C	8270C-SIM	
Acenaphthylene		2.7	0.16	0.54		20	ug/L	D	01/10/06	SW846 3510C	8270C-SIM	
Anthracene		1.3	0.23	0.77		20	ug/L	D	01/10/06	SW846 3510C	8270C-SIM	
Benzo(a)anthracene		0.11	0.016	0.052		1	ug/L		01/09/06	SW846 3510C	8270C-SIM	
Benzo(a)pyrene		0.033	0.018	0.061		1	ug/L	Q	01/09/06	SW846 3510C	8270C-SIM	
Benzo(b)fluoranthene		0.019	0.016	0.052		1	ug/L	QZ	01/09/06	SW846 3510C	8270C-SIM	
Benzo(ghi)perylene		0.019	0.019	0.064		1	ug/L		01/09/06	SW846 3510C	8270C-SIM	
Benzo(k)fluoranthene	<	0.39	0.39	1.3		20	ug/L	ZD	01/10/06	SW846 3510C	8270C-SIM	
Chrysene		0.059	0.019	0.063		1	ug/L	Q	01/09/06	SW846 3510C	8270C-SIM	
Dibenz(a,h)anthracene	<	0.019	0.019	0.063		1	ug/L	_	01/09/06	SW846 3510C	8270C-SIM	
Fluoranthene		1.4	0.31	1.0		20	ug/L	D	01/10/06	SW846 3510C	8270C-SIM	
Fluorene		2.9	0.18	0.60		20	ug/L	D	01/10/06	SW846 3510C	8270C-SIM	
Indeno(1,2,3-cd)pyrene	<	0.019	0.019	0.063		1	ug/L	~ ~	01/09/06	SW846 3510C		
Naphthalene		0.54	0.25	0.83		20	ug/L	QD	01/10/06	SW846 3510C	8270C-SIM	
Phenanthrene Pyrene		3.3 1.1	0.23	0.76		20 20	ug/L	D	01/10/06	SW846 3510C	8270C-SIM	
Pyrene Surrogate		1.1	0.29 LCL	0.97 UCL		20	ug/L	D	01/10/06	SW846 3510C	8270C-SIM	
							0/		01/00/00	010/040 05400	00700 000	
Nitrobenzene-d5		53	10	136		1	%		01/09/06	SW846 3510C	8270C-SIM	
2-Fluorobiphenyl		53	14	130		1	%		01/09/06	SW846 3510C	8270C-SIM	

Services, Inc.			7.11.0	iyaoai	Topol	i i i i i i i i i i i i i i i i i i i		50001		Green Ba 920-469-2	y, WI 54302 2436
Client: NATU Project Name: WPS Project Number: 1177 Field ID: P5B				OLOGY					Collecti Repo	Tix Type : GROU on Date : 01/05/ ort Date : 01/19/	06 06
								La	ab Sample I	Number : 86808	1-002
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		880	6.3	21		1	ug/L		01/11/06	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		140	6.3	21		1	mg/L		01/09/06	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2		0.080	0.061	0.20		1	mg/L	Q	01/18/06	EPA 353.2	EPA 353.2
Sulfate		1.8	0.83	2.8		1	mg/L	Q	01/10/06	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	e: 01/10/06
Analyte		Result	LOD	LOQ	EQL	Dil	. Units	Cod	e Anl Date	Prep Method	Ani Method
Benzene		2.8	2.0	6.8		5	ug/L	QK	01/10/06	SW846 5030B	SW846 8260B
Surrogate			LCL	UCL			Ū				
4-Bromofluorobenzene		104	64	132		5	%		01/10/06	SW846 5030B	SW846 8260B
Toluene-d8		107	73	127		5	%		01/10/06	SW846 5030B	SW846 8260B
Dibromofluoromethane		109	68	122		5	%		01/10/06	SW846 5030B	SW846 8260B
METHANE										Prep Dat	e: 01/11/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Ani Method
Methane		270			10	1	ug/L		01/11/06	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 01/09/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		8.8	0.20	0.68	· · · ·	20	ug/L	·	01/10/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene	<	0.22	0.22	0.75		20	ug/L		01/10/06	SW846 3510C	8270C-SIM
Acenaphthene		80	2.0	6.8		250) ug/L	D	01/10/06	SW846 3510C	8270C-SIM
Acenaphthylene		4.4	0.16	0.54		20	ug/L		01/10/06	SW846 3510C	8270C-SIM
Anthracene		1.0	0.23	0.77		20	ug/L		01/10/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.31	0.31	1.0		20	ug/L		01/10/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.37	0.37	1.2		20	ug/L		01/10/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.31	0.31	1.0		20	ug/L	Z	01/10/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.39	0.39	1.3		20	ug/L		01/10/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.39	0.39	1.3		20	ug/L	Z	01/10/06	SW846 3510C	8270C-SIM
Chrysene	<	0.38	0.38	1.3		20	ug/L		01/10/06	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.38	0.38	1.3		20	ug/L		01/10/06	SW846 3510C	8270C-SIM
Fluoranthene		0.93	0.31	1.0		20	ug/L	Q	01/10/06	SW846 3510C	8270C-SIM
Fluorene		12	2.3	7.5		250	ug/L	D	01/10/06	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.38	0.38	1.3		20	ug/L		01/10/06	SW846 3510C	8270C-SIM
Naphthalene	<	0.25	0.25	0.83		20	ug/L		01/10/06	SW846 3510C	8270C-SIM
Phenanthrene	<	0.23	0.23	0.76		20	ug/L		01/10/06	SW846 3510C	8270C-SIM
Pyrene		0.59	0.29	0.97		20	ug/L	Q	01/10/06	SW846 3510C	8270C-SIM
Surrogate			LCL	UCL							
Nitrobenzene-d5		0	10	136		20	%	D	01/10/06	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0	14	130		20	%	D	01/10/06	SW846 3510C	8270C-SIM
Terphenyl-d14		0	46	137		20	%	D	01/10/06	SW846 3510C	8270C-SIM

1241 Bellevue Street Green Bay, WI 54302

Pace Analytical

Pace Analytical Services, Inc.		Anal	ytical	Repoi	t Nu	nber: 86	68081			evue Street y, WI 54302 2436
Client : NATURAL Project Name : WPSC - S Project Number : 1177 Field ID : OW7A			DLOGY				La	Collecti Repe	rix Type: GROL on Date: 01/05/ ort Date: 01/19/ Number: 86808	06 06
INORGANICS										
Test	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved	13000	6.3	21		1	ug/L		01/11/06	SW846 6010B	SW846 6010B
Alkalinity as CaCO3	130	32	110		5	mg/L		01/09/06	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	< 0.061	0.061	0.20		1	mg/L		01/18/06	EPA 353.2	EPA 353.2
Sulfate	1.9	0.83	2.8		1	mg/L	QN	01/10/06	EPA 300.0	EPA 300.0
BENZENE									Prep Dat	e: 01/10/06
Analyte	Result	LOD	LOQ	EQL	Dil	. Units	Code	Anl Date	Prep Method	Anl Method
Benzene	13	2.0	6.8		5	ug/L	к	01/10/06	SW846 5030B	SW846 8260B
Surrogate		LCL	UCL			Ū.				
4-Bromofluorobenzene	107	64	132		5	%		01/10/06	SW846 5030B	SW846 8260B
Toluene-d8	107	73	127		5	%		01/10/06	SW846 5030B	SW846 8260B
Dibromofluoromethane	110	68	122		5	%		01/10/06	SW846 5030B	
METHANE									Prep Dat	e: 01/11/06
Analyte	Result	LOD	LOQ	EQL	Dil	. Units	Code	Anl Date	Prep Method	Anl Method
Methane	4900			500	50	ug/L		01/11/06	SW846 M8015	SW846 M8015
PAH/ PNA									Prep Dat	e: 01/09/06
Analyte	Result	LOD	LOQ	EQL	Dil	. Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene	18	1.3	4.2		12	5 ug/L	D	01/10/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene	20	1.4	4.7		12	5 ug/L	D	01/10/06	SW846 3510C	8270C-SIM
Acenaphthene	24	1.0	3.4		12:	5 ug/L	D	01/10/06	SW846 3510C	8270C-SIM
Acenaphthylene	0.57	0.0081	0.027		1	ug/L	Е	01/09/06	SW846 3510C	8270C-SIM
Anthracene	2.5	1.4	4.8		125	5 ug/L	QD	01/10/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene	0.20	0.016	0.052		1	ug/L		01/09/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene	0.059	0.018	0.061		1	ug/L	Q	01/09/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	0.033	0.016	0.052		1	ug/L	QZ	01/09/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	0.023	0.019	0.064		1	ug/L	Q	01/09/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	< 2.4	2.4	8.1		125		ZD	01/10/06	SW846 3510C	8270C-SIM
Chrysene	0.11	0.019	0.063		1	ug/L		01/09/06	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	< 0.019	0.019	0.063		1	ug/L		01/09/06	SW846 3510C	8270C-SIM
Fluoranthene	1.7	0.015	0.052		1	ug/L	Е	01/09/06	SW846 3510C	8270C-SIM
Fluorene	11	1.1	3.8		125	5 ug/L	D	01/10/06	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	< 0.019	0.019	0.063		1	ug/L		01/09/06	SW846 3510C	8270C-SIM
Naphthalene	110	6.2	21		500) ug/L	D	01/10/06	SW846 3510C	8270C-SIM
Phenanthrene	9.6	1.4	4.7		125	5 ug/L	D	01/10/06	SW846 3510C	8270C-SIM
Pyrene	1.8	0.015	0.048		1	ug/L	Е	01/09/06	SW846 3510C	8270C-SIM
Surrogate		LCL	UCL							
Nitrobenzene-d5	72	10	136		1	%		01/09/06	SW846 3510C	8270C-SIM
2-Fluorobiphenyl	69	14	130		1	%		01/09/06	SW846 3510C	8270C-SIM
Terphenyl-d14	80	46	137		1	%		01/09/06	SW846 3510C	

Iron - Dissolved 3000 6.3 21 1 ug/L 01/11/06 SW846 6010B SW Alkalinity as CaCO3 95 6.3 21 1 mg/L 01/10/06 EPA 310.2 EP/ Nitrogen, NO3 + NO2 < 0.661 0.061 0.20 1 mg/L 01/10/06 EPA 353.2 EP/ Sulfate < 0.83 0.83 2.8 1 mg/L 01/10/06 EPA 300.0 EP/ Benzene 0.83 0.83 2.8 1 mg/L 01/10/06 SW846 5030B SW Surrogate LCL UCL K 01/10/06 SW846 5030B SV Surrogate LCL UCL UCL K 01/10/06 SW846 5030B SV Dibromofluorobenzene 106 64 132 25 % 01/10/06 SW846 5030B SV Dibromofluoromethane 107 73 127 25 % 01/10/06 SW846 5030B SV<	ATER Method
Test Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl Iron - Dissolved 3000 6.3 21 1 ug/L 01/11/1/06 SW846 6010B SW Alkalinity as CaCO3 95 6.3 21 1 mg/L 01/10/06 EPA 310.2 EPA Nitrogen, NO3 + NO2 < 0.61 0.20 1 mg/L 01/11/06 EPA 35.2 EPA Suifate < 0.83 0.83 2.8 1 mg/L 01/10/06 EPA 35.2 EPA BENZENE LOD LOQ EQL Dil. Units Code Anl Date Prep Method An Benzene < 10 10 34 25 ug/L K 01/10/06 SW846 5030B SV Surrogate LCL UCL UCL V 25 % 01/10/06 SW846 5030B SV Dibromofluorobenzene 106 6	
Iron - Dissolved 3000 6.3 21 1 ug/L 01/11/06 SW846 6010B SW Alkalinity as CaC03 95 6.3 21 1 mg/L 01/10/06 EPA 310.2 EP/ Nitrogen, NO3 + NO2 0.061 0.061 0.20 1 mg/L 01/10/06 EPA 353.2 EP/ Sulfate 0.83 0.83 2.8 1 mg/L 01/10/06 EPA 300.0 EP/ Benzene 0.83 0.83 2.8 1 mg/L 01/10/06 EVA 46 50308 SV Surrogate LCL UCL V K 01/10/06 SW846 50308 SV Obioromofluoromethane 107 73 127 25 % 01/10/06 SW846 50308 SV METHANE ICD LOQ EQL Dil. Units Code Anl Date Prep Method An Methane 1200 200 20 ug/L 01/10/06 SW846 50308 </th <th></th>	
Alkalinity as CaCO3 95 6.3 21 1 mg/L 01/09/06 EPA 310.2 EP/ Nikrogen, NO3 + NO2 < 0.061 0.20 1 mg/L 01/18/06 EPA 353.2 EP/ Sulfate < 0.83 0.83 2.8 1 mg/L 01/10/06 EPA 350.0 EP/ BENZENE Prep Date: 0 Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method An Benzene < 10 34 25 ug/L K 01/10/06 SW846 5030B SW Surrogate LCL UCL UCL V V 01/10/06 SW846 5030B SW Dibromofluorobenzene 106 64 132 25 % 01/10/06 SW846 5030B SW METHANE LOD LOQ EQL Dil. Units Code Anl Date Prep Method An Methane 1200 200 20 ug/L 01/10/06 SW846 6030B SW	46 6010B
Alkalinity as CaCO3 95 6.3 21 1 mg/L 01/09/06 EPA 310.2 EP/ Nikrogen, NO3 + NO2 <	
Suifate < 0.83 2.8 1 mg/L 01/10/06 EPA 30.0 EP/ BENZENE Prep Date: 10 Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Am Benzene < 10 34 25 ug/L K 01/10/06 SW846 5030B SV Surrogate LCL UCL 4-Bromofluorobenzene 106 64 132 25 % 01/10/06 SW846 5030B SV Dibromofluoromethane 107 73 127 25 % 01/10/06 SW846 5030B SV Dibromofluoromethane 107 68 122 25 % 01/10/06 SW846 5030B SV METHANE E Prep Date: 0 Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method An Methane 1200 201 20	310.2
BENZENE Result LOD LOQ EQL Dil. Units Code Anl Date Prep Date: Code Anl Date Prep Method Anl Benzene < 10	353.2
Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method An Benzene <	300.0
Benzene < 10 34 25 ug/L K 01/10/06 SW846 5030B SV Surrogate LCL UCL UCL V </td <td>/10/06</td>	/10/06
Surrogate LCL UCL 4-Bromofluorobenzene 106 64 132 25 % 01/10/06 SW846 5030B SV Toluene-d8 107 73 127 25 % 01/10/06 SW846 5030B SV Dibromofluoromethane 107 68 122 25 % 01/10/06 SW846 5030B SV METHANE Prep Date: O Prep Date: O Prep Method An Methane 1200 LOD LOQ EQL Dil. Units Code Anl Date Prep Method An Methane 1200 200 20 ug/L 01/11/06 SW846 3510C 82 PAH/ PNA Execut LOD LOQ EQL Dil. Units Code Anl Date Prep Method An 1-Methylnaphthalene 160 4.5 15 400 ug/L 01/10/06 SW846 3510C 82 2-Methylaphthalene 94 3.3 <	Method
Surrogate LCL UCL 4-Bromofluorobenzene 106 64 132 25 % 01/10/06 SW346 5030B SW Toluene-d8 107 73 127 25 % 01/10/06 SW346 5030B SW Dibromofluoromethane 107 68 122 25 % 01/10/06 SW846 5030B SV METHANE Prep Date: 0 Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method An Methane 1200 200 20 ug/L 01/11/06 SW846 3510C SV PAH/ PNA Prep Method An 1-Methylnaphthalene 120 4.1 14 400 ug/L 01/10/06 SW846 3510C 82 2-Methylnaphthalene 160 4.5 15 400 ug/L 01/10/06 SW846 3510C 82 Acenaphthene 94 3.3 11 400	846 8260B
4-Bromofluorobenzene 106 64 132 25 % 01/10/06 SW846 5030B SV Toluene-d8 107 73 127 25 % 01/10/06 SW846 5030B SV Dibromofluoromethane 107 68 122 25 % 01/10/06 SW846 5030B SV METHANE Prep Date: 0 Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method An Methane 1200 200 20 ug/L 01/10/06 SW846 5030E SV PAH/ PNA 200 200 20 ug/L 01/11/06 SW846 5030C 82 Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method An 1-Methylnaphthalene 120 4.1 14 400 ug/L 01/10/06 SW846 3510C 82 2-Methylnaphthalene 160 4.5 15	
Toluene-d8 107 73 127 25 % 01/10/06 SW846 5030B SW Dibromofluoromethane 107 68 122 25 % 01/10/06 SW846 5030B SW METHANE Prep Datition Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method And Methane 1200 200 20 ug/L 01/11/06 SW846 5030E SW PAH/ PNA 200 20 ug/L 01/11/06 SW846 5030C 82 Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method An 1-Methylnaphthalene 120 4.1 14 400 ug/L 01/10/06 SW846 3510C 82 2-Methylnaphthalene 160 4.5 15 400 ug/L 01/10/06 SW846 3510C 82 Acenaphthylene 26 3.2 1	846 8260B
Dibromofluoromethane 107 68 122 25 % 01/10/06 SW846 5030B SV METHANE Prep Date: 0 Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method And Methane 1200 200 20 ug/L 01/11/06 SW846 M8015 SV PAH/ PNA Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method And 1-Methylnaphthalene 120 4.1 14 400 ug/L 01/10/06 SW846 3510C 82 2-Methylnaphthalene 160 4.5 15 400 ug/L 01/10/06 SW846 3510C 82 Acenaphthene 94 3.3 11 400 ug/L 01/10/06 SW846 3510C 82 Acenaphthylene 26 3.2 11 400 ug/L 01/10/06 SW846 3510C 82 Benzo(a)anthracene <td>846 8260B</td>	846 8260B
Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Annomatical Methane 1200 200 20 ug/L 01/11/06 SW846 M8015 SW PAH/ PNA Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Annomatical 1-Methylnaphthalene 120 4.1 14 400 ug/L 01/10/06 SW846 3510C 82' 2-Methylnaphthalene 160 4.5 15 400 ug/L 01/10/06 SW846 3510C 82' Acenaphthene 94 3.3 11 400 ug/L 01/10/06 SW846 3510C 82' Acenaphthylene 26 3.2 11 400 ug/L 01/10/06 SW846 3510C 82' Anthracene < 4.6	846 8260B
Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Annolity Methane 1200 200 20 ug/L 01/11/06 SW846 M8015 SW PAH/ PNA Prep Method Annolity EQL Dil. Units Code Anl Date Prep Method Annolity 1-Methylnaphthalene 120 4.1 14 400 ug/L 01/10/06 SW846 3510C 82' 2-Methylnaphthalene 160 4.5 15 400 ug/L 01/10/06 SW846 3510C 82' Acenaphthene 94 3.3 11 400 ug/L 01/10/06 SW846 3510C 82' Acenaphthylene 26 3.2 11 400 ug/L 01/10/06 SW846 3510C 82' Anthracene < 4.6	/11/06
Methane 1200 200 20 ug/L 01/11/06 SW846 M8015 SV PAH/ PNA Prep Date: 0 Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method An 1-Methylnaphthalene 120 4.1 14 400 ug/L 01/10/06 SW846 3510C 82' 2-Methylnaphthalene 160 4.5 15 400 ug/L 01/10/06 SW846 3510C 82' Acenaphthene 94 3.3 11 400 ug/L 01/10/06 SW846 3510C 82' Acenaphthylene 26 3.2 11 400 ug/L 01/10/06 SW846 3510C 82' Anthracene < 4.6	Method
PAH/ PNA Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method An 1-Methylnaphthalene 120 4.1 14 400 ug/L 01/10/06 SW846 3510C 82 2-Methylnaphthalene 160 4.5 15 400 ug/L 01/10/06 SW846 3510C 82 Acenaphthene 94 3.3 11 400 ug/L 01/10/06 SW846 3510C 82 Acenaphthylene 26 3.2 11 400 ug/L 01/10/06 SW846 3510C 82 Anthracene < 4.6	
Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method An 1-Methylnaphthalene 120 4.1 14 400 ug/L 01/10/06 SW846 3510C 82' 2-Methylnaphthalene 160 4.5 15 400 ug/L 01/10/06 SW846 3510C 82' Acenaphthene 94 3.3 11 400 ug/L 01/10/06 SW846 3510C 82' Acenaphthylene 26 3.2 11 400 ug/L 01/10/06 SW846 3510C 82' Anthracene < 4.6	
1-Methylnaphthalene 120 4.1 14 400 ug/L 01/10/06 SW846 3510C 82' 2-Methylnaphthalene 160 4.5 15 400 ug/L 01/10/06 SW846 3510C 82' Acenaphthene 94 3.3 11 400 ug/L 01/10/06 SW846 3510C 82' Acenaphthylene 26 3.2 11 400 ug/L 01/10/06 SW846 3510C 82' Anthracene < 4.6	
2-Methylnaphthalene 160 4.5 15 400 ug/L 01/10/06 SW846 3510C 82 Acenaphthene 94 3.3 11 400 ug/L 01/10/06 SW846 3510C 82 Acenaphthene 26 3.2 11 400 ug/L 01/10/06 SW846 3510C 82 Acenaphthylene 26 3.2 11 400 ug/L 01/10/06 SW846 3510C 82 Anthracene < 4.6	Method
Acenaphthene 94 3.3 11 400 ug/L 01/10/06 SW846 3510C 82' Acenaphthylene 26 3.2 11 400 ug/L 01/10/06 SW846 3510C 82' Anthracene < 4.6	DC-SIM
Acenaphthylene 26 3.2 11 400 ug/L 01/10/06 SW846 3510C 82 Anthracene < 4.6	DC-SIM
Anthracene < 4.6 4.6 15 400 ug/L 01/10/06 SW846 3510C 82 Benzo(a)anthracene < 6.2	DC-SIM DC-SIM
Benzo(a)anthracene < 6.2 6.2 2.1 400 ug/L 01/10/06 SW846 3510C 823 Benzo(a)pyrene < 7.3	DC-SIM
Benzo(a)pyrene < 7.3 7.3 24 400 ug/L 01/10/06 SW846 3510C 82 Benzo(b)fluoranthene < 6.3	C-SIM
Benzo(b)fluoranthene < 6.3 6.3 21 400 ug/L Z 01/10/06 SW846 3510C 82	C-SIM
	DC-SIM
Benzo(ghi)perylene < 7.7 7.7 26 400 ug/L 01/10/06 SW846 3510C 82	DC-SIM
	DC-SIM
	C-SIM
•	DC-SIM DC-SIM
•	DC-SIM
-	DC-SIM DC-SIM
	DC-SIM DC-SIM DC-SIM
	DC-SIM DC-SIM
5	DC-SIM DC-SIM DC-SIM DC-SIM
Surrogate LCL UCL	DC-SIM DC-SIM DC-SIM DC-SIM DC-SIM
Nitrobenzene-d5 0 10 136 400 % D 01/10/06 SW846 3510C 827	DC-SIM DC-SIM DC-SIM DC-SIM DC-SIM DC-SIM
	DC-SIM DC-SIM DC-SIM DC-SIM DC-SIM DC-SIM
Terphenyl-d14 0 46 137 400 % D 01/10/06 SW846 3510C 827	DC-SIM DC-SIM DC-SIM DC-SIM DC-SIM DC-SIM DC-SIM

Services, Inc.		Anary	yucar	Nepor	LINUI		00001		Green Ba 920-469-2	y, WI 54302 2436
Client: NATURA Project Name: WPSC - Project Number: 1177			DLOGY					Collecti	ix Type: GROU on Date: 01/05/ ort Date: 01/19/	06
Field ID : OW12							La	ıb Sample I	Number: 86808	1-005
INORGANICS										
Test	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved	23000	6.3	21		1	ug/L		01/11/06	SW846 6010B	SW846 6010B
Alkalinity as CaCO3	150	32	110		5	mg/L		01/09/06	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	0.070	0.061	0.20		1	mg/L	Q	01/18/06	EPA 353.2	EPA 353.2
Sulfate	4.4	0.83	2.8		1	mg/L		01/10/06	EPA 300.0	EPA 300.0
BENZENE									Prep Dat	e: 01/10/06
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method
Benzene	6.9	0.41	1.4		1	ug/L		01/10/06	SW846 5030B	SW846 8260B
Surrogate		LCL	UCL							
4-Bromofluorobenzene	104	64	132		1	%		01/10/06	SW846 5030B	SW846 8260B
Toluene-d8	105	73	127		1	%		01/10/06	SW846 5030B	SW846 8260B
Dibromofluoromethane	112	68	122		1	%		01/10/06	SW846 5030B	SW846 8260B
METHANE									Prep Dat	e: 01/11/06
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Anl Method
Methane	1800			100	10	ug/L		01/11/06	SW846 M8015	SW846 M8015
PAH/ PNA									Prep Dat	e: 01/09/06
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Anl Method
1-Methylnaphthalene	9.3	1.0	3.4		100) ug/L	D	01/10/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene	1.5	1.1	3.7		100) ug/L	QD	01/10/06	SW846 3510C	8270C-SIM
Acenaphthene	21	0.82	2.7		100) ug/L	D	01/10/06	SW846 3510C	8270C-SIM
Acenaphthylene	0.46	0.0081	0.027		1	ug/L		01/09/06	SW846 3510C	8270C-SIM
Anthracene	4.1	1.2	3.9		100	ug/L	D	01/10/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene	0.18	0.016	0.052		1	ug/L		01/09/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene	0.16	0.018	0.061		1	ug/L		01/09/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	0.15	0.016	0.052		1	ug/L	Z	01/09/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	0.10	0.019	0.064		1	ug/L		01/09/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	< 1.9	1.9	6.4		100	ug/L	ZD	01/10/06	SW846 3510C	8270C-SIM
Chrysene	0.14	0.019	0.063		1	ug/L		01/09/06	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	0.020	0.019	0.063		1	ug/L	Q	01/09/06	SW846 3510C	8270C-SIM
Fluoranthene	2.7	1.5	5.2		100	ug/L	QD	01/10/06	SW846 3510C	8270C-SIM
Fluorene	8.8	0.91	3.0		100	ug/L	D	01/10/06	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	0.084	0.019	0.063		1	ug/L		01/09/06	SW846 3510C	8270C-SIM
Naphthalene	27	1.2	4.1		100		D	01/10/06	SW846 3510C	8270C-SIM
Phenanthrene	17	1.1	3.8		100		D	01/10/06	SW846 3510C	8270C-SIM
Pyrene	2.0	1.5	4.8		100	-	QD	01/10/06	SW846 3510C	
Surrogate		LCL	UCL							
								0.4.10.0.10.0	CINI046 25400	90700 CIM
Nitrobenzene-d5	73	10	136		1	%		01/09/06	SW846 3510C	8270C-SIM
Nitrobenzene-d5 2-Fluorobiphenyl	73 71	10 14	136 130		1 1	% %		01/09/06	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Pace Analytical Services, Inc.			Analy	ytical	Repor	t Nui	nber: 86	68081			evue Street y, WI 54302 2436
Client: NATURAL Project Name: WPSC - S Project Number: 1177 Field ID: PZ12B				DLOGY				Matrix Type : GROUNDWATER Collection Date : 01/05/06 Report Date : 01/19/06 ab Sample Number : 868081-006			
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		41	6.3	21		1	ug/L		01/11/06	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		14	6.3	21		1	mg/L	Q	01/09/06	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2		0.42	0.061	0.20		1	mg/L		01/18/06	EPA 353.2	EPA 353.2
Sulfate		3.5	0.83	2.8		1	mg/L		01/10/06	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	e: 01/10/06
Analyte		Result	LOD	LOQ	EQL	Dil	. Units	Cod	e Anl Date	Prep Method	Anl Method
Benzene	<	0.41	0.41	1.4		1	ug/L		01/10/06	SW846 5030B	SW846 8260B
Surrogate			LCL	UCL							
4-Bromofluorobenzene		103	64	132		1	%		01/10/06	SW846 5030B	SW846 8260B
Toluene-d8		106	73	127		1	%		01/10/06	SW846 5030B	SW846 8260B
Dibromofluoromethane		109	68	122		1	%		01/10/06	SW846 5030B	SW846 8260B
METHANE										Prep Dat	e: 01/11/06
Analyte		Result	LOD	LOQ	EQL	Dil	. Units	Cod	e Anl Date	Prep Method	Anl Method
Methane	<	10			10	1	ug/L		01/11/06	-	SW846 M8015
PAH/ PNA							3				e: 01/09/06
Analyte		Result	LOD	LOQ	EQL	Dil	. Units	Code	e Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		0.098	0.010	0.034		1	ug/L	COU	01/10/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene		0.030	0.010	0.034		1	ug/L	Q	01/10/06	SW846 3510C	8270C-SIM
Acenaphthene		0.28	0.0082			1	ug/L	Q	01/10/06	SW846 3510C	8270C-SIM
Acenaphthylene		0.033	0.0082			, 1	ug/L		01/10/06	SW846 3510C	8270C-SIM
Anthracene		0.012	0.0002	0.039		1	ug/L	Q	01/10/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.016	0.012	0.052		1	ug/L	u.	01/10/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene		0.019	0.019	0.062		1	ug/L	Q	01/10/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene		0.024	0.016	0.053		, 1	ug/L	QZ	01/10/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene		0.021	0.019	0.065		1	ug/L	Q	01/10/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.020	0.020	0.065		1	ug/L	z	01/10/06	SW846 3510C	
Chrysene	<	0.019	0.019	0.064		1	ug/L	_	01/10/06	SW846 3510C	
Dibenz(a,h)anthracene		0.019	0.019	0.063		1	ug/L		01/10/06	SW846 3510C	
Fluoranthene		0.045	0.016	0.052		1	ug/L	Q	01/10/06	SW846 3510C	8270C-SIM
Fluorene		0.055	0.0091	0.030		1	ug/L		01/10/06	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.019	0.019	0.063		1	ug/L		01/10/06	SW846 3510C	8270C-SIM
Naphthalene		0.58	0.025	0.083		2	ug/L	D	01/10/06	SW846 3510C	8270C-SIM
Phenanthrene		0.041	0.011	0.038		1	ug/L		01/10/06	SW846 3510C	8270C-SIM
Pyrene				0.049		1	ug/L	Q	01/10/06		
Fylene		0.046	0.015	0.049		•	~ <u>9</u>	~	01/10/00	000000000000	02,00 0101
Surrogate		0.046	0.015 LCL	UCL		·	<i>vg</i> .=	~	01110/00	011040 00100	02,00 0iiii
-		0.046				1	%		01/10/06	SW846 3510C	8270C-SIM
Surrogate			LCL	UCL							

Pace Analytical Services, Inc.			Ana	ytical	Repor	rt Nun	nber: 86	68081			evue Street y, WI 54302 2436
Client : NATUR Project Name : WPSC - Project Number : 1177 Field ID : QC01				OLOGY				La	Collecti Repe	rix Type : GROL on Date : 01/05/ ort Date : 01/19/ Number : 86808	06 06
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		3000	6.3	21	_ ,	1	ug/L		01/11/06	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		96	32	110		5	mg/L	Q	01/09/06	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.061	0.061	0.20		1	mg/L		01/18/06	EPA 353.2	EPA 353.2
Sulfate	<	0.83	0.83	2.8			mg/L		01/10/06	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	e: 01/10/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Anl Method
Benzene	<	8.2	8.2	27		20	ug/L	к	01/10/06	SW846 5030B	SW846 8260B
Surrogate		•	LCL	UCL			- 3				
4-Bromofluorobenzene		105	64	132		20	%		01/10/06	SW846 5030B	SW846 8260B
Toluene-d8		105	73	132		20	%		01/10/06	SW846 5030B	SW846 8260B
Dibromofluoromethane		106	68	127		20	%		01/10/06	SW846 5030B	SW846 8260B
		100							01/10/00		
METHANE								. .		•	e: 01/18/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Anl Method
Methane		2100			100	10	ug/L		01/18/06	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 01/12/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		150	51	170		500	0 ug/L	QD	01/12/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene		87	56	190		500	0 ug/L	QD	01/12/06	SW846 3510C	8270C-SIM
Acenaphthene		97	41	140		500	0 ug/L	QD	01/12/06	SW846 3510C	8270C-SIM
Acenaphthylene		28	0.81	2.7		100	ug/L		01/12/06	SW846 3510C	8270C-SIM
Anthracene		3.3	1.2	3.9		100	ug/L	Q	01/12/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	1.6	1.6	5.2		100	ug/L		01/12/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	1.8	1.8	6.1		100	ug/L		01/12/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	1.6	1.6	5.2		100	ug/L	Z	01/12/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	1.9	1.9	6.4		100	ug/L		01/12/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	1.9	1.9	6.4		100	ug/L	Z	01/12/06	SW846 3510C	8270C-SIM
Chrysene	<	1.9	1.9	6.3		100	ug/L		01/12/06	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	1.9	1.9	6.3		100	ug/L		01/12/06	SW846 3510C	8270C-SIM
Fluoranthene	<	1.5	1.5	5.2		100	ug/L		01/12/06	SW846 3510C	8270C-SIM
Fluorene		15	0.91	3.0		100	ug/L		01/12/06	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	1.9	1.9	6.3		100	ug/L		01/12/06	SW846 3510C	8270C-SIM
Naphthalene		1100	62	210		500	•	D	01/12/06	SW846 3510C	8270C-SIM
Phenanthrene		14	1.1	3.8		100	ug/L		01/12/06	SW846 3510C	8270C-SIM
Pyrene	<	1.5	1.5	4.8		100	ug/L		01/12/06	SW846 3510C	8270C-SIM
Surrogate			LCL	UCL							
Nitrobenzene-d5		0	10	136		100	%	D	01/12/06	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0	14	130		100	%	D	01/12/06	SW846 3510C	8270C-SIM
Terphenyl-d14		0	46	137		100	%	D	01/12/06	SW846 3510C	8270C-SIM

Pace Analytical Services, Inc.		Anal	ytical I	Report	Num	ber: 86	8081		evue Street y, WI 54302 436
Client: NATUR	AL RESOUF	CE TECHN	OLOGY				Mat	rix Type: WATE	R
Project Name : WPSC -	STEVENS	POINT					Collect	ion Date : 01/05/0	06
Project Number: 1177							Rep	ort Date : 01/19/0	06
Field ID: TB							Lab Sample	Number : 86808	1-008
BENZENE								Prep Dat	e: 01/10/06
Analyte	Resi	lt LOD	LOQ	EQL	Dil.	Units	Code Anl Date	Prep Method	Anl Method
Benzene	< 0.41	0.41	1.4		1	ug/L	01/10/06	SW846 5030B	SW846 8260B

Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code Anl Date	Prep Method	Anl Method
Benzene	<	0.41	0.41	1.4		1	ug/L	01/10/06	SW846 5030B	SW846 8260B
Surrogate			LCL	UCL						
4-Bromofluorobenzene		102	64	132		1	%	01/10/06	SW846 5030B	SW846 8260B
Toluene-d8		108	73	127		1	%	01/10/06	SW846 5030B	SW846 8260B

107

Dibromofluoromethane

68

122

1 %

l. 4 NI 060001

01/10/06 SW846 5030B SW846 8260B

Qualifier Codes

Flag Applies To Explanation Inorganic Analyte is detected in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, А method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis. В Inorganic The analyte has been detected between the method detection limit and the reporting limit. В Organic Analyte is present in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis. С All Elevated detection limit. D All Analyte value from diluted analysis or surrogate result not applicable due to sample dilution. Estimated concentration due to matrix interferences. During the metals analysis the serial dilution failed to meet the established Е Inorganic control limits of 0-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP-MS. The result was flagged with the E qualifier to indicate that a physical interference was observed F Organic Analyte concentration exceeds calibration range. Due to potential interferences for this analysis by Inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has F Inorganic been confirmed by and reported from an alternate method. F Surrogate results outside control criteria. Organic The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial G All calibration. The method detection limit is less than the reporting limit specified for this project. н All Preservation, extraction or analysis performed past holding time. This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was HF Inorganic performed in the laboratory beyond the recommended holding time. J All Concentration detected equal to or greater than the method detection limit but less than the reporting limit. ĸ Inorganic Sample received unpreserved. Sample was either preserved at the time of receipt or at the time of sample preparation. к Organic Detection limit may be elevated due to the presence of an unrequested analyte. All Elevated detection limit due to low sample volume. L М Organic Sample pH was greater than 2 N All Spiked sample recovery not within control limits. 0 Organic Sample received overweight. P Organic The relative percent difference between the two columns for detected concentrations was greater than 40%. Q All The analyte has been detected between the limit of detection (LOD) and limit of guantitation (LOQ). The results are gualified due to the uncertainty of analyte concentrations within this range. S Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit. The analyte was not detected at or above the reporting limit. U All All v Sample received with headspace. W All A second aliquot of sample was analyzed from a container with headspace. х All See Sample Narrative. Ζ This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846. Organics & All Laboratory Control Spike recovery not within control limits. All Precision not within control limits. + Inorganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. < All The analyte was not detected at or above the reporting limit. Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. 1 2 Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria. Inorganic BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. З Inorganic 4 Inorganic BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to 5 Inorganic reanalyze and try to correct the deficiency. 6 BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze Inorganic and try to correct the deficiency. 7 BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to Inorganic reanalyze and try to correct the deficiency.

