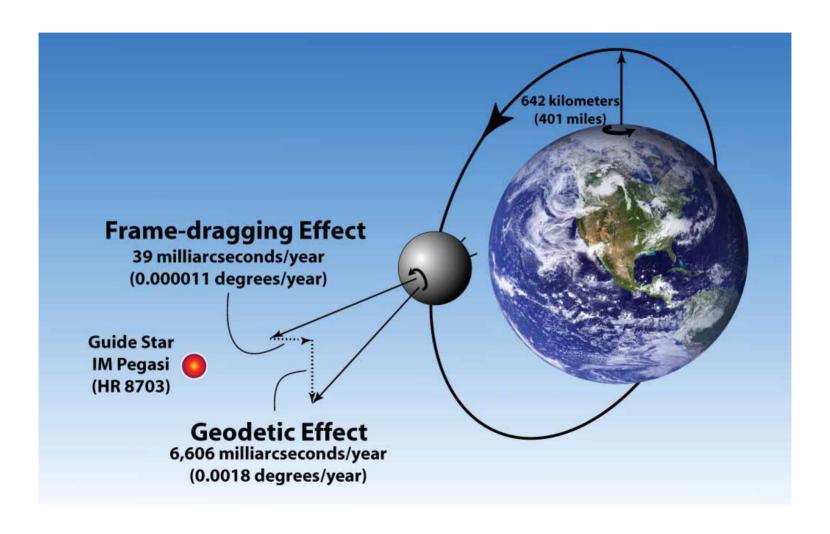


The Gravity Probe B Science Instrument

John Turneaure Stanford University


Acknowledgements

- Francis Everitt, Dan DeBra, Brad Parkinson, Sasha Buchman, Mac Keiser, John Lipa, Jim Lockhart, Barry Muhlfelder, Mike Taber, Don Davidson & the GP-B Team
- NASA Marshall Space Flight Center
 - Rex Geveden, Jeff Kolodziejczak, Tony Lyons, Dick Potter, Buddy Randolph, Bill Till, Mark West
- Lockheed Martin
 - Vacuum probe and superfluid helium dewar
- Support from many other individuals at various institutions
- GP-B funded and supported by NASA

The Gravity Probe B Experiment

Instrument Concept

Operates at ~ 2.5 K

Rolls about line of sight to Guide Star

- Inertial pointing signal at roll frequency
- Averages body-fixed classical disturbance torques toward zero
- Reduces effect of body-fixed pointing biases

Fused-Quartz Gyroscope

- 38 mm diameter fused quartz rotor
 - Mass unbalance < 50 nm
 - Asphericity < 25 nm
- Fused quartz housing
 - 6 circular suspension electrodes
 - 4 turn superconducting pickup loop
 - He gas spinup channel
 - UV electric discharge system
 - Rotor charge < 15 pC
 - Other internal surfaces with grounded coating

Assembled Gyroscope

DC SQUID Readout

- London magnetic dipole moment aligned with spin
 - Property of spinning superconductor
 - 57 μG at 80 Hz
- Resolve 1 marc-sec in 10 hours
 - Noise < 190 marc-sec/√Hz
- Trapped magnetic flux contributes to readout scale factor
 - Varies at polhode period
 - Trapped flux < 9 μG
- Magnetic shielding system
 - Residual field < 9 μG
 - Attenuation of external fields $< 2x10^{-12}$

Detail of readout loop and connection to superconductive cable

Output to SQUID readout electronics

Input from pickup loop

Star-Tracking Telescope

- All fused quartz construction
 - Physical length: ~ 35 cm
- Optical characteristics
 - Focal length: 3.9 m
 - Aperture: 14 cm
- Readout noise
 - < 34 marc-sec/√Hz
- Pointing accuracy
 - < 0.1 marc-sec</p>

Science Instrument Assembly

Fused quartz block serves as metrology bench for the telescope and gyroscope readout

Vacuum Probe

- Science instrument assembly located in aluminum vacuum can, which is at ~ 2.5 K
- Set of 4 windows for telescope to observe Guide Star
 - Vacuum close out
 - Reduce thermal radiation from top of probe which at the external ambient temperature of the dewar
- Incorporates low-temperature ultrahigh vacuum bakeout
 - < 10⁻¹¹ torr after bakeout
- > 200 cables to connect ambient electronics to low temperature instrument

Superfluid Helium Dewar

- Long lifetime helium dewar
 - ~ 2400 I of superfluid helium
 - > 16.5 months
- Incorporates superconducting lead bag
 - ~ 0.1 μ G gyroscope region
 - Major contributor to attenuation of external fields

Space Vehicle

"Near Zero" Requirements

"Near zero" technologies were developed by GP-B Little or no flight or laboratory heritage prior to GP-B

- Fused-quartz gyro rotor: 38 mm dia. sphere
 - Center of geometry center of mass < 50 nm
 - Asphericity < 25 nm asphericity
- Gyro rotor electrical charge control
 - Gyro charge < 15 pC
- London moment gyro readout with DC SQUID
 - < 190 marc-sec/√Hz at roll frequency

"Near Zero" Requirements

- Magnetic shielding system
 - Ambient field at gyros < 9 μG
 - Attenuation of external fields < 2×10⁻¹²
- Trapped flux in gyroscope rotors
 - Dipole equivalent field < 9 μG
- Low-temperature star-tracking telescope
 - Pointing knowledge < 0.1 marc-sec
 - Pointing noise of < 34 marc-sec/√Hz
- Instrument vacuum probe
 - Vacuum < 10⁻¹¹ torr with low-temperature UHV bakeout

