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The Gravity Probe B Experiment



Instrument Concept
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Operates at ~ 2.5 K

Rolls about line of sight to Guide Star
• Inertial pointing signal at roll frequency
• Averages body-fixed classical disturbance  

torques toward zero
• Reduces effect of body-fixed pointing biases



Fused-Quartz Gyroscope
• 38 mm diameter fused 

quartz rotor
– Mass unbalance < 50 nm
– Asphericity < 25 nm

• Fused quartz housing
– 6 circular suspension 

electrodes
– 4 turn superconducting 

pickup loop
– He gas spinup channel
– UV electric discharge 

system
• Rotor charge < 15 pC

– Other internal surfaces 
with grounded coating



Assembled Gyroscope

Superconductive 
Readout Cable Suspension 

Cable (6 each)

Ultraviolet Fiber 
Optic & Bias 
Cable (2 each)



DC SQUID Readout

DC SQUID Package Input from 
pickup loop

Output to SQUID 
readout electronics

Detail of readout loop 
and connection to 

superconductive cable

• London magnetic dipole 
moment aligned with spin

– Property of spinning 
superconductor

– 57 μG at 80 Hz
• Resolve 1 marc-sec in 

10 hours
– Noise < 190 marc-sec/√Hz

• Trapped magnetic flux 
contributes to readout scale 
factor

– Varies at polhode period
– Trapped flux < 9 μG 

• Magnetic shielding system
– Residual field < 9 μG 
– Attenuation of external 

fields < 2x10-12



Star-Tracking Telescope

Primary 
Mirror

Tertiary 
Mirror

Metering 
Tube

Secondary 
Mirror

Forward 
Plate

Base Plate

• All fused quartz construction
– Physical length: ~ 35 cm

• Optical characteristics
– Focal length: 3.9 m
– Aperture: 14 cm

• Readout noise
– < 34 marc-sec/√Hz

• Pointing accuracy
– < 0.1 marc-sec 



Science Instrument Assembly

Fused quartz block 
serves as metrology 
bench for the 
telescope and 
gyroscope readout

~ 1 m



Vacuum Probe

• Science instrument 
assembly located in 
aluminum vacuum can, 
which is at ~ 2.5 K

• Set of 4 windows for telescope 
to observe Guide Star

– Vacuum close out
– Reduce thermal radiation from 

top of probe which at the 
external ambient temperature 
of the dewar

• Incorporates low-temperature 
ultrahigh vacuum bakeout

– < 10-11 torr after bakeout
• > 200 cables to connect 

ambient electronics to low 
temperature instrument



Superfluid Helium Dewar

• Long lifetime helium dewar
– ~ 2400 l of superfluid helium
– > 16.5 months

• Incorporates superconducting 
lead bag

– ~ 0.1 μG gyroscope region
– Major contributor to attenuation 

of external fields 



Space Vehicle



“Near Zero” Requirements

• Fused-quartz gyro rotor: 38 mm dia. sphere
• Center of geometry – center of mass < 50 nm
• Asphericity < 25 nm asphericity

• Gyro rotor electrical charge control
• Gyro charge < 15 pC

• London moment gyro readout with DC SQUID
• < 190 marc-sec/√Hz at roll frequency

“Near zero” technologies were developed by GP-B
Little or no flight or laboratory heritage prior to GP-B



“Near Zero” Requirements

• Magnetic shielding system
• Ambient field at gyros < 9 μG
• Attenuation of external fields < 2×10-12

• Trapped flux in gyroscope rotors
• Dipole equivalent field < 9 μG

• Low-temperature star-tracking telescope
• Pointing knowledge < 0.1 marc-sec
• Pointing noise of < 34 marc-sec/√Hz

• Instrument vacuum probe
• Vacuum < 10-11 torr with low-temperature UHV bakeout



“Near Zero” Requirements

• Superfluid helium dewar
• Hold time of > 16.5 mo.
• Superconducting lead bag with 0.1 μG region for gyros

• Drag-free space vehicle
• Average acceleration transverse to roll axis < 10-11 g

• Attitude control of space vehicle
• Point toward Guide Star to < 20 marc-sec

The performance of these technologies were verified by 
ground test or in some cases by simulation & analysis before flight



He Gas Spinup
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Final Spin Speeds 

Gyro # Spin Speed (Hz)

1 79.3888

2 61.8189

3 82.0958

4 64.8520

• Gyroscopes spun freely for the rest of the mission
• Residual He gas pressure < 10-13 torr

Performed low-temperature
UHV bakeout after the final
gyro spinup 

ON-ORBIT PERFORMANCE



Gyroscope Mass Unbalance
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Estimate
On-Orbit 

Data
1 18.8 10.2

2 14.5 6.6

3 16.8 4.0

4 13.5 8.9

On-orbit measured mass unbalance
much better than 50 nm requirement
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Rotor Position Transverse to Spin Direction vs. Time



