
Contents

10 System Design with Codes 147
10.1 Convolutional Codes and Implementation . 148

10.1.1 Notation and Terminology . 148
10.1.2 The Convolutional Code . 149
10.1.3 Examples . 151
10.1.4 Trellis Diagrams for Convolutional Codes . 154
10.1.5 Error probabilities and Performance . 155

10.2 Convolutional Coding Tables and Decoder Complexity . 157
10.2.1 Implementations . 157
10.2.2 Coding Gain for Convolutional Codes . 159
10.2.3 Binary Symmetric Channel Error Probability . 159
10.2.4 Tables of Convolutional Codes . 160
10.2.5 Complexity . 163
10.2.6 Forcing a Known Ending State . 163

10.3 Coset Codes, Lattices, and Partitions . 165
10.3.1 Gain of Coset Codes . 166
10.3.2 Mapping By Set Partitioning . 169

10.4 One- and Two-dimensional Trellis Codes . 174
10.4.1 Rate 1/2 Code . 174
10.4.2 A simple rate 2/3 Trellis Code . 174
10.4.3 Code Design in One and Two Dimensions . 177
10.4.4 Decoder Complexity Measures . 184

10.5 Multidimensional Trellis Codes . 186
10.5.1 Lattice Codes and Multidimensional Partitioning 186
10.5.2 Multidimensional Trellis Codes . 199

10.6 Theory of the Coset Code Implementation . 207
10.6.1 Encoder Simplification . 207
10.6.2 Decoder Complexity . 212
10.6.3 Decoding the Gossett (E8) Lattice . 214
10.6.4 Lattice Decoding Table . 214

10.7 Shaping Codes . 216
10.7.1 Non-Equiprobable Signaling and Shell Codes . 218
10.7.2 Voronoi/Block Shaping . 224
10.7.3 Trellis Shaping . 233

10.8 Block Codes . 237
10.8.1 Block Code Performance Analysis . 237
10.8.2 Cyclic Codes . 237
10.8.3 Reed Solomon Encoder Implementations . 239
10.8.4 Reed Solomon Decoder Implementations . 239
10.8.5 Block Code Selection . 239

Exercises - Chapter 10 . 240

145

A Finite-Field Algebra Review 254
A.1 Groups, Rings, and Fields . 254
A.2 Galois Fields . 255

B Various Results in Encoder Realization Theory 262
B.1 Invariant Factors Decomposition and the Smith Canonical Forms 262
B.2 Canonical Realizations of Convolutional Encoders . 267

B.2.1 Invariant Factors . 267
B.2.2 Minimal Encoders . 272
B.2.3 Basic Encoders . 274
B.2.4 Construction of Minimal Encoders . 275
B.2.5 Canonical Systematic Realization . 277

C Lattices 279
C.1 Elementary Lattice Operations . 280
C.2 Binary Lattices and Codes . 280

C.2.1 Association of lattices with binary codes . 282
C.2.2 16, 24, and 32 dimensional partitioning chains . 285

146

Chapter 10

System Design with Codes

As a system designer, an engineer often uses codes to improve performance. Chapters 8 and 9 have
suggested that transmission of sequences with consequent sequence detection can improve performance
significantly. An upper bound on data rate for such improvement is the channel capacity of Chapter 8.
More than a half-century after the introduction of capacity, the cumulative effort of many fine engineers
and mathematicians has produced a repertoire of good codes that with increasing complexity can be
used to approach capacity on both the BSC and the AWGN.

This chapter will focus on the tabulation and use of these codes, leaving the inner details and
comparisons of the codes as well as the design of yet other codes to the continuing efforts of coding
theorists. The objective is to have a reference to which the designer can refer and estimate the various
coding gains, complexities, and types of codes applicable in any given application. The codes listed here
will be good ones without aberrant undesirable properties or hidden problems, mainly because the efforts
of others to understand coding has enabled such undesirable codes to be eliminated when searching for
good codes.

Convolutional codes are studied for b̄ < 1 in Sections 10.1 and 10.2 before progressing to coset/trellis
codes (which in fact are based on internal convolutional codes) for b̄ ≥ 1 in Section 10.3. Section 10.2
also discusses code complexity, which is largely in the decoder, and tabulates many of the best-known
convolutional codes and their essential parameters, as well as illustrating implementation. Sections 10.4
and 10.5 tabulate a number of multidimensional lattices and coset codes. The appendices delve into
some more theoretical aspects of coding and lattices for the interested reader.

Code intricacies and structure is heavily studied and published. We refer the reader to the many
fine textbooks in this area, in particular S. Wicker’s Error Control Systems for Digital Communication
and Storage (Prentice Hall, 1995)on block codes, R. Johhannesson and K. Ziogangirov’s Fundamentals
of Convolutional Coding (IEEE Press, 1998), and C. Schlegal and L. Perez’ Trellis Coding (IEEE Press,
1997).

147

10.1 Convolutional Codes and Implementation

The theory and realization of convolutional codes makes extensive use of concepts in algebra, most
specifically the theory of groups and finite fields. The very interested reader may want to read Appendix
A. This section does not attempt rigor, but rather use of the basic concepts of convolutional codes. One
needs only know binary modulo-2 arithmetic is closed under addition and multiplication, and basically
convolutional codes deal with vectors of binary sequences generated by a sequential encoder. Appendix
B describes methods for translation of convolutional encoders.

10.1.1 Notation and Terminology

Let F be the finite (binary or modulo-2) field with elements {0, 1}.1 A sequence of bits, {am}, in F can
be represented by its D transform

a(D) =

∞∑
m=−∞

amD
m . (10.1)

The sums in this section that deal with sequences in finite fields are presumed to be modulo- 2 sums.
In the case of the finite field, the variable D must necessarily be construed as a placeholder, and has no
relation to the Fourier transform of the sequence (i.e., D 6= e−ωT). For this reason, a(D) uses a lower
case a in the transform notation a(D), rather than the upper case A that was conventionally used when
dealing with sequences in the field of real numbers. Note such lower-case nomenclature in D-transforms
has been tacitly presumed in Chapters 8 and 9 also.

F [D] denotes the set of all polynomials (finite-length causal sequences) with coefficients in F ,

F [D]
∆
=

{
a(D) | a(D) =

ν∑
m=0

amD
m , am ∈ F, ν ≥ 0, ν <∞, ν ∈ Z

}
; (10.2)

where Z is the set of integers.2 The set F [D] can also be described as the set of all polynomials in
D with finite Hamming weight. Let Fr(D) be the field formed by taking ratios a(D)/b(D) of any two
polynomials in F [D], with b(D) 6= 0 and b0 = 1:

Fr(D)
∆
=

{
c(D) | c(D) =

a(D)

b(D)
, a(D) ∈ F [D], b(D) 6= 0, b(D) ∈ F [D]with b0 = 1

}
. (10.3)

This set Fr(D) is sometimes also called the rational fractions of polynomials in D.

Definition 10.1.1 (Delay of a Sequence) The delay, del(a), of a nonzero sequence, a(D),
is the smallest time index, m, for which am is nonzero. The delay of the zero sequence
a(D) = 0 is defined to be ∞. This is equivalent to the lowest power of D in a(D).

This chapter assumes the sequential encoder starts at some time, call it k = 0, and so all sequences of
interest will have delay greater than or equal to 0. For example, the delay of the sequence 1 +D +D2

is 0, while the delay of the sequence D5 +D10 is 5.

Definition 10.1.2 (Degree of a Sequence) The degree, deg(a), of a nonzero sequence,
a(D) is the largest time index, m, for which am is nonzero. The degree of the zero sequence
a(D) = 0 is defined to be −∞. This is equivalent to the highest power of D in a(D).

For example, the degree of the sequence 1 +D +D2 is 2, while the degree of the sequence D5 +D10 is
10.

1Finite fields are discussed briefly in Appendix A, along with the related concept of a ring, which is almost a field except
that division is not well defined or implemented.

2The set F [D] can be shown to be a ring (see Appendix A).

148

[]mmmk uuu ,1,2, ...=mu
G(D)	

[]mmmn vvvv ,1,2, ...=m

11
10

+→

−→

modulator

Figure 10.1: General convolutional encoder block diagram.

Definition 10.1.3 (Length of a Sequence) The length, len(a), of a nonzero sequence,
a(D) is defined by

len(a)
∆
= deg(a)− del(a) + 1 . (10.4)

The length of the zero sequence a(D) = 0 is defined to be len(0)
∆
= 0.

For example, the length of the sequence 1 +D+D2 is 3, while the length of the sequence D5 +D10 is 6.

10.1.2 The Convolutional Code

The general convolutional encoder is illustrated in Figure 10.1. Coding theorists often use a time index
of m instead of k, which is instead the number of input bits to a sequential encoder (b earlier in this text).
This chapter then tries to maintain consistency with that significant literature on convolutional codes
in particular with k input bits at each time m producing n output bits. As will become evident, there
is no need to call the input message m because it will be represented by a vector of bits (so ambiguity
of the use of m for a message index with the newly introduced interpretation of m as a time index will
then not occur).

In convolutional codes, the k-dimensional binary vector sequence of input bits, um = [uk,m uk−1,m ... u1,m]
produces an n-dimensional vector sequence of output bits vm = [vn,m vn−1,m ... v1,m]. The output vec-
tor may then be applied to a modulator that produces the N -dimensional channel input vector xm. The
study of convolutional codes focuses on the relationship between um and vm. The relationship between
vm and xm for the AWGN is simple binary translation to the bipolar (2 PAM) modulated waveform with

amplitude ±
√
Ēx. Note that the vector u(D) becomes a generalization of the message sequence m(D),

while v(D) is a vector essentially suited to transmission on a BSC while x(D) is suited to transmission
on the AWGN.

The convolutional code is usually described by its generator G(D):

Definition 10.1.4 (Convolutional Code) The generator matrix, G(D) of a convolu-
tional code can be any k × n matrix with entries in Fr(D) and rank k. The convolutional
code, C(G), is the set of all n-dimensional vector sequences {v(D)} that can be formed by
premultiplying G(D) by any k-dimensional vector sequence, u(D), whose component polyno-
mials are causal and binary. That is, the code C(G) is the set of n-dimensional sequences,
whose components are in Fr(D), that fall in the subspace spanned by the rows of G(D).
Mathematically,

C(G)
∆
= {v(D) | v(D) = u(D) ·G(D) , u(D) ∈ Fr(D)} . (10.5)

The code rate for a convolutional coder is defined as r = k/n = b̄.

Two convolutional encoders that correspond to generators G(D) and G′(D) are said to be equivalent
if they generate the same code, that is C(G) = C(G′).

149

Lemma 10.1.1 (Equivalence of Convolutional Codes) Two convolutional codes are equiv-
alent if and only if there exists an invertible k × k matrix, A, of polynomials in Fr(D) such
that G′(D) = AG(D).

The rows of G(D) span a k-dimensional subspace of Fr(D). Any (n− k)× n matrix that spans the
orthogonal complement of the rows of G(D) is known as a parity matrix for the convolutional code,
that is:

Definition 10.1.5 (Parity Matrix) An (n−k)×n matrix of rank (n−k), H(D), is known
as the parity matrix for a code if for any codeword v(D), v(D)H∗(D) = 0 (where ∗ denotes
transpose in this case).

An alternative definition of the convolutional code is then the set of n-dimensional sequences in
{Fr(D)}n described by

C(G) = {v(D) | v(D)H∗(D) = 0} . (10.6)

Note G(D)H∗(D) = 0. When (n− k) < k, the parity matrix is a more compact description of the code.
H(D) also describes a convolutional code if it is used as a generator – this code is formally called the
dual code to that formed by G(D). All codewords in the dual code are obviously orthogonal to those
in the original code, and the two codes together span n-space.

The separation between codewords in a convolutional code is described by their Hamming distance:

Definition 10.1.6 (Hamming Distance) The Hamming Distance, dH (v(D),v′(D)),
between two sequences, v(D) and v′(D), is the number of bit positions in which they differ.

Similarly the Hamming weight wH(v(D)) is defined as the Hamming distance between

the codeword and the zero sequence, wH(v(D))
∆
= dH(v(D), 0). Equivalently, the Hamming

weight is the number of “ones” in the codeword.

Definition 10.1.7 (Systematic Encoder) A systematic convolutional encoder has vn−i(D) =
uk−i(D) for i = 0, ..., k − 1.

Equivalently, the systematic encoder has the property that all the inputs are directly passed to the
output, with the remaining n − k output bits being reserved as “parity” bits. One can always ensure
that a coder with this property satisfies our above definition by properly labeling the output bits.

A common measure of the complexity of implementation of the convolutional code is the constraint
length. In order to define the constraint length precisely, one can transform any generator G(D) whose
entries are not in F [D] into an equivalent generator with entries in F [D] by multiplying every row by
the least common multiple of the denominator polynomials in the original generator G(D), call it φ(D)
(A = φ(D)Ik in Lemma 10.1.1).

Definition 10.1.8 (Constraint Length) The constraint length, ν, of a convolutional
encoder G(D) with entries in F [D] is log2 of the number of states in the encoder; equivalently
it is the number of D flip-flops (or delay elements) in the obvious realization (by means of a
FIR filter).

If νi (i = 1, ..., k) is the degree or constraint length of the ith row of G(D) (that is the maximum
degree of the n polynomials in the ith row of G(D)), then in the obvious realization of G(D)

ν =

k∑
i=1

νi . (10.7)

The complexity of a convolutional code measures the complexity of implementation over all possible
equivalent encoders:

Definition 10.1.9 (Minimal Encoder) The complexity µ of a convolutional code, C, is
the minimum constraint length over all equivalent encoders {G(D)} such that C = C(G). An
encoder is said to be minimal if the complexity equals the constraint length, ν = µ.

A minimal encoder with feedback has a realization with the number of delay elements equal
to the complexity.

150

BSC	
 D	

km

kx

message

ku 1−ku 2−ku

kv ,2

kv ,1

2
T

ky

⊕ ⊕

⊕

D	

Figure 10.2: 4-state encoder example.

The following is a (brute-force) algorithm to construct a minimal encoder Gmin(D) for a given
generator G(D). This algorithm was given by Piret in his recent text on Convolutional Codes:

1. Construct a list of all possible n-vectors whose entries are polynomials of degree ν or less, where ν
is the constraint length of G(D). Sort this list in order of nondecreasing degree, so that the zeros
vector is first on the list.

2. Delete from this list all n-vectors that are not codeword sequences in C(G). (To test whether a
given row of n polynomials is a codeword sequence, it suffices to test whether all (k+ 1)× (k+ 1)
determinants vanish when the k × n matrix G(D) is augmented by that row.)

3. Delete from this remaining list all codewords that are linear combinations of previous codewords.

The final list should have k codewords in it that can be taken as the rows of Gmin(D) and the
constraint length must be µ because the above procedure selected those codewords with the smallest
degrees. The initial list of codewords should have 2n(ν+1) codewords. A well-written program would
combine steps 2 and 3 above and would stop on step 2 after generating k independent codeword sequences.
This combined step would have to search somewhere between 2nµ and 2n(µ+1) codewords, because the
minimum number of codewords searched would be 2nµ if at least one codeword of degree µ exists, and
the maximum would be 2n(µ+1) − 1 if no codewords of degree µ + 1 exist. A more efficient method for
generating the minimal encoder involves the concept of basic encoders (see Appendix A).

10.1.3 Examples

EXAMPLE 10.1.1 (4-state Optimal Rate 1/2 Code) The previous example of a con-
volutional encoder of Section 8.1 is repeated in Figure 10.2. There are k = 1 input bit and
n = 2 output bits, so that the code rate is b̄ = r = k/n = 1/2. The input/output relations
are

v2(D) = (1 +D +D2)u1(D) (10.8)

v1(D) = (1 +D2)u1(D) (10.9)

Thus,
G(D) =

[
1 +D +D2 1 +D2

]
. (10.10)

151

⊕	

⊕	

D	
 D D

D

r = 2

3

 u 1 ,	
 m u 1 ,	
 m -	

1 u 1 ,	
 m -	

2	

v 1 ,	
 m

v 2 ,	
 m

 u 1 (D)

 v 1 (
 D)	

 v 2 (
 D)	
 u 2 (D)
 u 2 ,	
 m u 2 ,	
 m -	

1

 v 3 (
 D)	

G(D) =
1 D 0

D2 1 D

!

"

#
#
#

$

%

&
&
&

Figure 10.3: 8-state encoder example.

The constraint length is ν = 2. The parity matrix is

H(D) =
[
1 +D2 1 +D +D2

]
. (10.11)

The code generated by

G(D) =

[
1

1 +D2

1 +D +D2

]
, (10.12)

has a systematic encoder; this code also has the same parity matrix, meaning the two codes
are the same, even though the mappings from input bits to the same set of codewords may
be different.

EXAMPLE 10.1.2 (8-state Ungerboeck Code) Another example appears in Figure 10.3.
This encoder has r = 2/3, and

G(D) =

[
1 D 0
D2 1 D

]
. (10.13)

H(D) must satisfy G(D)H∗(D) = 0, or

0 = h3 + h2 ·D (10.14)

0 = h3 ·D2 + h2 +D · h1 (10.15)

and that h3 = D2, h2 = D, and h1 = 1 +D3 is a solution. Thus,

H(D) =
[
D2 D 1 +D3

]
. (10.16)

EXAMPLE 10.1.3 (8-state Ungerboeck Code with Feedback) A final example illus-
trating the use of feedback in the encoder appears in Figure 10.4. This encoder is rate r = 3/4

152

⊕	

⊕	

 D D D

r =	

 4

 u 1 (D)

 v 1 (
 D)	

 v 2 (
 D)	

 u 2 (D) v 3 (
 D)	

 v 4 (
 D)	
 u 3 (D)

()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

+

+

3D
D

3D
DDG

1

1

2

0

1
0
0

0
1
0

0
0
1

3

⊕	

Figure 10.4: 8-State Encoder Example, with Feedback

153

0 3

2 1

3 0

1 2

00

01

10

11

00

01

10

11

0 3

3 0

2 1

1 2

()kk vv ,1,2

()12 −− mm uu

2=ν
2
1== rb

Figure 10.5: Trellis for 4-state encoder example.

and has

G(D) =

 1 0 0 0

0 1 0 D2

1+D3

0 0 1 D
1+D3

 . (10.17)

For this 8-state feedback example, let us ignore the trivial pass-through bit u3 = v4. Then,
G(D) becomes

G(D) =

[
1 0 D2

1+D3

0 1 D
1+D3

]
, (10.18)

for which

0 = h3 + h1 ·
D2

1 +D3
(10.19)

0 = h2 + h1 ·
D

1 +D3
(10.20)

and that h3 = D2, h2 = D, and h1 = 1 +D3 is a solution. Thus,

H(D) =
[
D2 D 1 +D3

]
, (10.21)

and (ignoring u3 = v4) Example 10.1.2 and Fig.10.4 have the same code!