Code	Facility	Address	WI Certification
В	Green Bay Lab (Bellevue St)	1241 Bellevue Street, Suite 9 Green Bay, WI 54302	405132750 / DATCP: 105-444
G	Green Bay Lab (Industrial Dr)	1795 Industrial Drive Green Bay, WI 54302	405132750

	Samp	le Con	dition	ı Upon Receipt			
Pace Analytical"	Client Name:	N	RT		Project #	<u>*_8</u>	68081
Courier: 🗌 Fed Ex 🗌 UPS [USPS 🗌 Client		nercial	Pace Other			
Custody Seal on Cooler/Box P	resent: 🗌 yes 🛛	no no	Seals	intact: 🗌 yes	1 1 00 8	Proj. L Proj: N	Due Date:
Packing Material: 🗌 Bubble V	Vrap 🗹 Bubble Bag	js ∏N	one	Other		<u>esto</u> jen	
Thermometer Used NA	Ту	pe of Ice	: Wet	Dilue None			ooling process has begun
Cooler Temperature MI Temp should be above freezing to 6°		ological	Tissue	is Frozen: Yes No Comments:			als of person examining -(0-()(0-5) / / / 6 / 0-6
Chain of Custody Present:		Yes □No	□n/a	1.			
Chain of Custody Filled Out:		Yes 🗆 No	□n/A	2.			
Chain of Custody Relinquished:		Yes 🗆 No	□n/A	<u>3.</u>			
Sampler Name & Signature on C	OC: 🗹	Yes 🗆 No	□n/A	4.			
Samples Arrived within Hold Tim		Yes 🗆 No					
Short Hold Time Analysis (<72		Yes No		17			
Rush Turn Around Time Reque		Yes 🗹 No		<u>7.</u>			
Sufficient Volume:		Yes 🗆 No			· · · · · · · · · · · · · · · · · · ·	<u></u>	
Correct Containers Used:		Yes □No ∕		9.			
-Pace Containers Used:		Yes 🗆 No					
Containers Intact:		Yes 🗆 No					
Filtered volume received for Diss		Yes INo					101-0010
Sample Labels match COC:		(□n/a	12. No collecti	on time	ογι	(abels or
-Includes date/time/ID/Analysi All containers needing preservation have	in hear abackad	W					
		Yes 🗆 No	□n/a	13.			
All containers needing preservation a compliance with EPA recommendation		Yes □No	□n/a	Sh			
exceptions: VOA, coliform, TOC, O&G, W	I-DRO (water)	Yes 🗆 No		Initial when completed			·
Samples checked for dechlorinat	ion:	Yes 🗆 No		<u>14.</u>			
Headspace in VOA Vials (>6mm	ı):	Yes 🗹 No	□n/a	<u>15.</u>			
Trip Blank Present:	ď	Yes 🗆 No	□n/a	<u>16.</u>			
Trip Blank Custody Seals Presen	it 🗹	Yes □No	□n/A				
Pace Trip Blank Lot # (if purchas	ed):						
Client Notification/ Resolution:				· · · · · · · · · · · · · · · · · · ·	Field Data	Require	d? Y / N
Person Contacted:			_Date/				
Comments/ Resolution:	ent reque	stin	g i	Nitrate + N	itrite A	rese	rved w/
Julfuric to b	e rin a	30	<u>b.</u>	0,			
						<u> </u>	
Project Manager Baview	/	í M		. <u></u>	Da		1-9-06
Project Manager Review:							1 1-00
Note: Whenever there is a discrepar Certification Office (i.e out of hold, in					m will be sent to	the Nor	th Carolina DEHNR

ALLC003rev.2, 10June2005

Samples on HOLD are subject to special pricing and release of liability	E-Mail Address:	Phone #:	Phone Fax E-mail	Transmit Brolim Duch Booutte by (circle)	(Rush TAT subject to approval/surcharge)	Rush Turnaround Time Requested (TAT) - Prelim		00% TB	NOT OCOI	006 PZIZB	005 OW12	004 PZ 7B	003 OW7A	M2 P5B	WI OW 5R	LABORATORY ID (Lab Use Only) FIELD ID	EPA Level IV (Subject to Surcharge)	EPA Level III (Subject to Surcharge)	Sample Results Only (no QC) FDA Love II (Subject to Surcharro)	Nata Parkano Ontions - Inlease circle if requested	PO #:	Sampled By (Print): PANDY BACNHILL	Project State: WISCONSIN	Project Name: WBC - STEVENS FOW	Project Number: // 77	Telephone: <u>262-523.900</u>	Project Contact: LAIC KOVATCH	Branch or Location:	(Please Print Legibly) Company Name: NATURAL RESOURCE TECHNOLOCK
Kelinquished By:		Relimination	Relinguished By	Helinquisned	A A	Belinquisbed By		1-56							3.5.	COLLECTION DATE TIME	N.		SDWA SDWA		-			ŇŢ					HNOLOCY
	V	mpen	ilottemerije	, c				GW						-	GW	~				<u><u></u></u>	Matrix	PR			(EZ	
			ſ					×	\times	X X	× ×	×	X	× ×	× ×	BE	≪. 1	XX5				PRESERVATION (CODE)*	FILTER	A=N		CHAIN OF CI			
		6/06	1/ 1				•		×	X	×	××	\sim	へ ス	^ X	AN LY AN		Ś	E E		STEL		FILTERED? (YES/NO)	A=None B=HCL C= H=Sodium Bisulfate Solution					
Date/Time:		Date/Time	1635 Date/Time:	Date/Time:	-6-06	Date/Time:			×	×	×	×	×	×	×	15	እ.	\mathcal{X}	ര്ച	Y	ঙ্		ž	B=HCL (sulfate Soluti)		INC	EN	
ne:	Ģ	420	ne:	ne:	61	ne:			×	×	×	×	X	×	I.	1.00	r	15	~	$\boldsymbol{\times}$		A	1	H2SO	*Preserv		· ·	, 1999	Ą
Heceiv				Hegen	8.20	Recei			× ×	×	× ×	x X	× ×	×	× ~	KIR	2		res r	Le la	Y 3/2	8	anta	D=HNO3 I=Sodium Th	*Preservation Cortes	Ú D D			
Heceived By:		D Law	BO BY: /	Received by:	indument	Received By:								×	א 		E Ko		TRIN I	3e	~ ~ ~	20)	1531 ON 00 01	niosu	[™])=				
		Nusin	in)	11 Mar	-										o / Ko Ki K		\$ *	Addres	3	0.0) (V	20	Core		Z			
		C			lituq											CLIENT C	Mail Ir	\? 	BOT	e. ZEC	શે	A	on an	F=Methanol J=Other				•	
		φl,	100	6/2	1-6-06											CLIENT COMMENTS	Mail Invoice To:		Address:	Com			0		C C	138829		920-4 Fax 920	1241 Bellevue St., Suite 9 Green Bay, WI 54302
Date/Time:		Date/	Date	uate/11me:		Date/Time:			4-						-					Company:	Invoice To:			G-NaOH	Ċ	ŏ		920-469-2436 Fax 920-469-8827	evue St.
lime:		420	Time:		1035	Time:		1-40	7						-lLaw							Pen	Address:	Company:		>		27	, Suite 9 1302
Inta Versio		(Wei	Sa			5		2-40 mus						-	Lamba ?	- F						DEMAUKEE,	23713			Page			•
Intact / Not intact Version 4.0: 09/04	Cooler Custody Seal	/Metals)	nple Rec	npie Keç	202	Chem Pr		5	9-						3-250	LAB COMMENTS (Lab Use Only)					1	L	13. M.	``	FOI				
Intact / Not intact Intact / Not intact	+ Droccord	010	Sample Receipt pH	Sample Re <u>cei</u> pt Jemp.	20202	gject No.								-	3-250ml A.C. D	NTS Ny)							. Paul			of			-
	~			Ģ	-	-			₽													0	ur Rd	- fraice		1			2
															mog-a			ł				•	.v		`				

1241 Bellevue Street, Suite 9 Green Bay, WI 54302 920-469-2436, Fax: 920-469-8827

Analytical Report Number: 870724

Client: NATURAL RESOURCE TECHNOLOGY

Lab Contact: Tom Trainor

Project Name: WPSC - STEVEN'S POINT Project Number: 1177

Lab Sample Number	Field ID	Matrix	Collection Date
870724-001	OW-1	WATER	04/11/06 11:13
870724-002	OW-2	WATER	04/11/06 10:46
870724-003	OW-3R	WATER	04/11/06 09:10
870724-004	PZ-3B	WATER	04/11/06 09:07
870724-005	OW-4	WATER	04/11/06 11:08
870724-006	OW-5R	WATER	04/11/06 11:38
870724-007	P-5B	WATER	04/11/06 11:45
870724-008	OW-6	WATER	04/11/06 10:48
870724-009	OW-7A	WATER	04/11/06 08:43
870724-010	PZ-7B	WATER	04/11/06 08:45
870724-011	OW-8	WATER	04/11/06 10:18
870724-012	OW-9	WATER	04/11/06 07:45
870724-013	PZ-9B	WATER	04/11/06 07:48
870724-014	OW-10	WATER	04/11/06 07:15
870724-015	PZ-10B	WATER	04/11/06 07:25
870724-016	OW-11	WATER	04/11/06 08:15
870724-017	PZ-11B	WATER	04/11/06 08:23
870724-018	OW-12	WATER	04/11/06 09:50
870724-019	PZ-12B	WATER	04/11/06 09:57
870724-020	PZ-13B	WATER	04/11/06 10:15
870724-021	QC01	WATER	04/11/06
870724-022	QC02	WATER	04/11/06
870724-023	TRIP BLANK	WATER	04/11/06

I certify that the data contained in this Final Report has been generated and reviewed in accordance with approved methods and Laboratory Standard Operating Procedure. Exceptions, if any, are discussed in the accompanying sample comments. Release of this final report is authorized by Laboratory management, as is verified by the following signature. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. The sample results relate only to the analytes of interest tested.

Namu ÛΥ

Approval Signature

4-25-06

Date

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client : NATURAL RESOURCE TECHNOLOGY Project Name : WPSC - STEVEN'S POINT

Project Number: 1177

Field ID: OW-1

Matrix Type : WATER Collection Date : 04/11/06 Report Date : 04/25/06 Lab Sample Number : 870724-001

Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Ani Date	Prep Method	Anl Method
Iron - Dissolved		20000	50	170		1	ug/L		04/14/06	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		260	9.7	32		1	mg/L		04/14/06	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2		0.25	0.11	0.37		1	mg/L	Q	04/17/06	EPA 353.2	EPA 353.2
Sulfate		240	3.9	13		5	mg/L		04/18/06	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	e: 04/14/06
Analyte		Result	LOD	LOQ	EQL	Dil	. Units	Code	e Anl Date	Prep Method	Anl Method
Benzene		1.1	0.14	0.46		1	ug/L		04/14/06	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		98	80	124		1	%		04/14/06	SW846 5030B	SW846 M8021
METHANE										Prep Dat	e: 04/17/06
Analyte		Result	LOD	LOQ	EQL	Dil	Units	Code	Anl Date	Prep Method	Anl Method
Methane		260			10	1	ug/L		04/17/06	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 04/13/06
Analyte		Result	LOD	LOQ	EQL	Dil	. Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		3.4	0.20	0.68		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene	<	0.22	0.22	0.75		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Acenaphthene		25	0.82	2.7		100) ug/L	D	04/14/06	SW846 3510C	8270C-SIM
Acenaphthylene		0.58	0.16	0.54		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Anthracene	<	0.23	0.23	0.77		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.31	0.31	1.0		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.37	0.37	1.2		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.31	0.31	1.0		20	ug/L	Z	04/13/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.39	0.39	1.3		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.39	0.39	1.3		20	ug/L	Z	04/13/06	SW846 3510C	8270C-SIM
Chrysene	<	0.38	0.38	1.3		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.38	0.38	1.3		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Fluoranthene	<	0.31	0.31	1.0		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Fluorene		4.1	0.18	0.60		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.38	0.38	1.3		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Naphthalene	<	0.25	0.25	0.83		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Phenanthrene		2.2	0.23	0.76		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Pyrene	<	0.29	0.29	0.97		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Surrogate			LCL	UCL							
Nitrobenzene-d5		0	10	150		20	%	D	04/13/06	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0	20	111		20	%	D	04/13/06	SW846 3510C	8270C-SIM
Terphenyl-d14		0	44	115		20	%	D	04/13/06	SW846 3510C	8270C-SIM

Client : NATURAL RESOURCE TECHNOLOGY Project Name : WPSC - STEVEN'S POINT Project Number : 1177 Field ID : OW-2

Matrix Type: WATER Collection Date: 04/11/06 Report Date: 04/25/06 Lab Sample Number: 870724-002

Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		11000	50	170		1	ug/L		04/14/06	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		100	9.7	32		1	mg/L		04/14/06	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.11	0.11	0.37		1	mg/L		04/17/06	EPA 353.2	EPA 353.2
Sulfate		3.7	0.77	2.6		1	mg/L		04/18/06	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	e: 04/14/06
Analyte		Result	LOD	LOQ	EQL	Dil	Units	Code	Anl Date	Prep Method	Ani Method
Benzene	<	0.14	0.14	0.46		1	ug/L		04/14/06	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		98	80	124		1	%		04/14/06	SW846 5030B	SW846 M8021
METHANE										Prep Dat	e: 04/17/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		3800			400	40	ug/L		04/17/06	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 04/13/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		0.21	0.20	0.68		20	ug/L	Q	04/13/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene	<	0.22	0.22	0.75		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Acenaphthene		4.2	0.16	0.54		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Acenaphthylene	<	0.16	0.16	0.54		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Anthracene		0.27	0.23	0.77		20	ug/L	Q	04/13/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.31	0.31	1.0		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.37	0.37	1.2		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.31	0.31	1.0		20	ug/L	Z	04/13/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.39	0.39	1.3		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.39	0.39	1.3		20	ug/L	Z	04/13/06	SW846 3510C	8270C-SIM
Chrysene	<	0.38	0.38	1.3		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.38	0.38	1.3		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Fluoranthene	<	0.31	0.31	1.0		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Fluorene		1.6	0.18	0.60		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.38	0.38	1.3		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Naphthalene	<	0.25	0.25	0.83		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Phenanthrene		0.93	0.23	0.76		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Pyrene	<	0.29	0.29	0.97		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Surrogate			LCL	UCL							
Nitrobenzene-d5		0	10	150		20	%	D	04/13/06	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0	20	111		20	%	D	04/13/06	SW846 3510C	8270C-SIM
Terphenyl-d14		0	44	115		20	%	D	04/13/06	SW846 3510C	8270C-SIM

Pace Analytical Services, Inc.			Anal	ytical	Repor	't Nun	nber: 87	70724			evue Street y, WI 54302 436
Client: NATURAL	RE	ESOURCE		OLOGY					Mati	rix Type:WATE	R
Project Name : WPSC - S	ΤE	VEN'S PC	INT							on Date: 04/11/	
Project Number: 1177									Repo	ort Date : 04/25/	06
Field ID : OW-3R								La	b Sample I	Number : 870724	4-003
INORGANICS						<u> </u>					
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Ani Date	Prep Method	Ani Method
Iron - Dissolved		16000	50	170		1	ug/L		04/14/06	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		490	9.7	32		1	∽g/L		04/14/06	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<		0.11	0.37		1	mg/L		04/17/06	EPA 353.2	EPA 353.2
Sulfate		250	7.7	26		10	mg/L		04/18/06	EPA 300.0	EPA 300.0
									0 11 10,000		
BENZENE											e: 04/14/06
Analyte		Result	LOD	LOQ	EQL	Dil.			e Anl Date	Prep Method	Anl Method
Benzene		0.34	0.14	0.46		1	ug/L	Q	04/14/06	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		99	80	124		1	%		04/14/06	SW846 5030B	SW846 M8021
METHANE										Prep Dat	e: 04/17/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	e Ani Date	Prep Method	Anl Method
Methane		260			25	2.5	ug/L		04/17/06	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 04/13/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Ani Method
1-Methylnaphthalene		0.27	0.020	0.068		2	ug/L		04/14/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene	<	0.022	0.022	0.075		2	ug/L		04/14/06	SW846 3510C	8270C-SIM
Acenaphthene		0.47	0.016	0.054		2	ug/L		04/14/06	SW846 3510C	8270C-SIM
Acenaphthylene		0.12	0.016	0.054		2	ug/L		04/14/06	SW846 3510C	8270C-SIM
Anthracene		0.35	0.023	0.077		2	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene		0.040	0.031	0.10		2	ug/L	Q	04/14/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.037	0.037	0.12		2	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.031	0.031	0.10		2	ug/L	Z	04/14/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.039	0.039	0.13		2	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.039	0.039	0.13		2	ug/L	z	04/14/06	SW846 3510C	8270C-SIM
Chrysene	<	0.038	0.038	0.13		2	ug/L		04/14/06	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<		0.038	0.13		2	ug/L		04/14/06	SW846 3510C	8270C-SIM
Fluoranthene		0.54	0.031	0.10		2	ug/L		04/14/06	SW846 3510C	8270C-SIM
Fluorene		0.36	0.018	0.060		2	ug/L		04/14/06	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.038	0.038	0.13		2	ug/L		04/14/06	SW846 3510C	8270C-SIM
Naphthalene		0.11	0.025	0.083		2	ug/L		04/14/06	SW846 3510C	8270C-SIM
Phenanthrene		0.42	0.023	0.076		2	ug/L		04/14/06	SW846 3510C	8270C-SIM
1 Honanan one						2	ug/L		04/14/06	SW846 3510C	8270C-SIM
Pyrene		0.33	0.029	0.097		~	-3		•	000000000000	02/00 0111
		0.33	0.029 LCL	0.097 UCL		2	-g		0	011040 00100	
Pyrene		0.33 88				2	%		04/14/06	SW846 3510C	8270C-SIM
Pyrene Surrogate			LCL	UCL					<u></u>		

.

Client : NATURAL RESOURCE TECHNOLOGY Project Name : WPSC - STEVEN'S POINT

Project Number: 1177

Field ID : PZ-3B

Matrix Type : WATER Collection Date : 04/11/06 Report Date : 04/25/06 Lab Sample Number : 870724-004

Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved	<	50	50	170		1	ug/L		04/14/06	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		45	9.7	32		1	mg/L		04/14/06	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2		0.26	0.11	0.37		1	mg/L	Q	04/17/06	EPA 353.2	EPA 353.2
Sulfate		9.9	0.77	2.6		1	mg/L		04/18/06	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	e: 04/14/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Ani Date	Prep Method	Anl Method
Benzene	<	0.14	0.14	0.46		1	ug/L		04/14/06	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		98	80	124		1	%		04/14/06	SW846 5030B	SW846 M8021
METHANE										Prep Dat	e: 04/17/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method
Methane		14			10	1	ug/L		04/17/06	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 04/13/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		0.054	0.010	0.034		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene		0.056	0.011	0.038		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Acenaphthene		0.078	0.0082	0.027		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Acenaphthylene	<	0.0082	0.0082	0.027		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Anthracene		0.014	0.012	0.039		1	ug/L	Q	04/13/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.016	0.016	0.052		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.019	0.019	0.062		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.016	0.016	0.053		1	ug/L	Z	04/13/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.019	0.019	0.065		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.020	0.020	0.065		1	ug/L	Z	04/13/06	SW846 3510C	8270C-SIM
Chrysene	<	0.019	0.019	0.064		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.019	0.019	0.063		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Fluoranthene	<	0.016	0.016	0.052		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Fluorene		0.045	0.0091	0.030		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.019	0.019	0.063		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Naphthalene		0.23	0.012	0.042		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Phenanthrene		0.062	0.011	0.038		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Pyrene	<	0.015	0.015	0.049		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Surrogate			LCL	UCL							
Nitrobenzene-d5		85	10	150		1	%		04/13/06	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		77	20	111		1	%		04/13/06	SW846 3510C	8270C-SIM
Terphenyl-d14		82	44	115		1	%		04/13/06	SW846 3510C	8270C-SIM

Pace Analytical Services, Inc.

> Client : NATURAL RESOURCE TECHNOLOGY Project Name : WPSC - STEVEN'S POINT Project Number : 1177 Field ID : OW-4

Matrix Type : WATER Collection Date : 04/11/06 Report Date : 04/25/06 Lab Sample Number : 870724-005

Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		22000	50	170		1	ug/L		04/14/06	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		110	9.7	32		1	mg/L		04/14/06	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.11	0.11	0.37		1	mg/L		04/17/06	EPA 353.2	EPA 353.2
Sulfate		2.3	0.77	2.6		1	mg/L	Q	04/18/06	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	e: 04/14/06
Analyte		Result	LOD	LOQ	EQL	Dil	. Units	Code	Anl Date	Prep Method	Anl Method
Benzene	<	0.14	0.14	0.46		1	ug/L		04/14/06	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		99	80	124		1	%		04/14/06	SW846 5030B	SW846 M8021
METHANE										Prep Dat	e: 04/17/06
Analyte		Result	LOD	LOQ	EQL	Dil	. Units	Code	Anl Date	Prep Method	Anl Method
Methane		2300			250	25	ug/L		04/17/06	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 04/13/06
Analyte		Result	LOD	LOQ	EQL	Dil	. Units	Code	Anl Date	Prep Method	Ani Method
1-Methylnaphthalene		0.093	0.010	0.034		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene		0.017	0.011	0.037		1	ug/L	Q	04/13/06	SW846 3510C	8270C-SIM
Acenaphthene		0.059	0.0082	0.027		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Acenaphthylene		0.0092	0.0081	0.027		1	ug/L	Q	04/13/06	SW846 3510C	8270C-SIM
Anthracene	<	0.012	0.012	0.039		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.016	0.016	0.052		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.018	0.018	0.061		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.016	0.016	0.052		1	ug/L	Z	04/13/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.019	0.019	0.064		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.019	0.019	0.064		1	ug/L	Z	04/13/06	SW846 3510C	8270C-SIM
Chrysene	<	0.019	0.019	0.063		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.019	0.019	0.063		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Fluoranthene	<	0.015	0.015	0.052		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Fluorene	<	0.0091	0.0091	0.030		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.019	0.019	0.063		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Naphthalene		1.5	0.062	0.21		5	ug/L	D	04/14/06	SW846 3510C	8270C-SIM
Phenanthrene	<	0.011	0.011	0.038		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Pyrene	<	0.015	0.015	0.048		1	ug/L		04/13/06	SW846 3510C	8270C-SIM
Surrogate			LCL	UCL							
Nitrobenzene-d5		80	10	150		1	%		04/13/06	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		72	20	111		1	%		04/13/06	SW846 3510C	8270C-SIM
Terphenyl-d14		82	44	115		1	%		04/13/06	SW846 3510C	8270C-SIM

.

Client : NATURAL RESOURCE TECHNOLOGY Project Name : WPSC - STEVEN'S POINT Project Number : 1177 Field ID : OW-5R Matrix Type : WATER Collection Date : 04/11/06 Report Date : 04/25/06 Lab Sample Number : 870724-006

Iron - Dissolved2200Alkalinity as CaCO3350Nitrogen, NO3 + NO2< 0.11	D 50 9.7 0.11 7.7	170 32 0.37 26		1 1 1	ug/L mg/L		04/14/06	SW846 6010B	SW846 6010B
Nitrogen, NO3 + NO2 < 0.11	0.11	0.37			mg/L		04/14/06		FD4 040 0
Q				1			0.00	EPA 310.2	EPA 310.2
o	7.7	26			mg/L		04/17/06	EPA 353.2	EPA 353.2
Sulfate 250				10	mg/L		04/18/06	EPA 300.0	EPA 300.0
BENZENE								Prep Date	e: 04/14/06
Analyte Res	lt LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene 15	0.14	0.46		1	ug/L		04/14/06	SW846 5030B	SW846 M8021
Surrogate	LCL	UCL							
a,a,a-Trifluorotoluene 98	80	124	· · · · ·	1	%		04/14/06	SW846 5030B	SW846 M8021
METHANE								Prep Date	e: 04/24/06
Analyte Rest	lt LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane 97			10	1	ug/L		04/24/06	SW846 M8015	SW846 M8015
PAH/ PNA								Prep Date	e: 04/13/06
Analyte Res	lt LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
1-Methylnaphthalene 5.3	0.20	0.68		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene < 0.22	0.22	0.75		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Acenaphthene 6.6	0.16	0.54		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Acenaphthylene 2.1	0.16	0.54		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Anthracene 0.92	0.23	0.77		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene < 0.31	0.31	1.0		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene < 0.37	0.37	1.2		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene < 0.31	0.31	1.0		20	ug/L	Z	04/13/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene < 0.39	0.39	1.3		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene < 0.39	0.39	1.3		20	ug/L	Z	04/13/06	SW846 3510C	8270C-SIM
Chrysene < 0.38	0.38	1.3		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene < 0.38	0.38	1.3		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Fluoranthene 1.8	0.31	1.0		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Fluorene 2.9	0.18	0.60		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene < 0.38	0.38	1.3		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Naphthalene 2.8	0.25	0.83		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Phenanthrene 2.4	0.23	0.76		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Pyrene 1.1	0.29	0.97		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Surrogate	LCL	UCL							
Nitrobenzene-d5 0	10	150		20	%	D	04/13/06	SW846 3510C	8270C-SIM
2-Fluorobiphenył 0	20	111		20	%	D	04/13/06	SW846 3510C	8270C-SIM
Terphenyl-d14 0	44	115		20	%	D	04/13/06	SW846 3510C	8270C-SIM

										920-409-2	430
Client : NATU	RAL RE	SOURCE	E TECHN	OLOGY					Mat	rix Type : WATE	R
Project Name : WPSC	- STE	VEN'S PC	INT						Collecti	on Date : 04/11/	06
Project Number: 1177									Rep	ort Date: 04/25/	06
Field ID : P-5B								La	-	Number: 87072	
									•		<u> </u>
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		1700	50	170		1	ug/L		04/14/06	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		140	9.7	32		1	mg/L		04/14/06	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.11	0.11	0.37		1	mg/L		04/17/06	EPA 353.2	EPA 353.2
Sulfate		1.9	0.77	2.6		1	mg/L	Q	04/18/06	EPA 300.0	EPA 300.0
BENZENE										Prep Da	te: 04/14/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method
Benzene		3.5	0.69	2.3		5	ug/L		04/14/06	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		99	80	124		1	%		04/14/06	SW846 5030B	SW846 M8021
									04/14/00		
METHANE		Desult		1.00	501	Dil	11	Cad	- Ani Data	•	e: 04/24/06
Analyte		Result	LOD	LOQ	EQL	Dil.		Coa	e Ani Date	Prep Method	Anl Method
Methane		230			10	1	ug/L		04/24/06	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 04/13/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		57	2.0	6.8		200) ug/L		04/14/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene		5.3	2.2	7.5		200) ug/L	Q	04/14/06	SW846 3510C	8270C-SIM
Acenaphthene		90	1.6	5.4		200) ug/L		04/14/06	SW846 3510C	8270C-SIM
Acenaphthylene		7.8	1.6	5.4		200) ug/L		04/14/06	SW846 3510C	8270C-SIM
Anthracene		3.2	2.3	7.7		200) ug/L	Q	04/14/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	3.1	3.1	10		200) ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	3.7	3.7	12		200	-		04/14/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	3.1	3.1	10		200		Z	04/14/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	3.9	3.9	13		200	•		04/14/06	SW846 3510C	
Benzo(k)fluoranthene	<	3.9	3.9	13		200	•	z	04/14/06	SW846 3510C	
Chrysene	<	3.8	3.8	13		200	•	-	04/14/06	SW846 3510C	
Dibenz(a,h)anthracene	<		3.8	13		200	-		04/14/06	SW846 3510C	
Fluoranthene	<	3.1	3.1	10		200	•		04/14/06	SW846 3510C	
Fluorene		3.1 29	3.1 1.8				•		04/14/06		
				6.0		200	-			SW846 3510C	
Indeno(1,2,3-cd)pyrene	<	3.8	3.8	13		200	-		04/14/06	SW846 3510C	
Naphthalene		34	2.5	8.3		200	-		04/14/06	SW846 3510C	
Phenanthrene		11	2.3	7.6		200	-		04/14/06	SW846 3510C	
Pyrene	<	2.9	2.9	9.7		200) ug/L		04/14/06	SW846 3510C	8270C-SIM
Surrogate			LCL	UCL							
Nitrobenzene-d5		0	10	150		200		D	04/14/06	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0	20	111		200) %	D	04/14/06	SW846 3510C	8270C-SIM
Terphenyl-d14		0	44	115		200) %	D	04/14/06	SW846 3510C	8270C-SIM

