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The Relativity Mission Concept

Frame-dragging Effect
39 milliarcseconds/year
(0.000011 degrees/year)

Guide Star k_/

IM Pegasi

(#)
(HR 8703) ( ;

Geodetic Effect

6,606 milliarcseconds/year
(0.0018 degrees/year)

"If at first the idea is not absurd,

then there is no hope for it."
-- A. Einstein
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Short History

Fairbank

e Conceived by Professor Leonard Schiff 1959
e Three Naked Professors (Len schiff, Bob Cannon, Bill Fairbank) 1960
e A Marriage of Engineering and Physics for 46 years

e IThe Near Zero philosophy of GP-B

. + “Natural Averaging” (of errors and disturbances)

Page 4



STANFORD

il e Introducing Three Unique
GP-B Devices
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Topics for This Talk

Key Engineering Devices and Controllers

e Control Capabilities enabled by GP-B micro
thrusters
+ First 6 DOF Active Control

® GyI'O Suspension System (working range of 108)

. Essential for measuring gyro position and centering gyros

e Spin-Offs enabled by GP-B

. "Einstein’s Landing System” et. al.
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Design of Gravity Probe B
Payload and Spacecraft

o) 10-10 deg/hr. =
Why go to space. 1 degree in 11,400

centuries

unmodeled

ESG ON EARTH

BEST LASER GYRO

Drift Rate

modeled (?)

(Degrees/Hr.

GEODETIC PRECESSION

FRAME-DRAGGING PRECESSION

unmodeled 1 marcseC/y
) modeled (?)

GP-B GYRO




N-g.;g smvorn — Near-Zero: Mass Balance + Cross Axis Force
Drift-rate: 2=7/la
= Torque: z=mfor
Moment of Inertia: | =(2/5)mr?
Requirement Q<Q, (1.54 x 10" rad/s)

~ 0.1 marc-s/yr
/ f L or_2r0, a,
" r 5 f

External forces acting

through center of force,
different than CM OnEarth(f=19) Or<58x 108
e (ridiculous — 10 of a proton!)
eliminates _ .
mass-unbalance Standard satellite (f ~10° g) grr< 58 x 10-10
torque and key to unlikely — 0.1 of H atom diameter)
understanding of other P-B drag-free o
support torques — <5.8 X106
straightforward — 100 nm)
Demonstrated GP-B rotor: irr <3x107

Page 8



NASA

Page 9

STANFORD
UNIVERSITY

Selected Control Goals for GP-B

Selected Near Zeros

e Control to a "Drag-free" 10-11g on the cross axis

e Control Gyros to the Center of the Housing (avoid collisions/minimize torques)

Controlling to achieve Natural Averaging
e Control the Initial Orbital Plane to contain direction to guide star
and earth’s spin axis
+ Averages Gravity Gradient
. Separates Geodetic and Frame Dragging
e Control Spacecraft Roll to be Phase-Locked about
guide star direction (¥20 arc sec)
. Torque Averaging
+ Reduces Squid 1/f noise
. Temperature Averaging
e Control each gyro Spin Axis to initially point to Guide Star

e Control DC Suspension to reverse sign (chop) for less
disturbance
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GPS antenna

Thruster Sun Shield

Star sensor

Oomni
/ antenna
oo

Solar array '
CL
C

release mechanism
T .*--_,‘\“

Star sensor and
gyro pallet

equipment pallet

Thruster

Omni

antenna

Mass trim
Gyro mechanism

suspension unit
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The Overall Space Vehicle

* 16 Helium gas thrusters, 0-10
mN ea, for fine 6 DOF control.

* Roll star sensors for roll phase
control

* Mass trim to tune moments of
inertia.

* Stanford-modified GPS
receiver for precise orbit
information.

* Magnetometers for coarse
attitude determination.

* Tertiary sun sensors for very
coarse attitude determination.

* Magnetic torque rods for coarse
orientation control.

* Dual transponders for TDRSS
and ground station
communications.

* Redundant spacecraft
processors, transponders.

* 70 A-Hr batteries, solar arrays
operating perfectly.