10.1.4 Trellis Diagrams for Convolutional Codes

Trellis diagrams can always be used to describe convolutional codes. The trellis diagram in Figure 10.5 is
repeated from Section 8.1. The state in the diagram is represented by the ordered pair (u1,m−2 , u1,m−1).
The outputs are denoted in mod-4 arithmetic as the mod-4 value for the vector of bits v, with the most

154

0 2 4 6

1 3 5 7

2 0 6 4

3 1 7 5

4 6 0 2

5 7 1 3

6 4 2 0

7 5 3 1

0 2 4 6

4 6 0 2

2 0 6 4

6 4 2 0

1 3 5 7

5 7 1 3

3 1 7 5

7 5 3 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 1

1 1 0

1 0 0

1 1 1

 v 3 ,	
 m ,	
 v 2 ,	
 m ,	
 v 1 ,	
 m (

)	

 i	
 n	
 p	
 u	
 t	
 =	

 u 2 ,	
 m u 1 ,	
 m (

)	

 s	
 t	
 a	
 t	
 e	
 =	

[
 u 1 ,	
 m -	

2 ,	
 u 2 ,	
 m -	

1 ,	
 u 1 ,	
 m -	

1]	

0 0
0 1
1 0
1 1

,	

Figure 10.6: Trellis for 8-state encoder example of Figure 10.3.

significant bit corresponding to the left-most bit, vn,m. On the left, the mod-4 value written closer to
the trellis corresponds to the lowest branch emanating from the state it labels, while the mod-4 value
written furthest from the trellis corresponds to the highest branch emanating from the state it labels.
The labeling is vice-versa on the right.

The trellis diagram in Figure 10.6 is for the circuit in Figure 10.3. The state in the diagram is rep-
resented by the ordered triple (u1,m−2 , u2,m−1 , u2,m−1). The outputs are denoted in octal arithmetic
as the mod-8 value for the vector of bits v, with the most significant bit again corresponding to the
left-most bit, vn,m.

10.1.5 Error probabilities and Performance

Section 9.2 generally investigated performance of codes designed with sequential encoders (or equivalently
partial response systems where channel ISI was viewed as absorbed into a sequential encoder). For
convolutional codes, they are typically used on either an AWGN or a BSC. For the AWGN, as always,
the performance is given by

P̄e ≈ N̄eQ

(
dmin
2σ

)
= N̄eQ

(√
dfree · SNR

)
(10.22)

P̄b ≈ Nb
b
Q
(√

dfree · SNR
)

. (10.23)

155

For the BSC, the equivalent relations are

P̄e ≈ N̄e [4p(1− p)]d
d
2 e (10.24)

P̄b ≈ Nb
b

[4p(1− p)]d
d
2 e . (10.25)

156

10.2 Convolutional Coding Tables and Decoder Complexity

This section describes implementation, complexity, and enumerates tables of convolutional codes.

10.2.1 Implementations

There are two basic implementations of convolutional codes that find most use in practice: feedback free
implementations and systematic implementations (possibly with feedback). This subsection illustrates
how to convert a generator or a parity description of the convolutional code into these implementations.
There are actually a large number of implementations of any particular code with only the exact mapping
of input bit sequences to the same set of output codewords that differ between the implementations.
When feedback is used it is always possible to determine a systematic implementation with b = k of
the bits directly passed to the output. Systematic implementations are not always possible without
feedback.

Generally speaking the direct realization without feedback is often enumerated in tables of codes, as
appear in Subsection 10.2.4. For instance the rate 1/2 code G(D) = [1+D+D2 1+D2] is an example of
the code with maximum minimum-distance for rate 1/2 with 4 states. The direct realization is obvious
and was repeated in Section 10.1, Figure 10.2. To convert this encoder to a systematic realization, a
new description of the input may be written as

u′(D) =
1

1 +D +D2
· u(D) . (10.26)

Clearly u′(D) can take on all possible causal sequences, just as can u(D) and the two inputs are simply
a relabeling of the relationship of input sequences to output code sequences. Thus, the codewords are
generated by

v′(D) = u′(D)G(D) = u(D)
1

1 +D +D2
G(D) = u(D)

[
1

1 +D2

1 +D +D2

]
. (10.27)

The new matrix on the right above is a new generator for the same code (the same set of codewords).
This new generator or encoder is systematic, but also has feedback. Another way to generate this same
encoder is to realize that for any systematic encoder, one may write

Gsys = [Ik h(D)] (10.28)

where h(D) defines the parity matrix through

Hsys = [hT (D) In−k] (10.29)

and the superscript of T denotes transpose to prevent confusion with prime here. Thus for rate n−1
n

codes, the parity matrix can often be easily converted to this form by simply dividing all elements by

the last. Then (10.28) defines the systematic realization. Thus for the 4-state example h(D) = 1+D2

1+D+D2

and the circuit realization with two D memory elements and feedback appears in Figure 10.7.
More generally for a convolutional code, the systematic realization is found by finding the inverse of

the first k columns of the matrix

G(D) = [G1:k(D) Gk+1:n(D)] (10.30)

and premultiplying G(D) by G−1
1:k to get

Gsys = G−1
1:kG =

[
I G−1

1:kGk+1:n

]
, (10.31)

where the argument of (D) has been dropped for notational simplification. The inverse is implemented
with modulo two arithmetic and of course the first k columns must form an invertible matrix for this
conversion to work. For the codes that this chapter lists in tables, such invertibility is guaranteed. Such
encoders can be replaced by other encoders for the same code that are better according to procedures in

157

D	

ku kv ,2

kv ,1+	
 D	
 +	
 +	

Figure 10.7: Systematic realization of 4-state convolutional code.

Appendix B. However, this text does not emphasize poor codes because most designers are well served to
just use the codes in the tables. Premultiplication by the inverse does not change the codewords because
this amounts to replacing rows of the generator by linear combinations of the rows of the matrix in an
invertible manner. Since the set of codewords is all possible combinations of the rows of G(D), this set is
simply reindexed in terms of mappings to all possible input sequences by the matrix premultiplication.

As an example, the previous 8-state code in Example 10.3 has the generator

G(D) =

[
1 D 0
D2 1 D

]
(10.32)

and premultiplication by

G−1
1:2(D) =

1

1 +D3
·
[

1 D
D2 1

]
(10.33)

leaves

G−1
1:2(D) ·G(D) =

[
1 0 D2

1+D3

0 1 D
1+D3

]
(10.34)

and creates the systematic encoder.

Definition 10.2.1 (Catastrophic encoder) A catastrophic encoder is one for which
at least one codeword with finite Hamming weight corresponds to an input of infinite Hamming
weight.

Since the set of all possible codewords is also the set of all possible error events, this is the same as
saying a finite number of decoding errors in a sequence could lead to an infinite number of input bit
errors, clearly a catastrophic event. Catastrophic implementations are thus avoided. There are many
tests for catastrophic codes, but one will suffice here:

Lemma 10.2.1 (Catastrophic Encoder Test) An encoder is non-catastrophic if and only
if the greatest common divisor of the determinants of all the k × k submatrices of G(D) is a
nonnegative power of D – that is Dδ for δ ≥ 0.

The proof is in Appendix B.

A non-catastrophic encoder always exists for any code, and all the encoders listed in the tables of this
section are non catastrophic. Trivially, a systematic encoder can never be catastrophic.

It is also possible to find a minimal encoder for any code, which will be non catastrophic, and then
to convert that into a systematic encoder through the method above. That systematic encoder will also
be minimal and thus non catastrophic. For this reason, most convolutional codes are implemented with
systematic encoders and minimal complexity. However, the tables of this section allow both the feedback
free and systematic realizations to be readily implemented.

158

10.2.2 Coding Gain for Convolutional Codes

In Volume I and also again here in Volume II, coding gain has been defined as a comparison of distance-
to-energy for two systems, a coded system and an uncoded system. This measure of performance is
actually the most fair - from Chapter 1, one recalls that fair comparisons of two systems should evaluate
the 3 parameters b̄, Ēx, and P̄e. Any two of the 3 can be fixed and the other compared. Convolutional
coding gain essentially fixes b̄ and Ēx and looks at performance in terms of dmin, which is presumed
directly related to P̄e.

Unfortunately in convolutional codes, b̄ is not easily fixed and so the previous measure of coding gain
is not then applicable. The designer thus then must look more carefully and understand his criteria and
comparison. There are two methods for comparison: bandwidth expansion and data-rate reduction.

Method One - Bandwidth Expansion

In this criteria, data rateR = b/T , power P = Ex/T , and symbol period T are held fixed while bandwidth
is allowed to increase (with n) and performance compared. This comparison is thus somewhat unfair in
that it presumes more dimensions can be allocated (i.e., more bandwidth is available when more than
likely it is not available) via bandwidth expansion. When so doing, the designer then simply compares
dmin values for convolutionally coded systems with 2-level PAM at the same data rate. The convolutional
code system thus has 1/b̄ more bandwidth than the uncoded system, and at fixed power and T , this
means that Ēx is reduced to b̄Ēx. Thus the coded minimum distance is then dfreeb̄Ēx. The ratio of
coded to uncoded distance is then just

γ = 10 log10

(
b̄dfree

)
. (10.35)

This quantity is then listed in tables as the coding gain for the convolutional code, even though it implies
a bandwidth increase. The probability of codeword/sequence error is

Pe ≈ Ne ·Q
[√

dfree · b̄ · SNRuncoded

]
= Ne ·Q

[(
2 · γ · Eb

N0

)1/2
]

(10.36)

= Ne ·Q
[√

dfree · SNRcoded

]
. (10.37)

Method Two - Data-Rate Reduction

This criteria is perhaps more applicable in practice, but the argument that leads to the same measure
of coding gain is a little harder to follow. The designer fixes power P and bandwidth to W (positive
frequencies only). For the coded system, the fixed bandwidth then leads to a fixed value for 1/(b̄T), or
equivalently a data rate reduction by a factor of b̄ to Rcode = b̄2W with respect to uncoded 2-level PAM,
which would have Rcode = 2W . The squared distance does increase to dfreeĒx for the coded system,
but could have used a lower-speed uncoded system with 1/b̄ more energy per dimension for 2-level PAM
transmission. Thus the ratio of squared distance improvement is still b̄dfree, the coding gain.

10.2.3 Binary Symmetric Channel Error Probability

For the binary symmetric channel, the simplest approximation to error probability is repeated here as

Pe ≈ N3 [4p(1− p)]

⌈
dfree

2

⌉
. (10.38)

A slightly more complicated expression from Section 9.2 is

Pe ≤
∞∑

d=dfree

a(d)
[√

4p(1− p)
]d

, (10.39)

where a(d) is the number of error events of weight d. Expressions for bit error probability also occur in
Seciton 9.2.

159

2ν g11(D) g12(D) dfree γf (dB) Ne N1 N2 Nb LD
4 7 5 5 2.5 3.98 1 2 4 1 3
8 17 13 6 3 4.77 1 3 5 2 5

16 23 35 7 3.5 5.44 2 3 4 4 8
(GSM) 16 31 33 7 3.5 5.44 2 4 6 4 7

32 77 51 8 4 6.02 2 3 8 4 8
64 163 135 10 5 6.99 12 0 53 46 16

(802.11a) 64 155 117 10 5 6.99 11 0 38 36 16
(802.11b) 64 133 175 9 4.5 6.53 1 6 11 3 9

128 323 275 10 5 6.99 1 6 13 6 14
256 457 755 12 6 7.78 10 9 30 40 18

(IS-95) 256 657 435 12 6 7.78 11 0 50 33 16
512 1337 1475 12 6 7.78 1 8 8 2 11

1024 2457 2355 14 7 8.45 19 0 80 82 22
2048 6133 5745 14 7 8.45 1 10 25 4 19
4096 17663 11271 15 7.5 8.75 2 10 29 6 18
8192 26651 36477 16 8 9.0 5 15 21 26 28

16384 46253 77361 17 8.5 9.29 3 16 44 17 27
32768 114727 176121 18 9 9.54 5 15 45 26 37
65536 330747 207225 19 9.5 9.78 9 16 48 55 33

131072 507517 654315 20 10 10 6 31 58 30 27

Table 10.1: Rate 1/2 Maximum Free Distance Codes

Probabilty of error with coding gain and energy per bit expression

From section 10.1, the probability of symbol error is given by

P̄e ≈ N̄e ·Q
(
dmin
2σ

)
= N̄eQ

(√
dfree · SNR

)
(10.40)

Explicit inclusion of coding gain is tacit because the SNR reduces as b̄. An alternate expression is to use

energy per bit Eb
∆
=
Ex
b so that

P̄e ≈ N̄e ·Q

(√
dfree ·

b

n
· Eb
σ2

)
= N̄e ·Q(2 · γ · Eb

N0
) (10.41)

which includes the coding gain γ = b̄ · dfree directly in the formulae and views the quantity Eb
N0

as fixed.
Such a quantity is reasonably interpretted as fixed (ignoring bandwidth expansion) ONLY in the study
of convolutional codes when b̄ < 1.

10.2.4 Tables of Convolutional Codes

This subsection lists several of the most popular convolutional codes in tabular format. These tables
are based on a very exhaustive set found by R. Johannesson K. Sigangirov in their text Fundamentals
of Convolutional Coding (IEEE Press, 1999), but in which we found many errors. Using Ginis dmin
calculation program, they have been corrected. The generators are specified in octal with an entry of
155 for g11(D) in Table 10.1 for the 64-state code corresponding to g11(D) = D6 +D5 +D3 +D2 + 1.

EXAMPLE 10.2.1 (Rate 1/2 example) The 8-state rate 1/2 code in the tables has a
generator given by [17 13]. The generator polynomial is thus G(D) = [D3 + D2 + D +
1 D3 +D + 1]. Both feedback-free and systematic-with-feedback encoders appear in Figure
10.8.

160

2ν g11(D) g12(D) g13(D) dfree γf (dB) Ne N1 N2 Nb LD
4 5 7 7 8 2.67 4.26 2 0 5 3 4
8 15 13 17 10 3.33 5.23 3 0 2 6 6

16 25 33 37 12 4 6.02 5 0 3 12 8
32 71 65 57 13 4.33 6.37 1 3 6 1 6
64 171 165 133 15 5 6.99 3 3 6 7 11

128 365 353 227 16 5.33 7.27 1 5 2 2 10
256 561 325 747 17 5.67 7.53 1 2 6 1 9
512 1735 1063 1257 20 6.67 8.24 7 0 19 19 15

1024 3645 2133 3347 21 7 8.45 4 1 4 12 16
2048 6531 5615 7523 22 7.33 8.65 3 0 9 8 15
4096 13471 15275 10637 24 8.00 9.03 2 8 10 6 17
8192 32671 27643 22617 26 8.67 9.38 7 0 23 19 20

16384 47371 51255 74263 27 9 9.54 6 4 6 22 24
32768 151711 167263 134337 28 9.33 9.70 1 6 5 2 17
65536 166255 321143 227277 28 10 10 1 9 20 4 22

Table 10.2: Rate 1/3 Maximum Free Distance Codes

2ν g11(D) g12(D) g13(D) g14(D) dfree γf (dB) Ne N1 N2 Nb LD
4 7 7 7 5 10 2.5 3.98 1 1 1 2 4
8 17 15 13 13 13 3.25 5.12 2 1 0 4 6

16 37 35 33 25 16 4 6.02 4 0 2 8 7
32 73 65 57 47 18 4.5 6.53 3 0 5 6 8
64 163 147 135 135 20 5 6.99 10 0 0 37 16

128 367 323 275 271 22 5.5 7.40 1 4 3 2 9
256 751 575 633 627 24 6.0 7.78 1 3 4 2 10
512 0671 1755 1353 1047 26 6.5 8.13 3 0 4 6 12

1024 3321 2365 3643 2277 28 7.0 8.45 4 0 5 9 16
2048 7221 7745 5223 6277 30 7.5 8.75 4 0 4 9 15
4096 15531 17435 05133 17627 32 8 9.03 4 3 6 13 17
8192 23551 25075 26713 37467 34 8.5 9.29 1 0 11 3 18

16384 66371 50575 56533 51447 37 9.25 9.66 3 5 6 7 19
32768 176151 123175 135233 156627 39 9.75 9.89 5 7 10 17 21
65536 247631 264335 235433 311727 41 10.25 10.1 3 7 7 7 20

Table 10.3: Rate 1/4 Maximum Free Distance Codes

161

2ν h3(D) h2(D) h1(D) dfree γf (dB) Ne N1 N2

8 17 15 13 4 2.667 4.26 1 5 24
16 05 23 27 5 3.33 5.22 7 23 59
32 53 51 65 6 4.00 6.02 9 19 80
64 121 113 137 6 4.0 6.02 1 17 47

128 271 257 265 7 4.67 6.69 6 26 105
256 563 601 475 8 5.33 7.27 8 40 157
512 1405 1631 1333 8 5.33 7.27 1 20 75

1024 1347 3641 3415 9 6 7.78 9 45 166
2048 5575 7377 4033 10 6.67 8.24 29 0 473
4096 14107 13125 11203 10 6.67 8.24 4 34 127
8192 29535 31637 27773 11 7.33 8.65 9 72 222

16384 66147 41265 57443 12 8 9.02 58 0 847
32768 100033 167575 155377 12 8 9.02 25 0 462
65536 353431 300007 267063 12 8 9.02 7 26 120

Table 10.4: Rate 2/3 Maximum Free Distance Codes

2ν h4(D) h3(D) h2(D) h1(D) dfree γf (dB) Ne N1 N2

32 45 71 63 51 5 3.75 5.74 9 47 218
64 151 121 177 111 6 4.5 6.53 30 112 640

Table 10.5: Rate 3/4 Maximum Free Distance Codes

BSC	
 D	

)(Du

kx

+	

+	

+	

ku 1−ku 2−ku

kv ,2

kv ,1

2
T

ky
D	

+	

+	

3−ku
D	

D	

ku

+	
 D	
 +	
 +	
 D	
 +	

)(Du

BSC	

kx

kv ,2

kv ,1 2
T

ky

Figure 10.8: 8-State rate-1/2 equivalent encoders from Tables

162

D	

ku

+	
 D	
 +	
 +	
 D	
 +	

)(2 Du

BSC	

kx

kv ,2

kv ,1 3
2T

ky

kv ,3

D	

)(1 Du

Figure 10.9: 16-State rate-2/3 equivalent encoders from Tables

EXAMPLE 10.2.2 (Rate 2/3 example) The 16-state rate 2/3 code in the tables has a
parity matrix given by [05 23 27]. The parity polynomial is thus H(D) = [D2 +1 D4 +D2 +

D D4 +D2 +D + 1]. Equivalently, Hsys(D) = [D2+1
D4+D2+D+1

D4+D2+D
D4+D2+D+1 1] A systematic

generator is then

G(D) =

[
1 0 D2+1

D4+D2+D+1

0 1 D4+D2+D
D4+D2+D+1

]
. (10.42)

The systematic-with-feedback encoder appears in Figure 10.9.