1241 Believue Street Green Bay, WI 54302 920-469-2436

Client : NATUF Project Name : WPSC Project Number : 1177				Matrix Type : WATER Collection Date : 04/11/06 Report Date : 04/25/06							
Field ID : OW-6								La	b Sample I	Number : 87072	4-008
INORGANICS Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		11000	50	170		1			04/14/06	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		95	9.7	32		1	ug/L mg/L		04/14/06	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.11	0.11	0.37		1	mg/L		04/17/06	EPA 353.2	EPA 353.2
Sulfate		6.2	0.77	2.6		1	mg/L		04/18/06	EPA 300.0	EPA 300.0
BENZENE				T						Prep Dat	e: 04/14/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method
Benzene		5.0	0.28	0.92		2	ug/L		04/14/06	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		98	80	124		1	%		04/14/06	SW846 5030B	SW846 M802
METHANE										Prep Dat	e: 04/24/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method
Methane		6800			500	50	ug/L		04/24/06	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 04/13/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		7.3	0.20	0.68		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene		6.3	0.23	0.75		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Acenaphthene		11	1.6	5.5		200	ug/L	D	04/14/06	SW846 3510C	8270C-SIM
Acenaphthylene		0.31	0.16	0.55		20	ug/L	Q	04/13/06	SW846 3510C	8270C-SIM
Anthracene		1.6	0.23	0.78		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.31	0.31	1.0		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.37	0.37	1.2		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.32	0.32	1.1		20	ug/L	Z	04/13/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.39	0.39	1.3		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.39	0.39	1.3		20	ug/L	z	04/13/06	SW846 3510C	8270C-SIM
Chrysene	<	0.38	0.38	1.3		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.38	0.38	1.3		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Fluoranthene		1.1	0.31	1.0		20	ug/L		04/13/06	SW846 3510C	
Fluorene		5.2	0.18	0.61		20	ug/L		04/13/06	SW846 3510C	
ndeno(1,2,3-cd)pyrene	<	0.38	0.38	1.3		20	ug/L		04/13/06	SW846 3510C	
Naphthalene		51	2.5	8.3		200	-	D	04/14/06	SW846 3510C	
Phenanthrene		6.2	0.23	0.76		20	ug/L	-	04/13/06	SW846 3510C	
Pyrene		0.84	0.29	0.98		20	ug/L	Q	04/13/06	SW846 3510C	
Surrogate			LCL	UCL							
Nitrobenzene-d5		0	10	150		20	%	D	04/13/06	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0	20	111		20	%	D	04/13/06	SW846 3510C	8270C-SIM

20 %

D 04/13/06 SW846 3510C 8270C-SIM

Analytical Report Number: 870724

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Terphenyl-d14

0 44 115

Services, Inc.								-		920-469-2	436
Client: NATUR	AL RE	SOURCE	TECHN	OLOGY					Mati	rix Type:WATE	R
Project Name : WPSC -	- STEV	/EN'S PC	INT							on Date : 04/11/	
Project Number: 1177									Rep	ort Date: 04/25/	06
Field ID : OW-7A								Lal	•	Number : 87072	
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
Iron - Dissolved		8200	50	170		1	ug/L		04/14/06	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		100	9.7	32		1	mg/L		04/14/06	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.11	0.11	0.37		1	mg/L		04/17/06	EPA 353.2	EPA 353.2
Sulfate		2.2	0.77	2.6		1	mg/L	Q	04/18/06	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	e: 04/14/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene		7.8	0.28	0.92		2	ug/L		04/14/06	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		98	80	124		1	%		04/14/06	SW846 5030B	SW846 M8021
METHANE										Prep Dat	e: 04/24/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		7100			500	50	ug/L		04/24/06	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 04/13/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		17	8.1	27		800	ug/L	QD	04/14/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene		15	9.0	30		800	ug/L	QD	04/14/06	SW846 3510C	8270C-SIM
Acenaphthene		26	6.5	22		800	ug/L	D	04/14/06	SW846 3510C	8270C-SIM
Acenaphthylene		0.69	0.16	0.54		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Anthracene		2.9	0.23	0.77		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.31	0.31	1.0		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.37	0.37	1.2		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.31	0.31	1.0		20	ug/L	Z	04/13/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.39	0.39	1.3		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.39	0.39	1.3		20	ug/L	Z	04/13/06	SW846 3510C	8270C-SIM
Chrysene	<	0.38	0.38	1.3		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.38	0.38	1.3		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Fluoranthene		1.7	0.31	1.0		20	ug/L		04/13/06	SW846 3510C	8270C-SIM
Fluorene		11	7.2	24		800		QD	04/14/06	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.38	0.38	1.3		20	ug/L		04/13/06	SW846 3510C	
Naphthalene		200	9.9	33		800	-	D	04/14/06	SW846 3510C	
Phenanthrene		12	9.1	30		800	•	QD	04/14/06	SW846 3510C	
Pyrene		1.4	0.29	0.97		20	ug/L		04/13/06	SW846 3510C	
			LCL	UCL							
Surrogate			LOL	UCL							
		0	10	150		20	%	D	04/13/06	SW846 3510C	8270C-SIM
Surrogate Nitrobenzene-d5 2-Fluorobiphenyl		0				20 20	% %	D D	04/13/06 04/13/06	SW846 3510C SW846 3510C	

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client : NATURAL RESOURCE TECHNOLOGY Project Name : WPSC - STEVEN'S POINT Project Number : 1177 Field ID : PZ-7B

Matrix Type : WATER Collection Date : 04/11/06 Report Date : 04/25/06 Lab Sample Number : 870724-010

Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		2000	50	170		1	ug/L		04/14/06	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		94	9.7	32		1	mg/L		04/14/06	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.11	0.11	0.37		1	mg/L		04/17/06	EPA 353.2	EPA 353.2
Sulfate	<	0.77	0.77	2.6		1	mg/L		04/18/06	EPA 300.0	EPA 300.0
BENZENE						·				Prep Dat	e: 04/14/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene	<	2.8	2.8	9.2		20	ug/L	ĸ	04/14/06	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		99	80	124		1	%		04/14/06	SW846 5030B	SW846 M8021
METHANE										Prep Dat	e: 04/24/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Ani Date	Prep Method	Anl Method
Methane		830			50	5	ug/L		04/24/06	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 04/13/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		110	20	68		200) ug/L	D	04/14/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene		100	22	75		200) ug/L	D	04/14/06	SW846 3510C	8270C-SIM
Acenaphthene		78	16	54		200) ug/L	D	04/14/06	SW846 3510C	8270C-SIM
Acenaphthylene		30	0.81	2.7		100	ug/L		04/13/06	SW846 3510C	8270C-SIM
Anthracene		1.4	1.2	3.9		100	ug/L	Q	04/13/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	1.6	1.6	5.2		100	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	1.8	1.8	6.1		100	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	1.6	1.6	5.2		100	ug/L	Z	04/13/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	1.9	1.9	6.4		100	ug/L		04/13/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	1.9	1.9	6.4		100	ug/L	Z	04/13/06	SW846 3510C	8270C-SIM
Chrysene	<	1.9	1.9	6.3		100	ug/L		04/13/06	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	1.9	1.9	6.3		100	ug/L		04/13/06	SW846 3510C	8270C-SIM
Fluoranthene	<	1.5	1.5	5.2		100	ug/L		04/13/06	SW846 3510C	8270C-SIM
Fluorene		13	0.91	3.0		100	ug/L		04/13/06	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	1.9	1.9	6.3		100	ug/L		04/13/06	SW846 3510C	8270C-SIM
Naphthalene		590	25	83		2000	-	D	04/14/06	SW846 3510C	8270C-SIM
Phenanthrene		9.1	1.1	3.8		100	ug/L		04/13/06	SW846 3510C	8270C-SIM
Pyrene	<	1.5	1.5	4.8		100	ug/L		04/13/06	SW846 3510C	8270C-SIM
Surrogate			LCL	UCL							
Nitrobenzene-d5		0	10	150		100	%	D	04/13/06	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0	20	111		100	%	D	04/13/06	SW846 3510C	8270C-SIM
Terphenyl-d14		0	44	115		100	%	D	04/13/06	SW846 3510C	

Services, Inc.										920-469-2	
Client : NATUR Project Name : WPSC Project Number : 1177 Field ID : OW-8				Matrix Type: WATER Collection Date: 04/11/06 Report Date: 04/25/06 Lab Sample Number: 870724-011							
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		40000	50	170		1	ug/L		04/14/06	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		58	9.7	32			mg/L		04/14/06	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.11	0.11	0.37		1	mg/L		04/17/06	EPA 353.2	EPA 353.2
Sulfate	<	0.77	0.77	2.6			mg/L		04/18/06	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	e: 04/14/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene	<	0.14	0.14	0.46		1	ug/L		04/14/06	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		98	80	124		1	%		04/14/06	SW846 5030B	SW846 M8021
METHANE									******	Prep Dat	e: 04/24/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Methane		2900			250	25	ug/L		04/24/06	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 04/13/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		1.6	0.13	0.42		12.5	ug/L	D	04/14/06	SW846 3510C	8270C-SIM
2-Methylnaphthaiene		0.21	0.011	0.037		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Acenaphthene		2.1	0.10	0.34		12.5	ug/L	D	04/14/06	SW846 3510C	8270C-SIM
Acenaphthylene		0.080	0.0081	0.027		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Anthracene		0.13	0.012	0.039		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.016	0.016	0.052		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.018	0.018	0.061		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.016	0.016	0.052							
Benzo(ghi)perylene	•	0.010	0.016	0.002		1	ug/L	Z	04/14/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene		0.019	0.018	0.052		1 1	ug/L ug/L	Z	04/14/06 04/14/06	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM
							-	z z			
	< <	0.019	0.019	0.064		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Chrysene	< <	0.019 0.019	0.019 0.019 0.019	0.064 0.064 0.063		1 1	ug/L ug/L ug/L		04/14/06 04/14/06 04/14/06	SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM
Chrysene Dibenz(a,h)anthracene	< < <	0.019 0.019 0.019	0.019 0.019	0.064 0.064 0.063 0.063		1 1 1	ug/L ug/L ug/L ug/L		04/14/06 04/14/06 04/14/06 04/14/06	SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Chrysene Dibenz(a,h)anthracene Fluoranthene	< < <	0.019 0.019 0.019 0.019 0.063	0.019 0.019 0.019 0.019 0.015	0.064 0.064 0.063 0.063 0.052		1 1 1 1	ug/L ug/L ug/L ug/L ug/L		04/14/06 04/14/06 04/14/06 04/14/06 04/14/06	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	<pre></pre>	0.019 0.019 0.019 0.019 0.063 0.76	0.019 0.019 0.019 0.019 0.015 0.11	0.064 0.064 0.063 0.063 0.052 0.38		1 1 1 1 12.5	ug/L ug/L ug/L ug/L ug/L ug/L	Z	04/14/06 04/14/06 04/14/06 04/14/06 04/14/06 04/14/06	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	<pre></pre>	0.019 0.019 0.019 0.019 0.063 0.76 0.019	0.019 0.019 0.019 0.019 0.015	0.064 0.063 0.063 0.052 0.38 0.063		1 1 1 1 12.5 1	ug/L ug/L ug/L ug/L ug/L ug/L	z D	04/14/06 04/14/06 04/14/06 04/14/06 04/14/06 04/14/06	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene	<pre></pre>	0.019 0.019 0.019 0.019 0.063 0.76 0.019 4.5	0.019 0.019 0.019 0.019 0.015 0.11 0.019 0.15	0.064 0.063 0.063 0.052 0.38 0.063 0.52		1 1 1 12.5 1 12.5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Z D D	04/14/06 04/14/06 04/14/06 04/14/06 04/14/06 04/14/06 04/14/06	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	<pre></pre>	0.019 0.019 0.019 0.019 0.063 0.76 0.019	0.019 0.019 0.019 0.019 0.015 0.11 0.019	0.064 0.063 0.063 0.052 0.38 0.063		1 1 1 1 12.5 1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	z D	04/14/06 04/14/06 04/14/06 04/14/06 04/14/06 04/14/06	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	<pre></pre>	0.019 0.019 0.019 0.063 0.76 0.019 4.5 0.95	0.019 0.019 0.019 0.015 0.11 0.019 0.15 0.14	0.064 0.063 0.063 0.052 0.38 0.063 0.52 0.47		1 1 1 12.5 1 12.5 12.5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Z D D	04/14/06 04/14/06 04/14/06 04/14/06 04/14/06 04/14/06 04/14/06 04/14/06	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene	<pre></pre>	0.019 0.019 0.019 0.063 0.76 0.019 4.5 0.95	0.019 0.019 0.019 0.015 0.11 0.019 0.15 0.14 0.015	0.064 0.063 0.063 0.052 0.38 0.063 0.52 0.47 0.048		1 1 1 12.5 1 12.5 12.5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Z D D	04/14/06 04/14/06 04/14/06 04/14/06 04/14/06 04/14/06 04/14/06 04/14/06	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM
Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene Surrogate	<pre></pre>	0.019 0.019 0.019 0.063 0.76 0.019 4.5 0.95 0.055	0.019 0.019 0.019 0.015 0.11 0.019 0.15 0.14 0.015 LCL	0.064 0.063 0.063 0.052 0.38 0.063 0.52 0.47 0.048 UCL		1 1 1 12.5 1 12.5 12.5 12.5 1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Z D D	04/14/06 04/14/06 04/14/06 04/14/06 04/14/06 04/14/06 04/14/06 04/14/06	SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C SW846 3510C	8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM 8270C-SIM

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Test Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl Method tron - Dissolved 10000 50 170 1 ug/L 04/14/06 SW46 6010B SW46 6010B SW46 6010B SW46 6010B EPA 310.2 EPA 330.0 EPA 310.2 EPA 330.0 EPA 300.0 EPA 300.0<	Services, Inc.										920-469-2	436
Project Number: 1177 Field ID: OW-9 Report Dats: 04/25/05 Lab Sample Number: 870724-012 INORGANICS Test Code Anl Method Tost Code Anl Method Inon-Dissolved 10000 S0 70 1 Gode Anl Method Mixingen, NO3 + NO2 Colspan="4">15 0.111 0.37 1 mgL Od/14/06 SV846 6010B Mixingen, NO3 + NO2 Colspan="4" Colspan="4" Mixingen, NO3 + NO2 Colspan="4" Colspan="4" Mixingen, NO3 + NO2 Colspan="4" Mixingen, NO3 + NO2 Colspan="4" Mixingen, NO3 + NO2 Colspan="4" Colspan="4" Mixingen, NO3 + NO2 Colspan="4" Colspan="4" Colspan="4" Mixingen, NO3 + NO4 South colspan="4" <					OLOGY							
Field ID : OW-9 Lab Sample Number : 870724-012 INORGANICS Test Result LOD LOQ EQL DII. Units Code Anl Det Prep Method Anl Method Microgen, NO3 + NO2 200 170 1 ug/L 04/14/06 SW846 60108	•	012										
Test Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl Method tron - Dissolved 10000 50 170 1 ug/L 04/14/06 SW446 6010B SW446 M010 SW446 M010B SW446 M010B SW446 M021 SW446 M021<									La	•		
Iron - Dissolved 10000 50 170 1 ug/L 04/14/06 SW846 6010B SW846 6010B Alkalnity as CaC03 250 9.7 32 1 mg/L 04/14/06 EPA 310.2 EPA 310.2 EPA 310.2 EPA 330.2 EPA 330.0 Suifate 15 0.77 2.6 1 mg/L 04/17/06 EPA 30.0 EPA 30.	INORGANICS											
Alkalinity as CaCO3 250 9.7 32 1 mg/L 04/14/06 EPA 310.2 EPA 310.2 EPA 310.2 Nitrogen, NO3 + NO2 < 0.11 0.11 0.37 1 mg/L 04/14/06 EPA 330.0 EPA 330.0 EPA 350.2 EPA 350.2 EPA 330.0 EPA 300.0 EP	Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
Nitrogen, NO3 + NO2 < 0.11 0.17 2.6 1 mg/L 0.4/17/06 EPA 35.2 EPA 35.2 EPA 330.0 BENZENE	Iron - Dissolved		10000	50	170		1	ug/L		04/14/06	SW846 6010B	SW846 6010B
Suifate 15 0.77 2.6 1 mg/L 04/18/06 EPA 300.0 EPA 300.0 BENZENE Analyte Result LOD LOQ EQL Dil. Units Code Analyte Prep Method Ani Method Benzene 98 2.8 9.2 20 ug/L 04/14/06 SW846 5030B SW846 M8021 Surrogate LCL UCL UCL V	Alkalinity as CaCO3		250	9.7	32		1	mg/L		04/14/06	EPA 310.2	EPA 310.2
BENZENE Prep Date: 04/14/06 Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl Method Benzene 98 2.8 9.2 20 ug/L 04/14/06 SW846 5030B SW846 M8021 Surrogate LCL UCL 04/14/06 SW846 5030B SW846 M8021 METHANE Prep Date: 04/14/06 SW846 5030B SW846 M8021 Prep Date: 04/24/06 Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Date: 04/13/06 Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl Method 1-Methylnaphthalene 15 1.1 3.7 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Acenaphthene 76 41 140 5000 ug/L 04/14/06 SW846 3510C 8270C-SIM Acenaphthene	Nitrogen, NO3 + NO2	<	0.11	0.11	0.37		1	mg/L		04/17/06	EPA 353.2	EPA 353.2
Analyte Result LOD LOQ EQL Dill Units Code An late Prep Method An Method Benzene 98 2.8 9.2 20 ug/L 0/41/4/06 SW845 5030B SW846 M8021 Surrogate LCL UCL 1 % 0/41/4/06 SW846 5030B SW846 M8021 METHANE 0/41/4/06 SW846 5030B SW846 M8015 SW846 M8015 Analyte Result LOD LOQ EQL Dil. Units Code AnI Date Prep Method Anl Method Methane 2100 200 ug/L 0/4/24/06 SW846 M8015	Sulfate		15	0.77	2.6		1	mg/L		04/18/06	EPA 300.0	EPA 300.0
Benzene 98 2.8 9.2 20 ug/L 04/14/06 SW846 5030B SW846 M8021 Surrogate LCL UCL UCL New Yet SW846 5030B SW846 M8021 a.a.a.Trifluorotoluene 99 80 124 1 % 04/14/06 SW846 5030B SW846 M8015 METHANE Prep Date: 04/24/06 Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl Method Methane 2100 200 20 ug/L 04/14/06 SW846 3510C 8270C-SIM Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl Method Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl Method Acenaphthylene 15 1.1 3.7 100 ug/L QD 04/14/06 SW846 3510C 8270C-SIM Acena	BENZENE										Prep Dat	e: 04/14/06
Surrogate LCL UCL a,a,a-Trifluorotoluene 99 80 124 1 % 04/14/06 SW846 5030B SW846 M8021 METHANE Prep Date: 04/24/06 SW846 M8015 SW846 M8015 SW846 M8015 Analyte Result LOD LOQ EQL Dil. Units Code AnI Date Prep Method Anl Method Methane 2100 200 20 ug/L 04/24/06 SW846 M8015 SW846	Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
a,a,-Triffuorotoluene 99 80 124 1 % 04/14/06 SW846 5030B SW846 M8021 METHANE Prep Date: 04/24/06 Analyte Result LOD LOQ EQL Dil. Units Code AnI Date Prep Method Anl Method Methane 2100 200 20 ug/L 04/24/06 SW846 M8015 SW846 M8015 PAH/ PNA Prep Method Anl Method 1.4Methylnaphthalene 92 51 170 5000 ug/L QD 04/14/06 SW846 3510C 8270C-SIM 2-Methylnaphthalene 15 1.1 3.7 100 ug/L QD 04/14/06 SW846 3510C 8270C-SIM Acenaphthylene 39 0.81 2.7 100 ug/L QD 04/14/06 SW846 3510C 8270C-SIM Anthracene 3.8 1.2 3.9 100 ug/L QD 04/14/06 SW846 3510C 8270C-SIM Benzo(a)prene <	Benzene		98	2.8	9.2		20	ug/L		04/14/06	SW846 5030B	SW846 M8021
METHANE Prep Date: 04/24/06 Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Date: 04/24/06 Methane 2100 200 20 ug/L 04/24/06 SW846 M8015 SW846 M8015 PAH/ PNA Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl Method 1-Methylnaphthalene 92 51 170 5000 ug/L QD 04/14/06 SW846 3510C 8270C-SIM Acenaphthene 76 41 140 5000 ug/L QD 04/14/06 SW846 3510C 8270C-SIM Acenaphthylene 39 0.81 2.7 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Anthracene 3.8 1.2 3.9 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Benzo(a)pyrene <1.8	Surrogate			LCL	UCL							
Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl Method Methane 2100 200 20 ug/L 04/24/06 SW846 M8015 SW846 M8016 SW846 M8016	a,a,a-Trifluorotoluene		99	80	124		1	%		04/14/06	SW846 5030B	SW846 M8021
Methane 2100 200 200 ug/L 04/24/06 SW846 M8015 SW846 M8015 PAH/ PNA Prep Date: 04/13/06 Prep Date: 04/13/06 Analyte Result LOD LOQ EQL Dil. Units Code Ani Date Prep Date: 04/13/06 1-Methylnaphthalene 15 1.1 3.7 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Acenaphthene 76 41 140 5000 ug/L 04/14/06 SW846 3510C 8270C-SIM Acenaphthylene 39 0.81 2.7 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Acenaphthylene 3.8 1.2 3.9 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Benzo(a)anthracene 1.6 1.6 5.2 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Benzo(a/pyrene < 1.8	METHANE										Prep Dat	e: 04/24/06
PAH/ PNA Prep Date: 04/13/06 Analyte Result LOD LOQ EQL Dil. Units Code Ani Date Prep Method Ani Method 1-Methylnaphthalene 92 51 170 5000 ug/L QD 04/14/06 SW846 3510C 8270C-SIM Acenaphthene 15 1.1 3.7 100 ug/L QD 04/14/06 SW846 3510C 8270C-SIM Acenaphthene 76 41 140 5000 ug/L QD 04/14/06 SW846 3510C 8270C-SIM Acenaphthylene 39 0.81 2.7 100 ug/L QD 04/14/06 SW846 3510C 8270C-SIM Anthracene 3.8 1.2 3.9 100 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Benzo(a)anthracene < 1.6	Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Analyte Result LOD LOQ EQL Dil. Units Code An late Prep Method Anl Method 1-Methylnaphthalene 92 51 170 5000 ug/L QD 04/14/06 SW846 3510C 8270C-SIM Acenaphthene 76 41 140 5000 ug/L QD 04/14/06 SW846 3510C 8270C-SIM Acenaphthene 76 41 140 5000 ug/L QD 04/14/06 SW846 3510C 8270C-SIM Acenaphthylene 39 0.81 2.7 100 ug/L QD 04/14/06 SW846 3510C 8270C-SIM Anthracene 3.8 1.2 3.9 100 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Benzo(a)anthracene 1.6 1.6 5.2 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Benzo(b)fluoranthene 1.6 1.6 5.2 100 ug/L 04/14/06 SW846 3510C 8270C-SIM <td>Methane</td> <td></td> <td>2100</td> <td></td> <td></td> <td>200</td> <td>20</td> <td>ug/L</td> <td></td> <td>04/24/06</td> <td>SW846 M8015</td> <td>SW846 M8015</td>	Methane		2100			200	20	ug/L		04/24/06	SW846 M8015	SW846 M8015
1-Methylnaphthalene 92 51 170 5000 ug/L QD 04/14/06 SW846 3510C 8270C-SIM 2-Methylnaphthalene 15 1.1 3.7 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Acenaphthene 76 41 140 5000 ug/L QD 04/14/06 SW846 3510C 8270C-SIM Acenaphthene 39 0.81 2.7 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Anthracene 3.8 1.2 3.9 100 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Benzo(a)anthracene <	PAH/ PNA										Prep Dat	e: 04/13/06
2-Methylnaphthalene 15 1.1 3.7 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Acenaphthene 76 41 140 5000 ug/L QD 04/14/06 SW846 3510C 8270C-SIM Acenaphthylene 39 0.81 2.7 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Anthracene 3.8 1.2 3.9 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Benzo(a)anthracene <	Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Ani Date	Prep Method	Anl Method
Acenaphthene76411405000ug/LQD04/14/06SW846 3510C8270C-SIMAcenaphthylene390.812.7100ug/L04/14/06SW846 3510C8270C-SIMAnthracene3.81.23.9100ug/LQ04/14/06SW846 3510C8270C-SIMBenzo(a)anthracene< 1.6	1-Methylnaphthalene		92	51	170		500	0 ug/L	QD	04/14/06	SW846 3510C	8270C-SIM
Acenaphthylene390.812.7100ug/L04/14/06SW846 3510C8270C-SIMAnthracene3.81.23.9100ug/LQ04/14/06SW846 3510C8270C-SIMBenzo(a)anthracene<	2-Methylnaphthalene		15	1.1	3.7		100	ug/L		04/14/06	SW846 3510C	8270C-SIM
Anthracene 3.8 1.2 3.9 100 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Benzo(a)anthracene <	Acenaphthene		76	41	140		500	0 ug/L	QD	04/14/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene <	Acenaphthylene		39	0.81	2.7		100	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene <	Anthracene		3.8	1.2	3.9		100	ug/L	Q	04/14/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene < 1.6 1.6 5.2 100 ug/L Z 04/14/06 SW846 3510C 8270C-SIM Benzo(ghi)perylene < 1.9 1.9 6.4 100 ug/L Z 04/14/06 SW846 3510C 8270C-SIM Benzo(k)fluoranthene < 1.9 1.9 6.4 100 ug/L Z 04/14/06 SW846 3510C 8270C-SIM Chrysene < 1.9 1.9 6.3 100 ug/L Z 04/14/06 SW846 3510C 8270C-SIM Dibenz(a,h)anthracene < 1.9 1.9 6.3 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Fluoranthene 5.3 1.5 5.2 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Fluorene 37 0.91 3.0 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene < 1.9 1.9 6.3 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Naphthalene 1100 62 210 5000 ug/L D 04/14/06<	Benzo(a)anthracene	<	1.6	1.6	5.2		100	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene < 1.9	Benzo(a)pyrene	<	1.8	1.8	6.1		100	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene < 1.9	Benzo(b)fluoranthene	<	1.6	1.6	5.2		100	ug/L	Z	04/14/06	SW846 3510C	8270C-SIM
Chrysene < 1.9	Benzo(ghi)perylene	<	1.9	1.9	6.4		100	ug/L		04/14/06	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene < 1.9 1.9 6.3 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Fluoranthene 5.3 1.5 5.2 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Fluoranthene 37 0.91 3.0 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Fluorene 37 0.91 3.0 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene < 1.9	Benzo(k)fluoranthene	<	1.9	1. 9	6.4		100	ug/L	Z	04/14/06	SW846 3510C	8270C-SIM
Fluoranthene 5.3 1.5 5.2 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Fluorene 37 0.91 3.0 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene < 1.9 1.9 6.3 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Naphthalene 1100 62 210 5000 ug/L D 04/14/06 SW846 3510C 8270C-SIM Phenanthrene 48 1.1 3.8 100 ug/L D 04/14/06 SW846 3510C 8270C-SIM Pyrene 2.6 1.5 4.8 100 ug/L D 04/14/06 SW846 3510C 8270C-SIM	Chrysene	<	1.9	1.9	6.3		100	ug/L		04/14/06	SW846 3510C	8270C-SIM
Fluoranthene 5.3 1.5 5.2 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Fluorene 37 0.91 3.0 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene < 1.9 6.3 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Naphthalene 1100 62 210 5000 ug/L D 04/14/06 SW846 3510C 8270C-SIM Phenanthrene 48 1.1 3.8 100 ug/L D 04/14/06 SW846 3510C 8270C-SIM Pyrene 2.6 1.5 4.8 100 ug/L D 04/14/06 SW846 3510C 8270C-SIM	Dibenz(a,h)anthracene	<	1.9	1.9	6.3		100	ug/L		04/14/06	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene < 1.9 1.9 6.3 100 ug/L 04/14/06 SW846 3510C 8270C-SIM Naphthalene 1100 62 210 5000 ug/L D 04/14/06 SW846 3510C 8270C-SIM Phenanthrene 48 1.1 3.8 100 ug/L E 04/14/06 SW846 3510C 8270C-SIM Pyrene 2.6 1.5 4.8 100 ug/L Q 04/14/06 SW846 3510C 8270C-SIM	Fluoranthene		5.3	1.5	5.2		100	ug/L		04/14/06	SW846 3510C	8270C-SIM
Naphthalene 1100 62 210 5000 ug/L D 04/14/06 SW846 3510C 8270C-SIM Phenanthrene 48 1.1 3.8 100 ug/L E 04/14/06 SW846 3510C 8270C-SIM Pyrene 2.6 1.5 4.8 100 ug/L Q 04/14/06 SW846 3510C 8270C-SIM	Fluorene		37	0.91	3.0		100	ug/L		04/14/06	SW846 3510C	8270C-SIM
Phenanthrene 48 1.1 3.8 100 ug/L E 04/14/06 SW846 3510C 8270C-SIM Pyrene 2.6 1.5 4.8 100 ug/L Q 04/14/06 SW846 3510C 8270C-SIM	Indeno(1,2,3-cd)pyrene	<	1.9	1.9	6.3		100	ug/L		04/14/06	SW846 3510C	8270C-SIM
Phenanthrene 48 1.1 3.8 100 ug/L E 04/14/06 SW846 3510C 8270C-SIM Pyrene 2.6 1.5 4.8 100 ug/L Q 04/14/06 SW846 3510C 8270C-SIM	Naphthalene		1100	62			500	_	D	04/14/06		
Pyrene 2.6 1.5 4.8 100 ug/L Q 04/14/06 SW846 3510C 8270C-SIM	Phenanthrene		48	1.1	3.8		100	_	Е	04/14/06		
Surrogate LCL UCL	Pyrene		2.6	1.5	4.8		100	ug/L	Q	04/14/06	SW846 3510C	8270C-SIM
	Surrogate			LCL	UCL							

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-d14

0

0

0

10

20

44

150

111

115

100

100

100 %

%

%

D

D

D

04/14/06

04/14/06

04/14/06

SW846 3510C 8270C-SIM

SW846 3510C 8270C-SIM

SW846 3510C 8270C-SIM

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Pace Analytical Services, Inc.			Anal	ytical	Repoi	rt Nur	nber: 87	70724	1241 Bellevue Street Green Bay, WI 54302 920-469-2436				
Client : NATURA	RE	SOURCE	TECHN	OLOGY					Matı	ix Type : WATE	R		
Project Name: WPSC - S	STE	VEN'S PO	INT							on Date: 04/11/			
Project Number: 1177									Rep	ort Date: 04/25/	06		
Field ID : PZ-9B								La	b Sample I	Number: 870724	4-013		
INORGANICS											· · · · · · · · · · · · · · · · · · ·		
Test		Result	LOD	LOQ	EQL	Dil.	Code	Anl Date	Prep Method	Anl Method			
Iron - Dissolved		3200	50	170		1	ug/L		04/14/06	SW846 6010B	SW846 6010B		
Alkalinity as CaCO3		110	9.7	32		1	mg/L		04/14/06	EPA 310.2	EPA 310.2		
Nitrogen, NO3 + NO2	<	0.11	0.11	0.37		1	mg/L		04/17/06	EPA 353.2	EPA 353.2		
Sulfate		11	0.77	2.6		1	mg/L		04/18/06	EPA 300.0	EPA 300.0		
BENZENE										Prep Dat	e: 04/14/06		
Analyte		Result	LOD	LOQ	EQL	Dil	. Units	Code	e Anl Date	Prep Method	Anl Method		
Benzene	<	0.14	0.14	0.46		1	ug/L		04/14/06	SW846 5030B	SW846 M8021		
Surrogate			LCL	UCL									
a,a,a-Trifluorotoluene		98	80	124		1	%		04/14/06	SW846 5030B	SW846 M8021		
METHANE										Prep Dat	e: 04/24/06		
Analyte		Result	LOD	LOQ	EQL	Dil	. Units	Code	e Anl Date	Prep Method	Anl Method		
Methane		18			10	1	ug/L		04/24/06	SW846 M8015	SW846 M8015		
PAH/ PNA										Prep Dat	e: 04/13/06		
Analyte		Result	LOD	LOQ	EQL	Dil.	. Units	Code	e Anl Date	Prep Method	Ani Method		
1-Methylnaphthalene		0.86	0.051	0.17		5	ug/L	D	04/17/06	SW846 3510C	8270C-SIM		
2 Mothylpophthalopo		0 0 0 0	0.011	0.027		4		0	04/14/06	SIMOAG 2E400	90700 CIM		

Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
1-Methylnaphthalene		0.86	0.051	0.17		5	ug/L	D	04/17/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene		0.029	0.011	0.037		1	ug/L	Q	04/14/06	SW846 3510C	8270C-SIM
Acenaphthene		1.4	0.041	0.14		5	ug/L	D	04/17/06	SW846 3510C	8270C-SIM
Acenaphthylene		0.048	0.0081	0.027		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Anthracene		0.013	0.012	0.039		1	ug/L	Q	04/14/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.016	0.016	0.052		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.018	0.018	0.061		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.016	0.016	0.052		1	ug/L	Z	04/14/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.019	0.019	0.064		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.019	0.019	0.064		1	ug/L	Z	04/14/06	SW846 3510C	8270C-SIM
Chrysene	<	0.019	0.019	0.063		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.019	0.019	0.063		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Fluoranthene	<	0.015	0.015	0.052		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Fluorene		0.024	0.0091	0.030		1	ug/L	Q	04/14/06	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.019	0.019	0.063		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Naphthalene		0.75	0.062	0.21		5	ug/L	D	04/17/06	SW846 3510C	8270C-SIM
Phenanthrene		0.020	0.011	0.038		1	ug/L	Q	04/14/06	SW846 3510C	8270C-SIM
Pyrene	<	0.015	0.015	0.048		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Surrogate			LCL	UCL							
Nitrobenzene-d5		74	10	150		1	%		04/14/06	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		67	20	111		1	%		04/14/06	SW846 3510C	8270C-SIM
Terphenyi-d14		80	44	115		1	%		04/14/06	SW846 3510C	8270C-SIM

1241 Bellevue Street Green Bay, WI 54302

Pace Analytical

Pace Analytical Services, Inc.		Analytical Report Number: 870724								1241 Bellevue Street Green Bay, WI 54302 920-469-2436			
Client: NATUR	AL RE	SOURCE	TECHN	OLOGY					Mati	rix Type : WATE	R		
Project Name : WPSC -	STE	/EN'S PO	INT						Collection Date: 04/11/06				
Project Number: 1177									Rep	ort Date: 04/25/	06		
Field ID: OW-10								La	b Sample I	Number : 87072	4-014		
INORGANICS													
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method		
Iron - Dissolved		17000	50	170		1	ug/L		04/14/06	SW846 6010B	SW846 6010B		
Alkalinity as CaCO3		890	48	160		5	mg/L		04/17/06	EPA 310.2	EPA 310.2		
Nitrogen, NO3 + NO2	<	0.11	0.11	0.37		1	mg/L		04/17/06	EPA 353.2	EPA 353.2		
Sulfate		4.4	0.77	2.6		1	mg/L		04/18/06	EPA 300.0	EPA 300.0		
BENZENE										Prep Dat	e: 04/14/06		
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method		
Benzene		1.8	0.14	0.46		1	ug/L		04/14/06	SW846 5030B	SW846 M802		
Surrogate			LCL	UCL									
a,a,a-Trifluorotoluene		99	80	124		1	%		04/14/06	SW846 5030B	SW846 M802		
METHANE										Prep Dat	e: 04/24/06		
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method		
Methane		3200			250	25	ug/L		04/24/06	SW846 M8015	SW846 M801		
PAH/ PNA										Prep Dat	e: 04/13/06		
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method		
1-Methylnaphthalene		2.8	0.20	0.68		20	ug/L		04/14/06	SW846 3510C	8270C-SIM		
2-Methylnaphthalene		0.35	0.22	0.75		20	ug/L	Q	04/14/06	SW846 3510C	8270C-SIM		
Acenaphthene		2.4	0.16	0.54		20	ug/L		04/14/06	SW846 3510C	8270C-SIM		
Acenaphthylene		0.37	0.16	0.54		20	ug/L	Q	04/14/06	SW846 3510C	8270C-SIM		
Anthracene	<	0.23	0.23	0.77		20	ug/L		04/14/06	SW846 3510C	8270C-SIM		
Benzo(a)anthracene	<	0.31	0.31	1.0		20	ug/L		04/14/06	SW846 3510C	8270C-SIM		
Benzo(a)pyrene	<	0.37	0.37	1.2		20	ug/L		04/14/06	SW846 3510C	8270C-SIM		
Benzo(b)fluoranthene	<	0.31	0.31	1.0		20	ug/L	Z	04/14/06	SW846 3510C	8270C-SIM		
Benzo(ghi)perylene	<	0.39	0.39	1.3		20	ug/L		04/14/06	SW846 3510C	8270C-SIM		
Benzo(k)fluoranthene	<	0.39	0.39	1.3		20	ug/L	Z	04/14/06	SW846 3510C	8270C-SIM		
Chrysene	<	0.38	0.38	1.3		20	ug/L		04/14/06	SW846 3510C	8270C-SIM		
Dibenz(a,h)anthracene	<	0.38	0.38	1.3		20	ug/L		04/14/06	SW846 3510C	8270C-SIM		
Fluoranthene	<	0.31	0.31	1.0		20	ug/L		04/14/06	SW846 3510C	8270C-SIM		
Fluorene		0.50	0.18	0.60		20	ug/L	Q	04/14/06	SW846 3510C	8270C-SIM		
Indeno(1,2,3-cd)pyrene	<	0.38	0.38	1.3		20	ug/L		04/14/06	SW846 3510C	8270C-SIM		
Naphthalene		19	0.99	3.3		80	ug/L	D	04/14/06	SW846 3510C	8270C-SIM		
Phenanthrene	<	0.23	0.23	0.76		20	ug/L		04/14/06	SW846 3510C	8270C-SIM		
Pyrene	<	0.29	0.29	0.97		20	ug/L		04/14/06	SW846 3510C	8270C-SIM		
Surrogate			LCL	UCL									
Nitrobenzene-d5		0	10	150		20	%	D	04/14/06	SW846 3510C	8270C-SIM		
2-Fluorobiphenyl		0	20	111		20	%	D	04/14/06	SW846 3510C	8270C-SIM		
Terphenyl-d14		0	44	115		20	%	D	04/14/06	SW846 3510C	8270C-SIM		

Client : NATURA Project Name : WPSC - Project Number : 1177 Field ID : PZ-10B			Matrix Type: WATER Collection Date: 04/11/06 Report Date: 04/25/06 Lab Sample Number: 870724-015								
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved	<	50	50	170		1	ug/L		04/14/06	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		120	9.7	32		1	mg/L		04/14/06	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2		0.17	0.11	0.37		1	mg/L	Q	04/17/06	EPA 353.2	EPA 353.2
Sulfate		16	0.77	2.6		1	mg/L		04/18/06	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	e: 04/14/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method
Benzene	<	0.14	0.14	0.46		1	ug/L		04/14/06	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		99	80	124		1	%		04/14/06	SW846 5030B	SW846 M8021
METHANE										Prep Dat	e: 04/24/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method
Methane	<	10			10	1	ug/L		04/24/06	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 04/13/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Ani Date	Prep Method	Anl Method
1-Methylnaphthalene	<	0.010	0.010	0.034		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene		0.013	0.011	0.038		1	ug/L	Q	04/14/06	SW846 3510C	8270C-SIM
Acenaphthene	<	0.0083	0.0083	0.028		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Acenaphthylene	<	0.0083	0.0083	0.028		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Anthracene	<	0.012	0.012	0.039		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.016	0.016	0.053		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.019	0.019	0.062		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.016	0.016	0.053		1	ug/L	Z	04/14/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.020	0.020	0.066		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.020	0.020	0.066		1	ug/L	Z	04/14/06	SW846 3510C	8270C-SIM
Chrysene	<	0.019	0.019	0.064		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.019	0.019	0.064		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Fluoranthene		0.020	0.016	0.053		1	ug/L	Q	04/14/06	SW846 3510C	8270C-SIM
Fluorene	<	0.0092	0.0092	0.031		1	ug/L		04/14/06	SW846 3510C	
Indeno(1,2,3-cd)pyrene	<	0.019	0.019	0.064		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Naphthalene		0.045	0.013	0.042		1	ug/L		04/14/06	SW846 3510C	
Phenanthrene	<	0.012	0.012	0.039		1	ug/L		04/14/06	SW846 3510C	
Pyrene		0.016	0.015	0.049		1	ug/L	Q	04/14/06	SW846 3510C	
Surrogate			LCL	UCL							
Nitrobenzene-d5		55	10	150		1	%		04/14/06	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		52	20	111		1	%		04/14/06	SW846 3510C	8270C-SIM

1 %

Analytical Report Number: 870724

Pace Analytical Services, Inc.

Terphenyl-d14

77

44

115

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

04/14/06 SW846 3510C 8270C-SIM

Pace Analytical Services, Inc.	Analytical Report Number: 8707241241 Bellevue StrGreen Bay, WI 54920-469-2436								y, WI 54302		
Client:NATURA Project Name:WPSC - 3				OLOGY						rix Type: WATE on Date: 04/11/	
Project Number: 1177									Rep	ort Date: 04/25/	06
Field ID : OW-11								La	b Sample I	Number: 87072	4-016
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved		26000	50	170		1	ug/L		04/14/06	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		110	9.7	32		1	mg/L		04/14/06	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.11	0.11	0.37		1	mg/L		04/17/06	EPA 353.2	EPA 353.2
Sulfate		5.0	0.77	2.6		1	mg/L		04/18/06	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	e: 04/14/06
Analyte		Result	LOD	LOQ	EQL	Dil	. Units	Cod	e Anl Date	Prep Method	Ani Method
Benzene		0.26	0.14	0.46		1	ug/L	Q	04/14/06	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		98	80	124		1	%		04/14/06	SW846 5030B	SW846 M8021
METHANE										Prep Dat	e: 04/24/06
Analyte		Result	LOD	LOQ	EQL	Dil	. Units	Cod	e Anl Date	Prep Method	Anl Method
Methane		670			50	5	ug/L		04/24/06	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 04/13/06
Analyte		Result	LOD	LOQ	EQL	Dil	. Units	Cod	e Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		0.14	0.051	0.17		5	ug/L	Q	04/14/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene	<	0.057	0.057	0.19		5	ug/L		04/14/06	SW846 3510C	8270C-SIM
Acenaphthene		2.0	0.041	0.14		5	ug/L		04/14/06	SW846 3510C	8270C-SIM
Acenaphthylene		0.078	0.041	0.14		5	ug/L	Q	04/14/06	SW846 3510C	8270C-SIM
Anthracene	<	0.058	0.058	0.19		5	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.079	0.079	0.26		5	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.093	0.093	0.31		5	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.079	0.079	0.26		5	ug/L	Z	04/14/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.097	0.097	0.32		5	ug/L		04/14/06	SW846 3510C	
Benzo(k)fluoranthene	<	0.098	0.098	0.33		5	ug/L	Z	04/14/06	SW846 3510C	8270C-SIM
Chrysene	<	0.096	0.096	0.32		5	ug/L		04/14/06	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.095	0.095	0.32		5	ug/L		04/14/06	SW846 3510C	
Fluoranthene	<		0.078	0.26		5	ug/L		04/14/06	SW846 3510C	
Fluorene		0.47	0.046	0.15		5	ug/L		04/14/06	SW846 3510C	
Indeno(1,2,3-cd)pyrene	<	0.095	0.095	0.32		5	ug/L		04/14/06	SW846 3510C	
Naphthalene		1.1	0.062	0.21		5	ug/L		04/14/06	SW846 3510C	
Phenanthrene		0.057	0.057	0.19		5	ug/L		04/14/06	SW846 3510C	
Pyrene	<	0.073	0.073	0.24		5	ug/L		04/14/06	SW846 3510C	8270C-SIM
Surrogate			LCL	UCL							
Nitrobenzene-d5		62	10	150		5	%		04/14/06	SW846 3510C	
2-Fluorobiphenyl		42	20	111		5	%		04/14/06	SW846 3510C	
Terphenyl-d14		87	44	115		5	%		04/14/06	SW846 3510C	8270C-SIM

Services, inc.										920-469-2	436
	Field ID : PZ-11B										R 06 06 4-017
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Iron - Dissolved	<	50	50	170		1	ug/L		04/14/06	SW846 6010B	SW846 6010B
Nitrogen, NO3 + NO2		0.17	0.11	0.37		1	mg/L	Q	04/17/06	EPA 353.2	EPA 353.2
BENZENE										Prep Dat	e: 04/14/06
Analyte		Result	LOD	LOQ	EQL	Dil	. Units	Cod	e Anl Date	Prep Method	Ani Method
Benzene	<	0.14	0.14	0.46		1	ug/L		04/14/06	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		99	80	124		1	%		04/14/06	SW846 5030B	SW846 M8021
METHANE										Prep Dat	e: 04/24/06
Analyte		Result	LOD	LOQ	EQL	Dil	. Units	Cod	e Ani Date	Prep Method	Anl Method
Methane	<	10			10	1	ug/L		04/24/06	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 04/13/06
Analyte		Result	LOD	LOQ	EQL	Dil	. Units	Cod	e Anl Date	Prep Method	Anl Method
1-Methylnaphthalene	<	0.010	0.010	0.034		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene	<	0.011	0.011	0.038		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Acenaphthene	<	0.0082	0.0082	0.027		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Acenaphthylene	<	0.0082	0.0082	0.027		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Anthracene	<	0.012	0.012	0.039		1	ug/L		04/14/06	SW846 3510C	
Benzo(a)anthracene	<	0.016	0.016	0.052		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.019	0.019	0.062		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.016	0.016	0.053		1	ug/L	Z	04/14/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.019	0.019	0.065		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.020	0.020	0.065		1	ug/L	Z	04/14/06	SW846 3510C	8270C-SIM
Chrysene	<	0.019	0.019	0.064		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.019	0.019	0.063		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Fluoranthene	<	0.016	0.016	0.052		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Fluorene	<	0.0091	0.0091	0.030		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.019	0.019	0.063		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Naphthalene		0.026	0.012	0.042		1	ug/L	Q	04/14/06	SW846 3510C	8270C-SIM
Phenanthrene		0.013	0.011	0.038		1	ug/L	Q	04/14/06		
Pyrene	<	0.015	0.015	0.049		1	ug/L		04/14/06	SW846 3510C	
Surrogate			LCL	UCL							
Nitrobenzene-d5		55	10	150		1	%		04/14/06	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		56	20	111		1	%		04/14/06	SW846 3510C	8270C-SIM
Terphenyl-d14		88	44	115		1	%		04/14/06	SW846 3510C	8270C-SIM

Pace Analytical Services, Inc. 1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Alkalinity as CaCO3 39 9.7 32 1 mg/L 0.4/14/06 EPA 310.2 EPA 30.0 EPA 30.0 <t< th=""><th>Services, Inc.</th><th></th><th></th><th></th><th>-</th><th>-</th><th></th><th></th><th></th><th></th><th>920-469-2</th><th></th></t<>	Services, Inc.				-	-					920-469-2	
Collect Name : WFSC - STEVEN'S POINT Collect Name : V4/11/06 Rejort Date : 04/11/06 Rejort Date : 04/11/06 Teld ID : OW-12 Collect Name : 870/724-013 Lab Sample Number : 870/724-013 INORGANICS Code An Date : 04/11/06 Prep Method An Method A Method : 870/84 66 010B Mide 6010B Alkalinity as CaCO3 99 97 32 1 mg/L Od/11/106 SPA 33.2 EPA 33.2 EPA 33.2 EPA 33.2 Suffate 7 2 Prep Nethod An Method Analyse Result LOD LOD LOD LOD LOD LOD Code AnI Date Prep Date: 04/14/06 SW346 5030B SW446 5030B SW446 5030B SW446 5030B SW476 Result	Client : NATURA	L RE	SOURCE	TECHNO	DLOGY					Mati	ix Type: WATE	R
Project Number : 1177 Field ID : OW-12 Exp :: Lab Sample Number : 670724-013 Lab Sample Number : 670724-013 INORGANICS Test Result LOD LOD DL Test Result LOD LO OL/14/06 SW846 6010B NINGEANICS SW346 60102 SW346 6010E SW346 6010E All Mittingen, NO-2 OL/14/106 SW346 6010E SW346 6010E SW346 6010E SW346 6010E SW346 6010E All Mittingen, NO-2 OL/14/106 SW346 6010E SW346 6030E	Project Name : WPSC - S	STE	VEN'S PO	INT								
Ibid ID: CW-12 Lab Sample Number: 870724-018 INORGANICS Test Result LOD LOD EQ Dil. Units Code Anl Date Prep Method Anl Method Irion - Dissolved 50 50 170 1 ug/L 04/14/06 SW846 60108 SW346 6010	•											
INORGANICS Test Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl Method Iton - Dissolved < 50 50 170 1 ug/L 04/14/06 SW846 6010B EPA 310.2 EPA 300.0 EPA 300.0 <t< th=""><th>•</th><th></th><th></th><th></th><th></th><th></th><th></th><th colspan="5">-</th></t<>	•							-				
Test Result LOQ LOQ EQL Dil. Units Code An I Date Prep Method Ant Method lron – Dissolved 50 50 170 1 ug/L 04/14/06 SW846 60108 And Nethod BENZENEA 7.0 0.77 2.6 1 mg/L 0.4/14/06 SW846 60308 SW846 60308 </th <th></th>												
Iron - Dissolved < 50 50 170 1 ug/L 04/14/06 SW846 6010B SW846 6010B Alkalinity as CaCO3 39 9.7 32 1 mg/L 04/14/06 EPA 310.2 EPA 310.2 EPA 310.2 EPA 350.2 <												
Alkalinity as CaCO3 39 9.7 32 1 mg/L 0.4/14/06 EPA 310.2 EPA 30.0 EPA 30.0 <t< td=""><td></td><td></td><td>Result</td><td>LOD</td><td>LOQ</td><td>EQL</td><td>Dil.</td><td>Units</td><td>Code</td><td>Anl Date</td><td>Prep Method</td><td>Anl Method</td></t<>			Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Nitrogen, NO3 + NO2 0.20 0.11 0.37 1 mg/L Q 0.4/17/06 EPA 353.2 EPA 300.0 Sulfate 7.0 0.77 2.6 1 mg/L Q 04/17/06 EPA 300.0 EPA 300.0 BENZENE Nahyte Result LOD LOQ EQL Dil. Units Code An Date Prep Method An Method Benzene <	Iron - Dissolved	<	50	50	170		1	ug/L		04/14/06	SW846 6010B	SW846 6010B
Suifate 7.0 0.77 2.6 1 mg/L 04/18/06 EPA 300.0 EPA 300.0 BENZENE Analyte Result LOD LOQ EQL Dil. Units Code An Date Prep Method An I Method Benzene <	Alkalinity as CaCO3		39	9.7	32		1	mg/L		04/14/06	EPA 310.2	EPA 310.2
BENZENE Prep Date: 0.014/14/06 Prep Method Ani Method Benzene <	Nitrogen, NO3 + NO2		0.20	0.11	0.37		1	mg/L	Q	04/17/06	EPA 353.2	EPA 353.2
Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl Method Benzene <	Sulfate		7.0	0.77	2.6		1	mg/L		04/18/06	EPA 300.0	EPA 300.0
Benzene < 0.14 0.14 0.46 1 ug/L 04/14/06 SW846 5030B SW846 M8021 Surrogate LCL UCL UCL Vicial 04/14/06 SW846 5030B SW846 M8021 Aa,a,a-Triffluorotoluene 98 80 124 1 % 04/14/06 SW846 5030B SW846 M8021 METHANE Prep Date: 04/24/06 SW846 M8015 SW846 M8015 <th< td=""><td>BENZENE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Prep Dat</td><td>e: 04/14/06</td></th<>	BENZENE										Prep Dat	e: 04/14/06
Surrogate LCL UCL a,a,a-Trifluorotoluene 98 80 124 1 % 04/14/06 SW846 5030B SW846 M8021 METHANE Prep Date: 04/24/06 Prep Date: 04/24/06 Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl Method Methane <	Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method
a,a,a-Triffuorotoluene 98 80 124 1 % 04/14/06 SW846 5030B SW846 M8021 METHANE Prep Date: 04/24/06 Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Date: 04/24/06 Methane < 10 1 ug/L 04/24/06 SW846 M8015 SW846 M8015 PAH/ PNA Prep Date: 04/14/06 SW846 5010C 8270C-SIM 2-Methylnaphthalene <	Benzene	<	0.14	0.14	0.46		1	ug/L	·	04/14/06	SW846 5030B	SW846 M8021
METHANE Analyte Result LOD LOQ EQL Dil. Units Code AnI Date Prep Date: 04/24/06 Methane <	Surrogate			LCL	UCL							
Analyte Result LOD LOQ EQL DII. Units Code An I Date Prep Method An I Method Methane <	a,a,a-Trifluorotoluene		98	80	124		1	%	····	04/14/06	SW846 5030B	SW846 M8021
Methane < 10 1 ug/L 04/24/06 SW846 M8015 SW846 M8015 PAH/ PNA Prep Dat: 04/13/06 Prep Dat: 04/13/06 Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl Method 1-Methylnaphthalene 0.010 0.034 1 ug/L 04/14/06 SW846 3510C 8270C-SIM 2-Methylnaphthalene 0.0082 0.0082 0.027 1 ug/L 04/14/06 SW846 3510C 8270C-SIM Acenaphthylene 0.022 0.0081 0.027 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Anthracene 0.026 0.016 0.052 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Benzo(a)anthracene 0.026 0.016 0.052 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Benzo(k)floranthene 0.017	METHANE	_									Prep Dat	e: 04/24/06
PAH/ PNA Result LOD LOQ EQL Dil. Units Code Anl Date Prep Date: 04/13/06 Analyte Result LOD 0.010 0.034 1 ug/L 04/14/06 SW846 3510C 8270C-SIM Adethylnaphthalene < 0.011	Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Ani Date	Prep Method	Anl Method
Analyte Result LOD LOQ EQL Dil. Units Code Anl Date Prep Method Anl Method 1-Methylnaphthalene <	Methane	<	10			10	1	ug/L		04/24/06	SW846 M8015	SW846 M8015
Methylnaphthalene < 0.010 0.034 1 ug/L 04/14/06 SW846 3510C 8270C-SIM 2-Methylnaphthalene 0.011 0.037 1 ug/L 04/14/06 SW846 3510C 8270C-SIM Acenaphthene 0.0082 0.0027 1 ug/L 04/14/06 SW846 3510C 8270C-SIM Acenaphthylene 0.022 0.0081 0.027 1 ug/L 04/14/06 SW846 3510C 8270C-SIM Acenaphthylene 0.022 0.0081 0.027 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Benzo(a)anthracene 0.023 0.018 0.061 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Benzo(a)anthracene 0.017 0.016 0.052 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Benzo(b)fluoranthene 0.017 0.0164 ug/L QZ 04/14/06 SW846 3510C	PAH/ PNA				· · · · · · · · · · · · · · · · · · ·						Prep Dat	e: 04/13/06
2-Methylnaphthalene <	Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method
Acenaphthene < 0.0082	1-Methylnaphthalene	<	0.010	0.010	0.034		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Acenaphthylene 0.022 0.0081 0.027 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Anthracene 0.012 0.012 0.039 1 ug/L 04/14/06 SW846 3510C 8270C-SIM Benzo(a)anthracene 0.026 0.016 0.052 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Benzo(a)apyrene 0.023 0.018 0.061 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Benzo(ghi)perylene 0.017 0.016 0.052 1 ug/L QZ 04/14/06 SW846 3510C 8270C-SIM Benzo(ghi)perylene 0.019 0.064 1 ug/L QZ 04/14/06 SW846 3510C 8270C-SIM Benzo(k)fluoranthene 0.023 0.019 0.063 1 ug/L QZ 04/14/06 SW846 3510C 8270C-SIM Dibenz(a,h)anthracene 0.019 0.063 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Fluoranthene 0.01	2-Methylnaphthalene	<	0.011	0.011	0.037		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Acenaphthylene 0.022 0.0081 0.027 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Anthracene <	Acenaphthene	<	0.0082	0.0082	0.027		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene 0.026 0.016 0.052 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Benzo(a)pyrene 0.023 0.018 0.061 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Benzo(a)pyrene 0.017 0.016 0.052 1 ug/L QZ 04/14/06 SW846 3510C 8270C-SIM Benzo(b)fluoranthene 0.017 0.016 0.052 1 ug/L QZ 04/14/06 SW846 3510C 8270C-SIM Benzo(ghi)perylene <	Acenaphthylene		0.022	0.0081	0.027		1	ug/L	Q	04/14/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene 0.023 0.018 0.061 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Benzo(b)fluoranthene 0.017 0.016 0.052 1 ug/L QZ 04/14/06 SW846 3510C 8270C-SIM Benzo(ghi)perylene 0.019 0.064 1 ug/L QZ 04/14/06 SW846 3510C 8270C-SIM Benzo(ghi)perylene 0.019 0.064 1 ug/L QZ 04/14/06 SW846 3510C 8270C-SIM Benzo(ghi)perylene 0.020 0.019 0.064 1 ug/L QZ 04/14/06 SW846 3510C 8270C-SIM Chrysene 0.023 0.019 0.063 1 ug/L QZ 04/14/06 SW846 3510C 8270C-SIM Fluoranthene 0.042 0.015 0.052 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Fluorene 0.042 0.015 0.052 1 ug/L Q 04/14/06 <td>Anthracene</td> <td><</td> <td>0.012</td> <td>0.012</td> <td>0.039</td> <td></td> <td>1</td> <td>ug/L</td> <td></td> <td>04/14/06</td> <td>SW846 3510C</td> <td>8270C-SIM</td>	Anthracene	<	0.012	0.012	0.039		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene 0.017 0.016 0.052 1 ug/L QZ 04/14/06 SW846 3510C 8270C-SIM Benzo(ghi)perylene 0.019 0.019 0.064 1 ug/L 04/14/06 SW846 3510C 8270C-SIM Benzo(ghi)perylene 0.020 0.019 0.064 1 ug/L QZ 04/14/06 SW846 3510C 8270C-SIM Benzo(k)fluoranthene 0.023 0.019 0.063 1 ug/L QZ 04/14/06 SW846 3510C 8270C-SIM Chrysene 0.023 0.019 0.063 1 ug/L QZ 04/14/06 SW846 3510C 8270C-SIM Dibenz(a,h)anthracene 0.019 0.063 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Fluoranthene 0.042 0.015 0.052 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Fluorene 0.041 0.030 1 ug/L Q 04/1	Benzo(a)anthracene		0.026	0.016	0.052		1	ug/L	Q	04/14/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene < 0.019 0.019 0.064 1 ug/L 04/14/06 SW846 3510C 8270C-SIM Benzo(k)fluoranthene 0.020 0.019 0.064 1 ug/L QZ 04/14/06 SW846 3510C 8270C-SIM Chrysene 0.023 0.019 0.063 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Dibenz(a,h)anthracene <	Benzo(a)pyrene		0.023	0.018	0.061		1	ug/L	Q	04/14/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene < 0.019 0.019 0.064 1 ug/L 04/14/06 SW846 3510C 8270C-SIM Benzo(k)fluoranthene 0.020 0.019 0.064 1 ug/L QZ 04/14/06 SW846 3510C 8270C-SIM Chrysene 0.023 0.019 0.063 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Dibenz(a,h)anthracene <	Benzo(b)fluoranthene		0.017	0.016	0.052		1	ug/L	QZ	04/14/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene 0.020 0.019 0.064 1 ug/L QZ 04/14/06 SW846 3510C 8270C-SIM Chrysene 0.023 0.019 0.063 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Dibenz(a,h)anthracene 0.019 0.063 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Fluoranthene 0.042 0.015 0.052 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Fluorene 0.0091 0.0091 0.030 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene 0.019 0.030 1 ug/L 04/14/06 SW846 3510C 8270C-SIM Naphthalene 0.013 0.012 0.041 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Pyrene 0.013 0.012 0.041 1 ug/L Q 04/14/06 SW846 3510C <td>Benzo(ghi)perylene</td> <td><</td> <td>0.019</td> <td>0.019</td> <td>0.064</td> <td></td> <td>1</td> <td>ug/L</td> <td></td> <td>04/14/06</td> <td>SW846 3510C</td> <td>8270C-SIM</td>	Benzo(ghi)perylene	<	0.019	0.019	0.064		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Chrysene 0.023 0.019 0.063 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Dibenz(a,h)anthracene 0.019 0.019 0.063 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Fluoranthene 0.042 0.015 0.052 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Fluorene 0.0091 0.0091 0.030 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene 0.019 0.0091 0.030 1 ug/L 04/14/06 SW846 3510C 8270C-SIM Naphthalene 0.013 0.012 0.041 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Phenanthrene 0.012 0.011 0.038 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Surrogate LCL UCL UCL Q 04/14/06 SW846 3510C 8270C-SIM Nitrobenzene-d5 54 10 150 1	Benzo(k)fluoranthene		0.020	0.019	0.064		1		QZ	04/14/06	SW846 3510C	8270C-SIM
Fluoranthene 0.042 0.015 0.052 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Fluorene < 0.0091 0.0091 0.030 1 ug/L 04/14/06 SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene < 0.019 0.019 0.063 1 ug/L 04/14/06 SW846 3510C 8270C-SIM Naphthalene 0.013 0.012 0.041 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Phenanthrene 0.013 0.012 0.041 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Pyrene 0.012 0.011 0.038 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Surrogate LCL UCL Q 04/14/06 SW846 3510C 8270C-SIM Nitrobenzene-d5 54 10 150 1 % 04/14/06 SW846 3510C 8270C-SIM 2-Fluorobiphenyl 51 20 111 1 % 04/14/06 SW846 3510C 8270C-SIM <td>Chrysene</td> <td></td> <td>0.023</td> <td>0.019</td> <td>0.063</td> <td></td> <td>1</td> <td></td> <td>Q</td> <td>04/14/06</td> <td>SW846 3510C</td> <td>8270C-SIM</td>	Chrysene		0.023	0.019	0.063		1		Q	04/14/06	SW846 3510C	8270C-SIM
Fluoranthene 0.042 0.015 0.052 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Fluorene < 0.0091 0.0091 0.030 1 ug/L 04/14/06 SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene < 0.019 0.019 0.063 1 ug/L 04/14/06 SW846 3510C 8270C-SIM Naphthalene 0.013 0.012 0.041 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Phenanthrene 0.013 0.012 0.041 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Pyrene 0.012 0.011 0.038 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Surrogate LCL UCL Q 04/14/06 SW846 3510C 8270C-SIM Nitrobenzene-d5 54 10 150 1 % 04/14/06 SW846 3510C 8270C-SIM 2-Fluorobiphenyl 51 20 111 1 % 04/14/06 SW846 3510C 8270C-SIM <td>Dibenz(a,h)anthracene</td> <td><</td> <td>0.019</td> <td>0.019</td> <td>0.063</td> <td></td> <td>1</td> <td>ug/L</td> <td></td> <td>04/14/06</td> <td>SW846 3510C</td> <td>8270C-SIM</td>	Dibenz(a,h)anthracene	<	0.019	0.019	0.063		1	ug/L		04/14/06	SW846 3510C	8270C-SIM
Fluorene < 0.0091	Fluoranthene		0.042	0.015	0.052		1		Q	04/14/06		
Indeno(1,2,3-cd)pyrene < 0.019	Fluorene	<	0.0091	0.0091			1	-		04/14/06		
Naphthalene 0.013 0.012 0.041 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Phenanthrene 0.012 0.011 0.038 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Pyrene 0.037 0.015 0.048 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Surrogate LCL UCL U V V V V Nitrobenzene-d5 54 10 150 1 % 04/14/06 SW846 3510C 8270C-SIM 2-Fluorobiphenyl 51 20 111 1 % 04/14/06 SW846 3510C 8270C-SIM	Indeno(1,2,3-cd)pyrene	<						-				
Phenanthrene 0.012 0.011 0.038 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Pyrene 0.037 0.015 0.048 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Surrogate LCL UCL UCL V V Nitrobenzene-d5 54 10 150 1 % 04/14/06 SW846 3510C 8270C-SIM 2-Fluorobiphenyl 51 20 111 1 % 04/14/06 SW846 3510C 8270C-SIM	Naphthalene							-	Q			
Pyrene 0.037 0.015 0.048 1 ug/L Q 04/14/06 SW846 3510C 8270C-SIM Surrogate LCL UCL UCL Outle SURBAGE SU	Phenanthrene							-				
Surrogate LCL UCL Nitrobenzene-d5 54 10 150 1 % 04/14/06 SW846 3510C 8270C-SIM 2-Fluorobiphenyl 51 20 111 1 % 04/14/06 SW846 3510C 8270C-SIM	Pyrene							-				
2-Fluorobiphenyl 51 20 111 1 % 04/14/06 SW846 3510C 8270C-SIM	Surrogate			LCL				-				
• •	Nitrobenzene-d5		54	10	150		1	%		04/14/06	SW846 3510C	8270C-SIM
Terphenyl-d14 76 44 115 1 % 04/14/06 SW846 3510C 8270C-SIM	2-Fluorobiphenyl		51	20	111		1	%		04/14/06	SW846 3510C	8270C-SIM
	Terphenyl-d14		76	44	115		1	%		04/14/06	SW846 3510C	8270C-SIM

