ASTRONOMY

Astronomy courses are offered primarily through the Physics department, with subject code PHYSICS on the Stanford Bulletin's ExploreCourses website.

Although Stanford University does not have a degree program in astronomy or astrophysics, teaching and research in various branches of these disciplines are ongoing activities in the departments of Applied Physics, Physics, SLAC National Accelerator Laboratory, and Hansen Experimental Physics Laboratory (HEPL).

For the convenience of students interested in astronomy, astrophysics, and cosmology, a course program for undergraduate and graduate study is listed in the "Astronomy Cognate Courses (p. 2)" section of this bulletin. The list includes introductory courses for the student who wishes to be informed about the fields of astronomy without the need for prerequisites beyond high school algebra and physics. Courses in astronomy numbered below 100 are designed to serve this group of students. Astronomy courses numbered 100-199 serve the student interested in an initial scientific study of astronomy. The courses numbered 200 and above are for graduate students and advanced undergraduates, subject to prior approval by the course instructor.

Undergraduate Programs in Astronomy

The University does not offer a separate undergraduate major in Astronomy. Students who intend to pursue graduate study in astronomy or space science are encouraged to major in physics, following the advanced sequence if possible, or in electrical engineering if the student has a strongly developed interest in radioscience. The course descriptions for these basic studies are listed under the appropriate department sections of this bulletin. Students desiring guidance in developing an astronomy-oriented course of study should contact the chair of the Astronomy Program Committee. The following courses are suitable for undergraduates and are recommended to students considering advanced study in astronomy or astrophysics:

		Units
PHYSICS 100	Introduction to Observational Astrophysics	4
PHYSICS 160	Introduction to Stellar and Galactic Astrophysics	3
PHYSICS 161	Introduction to Cosmology and Extragalactic Astrophysics	3
GS 222	Planetary Systems: Dynamics and Origins	3-4
Students planning take:	g study in astronomy beyond the B.S. are urged to	
PHYSICS 262	General Relativity	3

The above-mentioned courses are required for physics majors who choose the curriculum with a concentration in astrophysics (see the "Physics (http://exploredegrees.stanford.edu/schoolofhumanitiesandsciences/physics)" section of this bulletin).

Stanford Student Observatory

The student observatory, located in the hills to the west of the campus, is equipped with a 24-inch and other small reflecting telescopes. It is used for instruction of the observation-oriented courses, PHYSICS 50 Observational Astronomy Laboratory and PHYSICS 100 Introduction to Observational Astrophysics.

The Department of Physics offers a minor in Physics with a concentration in Astronomy.

Minor in Physics with Concentration in Astronomy

Students wishing to pursue advanced work in astrophysical sciences should major in Physics (http://exploredegrees.stanford.edu/schoolofhumanitiesandsciences/physics/#bachelorstext) and concentrate in astrophysics. However, students outside of Physics with a general interest in astronomy may organize their studies by completing one of the following Physics minor concentration programs.

Students who take the 20, 40, or 60 series at Stanford in support of their major may count those units towards the minor.

An undergraduate Physics minor with a concentration in Astronomy requires the following courses:

Non-Technical

For students whose majors do not require the PHYSICS 40 or 60 series:

		Units
PHYSICS 21	Mechanics, Fluids, and Heat	4
PHYSICS 23	Electricity, Magnetism, and Optics	4
PHYSICS 25 & PHYSICS 26	Modern Physics and Modern Physics Laboratory	5
PHYSICS 50	Observational Astronomy Laboratory	3-4
or PHYSICS 100	Introduction to Observational Astrophysics	
Select two of the	following:	6
PHYSICS 15	Stars and Planets in a Habitable Universe	
PHYSICS 16	The Origin and Development of the Cosmos	
PHYSICS 17	Black Holes and Extreme Astrophysics	

Technical

For students whose majors require the PHYSICS 40 or 60 series:

			Units
S	Select one of the	following Series:	14-17
	Series A		
	PHYSICS 41	Mechanics	
	PHYSICS 43	Electricity and Magnetism	
	PHYSICS 45 & PHYSICS 46	Light and Heat and Light and Heat Laboratory	
	PHYSICS 70	Foundations of Modern Physics	
	Series B		
	PHYSICS 61	Mechanics and Special Relativity	
	PHYSICS 63	Electricity, Magnetism, and Waves	
	PHYSICS 65	Quantum and Thermal Physics	
	PHYSICS 67	Introduction to Laboratory Physics	
	And take the follo	wing three courses:	
	PHYSICS 100	Introduction to Observational Astrophysics	4
	PHYSICS 160	Introduction to Stellar and Galactic Astrophysics	3
	PHYSICS 161	Introduction to Cosmology and Extragalactic Astrophysics	3
	Total Units		24-27

Students are also encouraged to take the electricity and magnetism/ optics lab of the appropriate PHYSICS series , PHYSICS 24 , PHYSICS 44 or PHYSICS 64 for 1 additional unit.