10.2.5 Complexity

Code complexity is measured by the number of adds and compares that are executed per symbol period
by the Viterbi ML decoder. This number is always

ND = 2ν
(
2k + 2k − 1

)
(10.43)

for convolutional codes. This is a good relative measure of complexity for comparisons, but not neces-
sarily an accurate count of instructions or gates in an actual implementation.

10.2.6 Forcing a Known Ending State

For encoders without feedback, the input u(D) can be set to zero for ν symbol periods. Essentially, this
forces a known return to the all zeros state. The encoder outputs for these ν symbol periods are sent
through the channel and the decoder knows they correspond to zeros. Thus, a sequence decoder would
then know to find the best path into only the all zeros state at the end of some packet of transmission.
If the packet length is much larger than ν, then the extra symbols corresponding to no inputs constitute
a small fraction of the channel bandwidth. In some sense, symbols at the end of the packet before the
intentional “zero-stuffing” are then treated at least equally to symbols earlier within the packet.

Tail Biting

The state of a recursive (i.e., having feedback) encoder can also be forced to zero by what is called “tail
byting.” Tail byting is the finite-field equivalent of providing an input to a circuit that “zeros the poles.”
Figure 10.10 illustrates the basic operation. A switch is used in the feedback section. After a packet of
L input symbols has been input to the encoder with the switch in the upper position, then the switch is
lowered and the feedback elements are successively zeroed. The output of the feedback section is input
to the filter (which because of the exclusive or operation zeros the input to the first delay element). This
delay-line output value is also transmitted as ν additional input symbols. The state is again forced to
zero so that a decoder can exploit this additional knowledge of the ending state for the packet of L+ ν
transmitted symbols.

163

D	

ku

+	
 D	
 +	
 +	
 D	
 +	

kv ,1

kv ,2D	

ku ,1 …

Figure 10.10: Illustration of Tail Biting.

164

x	

m	

Binary	
 Encoder	

	
 G	

k	
 bits	

b-­‐k	
 bits	

Coset	
 Select	

	
 (CS)	

Signal	
 Select	

	
 (SS)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

k	
 +	
 r	
 G	

bits	

	
 (sequence	
 in	
 C)	

 one	
 of	
 	
 2	
 k	
 +	

r	
 G	
 	
 cosets	
 of	
 	
 Λ	

'	

 Λ	

 Λ	

'	

 one	
 of	
 	
 2	

b	
 +	

r	
 G	
 	
 points	
 in	
 	
 Λ	

Figure 10.11: The coset-code encoder

10.3 Coset Codes, Lattices, and Partitions

The general coset-code encoder is shown in Figure 10.11. This encoder consists of 3 major components:
the binary encoder (G), the coset select (CS), and the signal select (SS). The encoder output,
xm, is an N -dimensional vector sequence of points; m is a symbol-time index. Each (N -dimensional)
symbol of this sequence is chosen from an N -dimensional constellation. The sequences of xm are the
codewords x(D) =

∑
m xmD

m. This signal constellation consists of 2b+rG signal points in some coset
of an N -dimensional real lattice, Λ (for a definition of a lattice and its cosets, see Appendix C). The
basic idea in designing a coset code is to select carefully N -dimensional sequences that are separated by
a large minimum distance. The signal constellation contains 2k+rG subsets (cosets) of the constellation
that each contain 2b−k points. A good trellis code is designed by carefully selecting sequences of cosets
that will lead to the desired increase in separation. The vector sequence xm is converted by modulation
to a continuous-time waveform according to the techniques discussed in Chapter 1.

At any time m, there are b input bits to the encoder, of which k are input to a conventional binary
encoder (convolutional or block), which produces n = k+ rG output bits, with rG specifying the number
of redundant bits produced by the encoder (rG = n − k in Sections 10.1 and 10.2). The quantity

r̄G
∆
= rG/N is called the normalized redundancy of the convolutional encoder in the coset-code

encoder. The quantity k̄G

∆
= k/N is called the informativity of the convolutional encoder in the coset-

code encoder. The k + rG output bits of the binary encoder specify one of 2k+rG disjoint subsets (or
cosets) into which the signal constellation has been divided. This subset selection is performed by the
coset select. The current output signal point xm at time m is selected by the signal select from the
2b−k remaining points in that coset that is currently selected by the coset select. The set of all possible
sequences that can be generated by the coset encoder is called the coset code and is denoted by C.

In Figure 10.11, the sublattice Λ′ is presumed to partition the lattice Λ, written Λ|Λ′, into 2k+rG

cosets of Λ′, where each coset has all of its points contained within the original lattice Λ. Such a
partitioning always accompanies the specification of a coset code.

Definition 10.3.1 (Coset Partitioning Λ|Λ′) A coset partitioning is a partition of the
Lattice Λ into |Λ|Λ′| (called the “order” of the partition) cosets of a sublattice Λ′ such that
each point in the original lattice Λ is contained in one, and only one, coset of the sublattice
Λ′.

The coset select in Figure 10.11 then accepts the k + rG bits from G as input and outputs a cor-
responding index specifying one of the cosets of Λ′ in the coset partitioning Λ|Λ′. There are 2b+rG

constellation points chosen from the lattice Λ, and each is in one of the 2k+rG cosets. There are an
equal number, 2b−k, of constellation points in each coset. The signal select accepts b− k uncoded input
bits and selects which of the 2b−k points in the coset of Λ′ specified by the coset select that will be
transmitted as the modulated vector xm.

165

If the encoder G is a convolutional encoder, then the set of all possible transmitted sequences {x(D)}
is a Trellis Code, and if G is a block encoder, the set of N -dimensional vectors is a Lattice Code.
So, both trellis codes and lattice codes are coset codes.

10.3.1 Gain of Coset Codes

There are several important concepts in evaluating the performance of a coset code, but the gain is
initially the most important.

The fundamental gain will be taken in Volume II to always be with respect to a uncoded system,
x̃, that uses points on the N -dimensional integer lattice (denoted ZN). It is easy (and often harmless,
but not always) to forget the difference between Vx and V2/N (Λ). Vx is the volume of the constellation
and is equal to the number of points in the constellation times V2/N (Λx). For coding gain calculations
where the two compared systems have the same number of points, this difference is inconsequential.
However, in trellis codes, the two are different because the coded system often has extra redundant
points in its constellation. For the uncoded reference ZN lattice, V(ZN) = 1 and dmin(ZN) = 1, so that
the fundamental gain of a coset code reduces to

γf =

d2
min(x)

V2/N

x
d2
min

(x̃)

Ṽx
2/N

=

d2
min(x)

22(b̄+r̄G)V2/N (Λ)

d2
min

(x̃)

22b̄·V2/N (Λ)

=

d2
min(C)

22r̄G ·V2/N (Λ)

1
1

=
d2
min(C)

V(Λ)2/N22r̄G
(10.44)

The quantity r̄G = rG
N is the normalized redundancy of the encoder G. The gain γf in dB is

γf = 10 · log10

(
d2
min(C)

V(Λ)2/N22r̄G

)
(10.45)

= 20 log10

(
dmin(C)

V(Λ)1/N2r̄G

)
(10.46)

The redundancy of the overall coset code requires the concept of the redundancy of the original
lattice Λ.

Definition 10.3.2 (Redundancy of a Lattice) The redundancy of a lattice is defined
by rΛ such that

V(Λ) = 2rΛ = 2Nr̄Λ , (10.47)

or rΛ = log2 (V(Λ)) bits per symbol. The quantity r̄Λ = rΛ/N is called the normalized
redundancy of the lattice, which is measured in bits/dimension.

Then, the fundamental coding gain of a coset code is

γf =
d2
min(C)

22(r̄G+r̄Λ)
=
d2
min(C)

22r̄C
(10.48)

where
r̄C = r̄G + r̄Λ . (10.49)

Equation (10.48) is often used as a measure of performance in evaluating the performance of a given
trellis code. Good coset codes typically have 3 dB ≤ γf ≤ 6 dB.

Shaping gain is also important in evaluating trellis codes, but is really a function of the shape of the
constellation used rather than the spacing of sequences of lattice points. The shaping gain is defined as
(again comparing against a zero-mean translate of ZN lattice)

γs =
V2/N (Λ) · 22r̄G

Ē(Λ)
/

1

(22b̄ − 1)/12
=

22r̄C

12Ē
(22b̄ − 1) , (10.50)

166

Λ	

 Λ	

'	

Λ	

'	
 =	
 2	

Λ	

=	
 8	

Λ	

|	
 Λ	

'	
 =	
 4	

0	

1	

2	

6	

4	

7	

3	
 5	

0	

4	

1	
 2	
 3	
 -­‐1	
 -­‐2	
 -­‐3	

1	

2	

3	

-­‐1	

-­‐2	

-­‐3	

Figure 10.12: Partitioning (a coset of) the D2 Lattice

where Ē(C) is the energy per dimension required for the coset code. Using the so-called “continuous
approximation” (which holds accurately for b̄ ≥ 3), the shaping gain is often approximated by

γs ≈
22r̄C · 22b̄

12Ē(Λ)
. (10.51)

This can also be written in dB as

γs ≈ 10 log10

(
V2/N (Λ)22(b̄+r̄G)

12Ē(Λ)

)
(10.52)

= 10 log10

(
22(b̄+r̄C)

12Ē(Λ)

)
(10.53)

This shaping gain has a theoretical maximum of 1.53dB - the best known shaping methods achieve about
1.1dB (see Section 10.8).

EXAMPLE 10.3.1 (Ungerboeck’s Rate 1/2 3 dB Trellis Code) In Figure 10.12, the
8AMPM (or 8CR) constellation is subset of a (possibly scaled and translated) version of what
is known as the Λ = D2 Lattice that contains |Λ| = 8 points. The average energy per symbol
for this system is E = 10 or Ē = 5. The (translated) sublattice Λ′ has a coset, Λ0 that
contains |Λ0| = 2 points, so that there are |Λ|Λ′| = 4 cosets of Λ′ in Λ; they are Λ0 = {0, 4},
Λ1 = {1, 5}, Λ2 = {2, 6}, and Λ3 = {3, 7}. These 4 cosets are selected by the two bit output
v(D) of a rate 1/2 convolutional encoder with generator:

G(D) =
[
1 +D2 D

]
. (10.54)

The corresponding trellis and trellis encoder are shown in Figures 10.13 and 10.14, respec-
tively. The convolutional encoder, G, has rate r = 1/2, but the overall coset-code has b̄ = 2

167

00	

01	

10	

11	

Λ	

0	

	
 	
 Λ	

2	

Λ	

1	

	
 	
 Λ	

3	

Λ	

2	

	
 	
 Λ	

0	

Λ	

3	

	
 	
 Λ	

1	

Figure 10.13: Trellis for 4-state rate 1/2 Ungerboeck Code

x	
 m	

b-­‐k	
 bits	

Coset	
 Select	

	
 (CS)	

Signal	
 Select	

	
 (SS)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

⊕	

D	
 D	

G	
 (
 D	
)	
 	
 	
 =	
 	
 	
 1	
 +	
 D	
 2	
 	
 	
 	
 	
 	
 	
 D	

 one	
 of	
 	
 4	
 	
 cosets	
 of	
 	
 2	
 Z	
 2	

one	
 of	
 	
 2	
 b	
 -­‐	
 1	
 	
 points	
 in	
 selected	
 	

coset	
 of	
 	
 2	
 Z	
 2	

 Z	

2	
 2	
 Z	
 2	

Figure 10.14: Encoder for 4-state rate 1/2 Ungerboeck Code

168

bits/2dimensions = 1 bit/dimension. The input bit u1,k passes through G, where the two
output bits select the index of the desired coset Λ0, Λ1, Λ2, or Λ3. The minimum distance
between the points in any of these cosets is dmin(Λ′) = 2dmin(Λ) = 4

√
2. This distance

is also the distance between the parallel transitions that are tacit in Figure 10.13. Figure
10.13 inherently illustrates that any two (non-parallel) paths that start and terminate in
the same pair of states, must have a distance that is d′ =

√
16 + 8 + 16, which is always

greater than 4
√

2, so that the parallel transition distance is the minimum distance for this
code. This parallel-transition distance (normalized to square-root energy and ignoring con-
stellation shape effects) is

√
2 better than the distance corresponding to no extra bit or just

transmitting (uncoded) 4 QAM. More precisely, the coding gain is

γ =

(
d2
min/Exp

)
coded(

d2
min/Exp

)
uncoded

(10.55)

This expression evaluates to (for comparison against 4 QAM, which is also ZN and exact for
γf and γs calculations)

γ =
16·2
10
1

1/2

= 1.6 = 2 dB . (10.56)

The fundamental coding gain is (realizing that r̄C = r̄Λ + r̄G = 1.5 + .5 = 2)

γf =

(
d2
min

22r̄C

)
=

32

22·2 = 2 (3 dB) . (10.57)

Thus, the shaping gain is then γs = γ − γf = 2− 3 = −1 dB, which verifies according to

γs =
22·2

12 · 5
(
22 − 1

)
=

4

5
= -1 dB . (10.58)

This coset code of Figure 10.14 can be extended easily to the case where b = 3, by using
the constellation in Figure 10.15. In this case, r̄C = .5 = r̄Λ + r̄G = 0 + .5, b̄ = 1.5, and
Ē = 1.25. This constellation contains 16 points from the scaled and translated Z2 Lattice.
The sublattice and its 4 cosets are illustrated by the labels 0,1,2, and 3 in Figure 10.15. This
coset code uses a circuit almost identical to that in Figure 10.14, except that two bits enter
the Signal Select to specify which of the 4 points in the selected coset will be the modulated
signal.

The minimum distance of the coded signal is still twice the distance between points in Λ.
The fundamental coding gain is

γf =
4

22·.5 = 2 (3 dB). (10.59)

The fundamental gain γf will remain constant at 3 dB if b further increases in the same
manner; however the shaping gain γs will vary slightly. The shaping gain in this case is

γs =
22·.5

12 · (5/4)

(
23 − 1

)
=

14

15
= (-.3 dB). (10.60)

The coding gain of this code with respect to 8 CR is (16/5)/(8/5)= 3dB. This code class
is known as Ungerboeck’s 4-state Rate 1/2 Trellis Code, and is discussed further in Section
10.4.

10.3.2 Mapping By Set Partitioning

The example of the last section suggests that the basic partitioning of the signal constellation Λ|Λ′ can
be extended to larger values of b. The general determination of Λ′, given Λ, is called mapping-by-set-
partitioning. Mapping-by-set-partitioning is instrumental to the development and understanding of
coset codes.

169

Λ	

 Λ	

'	

Λ	

|	
 Λ	

'	
 =	
 4	

0	
 1	

2	
 3	

0	

0	

0	

0	

2	

2	
 2	

1	

1	
 1	

3	

3	

3	

0	

0	

0	

Λ	

=	
 1	
 6	

Λ	

'	
 =	
 4	

d=1

Figure 10.15: Partitioning 16 QAM

Partitioning of the Integer Lattice

Example 10.3.1 partitioned the 16QAM constellation used to transmit 3 bits of information per symbol.
The basic idea is to divide or to partition the original constellation into two equal size parts, which both
have 3 dB more distance between points than the original lattice. Figure 10.16 repeats the partitioning
of 16 QAM each of the partitions to generate 4 sublattices with distance 6dB better than the original
Lattice.

The cosets are labeled according to an Ungerboeck Labeling:

Definition 10.3.3 (Ungerboeck Labeling in two dimensions) An Ungerboeck labeling
for a Coset Code C uses the LSB, v0, of the encoder G output to specify which of the first
2 partitions (B0, v0 = 0 or B1 v0 = 1) contains the selected coset of the sublattice Λ′,
and then uses v1 to specify which of the next level partitions (C0,C2,C1,C3) contains the
selected coset of the sublattice, and finally when necessary, v2 is used to select which of the
3rd level partitions is the selected coset of the sublattice. This last level contains 8 cosets,
D0,D4,D2,D6,D1,D5,D3, and D7.

The remaining bits, vk+r, ..., vb+r−1 are used to select the point within the selected coset. The parti-
tioning process can be continued for larger constellations, but is not of practical use for two-dimensional
codes.

In practice, mapping by set partitioning is often used for N = 1, N = 2, N = 4, and N = 8.
One-dimensional partitioning halves a PAM constellation into sets of “every other point,” realizing a
6dB increase in intra-partition distance for each such halving. In 4 and 8 dimensions, which will be
considered later, the distance increase is (on the average) 1.5 dB per partition and .75 dB per partition,
respectively.

170

v	
 0	
 =	

0	
 v	
 0	
 =	

1	

v	
 1	
 =	

1	
 v	
 1	
 =	

1	
 v	
 1	
 =	

0	

v	
 1	
 =	

0	

B	
 0	
 B	
 1	

C	
 0	
 C	
 2	
 C	
 1	
 C	
 3	

A	
 0	
 d	

2	
 ⋅	

d	

2	
 ⋅	

d	

Figure 10.16: Illustration of Mapping by Set Partitioning for 16QAM Constellation

171

Λ = Λ(0)

Λ(1) Λ
(1)
+ g

0

Λ
(2)
+ g

0
Λ

(2)
+ g

0
+ g

1Λ
(2)
+ g

1
Λ

(2)

Figure 10.17: Partition tree.

Partition Trees and Towers

Forney’s Partition trees and Towers are alternative more mathematical descriptions of mapping by
set partitioning and the Ungerboeck Labeling process.