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Pace Analytical Services, Inc. Client : NATURAL RES

Pace Analytical Services, Inc.	Analy	ytical	Repor	t Nur	70724	1241 Bellevue Street Green Bay, WI 54302 920-469-2436						
Client: NATURAL RESOURCE TECHNOLOGY									Matrix Type: WATER			
Project Name : WPSC - STEVEN'S POINT									on Date : 04/11/			
Project Number: 1177						Report Date : 04/25/06						
Field ID : PZ-12B			1						•	Number : 87072		
INORGANICS												
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method	
Iron - Dissolved		16000	50	170		1	ug/L		04/14/06	SW846 6010B	SW846 6010B	
Alkalinity as CaCO3		140	9.7	32		1	mg/L		04/14/06	EPA 310.2	EPA 310.2	
Nitrogen, NO3 + NO2	<	0.11	0.11	0.37		1	mg/L		04/17/06	EPA 353.2	EPA 353.2	
Sulfate		10	0.77	2.6		1	mg/L		04/18/06	EPA 300.0	EPA 300.0	
BENZENE			-							Prep Dat	e: 04/15/06	
Analyte		Result	LOD	LOQ	EQL	Dil	Units	Code	e Anl Date	Prep Method	Anl Method	
Benzene		3.3	0.14	0.46		1	ug/L		04/15/06	SW846 5030B	SW846 M802	
Surrogate			LCL	UCL			-					
a,a,a-Trifluorotoluene		99	80	124		1	%		04/15/06	SW846 5030B	SW846 M802	
METHANE										Prep Dat	e: 04/24/06	
Analyte		Result	LOD	LOQ	EQL	Dil	Units	Code	e Anl Date	Prep Method	Anl Method	
Methane		590			50	5	ug/L		04/24/06	SW846 M8015	SW846 M801	
PAH/ PNA										Prep Dat	e: 04/17/06	
Analyte		Result	LOD	LOQ	EQL	Dil	Units	Code	e Anl Date	Prep Method	Anl Method	
1-Methylnaphthalene		1.8	0.51	1.7		50	ug/L	D	04/17/06	SW846 3510C	8270C-SIM	
2-Methylnaphthalene		0.29	0.011	0.037		1	ug/L		04/17/06	SW846 3510C	8270C-SIM	
Acenaphthene		9.9	0.41	1.4		50	ug/L	D	04/17/06	SW846 3510C	8270C-SIM	
Acenaphthylene		0.22	0.0081	0.027		1	ug/L		04/17/06	SW846 3510C	8270C-SIM	
Anthracene		1.2	0.58	1.9		50	ug/L	QD	04/17/06	SW846 3510C	8270C-SIM	
Benzo(a)anthracene	<	0.016	0.016	0.052		1	ug/L		04/17/06	SW846 3510C	8270C-SIM	
Benzo(a)pyrene		0.018	0.018	0.061		1	ug/L		04/17/06	SW846 3510C	8270C-SIM	
Benzo(b)fluoranthene		0.016	0.016	0.052		1	ug/L	z	04/17/06	SW846 3510C	8270C-SIM	
Benzo(ghi)perylene		0.019	0.019	0.064		1	ug/L	-	04/17/06	SW846 3510C	8270C-SIM	
Benzo(k)fluoranthene		0.019	0.019	0.064		1	ug/L	Z	04/17/06	SW846 3510C	8270C-SIM	
Chrysene		0.019	0.019	0.063		י 1	ug/L	2	04/17/06	SW846 3510C	8270C-SIM	
Dibenz(a,h)anthracene		0.019	0.019	0.063		1	ug/L		04/17/06	SW846 3510C		
Fluoranthene	`	1.3	0.019	2.6		י 50	ug/L ug/L	QD	04/17/06	SW846 3510C	8270C-SIM	
Fluorantiene		1.3 6.0	0.77	2.0 1.5		50 50	-				8270C-SIM	
Indeno(1,2,3-cd)pyrene							ug/L	D	04/17/06	SW846 3510C	8270C-SIM	
		0.0 <u>1</u> 9 0.74	0.019	0.063		1	ug/L	00	04/17/06	SW846 3510C	8270C-SIM	
Naphthalene Phenanthrene		0.74 5.1	0.62	2.1 1.9		50 50	ug/L	QD	04/17/06	SW846 3510C	8270C-SIM	
			0.57			50	ug/L	D	04/17/06	SW846 3510C	8270C-SIM	
Pyrene Surrogata		0.94	0.015	0.048		1	ug/L	E	04/17/06	SW846 3510C	8270C-SIM	
Surrogate		100		UCL		 A	0/		04/47/05	014/04007407	00700 000	
Nitrobenzene-d5		102	10	150		1	%		04/17/06	SW846 3510C	8270C-SIM	
2-Fluorobiphenyl		79	20	111		1	%		04/17/06	SW846 3510C	8270C-SIM	
Terphenyl-d14		92	44	115		1	%		04/17/06	SW846 3510C	8270C-SIM	

Services, Inc.										920-469-2	436
Client : NATUR Project Name : WPSC - Project Number : 1177 Field ID : PZ-13B				DLOGY				La	Collecti Repo	rix Type: WATE on Date: 04/11/ ort Date: 04/25/ Number: 87072	06 06
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Ani Date	Prep Method	Anl Method
Iron - Dissolved	<	50	50	170		1	ug/L		04/14/06	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		170	9.7	32		1	mg/L	Ν	04/14/06	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2	<	0.11	0.11	0.37		1	mg/L		04/17/06	EPA 353.2	EPA 353.2
Sulfate		17	0.77	2.6		1	mg/L		04/18/06	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	e: 04/15/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Anl Method
Benzene	<	0.14	0.14	0.46		1	ug/L	<u> </u>	04/15/06	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		99	80	124		1	%		04/15/06	SW846 5030B	SW846 M8021
METHANE										Prep Dat	e: 04/24/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	e Anl Date	Prep Method	Anl Method
Methane	<	10			10	1	ug/L		04/24/06	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 04/17/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methyinaphthalene	<	0.010	0.010	0.034		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene	<	0.011	0.011	0.037		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Acenaphthene	<	0.0082	0.0082	0.027		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Acenaphthylene		0.0081	0.0081	0.027		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Anthracene		0.012	0.012	0.039		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene		0.016	0.016	0.052		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene		0.018	0.018	0.061		1	ug/L		04/17/06	SW846 3510C	
Benzo(b)fluoranthene		0.016	0.016	0.052		1	ug/L	Z	04/17/06	SW846 3510C	
Benzo(ghi)perylene		0.019	0.019	0.064		1	ug/L		04/17/06	SW846 3510C	
Benzo(k)fluoranthene		0.019	0.019	0.064		1	ug/L	Z	04/17/06	SW846 3510C	
Chrysene	<	0.019	0.019	0.063		1	ug/L		04/17/06	SW846 3510C	
Dibenz(a,h)anthracene	<	0.019	0.019	0.063		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Fluoranthene		0.029	0.015	0.052		1	ug/L	Q	04/17/06	SW846 3510C	
Fluorene		0.0091	0.0091	0.030		1	ug/L		04/17/06	SW846 3510C	
Indeno(1,2,3-cd)pyrene		0.019	0.019	0.063		1	ug/L		04/17/06	SW846 3510C	
Naphthalene	<	0.012	0.012	0.041		1	ug/L	-	04/17/06	SW846 3510C	
Phenanthrene		0.014	0.011	0.038		1	ug/L	Q	04/17/06	SW846 3510C	
Pyrene		0.023	0.015	0.048		1	ug/L	Q	04/17/06	SW846 3510C	8270C-SIM
Surrogate			LCL	UCL							
Nitrobenzene-d5		67	10	150		1	%		04/17/06	SW846 3510C	
2-Fluorobiphenyl		60	20	111		1	%		04/17/06	SW846 3510C	
Terphenyl-d14		93	44	115		1	%		04/17/06	SW846 3510C	8270C-SIM

Analytical Report Number: 870724

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Pace Analytical Services, Inc.

Services, Inc.										920-469-2	2436
Client : NATU	RAL RE	SOURCE	TECHNO	DLOGY					Mati	ix Type: WATE	R
Project Name : WPSC	- STE	VEN'S PC	INT							on Date: 04/11/	
Project Number: 1177									Repo	ort Date: 04/25/	06
Field ID: QC01								La	b Sample I	Number: 87072	4-021
INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
Iron - Dissolved	<	50	50	170		1	ug/L		04/18/06	SW846 6010B	SW846 6010B
Alkalinity as CaCO3		49	9.7	32		1	mg/L		04/14/06	EPA 310.2	EPA 310.2
Nitrogen, NO3 + NO2		0.27	0.11	0.37		1	mg/L	Q	04/17/06	EPA 353.2	EPA 353.2
Sulfate		2.9	0.77	2.6		1	mg/L		04/18/06	EPA 300.0	EPA 300.0
BENZENE										Prep Dat	te: 04/15/06
Analyte		Result	LOD	LOQ	EQL	Dil	. Units	Code	Anl Date	Prep Method	Anl Method
Benzene	<	0.14	0.14	0.46		1	ug/L		04/15/06	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		99	80	124		1	%		04/15/06	SW846 5030B	SW846 M8021
METHANE										Prep Dat	e: 04/24/06
Analyte		Result	LOD	LOQ	EQL	Dil	Units	Code	Anl Date	Prep Method	Anl Method
Methane	<	10			10	1	ug/L		04/24/06	SW846 M8015	SW846 M8015
PAH/ PNA										Prep Dat	e: 04/17/06
Analyte		Result	LOD	LOQ	EQL	Dil	Units	Code	Ani Date	Prep Method	Anl Method
1-Methylnaphthalene		0.014	0.010	0.034		1	ug/L	Q	04/17/06	SW846 3510C	8270C-SIM
2-Methylnaphthalene		0.021	0.011	0.037		1	ug/L	Q	04/17/06	SW846 3510C	8270C-SIM
Acenaphthene		0.022	0.0082	0.027		1	ug/L	Q	04/17/06	SW846 3510C	8270C-SIM
Acenaphthylene	<	0.0081	0.0081	0.027		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Anthracene	<	0.012	0.012	0.039		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.016	0.016	0.052		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.018	0.018	0.061		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.016	0.016	0.052		1	ug/L	Z	04/17/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.019	0.019	0.064		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.019	0.019	0.064		1	ug/L	Z	04/17/06	SW846 3510C	8270C-SIM
Chrysene	<	0.019	0.019	0.063		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.019	0.019	0.063		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Fluoranthene	<	0.015	0.015	0.052		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Fluorene		0.015	0.0091	0.030		1	ug/L	Q	04/17/06	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.019	0.019	0.063		1	ug/L		04/17/06	SW846 3510C	
Naphthalene		0.098	0.012	0.041		1	ug/L		04/17/06	SW846 3510C	
Phenanthrene		0.027	0.011	0.038		1	ug/L	Q	04/17/06	SW846 3510C	8270C-SIM
Pyrene	<	0.015	0.015	0.048		1	ug/L		04/17/06	SW846 3510C	
Surrogate			LCL	UCL							
Nitrobenzene-d5		48	10	150		1	%		04/17/06	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		44	20	111		1	%		04/17/06	SW846 3510C	8270C-SIM
Terphenyl-d14		69	44	115		1	%		04/17/06	SW846 3510C	8270C-SIM

Analytical Report Number: 870724

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Pace Analytical Services, Inc.

Services, Inc.			-							920-469-2	436
Client : NATUR	RAL RE	SOURCE	TECHNO	LOGY					Matr	ix Type : WATE	R
Project Name : WPSC	- STE\	VEN'S PO	INT						Collectio	on Date : 04/11/0	06
Project Number: 1177									Repo	rt Date : 04/25/0	06
Field ID : QC02								Lat	Sample N	lumber: 870724	-022
BENZENE										Prep Date	e: 04/15/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Benzene	<	0.14	0.14	0.46		1	ug/L		04/15/06	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL							
a,a,a-Trifluorotoluene		98	80	124		1	%		04/15/06	SW846 5030B	SW846 M8021
PAH/ PNA										Prep Date	e: 04/17/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
1-Methylnaphthalene	<	0.010	0.010	0.034		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
2-Methyinaphthalene	<	0.011	0.011	0.037		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Acenaphthene	<	0.0082	0.0082	0.027		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Acenaphthylene		0.017	0.0081	0.027		1	ug/L	Q	04/17/06	SW846 3510C	8270C-SIM
Anthracene	<	0.012	0.012	0.03 9		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Benzo(a)anthracene		0.038	0.016	0.052		1	ug/L	Q	04/17/06	SW846 3510C	8270C-SIM
Benzo(a)pyrene		0.031	0.018	0.061		1	ug/L	Q	04/17/06	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene		0.021	0.016	0.052		1	ug/L	QZ	04/17/06	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.019	0.019	0.064		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene		0.027	0.019	0.064		1	ug/L	QZ	04/17/06	SW846 3510C	8270C-SIM
Chrysene		0.034	0.019	0.063		1	ug/L	Q	04/17/06	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.019	0.019	0.063		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Fluoranthene		0.064	0.015	0.052		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Fluorene	<	0.0091	0.0091	0.030		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.019	0.019	0.063		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Naphthalene	<	0.012	0.012	0.041		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Phenanthrene		0.014	0.011	0.038		1	ug/L	Q	04/17/06	SW846 3510C	8270C-SIM
Pyrene		0.054	0.015	0.048		1	ug/L		04/17/06	SW846 3510C	8270C-SIM
Surrogate			LCL	UCL							
Nitrobenzene-d5		46	10	150		1	%		04/17/06	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		44	20	111		1	%		04/17/06	SW846 3510C	8270C-SIM
Terphenyi-d14		67	44	115		1	%		04/17/06	SW846 3510C	8270C-SIM

Analytical Report Number: 870724

1241 Bellevue Street Green Bay, WI 54302

Pace Analytical Services. Inc.

Pace Analytical Services, Inc.			Analy	ytical F	Report	Num	ber: 87	0724		evue Street /, WI 54302 436
Client : NATU	IRAL RE	SOURCE	TECHNO	DLOGY				Matr	i x Type : WATE	R
Project Name : WPS	C - STE	VEN'S PO	INT					Collectio	on Date : 04/11/0	06
Project Number: 1177								Repo	rt Date : 04/25/0	06
Field ID : TRIP	BLANK							Lab Sample N	lumber: 870724	1-023
BENZENE									Prep Dat	e: 04/15/06
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code Anl Date	Prep Method	Anl Method
Benzene	<	0.14	0.14	0.46		1	ug/L	04/15/06	SW846 5030B	SW846 M8021
Surrogate			LCL	UCL						
a,a,a-Trifluorotoluene		100	80	124		1	%	04/15/06	SW846 5030B	SW846 M8021

Qualifier Codes

Flag Applies To Explanation Analyte is detected in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, Α Inorganic method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis. B Inorganic The analyte has been detected between the method detection limit and the reporting limit. в Organic Analyte is present in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis. С All Elevated detection limit. D All Analyte value from diluted analysis or surrogate result not applicable due to sample dilution. Е Inorganic Estimated concentration due to matrix interferences. During the metals analysis the serial dilution failed to meet the established control limits of 0-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP-MS. The result was flagged with the E qualifier to indicate that a physical interference was observed. Ε Organic Analyte concentration exceeds calibration range. F Inorganic Due to potential interferences for this analysis by Inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method. F Organic Surrogate results outside control criteria. G All The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project. н All Preservation, extraction or analysis performed past holding time. This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was HF Inorganic performed in the laboratory beyond the recommended holding time. All J Concentration detected equal to or greater than the method detection limit but less than the reporting limit. κ Inorganic Sample received unpreserved. Sample was either preserved at the time of receipt or at the time of sample preparation. κ Organic Detection limit may be elevated due to the presence of an unrequested analyte. L All Elevated detection limit due to low sample volume. М Organic Sample pH was greater than 2 Ν All Spiked sample recovery not within control limits. 0 Organic Sample received overweight. Ρ Organic The relative percent difference between the two columns for detected concentrations was greater than 40%. Q All The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range. S Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit. U All The analyte was not detected at or above the reporting limit. v All Sample received with headspace. w All A second aliquot of sample was analyzed from a container with headspace. Х All See Sample Narrative. Ζ Organics This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846. & All Laboratory Control Spike recovery not within control limits. All Precision not within control limits. + Inorganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. All < The analyte was not detected at or above the reporting limit. Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. 1 Inorganic 2 Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria. 3 Inorganic BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. 4 Inorganic BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to 5 Inorganic reanalyze and try to correct the deficiency. 6 BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze Inorganic and try to correct the deficiency. 7 Inorganic BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.

Test Group Name	870724-001	0724-		870724-005	870724-006	870724-007	870724-008	870724-009	870724-010	870724-011	870724-012	870724-013	870724-014	870724-015	870724-016	870724-017	870724-018	870724-019	870724-020	870724-021	870724-022	870724-023	
ALKALINITY AS CACO3	В	BE	BB	в	в	в	в	В	в	В	В	В	в	В	В		В	В	В	В			
BENZENE	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	
IRON - DISSOLVED	В	в	B B	в	в	в	в	в	в	В	В	В	в	в	В	В	В	В	в	В			
METHANE	G	GG	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G			
NITROGEN, NO3 + NO2	В	в	BB	в	в	в	в	В	в	в	В	в	в	в	В	в	В	в	в	в			
PAH/ PNA	В	в	ВВ	в	в	в	в	В	в	В	В	В	В	В	В	В	В	В	в	В	В		
SULFATE	В	BE	BB	В	В	В	В	В	В	в	в	в	В	В	В		В	в	В	В			

Code	Facility	Address	WI Certification
В	Green Bay Lab (Bellevue St)	1241 Bellevue Street, Suite 9 Green Bay, WI 54302	405132750 / DATCP: 105-444
G	Green Bay Lab (Industrial Dr)	1795 Industrial Drive Green Bay, WI 54302	405132750

~	Sam	ple Conditio	n Upon Receip	ot	
Pace Analytical"	Client Nam	e: <u>NRT</u>		Project #	870724
Courier: 🔲 Fed Ex 🗍 UPS	USPS Client	t 🔲 Commercia	Pace Other_	Controls In pro-	ional
Custody Seal on Cooler/Box F	Present: 🗌 yes	no Sea	ls intact: 🗌 yes		Due Date.
Packing Material: Bubble Thermometer Used N		Bags None		-	, cooling process has begun
Cooler Temperature RO	$\overline{\mathbf{N}}$		e is Frozen: Yes N	Date and Ir	itials of person examining
Temp should be above freezing to 6	o°C	_	Comments:	contents	13 - 4/12/00
Chain of Custody Present:			A 1.	· · · ·	
Chain of Custody Filled Out:		Yes DNO DN/	A 2.		
Chain of Custody Relinquished:			A <u>3.</u>		
Sampler Name & Signature on (COC:		A 4.		*
Samples Arrived within Hold Tin	ne:	Wyes INO IN	A 5.		
Short Hold Time Analysis (<72	2hr):		A <u>6.</u>	· · · · · · · · · · · · · · · · · · ·	
Rush Turn Around Time Requ	lested:	□Yes \$200 □N/	A <u>7.</u>		
Sufficient Volume:			A 8.	· ···	
Correct Containers Used:			A 9.		
-Pace Containers Used:			A		
Containers Intact:			A 10.		
Filtered volume received for Dis	solved tests		A 11.		
Sample Labels match COC:	(YOYes DNo DN/	A 12.		
-Includes date/time/ID/Analys					
All containers needing preservation ha	ave been checked.		A 13.		
All containers needing preservation compliance with EPA recommendat			$\sim CS$		
exceptions: VOA, coliform, TOC, O&G, V	WI-DRO (water)	□Yes □No	Initial when completed	<u> </u>	
Samples checked for dechloring	ation:		A <u>14.</u>		
Headspace in VOA Vials (>6mr	n):		<u> 15.</u>		
Trip Blank Present:			A <u>16.</u>		
Trip Blank Custody Seals Prese		YQYes □No □N/	٩		
Pace Trip Blank Lot # (if purcha	sed): 103105-3				
Client Notification/ Resolution	1:			Field Data Requ	uired? Y / N
Person Contacted:		Date	e/Time:	<u> </u>	
Comments/ Resolution:	#07 - 14	1 loib	uid 1	-250 ml	loilieled
as for Alu,	JOy, U	it is the	03 pes.	10leene	No aupecerved
- Per Jody-	Canceled	ALK 2	SD4 in 4/1	aby	
Project Manager Review:		-17	T	Date:	4-12-06
		· · ·]	•		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

	_
	\mathbf{O}
	T
	2
	=
•	<u> </u>
	Ċ.
	$\mathbf{\Sigma}$
,	Π
•	Å
	$\mathbf{\Sigma}$
	С
	(Ā
	CHAIN-OF-CUSTODY
ļ	2
	U
	D
	\mathbf{Z}
j.	
	\triangleright
	4
	5
5	nalvtical
	_
	O
•	ò
•	
	R
	~
	2
	Ā
	Ð
	N.
	A
	ັ
	Request Document
	cum
•	3
	ด
	Ĭ
	1

Ri or Ci Si	LEATE Signed (MM/DD/YY)	DATE Sig	Bren		SIGNATURE of SAMPLER:		ORIGINAL	S	SEE REVERSE SIDE FOR INSTRUCTIONS	SEE REVER
eceiv I Ice Istoo			5 2	10750	1005				010-2	0 (40
iy I Coolei				AND SIGNA	PRINT Name of SAMPLER	PR			-	•
У/N r У/N										
Y/N Y/N		e			-					
	2 4/12/06 14SO	chulcule	1.2 C.S	X-12-6 19	Ke 2	D. mul				•
Y/N	E1:11 9-C1-4	nell	145 D.r	H-12-06 11	NPT	Sody Burberny		こ たい しょう	6:55:14:1 1 20 Eich	5:P
SAMPLE	IATION DATE TIME	ACCEPTED BY / AFFILIATION	TIME ACC	DATE	Y / AFFILIATIO	RELINQUISHED BY / AFFILIATION		•	Additional Comments:	Addition
4	$\mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x}$	116	۲ ۲	SHLO DO.	4-11-06	576		610	w - 9	12 0
1-2001ML (H2SOU)	XXXXXXX	114	ار بر	Blog yo-	4-1/-bu	· · ·		GII	ζ, , α	0
	XXXXXXX		در د ا	54.80 90	4-11-06	· · · ·		010	1	10
	× × × × × × ×		1.0 ~	ol 0843	4-11.00			8	۲ ۱ ۲	
1-SOOML POW	<u>××××××××</u>	1)6	لر of ر	Shol you	4-11-06	116	Š	00	E 1 6	
	$\frac{x}{x} \times \frac{x}{x} \times \frac{x}{x} \times \frac{x}{x}$	116	۲ <u>م</u>	2H1 90-	4-1)-06	176		00	- 5 8	7 P
	× × × × × × ×	16	102		4-11.04	F+ C	6	8	E - SR	
	XXXXXXXX	116	10 2	8011 20	4-11-06	27 6		80	۲ ۲	б бл Ю
	* * * * * * *	115	۲ <u>م</u>	06 0907	4-11.06	et f	L	00	2 · 3 B	1 4 P
	× × × × × × ×	116	10 2	- 06 0910	do-11-4	rt (00	5 - 3 R	ເມ ເອ
	x x x x x 4 x	115	۲ <u>م</u>	06 1046	4-11-06) tr	Ρ	8	۲ ۲	1 2 G
(I-250m (Hzsou)	× × × × × ×	-	10 2	E111 90.	4]-11.06	5 4	2	80	۲ ۲	(1 0
Rest Pace Project Number Lab I.D	2 2 2 2 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	H ₂ SO ₄ HNO ₃ HCI C NaOH Na ₂ S ₂ C Methand	SA AT (DATE TIME	TIME			UNIQUE AIR TISSUE	(A-Z, 0-9 /) Samples IDs MUST BE UNIQUE	ITEN
	12 12 12 12 12 12 12 12 12 12 12 12 12 1	75 (4))3	MPLE Coll. # C						One Character per box.	1#
orine C	12/20	omi				CODE E TYPE C=CON	WATER WATER WATER PRODUCT P	ID WAT	SAMPLE	
15 h	1-1-0	Corres Watives	N		-		Valid Matrix Codes MATRIX CODE	Required Client Information MATE	Section D Required Cliv	Se
		als	be	#:	Pace Profile #:	しし	nber:)/		Requested Due Date/TAT:	Requeste
1 / solve and a land y	Filtered (Y/N)		< /a	J 6 .	Pace Project Manager:	tevers point	Project Name:	125-5-23	522-12-6	Phone
	Пон		50n	Reference:	Pace Quote Reference:		Purchase Order No.:	- 7 stor-1 ++. co-	Sperfer 6 30	Email To:
	GA DIL		Pernkery	Address: Purl Lord,	Address:			2 40	Key WE 5	Perso
Other			c technology	ame:	Company Name:	たっしっよしし	Copy To: しいし		713 L. P.VI Rond	Address 23713
	REGULATORY AGENCY		104-	6-30 ×.0	Attention: (Barbern	Report To: Sody	لا و ١٥ - ٢٠	Permicia	Company Natural
52				C mation:	Section C Invoice Information:	rmation:	Section B Required Project Information:	•	Section A Required Client Information:	Required
Page: \ of 2				,				, i		/
	The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately	UMENT. All releva	a LEGAL DOC	of-Custody is	The Chain-			₽ ₽		
	Allaly livel Neguesc									R

The Chain-of-Custody is a ECAL DOCIMENT All relevant fields must be completed accurately	CHAIN-OF-CUSTODY /
	Α /
NT All valavant fields must	/ Analytical Request Document
	uest
	Documen
	-

The Chain-of-Custody is a F Ž DOCUMENT. All relevant fields must be completed accurately.

(MM / DD / YY)	DATE Signed	5	SIGN		SEE REVERSE SIDE FOR INSTRUCTIONS
p in ^O C	Š	24	PRIN	che 4/19/22	5 (20) 6-5
		SAMPLER NAME AND SIGNATURE	SAI	Sor	L
1031 OKHI MODILA		0641 0-411		hed ALKE	O Per Joly - Cancel
	1 Solo 1	×			gissolate they tick to their
	Shirles of	NR 4.12.06 11115	Soit Barber /	_	, , ,
IATION DATE TIME SAMPLE	ACCEPTED BY / AFFILIATION	AFFILIATION DATE TIME	RELINQUISHED BY / AFFILIATION		Additional Comments:
~				025	TT T T P IS / P Z K
XX	4 l 3·	4-11-de	640		
XXXXXX	211	4.13, 08	~ · · · · · · · · · · · · · · · · · · ·	021	0 C 0
* * * * * * *	102114	4-11.06 1015	110	020	
***	102114	2560 go-11-4	w76	019	P2 - 12
××××××	1 1 2 6	4-11-04 0950	5	\$10	0 K - 1 N
XXXXXX	11120	4-11-06 9823	110	017	572-118
X X	91176	7130 70-11-4	1 + 1	010	40 & - 11
メアメメメチィ	102116	4-11-040725	540	015	3 P Z - 1 0 B
XXXXXXX	102114	4-1)-00 0715	1+1	0 I I	
X X X	10 21 16	8450 Joril-4	6	0	1 P 2 - 9 B
ALA ALE ALA CAL	CO Unpreser H ₂ SO ₄ HNO ₃ HCI NaOH Na ₂ S ₂ O Methano Other	DATE TIME		MIPE MIPE AR AR OT TISSUE TS	ITEM Samples IDs MUST BE UNIQUE
	-			WATER WT WASTE WATER WW PRODUCT P SOIL/SOLID SL OIL OL	One Character per box.
10/2/2/2/2/2/ 12/2/2/2/2/2/	Amb Poor Vivatives			Valid Matrix Codes MATRIX DRINKING WATER DW	Section D Required Client Information
12/10/20	la ly ls	Pace Profile #:	111	Project Number:	Requested Due Date/TAT:
Filtered (Y/N)	S Poly	Pace Project Manager:	PSC - Stores Point	Project Name: VP	Phone 522-12-6 Fax-523- 10.
□OH □SC AMI		Pace Quote Reference:		Purchase Order No.:	Email To: Shar Sear C natural 25. (*)
	j	Address: 23-13 W. Pul Row			Pewnukic, WE SJOTL
	دلم الم المح الم	Company Name:	たこうたい	Copy To: Chic	Address V. Prul Rond
REGULATORY AGENCY	tur	Attention: Cric Koun	1342 /000	Report To: Sod	Company Notherny Resource Jeak soli 59
00		Section C Invoice Information:	ormation:	Section B Required Project Information:	Section A Required Client Information:
סן					

APPENDIX F

MANN KENDALL STATISTICAL ANALYSES FOR SELECT SITE WELLS

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Notice: This form is the DNH supplied spreadsheet referenced in Appendices A of Comm 46 and NH 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Site Name :	WPSC - Steven Point Former	MGP Site		BRRTS No. =	02-50-000079	Well Number =	OW-3R
	Compound ->	Napthalene					
		Concentration	Concentration	Concentration	Concentration		Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank		
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	1-Feb-00	950.00				·····	
2	31-May-00	432.00	· · ·				
3	31-Aug-00	363.00			· · · · · · · · · · · · · · · · · · ·		
4	21-Nov-00	150.00			· · · · ·		
5	2-Apr-02	88.00					
6	28-Oct-02	260.00					
7	16-Jun-03	2.90			ni se	ta section de la companya de la comp	
8	20-Nov-03	76.00					
9	11-Apr-05	1.70					
10	11-Apr-06	0.11					
	Mann Kendall Statistic (S) =	-39.0	0.0	0.0	0.0	0.0	0.0
	Number of Rounds (n) =	10	0	0	0	0	0
	Average =	232.37	#DIV/0!		#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	295.252	#DIV/0!		#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	1.271	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check	, Blank if No Errors Detected		n<4	n<4	n<4	n<4	n<4
Trend ≥ 80°	% Confidence Level	DECREASING	n<4	n<4	n<4	n<4	n<4
Trend ≥ 90°	% Confidence Level	DECREASING	n<4	n<4	n<4	n<4	n<4
Stability Tes	t, If No Trend Exists at		n<4	n<4	n<4	n<4	n<4
80% Confi	dence Level	NA	n<4	n<4	n<4	n<4	n<4
	Data Entry By =	PAR	Date =	16-May-06	Checked By =	EPK	

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Notice: This form is the DNH supplied spreadsheet referenced in Appendices A of Comm 46 and NH 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Site Name :	WPSC - Steven Point Former	MGP Site		BRRTS No. =	02-50-000079	Well Number =	OW-5R
	Compound ->	Benzene	Napthalene				
-		Concentration	Concentration	Concentration	Concentration		Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	1	
Number	(most recent last)	if no data)	if no data)				
1	20-Nov-03	34.00	34.00				·
2	20-Apr-04	1.50	5.70				
3	20-Jul-04	4.10	11.00				
4	12-Oct-04	65.00	230.00				
5	25-Jan-05	77.00	220.00				
6	11-Apr-05	1.80	6.00				
7	11-Jul-05	10.00	15.00				
8	3-Oct-05	1.70	0.24			and an	
9	5-Jan-06	1.40	0.54				
10	11-Apr-06	15.00	2.80				
	Mann Kendall Statistic (S) =	-7.0	-17.0	0.0	0.0	0.0	0.0
	Number of Rounds (n) =	10	10	0	0	0	0
	Average =	21.15	52.53	#DIV/0!			#DIV/0!
	Standard Deviation =	28.263	91.462	#DIV/0!		<u> </u>	#DIV/0!
	Coefficient of Variation(CV)=	1.336	1.741	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check	, Blank if No Errors Detected			n<4	n<4	n<4	n<4
Trend ≥ 80°	% Confidence Level	No Trend	DECREASING	n<4	n<4	n<4	n<4
Trend ≥ 90°	% Confidence Level	No Trend	DECREASING	n<4	n<4	n<4	n<4
Stability Tes	t, If No Trend Exists at	CV > 1		n<4	n<4	n<4	n<4
80% Confi	dence Level	NON-STABLE	NA	n<4	n<4	n<4	n<4
	Data Entry By =	PAR	Date =	16-May-06	Checked By =	EPK	