Gyroscope Charge Control
• Charge control

– Remove initial charge
– Remove charging due to 

particle radiation
• ~ 0.1 mV/day 

• Charge measured with the 
gyro suspension system

• Gyro charge controlled by UV 
photo emitted electrons

• Charge control is bi-polar by 
applying voltage to a small 
electrode Day of year 2004
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70 mV/hr discharge rate

Gyro rotor charge controlled to < 5 pC



Gyroscope DC SQUID Readout

• Readout noise for three gyroscopes  less than requirement
• Readout noise for Gyro #4 is acceptable
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Gyro Readout During ~½ Orbit
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Output of SQUID Readout Electronics, Gyroscope 3, Orbit 6200, June 15, 2005
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Optical Aberration due to Orbital Motion
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Time (minutes) After Acquisition of Guide Star

Gyro signal at roll frequency
• Constant part

– Current average gyro 
orientation during ½ orbit

• Part modulated at orbit
– Orbital aberration of Guide 

Star light
– Used for scale-factor 

calibration based on very 
accurate orbital velocity using 
GPS



Gyro Rotor Trapped Magnetic Flux
• Dipole equivalent trapped 

magnetic flux
– Gyro 1: 3.0 μG
– Gyro 2: 1.3 μG
– Gyro 3: 0.8 μG
– Gyro 4: 0.2 μG

• Gyroscope readout scale factor 
depends on a combination of the 
London magnetic moment and the 
trapped flux

– Trapped flux contribution will vary 
at polhode frequency

Trapped magnetic flux well below requirement of 9 μG



Issue – The Patch Effect
• First observations

– Rotor force modulated at 
polhode of rotor spinning 
at 1.3 Hz

• 30% modulation of 
~2×10-7 N

– Z force modulation at 
polhode of rotor 

• ~2×10-8 N
• Consequences

– Spindown torque
– Polhode damping
– Misalignment torque Observations explained by a 

patch effect of ~100 mV on rotor



Gyroscope Spindown
Gyro df/dt

(μHz/hr)
τ

(yr)

1 0.57 15,900

2 0.52 13,600

3 1.30 7,200

4 0.28 26,400

Simple spindown model
due to patch effect

Spindown due to patch effect
was unexpected however the 
magnitude meets our requirement 
for the spindown torque
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Patch effect potential
of 40 - 80 mV accounts

for spindown rates



Gyroscope Polhode Damping
• Accurate polhode periods 

found using snapshot data at 
2200 samples/s

• Dissipation times
– Gyro 1:  31.87 days
– Gyro 2:  74.62 days
– Gyro 3:  30.73 days
– Gyro 4:  61.19 days

• Polhode period used to model 
the trapped flux portion of the 
scale factor

Damping explained by modulation of 
spin-speed damping at polhode period Elapsed Time Since 1-Jan-2004 (days)
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Star-Tracking Telescope
• Characteristics

– Focal length: 3.9 m
– Aperture: 14 cm

• Roof edge at focal point to divide 
image

• Normalized telescope signal
– Formed from photo detector 

currents i+ and i-
– nts = (w+ i+ - w- i-)/(w+ i+ + w- i-)

• Readout scale factor matching
– Dither direction to guide star 

2 orthogonal directions
– Dither amplitude:  ~ 60 marc-sec

Dual Photo 
Detectors (72 K)

30 marc-sec/√Hz pointing noise



Telescope Model

• Telescope model
– Focal length: 3.9 m
– Aperture: 14 cm
– Defocus: +5.0 mm
– Zernike4,0 corr: -.415 μm

• θ(arc-sec) =
3.04 nts (1 + 5.62 nts2)

Theoretical model of telescope with a 
defocus term and an axially symmetric
aberration term match on-orbit data

On-orbit Data of Normalized Telescope Signal vs. Pointing Angle



Telescope Nonlinearity
• Apparent linear scale factor from 

data analysis vs. mean nts2 has a 
slope of 49.1 arc-sec

• Searched for value of nonlinearity 
using on-orbit pointing data to 
match the 49.1 arc-sec slope

• θ(arc-sec) =
3.04 nts (1 + 5.39 nts2)

• Nonlinearity estimate is very 
close to result found from 
telescope model

Pointing accuracy with cubic correction
• 1.7 marc-sec at pointing of 400 marc-sec
• ~ 0.1 marc-sec in inertial space for 

typical rms pointing*
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The dominant NS precession of the gyroscope is the geodetic effect

Conclusion
• Even though many technologies were initially 

unavailable and lacked flight or laboratory heritage, the 
challenging performance requirements of the GP-B 
Science Instrument were met 

• Built-in instrument capability and calibrations allowed the 
identification of unexpected behavior
– Example: misalignment patch-effect torque was identified.

• A method was developed to separate it from the GR precessions in
the data analysis

Red: Uncorrected Gyro Position
Blue: Estimated Geodetic Effect
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