“s W Six DOF Spacecraft Control

First Actively Controlled “6 DOF” Spacecraft

Controller DOF | Reqmnt. Sensor Actuator Co?n%r:lttracilion
Pointing at Cntnmas — — —
Guide Star - 2 20 marcsec i
“Drag Free” 11
Gyro 3 10-"" g RMS
Other Gyros 0.3 nano-m
“Centered” at roll
Spacecraft Roll 1 20 arcsec
Phase-locked rms
" . <500m
Initial Orbit e [l
Axis of
drnuster
Inertia P y
Spacecraft CM
on Drag Free 0.3 mm
Gyro Spin Axis
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Micro-Thrusters

Capture the He Boil Off and chase
the drag-free Gyroscope

e Controls orbital cross axis
component to < 0.0003 in.

e Drag free pioneered at
Stanford by Dan DeBra
+ Firstdemo in 1972 (Transit)

e Unusual “proportional”
control (not on/off)

Page 12



STANFORD

Nﬁ;‘.:ﬁl‘ UNIVERSITY u
=2 Six Degree of Freedom Control
Helium Boil-off = Propellant
e A very different control system ATC Performance:
» 16 proportional cold gas thrusters. « Inertial Pointing to <20 marc-s

+ Propellant: Helium boil-off @ 12 torr

e T lation to < 10"
. Isp =130 sec; 6.5 mg/sec flow ransiation to < 10" g average

« 6 DOF control

1.0 20 30

CHAMBER PRESSURE x 10*(mmHg)

P
10050 030 020 0I5 ~ Bo
vt i i A= P

KNUDSEN NUMBER (Kq) fﬁ
< ol MEASURED Igp=I30 sec
x

Q

NOZZLE DIMENSIONS
Dy = QI37 cm
reft, 2.7
Ae/By=4.0
HALF ANGLE=20°

THROAT REYNOLDS NUMEER (Re)
10 15 20

1.5 20 25 30 35 40
MASS FLOW RATE x 10* (g/sec)

Specific impulse vs. mass flow rate

Prototype thruster cutaway view
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Mass Trim to adjust CM and
Axis of Inertia

7 Mass Trim Mechanisms
(Lockheed Martin and Litton Poly-Scientific)
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el GP-B Launch - 20 April 2004

Launch! '
e !




Boeing & Luck -- A Near Perfect Orbit
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| Orbit achieéve_d_:loo___m
from the pole

-0.1 -0.05 0 0.05
RAAN - Target RAAN

Delta Il Nominal Accuracy
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“Do Nothing’:
Minimize Torques .
Slow response .
Low voltages .
SQUID compatible — low
EMI. *
(]

“Zero force” drag-free
control.

e Spaceflight compatible

.Slow computing resources.
.Endure environment vibration, shock, radiation, thermal, vacuum
.Operate semi-autonomously with low drift and tight power budget.
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Suspension System Hardware

Backup PD controllers

2KV Amp
N Spinup
Backup
| Science | | >
High Backup T
> Science Low | | o gyro
Backup (0]

50V quiet drive 5 T

DSP + Power Supply

rorvzzgend © T/
0 U0 LN 550
8 308 ALV

el

Prime Science Controller Lo_ 6 —g——pp| Science
....-....-....-......-.: o Bandpass
0
]
: Science :
0 AOD ]
) 0 Backup
E SDplg:tl; FI) : ’ DC-coupled
: ' 34 kHz, 20mV, 0.15 nm/\VHz
.................-....-.
Flight computefDSP
T T 3 Position Bridges(3) |<¢— 6 —
Low High
Postion Postion
P Threshold Threshold .
-5 v v R —— Analog drive, Backup control
' Control Signals
DSP
Health || Arbiter State Machine
Monitor

Autonomous control
system Arbiter
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Electrostatic Suspension System
Functional Design

Functional Design

Flight Modes Ground Test

Primary Science Mission (SM) f\ﬁmn-rl:ll:ri Ground Test
Digital (Adaptive Authority Torque g (Digital DC, SQUID

_Autho (Digital DC, SQUID ,
Control Minimizing) Compatible) Compatible)

Robust

Analog SM Low SM High Spin-up
Backup Backup Backup Backup

Controller

Specific force 107m/s? 105m/s? 102m/s? 1 m/s? 10 m/s?
-«——— [ ow voltage drive | High voltage drive L

Req'd voltage 0.2v 2V 50V 300V 1000V

Grav. gradient
ES torques
Rotor charge
Meteoriotes
Spin-up gas

Soft computer
failures

1g field

Primary Disturbances




% I GP-B Gyro On-Orbit Initial Liftoff

Initial Gyro Levitation and De-levitation
using analog backup system

Gyro2 Position Snapshot, VT=135835310.3

—
S
-

~
C

9

=
0
@)

o
| -
©)

"6 20

o

Time (sec)




STANFORD

N*"“ UNIVERSITY D rag - F ree :

Drag Free Performance: Suppression of Gravity Gradient Acceleration, SV Z axis

Drag-free.on
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Acceleration (ng)

o bYW l

Day of year, 2004

Demonstrated accelerometer (drag free) performance better than 10" g DC to 1 Hz
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G3 X pos (nm)

s Qsnension Performance On-Orbit

Gyro position —

non drag-free gravity
gradient effects in
Science Mission Mode

1500
seconds

Single sided FFT, GP-B Gyro3 (VT=142,391,500)