The partition tree is shown in Figure 10.17. Each bit of the convolutional encoder (G) output is used
to delineate one of two cosets of the parent lattice at each stage in the tree. The constant vector that is
added to one of the partitions to get the other is called a coset leader, and is mathematically denoted
as gi. The specification of a vector point that represents any coset in the ith stage of the tree is

x = Λ′ +

k+rG−1∑
i=0

vigi = Λ′ + v


gk+rG−1

...
g1

g0

 = Λ′ + vG , (10.61)

where G is a “generator” for the coset code. Usually in practice, a constant offset a is added to all x so
that 0 (a member of all lattices) is not in the constellation, and the constellation has zero mean. The
final b− k bits will specify an offset from x that will generate our final modulation symbol vector. The
set of all possible binary combinations of the vectors gi is often denoted

[Λ|Λ′] ∆
= {vG} (10.62)

Thus,
Λ = Λ′ + [Λ|Λ′] , (10.63)

symbolically, to abbreviate that every point in Λ can be (uniquely) decomposed as the sum of a point
in Λ′ and one of the “coset leaders” in the set [Λ|Λ′], or recursively

Λ(i) = Λ(i+1) +
[
Λ(i)|Λ(i+1)

]
. (10.64)

There is thus a chain rule
Λ(0) = Λ(2) +

[
Λ(1)|Λ(2)

]
+
[
Λ(0)|Λ(1)

]
(10.65)

or [
Λ(0)|Λ(2)

]
=
[
Λ(0)|Λ(1)

]
+
[
Λ(1)|Λ(2)

]
(10.66)

172

Figure 10.18: Partition tower.

where
[
Λ(i)|Λ(i+1)

]
= {0, gi} and

[
Λ(0)|Λ(2)

]
= {0, g0, g1, g0 + g1}. This concept is probably most

compactly described by the partition tower of Forney, which is illustrated in Figure 10.18.
The partition chain is also compactly denoted by

Λ(0)

∣∣Λ(1)

∣∣Λ(2)

∣∣Λ(3)

∣∣ (10.67)

EXAMPLE 10.3.2 (Two-dimensional integer lattice partitioning) The initial lattice
Λ(0) is Z2. Partitioning selects “every other” point from this lattice to form the lattice D2,
which has only those points in Z2 that have even squared norms (see Figures 10.16 and
10.12). Mathematically, this partitioning can be written by using the rotation matrix

R2
∆
=

[
1 1
1 −1

]
(10.68)

as
D2 = R2Z

2 , (10.69)

where the multiplication in (10.69) symbolically denotes taking each point in Z2 and multi-
plying by the rotation matrix R2 to create a new set of points that will also be a lattice. D2

is also a sublattice of Z2 and therefore partitions Z2 into two subsets. Thus in partitioning
notation:

Z2 |D2 . (10.70)

The row vector that can be added to D2 to get the other coset is g0 = [0 1]. So, Z2 |D2

with coset leaders
[
Z2 |D2

]
= {[0 0], [0 1]}. D2 decomposes into two sublattices by again

multiplying by the rotation operator R2

2Z2 = R2D2 . (10.71)

Points in 2Z2 have squared norms that are multiples of 4. Then, D2

∣∣2Z2 with
[
D2

∣∣2Z2
]

=

{[0 0], [1 1]}. Thus,
[
Z2
∣∣2Z2

]
= {[0 0], [0 1], [1 0] [1 1]}. The generator for a coset code

with convolutional codewords [v1(D) v0(D)] as input is then

G =

[
1 1
0 1

]
. (10.72)

Partitioning continues by successive multiplication by R2: Z2 |D2| 2Z2 |2D2| 4Z2....

173

x	
 m	

b-­‐k	
 bits	

Coset	
 Select	

	
 (CS)	

Signal	
 Select	

	
 (SS)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

⊕	

D	
 D	

G	
 (
 D	
)	
 	
 	
 =	
 	
 	
 1	
 +	
 D	
 2	
 	
 	
 	
 	
 	
 	
 D	

 one	
 of	
 	
 4	
 	
 cosets	
 of	
 	
 2	
 Z	
 2	

one	
 of	
 	
 2	
 b	
 -­‐	
 1	
 	
 points	
 in	
 selected	
 	

coset	
 of	
 	
 2	
 Z	
 2	

 Z	

2	
 2	
 Z	
 2	

Figure 10.19: Ungerboeck’s 4-state rate 1/2 Trellis Code

10.4 One- and Two-dimensional Trellis Codes

Ungerboeck’s two most famous codes are in wide use and used for illustrative purposes in this section.

10.4.1 Rate 1/2 Code

The earlier 4-state rate 1/2 code discussed in Section 10.3 can be generalized as shown in Figure 10.19.
The encoder matrix G = [1 +D2 D] can be equivalently written as a systematic encoder

Gsys =

[
1

D

1 +D2

]
, (10.73)

which is shown in Figure 10.19. The parity matrix H appears in Figure 10.19 because most trellis codes
are more compactly expressed in terms of H. In this code rG = 1 and 2b+1 points are taken from the
Lattice coset Z2 +

[
1
2

1
2

]
to form the constellation Λ, while the sublattice that is used to partition Λ is

Λ′ = 2Z2, upon which there are 2b−1 constellation points, and there are 4 cosets of Λ′ in Λ, |Λ/Λ′| = 4.
The fundamental gain remains at

γf =

(
d2
min(2Z2)

V(Z2) · 2

)
/

(
d2
min(Z2)

V(Z2)

)
=

4

2
/

1

1
= 2 = 3 dB . (10.74)

Shaping gain is again a function of the constellation shape, and is not considered to be part of the
fundamental gain of any code. For any number of input bits, b, the structure of the code remains mainly
the same, with only the number of points within the cosets of Λ′ = 2Z2 increasing with 2b.

The partition chain for this particular code is often written Z2|D2|2Z2.

10.4.2 A simple rate 2/3 Trellis Code

In the rate 2/3 code of interest, the encoder G will be a rate 2/3 encoder. The objective is to increase
fundamental gain beyond 3dB, which was the parallel transition distance in the rate 1/2 code of Section
10.3. Higher gain necessitates constellation partitioning by one additional level/step to ensure that the
parallel transition distance will now be 6dB, as in Figure 10.20. Then, the minimum distance will usually

174

v	
 0	
 =	

0	
 v	
 0	
 =	

1	

v	
 1	
 =	

1	
 v	
 1	
 =	

1	
 v	
 1	
 =	

0	

v	
 1	
 =	

0	

B0	
 B1	

C0	
 C2	
 C1	
 C3	

A0	
 d	

2	
 ⋅	

d	

2	
 ⋅	

d	

D0	
 D4	
 D2	
 D6	
 D1	
 D5	
 D3	
 D7	

v	
 2	
 =	

0	
 v	
 2	
 =	

1	
 v	
 2	
 =	

0	
 v	
 2	
 =	

1	
 v	
 2	
 =	

0	
 v	
 2	
 =	

1	
 v	
 2	
 =	

0	
 v	
 2	
 =	

1	

2	
 2	
 ⋅	

d	

Figure 10.20: D-level partitioning of 16 QAM.

occur between two longer length sequences through the trellis, instead of between parallel transitions.
The mapping-by-set-partitioning principle of the Section 10.3.2 extends one more level to the chain
Z2|D2|2Z2|2D2, which is illustrated in detail in Figure 10.20 for a 16 SQ QAM constellation. Figure
10.21 shows a trellis for the successive coset selection from D-level sets in Figure ?? and also illustrates
an example of the worst-case path for computation of dmin.

The worst case path has distance

dmin =
√

2 + 1 + 2 =
√

5 <
√

8 . (10.75)

The fundamental gain is thus

γf =
d2
min

22r̄C
=

5

22(1/2)
= 2.5 = 4 dB . (10.76)

Essentially, this rate 2/3 code with 8 states, has an extra 1 dB of coding gain. It is possible to yet
further increase the gain to 6dB by using a trellis with more states, as Section 10.4.3 will show.

Recognizing that this trellis is the same that was analyzed in Sections 10.1 and 10.2 or equivalently
reading the generator from the circuit diagram in Figure 10.22,

G(D) =

[
1 0 D2

1+D3

0 1 D
1+D3

]
(10.77)

175

0	
 2	
 4	
 6	

1	
 3	
 5	
 7	

2	
 0	
 6	
 4	

3	
 1	
 7	
 5	

4	
 6	
 0	
 2	

5	
 7	
 1	
 3	

6	
 4	
 2	
 0	

7	
 5	
 3	
 1	

0	
 0	
 0	

0	
 0	
 1	

0	
 1	
 0	

0	
 1	
 1	

1	
 0	
 1	

1	
 1	
 0	

1	
 0	
 0	

1	
 1	
 1	

D	
 	
 	
 I	
 n	
 d	
 e	
 x	
 	
 	
 	
 	
 f	
 o	
 r	
 	
 	
 c	
 o	
 s	
 e	
 t	
 s	
 	
 	
 o	
 f	
 	
 	
 2	
 D	
 2	
 d	
 m	
 i	
 n	
 =	

 2	
 +	

1	
 +	

2	
 =	

 5	
 <	

2	
 2	

2d = 2 + 1 + 2

Figure 10.21: Trellis for 8-state rate 2/3 Trellis Code (γf = 3 dB)

x	
 m	

S	
 i	
 g	
 n	
 a	
 l	
 	
 	
 S	
 e	
 l	
 e	
 c	
 t	
 	

	
 (
 S	
 S	
)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

⊕	

D	
 D	

3	
 -­‐	
 b	
 i	
 t	
 	
 	
 c	
 o	
 s	
 e	
 t	
 	
 	
 s	
 e	
 l	
 e	
 c	
 t	

2	
 -­‐	
 d	
 i	
 m	
 e	
 n	
 s	
 i	
 o	
 n	
 a	
 l	
 	

	
 m	
 o	
 d	
 u	
 l	
 a	
 t	
 i	
 o	
 n	
 	
 	
 v	
 e	
 c	
 t	
 o	
 r	

D	
 ⊕	

 u	
 1	

 u	
 2	

 u	
 3	

 u	
 b	

 v	
 0	

 v	
 1	

 v	
 2	

 Z	

2	
 D	
 2	

 D	
 2	
 2	
 Z	

2	

 2	
 Z	

2	
 2	
 D	
 2	

v	
 3	

v	
 b	

H	
 (
 D	
)	
 =	

 D	
 2	
 D	
 1	
 +	

D	
 3	
 [

]	

Figure 10.22: Encoder for 8-state rate 2/3 trellis code (γf = 4 dB).

176

Since this is a systematic realization,

GsysH
′ = 0 =

[
I hT

] [hT

I

]
, (10.78)

so that the last n− k = 1 column(s) are the rows of the parity matrix, or

H(D) = [h 1] . (10.79)

In the case of the code in question (after clearing the denominator),

H(D) =
[
D2 D 1 +D3

]
. (10.80)

With trellis codes of rate k/k + 1, the extra bit is named v0 instead of vk+1. A variant of the code in
Figure 10.22 is used in the voiceband modem standards v.32 and v.32bis.

10.4.3 Code Design in One and Two Dimensions

Previous sections specifically studied two 2-dimensional trellis codes in detail: the first being a rate
1/2 4-state code with fundamental gain γf = 3 dB, and the second being a rate 2/3 8-state code with
γf = 4 dB. There are many yet more powerful (higher γf) codes that have been mainly tabulated by
Ungerboeck and Forney3 that this subsection lists again shortly. There are also codes designed for the
one-dimensional channel, which appear next.

One-Dimensional Trellis Codes

For one dimensional codes to have up to 6 dB of fundamental gain, the designer need only partition
twice, so that Λ′ = Λ(2) to realize a minimum separation between any two parallel transitions that
is 6 dB higher than uncoded one-dimensional PAM. Stated more precisely, the partition chain for the
one-dimensional trellis codes is, with Λ = Z, Z|2Z|4Z. The corresponding minimum distances between
points are dmin(Z) = 1, dmin(2Z) = 2, and dmin(4Z) = 4, respectively, and rG = 1 for the one-
dimensional codes in this chapter. Since rG = 1 implies a doubling of the constellation size |Λ|, with
respect to uncoded transmission, the maximum fundamental gain will be limited to

γf ≤ 16/(22·1) = 6 dB , (10.81)

because the parallel transition separation is never more than d2 = 16. Since G(D) must then be a rate
1/2 code, then G(D) and H(D) are both 1 × 2 matrices. In one-dimensional codes, the actual signal
set Λ is offset to eliminate any nonzero mean, and has equal numbers of positive and negative points, so
that Λ→ Z + 1

2 . d2
min for any such code must be an integer because it is a sum of squared integers.

Table 10.6 lists most of the best-known one-dimensional codes (and was essentially copied from
Forney’s 1988 Coset Codes I paper). Recall that N̄e = Ne is the normalized number of nearest neighbors.
The quantities N̄1 and N̄2 are the numbers of next-to-nearest neighbors (with squared distance d2 =
d2
min + 1), and next-to-next-to-nearest neighbors (with squared distance d2

min + 2). The effective gain
γ̃f is the fundamental gain of the code, reduced by .2dB for each factor of 2 increase in nearest neighbor
over the minimum of 2 nearest neighbors per dimension, which occurs for uncoded PAM transmission.
N̄D is a measure of decoder complexity that will be described in Section 10.4.4. An example of the use
of these tables appears in Subsection 10.4.3.

For more complete understanding of the entries in the one-dimensional coding tables, Table 10.7
summarizes some partitioning results in one-dimension in Table 10.7. The subscript on a partition refers
to the dimension of the underlying coset code, while the superscript refers to the coset index with an
Ungerboeck labeling. The distances in the table correspond to

A0
1 = Z (10.82)

3The author would like to acknowledge help from Nyles Heise of IBM Almaden Research who updated and corrected
some of these tables - Heise’s corrections on the tables of Unberboeck and Forney are included here.

177

2ν h1 h0 d2
min γf (dB) N̄e N̄1 N̄2 N̄3 N̄4 γ̃f N̄D

4 2 5 9 2.25 3.52 4 8 16 32 64 3.32 12
8 04 13 10 2.50 3.98 4 8 16 40 72 3.78 24

16 04 23 11 2.75 4.39 8 8 16 48 80 3.99 48
16 10 23 11 2.75 4.39 4 8 24 48 80 4.19 48
32 10 45 13 3.25 5.12 12 28 56 126 236 4.60 96
64 024 103 14 3.50 5.44 36 0 90 0 420 4.61 192
64 054 161 14 3.50 5.44 8 32 66 84 236 4.94 192

128 126 235 16 4.00 6.02 66 0 256 0 1060 5.01 384
128 160 267 15 3.75 5.74 8 34 100 164 344 5.16 384
128 124 207 14 3.50 5.44 4 8 14 56 136 5.24 384
256 362 515 16 4.00 6.02 2 32 80 132 268 5.47 768
256 370 515 15 3.75 5.74 4 6 40 68 140 5.42 768
512 0342 1017 16 4.00 6.02 2 0 56 0 332 5.51 1536

Table 10.6: One-Dimensional Trellis Codes and Parameters
(Underlined quantities correspond to cases where worst-case performance is caused by large next-to-nearest
neighbor counts.)

A0
1

dmin w.r.t. A0
1 1

Ne w.r.t. A0
1 2

B0
1 B1

1

dmin w.r.t. B0
1 2 1

Ne w.r.t. B0
1 2 2

C0
1 C2

1 C1
1 C3

1

dmin w.r.t. C0
1 4 2 1 1

Ne w.r.t. C0
1 2 2 1 1

Table 10.7: One-Dimensional Partitioning

178

2ν h2 h1 h0 d2
min γf (dB) N̄e N̄1 N̄2 N̄3 N̄4 γ̃f N̄D

4 - 2 5 4 2 3.01 2 16 64 256 1024 3.01 8
8 04 02 11 5 2.5 3.98 8 36 160 714 3144 3.58 32

16 16 04 23 6 3 4.77 28 80 410 1952 8616 4.01 60
32 10 06 41 6 3 4.77 8 52 202 984 4712 4.37 116
32 34 16 45 6 3 4.77 4 64 202 800 4848 4.44 116
64 064 016 101 7 3.5 5.44 28 130 504 2484 12236 4.68 228
64 060 004 143 7 3.5 5.44 24 146 592 2480 12264 4.72 228
64 036 052 115 7 3.5 5.44 20 126 496 2204 10756 4.78 228

128 042 014 203 8 4 6.02 172 0 2950 0 73492 4.74 451
128 056 150 223 8 4 6.02 86 312 1284 6028 29320 4.94 451
128 024 100 245 7 3.5 5.44 4 94 484 1684 8200 4.91 451
128 164 142 263 7 3.5 5.44 4 66 376 1292 6624 5.01 451
256 304 056 401 8 4 6.02 22 152 658 2816 13926 5.23 900
256 370 272 417 8 4 6.02 18 154 612 2736 13182 5.24 900
256 274 162 401 7 3.5 5.44 2 32 124 522 2732 5.22 900
512 0510 0346 1001 8 4 6.02 2 64 350 1530 6768 5.33 1796

Table 10.8: Two-Dimensional Trellis Codes and Parameters
(Underlined quantities correspond to cases where worst-case performance is caused by large next-to-nearest
neighbor counts).

B0
1 = 2Z (10.83)

B1
1 = 2Z + 1 (10.84)

C0
1 = 4Z (10.85)

C1
1 = 4Z + 1 (10.86)

C2
1 = 4Z + 2 (10.87)

C3
1 = 4Z + 3 . (10.88)

Two-Dimensional Codes

Two-dimensional codes use 3-level partitioning4, so that Λ′ = Λ(3) to realize a minimum separation
between any two parallel transitions that is 6dB higher than uncoded two-dimensional QAM. Stated
more precisely, the partition chain for the two-dimensional trellis codes of interest is, with Λ = Z2,
Z2|D2|2Z2|2D2. The corresponding minimum distances between points are dmin(Z2) = 1, dmin(D2) =√

2, dmin(2Z2) = 2, and dmin(2D2) = 2
√

2 respectively, and rG = 1 for the two-dimensional codes
presented here. Since rG = 1 implies a doubling of the two-dimensional constellation size |Λ|, with
respect to uncoded transmission, the maximum fundamental gain will be limited to

γf ≤ 8/2 = 6dB . (10.89)

Since G(D) must then be a rate 2/3 code, then G(D) is a 2×3 matrix and H(D) is a 1×3 matrix, making
H(D) the more compact description. In the two-dimensional codes, the actual signal set Λ is offset to
eliminate any nonzero mean, and has equal numbers of points in each quadrant, so that Λ→ Z2 +[1

2 ,
1
2].

d2
min for any code must be an integer because it is a sum of integers.