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Notice: This form is the DNH supplied spreadsheet referenced in Appendices A of Comm 46 and NH 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Site Name :	WPSC - Steven Point Former	BRRTS No. =	02-50-000079	Well Number =	OW-5R		
	Compound ->	Benzene					
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	31-May-00	66.00					
2	2-Apr-02	36.00					
3	16-Jun-03	2.10					
4	20-Apr-04	1.50					
5	11-Apr-05	1.80					· · · · ·
6	11-Apr-06	15.00					
7.							
8				·	······································		
9			···		·		· · ·
10							
	Mann Kendall Statistic (S) =	-7.0	0.0	0.0	0.0	0.0	0.0
	Number of Rounds (n) =	6	0	0	0	0	0
	Average =	20.40	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	26.038	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	1.276	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check	, Blank if No Errors Detected		n<4	n<4	n<4	n<4	n<4
Trend ≥ 80°	% Confidence Level	DECREASING	n<4	n<4	n<4		n<4
Trend ≥ 90°	% Confidence Level	No Trend	n<4	n<4	n<4	n<4	n<4
Stability Tes	t, If No Trend Exists at		n<4	n<4	n<4	n<4	n<4
80% Confi	dence Level	NA	n<4	<u>n<4</u>	n<4	n<4	n<4
	Data Entry By =	PAR	Date =	16-May-06	Checked By =	EPK	

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Notice: This form is the DNH supplied spreadsheet referenced in Appendices A of Comm 46 and NH 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Site Name : WPSC - Steven Point Former MGP Site BRRTS No. = 02-50-000079 Well Number = P-5B								
	Compound ->	Benzene	Napthalene					
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration	
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)	
1	20-Nov-03	13.00	4,800.00					
2	20-Apr-04	13.00	1,700.00					
3	20-Jul-04	9.60	1.15					
4	12-Oct-04	14.00	1,500.00					
5	25-Jan-05	13.00	3,300.00		· · · · · · · · · · · · · · · · · · ·		·	
6	11-Apr-05	6.70	2.25					
7	11-Jul-05	9.50	430.00					
8	3-Oct-05	8.40	440.00	2				
9	5-Jan-06	2.80	0.13					
10	11-Apr-06	3.50	34.00					
	Mann Kendall Statistic (S) =	-28.0	-19.0	0.0	0.0	0.0	0.0	
and and a second second	Number of Rounds (n) =	10	10	0	0	0	0	
	Average =	9.35	1220.75	#DIV/0!	#DIV/0!		1	
	Standard Deviation =	4.038	1651.508	#DIV/0!	#DIV/0!			
	Coefficient of Variation(CV)=	0.432	1.353	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
Error Check	, Blank if No Errors Detected			n<4	n<4	n<4	n<4	
Trend ≥ 80°	% Confidence Level	DECREASING	DECREASING	n<4	n<4	n<4	n<4	
Trend ≥ 90% Confidence Level		DECREASING	DECREASING	n<4	n<4	n<4	n<4	
Stability Test, If No Trend Exists at				n<4	n<4	n<4	n<4	
80% Confi	dence Level	NA	NA	n<4	n<4	n< <u>n</u> <4	n<4	
	Data Entry By =	PAR	Date =	16-May-06	Checked By =	EPK		

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Notice: This form is the DNH supplied spreadsheet referenced in Appendices A of Comm 46 and NH 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Site Name : WPSC - Steven Point Former MGP Site BRRTS No. = 02-50-000079 Well Number = OW-6							
	Compound ->	Benzene	Naphthalene				· · ·
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	31-Aug-00	9.70	2,280.00				
2	21-Nov-00	5.00	477.00		1		2
3	2-Apr-02	7.30	160.00				
4	28-Oct-02	4.20	1,800.00				
5	16-Jun-03	6.10	1.90		New York		
6	20-Nov-03	5.40	370.00				
7	20-Jul-04	0.77	190.00				
8	11-Apr-05	5.70	45.00				
9	3-Oct-05	3.45	1,800.00	en e			
10	11-Apr-06	5.00	51.00				
	Mann Kendall Statistic (S) =	-18.0	-14.0	0.0	0.0	0.0	0.0
	Number of Rounds (n) =	10	10	0	0	0	0
	Average =	5.26	717.49	#DIV/0!) #DIV/0!		#DIV/0!
	Standard Deviation =	2.345	879.472	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.446	1.226	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check	, Blank if No Errors Detected			n<4	n<4	n<4	n<4
Trend ≥ 80	% Confidence Level	DECREASING	DECREASING	n<4	n<4	n<4	n<4
Trend ≥ 90	% Confidence Level	DECREASING	No Trend	n<4	n<4	n<4	n<4
Stability Tes	t, If No Trend Exists at			n<4	n<4	n<4	n<4
80% Confi	dence Level	NA	NA	n<4	n<4	n<4	n<4
	Data Entry By =	PAR	Date =	16-May-06	Checked By =	EPK	And Anna and Anna an An Anna an Anna an

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Notice: This form is the DNR supplied spreadsheet referenced in Appendices A of Comm 46 and NR 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

1	WPSC - Steven Point Former			BRRTS No. =	02-50-000079	Well Number =	OW-7A
	Compound ->	Benzene	Napthalene				
-		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	leave blank	(leave blank
Number	(most recent last)	if no data)					
1	20-Nov-03	14.00	300.00			· · · · ·	1. 2. 2.
2	20-Apr-04	8.30	5.00				· · · · ·
3	20-Jul-04	13.00					
4	12-Oct-04	18.00					
5	25-Jan-05	16.00	400.00		1 1		
6	11-Apr-05	8.10					
- 7	11-Jul-05	15.00	260.00				
8	3-Oct-05	14.00	400.00	·			· .
9	5-Jan-06	13.00	110.00				
10	11-Apr-06	7.80	200.00				
	Mann Kendall Statistic (S) =	-11.0	-2.0	0.0	0.0	0.0	0.0
	Number of Rounds (n) =	10	10	0	0	0	0
and the second	Average =	12.72	261.00	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	3.533	164.127		#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.278	0.629	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check	, Blank if No Errors Detected			n<4	n<4	n<4	n<4
Trend ≥ 80°	% Confidence Level	DECREASING	No Trend	n<4	n<4	n<4	n<4
Trend ≥ 90	% Confidence Level	No Trend	No Trend	n<4	n<4	n<4	n<4
Stability Tes	t, If No Trend Exists at		CV <= 1	n<4	n<4	n<4	n<4
	dence Level	NA	STABLE	n<4	2002 C		n<4
	Data Entry By =	PAR	Date =	16-May-06	Checked By =	EPK	

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Notice: This form is the DNH supplied spreadsheet referenced in Appendices A of Comm 46 and NH /46, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Site Name :	WPSC - Steven Point Former	BRRTS No. =	02-50-000079	Well Number =	PZ-7B		
L F	Compound ->	Napthalene					
L		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	20-Nov-03	2,700.00					
2	20-Apr-04	48.00					
3	20-Jul-04	62.00					· · · · · · · · · · · · · · · · · · ·
4	12-Oct-04	980.00					· · · · ·
5	25-Jan-05	2,800.00					
6	11-Apr-05	700.00	· · · · · · · · · · · · · · · · · · ·				
7	11-Jul-05	1,200.00					· · · · · · · · · · · · · · · · · · ·
8	3-Oct-05	890.00			····		
9	5-Jan-06	1,600.00			<u></u>		
10	11-Apr-06	590.00			ý.		
192	Mann Kendall Statistic (S) =	3.0	0.0	0.0	0.0	0.0	0.0
	Number of Rounds (n) =	10	0	0	0	0	0
	Average =	1157.00	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	962.650	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.832	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check	, Blank if No Errors Detected		n<4	n<4	n<4	n<4	n<4
Trend ≥ 80°	% Confidence Level	No Trend	n<4	n<4	n<4	n<4	n<4
Trend ≥ 90°	% Confidence Level	No Trend	n<4	n<4	n<4	n<4	n<4
Stability Tes	t, If No Trend Exists at	CV <= 1	n<4	n<4	n<4	n<4	n<4
80% Confi	dence Level	STABLE	n<4	n<4	n<4	n<4	n<4
	Data Entry By =	PAR	Date =	16-May-06	Checked By =	EPK	

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Notice: This form is the DNH supplied spreadsheet referenced in Appendices A of Comm 46 and NH 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Site Name :	WPSC - Steven Point Former	MGP Site		BRRTS No. =	02-50-000079	Well Number =	PZ-7B
	Compound ->	Napthalene					
		Concentration	Concentration	Concentration	Concentration		Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank		(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	23-Jun-99	970.00		· ·			
2	31-May-00	1,700.00			·		
3	2-Apr-02	2,300.00		er en	·		
4	16-Jun-03	630.00	·				
5	20-Apr-04	48.00	and a state of the		· .	į.	
6	11-Apr-05	700.00	· · · · · · · · · · · · · · · · · · ·		·		
7	11-Apr-06	590.00	·			· ·	
8	in a state of the						
9			·				
10							
	Mann Kendall Statistic (S) =	-9.0	0.0	0.0	0.0	0.0	0.0
	Number of Rounds (n) =	7	0	0	<u> </u>	<u>. 16. 16. 0</u>	0
and the second sec	Average =	991.14	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	761.758	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.769	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check	, Blank if No Errors Detected		n<4	n<4	n<4	n<4	n<4
Trend ≥ 80°	% Confidence Level	DECREASING	n<4	n<4	n<4	n<4	n<4
Trend ≥ 90°	% Confidence Level	No Trend	n<4	n<4	n<4	n<4	n<4
Stability Tes	st, If No Trend Exists at		n<4	n<4	n<4	n<4	n<4
80% Confi	dence Level	NA	n<4	n<4	n<4	n<4	n<4
	Data Entry By =	PAR	Date =	16-May-06	Checked By =	EPK	

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Notice: This form is the DNR supplied spreadsheet referenced in Appendices A of Comm 46 and NR 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Site Name :	Site Name : WPSC - Steven Point Former MGP Site BRRTS No. = 02-50-000079 We						
	Compound ->	Benzene	Napthalene		······································		
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank		•		(leave blank
Number	(most recent last)		if no data)		if no data)	if no data)	if no data)
1	31-Aug-00		2,990.00	and the second sec			
2	21-Nov-00		1,920.00				
3	2-Apr-02	100.00	590.00				
4	28-Oct-02	6.10	5.50		4		
5	16-Jun-03	8.90	35.00	1	an a		
6	20-Nov-03	100.00	78.00	1. N.			e for the second
7	20-Jul-04	98.00	110.00				
8	12-Apr-05		1,100.00			· · · · · · · · · · · · · · · · · · ·	·
9	3-Oct-05	180.00	1,700.00		1		
10	11-Apr-06	98.00	1,100.00				
	Mann Kendall Statistic (S) =	-9.0	0.0	0.0	0.0	0.0	0.0
	Number of Rounds (n) =	10	10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	0	0
a start of the second	Average =	135.90	962.85	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	120.830	1001.845		#DIV/0!	#DIV/0!	#DIV/0!
and the second	Coefficient of Variation(CV)=	0.889	1.040	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check	, Blank if No Errors Detected			n<4	n<4	n<4	n<4
Trend ≥ 80°	% Confidence Level	No Trend	No Trend	n<4	n<4	n<4	n<4
Trend ≥ 90°	% Confidence Level	No Trend	No Trend	n<4	n<4	n<4	n<4
Stability Tes	t, If No Trend Exists at	CV <= 1	CV > 1	n<4	n<4	n<4	n<4
80% Confi	dence Level	STABLE	NON-STABLE	n<4	n<4	n<4	n<4
	Data Entry By =	PAR	Date =	16-May-06	Checked By =	EPK	an and a start and a start and a start and a start a st

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Notice: This form is the DNH supplied spreadsheet referenced in Appendices A of Comm 46 and NH 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Site Name :	WPSC - Steven Point Former	MGP Site		BRRTS No. =	02-50-000079	Well Number =	OW-9
	Compound ->	Benzene	Napthalene				
-		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	23-Jun-99		4,800.00				
2	31-May-00		2,960.00	la de la companya de			
3	2-Apr-02	100.00	590.00				
4	16-Jun-03		35.00				
5	11-Apr-05		1,100.00				
6	11-Apr-06	98.00	1,100.00		·	and the second se	
7							
.8				مر المرکز ال المرکز المرکز			
9							
10							
	Mann Kendall Statistic (S) =	-10.0	-6.0	0.0	0.0	0.0	0.0
	Number of Rounds (n) =	6	6	0	0	0	0
	Average =	126.65	1764.17	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	107.211	1783.100	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Section 200	Coefficient of Variation(CV)=	0.847	1.011	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check	, Blank if No Errors Detected			n<4	<u>n<4</u>	n<4	n<4
Trend ≥ 80	% Confidence Level	DECREASING	DECREASING	n<4	n<4	n<4	n<4
Trend ≥ 90	% Confidence Level	DECREASING	No Trend	n<4	n<4	n<4	n<4
Stability Tes	st, If No Trend Exists at			n<4	n<4	n<4	n<4
80% Confi	dence Level	NA	NA	n<4	n<4	n<4	n<4
	Data Entry By =	PAR	Date =	16-May-06	Checked By =	EPK	a tana kanalarata kanalari Katalari

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Notice: This form is the DNH supplied spreadsheet referenced in Appendices A of Comm 46 and NH 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Site Name :	WPSC - Steven Point Former	MGP Site		BRRTS No. =	02-50-000079	Well Number =	PZ-9B
	Compound ->	Benzene					
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(ieave blank	(leave blank	(leave blank	(leave blank		(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	31-Aug-00	0.25					
2	21-Nov-00	1.70					
3	2-Apr-02	0.23		and an	andra an an Andrea. An Anna an Anna Anna an Anna Anna Anna		
4	28-Oct-02	0.23	A States				
5	16-Jun-03	0.15	· · · · · · · · · · · · · · · · · · ·				
6	20-Nov-03	1.00		5			
. 7	20-Jul-04	0.07					
8	12-Apr-05	0.07					
9	3-Oct-05	0.07	· · · · · · · · · · · · · · · · · · ·		-		
10	11-Apr-06	0.07					
	Mann Kendall Statistic (S) =	-28.0	0.0	0.0	0.0	0.0	0.0
2008 - 1990	Number of Rounds (n) =	10	0	0	0	0	0
	Average =	0.38	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	0.540	#DIV/0!		#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	1.411	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check	, Blank if No Errors Detected		n<4	n<4	n<4	n<4	n<4
Trend ≥ 80°	% Confidence Level	DECREASING	n<4	n<4	n<4	n<4	n<4
Trend ≥ 90°	% Confidence Level	DECREASING	n<4	n<4	n<4	n<4	n<4
Stability Tes	t, If No Trend Exists at		n<4	n<4	n<4	n<4	n<4
80% Confi	dence Level	NA	n<4	n<4	n<4	n<4	n<4
	Data Entry By =	PAR	Date =	16-May-06	Checked By =	EPK	

State of Wisconsin

Department of Natural Resources

Remediation and Redevelopment Program

Notice: This form is the DNH supplied spreadsheet referenced in Appendices A of Comm 46 and NH 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

Instructions: Do not change tormulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If a declining trend is present at 80 percent but not at 90 percent, a site is still eligible for closure under Comm 46 and NR 746 provided that other conditions in those rules are met. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation for Petroleum Releases, dated October 1999. Refer to the guidance for recommendations on data entry for non-detect values.

Site Name :	WPSC - Steven Point Former	MGP Site		BRRTS No. =	02-50-000079	Well Number =	PZ-11B
	Compound ->	Benzene	Napthalene				
2.2 10 11 5 12		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	•
Number	(most recent last)	· · · · · · · · · · · · · · · · · · ·	if no data)				
1	31-Aug-00	53.00	344.00			·	
2	21-Nov-00	20.00	38.00		- 10 - 12		
3	2-Apr-02	24.00	290.00				
4	28-Oct-02	19.00	34.00				
5	16-Jun-03	18.00	0.31				
6	20-Nov-03	14.00	20.00				
7	20-Jul-04	0.75	0.01				
8	11-Apr-05		0.01	e de la tenio			
9	3-Oct-05		0.07	· ·			
10	11-Apr-06	0.07	0.01				
	Mann Kendall Statistic (S) =	-40.0	-33.0	0.0	0.0	0.0	0.0
	Number of Rounds (n) =	10	10	0	0	0	0
	Average =	14.90	72.64	#DIV/0!	#DIV/0!		#DIV/0!
in the second second	Standard Deviation =	16.491	130.243	#DIV/0!	#DIV/0!		#DIV/0!
and the second	Coefficient of Variation(CV)=	1.107	1.793	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check	, Blank if No Errors Detected			n<4	n<4	n<4	n<4
Trend ≥ 80	% Confidence Level	DECREASING	DECREASING	n<4	n<4	n<4	n<4
Trend ≥ 90°	% Confidence Level	DECREASING	DECREASING	n<4	n<4	n<4	n<4
Stability Tes	st, If No Trend Exists at			n<4	n<4	n<4	n<4
80% Confi	dence Level	NA	NA	n<4	n<4	n<4	n<4
	Data Entry By =	PAR	Date =	16-May-06	Checked By =	EPK	

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

Remediation and Redevelopment Program

Notice: This form is the DNH supplied spreadsheet referenced in Appendices A of Comm 46 and NH 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.

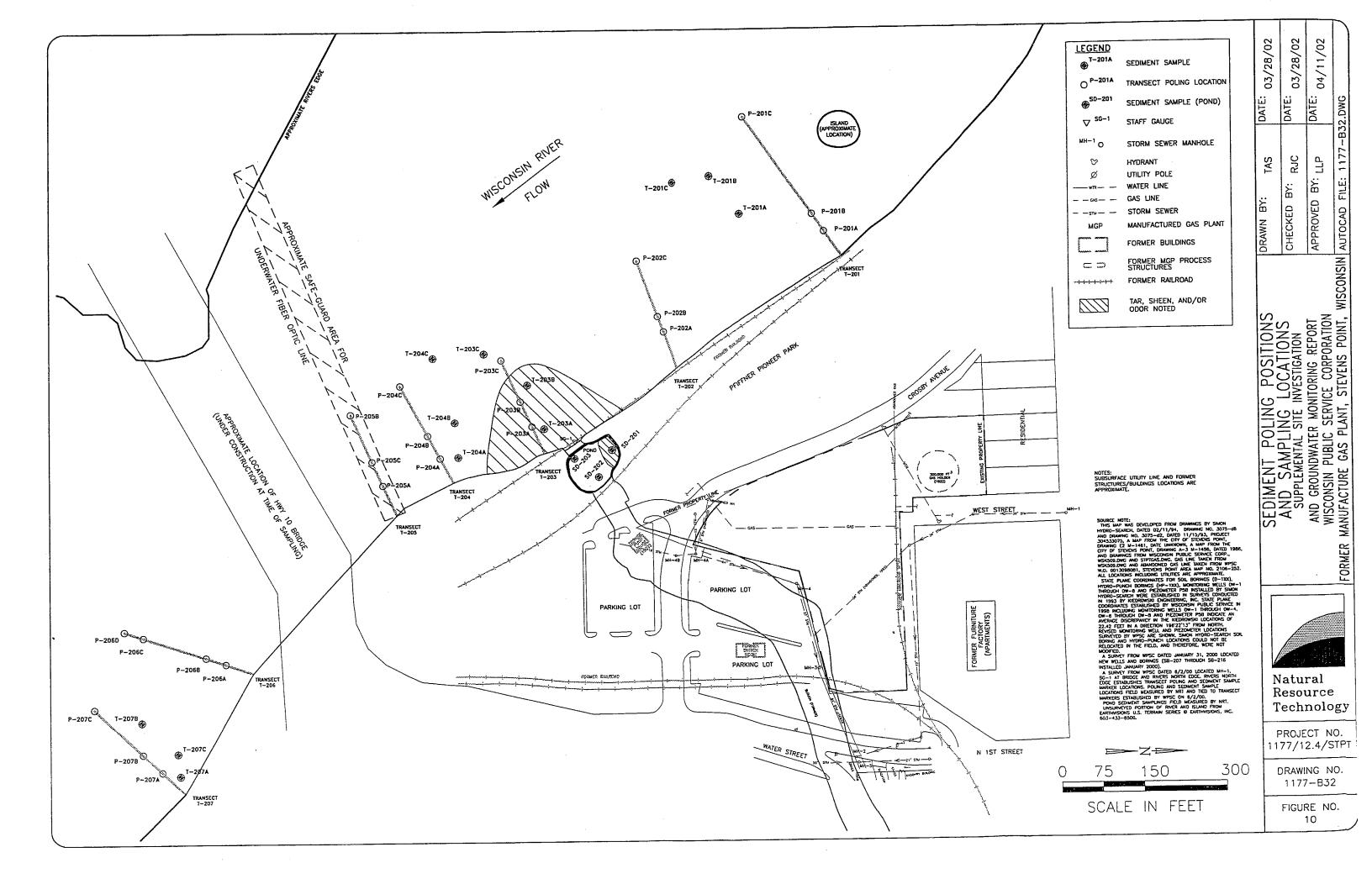
Site Name :	ite Name : WPSC - Steven Point Former MGP Site BRRTS No. = 02-50-000079 Well Number = OW							
	Compound ->	Benzene	Napthalene					
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration	
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)	
1	12-Oct-04	2.20	2.50				1.5 1	
2	25-Jan-05	9.10	79.00					
3	12-Apr-05	3.60	3.80					
4	11-Jul-05	8.80	2.10					
5	3-Oct-05	9.40	13.00					
6	5-Jan-06	6.90	27.00					
7	11-Apr-06	0.07	0.01					
8								
9						1		
10		·			n en			
	Mann Kendall Statistic (S) =	-1.0	-3.0	0.0	0.0	0.0	0.0	
	Number of Rounds (n) =	7		0	0	0	0	
	Average =	5.72	18.20	#DIV/0!	#DIV/0!		#DIV/0!	
	Standard Deviation =	3.756	28.416	#DIV/0!	#DIV/0!	 The second se second second se	#DIV/0!	
	Coefficient of Variation(CV)=	0.656	1.561	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
Error Check	, Blank if No Errors Detected			n<4	n<4	n<4	n<4	
Trend ≥ 80°	% Confidence Level	No Trend	No Trend	n<4	n<4	n<4	n<4	
Trend ≥ 90°	% Confidence Level	No Trend	No Trend	n<4	n<4	n<4	n<4	
Stability Tes	t, If No Trend Exists at	CV <= 1	CV > 1	n<4	n<4	n<4	n<4	
80% Confi	dence Level	STABLE	NON-STABLE	n<4	n<4	n<4	n<4	
	Data Entry By =	PAR	Date =	16-May-06	Checked By =	EPK		

State of Wisconsin

Department of Natural Resources

Remediation and Redevelopment Program

Notice: This form is the DNR supplied spreadsheet referenced in Appendices A of Comm 46 and NR 746, Wis. Adm. Code. It is provided to consultants as an optional tool for groundwater contaminant trend analysis to support site closure requests under s. Comm 46.07, Comm 46.08, NR 746.07, NR 746.08, Wis. Adm. Code. Use this form or a manual method when seeking case closure under those rules. Earlier versions of this form should not be used.


Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If a declining trend is present at 80 percent but not at 90 percent, a site is still eligible for closure under Comm 46 and NR 746 provided that other conditions in those rules are met. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation for Petroleum Releases, dated October 1999. Refer to the guidance for recommendations on data entry for non-detect values.

Site Name :	WPSC - Steven Point Former	MGP Site		BRRTS No. =	02-50-000079	Well Number =	PZ-12B
	Compound ->	Benzene	Napthalene				
-		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank		
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	12-Oct-04	25.00	160.00				
2	25-Jan-05	52.00	830.00		· . •		
3	12-Apr-05	16.00	8.30				
4	11-Jul-05	33.00	21.00				
5	3-Oct-05	0.07	0.12				
6	5-Jan-06	0.21	0.58				
7	11-Apr-06	3.30	0.74			· · · · · · · · · · · · · · · · · · ·	
8	······································						· · · · · · · · · · · · · · · · · · ·
9	<u></u>		· · · · · · · · · · · · · · · · · · ·				
10							
	Mann Kendall Statistic (S) =	-9.0	-11.0	0.0	0.0	0.0	0.0
	Number of Rounds (n) =	7	7	0	0	0	0
	Average =	18.51	145.82	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	19.521	307.182	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
and a second state of the	Coefficient of Variation(CV)=	1.055	2.107	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check	, Blank if No Errors Detected			n<4	n<4	n<4	n<4
Trend ≥ 80°	Trend ≥ 80% Confidence Level		DECREASING	n<4	n<4	n<4	n<4
Trend ≥ 909	% Confidence Level	No Trend	DECREASING	n<4	n<4	n<4	n<4
Stability Tes	t, If No Trend Exists at		1977 - 19	n<4	n<4	n<4	n<4
80% Confid	dence Level	NA	NA	n<4	n<4	n<4	n<4
	Data Entry By =	PAR	Date =	16-May-06	Checked By =	EPK	the state of the second se

Mann-Kendall Statistical Test Form 4400-215 (2/2001)

APPENDIX G

FIGURE 10 AND TABLES 3, 4, 10, AND 11 (SUPPLEMENTAL SITE INVESTIGATION AND GROUNDWATER MONITORING REPORT)

Table 3. Sediment Poling Location Summary

Supplemental Site Investigation and Groundwater Monitoring Report Former Stevens Point Manufactured Gas Plant Site - Wisconsin Public Service Corporation

Location	Distance from Shore (Feet)	Depth of Water (Feet)	Soft ^A Sediment Thickness (Inches)	Poling Bottom Type ^B	Field Observations/Comments		
Pond Poling & Sampling Locations							
SD-201	na	1.58	12	Soft	Pond water, no flow		
SD-202	na	2.17	16	Soft	Pond water, no flow		
SD-203	na	3.25	4	Soft	Pond water, no flow		
			Wiscon	sin River Polin	g Locations		
P-201A	53	3.33	0.5	Gravelly/Rocky	Slow water current		
P-201B	92	4.58	4	Soft	Slow water current		
P-201C	308	14.5	< 1	Rocky			
P-202A	72	3.25	9	Soft	Slow water current		
P-202B	102	3.33	10	Sandy			
P-202C	210	16.58	2	Gravelly			
P-203A	55	12.25	22	Soft			
P-203B	106	14.92	1	Sandy			
P-203C	190	15.67	2	Rocky			
P-204A	51	13.16	0	Rocky			
P-204B	99	18.5	0	Rocky			
P-204C	204	16.75	2	Sandy/Rocky	Strong current - difficult to pole		
P-205A	61	15.67	1	Rocky			
P-205B	99	21.08	2	Rocky			
P-205C	205	21.42	3	Rocky			
P-206A	54	15.42	3	Rocky	Strong current - difficult to pole		
P-206B	93	20.0	3	Rocky	Strong current - difficult to pole		
P-206C	213	20.25	0	Rocky	Current too strong to get accurate measurement		
P-206D	249	20.42	0	Rocky	Current too strong to get accurate measurement		
P-207A	54	14.5	13	Soft			
P-207B	102	16.0	5	Sandy/Rocky	Backwater		
P-207C	222	18.75	1	Rocky	Strong current - difficult to pole		

Notes:

- A) Soft sediment thickness based on poling measurements; poling sediment thickness might differ from cored sediment thickness in Table 4
- B) Poling bottom type based on poling results the presence of large rocks was identified in some areas based on poling response. Similarly, presence of sand or soft material also discernable during poling.

Table 4. Sediment Coring/Sampling Location Summary

Supplemental Site Investigation and Groundwater Monitoring Report

Former Stevens Point Manufactured Gas Plant Site - Wisconsin Public Service Corporation

Sample	Distance from Shore	Depth Penetrated into Sediment		Substrate	Poling Bottom	
Location	(Feet)	(Feet)	(Inches)	Туре ^А	Type ^B	Field Observations/Comments
00.001	J					g & Sampling Locations
SD-201	па	2	24	Soft Silt/Sand	Soft	Pond water, no flow, slight MGP odor from 10"-24"
SD-202	na	2.3	28	Soft Silt/Sand	Soft	Pond water, no flow, decay odor
SD-203	na	1.5	18	Soft Silt/Sand	Soft	Pond water, no flow, decay odor
		isconsin River/				
T-201A	164	8	46	Sand	Rocky	Slow current
T-201B	250	8	42	Sand	Soft	Two attempts were made, first attempted met refusal at 6-inches on large rock fragments
T-201C	278	3.5 ^c	24	Sand & Gravel	Rocky	Large rocks present at sediment surface
T-203A	44	7 ^C	8	Sand	Soft	Strong MGP odor @ 0'-4', slight MGP odor @ 4'
T-203B	131	7 ^C	48	Sand	Sandy	Three attempts were made, first and second attempts encountered rocks and wood at the surface. Strong MGP odor @ 0-6"
T-203C	214	1 ^C	6	Sand	Rocky	Two attempts were made to collect surface samples, large rocks prevented further sampling.
T-204A	42	1.5 ^C	18	Sand	Rocky	Two attempts were made to collect surface samples, large rocks prevented further sampling.
T-204B	109	4.5 [°]	24	Sand	Rocky	Boulder size rocks present at sediment surface.
T-204C	244	1 ^c	12	Sand	Gravelly	Two attempts were made to collect surface samples, large rocks prevented further sampling.
T-207A	24	1.5 ^C	18	Soft	Soft	Two attempts were made, backwater, no MGP odor.
T-207B	136	0.5 ^C	6	Sand	Loose Sand	Four attempts were made to collect samples, samples were collected at the third and fourth locations at surface only due to refusal.
T-207C	49	0.5 ^C	6	Sand	Rocky	Strong current

Notes:

A = Sediment type based on sample collected by hydraulic push core.

B = Poling bottom type based on poling results - the presence of large rocks was identified in some areas

based on the poling response. Similarly, the presence of sand or soft muck could also be discerned during poling.

"Soft" indicates pole pushed until resistance was too great due to hard bottom or friction.

"Sandy or Gravelly" indicates pole encountered material that pole penetrated up to a few inches, but metallic pole reverberation and sound indicated a generally large grain size.

"Rocky" indicates large rocks. Pole bounced off the obstructions; reverberation and sound indicated large, hard obstacle.

Numerous attempts provided observations on obstacle (rock) size and general shape (flat or rounded rock).

C = Boring terminated at refusal.