Graduate Programs in Astronomy

Graduate programs in astronomy and astrophysics and related topics are carried out primarily in the Department of Physics but also the

departments of Applied Physics and Electrical Engineering. Students should consult the course listings, degree requirements, and research programs of these departments for more detailed information.

Graduate research opportunities are available in many areas of theoretical and observational astronomy. For further information, see the Kavli Institute of Particle Astrophysics and Cosmolog (http://kipac.stanford.edu)y website.

		Units
Students planning astrophysics sho	g to conduct research in astronomy and uld take:	
Select one of the	following:	3
PHYSICS 361	Cosmology	
PHYSICS 362	Advanced Extragalactic Astrophysics and Cosmology ((Not offered 2017-18)	
Students lacking plasma physics s	a background in astrophysics, gravitation, and hould take:	
PHYSICS 260	Introduction to Stellar and Galactic Astrophysics	3
PHYSICS 261	Introduction to Cosmology and Extragalactic Astrophysics	3
PHYSICS 262	General Relativity	3
PHYSICS 312	Basic Plasma Physics (Not offered 2017-18)	3
Students with spe	ecial interests in gravitation should take:	
PHYSICS 364	Advanced Gravitation (Not offered 2017-18)	3
GS 222	Planetary Systems: Dynamics and Origins	3-4

Each year a number of "special topics" course are offered. Refer to courses in the PHYSICS 360 range for more details. Students interested in research programs in space physics involving spacecraft studies of the planets, their satellites, and their near-space environments should see the "Center for Space Science and Astrophysics (http://exploredegrees.stanford.edu/centerslaboratoriesandinstitutes/#spacesciencetext)" section of this bulletin.

Emeriti: (Professors) Von R. Eshleman, Peter A. Sturrock, G. Leonard Tyler, Robert V. Wagoner

Professors: Tom Abel (Physics, SLAC), Steve Allen (Physics, SLAC), Roger Blandford (Physics, SLAC), Pat Burchat (Physics), Blas Cabrera (Physics), Sarah Church (Physics), Kent Irwin (Physics, SLAC), Steven Kahn (Physics, SLAC), Bruce Macintosh (Physics), Peter Michelson (Physics), Vahé Petrosian (Physics, Applied Physics), Roger W. Romani (Physics)

Associate Professors: Chao-Lin Kuo (Physics, SLAC), Risa Wechsler (Physics, SLAC)

Professor (Research): Philip H. Scherrer (Physics)

Astronomy Cognate Courses

Elementary Lectures

The following courses provide a descriptive knowledge of astronomical objects and astrophysics. PHYSICS 15, PHYSICS 16, and PHYSICS 17 are for students not majoring in the sciences and are taught in different quarters by different instructors, and may be taken individually or in any order.

		Units
PHYSICS 15	Stars and Planets in a Habitable Universe	3
PHYSICS 16	The Origin and Development of the Cosmos	3
PHYSICS 17	Black Holes and Extreme Astrophysics	3

Observatory

The following courses allow students to use the on-campus Stanford Student Observatory, and are intended to familiarize students with observational methods and analysis of astronomical data. PHYSICS 50 is for general students, while PHYSICS 100 involves more advanced observations and is intended for students with a college level background in physics.

		Units
PHYSICS 50	Observational Astronomy Laboratory	3
PHYSICS 100	Introduction to Observational Astrophysics	4

Advanced Undergraduate

The following courses are for students with a more advanced knowledge of basic physics and mathematics, and form the core courses for a concentration in astrophysics for Physics majors.

		Units
PHYSICS 160	Introduction to Stellar and Galactic Astrophysics	3
PHYSICS 161	Introduction to Cosmology and Extragalactic Astrophysics	3

Graduate		
		Units
PHYSICS 260	Introduction to Stellar and Galactic Astrophysics	3
PHYSICS 261	Introduction to Cosmology and Extragalactic Astrophysics	3
PHYSICS 262	General Relativity	3
PHYSICS 269	Neutrinos in Astrophysics and Cosmology	3
PHYSICS 301	Astrophysics Laboratory	3
PHYSICS 312	Basic Plasma Physics (Not offered 2017-18)	3
PHYSICS 361	Cosmology	3
PHYSICS 362	Advanced Extragalactic Astrophysics and Cosmology (Not offered 2017-18)	3
PHYSICS 366	Special Topics in Astrophysics: Statistical Methods	2
PHYSICS 368	Computational Cosmology and Astrophysics ((Not Offered 2017-18))	2