Table 10.8 lists most of the best-known two-dimensional codes (and was also essentially copied from
Forney’s Coset Codes I paper). Recall that N̄e is the normalized number of nearest neighbors. The
quantities N̄1 and N̄2 mean the same thing they did for the one-dimensional codes, allowing comparisons
on a per-dimensional basis between one and two dimensional codes.

For more complete understanding of the entries in the two-dimensional coding tables, Table 10.9
summarizes some partitioning results in two-dimensions. The subscript on a partition refers to the

4With the only exception being the 4-state 3dB code that was already studied

179

A0
2

dmin w.r.t. A0
2 1

Ne w.r.t. A0
2 4

B0
2 B1

2

dmin w.r.t. B0
2

√
2 1

Ne w.r.t. B0
2 4 4

C0
2 C2

2 C1
2 C3

2

dmin w.r.t. C0
2 2

√
2 1 1

Ne w.r.t. C0
2 4 4 2 2

D0
2 D2

2 D1
2 D3

2

dmin w.r.t. D0
2

√
8
√

2 1 1
Ne w.r.t. D0

2 4 2 1 1

D4
2 D6

2 D5
2 D7

2

dmin w.r.t. D0
2 2

√
2 1 1

Ne w.r.t. D0
2 4 2 1 1

Table 10.9: Two-Dimensional Partitioning

dimension of the underlying coset code, while the superscript refers to the coset index with an Ungerboeck
labeling. The distances in the table correspond to

A0
2 = Z2 (10.90)

B0
2 = RZ2 (10.91)

B1
2 = RZ2 + [1, 0] (10.92)

C0
2 = 2Z2 (10.93)

C1
2 = 2Z2 + [1, 0] (10.94)

C2
2 = 2Z2 + [1, 1] (10.95)

C3
2 = 2Z2 + [0, 1] = 2Z2 + [2, 1] (10.96)

D0
2 = 2RZ2 (10.97)

D1
2 = 2RZ2 + [1, 0] (10.98)

D2
2 = 2RZ2 + [1,−1] (10.99)

D3
2 = 2RZ2 + [2,−1] (10.100)

D4
2 = 2RZ2 + [0,−2] (10.101)

D5
2 = 2RZ2 + [1,−2] (10.102)

D6
2 = 2RZ2 + [1,−3] (10.103)

D7
2 = 2RZ2 + [0, 1] = 2RZ2 + [2,−3] . (10.104)

Phase-Shift Keying Codes

Although, PSK codes fall properly outside the domain of coset codes as considered here - gains can be
computed and codes found for two cases of most practical interest. Namely 4PSK/8PSK systems and
8PSK/16PSK systems. The corresponding code tables are illustrated in Tables 10.10 and 10.11. Parti-
tioning proceeds as in one-dimension, except that dimension is wrapped around a circle of circumference
2b+1.

All PSK trellis codes have their gain specified with respect to the uncoded circular constellation -
that is with respect to QPSK for b = 2 or to 8PSK for b = 3.

180

2ν h2 h1 h0 γ (dB) N̄e N̄1 N̄2 γ̃
4 - 2 5 2 3.01 .5 ? ? 3.41
8 04 02 11 2.291 3.60 2 ? ? 3.80

16 16 04 23 2.588 4.13 1.15 ? ? 4.29
32 34 16 45 2.877 4.59 2 ? ? 4.59
64 066 030 103 3.170 5.01 2.5 ? ? 4.95

128 122 054 277 3.289 5.17 .25 ? ? 5.67?
256 130 072 435 3.758 5.75 .75 ? ? 6.03?

Table 10.10: 4PSK/8PSK Trellis Codes and Parameters
(Effective gains are suspect, as next-to-nearest neighbor counts are not presently available.)

2ν h2 h1 h0 γ (dB) N̄e N̄1 N̄2 γ̃
4 – 2 5 2.259 3.54 2 ? ? 3.54
8 – 04 13 2.518 4.01 2 ? ? 4.01

16 – 04 23 2.780 4.44 4 ? ? 4.24
32 – 10 45 3.258 5.13 4 ? ? 4.93
64 – 024 103 3.412 5.33 1 ? ? 5.53?

128 – 024 203 3.412 5.33 1 ? ? 5.53?
256 374 176 427 3.556 5.51 4 ? ? 5.31?

Table 10.11: 8PSK/16PSK Trellis Codes and Parameters
Effective gains are suspect, as next-to-nearest neighbor counts are not presently available.

Design Examples

This subsection presents two design examples to illustrate the use of Tables 10.6 and 10.8.

EXAMPLE 10.4.1 (32CR Improved by 4.5dB) A data transmission system transmits
5 bits/2D-symbol over an AWGN channel with channel SNR=19.5dB. This SNR is only
sufficient, using 32CR QAM, to achieve a probability of error

Pe = 4

(
1− 1√

2 · 32

)
Q

[√
3SNR

(31/32)32− 1

]
≈ 4Q(2.985) ≈ .0016 , (10.105)

which is (usually) insufficient for reliable data transmission. An error rate of approximately
10−6 is desired. To get this improved error rate, the applied code needs to increase the
SNR in (10.105) by approximately 4.5dB. Before using the tables, the designer computes the
shaping gain (or loss) from doubling the signal set size from 32CR to 64SQ (presuming no
more clever signal constellation with 64 points is desirable for this example) as

γs(32CR) = 10 log10

(
1 · (25 − 1)

12 · (5/2)

)
= .14dB (10.106)

and

γs(64QAM) = 10 log10

(
2 · (25 − 1)

12 · (10.5/2)

)
= −0.07dB , (10.107)

thus the design loses .21dB in going to the 64SQ QAM constellation for trellis coding with
respect to the 32CR QAM. This is because 32CR QAM is closer to a circular boundary than
is 64 SQ QAM.

181

⊕	

D D

u 1

x m
S	
 i	
 g	
 n	
 a	
 l	
 	
 	
 S	
 e	
 l	
 e	
 c	
 t	
 	

	
 (
 S	
 S	
)	

2	
 -­‐	
 d	
 i	
 m	
 e	
 n	
 s	
 i	
 o	
 n	
 a	
 l	
 	

	
 m	
 o	
 d	
 u	
 l	
 a	
 t	
 i	
 o	
 n	
 	
 	
 v	
 e	
 c	
 t	
 o	
 r	

u 2

u 3

v 0

v 1

D ⊕	

v 2

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Z 2 |	
 D 2	

D 2 |	
 2 Z 2

2 Z 2 |	
 2 D 2

D D ⊕	

 ⊕	

 D ⊕	

 ⊕	

 ⊕	

u 4

u 5
v 5

v 4

v 3

H = D 4 +D3 +D2 +D D5 +D3 +D D6 +D3 +D2 +1!
"#

$
%&

Figure 10.23: Circuit for 64QAM code with 4.57dB gain.

Table 10.8 contains two 64-state codes that achieve an effective coding gain of at least 4.72dB.
Since the 2 satisfactory codes listed have the same complexity, a better choice is the last,
which has effective gain 4.78dB. Taking the shaping gain penalty gain, the full gain of this
code with respect to 32CR is 4.78-.21 = 4.57 dB, and the error probability is then

Pe ≈ 4Q

[√
3(SNR + 4.57dB)

(31/32)32− 1

]
≈ 4Q(5.05) ≈ 9× 10−7 , (10.108)

which is below the desired 10−6. From the table, h2 = 036, h1 = 052, and h0 = 115, so that

H =
[
D4 +D3 +D2 +D D5 +D3 +D D6 +D3 +D2 + 1

]
(10.109)

or equivalently in systematic form

H =

[
D4 +D3 +D2 +D

D6 +D3 +D2 + 1

D5 +D3 +D

D6 +D3 +D2 + 1
1

]
. (10.110)

(Recall that GH∗ = 0, so that G = [I h∗] when H = [h 1].) The circuit for implementation of
this code, in systematic form, is illustrated in Figure 10.23 and a labeled (using Ungerboeck
labeling) 64QAM constellation for the code is shown in Figure 10.24.

The second example uses a 1-dimensional code in conjunction with the 1+.9D channel that was
studied extensively in EE379A. For this system, given developments in this text to this point, the best
means of applying trellis coding is to use a decision feedback equalizer (infinite length) to eliminate ISI,
and for which our mean-square error sequence will be white (but not necessarily Gaussian, which this
text’s analysis will assume anyway).

EXAMPLE 10.4.2 (1 + .9D−1 Revisited for Code Concatenation) From previous study
of this example in earlier chapters, the SNR for the MMSE-DFE was 8.4dB on this 1+ .9D−1

channel with SNRmfb = 10dB and 1 bit/T transmission. The corresponding error rate
on such a system would be completely unacceptable in most applications, so improvement
is desirable. A one-dimensional 256-state trellis code from Table 10.6 has effective gain
5.47dB. The shaping gain loss in going from 1bit/T to the 4 levels/T necessary in this code
is easily computed as 4/5=-.97dB. The coding gain for this application would then be 5.47-
.97=4.50dB. The probability of error for the coded system would then be

Pe = 2 ·Q(8.4 + 4.5dB) = 2 ·Q(4.41) = 10−5 . (10.111)

Unfortunately, error propagation in the internal DFE is now more likely, not only because
an uncoded system would have had a high probability of error of about .01, but also because

182

00	
 01	
 04	
 05	

07	
 02	
 03	
 06	

34	
 35	
 20	
 21	

33	
 36	
 27	
 22	

10	
 11	
 14	
 15	

17	
 12	
 13	
 16	

24	
 25	
 30	
 31	

23	
 26	
 37	
 32	

40	
 41	
 44	
 45	

47	
 42	
 43	
 46	

74	
 75	
 60	
 61	

73	
 76	
 67	
 62	

50	
 51	
 54	
 55	

57	
 52	
 53	
 56	

64	
 65	
 70	
 71	

63	
 66	
 77	
 72	

L	
 a	
 b	
 e	
 l	
 s	
 	
 	
 i	
 n	
 	
 	
 o	
 c	
 t	
 a	
 l	
 	
 	
 (
 	
 	
 v	
 5	
 v	
 4	
 v	
 3	
 	
 	
 v	
 2	
 v	
 1	
 v	
 0	
 	
 	
)	

SS	
 CS	

Figure 10.24: Constellation for 64QAM code example with 4.57dB gain.

183

the enlarged constellation from which a DFE would have to make instantaneous decisions
now has more points and smaller symbol-by-symbol-detection distance. A Laroia precoder
here with the enlarged constellation would only lose a few tenths of a dB. The parity matrix
is 1× 2 and can be read from Table 10.6 as

H =
[
D7 +D6 +D5 +D4 +D D8 +D6 +D3 +D2 + 1

]
(10.112)

which corresponds to a systematic G of

Gsys =

[
1

D7 +D6 +D5 +D4 +D

D8 +D6 +D3 +D2 + 1

]
. (10.113)

Decision-Feedback Sequence Estimation

Decision-Feedback Sequence Estimation (DFSE) essentially eliminates error propagation when DFE’s
are used with coset codes. In DFSE, the survivor into each state is used to determine 2ν possible
feedback-section outputs, one for each state. The ISI-subtraction associated with that correct survivor
is then used in computing the branch metric into each state.

10.4.4 Decoder Complexity Measures

The implementation complexity of a trellis or lattice code depends heavily on the details of the applica-
tion. Nevertheless, it is possible to associate with each coset code, a meaningful measure of complexity.
This measure is mainly relative and used for comparing the use of two different codes in the same
application. The measure used in this book is equivalent to one introduced by Forney in 1988.

This measure is computed for a maximum-likelihood (Viterbi for trellis codes) detector and ignores
encoder complexity. The complexity measure counts the number of additions and number of comparisons
that need to be performed in the straightforward implementation of the decoder and adds these two
numbers together. This measure is essentially a count of the number of instruction cycles that are
required to implement the decoder on a programmable signal processor.

Definition 10.4.1 (Decoder Complexity) The quantity ND is called the decoder com-
plexity for a coset code and is defined to be the total number of additions and comparisons
that are needed to implement the decoder in the straightforward maximum-likelihood imple-

mentation. The normalized decoder complexity is N̄D
∆
= ND/N .

In decoding a coset code, the N -dimensional channel output vector y is used to resolve which of the
possible points in each of the cosets used by the code is closest to this received sample y. This step
chooses the parallel transition between states that is more likely than the other such parallel transitions.
Once these parallel transitions (one for each coset) have been chosen, sequence detection (via the Viterbi
algorithm) chooses the sequence of cosets that was most likely.

For one-dimensional coset codes, the resolution of the closet point in each of the 4 cosets is trivial,
and is essentially a truncation of the received vector y, so this operation is not included in ND. Then,
for a rate k/(k + rG) code with 2ν states, the decoder requires 2k adds and 2k − 1 binary comparisons
for each state per received one-dimensional output. This is a total of

ND(one− dimensional) = 2ν
(
2k + 2k − 1

)
= 2ν+k

(
2− 2−k

)
. (10.114)

This computational count is independent of b because it ignores the truncation associated with choosing
among parallel transitions. This also permits the inclusion of ND in the tables of Section 10.4.3, which
do not depend on b.

For two-dimensional codes, the parallel-transition resolution that was trivial in one dimension now
requires one addition for each two-dimensional coset. While table look-up or truncation can be used to
resolve each of the one-dimensional components of the two-dimensional y for every coset, ND includes an
operation for the addition of the component one-dimensional metrics to get the two-dimensional metric.
Since there are 2k+rG cosets in the coset code, then

ND(two− dimensional) = 2ν
(
2k + 2k − 1

)
+ 2k+rG = 2ν+k

(
2− 2−k

)
+ 2k+rG , (10.115)

184

or
N̄D = 2ν+k

(
1− 2−k−1

)
+ 2k+rG−1 . (10.116)

The computation of ND for the higher dimensional codes that is discussed later in this chapter is
similar, except that the resolution of the parallel transitions becomes increasingly important and complex
as the code dimensionality grows.

185

10.5 Multidimensional Trellis Codes

Multidimensional lattices can be combined with trellis coding to get a larger coding gain for a given
complexity, and can also reduce the expansion of the constellation slightly (which may be of importance
if channel nonlinearity is important). This section begins in Section 10.5.1 with a discussion of multi-
dimensional partitioning, before then enumerating 4D and 8D coset codes in Section 10.5.2.

10.5.1 Lattice Codes and Multidimensional Partitioning

Lattice Codes are sometimes construed as coset codes with G a k × (k + rG) constant matrix (or block
code). For the lattices of interest in this chapter, we need not develop the connection with block codes
and instead consider rG = 0 and any redundancy as part of rΛ. For those interested in the strong
connection, see the work by Forney and by Conway and Sloane. Appendix A of this chapter introduces
lattices.

The fundamental gain of a lattice is defined similar to that of a coset code (where the reference
uncoded system is again a ZN lattice)

γf (Λ)
∆
=
d2
min(Λ)

V2/N (Λ)
=
d2
min(Λ)

22r̄Λ
. (10.117)

Multidimensional symbols are often formed by concatenation of lower-dimensional symbols. For in-
stance, a four-dimensional code symbol is often formed from two-dimensional QAM signals as [QAM1
, QAM2], or perhaps from 4 one-dimensional PAM signals. Eight-dimensional symbols are also formed
by concatenation of four two-dimensional symbols or eight one-dimensional symbols, or even two 4-
dimensional symbols. Certain symbols may be allowed to follow other symbols, while certain other
symbols cannot. This section attempts to enumerate and study the most common four and eight dimen-
sional constellation lattices, and in particular their partitioning for trellis code application.

Rectangular Lattice Family

The rectangular lattice in N dimensions is just the lattice ZN , or any coset (translation) thereof. The
volume of such a lattice is

V(ZN) = 1 (10.118)

and the minimum distance is
dmin = 1 (10.119)

leaving a fundamental lattice gain of γf (ZN) = 1 or 0 dB.

Simple Lattice Constructions:
For Example 10.3.2,

D2
∆
= R2Z

2 , (10.120)

V(D2) = 2 and dmin(D2) =
√

2, so that γf (D2) = 0 dB. D2 partitions Z2, and |Z2/D2| = 2 so that

V(D2) = |Z2/D2| · V(Z2) . (10.121)

More generally:

Theorem 10.5.1 (Volume and Partitioning) if a sublattice Λ′ partitions the lattice Λ,
then

V(Λ′) = |Λ/Λ′| · V(Λ) . (10.122)

Proof: Because there are 1
|Λ/Λ′| as many points in Λ′ as in Λ, and the union of fundamental

volumes for all points in a lattice must cover N -dimensional space, then V(Λ′) must be |Λ/Λ′|
times larger. QED.

186

Two successive applications of R2 produce

R2
2 =

[
2 0
0 2

]
, (10.123)

a scaling of the original lattice by a factor of 2, so that dmin increases by 2, and volume (area) increases
by a factor of 4, and γf remains at 0 dB. The resultant lattice is

R2
2Z

2 = R2D2 = 2Z2 . (10.124)

The semi-infinite partition chain is:

Z2/R2Z
2/R2

2Z
2/R3

2Z
2/R4

2Z
2... (10.125)

Z2/D2/2Z
2/2D2/4Z

2/... (10.126)

The two-dimensional partitioning for two-dimensional trellis codes is generated by successive application
of the rotation operator R2.

The concept of the rotation operator can be extended to 4 dimensions by defining

R4
∆
=

[
R2 0
0 R2

]
, (10.127)

and multiplication of a four-dimensional lattice by R4 amounts to applying R2 independently to the
first two coordinates of a four-dimensional lattice and to the last two coordinates of that same lattice to
generate a new four-dimensional set of points. Thus,

R4Z
4 = R2Z

2 ⊗R2Z
2 (10.128)

and that R4Z
4 partitions Z4 four ways, that is |Z4/R4Z

4| = 4.

Z4 = R4Z
4 + {[0000], [0001], [0100], [0101]} . (10.129)

Then,
V(R4Z

4) = |Z4/R4Z
4| · V(Z4) = 4 · 1 = 4 , (10.130)

and that d2
min(R4Z

4) = 2, so that

γf (R4Z
4) =

2

42/4
= 1 (0 dB) . (10.131)

Similarly, R8 is

R8
∆
=

[
R4 0
0 R4

]
. (10.132)

Then, d2
min(R8Z

8) = 2, V(R8Z
8) = 16, and

γf (R8Z
8) =

2

162/8
= 1 (0 dB) . (10.133)

Lemma 10.5.1 (Invariance of fundamental gain to squaring and rotation) The fun-
damental gain of a lattice is invariant under rotation and/or squaring.