Table 10. Sediment Analytical Summary - PAHs

Supplemental Site Investigation and Groundwater Monitoring Report

Former Stevens Point Manufactured Gas Plant Site - Wisconsin Public Service Corporation

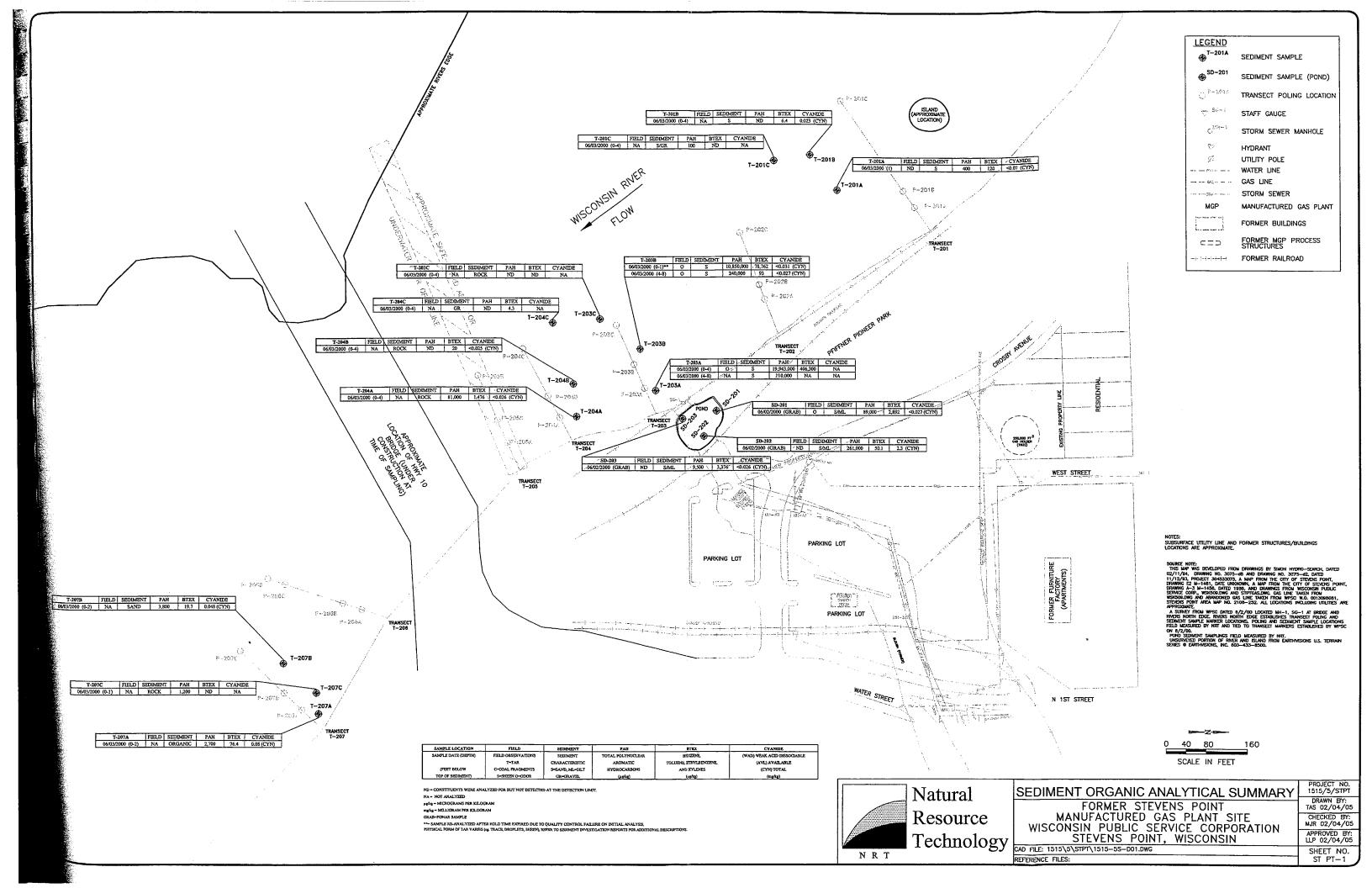
Former Steven			Polynuclear Aromatic Hydrocarbons (mg/kg)																	
								Poly	nuclear F	romatic	Tyurocal				<u> </u>	e				
Sample Identification	Date	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Benzo(g,h,i)perylene	1-Methylnaphthalene	2-Methylnaphthalene	Total PAHs
1			7	<u></u>				Pond S	Sampling	Results										
SD-201	06/02/00	0.498	1.24	0.291	0.531	5.19	2.52	15.1	11.2	8.4	8.54	6.44	8.04	8.97	4.82	2.18	4.65	<0.11	0.137	89
SD-202	06/02/00	1.86	3.78	4.47	6.19	35.9	16.7	46.7	32.1	21.6	18.3	15.6	15.8	19.2	8.43	4.17	7.46	0.963	1.39	261
SD-203	06/02/00	0.095	0.154	<0.097	<0.121	0.489	0.279	1.75	1.26	0.913	0.879	0.572	0.954	0.899	0.512	0.25	0.485	<0.106	<0.106	9.5
							Wiscons	sin River	Sediment	Sampling							0.100	0.057	0.057	0.4
T201A(1)	06/03/00	<0.048	< 0.062	< 0.053	<0.065	< 0.053	<0.051	0.092	0.059	0.077	0.062	0.06	<0.090	0.081	<0.140	<0.128	<0.100	<0.057	<0.057	0.4
T201B(0-4)	06/03/00	<0.016	<0.020	<0.017	<0.022	<0.017	<0.017	<0.013	< 0.016	<0.022	<0.020	<0.017	<0.030	<0.017	<0.046	< 0.042	< 0.033	<0.019	<0.019 <0.020	nd 0.1
T201C(0-4)	06/03/00	0.021	<0.021	0.018	<0.022	0.052	<0.018	<0.013	0.024	<0.022	<0.021	< 0.017	<0.031	<017	<0.048	<0.044	<0.034	<0.020 651		19,943
T203A(0-4)	06/03/00	4,860	468	821	967	3,110	1,000	2,060	1,180	742	645	492	555	584	246	133	209	0.997	1,220 1.48	19,945
T203A(4-8)	06/03/00	3.32	1.31	2.3	2.6	15.4	7.1	19.6	13.1	8.63	7.34	5.49	7.75	7.4	2.66	0.947	2.26 97.6	0.997 180	1.48 356	10,850
T203B(0-1)*	06/03/00	2,270	81.9	740	607	1,930	603	1,280	828	420	348	368	228	334	123 4.95	55.8 2.66	97.0 4.12	3.89	4.78	240
T203B(4-8)	06/03/00	13.7	2.31	11.1	11.6	48.7	16.9	34.1	22.5	15	12.9	8.64	9.8	12.1	4.93 <0.050	2.00 <0.046	<0.036	<0.020	<0.020	bdl
T203C(0-4)	06/03/00	<0.017	<0.022	<0.019	<0.023	< 0.019	<0.018	<0.014	< 0.017	<0.023	< 0.022	< 0.018	<0.032 6.00	<0.018 5.96	<0.030 3.07	$\frac{<0.040}{1.50}$	2.63	0.228	0.147	81
T204A(0-4)	06/03/00	0.267	2.21	0.405	2.5	13	4.32	13.7	9.07	6.13	5.62	4.54	<0.00 <0.032	<0.018	<0.050	<0.046	<0.036	<0.020	<0.020	bdl
T204B(0-4)	06/03/00	<0.017	<0.022	<0.019	<0.023	<0.019	<0.018	< 0.014	<0.017	<0.023	< 0.022	<0.018	<0.032 <0.030	<0.018 <0.017	<0.030	<0.040	<0.030	<0.020	<0.020	bdl
T204C(0-4)	06/03/00	~<0.016	< 0.021	<0.018	<0.022	<0.018	< 0.017	<0.013	<0.016	<0.022	<0.020	<0.017 0.167	0.26	0.234	0.11	<0.043	0.098	<0.021	0.029	2.7
T207A(0-2)	06/03/00	0.053	0.039	0.024	0.033	0.246	0.12	0.463	0.34	0.226	0.237	0.167	0.26	0.234	0.11	0.052	0.070	<0.021	<0.020	3.8
T207B(0-2)	06/03/00	<0.016	0.073	<0.018	0.044	0.549	0.176	0.724	0.517	0.332	0.295 0.102	0.216	0.246	0.292	0.150	<0.032	0.053	<0.019	<0.019	1.2
T207C(0-1)	06/03/00	<0.016	0.02	<0.017	<0.021	0.145	0.046	0.221	0.153	0.096	0.102	0.000	0.100	0.104	0.000	1 30.012	1			AS/HMS][U-RGF 03/22/02]

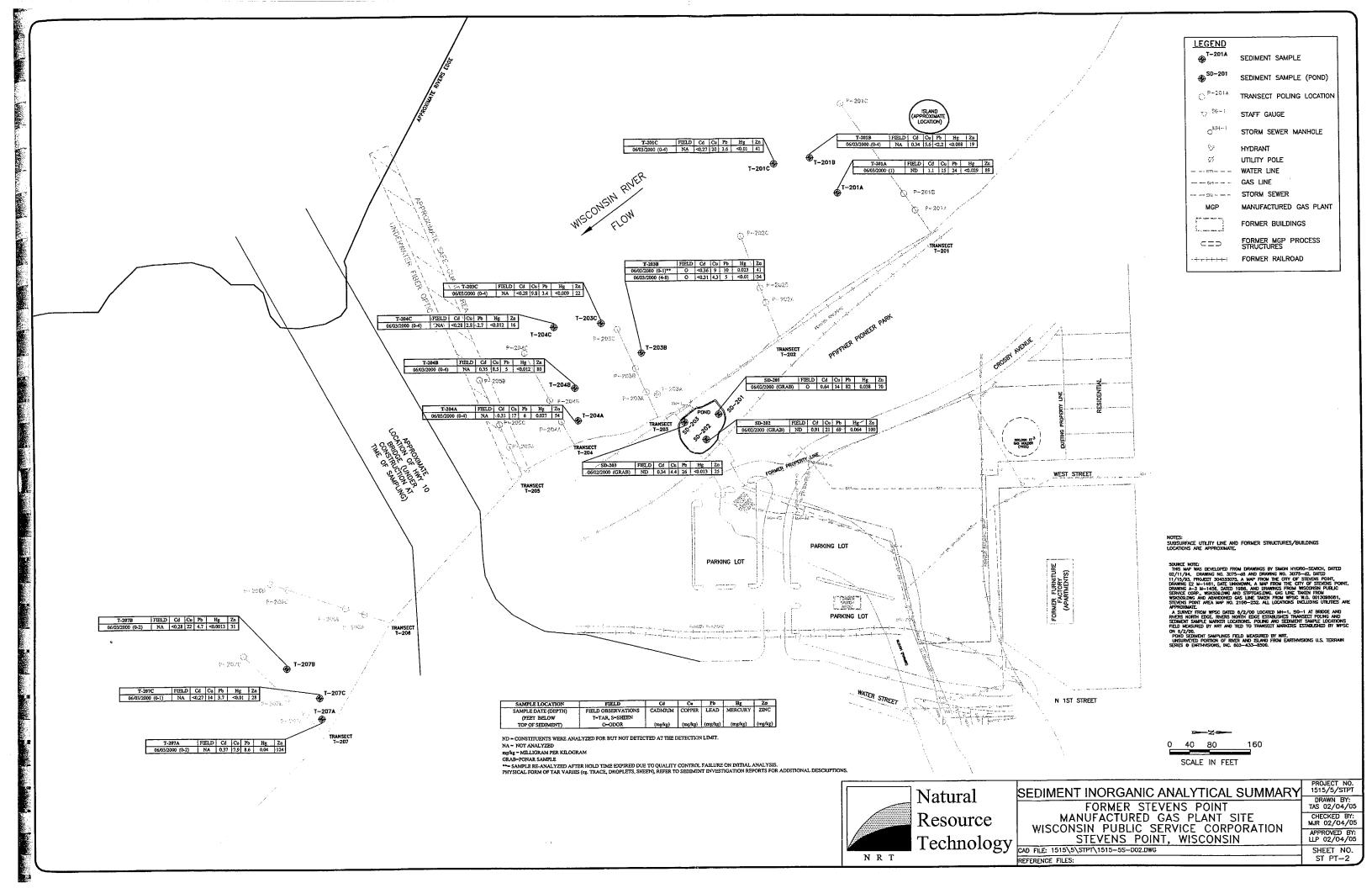
Notes:

* = Sample re-analyzed after hold time expired due to quality control failure on initial analysis.

bdl = All PAH compounds below detection limits

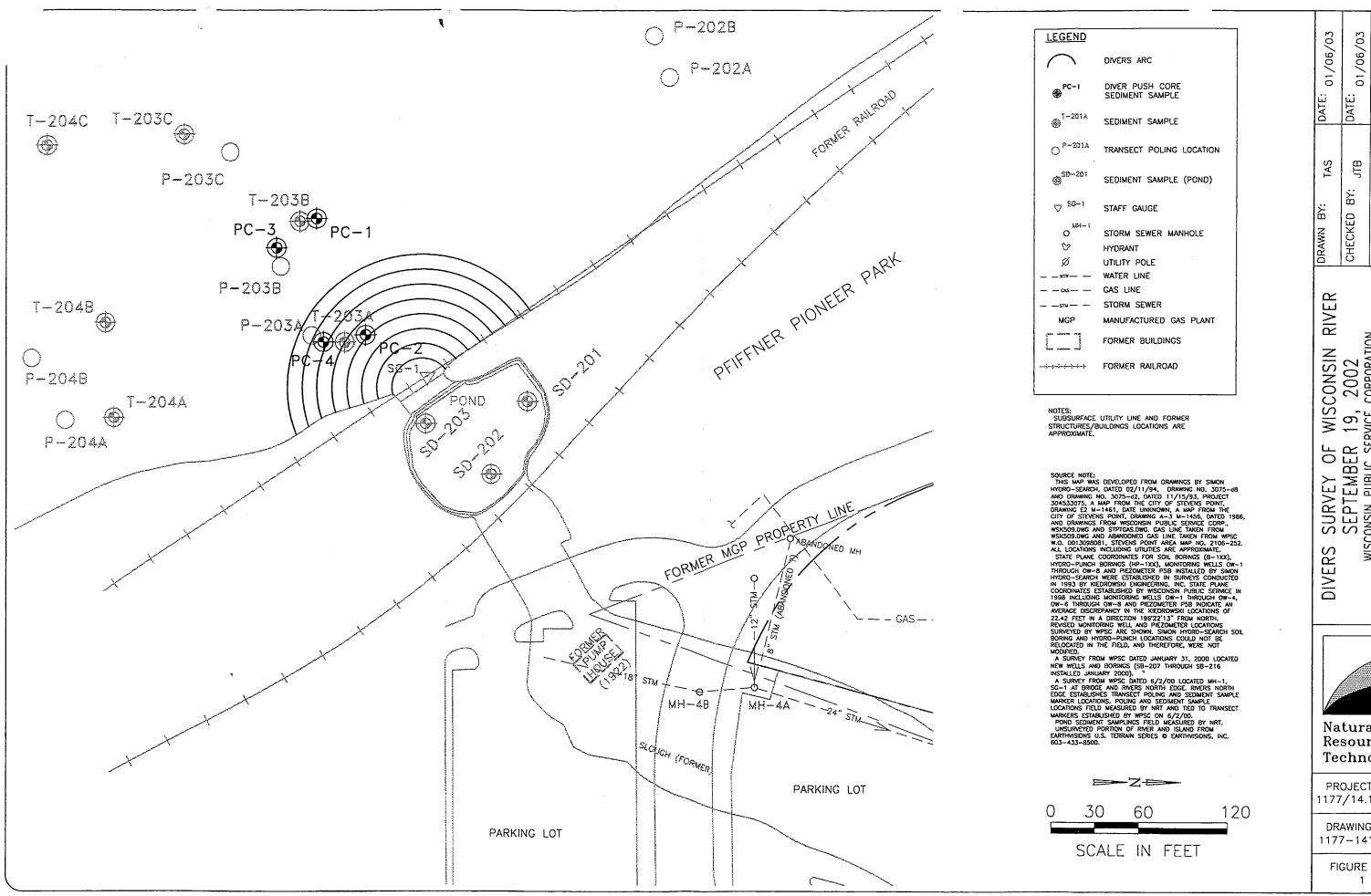
[O-AAS/HMS][U-RGF 03/22/02]


Table 11. Sediment Analytical Summary - BTEX, Cyanide, and MetalsSupplemental Site Investigation and Groundwater Monitoring ReportFormer Stevens Point Manufactured Gas Plant Site - Wisconsin Public Service Corporation


		BTEX (µg/kg)				METALS (mg/kg)					
Sample Location	Date	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Total Cyanide (mg/kg)	Cadmium	Copper	Lead	Mercury	Zinc
				Por	ıd Samplin	g Results					
SD-201	06/02/00	24	144	24	2,700	<0.027	0.64	14	82	0.038	70
SD-202	06/02/00	14	9.1	27	<19	2.3	0.91	21	69	0.064	100
SD-203	06/02/00	478	168	1,380	1,350	<0.026	0.34	4.4	26	<0.013	25
	Wisconsin River Sediment Sampling Results										
T201A(1)	06/03/00	23	11	86	<19	<0.07	1.1	15	24	<0.029	89
T201B(0-4)	06/03/00	<9.0	<4.5	6.4	<19	0.023	0.34	5.6	<2.2	<0.008	19
T201C(0-4)	06/03/00	<9.0	<4.5	<4.2	<19		<0.27	20	3.6	<0.010	41
T203A(0-4)	06/03/00	<90,000	70,300	106,000	230,000						
T203A(4-8)	06/03/00										
T203B(0-1)	06/03/00	942	17,200	6,420	54,200	<0.031	<0.36	9.0	10	0.023	41
T203B(4-8)	06/03/00	15	46	32	<19	<0.027	<0.31	4.3	5.0	<0.010	34
T203C(0-4)	06/03/00	<9.0	<4.5	<4.2	<19		<0.28	9.8	3.4	<0.009	22
T204A(0-4)	06/03/00	195	79	574	628	<0.026	0.31	17	6.0	0.027	54
T204B(0-4)	06/03/00	10	<4.5	9.8	<19	<0.025	0.35	8.5	5.0	<0.012	80
T204C(0-4)	06/03/00	<9.0	<4.5	4.3	<19		<0.28	2.8	2.7	<0.012	16
T207A(0-2)	06/03/00	9.4	9.0	58	<19	0.08	0.37	7.9	8.6	0.040	124
T207B(0-2)	06/03/00	<9.0	11	8.7	<19	0.048	<0.28	22	4.7	<0.013	31
T207C(0-1)	06/03/00	<9.0	<4.5	<4.2	<19		<0.27	14	3.7	< 0.01	28

[O-AAS/HMS]

Note:


-- = Parameter not analyzed in this sample.

APPENDIX H

FIGURE 1 AND TABLES 1 AND 2 (DIVERS SURVEY LETTER)

_	
GEND	
\frown	DIVERS ARC
₽C-1 9	DIVER PUSH CORE SEDIMENT SAMPLE
7-201A 9	SEDIMENT SAMPLE
) ^{e~201A}	TRANSECT POLING LOCATION
_SD-201 9	SEDIMENT SAMPLE (POND)
⊽ ⁸⁶⁻¹	STAFF GAUGE
MH	STORM SEWER MANHOLE HYDRANT UTILITY POLE WATER LINE GAS LINE STORM SEWER MANUFACTURED GAS PLANT FORMER BUILDINGS
╺╆╼┿╍┿╍┾╼┾	FORMER RAILROAD

.							
DATE: 01/06/03	DATE: 01/06/03	DATE: 01/06/03					
DRAWN BY: TAS	CHECKED BY: JTB	APPROVED BY: _{RGF}	XREF FILE: NONE				
DIVERS SURVEY OF WISCONSIN RIVER	SEPTEMBER 19, 2002	FORMER MANUFACTURE CONFORMION	DIEVEND PUINI, WISCUNDIN				
Re: Teo	Natural Resource Technology						
1177 DR/	PROJECT NO. 1177/14.1/STPT DRAWING NO.						
1177	DRAWING NO. 1177-141-B40 FIGURE NO.						

Table 1. Observations Along Diver's ArcsFormer Stevens Point MGP Site, WPSC

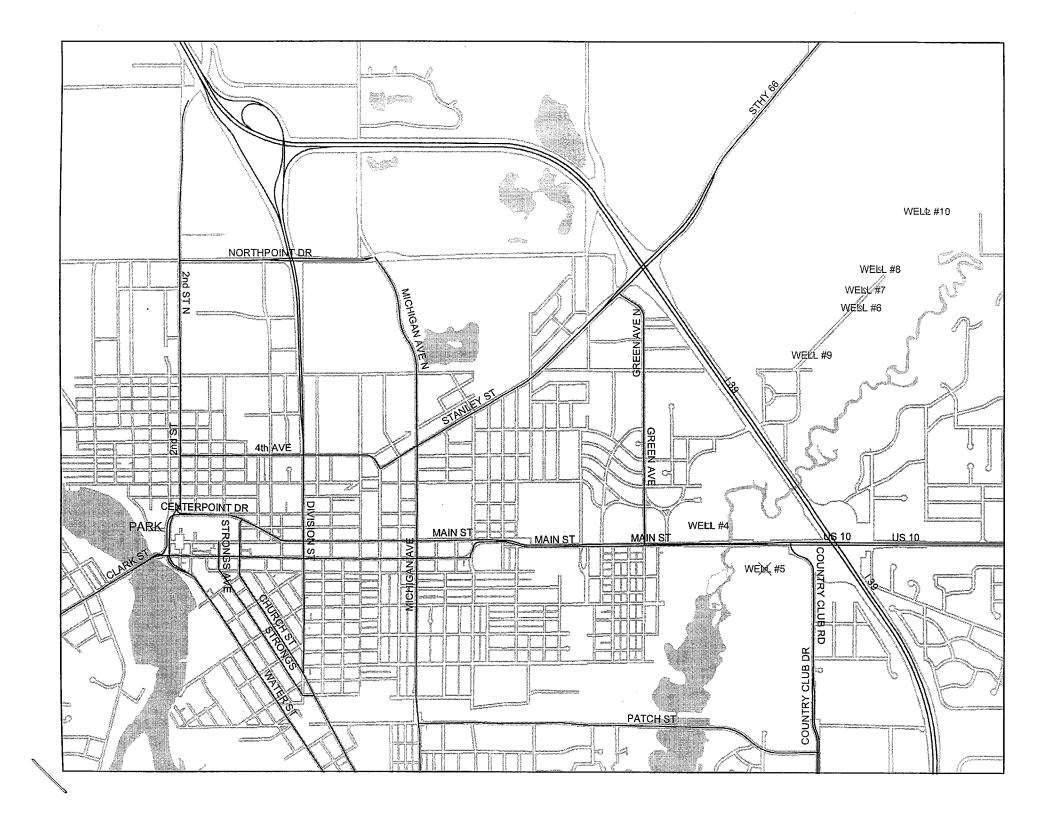

Arc #	Time on Video Tape	Distance from Bridge Center	Tar or Sheen Observed?	Notes
1	0:03.38 to 0:06.36	20'	No	riprap with silt and timbers; loose sand; gravel with sand
2	0:06.36 to 0:09.58	30'	No	more sand with rock and small gravel; timbers; building materials and brick; somewhat soft bottom
3	0:09.58 to 0:15.38	40'	No	pea gravel; soft silt area over gravel ; 3-4" silt; small gravel; low current; wood chips (1.5" and bigger) with planks and construction debris
4	0:18.35 to 0:24.49	50'	No	small gravel with sand; bicycle; heavy silt (6") overlying wood chips approx. 18" thick near center; wood chips nearshore and at 3/4 sweep; rocky near shore
5	0:24.50 to 0:30.45	60'	No	pea gravel and logs near shore; 55 gal drum; siltier with depth; hard substrate underlying silt
6	0:30.48 to 0:42.25	70'	No	rod pushed approx. 6' into sediments approx. 15' from shore; 2nd drum w/ open end; gravelly bottom with wood under 6" of silt; rocky at points; soft sediment; woody debris
7	0:42.26 to 0:55.20	80'	No	2" silt approx 15 yds from shore thickening to 6" at 25 yds; little/no flow; wood chips present under silt; substrate wood; silt with hard bottom
8	0:55.22 to 1:01.01	90'	No	digging thru thin silt over construction debris; hose getting hung up; sweep not completed

Table 2. Transect & Core Field ObservationsFormer Stevens Point MGP Site, WPSC

Push Core Sample Number	Transect	Depth of Sample	Observations
1	1	12"	First try 4''; pea gravel w/ wood chips; no MGP reduals or odors
2	1	12"	Pea gravel w/ wood chips; no MGP residuals or odors
3	2	8"	First try no sample; pea gravel w/ wood chips; no MGP residuals or odors
4	2	22"	Pea gravel w/ wood chips; no MGP residuals or odors

APPENDIX I

STEVENS POINT MUNICIPAL WELL INFORMATION AND STORM SEWER CORRESPONDENCE AND FIGURE 7 AND TABLES 6 THROUGH 8 (ANNUAL GROUNDWATER MONITORING REPORT, MARCH 15, 2004)

			8	8			S	ystem S	uppiy D	eta		Pump C	apacity	S	torage	
Place	Population	Ownership	Year Evenem instelled	Average Dally Pumpage (Thousands of gal.)	Source	Ke I I Number	Year installed	Well Depth or Inteke Length (ft.)	Water Bearing Formation(s)	Treatment	Distributn Piping	(1974) Low Lift (1974)	High Lift (GPM)	Reilft (Thousands of gel.)	Elevated (Thousands of gal.)	Pressure Tank (Thousands of gal.)
Star Prairie 	420	 Village 	 1976 	 38 	Drilled Weii	1	 1977 	315	S		CIDI		250 250		50	
Stevens Point	22970	CI+y 	 1888 	 4354 	Scr/Pk Well Scr/Pk Well Scrnd Well Scrnd Well Scrnd Well Scrnd Well	4 5 6 7 8	 1960 1966 1967 1967 1967 1968	 53 80 90 80 85 80	D D D D D	Dc Va Dc Va Dc Va Dc Va Dc Va Dc Va Dc Va		9600 2000 1400 2350 2350 2350 1150	4860 4860 4860 4860 4860 4860 4860 4860	2250	1000	
		is on sta Is dischar I		 ugh a co 	İ	í to the l	1	i		ground reservoir	• 					4 1 1
Stitzer	200	Stitzer S.D. #1	1948	12	Drilled Well		 1948 	476	LS	l. IIAp Fpb∵Dh	AC	35 35	220 220	30		10
Stoddard	762	 VIIIage 	 1941 	 68 	 Driiled Well Scr/Pk Well	1		 152 127	S D	Dh Dh	C		650 150 500		80	
Stone Lake	315	Stone Lake S.D. 	1976	32	Drilled Well	1 1 1 1	 1976 	 270	s		P.,		20 20		 30 	
Stoughton	 7589 	 City 	 1885 	 1221 	 Drilled Well Drilled Well Drilled Well	 3 4 5	1 1963	 950 969 1 13	S S S	 Dh Va Dh Va Dh Va		500 500	4660 2460 1300 900	350	 550 	
	 Well #6 	is under 	 construc 	tion.	Drilled Well	6			S S 	Dh Va		 			: : : :	
	1	 		 		 	1		 		 				 	

172

ature Fleid (°C)

Ter

1

Natural Resource Technology, Inc.

MEMORANDUM

TO: Mr. Patrick Oldenburg, WDNR
FROM: Eric Kovatch, NRT
CC: Ms. Shirley Scharff, WSPC and Mr. Tom Hvizdak, WDNR
DATE: November 2, 2004
RE: Storm Sewer Base Flow Estimate Calculations Summary WPSC Stevens Point Former Manufactured gas Plant

Purpose

This memorandum provides a summary of the estimated base flow in the City of Stevens Point storm sewer system that passes through the former WPSC manufactured gas plant area in Stevens Point, Wisconsin. This is a follow up to our September 17, 2004 letter and subsequent telephone conversation regarding establishment of preliminary limits for groundwater discharge of polynuclear aromatic hydrocarbons (PAHs) to the referenced storm sewer. Occasional groundwater discharges to the storm sewer may occur as discussed in previous reports due to perforated section that was installed by City in 1980s. The purpose of this memorandum is to provide an estimate of the base flow in the sewer for comparison to applicable water quality based limits for the receiving stream (Wisconsin River).

General Assumptions

Base flow calculation assumptions include the following:

- Base flow is attributed to discharge from surrounding groundwater;
- The Chezy-Manning equation was used to calculate the approximate base flow;
- Depth of flow in pipe as recorded during low flow times is conservatively equal to base flow (no significant rainfall related flow); and,
- The resulting base flow estimate could be adjusted downward to recognize occasional discharge only (i.e. when groundwater elevations are below the invert of sewer pipe), at which time there would be no flow into sewer from site vicinity.

[1177 Storm Sewer Baseflow memo 041102]

Method

Based on the perforated storm sewer pipe "upstream" of manhole MH-4, the estimated base flow in the storm sewer was calculated for periods when the nearby water levels in site monitoring wells were above the elevation of the perforations in the storm sewer, which are present at an elevation of 1080.44 feet. A hydrograph of groundwater elevations at OW-6 for the period from just prior to January 1, 1999 through July 20, 2004 was constructed and used to calculate the average water depth in the storm sewer pipe during this period. This period (between November 17, 1998 and the present) corresponds to the time since site remediation activities were completed and groundwater monitoring began. The average depth was calculated by dividing these overall computed depth from the hydrograph by the number of days (2,164) in the analysis. Based on the hydrograph, NRT determined that the average depth of water in the pipe is 0.038 feet over this period (see attached calculation sheet).

The Chezy-Manning equation was used to calculate an average base flow number that could be used to estimate the water quality discharge limits to the Wisconsin River. The Chezy-Manning equation includes the following:

$$Q = \frac{1.49}{n}$$
 (A) $r_{\rm H}^{2/3} \sqrt{S}$

Where :

Q= Flow (ft³/second) A = The cross-sectional area of the water in the pipe (ft²) $r_{\rm H}$ = hydraulic radius (which equals A/P) (ft) P = Wetted perimeter (ft) S = Slope (ft/ft) n = roughness coefficient (0.014 for concrete)

Basic assumptions used in the calculation included the following:

- The inner diameter of the concrete sewer pipe is 27 inches;
- Flow within the pipe is uniform and constant; and,
- The slope of the sewer is constant between MH-4 and MH-3.

The average depth estimate (0.038 feet) was required to calculate both the wetted perimeter and the area through which water flows in the pipe, which in turn are used to calculate the hydraulic radius. Based on the average water height, the wetted perimeter and area were calculated to be 0.586 ft and 0.015 ft², respectively, and the resulting hydraulic radius is 0.026 ft.

The invert elevations between MH-4 and MH-3 were used to determine the pipe slope. These elevations are 1080.11 feet mean sea level (MSL) and 1079.51 feet MSL, respectively, and the pipe extends a distance of 159 feet. The corresponding slope was calculated to be 0.004 ft/ft.

^{[1177} Storm Sewer Baseflow memo 041102]

Results

Based on the attached information and value for each parameter, the Chezy-Manning equation results indicate that base flow in the pipe is on the order to 0.009 ft^3 /sec or 4 gallons per minute (see attached calculation sheet). This is the general contribution of base flow to the storm sewer resulting from elevated groundwater levels in the vicinity of the perforated storm sewer pipe.

It is assumed that this analysis is sufficient for the purpose of calculating preliminary discharge limits for the PAHs present in site soils. Further, this is a generally conservative analysis of the contribution of groundwater to the storm sewer base flow, as well measurements are only obtained on a quarterly basis for the site, and it is likely that groundwater do not remain at levels exceeding the sewer line perforation for extended periods of time. Depending on the preliminary discharge limits calculated for the site, a more detailed analysis of the groundwater contribution to storm sewer base flow at the site may be warranted.

Sewer Hydrograph & Water Height Calculation Sheet Stevens Point Storm Sewer

Hydrograph Area Calculation for the height of water in the sewer is....

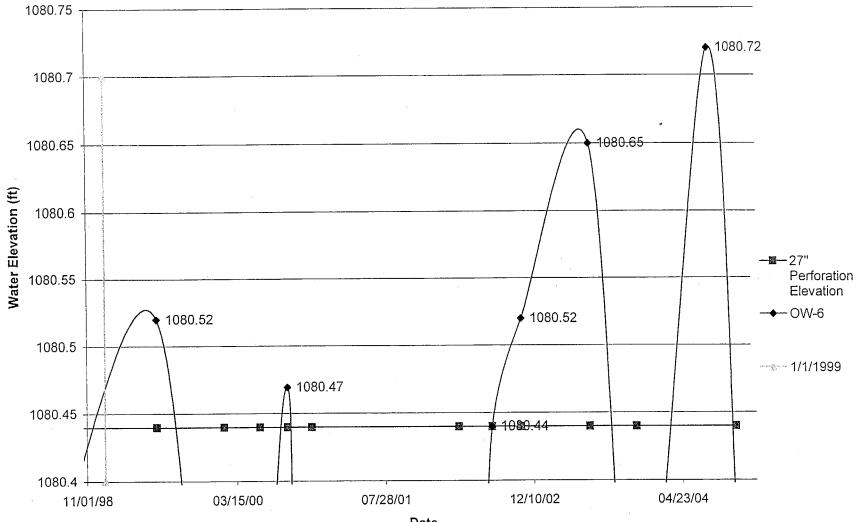
			Total ft*days =	82.97
4	0.28	03/13/04 - 10/07/04	208	29.12
3	0.21	07/22/02 - 08/29/03	403	42.32
2	0.03	08/16/00 - 09/15/00	30	0.45
1	0.08	11/17/98 - 08/21/99	277	11.08
Area	Height (ft)	Time Period	Days	ft*days

0.5*(height)*(#days/2)*2

Total days from 11/17/98 through 10/20/04 = 2,164

Average water height in the sewer since 11/17/98 = Total ft*days/#days.

0.038 ft of water in the sewer


Chezy Manning Eqaution $Q = (1.49/n)^* (A)^* r_H^{0.667*} \sqrt{S}$

- $Q = Flow (ft^3/second)$
- A = The cross-sectional area of the water in the pipe (ft^2)
- P = Wetted perimeter (ft)
- r_{H} = hydraulic radius (which equals A/P) (ft)
- S = Slope (ft/ft) [(1080.11-1079.51)/159]
- n = roughness coefficient (0.014 for concrete)

Results for a depth of 0.038 ft....

A =	0.015 ft ²
P =	0.586 ft
r _H =	0.026 ft
S =	0.004
n =	0.014
n =	0.014

- Q = 0.009 ft³/sec
 - 3.9 gallons per minute

Water Elevation at OW-6 Compared to Perforated Sewer Invert at MH-4

Date

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

Jim Doyle, Governor Scott Hassett, Secretary Scott Humrickhouse, Regional Director West Central Region Headquarters 1300 W. Clairemont Avenue PO Box 4001 Eau Claire, Wisconsin 54702-4001 Telephone 715-839-3700 FAX 715-839-6076 TTY Access via relay - 711

November 30, 2004DRAFT

Eric P. Kovatch Natural Resource Technology 23713 W. Paul Rd. Unit D Pewaukee, WI 53072

Subject: Request for Preliminary Discharge Limits for the former Wisconsin Public Service Corporation Manufactured Gas Plant, 111 Crosby Ave, Stevens Point WI.