"Near Zero" Requirements

- Superfluid helium dewar
 - Hold time of > 16.5 mo.
 - Superconducting lead bag with 0.1 μG region for gyros
- Drag-free space vehicle
 - Average acceleration transverse to roll axis < 10⁻¹¹ g
- Attitude control of space vehicle
 - Point toward Guide Star to < 20 marc-sec

The performance of these technologies were verified by ground test or in some cases by simulation & analysis before flight

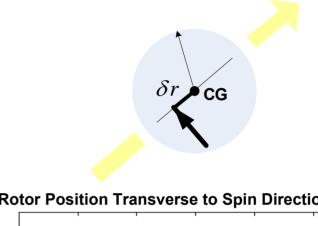
ON-ORBIT PERFORMANCE

He Gas Spinup

Final Spin Speeds		
Gyro #	Spin Speed (Hz)	
1	79.3888	
2	61.8189	
3	82.0958	
4	64.8520	

Performed low-temperature UHV bakeout after the final gyro spinup

- Gyroscopes spun freely for the rest of the mission
- Residual He gas pressure < 10⁻¹³ torr



Gyroscope Mass Unbalance

Mass Unbalance (nm)			
Gyro #	Pre-Flight Estimate	On-Orbit Data	
1	18.8	10.2	
2	14.5	6.6	
3	16.8	4.0	
4	13.5	8.9	

On-orbit measured mass unbalance much better than 50 nm requirement

Gyroscope Charge Control

- Charge control
 - Remove initial charge
 - Remove charging due to particle radiation
 - ~ 0.1 mV/day
- Charge measured with the gyro suspension system
- Gyro charge controlled by UV photo emitted electrons
- Charge control is bi-polar by applying voltage to a small electrode

Day of year 2004

Gyro rotor charge controlled to < 5 pC

Gyroscope DC SQUID Readout

- Readout noise for three gyroscopes less than requirement
- Readout noise for Gyro #4 is acceptable

Gyro Readout During ~1/2 Orbit

Gyro signal at roll frequency

- Constant part
 - Current average gyro orientation during ½ orbit
- Part modulated at orbit
 - Orbital aberration of Guide Star light
 - Used for scale-factor calibration based on very accurate orbital velocity using GPS

Gyro Rotor Trapped Magnetic Flux

- Dipole equivalent trapped magnetic flux
 - Gyro 1: 3.0 μG
 - Gyro 2: 1.3 μG
 - Gyro 3: 0.8 μG
 - Gyro 4: 0.2 μG
- Gyroscope readout scale factor depends on a combination of the London magnetic moment and the trapped flux
 - Trapped flux contribution will vary at polhode frequency

Trapped magnetic flux well below requirement of 9 μG

Issue – The Patch Effect

- First observations
 - Rotor force modulated at polhode of rotor spinning at 1.3 Hz
 - 30% modulation of ~2×10⁻⁷ N
 - Z force modulation at polhode of rotor
 - ~2×10-8 N
- Consequences
 - Spindown torque
 - Polhode damping
 - Misalignment torque

Observations explained by a patch effect of ~100 mV on rotor

Gyroscope Spindown

Gyro	df/dt (μHz/hr)	τ (yr)
1	0.57	15,900
2	0.52	13,600
3	1.30	7,200
4	0.28	26,400

Spindown due to patch effect was unexpected however the magnitude meets our requirement for the spindown torque

Simple spindown model due to patch effect

Patch effect potential of 40 - 80 mV accounts for spindown rates

Gyroscope Polhode Damping

- Accurate polhode periods found using snapshot data at 2200 samples/s
- Dissipation times
 - Gyro 1: 31.87 days
 - Gyro 2: 74.62 days
 - Gyro 3: 30.73 days
 - Gyro 4: 61.19 days
- Polhode period used to model the trapped flux portion of the scale factor

Damping explained by modulation of spin-speed damping at polhode period

Star-Tracking Telescope

- Characteristics
 - Focal length: 3.9 m
 - Aperture: 14 cm
- Roof edge at focal point to divide image
- Normalized telescope signal
 - Formed from photo detector currents i⁺ and i⁻
 - nts = $(w^+ i^+ w^- i^-)/(w^+ i^+ + w^- i^-)$
- Readout scale factor matching
 - Dither direction to guide star 2 orthogonal directions
 - Dither amplitude: ~ 60 marc-sec

30 marc-sec/√Hz pointing noise

Dual Photo Detectors (72 K)

Telescope Model

Telescope model

- Focal length: 3.9 m

- Aperture: 14 cm

Defocus: +5.0 mm

Zernike_{4.0} corr: -.415 μm

 $\theta(arc-sec) =$ $3.04 \text{ nts } (1 + 5.62 \text{ nts}^2)$

Theoretical model of telescope with a defocus term and an axially symmetric aberration term match on-orbit data

Telescope Nonlinearity

- Apparent linear scale factor from data analysis vs. mean nts² has a slope of 49.1 arc-sec
- Searched for value of nonlinearity using on-orbit pointing data to match the 49.1 arc-sec slope
- $\theta(\text{arc-sec}) = 3.04 \text{ nts } (1 + 5.39 \text{ nts}^2)$
- Nonlinearity estimate is very close to result found from telescope model

Pointing accuracy with cubic correction

- 1.7 marc-sec at pointing of 400 marc-sec
- ~ 0.1 marc-sec in inertial space for typical rms pointing*

^{*}Assumes accurate scale-factor matching

Conclusion

- Even though many technologies were initially unavailable and lacked flight or laboratory heritage, the challenging performance requirements of the GP-B Science Instrument were met
- Built-in instrument capability and calibrations allowed the identification of unexpected behavior
 - Example: misalignment patch-effect torque was identified.
 - A method was developed to separate it from the GR precessions in the data analysis