Proof: The rotation operation increases volume by 2N/2 and squared minimum distance
by 2, thus γf (RΛ) = 2/{2[(N/2)(2/N)]}γf (Λ) = γf (Λ). The squaring operation squares the
volume and doubles the dimensionality, but does not alter the minimum distance, thus γf (Λ)
is not altered. QED.

187

R
2
Z 2 R

2
Z 2

R
2
Z 2 + 0 1!

"#
$
%&

R
2
Z 2 + 0 1!

"#
$
%&

Figure 10.25: Trellis for the D4 lattice.

D - Lattice Family

The lattice D2 = R2Z
2 is a rotated (and scaled) version of the Z2 lattice. It partitions Z2 into two sets,

D2 and D2 + [0, 1], that is

Z2 = D2

⋃
(D2 + [0, 1]) (10.134)

In four dimensions, that R4Z
4 partitions Z4 into 4 sets – the D4 lattice partitions Z4 into two sets.

This lattice is sometimes called the “Schlafi Lattice”:

D4
∆
= R4Z

4
⋃(

R4Z
4 + [0, 1, 0, 1]

)
(10.135)

=
(
R2Z

2 ⊗R2Z
2
)⋃(

(R2Z
2 + [0, 1])⊗ (R2Z

2 + [0, 1])
)

, (10.136)

which can be identified as all those points in Z4 that have even squared norms. Thus, D4 partitions Z4

into two sets of points (evens and odds). For D4, d2
min(D4) = 2 and V(D4) = 2, so that

γf (D4) =
2

22/4
=
√

2 = 1.5 dB . (10.137)

Equation (10.137) relates that the D4 lattice is better in terms of packing points per unit volume than
the rectangular lattice family by a factor of 1.5 dB. In fact, D4 is the best such lattice in four dimensions.

The D4 lattice is a simple coset code or lattice code that can be described by a trellis that starts and
ends with a single state, but which has two states in the middle as shown in Figure 10.25. The Viterbi
Algorithm for MLSD can be applied to the trellis in Figure 10.25 to decode the D4 lattice in the same
way that the Viterbi Algorithm is used for trellis codes.

In eight dimensions, R8Z
8 partitions Z8 into 16 cosets of R8Z

8 so that

|Z8/R8Z
8| = 16 . (10.138)

Also since
∣∣Z4/D4

∣∣ = 2, then

|Z8/(D4)2| = 4 . (10.139)

A binary partition (of order 2) is desirable:

D8
∆
= (D4 ⊗D4)

⋃
((D4 + [0, 0, 0, 1])⊗ (D4 + [0, 0, 0, 1])) , (10.140)

188

D 4 D 4

+	
 D 4 0 0 0 1 +	
 D 4 0 0 0 1

R 2 Z 2

R 2 Z 2 + [0 1]

R 2 Z 2

R 2 Z 2 + [0 1]

R 2 Z 2 + [0 1]

R 2 Z 2

R 2 Z 2

R 2 Z 2 + [0 1]

R 2 Z 2

R 2 Z 2 R 2 Z 2 + [0 1]

R 2 Z 2 + [0 1]

R 2 Z 2

R 2 Z 2 + [0 1]

R 2 Z 2

R 2 Z 2 + [0 1]

a) . 4 D T r e l l i s f o r D 8

b) . 2 D T r e l l i s f o r D 8

Figure 10.26: Trellis for the D8 lattice.

which is the subset of Z8 of all points with even squared norms. Thus,

Z8 = D8

⋃
(D8 + [0, 0, 0, 0, 0, 0, 0, 1]) . (10.141)

d2
min(D8) = 2 and V(D8) = 2, so that

γf (D8) =
2

22/8
= 2.75 = 2.27 dB . (10.142)

Thus, D8 is somewhat better than D4. Also observe that (D4)2 partitions D8 from (10.140), that
|D8/(D4)2| = 2, and that γf (D2

4) = 1.5 dB, which also follows from Lemma 10.5.1
A trellis similar to that in Figure 10.25 can be drawn for the D8 lattice as shown in Figure 10.26.

Each of the D4 trellises in Figure 10.26 can be replaced by D4 trellises leading to the more informative
2-dimensional trellis for D8 in Figure 10.26. Again, the Viterbi algorithm can decode the D8 lattice
using these trellises.

The DE8 Lattice

The DE8 lattice is defined by

DE8
∆
= (R4Z

4)2
⋃(

(R4Z
4)2 + [0, 1, 0, 1, 0, 1, 0, 1]

)
(10.143)

= R8Z
8
⋃(

R8Z
8 + [0, 1, 0, 1, 0, 1, 0, 1]

)
(10.144)

189

DE8 partitions (D4)2 into two groups by

(D4)2 =
[(
R4Z

4
)⋃(

R4Z
4 + [0, 1, 0, 1]

)]2
=

(
R4Z

4
)2⋃(

R4Z
4 + [0, 1, 0, 1]

)2⋃(
R4Z

4 ⊗ (R4Z
4 + [0, 1, 0, 1])

)⋃(
(R4Z

4 + [0, 1, 0, 1])⊗R4Z
4
)

= DE8

⋃
(DE8 + [0, 1, 0, 1, 0, 0, 0, 0]) . (10.145)

The last step notes that with respect to the R4Z
4 lattice, adding [0,2,0,2] is equivalent to adding [0,0,0,0].

d2
min(DE8) = 2 and V(DE8) = 8, so that

γf (DE8) =
2

82/8
= 2.25 = .73 dB . (10.146)

So far, previous results have established the partition chain

Z8/D8/D
2
4/DE8 (10.147)

with a factor of 2 increase in lattice fundamental volume at each step in the partitioning. One is
tempted to complete the chain by partitioning again into R8Z

8, which would be a valid partition. The
next subsection shows another partition into a much better 8 dimensional lattice.

The trellis diagram for the DE8 lattice is trivial and left to the reader as an exercise.

The Gosset (E8) Lattice

The Gosset or E8 Lattice is the most dense lattice in 8 dimensions. It is defined by

E8
∆
= R8D8

⋃
(R8D8 + [0, 1, 0, 1, 0, 1, 0, 1]) . (10.148)

All norms of points in E8 are integer multiples of 4. Since rotation by RN increases distance by a factor
of
√

2, inspection of the coset leader in the second term of (10.148) leads to

d2
min(E8) = 4 (10.149)

Further, |E8/R8D8| = 2, so that

V(E8) =
1

2
V(R8D8) =

1

2
16 · 2 = 16 . (10.150)

Then,

γf (E8) =
4

162/8
= 2 (3 dB) . (10.151)

A simple trellis in terms of the 4 dimensional constituents appears in Figure 10.27, where the Cartesian
product decomposition for D8 in Equation (10.140) has been used along with the fact that rotation
by R8 is the same as rotating each four-dimensional constituent by R4. A two-dimensional trellis is
then constructed by drawing the 2D trellises for D4 wherever they appear in Figure 10.27. This two-
dimensional trellis appears in Figure 10.28.

The assumption that E8 partitions DE8 is justified by taking

Z8 = D8

⋃
(D8 + [0, 0, 0, 0, 0, 0, 0, 1]) (10.152)

and premultiplying by R8

R8Z
8 = R8D8

⋃
(R8D8 + [0, 0, 0, 0, 0, 0, 1,−1]) , (10.153)

making (10.144) the same as

DE8 = R8D8

⋃
(R8D8 + [0, 0, 0, 0, 0, 0, 1,−1]) (10.154)⋃

(R8D8 + [0, 1, 0, 1, 0, 1, 0, 1])
⋃

(R8D8 + [0, 1, 0, 1, 0, 1, 1, 0]) (10.155)

= E8

⋃
(E8 + [0, 0, 0, 0, 0, 0, 1,−1]) . (10.156)

Thus, E8 partitions DE8 and |DE8/E8| = 2.

190

R	
 4	
 D	
 4	
 +
	
 0	
 	
 	
 0	
 	
 	
 1

	
 	
 	
 -­‐	
 1	

R	
 4	
 D	
 4	
 R	
 4	
 D	
 4	

R	
 4	
 D	
 4	
 +
	
 0	
 	
 	
 1	
 	
 	
 0

	
 	
 	
 1	

R	
 4	
 D	
 4	
 +	
 0	
 	
 	
 0	
 	
 	
 1	
 	
 	
 -­‐	
 1	

R	
 4	
 D	
 4	
 +	
 0	
 	
 	
 1	
 	
 	
 0	
 	
 	
 1	

Figure 10.27: 4D Trellis for the E8 lattice.

vi d2
min(Λ) V(Λ) γf (Λ) dB

– Z4 1 1 0
v0 D4 2 2 1.5
v1 R4Z

4 2 4 0
v2 R4D4 4 8 1.5
v3 2Z4 4 16 0
v4 2D4 8 32 1.5

Table 10.12: Four-dimensional partition tower and lattice parameters.

4 and 8 Dimensional Partition Chains

The previous subsections established the four-dimensional partition chain

Z4/D4/R4Z
4/R4D4/2Z

4/2D4/... (10.157)

and the eight-dimensional partition chain

Z8/D8/D
2
4/DE8/E8/R8D8/(R4D4)2/R8DE8/R8E8/... (10.158)

These partition chains are summarized in the partition towers and accompanying tables in Tables 10.12
and 10.13. These partitionings are also used extensively in four- and eight-dimensional trellis codes,
as discussed in the next section. Figure 10.29 is a partition tree showing the specific labels for a four-
dimensional partitioning with Ungerboeck labeling. Each of the cosets of the original constellation in
Figure 10.29 can be written as (possibly unions of) Cartesian products of two-dimensional cosets in the
partitioning of the Z2 lattice. This section lists those Cartesian products for reference:

A0
4 = A0

2 ⊗A0
2 (10.159)

B0
4 =

(
B0

2 ⊗B0
2

)⋃(
B1

2 ⊗B1
2

)
(10.160)

191

2	
 Z	
 2	

2	
 Z	
 2	
 2	
 Z	
 2	

2	
 Z	
 2	

2	
 Z	
 2	
 2	
 Z	
 2	

2	
 Z	
 2	
 +	

 0	
 ,	
 1	
 [

]	

 2	
 Z	
 2	
 +	

 0	
 ,	
 1	
 [

]	

2	
 Z	
 2	
 +	

 0	
 ,	
 1	
 [

]	

2	
 Z	
 2	
 +	

 0	
 ,	
 1	
 [

]	

Figure 10.28: 2D Trellis for the E8 lattice.

vi d2
min(Λ) V(Λ) γf (Λ) dB

– Z8 1 1 0
v0 D8 2 2 2.27
v1 (D4)2 2 4 1.5
v2 DE8 2 8 .73
v3 E8 4 16 3
v4 R8D8 4 32 2.27
v5 R8(D4)2 4 64 1.5
v6 R8DE8 4 128 .73
v7 R8E8 8 256 3

Table 10.13: Eight-Dimensional Partition Tower and Lattice Parameters

192

	
 A4
0

 B4
0 B4

1

B40

B42 B4
1

 B4
3

 C4
0

 C4
4

 C4
2 C4

6
 C4
1

 C4
3

 C4
5

 C4
7

C40

C48
C44 C4

C C4
2

 C4
A

 C4
6

 C4
E

 C4
1

 C4
9

 C4
5

 C4
D

 C4
3

 C4
B

 C4
7

 C4
F

 D4
0

 D4
10

 D4
8

 D4
18 D4

4

 D4
14
D4C

 D4
1C
 D4
2

 D4
12
D4A

 D4
1A
D46

 D4
16
D4E

 D4
1E
D41

 D4
11
D49

 D4
19
 D4
5

 D4
15
D4D

 D4
1D D4

3

 D4
13
D4B

 D4
1B
D47

 D4
17
D4F

 D4
1F

Z 4

D4

RZ 4

RD4

2Z 4

2D4

dmin

2
1

2

2

2

2 2

Figure 10.29: Four-dimensional partition tree with Ungerboeck labeling - indices of C̄ and of D are in
hexadecimal.

B1
4 =

(
B0

2 ⊗B1
2

)⋃(
B1

2 ⊗B0
2

)
(10.161)

B̄0
4 = B0

2 ⊗B0
2 (10.162)

B̄2
4 = B1

2 ⊗B1
2 (10.163)

B̄1
4 = B0

2 ⊗B1
2 (10.164)

B̄3
4 = B1

2 ⊗B0
2 (10.165)

193

C0
4 =

(
C0

2 ⊗ C0
2

)⋃(
C2

2 ⊗ C2
2

)
(10.166)

C4
4 =

(
C0

2 ⊗ C2
2

)⋃(
C2

2 ⊗ C0
2

)
(10.167)

C2
4 =

(
C1

2 ⊗ C1
2

)⋃(
C3

2 ⊗ C3
2

)
(10.168)

C6
4 =

(
C1

2 ⊗ C3
2

)⋃(
C3

2 ⊗ C1
2

)
(10.169)

C1
4 =

(
C0

2 ⊗ C1
2

)⋃(
C2

2 ⊗ C3
2

)
(10.170)

C5
4 =

(
C0

2 ⊗ C3
2

)⋃(
C2

2 ⊗ C1
2

)
(10.171)

C3
4 =

(
C1

2 ⊗ C0
2

)⋃(
C3

2 ⊗ C2
2

)
(10.172)

C7
4 =

(
C1

2 ⊗ C2
2

)⋃(
C3

2 ⊗ C0
2

)
(10.173)

C̄0
4 = C0

2 ⊗ C0
2 (10.174)

C̄8
4 = C2

2 ⊗ C2
2 (10.175)

C̄4
4 = C0

2 ⊗ C2
2 (10.176)

C̄C4 = C2
2 ⊗ C0

2 (10.177)

C̄2
4 = C1

2 ⊗ C1
2 (10.178)

C̄A4 = C3
2 ⊗ C3

2 (10.179)

C̄6
4 = C1

2 ⊗ C3
2 (10.180)

C̄E4 = C3
2 ⊗ C1

2 (10.181)

C̄1
4 = C0

2 ⊗ C1
2 (10.182)

C̄9
4 = C2

2 ⊗ C3
2 (10.183)

C̄5
4 = C0

2 ⊗ C3
2 (10.184)

C̄D4 = C2
2 ⊗ C1

2 (10.185)

C̄3
4 = C1

2 ⊗ C0
2 (10.186)

C̄B4 = C3
2 ⊗ C2

2 (10.187)

C̄7
4 = C1

2 ⊗ C2
2 (10.188)

C̄F4 = C3
2 ⊗ C0

2 (10.189)

194

D0
4 =

(
D0

2 ⊗D0
2

)⋃(
D4

2 ⊗D4
2

)
(10.190)

D10
4 =

(
D0

2 ⊗D4
2

)⋃(
D4

2 ⊗D0
2

)
(10.191)

D8
4 =

(
D2

2 ⊗D2
2

)⋃(
D6

2 ⊗D6
2

)
(10.192)

D18
4 =

(
D2

2 ⊗D6
2

)⋃(
D6

2 ⊗D2
2

)
(10.193)

D4
4 =

(
D0

2 ⊗D2
2

)⋃(
D4

2 ⊗D6
2

)
(10.194)

D14
4 =

(
D0

2 ⊗D6
2

)⋃(
D4

2 ⊗D2
2

)
(10.195)

DC
4 =

(
D2

2 ⊗D0
2

)⋃(
D6

2 ⊗D4
2

)
(10.196)

D1C
4 =

(
D2

2 ⊗D4
2

)⋃(
D6

2 ⊗D0
2

)
(10.197)

D2
4 =

(
D1

2 ⊗D1
2

)⋃(
D5

2 ⊗D5
2

)
(10.198)

D12
4 =

(
D1

2 ⊗D5
2

)⋃(
D5

2 ⊗D1
2

)
(10.199)

DA
4 =

(
D3

2 ⊗D3
2

)⋃(
D7

2 ⊗D7
2

)
(10.200)

D1A
4 =

(
D3

2 ⊗D7
2

)⋃(
D7

2 ⊗D3
2

)
(10.201)

D6
4 =

(
D1

2 ⊗D3
2

)⋃(
D5

2 ⊗D7
2

)
(10.202)

D16
4 =

(
D1

2 ⊗D7
2

)⋃(
D5

2 ⊗D3
2

)
(10.203)

DE
4 =

(
D3

2 ⊗D1
2

)⋃(
D7

2 ⊗D5
2

)
(10.204)

D1E
4 =

(
D3

2 ⊗D5
2

)⋃(
D7

2 ⊗D1
2

)
(10.205)

D1
4 =

(
D0

2 ⊗D1
2

)⋃(
D4

2 ⊗D5
2

)
(10.206)

D11
4 =

(
D0

2 ⊗D5
2

)⋃(
D4

2 ⊗D1
2

)
(10.207)

D9
4 =

(
D2

2 ⊗D3
2

)⋃(
D6

2 ⊗D7
2

)
(10.208)

D19
4 =

(
D2

2 ⊗D7
2

)⋃(
D6

2 ⊗D3
2

)
(10.209)

D5
4 =

(
D0

2 ⊗D3
2

)⋃(
D4

2 ⊗D7
2

)
(10.210)

D15
4 =

(
D0

2 ⊗D7
2

)⋃(
D4

2 ⊗D3
2

)
(10.211)

DD
4 =

(
D2

2 ⊗D1
2

)⋃(
D6

2 ⊗D5
2

)
(10.212)

D1D
4 =

(
D2

2 ⊗D5
2

)⋃(
D6

2 ⊗D1
2

)
(10.213)

D3
4 =

(
D1

2 ⊗D0
2

)⋃(
D5

2 ⊗D4
2

)
(10.214)

D13
4 =

(
D1

2 ⊗D4
2

)⋃(
D5

2 ⊗D0
2

)
(10.215)

DB
4 =

(
D3

2 ⊗D2
2

)⋃(
D7

2 ⊗D6
2

)
(10.216)

D1B
4 =

(
D3

2 ⊗D6
2

)⋃(
D7

2 ⊗D2
2

)
(10.217)

D7
4 =

(
D1

2 ⊗D2
2

)⋃(
D5

2 ⊗D6
2

)
(10.218)

D17
4 =

(
D1

2 ⊗D6
2

)⋃(
D5

2 ⊗D2
2

)
(10.219)

DF
4 =

(
D3

2 ⊗D0
2

)⋃(
D7

2 ⊗D4
2

)
(10.220)

195

D1F
4 =

(
D3

2 ⊗D4
2

)⋃(
D7

2 ⊗D0
2

)
(10.221)

In order to more completely understand the entries in the four-dimensional coding tables, we also
summarize some partitioning results in four-dimensions in Table 10.14.