Dear Mr. Kovatch:

This letter is in response to your letter of 17 September 2004 and follow-up memo of 2 November 2004 requesting preliminary effluent limitations for discharge of contaminated groundwater from storm sewers located near the former Wisconsin Public Service Corporation Manufactured Gas Plant, 111 Crosby Ave, Stevens Point, WI.

I have completed and attached the preliminary water quality based effluent limitations for this project. However it must be noted that wastewater treatment for pollutant removal is required for all discharges of contaminated groundwater, including pump test wastewaters. This treatment requirement is consistent with section 301(b)(2) of the Clean Water Act and the corresponding section 283.13 (2)(b) of the Wisconsin Statutes. The level of treatment shall be adequate to assure compliance with water quality standards (water quality based effluent limits) or shall be equivalent to Best Available Treatment Economically Achievable (BAT), which ever is more restrictive.

In the case of contaminated groundwater, those BAT limits are in the current Wisconsin Discharge General Permit for discharging Contaminated Groundwater from Remedial Action Operations (Permit No. WI-0046566-4). So, while the water quality based limits may be more restrictive than those in the general permit or address contaminants not covered by the general permit, they can offer no relief from those BAT limits.

The attached table represents preliminary water quality based limits for those parameters for which either there are criteria in ch. NR 105 or for which there have been secondary values calculated in the past for other projects. Secondary values are calculated based on the procedures in ch. NR 105 for toxic substances that do not currently have criteria in ch. NR 105, and are calculated on a case by case basis as an individual permit is evaluated. A number of parameters that were detected in the discharge either have not had secondary values calculated in the past or there was insufficient data at the time to calculate secondary values.

Based on this preliminary evaluation it appears that either the BAT limits will be controlling for most substances, and the permit conditions set forth in General Permit No. WI-0046566-4 should be protective of water quality in this case. If you have any additional questions or comments, please fee free to contact me at (715) 831-3262 or via e-mail at <u>Patrick.Oldenburg@dnr.state.wi.us</u>.

Respectfully,

Patrick Oldenburg Water Resources Engineer

Attachment

Cc: Tom Hvizdak – WCR/WI Rapids (via e-mail) Joe Behlen – WCR (via e-mail) Preliminary Calculation of Water Quality-Based Limits for Limits for the former Wisconsin Public Service Corporation Manufactured Gas Plant, 111 Crosby Ave, Stevens Point WI. Prepared by Pat Oldenburg-WDNR, 29 November 2004

Summary of Water Quality Based Limit Calculations:

Water Quality Based E Limit Calculations for:	ffluent		Former Wisconsin Public Service Corporation Manufactured Gas Plant Site Wisconsin River @ Stevens Point Warm Water Sport Fish Community, Non-public Water Supply						
Receiving Water: Classification:									
Flows			7Q10 1,110	7Q2 1,740	90Q10	Estimated Harmonic Mean 2,697			
% Used For Mixing		=	25						
Effluent Information: Outfall Number Effluent Dilution	001	f	Daily Average Flow (mgd) 0.057 (1)	(cfs) 0.09					
due to ZID		=		NA					

Calculation Of Effluent Limitations Based on Acute Toxicity Criteria (ATC) (ug/L)

REF.	MAX	
HARD.		
or pH ATC	LIMIT	
0.4561	0.91	
0.38	0.76	
7.9	15.80	
58	116.00	
344		
61		
140	280.00	
109	218.00	
112	224.00	
339.80	679.60	
45.78	91.56	
	HARD. or pH ATC 0.4561 0.38 7.9 58 344 61 140 109 112 339.80	REF. MAX. HARD. EFFL. or pH ATC LIMIT 0.4561 0.91 0.38 0.76 7.9 15.80 58 116.00 344 688.00 61 122.00 140 280.00 109 218.00 112 224.00 339.80 679.60

Calculation Of Effluent Limitations	s Based on Chronic Toxicity Criteria (CTC) (ug/L)
Dessiving Water Flow -	277.5 Cfs

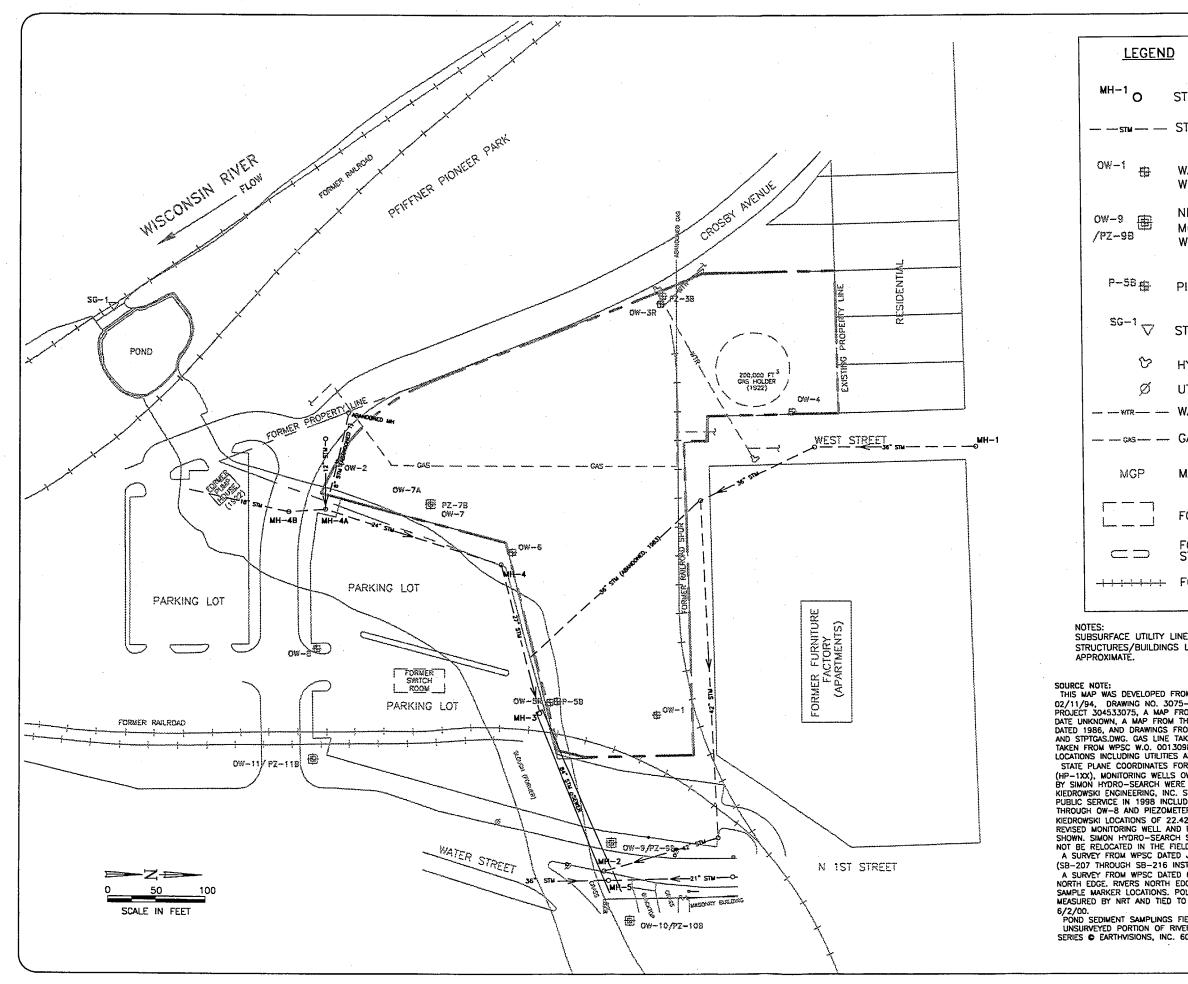
Receiving Water Flow =		277.5 Ci	Ś		
-	REF.		MEAN	WEEKLY	
	HARD.		BACK-	AVE.	
SUBSTANCE	or pH (CTC	GRD.	LIMIT	
	0	.0253		80	
Anthracene					
Benzo(a)pyrene	C).021		66	
Fluoranthene		2.3		7.24E+03	
Fluorene		3.2		1.01E+04	
Naphthalene		19		5.98E+04	
Phenanthrene		3.4		1.07E+04	
Pyrene		7.8		2.46E+04	
I-Methyl Naphthalene		6.1		1.92E+04	
2-Methyl Naphthalene		6.2			
Arsenic	1:	52.20		4.79E+05	
Cyanide	1	1.47		3.61E+04	

Calculation Of Effluent Limitations Based on Human Threshold Criteria (HTC) (ug/L) Receiving Water Flow = 674.25 Cfs

Receiving Water Flow =	674.25 C	JIS .		
<u> </u>		MEAN	MO'LY	
		BACK-	AVE.	
SUBSTANCE	HTC	GRD.	LIMIT	
	1.37E+03		1.05E+07	
Anthracene				
Fluoranthene	4.30E+03		3.29E+07	
Fluorene	65.9		5.04E+05	
Pyrene	126		9.63E+05	
m-xylene	2.44E+05		1.86E+09	
Benzene	610		4.66E+06	
Ethylbenzene	1.20E+04		9.18E+07	
Toluene	7.60E+04		5.81E+08	
Cyanide	4.00E+04		3.06E+08	

Calculation Of Effluent Limitations Based on Human Cancer Criteria (HCC) (ug/L)

Receiving Water Flow =	674.25			
0		MEAN	MO'LY	
		BACK-	AVE.	
SUBSTANCE	HCC	GRD.	LIMIT	
	3.43E-05		0.262	
Benzo(a)pyrene				
Naphthalene	1945		1.49E+07	
Arsenic	50		3.82E+05	


 This value represents the maximum annual average flow per s. NR 106.06(3)(d)(2), and is based on the average flow from 22 July 2002 to 29 August 2003 using the methods outlined in you 2 November 2004 memo.

2) Limitations for substances in *Italics* are based on secondary values.

3) Limitations for substances in Bold are based on criteria in ch. NR 105.

	•					
Substance	ATC	CTC	WC	HTC	HCC	Date Last Calculated
l-Methyl Naphthalene	109	6.1				Nov '01
2-Methyl Naphthalene	112	6.2				Nov '01
Acenaphthene						Not Previously Calculated
Acenaphthylene						Insufficient Data Nov '01
Anthracene	0.4561	0.0253		1374		Sept '02
Benzo(a)-anthracene				1571		Insufficient Data Sept '02
Benzo(a)pyrene	0.38	0.021			3.43E-05	
Benzo(b)-fluoranthene					J.45E-05	Sept '02
Benzo(ghi)perylene						Not Previously Calculated
Benzo(k)-fluoranthene						Insufficient Data Sept '02
Chrysene						Insufficient Data Sept '02
Dibenzo(a,h)-anthracene						Insufficient Data Sept '02
Fluoranthene	7.0					Insufficient Data Oct '02
	7.9	2.3		4300		Sept '02
Fluorene	58	3.2		65.9		May '04
Indeno-(1,2,3-cd)pyrene						Insufficient Data Sept '02
Naphthalene	344	19			1945	Sept '02
Phenanthrene	61	3.4				May '04 (cold water)
Pyrene	140	7.8		126		Sept '02

Summary of Secondary Values and Last Evaluation Date:

•

						-
		10/14/03	02/13/04	03/15/04	DWG	
STORM SEWER MANHOLE		DATE:	DATE:	DATE:	-B06.	
STORM SEWER		TAS D	EPK	DAZ D	1177-134-B06.DWG	
WATER TABLE OBSERVATION WELL			BY: EI	BY:		NONE
NESTED MONITORING/PIEZOMETER WELL		DRAWN BY:	CHECKED	APPROVED	CAD FILE:	REF FILE:
PIEZOMETER						NISNO
STAFF GAUGE	н					WISCO
HYDRANT			ŝ	ΤF	VTION	ENS POINT,
UTILITY POLE	[AND	õ	UPDAT	S S S	E E
WATER LINE			E	- 	, SR	/EN:
GAS LINE		/ER	OCATIONS	II AI IT	ICE CORPORATI	STEV
MANUFACTURED GAS PLANT		SEWER	Г	2003 CROUNDWATER DUALITY	SCONSIN PUBLIC SERVI	PLANT,
FORMER BUILDINGS		Σ	OLI	MUN	UBLI	GAS
FORMER MGP PROCESS STRUCTURES		STORM	MANHO	CPOI	SIN P	IURE
FORMER RAILROAD		S	ΜA	2003	WISCON	
NE AND FORMER 5 LOCATIONS ARE					-	FORMER MAN
ROM DRAWINGS BY SIMON HYDRO-SEARCH, DATED 15-d8 AND DRAWING NO. 3075-d2, DATED 11/15/93, ROM THE CITY OF STEVENS POINT, DRAWING E2 M-146 THE CITY OF STEVENS POINT, DRAWING A-3 M-1456, ROM WISCONSIN PUBLIC SERVICE CORP., WSK509.DWG TAKEN FROM WSK509.DWG AND ABANDONED GAS LINE 088081, STEVENS POINT AREA MAP NO. 2106-252. ALL ARE APPROXIMATE.						
OR SOIL BORINGS (B-1XX), HYDRO-PUNCH BORINGS OW-1 THROUGH OW-8 AND PIEZOMETER P58 INSTALLE RE ESTABLISHED IN SURVEYS CONDUCTED IN 1993 BY						
STATE PLANE COORDINATES ESTABLISHED BY WISCONSII UDING MONITORING WELLS OW-1 THROUGH OW-4, OW- TER P5B INDICATE AN AVERAGE DISCREPANCY IN THE	6	1	Vatu	ral		
42 FEET IN A DIRECTION 196'22'13" FROM NORTH. D PIEZOMETER LOCATIONS SURVEYED BY WPSC ARE H SOIL BORING AND HYDRO-PUNCH LOCATIONS COULD				urce		
ELD, AND THEREFORE, WERE NOT MODIFIED. D JANUARY 31, 2000 LOCATED NEW WELLS AND BORING ISTALLED JANUARY 2000).		נן	l'ech	nolc	ogy	
D 6/2/00 LOCATED MH-1, SG-1 AT BRIDGE AND RIVER DOGE ESTABLISHES TRANSECT POLING AND SEDIMENT "OULING AND SEDIMENT SAMPLE LOCATIONS FIELD TO TRANSECT MARKERS ESTABLISHED BY WPSC ON	15			JECT		
FIELD MEASURED BY NRT. VER AND ISLAND FROM EARTHVISIONS U.S. TERRAIN 603-433-8500.		-		77/ ⁻ URE		
			0	7		
						_

Table 6. Storm Sewer Manhole Elevations and ConditionsWisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site1111 Crosby Avenue, Stevens Point, WisconsinBRRTS # 02-50-000079 / FID # 750081200

tion				1 3 0	uo			fable Eleva est Well (N	
Manhole Location	Manhole Construction Detail Elev	ations (MSL)	Sampling Date	Depth to Water from Manhole (feet)	Water Elevation (MSL)	Comments	Well	Date	Groundwate r Elevation
MH-1	Rim	1084.91*	05/30/00	6.92	1077.99		NA	NA	
	Manhole Base	1077.06	08/31/00	6.69		medium flow			
	Perforated Storm Sewer Invert		11/21/00	6.88	1 1010100	medium flow			
	Lowest Perforation***		04/01/02	6.85	1078.06	high flow, rust colored flocculent and sheen present			1
	84" Invert		07/22/02	6.85	1078.06	medium flow			
	Other Inverts		10/28/02	7.00	1077.91	medium flow, light tan, no flocculent			
			11/20/03	6.75	1078.16	fast flow, clear, no odor/sheen			
MH-2	Rim	1088.56**	05/30/00	10.50	1078.06		NA	NA	
	Manhole Base	1076.01				Manhole was not sampled			
li -	Perforated Storm Sewer Invert				ļ	after 05/30/2000			
	Lowest Perforation***								
	84" Invert	E,W							
	Other Inverts	1076.54 N							
MH-3	Rim	1087.08**	05/30/00	9.10	1077.98		OW-5R	05/31/00	1079.29
	Manhole Base	1076.18	08/31/00	9.26	1077.82	low flow, standing water		08/31/00	1079.48
	Perforated Storm Sewer Invert	1079.51 W	11/21/00	9.00	1078.08	1		11/21/00	1079.02
	Lowest Perforation***	1079.84	04/01/02	9.10	1077.98	÷		04/01/02	1079.05
						flocculent			
	84" Invert	1075.85 E	07/22/02	6.00	1081.08			07/22/02	1079.46
	Other Inverts		10/28/02	9.10	4	fast flow, orange flocculent		10/28/02	1079.59
	1		11/20/03	8.88	1078.20	fast incoming flow, odor, clear		11/20/03	1079.17
MH-4	Rim	1085.00**	05/30/00	4.80	1080.20		OW-6	05/31/00	1080.21
4	Manhole Base	1080.08	08/31/00	4.88	1080.12	very low flow		08/31/00	1080.47
	Perforated Storm Sewer Invert	1080.11 E,S	11/21/00	dry	dry			11/21/00	1080.18
	Lowest Perforation***	1080.44	04/01/02	4.91	1080.09	-		04/01/02	1080.15
	84" Invert		07/22/02	dry	dry	very low flow, odor		07/22/02	1080.44
	Other Inverts		10/28/02	4.87	1080.13			10/28/02	1080.52
			11/20/03	4.68	1080.32	slow flow, odor, clear		11/20/03	1080.23

Table 6. Storm Sewer Manhole Elevations and Conditions

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

BRRTS # 02-50-000079 / FID # 750081200

tion			er	uo		Water Table Elevation at Closest Well (MSL)				
Manhole Location	Manhole Construction Detail Ele	vations (MSL)	Sampling Date	Depth to Water from Manhole (feet)	Water Elevation (MSL)	Comments	Well	Date	Groundwate r Elevation	
MH-5	Rim	1088.41**	05/30/00	10.71	1077.70		OW-10	05/31/00	1078.41	
	Manhole Base	1077.31	08/31/00	10.56	1077.85	low flow, standing water		08/31/00	1079.78	
	Perforated Storm Sewer Invert		11/21/00	10.58	1077.83	medium flow		11/21/00	1078.44	
	Lowest Perforation***		04/01/02	10.63	1077.78	medium flow, suspended solids observed		04/01/02	1078.60	
	84" Invert	1075.71 E,W	07/22/02	10.75	1077.66	Low flow	1	07/22/02	1078.76	
	Other Inverts	1078.63 S / 1080.57 N	10/28/02	10.56	1077.85	slow to medium flow		10/28/02	1078.94	
			11/20/03	10.55	1077.86	fast flow, clear, no odor/sheen		11/20/03	1078.64	
MH-4A	Rim	1087.53**				Manhole has not been sampled	OW-2	05/31/00	1080.66	
	Manhole Base							08/31/00	1080.64	
	Perforated Storm Sewer Invert	1080.87 N,S						11/21/00	1080.36	
	Lowest Perforation***	1081.20						04/01/02	1080.68	
	84" Invert							07/22/02	1080.69	
Ì	Other Inverts			ĺ				10/28/02	1080.74	
								11/20/03	1080.68	
MH-4B	Rim	1086.66**				Manhole has not been sampled	OW-2	05/31/00	1080.66	
	Manhole Base							08/31/00	1080.64	
	Perforated Storm Sewer Invert	1080.98 N						11/21/00	1080.36	
	Lowest Perforation***	1081.31						04/01/02	1080.68	
	84" Invert							07/22/02		
	Other Inverts							10/28/02		
			<u> </u>					11/20/03	1080.68	

[JAZ/HMS-05/01][JTB/PAH-02/03]

Notes:

* : Rim elevation from WPSC Survey on 05/30/00

** : From City of Stevens Point Storm Sewer Maps

*** : Approximate elevation of lowest perforation is equal to invert + 0.33 feet (4 inches)

MSL : Mean Sea Level utilizing City of Stevens Point Datum + 992.04 feet

--: Notes not available

Table 7. Storm Sewer Analytical Results - BTEX and Cyanide

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

BRRTS # 02-50-000079 / FID # 750081200

	,,,,,,_						
Location Date		Benzene	Ethylbenzene	Toluene	Xylenes (total)	Total BTEX	Total Cyanide (mg/L)
	General Wiscon	isin Pollutant D		nation System			
Effluent Limit	Daily Maximum	ns	ns	ns	ns	750	ns
Effluent Limit	Monthly Average	<u>50</u>	ns	ns	ns	ns	ns
MH-1	05/30/00	< 0.5	<0.6	<0.6	<0.77	nd	0.003
	08/31/00	<0.5	<0.6	<0.6	<0.77	nd	0.002
	11/21/00 A	<0.5	<0.6	<0.6	<0.77	nd	0.002
	04/03/02	<0.45	<0.82	<0.68	<0.77	nd	0.015
	07/22/02	<0.45	<0.82	<0.68	<0.77	nd	<0.0023
1	10/28/02	<0.45	<0.82	<0.68	<1.7	nd	0.0030 Q
	11/20/03	<0.30	<0.60	<0.58	<1.2	nd	0.0061 Q
MH-2	05/30/00	2.3	1.4	<0.6	2.8	6.5	
		Manhole was n	ot sampled after				
MH-3	05/30/00	6.4	5.9	0.9	9.1	22	0.021
	08/31/00	16	10	0.85	13	40	0.066
	11/21/00 A	20	10	0.87	17	48	0.052
	04/03/02	13	13	1.5 Q	8.4	36	0.077
	07/22/02	8.0	9.2	0.80 Q	12.7	31	0.092
	10/28/02	13	10	0.79 Q	13.6	37	0.055
	11/20/03	10	8.5	0.69 Q	12.3	32	0.035
MH-4	05/30/00	6.3	17	2.9	25	51	0.029
	08/31/00	5.5	11	1	11	29	0.060
	11/21/00	dry	dry	dry	dry	dry	dry
	04/03/02	4.4	14	2.6	13	34	0.040
	07/22/02	5.1	12	1.3 Q	16.7	35	0.046
	10/28/02	4.5	10	1.1 Q	15.1	31	0.021
	11/20/03	5.4	14	1.5 Q	19.8	41	0.034
MH-5	05/30/00	1.2	0.72	<0.6	<0.77	1.9	0.004
	08/31/00	<0.5	<0.6	<0.6	<0.77	nd	0.013
	11/21/00 A	0.83	<0.6	<0.6	<0.77	0.8	0.007
	04/03/02	0.76 Q	<0.82	<0.68	<0.77	0.8	<0.77
	07/22/02	1.1	<0.82	<0.68	<0.77	1.1	0.0088
	10/28/02	1.1 Q	<0.82	<0.68	<1.7	1.1	0.010
	11/20/03	0.76 Q	<0.60	<0.58	<1.2	0.8	0.0074

[JTB/SAG-12/00][RJC/SAG-05/02][JTB/PAH-02/03][U-LJH/7 12/03]

Notes:

--: Analysis not performed

nd : parameter(s) not detected in this sample.

< : analyte was not detected above the limit of detection (LOD) indicated

ns : General WPDES Permit limits have not been established

A : BTEX analysis on 11/21/2000 sample date exceeded holding time, results may be biased low

Q: Laboratory qualifier - The analyte has been detected between the limit of detection and the limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.

Table 8. Storm Sewer Analytical Results - PAHs

Wisconsin Public Service - Former Stevens Point Manufactured Gas Plant Site

1111 Crosby Avenue, Stevens Point, Wisconsin

BRRTS # 02-50-000079 / FID # 750081200

ł		Polynuclear Aromatic Hydrocarbons (µg/L)																			
Location	Date	Acenaphthene	Acenaphthylene	Anthracene	* Benz(a) anthracene	Benzo(a) pyrene	* Benzo(b) * fluoranthene	* Benzo(ghi) perylene	* fluoranthene	* Chrysene	* Dibeuz(a,h) * anthracene	* Fluoranthene	Fluorene	* Indeno(1,2,3-cd) * pyrene	Naphthalene	* Phenanthrene	* Pyrene	1-Methyl- naphthalene	2-Methyl- naphthalene	Total PAHs	Total PAHs (** PAHs from General Permit)
Wisconsin Discharge Permit from Contaminated Groundwater from Remedial Action Operation Limits (April 2001) µg/L																					
Monthl	ent Limit y Average	ns	ns	ns	ns	0.1	ns	ns	ns	ns	ns	ns	ns	ns	70	ns	ns	ns	ns	ns	<u>0.1</u>
MH-1	05/30/00	<0.13	<0.15	< 0.02	< 0.11	< 0.013	0.11	<0.074	< 0.11	0.07	<0.068	0.21	<0.11	<0.08	0.1	0.13	0.16	<0.082	<0.072	0.8	0. 7
	08/31/00	<0.13	<0.15	< 0.020	<0.11	<0.013	<0.055	<0.074	<0.11	<0.059	<0.068	0.11	<0.11	<0.080	2.3	0.12	< 0.032	<0.082	<0.072	2.5	<u>0.2</u>
	11/21/00	<0.4	< 0.46	< 0.060	< 0.34	<0.040	0.37	< 0.22	< 0.34	0.77	<0.21	<0.2	< 0.34	<0.24	< 0.17	<0.14	<0.097	<0.25	<0.22	1.1	1.1
	04/03/02	0.049 A,Q	<0.023A	<0.020A	0.066	0.082	0.10	0.077	0.073	0.091	0.018 Q	0.16 A	0.025 A,Q	0.065	0.100 A	0.075 A	0.15	0.040 A,Q	0.042 A,Q	1.2	<u>0.9</u>
	11/21/00	2.2	0.32	1.2	0.11	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	0.15	< 0.050	<0.050	1.7	0.77	0.19	1.4	0.17	8.2	1.2
Į	04/03/02 07/22/02	0.049 A,Q	<0.023	<0.020	0.066	0.082	0.10	0.077	0.073	0.091	0.018 Q	0.16 A	0.025 A,Q	0.065	0.100 A	0.075 A	0.15	0.040 A,Q	0.042 A,Q	1.2	<u>0.9</u>
	10/28/02	0.082 <0.020	<0.023	<0.020	0.077	0.082	0.075	0.054	0.056	0.068	0.019 Q	0.14	0.031 Q	0.048	0.23	0.077	0.12	0.050 Q	0.046 Q	1.3	<u>0.7</u>
	10/28/02		<0.023	<0.020	< 0.019	0.013 Q	< 0.014	< 0.015	< 0.013	< 0.018	< 0.017	<0.028	0.034 Q	< 0.014	0.26	0.028 Q	<0.020	0.059 Q	0.039 Q	0.4	0.0
		0.045 Q	<0.019	<0.020	0.033 Q	0.039 Q	0.041 Q	0.033 Q	0.031 Q	0.044 Q	<0.016	0.10	0.019 Q	0.026 Q	0.053 Q,B	0.046 Q	0.084	0.027 Q,B	0.019 Q,B	0.6	0.2
MH-2	05/30/00								·												
MH-3	05/30/00	13	<0.15	0.66	0.34	<0.013	0.3	<0.075	0.28	0.49	<0.069	1.4	6.9	< 0.082	3.6	3.6	0.56	6.6	1.9	40	7.0
	08/31/00	36	<0.15	2.1	<0.11	<0.013	<0.11	<0.074	<0.11	<0.059	<0.068	1.5	15	<0.080	2.3	7.9	0.82	16	1.7	83	<u>10</u>
	11/21/00	35	<0.15	1.3	<0.11	<0.013	<0.055	<0.074	<0.11	<0.059	<0.068	1.4	9.8	<0.080	28	7.0	< 0.032	14	<0.072	97	<u>8.4</u>
	04/03/02	1.2 A	0.54 A,Q	1.2 A,Q	<0.38	<0.24	<0.28	<0.30	<0.26	<0.36	< 0.34	1.6 A,Q	7.5 A	<0.28	26 Q,C	7.3 A	0.91 Q	11 Q,C	2.9 A	60	<u>9.8</u>
	07/22/02	23 C	0.96 Q	2.3 C	<0.38	<0.24	<0.28	<0.30	<0.26	<0.36	<0.34	1.6 Q	9.0 Q,C	<0.28	47 C	9.5 Q,C	1.2 Q	16 Q,C	5.5	116	12
	10/28/02	36	<4.6	<4.0	<3.8	<2.4	<2.8	<3.0	<2.6	<3.6	<3.4	<5.6	15	<2.8	<u>91</u>	14	<4.0	14	8.0 Q	178	14
	11/20/03	37	14 Q	<4.0	<2.4	<2.8	<2.6	<3.2	<3.8	<2.8	<3.2	<2.6	15	<4.2	54	15	<3.4	22	9.9Q	157	15
MH-4	05/30/00	16	<0.15	1.3	0.72	0.02	0.89	0.26	0.54	0.58	< 0.068	2.1	9.2	0.44	0.32	3.8	1	7.8	1.3	46	10
	08/31/00	31	<0.15	0.29	< 0.11	< 0.013	0.34	0.24	<0.12	0.48	<0.069	1.8	18	0.27	0.86	. 12	1.5	12	< 0.073	79	17
	11/21/00														sam	ole was not	collected	l, manhole wa	as dry		
	04/03/02	19 A,C	0.72 A,Q	2.3 A	1.7	2.3	2.5	1.9	2.0	2.5	0.55 Q	7.7 A	13 A,C	1.8	<0.54A	6.1 A	5.2	4.9 A	<0.56A	74	32
	07/22/02	22 Q,C	0.96 Q	3.3	0.87 Q	<u>0.76</u>	0.71 Q	0.55 Q	0.71 Q	0.92 Q	<0.34	4.0	11 Q,C	0.50 Q	<u>120 C</u>	13 Q,C	2.9	16 Q,C	<14	198	24
	10/28/02	26	<2.3	3.7 Q	<1.9	<u>1.9 Q</u>	3.3 Q	2.9 Q	2.6 Q	3.1 Q	<1.7	8.1 Q	16	2.3 Q	<2.7	18	6.1 Q	7.9 Q	<2.8	102	<u>46</u>
	11/20/03	50	<5.7	7.2 Q	5.0 Q	<u>6.1 Q</u>	6.5 Q	<4.8	6.8 Q	8.1 Q	<4.8	23	25	<6.3	<u>71</u>	37	15 Q	35 Q	29	275	<u>65</u>
MH-5	05/30/00	2.7	<0.15	0.11	<0.12	<0.013	<0.055	<0.074	<0.11	<0.059	<0.068	0.17	1.2	<0.08	0.06	0.89	0.13	0.52	< 0.072	5.8	1.2
	08/31/00	7.3	<0.15	0.2	< 0.11	<0.013	0.96	<0.074	< 0.11	0.36	<0.068	0.69	1.6	<0.08	0.55	0.48	0.49	0.2	<0.072	13	3.0
	11/21/00	2.2	<0.15	0.16	< 0.11	< 0.013	0.07	<0.074	<0.11	0.08	<0.068	0.33	0.41	< 0.080	0.07	<0.045	0.19	0.71	< 0.072	4.2	<u>0.7</u>
	04/03/02	1.8 A	0.14 A	0.081 A	0.12	<u>0.14</u>	0.17	0.13	0.14	0.17	0.027 Q	0.44 A	0.64 A	0.11	0.36 A	0.71 A	0.31	0.98 A	0.31 A,Q	6.8	<u>2.3</u>
	07/22/02	2.2 C	0.32	0.15	< 0.019	0.013 Q	0.016 Q	< 0.015	< 0.013	< 0.018	<0.017	0.19	0.77 C	< 0.014	1.7 C	1.2 C	0.11	1.4 C	0.17	8.2	1.5
	10/28/02	3.2	0.25 Q	< 0.20	< 0.19	<u>0.14 Q</u>	0.20 Q	0.17 Q	0.16 Q	< 0.18	<0.17	0.45 Q	1.3	<0.14	<0.27	0.79	0.30 Q	1.9	<0.28	8.9	<u>2.1</u>
	11/20/03	1.8 D	0.21	0.095	0.014 Q	< 0.014	< 0.013	< 0.016	< 0.019	< 0.014	< 0.016	0.12	0.72	< 0.021	3.0 D	0.82 D	0.069 Q	1.3 D	0.21 B	1.2	<u>0.2</u>

Notes:

1) Concentrations that attain/exceed the General WPDES Permit limit are shown in bold/underline

ns : General WPDES Permit values have not been established.

A: Laboratory qualifier - Duplicate analyses not within control limits

C: Laboratory qualifier - Analyte value from dilute analysis, or surrogate result not applicable due to sample dilution

Q: Laboratory qualifier - The analyte has been detected between the limit of detection and the limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.

[JTB/SAG-12/00][RJC/SAG-05/02][JTB/PAH-02/03][(LJH/PAR 12/03]