Measurement noise —
4.5 Angstroms rms

- About1 Silicon Atom

e o Noise floor

Freq (Hz)
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Drag Free Control

Drag-free control effortand residual gyroscope acceleration (2004/239-333)
-7
10

bravity Gradient i — Gyro CE inertial
¢ ~ fthest 1 —— SV CE inertial

oy

Demonstrated performance
‘ better than 10-1" g residual
S A acceleration on drag free

| gyroscope

|
e L L L L L L L L L T T L > = - -

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

10° 10°
Frequency (Hz)




wae s, Rolling reduces low frequency squid
noise (and helps in many other respects)

i London Moment
(Magnetic Dipole)

“SQUID” 1 marcsec in 10 hours

N
T
=
Z
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=
£
=
£
[
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@
o

190 marc-sec/\VHz
readout specification

measurement band
roll (12.9 mHz)
+/- orbital (0.171 mHz)

10°
frequency (Hz)
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Thssss Sun Shield

Star sensor

ATC equipment pallet

Star sensor and

ro pallet
Thruster gyrop

Thruster

Satellite roll - period of 77.5 sec about
axis to the guide star —phase
locked

Body fixed disturbance torques are
averaged out.

Gyroscope readout noise (1/f) is

reduced. .
The roll phase used to separate -
Einstein’s predicted gyroscope aa—
spin-axis drifts. Star Tracker
The roll phase is determined by star Roll Phase Instrument
trackers.
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Tracker A: Black, Tracker B: Red ( May 3, 2005)
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One Orbit of Science

Space vehicle pointing and SQUID3 output Data processing:

b Space Vehicle Pointing gees  Remove known (calibrate-able)

signals from SQUID signal to get
at gyro precession.

[
|
|
L
|
|
|

Remove effects of:

60.07 60.08 60.09 .
Guide star in view Motional aberration of starlight.

Parallax.

ll l l . ‘ ‘ | | Pointing errors; roll phase errors.

Telescope/SQUID scale factors.

Pointing dither.

60.08 60.09 : . _ _ _
Day of year, 2005 SQUID calibration signal.

Scale factor variation with gyro
polhode (trapped flux).

Other systemic effects.
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Gravity Probe B’s GPS system

(a Commercial system modified by Stanford)

 GPS data sole data source
for orbit determination

*Two fully redundant sets:
receiver + four antennas

 Data (position, velocity, time)
every 10 seconds

* More than 5000 points per
day

s Position | Velocity
Accuracy | Accuracy

Requirement |25 m 7.5 cm/sec RMS
VS

Anternn t |[E [ Actual 2.5m 2.2 mm/sec
' RMS RMS
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Cannon’s Law of

Consequence
-why does everything happen?

“One Thing Leads to
Another”
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s g Spinoffs from GP-B

Five Major Categories and a few examples

e Precision Machining, Assembly, and Bonding
. Gyros, housings, Coatings, catalyzed optical contacting
e Cryogenics
+ Porous plug, Space Dewar, payload probe, instruments

e Ultra — low magnetic field and shielding
+ 10 Gauss, 10'3 isolation

e Drag Free and Pointing Technologies

e New Spacecraft Technologies
« Micro thrusters (changing a disturbance into a control mechanism)
. Satellite Dynamical Balancing in Space (CG and Inertia Axes)

+ GPS Attitude measurements
. GPS Blind Landing System
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Flight Tests of Attitude Determination Using GPS
Compared to an Inertial Navigation Unit

NASA

GPS Antenn

é 1+6

Baseline 3

i GPS Antenna

A6
GPS Antenna ™

y, pitch

x, 1oll z, headingfyaw

Figure 5: Antenna Bas and Wing Flexure Definitions

Clark Cohen, Stanford University
B. David McNally, NASA/Ames
Brad Parkinson, Stanford University
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Roll (deg)

Roll Error (deg)

Roll Reversals I

Time (sec)

IMU Spec
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400 350 300 250 200 150 100
Nominal Altitude for 3 Degree Glideslope (ft
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Note four
antennas to
provide 0.1°
Attitude

Stanford Robot Tractor
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Observations

(Simple in Concept # Simple in Execution)

e Marriage of Physics and Engineering Essential

e Critical Components and Controllers met the
Goals of GP-B

« These Devices also enable the next generation of

experiments

e Spinoffs are not surprising

- but the spin direction is sometimes unexpected...
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