196

A0
4

dmin w.r.t. A0
4 1

Ne w.r.t. A0
4 8

B0
4 B1

4

dmin w.r.t. B0
4

√
2 1

Ne w.r.t. B0
4 24 8

B̄0
4 B̄2

4 B̄1
4 B̄3

4

dmin w.r.t. B̄0
4

√
2

√
2 1 1

Ne w.r.t. B̄0
4 8 16 4 4

C0
4 C4

4 C2
4 C6

4 C1
4 C5

4 C3
4 C7

4

dmin w.r.t. C0
4 2

√
2

√
2

√
2 1 1 1 1

Ne w.r.t. C0
4 24 8 8 8 2 2 2 2

C̄0
4 C̄4

4 C̄2
4 C̄6

4 C̄1
4 C̄5

4 C̄3
4 C̄7

4

dmin w.r.t. C̄0
4 2

√
2

√
2

√
2 1 1 1

√
3

Ne w.r.t. C̄0
4 8 4 4 4 2 2 2 8

C̄8
4 C̄C4 C̄A4 C̄E4 C̄9

4 C̄D4 C̄B4 C̄F4
dmin w.r.t. C̄0

4 2
√

2
√

2
√

2
√

3
√

3
√

3 1
Ne w.r.t. C̄0

4 16 4 4 4 8 8 8 2

D0
4 D4

4 D2
4 D6

4 D1
4 D5

4 D3
4 D7

4

dmin w.r.t. D0
4 2

√
2

√
2

√
2

√
2 1 1 1

√
3

Ne w.r.t. D0
4 24 2 2 2 1 1 1 4

D8
4 DC

4 DA
4 DE

4 D9
4 DD

4 DB
4 DF

4

dmin w.r.t. D0
4 2

√
2

√
2

√
2

√
3

√
3

√
3 1

Ne w.r.t. D0
4 8 2 2 2 4 4 4 1

D10
4 D14

4 D12
4 D16

4 D11
4 D15

4 D13
4 D17

4

dmin w.r.t. D0
4 2

√
2

√
2

√
2 1 1 1

√
3

Ne w.r.t. D0
4 8 2 2 2 1 1 1 4

D18
4 D1C

4 D1A
4 D1E

4 D19
4 D1D

4 D1B
4 D1F

4

dmin w.r.t. D0
4 2

√
2

√
2

√
2

√
3

√
3

√
3 1

Ne w.r.t. D0
4 8 2 2 2 4 4 4 1

Table 10.14: Four-Dimensional Partitioning

197

dmin

2

1

2

2

2

 A80

 B80 B81

 B8
0 B8

2 B8
1

 B8
3

 C80 C82 C86 C83 C87

 B̃81 B̃80 B̃84 B̃82

 C84

 B̃86

 C81

 B̃85 B̃83 B̃87

 C83 C88 C8C C8A C8E C8D C8B C8F C89

 C80

 C8
0 C8

1

 C̃80 C̃82 C̃83 C̃81

ÝC80

ÝC84
ÝC82

ÝC86
ÝC81

ÝC85
ÝC83

ÝC87

 D80 D88 D84 D82 D8C D8A D86 D8E D81 D89 D85 D8D D83 D8B D87 D8F

2

2

2

2 2

 R8D8

 R8(D4)
2

 R8(DE8)

 R8E8

 E8

 Z8

 D8

 (D4)
2

 DE8

 E8

Figure 10.30: Eight-dimensional partition tree with Ungerboeck labeling.

The subscript on a partition refers to the dimension of the underlying coset code, while the superscript
refers to the coset index with an Ungerboeck labeling.

Figure 10.30 is a partition tree showing the specific labels for a eight-dimensional partitioning with
Ungerboeck labeling. Each of the cosets of the original constellation in Figure 10.30 can be written as
(possibly unions of) Cartesian products of two-dimensional cosets in the partitioning of the Z4 lattice.
Those Cartesian products are (for reference):

A0
8 = A0

4 ⊗A0
4 (10.222)

B0
8 =

(
B0

4 ⊗B0
4

)⋃(
B1

4 ⊗B1
4

)
(10.223)

B1
8 =

(
B0

4 ⊗B1
4

)⋃(
B1

4 ⊗B0
4

)
(10.224)

B̄0
8 = B0

4 ⊗B0
4 (10.225)

B̄2
8 = B1

4 ⊗B1
4 (10.226)

B̄1
8 = B0

4 ⊗B1
4 (10.227)

B̄3
8 = B1

4 ⊗B0
4 (10.228)

B̃0
8 =

(
B̄0

4 ⊗ B̄0
4

)⋃(
B̄2

4 ⊗ B̄2
4

)
(10.229)

B̃4
8 =

(
B̄0

4 ⊗ B̄2
4

)⋃(
B̄2

4 ⊗ B̄0
4

)
(10.230)

B̃2
8 =

(
B̄1

4 ⊗ B̄1
4

)⋃(
B̄3

4 ⊗ B̄3
4

)
(10.231)

B̃6
8 =

(
B̄1

4 ⊗ B̄3
4

)⋃(
B̄3

4 ⊗ B̄1
4

)
(10.232)

B̃1
8 =

(
B̄0

4 ⊗ B̄1
4

)⋃(
B̄2

4 ⊗ B̄3
4

)
(10.233)

B̃5
8 =

(
B̄0

4 ⊗ B̄3
4

)⋃(
B̄2

4 ⊗ B̄1
4

)
(10.234)

198

B̃3
8 =

(
B̄1

4 ⊗ B̄0
4

)⋃(
B̄3

4 ⊗ B̄2
4

)
(10.235)

B̃7
8 =

(
B̄1

4 ⊗ B̄2
4

)⋃(
B̄3

4 ⊗ B̄0
4

)
(10.236)

C0
8 =

(
C0

4 ⊗ C0
4

)⋃(
C4

4 ⊗ C4
4

)⋃(
C2

4 ⊗ C2
4

)⋃(
C6

4 ⊗ C6
4

)
C8

8 =
(
C0

4 ⊗ C4
4

)⋃(
C4

4 ⊗ C0
4

)⋃(
C2

4 ⊗ C6
4

)⋃(
C6

4 ⊗ C2
4

)
C4

8 =
(
C0

4 ⊗ C2
4

)⋃(
C4

4 ⊗ C6
4

)⋃(
C2

4 ⊗ C0
4

)⋃(
C6

4 ⊗ C4
4

)
CC8 =

(
C0

4 ⊗ C6
4

)⋃(
C4

4 ⊗ C2
4

)⋃(
C2

4 ⊗ C4
4

)⋃(
C6

4 ⊗ C0
4

)
C2

8 =
(
C1

4 ⊗ C1
4

)⋃(
C5

4 ⊗ C5
4

)⋃(
C3

4 ⊗ C3
4

)⋃(
C7

4 ⊗ C7
4

)
CA8 =

(
C1

4 ⊗ C5
4

)⋃(
C5

4 ⊗ C1
4

)⋃(
C3

4 ⊗ C7
4

)⋃(
C7

4 ⊗ C3
4

)
C6

8 =
(
C1

4 ⊗ C3
4

)⋃(
C5

4 ⊗ C7
4

)⋃(
C3

4 ⊗ C1
4

)⋃(
C7

4 ⊗ C5
4

)
CE8 =

(
C1

4 ⊗ C7
4

)⋃(
C5

4 ⊗ C3
4

)⋃(
C3

4 ⊗ C5
4

)⋃(
C7

4 ⊗ C1
4

)
C1

8 =
(
C0

4 ⊗ C1
4

)⋃(
C4

4 ⊗ C5
4

)⋃(
C2

4 ⊗ C3
4

)⋃(
C6

4 ⊗ C7
4

)
C9

8 =
(
C0

4 ⊗ C5
4

)⋃(
C4

4 ⊗ C1
4

)⋃(
C2

4 ⊗ C7
4

)⋃(
C6

4 ⊗ C3
4

)
C5

8 =
(
C0

4 ⊗ C3
4

)⋃(
C4

4 ⊗ C7
4

)⋃(
C2

4 ⊗ C1
4

)⋃(
C6

4 ⊗ C5
4

)
CD8 =

(
C0

4 ⊗ C7
4

)⋃(
C4

4 ⊗ C3
4

)⋃(
C2

4 ⊗ C5
4

)⋃(
C6

4 ⊗ C1
4

)
C3

8 =
(
C1

4 ⊗ C0
4

)⋃(
C5

4 ⊗ C4
4

)⋃(
C3

4 ⊗ C2
4

)⋃(
C7

4 ⊗ C6
4

)
CB8 =

(
C1

4 ⊗ C4
4

)⋃(
C5

4 ⊗ C0
4

)⋃(
C3

4 ⊗ C6
4

)⋃(
C7

4 ⊗ C2
4

)
C7

8 =
(
C1

4 ⊗ C2
4

)⋃(
C5

4 ⊗ C6
4

)⋃(
C3

4 ⊗ C0
4

)⋃(
C7

4 ⊗ C4
4

)
CF8 =

(
C1

4 ⊗ C6
4

)⋃(
C5

4 ⊗ C2
4

)⋃(
C3

4 ⊗ C4
4

)⋃(
C7

4 ⊗ C0
4

)
For the reader’s and designer’s assistance, Table 10.15 lists the distances and nearest neighbor counts

for eight-dimensional partitioning

10.5.2 Multidimensional Trellis Codes

This section returns to the coset-code encoder, which is re-illustrated in Figure 10.31. Typically, rG = 1,
although there are a few (mainly impractical) codes for which rG > 1. Thus, signal expansion is over
many dimensions, and thus there is a smaller constellation expansion over any particular dimension.
However, as determined in Section 10.5.1, more levels of partitioning will be necessary to increase
distance on the parallel transitions defined by Λ′ and its cosets to an attractive level. The lower signal
expansion per dimension is probably the most attractive practical feature of multi-dimensional codes.
Constellation expansion makes the coded signals more susceptible to channel nonlinearity and carrier
jitter in QAM. Constellation expansion can also render decision-directed (on a symbol-by-symbol basis)
timing and carrier loops, as well as the decision-feedback equalizer, sub-desirable in their performance
due to increased symbol-by-symbol error rates.

Multidimensional codes can be attractive because the computation required to implement the Viterbi
Detector is distributed over a longer time interval, usually resulting in a slight computational reduction
(only slight, as we shall see that parallel transition resolving in the computation of the branch metrics
becomes more difficult). One particularly troublesome feature of multidimensional trellis codes is, how-
ever, a propensity towards high nearest neighbor counts, with the resultant significant decrease in γf to
γ̃f .

Subsection 10.5.2 introduces a few simple examples of multidimensional trellis codes. Subsection
10.5.2 lists the most popular 4 dimensional codes in tabular form, similar to the tables in Section 10.4.3.
Subsection 10.5.2 lists the most popular 8 dimensional codes.

199

A0
8

dmin w.r.t. A0
8 1

Ne w.r.t. A0
8 16

B0
8 B1

8

dmin w.r.t. B0
8

√
2 1

Ne w.r.t. B0
8 132 16

B̄0
8 B̄2

8 B̄1
8 B̄3

8

dmin w.r.t. B̄0
8

√
2

√
2 1 1

Ne w.r.t. B̄0
8 48 64 8 8

B̃0
8 B̃4

8 B̃2
8 B̃6

8 B̃1
8 B̃5

8 B̃3
8 B̃7

8

dmin w.r.t. B̃0
8

√
2
√

2
√

2
√

2 1 1 1 1

Ne w.r.t. B̃0
8 16 32 32 32 4 4 4 4

C0
8 C4

8 C2
8 C6

8 C1
8 C5

8 C3
8 C7

8

dmin w.r.t. C0
8 2

√
2
√

2
√

2 1 1 1
√

3
Ne w.r.t. C0

8 240 16 16 16 2 2 2 2

C8
8 CC8 CA8 CE8 C9

8 CD8 CB8 CF8
dmin w.r.t. C0

8

√
2
√

2
√

2
√

2 1 1 1 1
Ne w.r.t. C0

8 16 16 16 16 2 2 2 2

Table 10.15: Eight-Dimensional Partitioning

x	

m	

Binary	
 Encoder	

	
 G	

k	
 bits	

b-­‐k	
 bits	

Coset	
 Select	

	
 (CS)	

Signal	
 Select	

	
 (SS)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

k	
 +	
 r	
 G	

bits	

	
 (sequence	
 in	
 C)	

 one	
 of	
 	
 2	
 k	
 +	

r	
 G	
 	
 cosets	
 of	
 	
 Λ	

'	

 Λ	

 Λ	

'	

 one	
 of	
 	
 2	

b	
 +	

r	
 G	
 	
 points	
 in	
 	
 Λ	

Figure 10.31: The coset-code encoder.

200

 B	
 4	

0	
 B	
 4	

2	

 B	
 4	

1	
 B	
 4	

3	

Figure 10.32: Trellis for 2-state, rate 1/2, 4D code.

 C	
 4	

0	
 C	
 4	

2	

 C	
 4	

4	
 C	
 4	

6	

Figure 10.33: Trellis for 2-state, rate 1/2, 4D Code, based on D4.

Multidimensional Trellis Code Examples

EXAMPLE 10.5.1 (2-state, rate 1/2, 4D Code) The code uses Λ = Z4 and Λ′ =
R4Z

4. The two-state trellis is shown in Figure 10.32. The labels for the various subsets
are as indicated in the tables of Section 10.5.1. The minimum distance is given by d2

min = 2,
and r̄C = 0 + 1

4 . Thus, the fundamental gain is

γf =
2

22·1/4 =
√

2 (1.5 dB) . (10.237)

This gain is no better than the D4 gain, which required no states. However, N̄e(D4) = 6,
whereas for this code N̄e = 2, so the effective gain for the D4 lattice code is about 1.2dB,
while it is a full 1.5dB for this 2-state trellis code.

EXAMPLE 10.5.2 (2-state, rate 1/2, 4D Code, based on D4) The code uses Λ =
D4 and Λ′ = R4D4. The two-state trellis is shown in Figure 10.33. The labels for the
various subsets are as indicated on the tables in Section 10.5.1. The minimum distance is
given by d2

min = 4, and r̄C = 1
4 + 1

4 .5 Thus, the fundamental gain is

γf =
4

22·1/2 = 2 (3.01 dB) . (10.238)

This gain is better than the D4 gain, which required no states. However, N̄e = 22 (=
24+8×8

4), so the effective gain is about 2.31 dB for this code.

EXAMPLE 10.5.3 (Wei’s 8-state, rate 2/3, 4D Code) The code uses Λ = Z4 and
Λ′ = R4D4. The 8-state trellis is shown in Figure 10.34. The labels for the various subsets
are as indicated on the tables in Section 10.5.1. The minimum distance is given by d2

min = 4,
and r̄C = 0 + 1

4 . Thus, the fundamental gain is

γf =
4

22·1/4 = 21.5 (4.52 dB) . (10.239)

5Note that r̄Λ = 1/4 for Λ = D4.

201

0246	

1357	

4602	

5713	

2064	

3175	

6420	

7531	

0426	

4062	

2604	

6240	

1537	

5173	

3715	

7351	

000	

001	

010	

011	

101	

110	

100	

111	

 i	
 ←	

C	
 4	

i	

Figure 10.34: Trellis for Wei’s 8-state, rate 2/3, 4D Code (same as 8-state 2 dimensional Ungerboeck
trellis, except branch index of i stands for coset Ci4)

202

0246

1357

2064

3175

4602

5713

6420

7531

2064

3175

0246

1357

6420

7531

4602

5713

	

i←C4

i

Figure 10.35: Trellis for Wei’s 16-state, rate 2/3, 4D code.

This gain is yet better. However, N̄e = 22 (= 24+8×8
4), so the effective gain is about 3.83

dB for this code.

EXAMPLE 10.5.4 (Wei’s 16-state, rate 2/3, 4D Code) The code uses Λ = Z4 and
Λ′ = R4D4. The 16-state trellis is shown in Figure 10.35. The minimum distance is given
by d2

min = 4, and r̄C = 1
4 + 0. Thus, the fundamental gain is

γf =
4

22·1/4 = 21.5 (4.52 dB) . (10.240)

This gain is the same as for 8 states. However, N̄e = 6, so the effective gain is about 4.2
dB for this code, which is better than the 8-state code. This code is the most commonly
found code in systems that do use a 4-dimensional trellis code and has been standardized
as one option in the CCITT V.fast code for 28.8 Kbps (uncompressed) voiceband modems
(with minor modification, see Section 10.7 and also for Asymmetric Digital Subscriber Line
(ADSL) transceivers. There is a 32-state 4-dimensional Wei code with N̄e = 2, so that its
effective gain is the full 4.52dB.

EXAMPLE 10.5.5 (4-state, rate 2/4, 8D Code) The code uses Λ = E8 and Λ′ =
R8E8. The two-state trellis is shown in Figure 10.36. The minimum distance is given by

203

 D 8
0 0 D 8

4 0 D 8
8 0 D 8

C 0

 D 8
1 0 D 8

5 0 D 8
9 0 D 8

D 0

 D 8
2 0 D 8

6 0 D 8
A 0 D 8

E 0

D 8
3 0 D 8

7 0 D 8
B 0 D 8

F 0

Figure 10.36: Trellis for 4-state, rate 2/4, 8D Code

d2
min = 8, and r̄C = 4

8 + 2
8 = .75.6 Thus, the fundamental gain is

γf =
8

22·3/4 = 21.5 (4.52 dB) . (10.241)

This gain is better than for any other 4-state code presented so far. However, N̄e = 126 (=
240+3(16×16)

8), so the effective gain is about 3.32 dB for this code, which is still better than
the 4-state 2-dimensional 3 dB code with effective gain 3.01 dB.

EXAMPLE 10.5.6 (Wei’s 16-state, rate 3/4, 8D Code) The code uses Λ = Z8 and
Λ′ = E8. The 16-state trellis is shown in Figure 10.37. The labels for the various subsets are
as indicated on the tables in Section 10.5.1. The minimum distance is given by d2

min = 4,
and r̄C = 1

8 + 0 = .125. Thus, the fundamental gain is

γf =
4

22·1/8 = 21.75 (5.27 dB) . (10.242)

This gain is better than for any other 16-state code studied. However, N̄e = 158, so the
effective gain is about 3.96 dB. There is a 64-state Wei code that is also γf = 5.27 dB, but
with N̄e = 30, so that γ̃f = 4.49 dB. This 64-state code (actually a differentially phase-
invariant modification of it) is used in some commercial (private-line) 19.2kbps voiceband
modems.

4D Code Table

Table 10.16 is similar to Tables 10.6 and 10.8, except that it is for 4 dimensional codes. Table 10.16 lists
up to rate 4/5 codes. The rate can be inferred from the number of nonzero terms hi in the table. The
design specifies Λ and Λ′ in the 4D case, which also appears in Table 10.16. N̄1 and N̄2 are not shown
for these codes. N̄1 and N̄2 can be safely ignored because an increase in dmin in the tables by 1 or 2
would be very significant and the numbers of nearest neighbors would have to be very large on paths
with d > dmin in order for their performance to dominate the union bound for Pe.

8D Code Table

Table 10.17 is similar to Tables 10.6 and 10.8, except that it is for 8 dimensional codes. Table 10.17 lists
up to rate 4/5 codes. The rate can again be inferred from the number of nonzero terms hi in the table.

6Note that r̄Λ = 4/8 for Λ = E8.

204

0	
 2	
 4	
 6	
 	
 	
 8	
 A	
 C	
 E	

1	
 3	
 5	
 7	
 	
 	
 9	
 B	
 D	
 F	

3	
 1	
 7	
 5	
 	
 	
 B	
 9	
 F	
 D	

2	
 0	
 6	
 4	
 	
 	
 A	
 8	
 E	
 C	

4	
 6	
 0	
 2	
 	
 	
 C	
 E	
 8	
 A	

5	
 7	
 1	
 3	
 	
 	
 D	
 F	
 9	
 B	

6	
 4	
 2	
 0	
 	
 	
 E	
 C	
 A	
 8	

7	
 4	
 3	
 1	
 	
 	
 F	
 D	
 B	
 9	

8	
 A	
 C	
 E	
 	
 	
 0	
 2	
 4	
 6	

9	
 B	
 D	
 F	
 	
 	
 1	
 3	
 5	
 7	

A	
 8	
 E	
 C	
 	
 	
 2	
 0	
 6	
 4	

B	
 9	
 F	
 D	
 	
 	
 3	
 1	
 7	
 5	

D	
 F	
 9	
 B	
 	
 	
 5	
 7	
 1	
 3	

C	
 E	
 8	
 A	
 	
 	
 4	
 6	
 0	
 2	

E	
 C	
 A	
 8	
 	
 	
 6	
 4	
 2	
 0	

F	
 D	
 B	
 9	
 	
 	
 7	
 5	
 3	
 1	

Figure 10.37: Trellis for Wei’s 16-state, rate 3/4, 8D code.

Λ Λ′ 2ν h4 h3 h2 h1 h0 d2
min γf (dB) N̄e γ̃f N̄D

Z4 R4D4 8 – – 02 04 11 4 23/2 4.52 22 3.82 22
D4 2D4 16 – 10 04 02 21 6 3 4.77 88 3.88 76
Z4 R4D4 16 – – 14 02 21 4 23/2 4.52 6 4.20 36
Z4 2Z4 32 – 30 14 02 41 4 23/2 4.52 2 4.52 122
D4 2D4 64 – 050 014 002 121 6 3 4.77 8 4.37 256
Z4 2D4 64 050 030 014 002 101 5 5√

2
5.48 36 4.65 524

Z4 2D4 128 120 050 022 006 203 6 6√
2

6.28 364 4.77 1020

Table 10.16: Four-Dimensional Trellis Codes and Parameters

205

Λ Λ′ 2ν h4 h3 h2 h1 h0 d2
min γf (dB) N̄e γ̃f N̄D

E8 R8E8 8 – 10 04 02 01 8 27/4 5.27 382 3.75 45
E8 R8E8 16 – 10 04 02 21 8 27/4 5.27 158 4.01 60
Z8 E8 16 – 10 04 02 21 4 27/4 5.27 158 4.01 52
E8 2E8 16 r=4/8 -?- -?- -?- -?- 16 4 6.02 510 4.42 342
E8 R8E8 32 – 30 14 02 61 8 27/4 5.27 62 4.28 90
Z8 E8 32 – 10 04 02 41 4 27/4 5.27 62 4.28 82
E8 R8E8 64 – 050 014 002 121 8 27/4 5.27 30 4.49 150
Z8 E8 64 – 050 014 002 121 4 27/4 5.27 30 4.49 142
Z8 R8D8 128 120 044 014 002 101 8 27/4 5.27 14 4.71 516
E8 2E8 256 r=4/8 -?- -?- -?- -?- 16 4 6.02 30 5.24 1272

Table 10.17: Eight-Dimensional Trellis Codes and Parameters

Table 10.17 specifies Λ and Λ′ in the 8D case. N̄1 and N̄2 are also not shown for these codes, although
the author suspects that N̄1 could dominate for the Z8/R8D8 128-state code.

206

10.6 Theory of the Coset Code Implementation

This section investigates the simplification of the implementation of both the encoder and the decoder
for a multidimensional trellis code.

10.6.1 Encoder Simplification

The general coset-code encoder diagram is useful mainly for illustrative purposes. Actual implementa-
tions using such a diagram as a guideline would require excessive memory for the implementation of the
coset select and signal select functions. In practice, the use of two-dimensional constituent subsymbols
in Z2 is possible, even with codes that make use of more dense multidimensional lattices. All the lattices
discussed in this Chapter and used are known as binary lattices, which means that they contain 2ZN

as a sublattice. With such binary lattices, additional partitioning can enlarge the number of cosets so
that 2ZN and its cosets partition the original lattice ZN upon which the constellation was based. The
number of additional binary partitions needed to get from Λ′ to 2ZN is known as the informativity
of Λ′, k(Λ′). This quantity is often normalized to the number of dimensions to get the normalized
informativity of the lattice, κ̄(Λ) = k(Λ′)/N .

The addition of the extra partitioning bits to the coset code’s convolutional encoder and coset se-
lection creates a rate [k + k(Λ′)] / [k + k(Λ′) + rG] convolutional code that selects cosets of 2ZN . These
cosets can then be trivially separated into two-dimensional cosets of 2Z2 (by undoing the concatenation).
These 2D cosets can then can be independently specified by separate (reduced complexity and memory)
two-dimensional signal selects. Wei’s 16-state 4D code and 64-state 8D codes will illustrate this concept
for multidimensional codes.

4D Encoder with rate 2/3, and Z4/R4D4 An example is the encoder for a four-dimensional trellis
code that transmits 10 bits per 4D symbol, or b = 10. The redundant extra bit from G (rG = 1) requires
a signal constellation with 211 points in 4 dimensions. The encoder uses an uncoded constellation that is
the Cartesian product of two 32CR constellations. 32CR is a subset of Z2, and the uncoded constellation
would be a subset of Z4. A desirable implementation keeps the redundancy (extra levels) in the two 2D
constituent sub-symbols as small as practically possible. The extension of 32CR to what is called 48CR
appears in Figure 10.38. 16 new points are added at the lowest 2D energy positions outside the 32CR
to form 48CR. The 32CR points are denoted as “inner” points and the 16 new points are denoted as
“outer” points. The Cartesian product of the two 48CR (a subset of Z4) with deletion of those points
that correspond to (outer, outer) form the coded constellation. This leaves 210 (inner, inner) points, 29

(inner, outer) points, and 29 (outer, inner) points for a total of 210 + 2 · 29 = 210 + 210 = 211 = 2048
points. The probability of an inner point occuring is 3/4, while the probability of an outer is 1/4. The
two-dimensional symbol energy is thus

Ex(two− dimensional) =
3

4
E32CR +

1

4
Eouter = .75(5) + .25(

2 · 12.5 + 12.5 + 14.5

4
) = 7 , (10.243)

so that Ēx = 7/2. The shaping gain for 48CR is then

γs =
22(1/4) · (25 − 1)

12 · (7/2)
=

43.84

42
= 1.0438 = .19 dB . (10.244)

The shaping gain of 32CR has already been computed as .14dB, thus the net gain in shaping is only
about .05dB - however, a nominal deployment of a two-dimensional code would have required 64 points,
leading to more constellation expansion, which might be undesirable. Since the code G is rate 2/3, the
3 output bits of G are used to select one of the 8 four-dimensional cosets, C4,0, ..., C4,7, and the 8
remaining bits would specify which of the parallel transitions in the selected C4,i would be transmitted,
requiring a look-up table with 256 locations for each coset. Since there are 8 such cosets, the decoder
would nominally need 8× 256 = 2048 locations in a look-up table to implement the mapping from bits
to transmitted signal. Each location in the table would contain 4 dimensions of a symbol. The large
memory requirement can be mitigated to a large extent by using the structure illustrated in Figure

207

ϕ	

1	
 .	
 .	
 .	
 .	
 .	
 .	

ϕ	

2	

r	
 i	
 g	
 h	
 t	
 	
 	
 i	
 n	
 n	
 e	
 r	
 	
 	
 p	
 o	
 i	
 n	
 t	
 s	

o	
 u	
 t	
 e	
 r	
 	
 	
 p	
 o	
 i	
 n	
 t	
 s	

l	
 e	
 f	
 t	
 	
 	
 i	
 n	
 n	
 e	
 r	
 	
 	
 p	
 o	
 i	
 n	
 t	
 s	

0!1!

2! 3!

Figure 10.38: 48 Cross constellation.

I	
 n	
 n	
 e	
 r	
 /	
 O	
 u	
 t	
 e	
 r	
 	

	
 l	
 e	
 f	
 t	
 /	
 r	
 i	
 g	
 h	
 t	
 	

	
 S	
 e	
 l	
 e	
 c	
 t	

 v 3 =	

v 3 +	

v 2 ;	
 v 2 =	

 v 1 +	

v 0

 v 1 =	

v 3 ;	
 v 0	
 =	

 v 1

 u 1

 u 2

(
 b	
 i	
 n	
 a	
 r	
 y	
 	
 	
 l	
 o	
 g	
 i	
 c	
)	
 v 3

 v 2

 v 1

 v 0

 v 1

 v 0

2	
 D	
 	
 	
 S	
 i	
 g	
 n	
 a	
 l	
 	

	
 S	
 e	
 l	
 e	
 c	
 t	

4	
 :	
 2	
 	

	
 m	
 u	
 x	

}	
 1	

}	
 2	

1	
 s	
 t	
 /	
 2	
 n	
 d	
 	
 	
 	

	
 s	
 y	
 m	
 b	
 o	
 l	

(
 2	
 D	
 	
 	
 C	
 o	
 s	
 e	
 t	
)	

 v 2

 v 3

 u 3

(
 c	
 o	
 n	
 v	
 o	
 l	
 u	
 t	
 i	
 o	
 n	
 a	
 l	
 	
 	
 e	
 n	
 c	
 o	
 d	
 e	
 r	
)	

(
 r	
 =	
 3	
 /	
 4	
 	
 	
 c	
 o	
 n	
 v	
 o	
 l	
 u	
 t	
 i	
 o	
 n	
 a	
 l	
 	
 	
 e	
 n	
 c	
 o	
 d	
 e	
 r	
)	

4	
 :	
 2	
 	

	
 m	
 u	
 x	

}	
 1	

}	
 2	

1	
 s	
 t	
 /	
 2	
 n	
 d	
 	
 	
 	

	
 s	
 y	
 m	
 b	
 o	
 l	

 u 4

 u 5

 u 6

 s s 1

 s s 0

 s s 2

 s s 3

(
 2	
 D	
 	
 	
 i	
 n	
 /	
 o	
 u	
 t	
)	

4	
 :	
 2	
 	

	
 m	
 u	
 x	

 u 7 u 8 u 9 u 1 0

6	
 4	
 	
 	
 l	
 o	
 c	
 a	
 t	
 i	
 o	
 n	
 s	
 /	
 	
 	
 4	
 8	
 	
 	
 u	
 s	
 e	
 d	

4	
 D	
 	
 	
 s	
 y	
 m	
 b	
 o	
 l	
 	

	
 c	
 o	
 n	
 c	
 a	
 t	
 e	
 n	
 a	
 t	
 i	
 o	
 n	
 x m

(
 8	
 	
 	
 l	
 o	
 c	
 a	
 t	
 i	
 o	
 n	
 s	
)	

H D() = D3 +D2 D D 4 +1!
"#

$
%&

1 2

Figure 10.39: 4D coset-select implementation.

208

Input Bits 1st 2D subsym. 2nd 2D subsym.
u4 u5 u6 ss1 ss0 position ss3 ss2 position
0 0 0 0 0 left-inner 0 0 left-inner
0 0 1 0 0 left-inner 0 1 right-inner
0 1 0 0 0 left-inner 1 0 outer
0 1 1 0 1 right-inner 0 0 left-inner
1 0 0 0 1 right-inner 0 1 right-inner
1 0 1 0 1 right-inner 1 0 outer
1 1 0 1 0 outer 0 0 left-inner
1 1 1 1 0 outer 0 1 right-inner

Table 10.18: Truth Table for 4D inner/outer selection (even b)

10.39. Because of the partitioning structure, each 4D coset of C4,0 can be written as the union of two
Cartesian products, for instance

C0
4 =

(
C0

2 ⊗ C0
2

)⋃(
C2

2 ⊗ C2
2

)
, (10.245)

as in Section 10.5. Bit v3 specifies which of these two Cartesian products
(
C0

2 ⊗ C0
2

)
or
(
C2

2 ⊗ C2
2

)
contains the selected signal. These two Cartesian products are now in the desired form of cosets in 2Z4.
Thus, k(R4D

4) = 1. The four bits v0 ,..., v3 can then be input into binary linear logic to form v̄0 ,..., v̄3.
These four output bits then specify which 2D coset Ci2, i = 0, 1, 2, 3 is used on each of the constituent 2D
subsymbols that are concatenated to form the 4D code symbol. A clock of speed 2/T is used to control
a 4:2 multiplexer that chooses bits v̄0 and v̄1 for the first 2D subsymbol and the bits v̄2 and v̄3 for the
second 2D subsymbol within each symbol period. One can verify that the relations

v̄3 = v2 + v3 (10.246)

v̄2 = v0 + v1 (10.247)

v̄1 = v3 (10.248)

v̄0 = v1 (10.249)

will ensure that 4D coset, Ci4, with i specified by [v2, v1, v0] is correctly translated into the two constituent
2D cosets that comprise that particular 4D coset.

The remaining input bits (u4, ..., u10) then specify points in each of the two subsymbols. The in-
ner/outer/left/right select described in the Table 10.18 takes advantage of the further separation of each
2D coset into 3 equal-sized groups, left-inner, right-inner, and outer as illustrated in Figure 10.39. Note
the left inner and right inner sets are chosen to ensure equal numbers of points from each of the 4 two-
dimensional cosets. The outputs of this (nonlinear) bit map are then also separated into constituent 2D
subsymbols by a multiplexer and the remaining 4 bits (u7, u8, u9, u10) are also so separated. The final
encoder requires only 8 locations for the inner/outer selection and 64 locations (really only 48 are used
because some of the combinations for the ss (signal select) bits do not occur) for the specification of
each constituent subsymbol. This is a total of only 72 locations, significantly less than 2048, and only 2
dimensions of a symbol are stored in each location. The size of the 64-location 2D Signal Select is further
reduced by Wei’s observation that the 4 two-dimensional cosets can be generated by taking any one of
the cosets, and performing sign permutations on the two dimensions within the subsymbol. Further,
by storing an appropriate value (with signs) in a look-table, the necessary point can be generated by
permuting signs according to the two bits being supplied for each 2D subsymbol from the CS function.
Then the 2D signal selection would require only 16 locations, instead of 64. Then, the memory require-
ment would be (with a little extra logic to do the sign changes) 16+8=24 locations. We note b ≥ 6 and
b must be even for this encoder to work (while for b < 6 the encoder is trivial via look-up table with
2b+1 locations). For even b > 6, only the 2D Signal Select changes, and the memory size (using Wei’s

sign method to reduce by a factor of 4) is 4× 2
b−6

2 . For odd b, b+ 1 is even, the constellation is square,
and the inner/outer/left/right partitioning of the constituent 2D subsymbols is unnecessary.

209

ϕ1.

ϕ2

right-upper
inner points

outer points

right-lower
inner points

left-lower
inner points

left-upper
inner points

03

2 1

Figure 10.40: 40 Cross constellation.

8D Encoder with rate 3/4, and Z8/E8 An encoder for b̄ = 2.5 and a 64-state eight-dimensional
trellis code transmits 20 bits per 8D symbol, or b = 20. The redundant extra bit from G (rG = 1) requires
a signal constellation with 221 points in 8 dimensions. The uncoded constellation is the Cartesian product
of four 32CR constellations. Note that 32CR is a subset of Z2, and our uncoded constellation would be a
subset of Z8. A desirable implementation keeps the redundancy (extra levels) in the two 2D constituent
sub-symbols as small as is practically possible. 32CR extends to what is called 40CR and shown in
Figure 10.40. 8 new points are added at the lowest 2D energy positions outside the 32CR to form 40CR.
The 32CR points are denoted as “inner” points and the 8 new points are denoted as “outer” points. The
Cartesian product of the four 40CR (a subset of Z8) with deletion of those points that have more than
one outer point forms the 8-dimensional transmitted signal constellation. This leaves 220 (in, in, in, in)
points, 218 (in, in, in, out) points, 218 (in, in, out, in) points, 218 (in, out, in, in) points, and 218 (out,
in, in, in) points for a total of 220 + 4 · 218 = 220 + 220 = 221 = 2, 097, 152 points. The probability of
an inner point occuring is 7/8, while the probability of an outer is 1/8. The two-dimensional symbol
energy is thus

Ex =
7

8
E32CR +

1

8
Eouter = .875(5) + .125(12.5) = 5.9375 , (10.250)

so that Ēx = 5.9375/2. The shaping gain for 40CR is then

γs =
22(1/8) · (25 − 1)

12 · (5.9375/2)
=

36.8654

35.625
= .15 dB . (10.251)

The shaping gain of 32CR has already been computed as .14dB, thus the net gain in shaping is only
about .01dB - however, a nominal deployment of a two-dimensional code would have required 64 points,
leading to more constellation expansion, which may be undesirable. Since the code G is rate 3/4, the
4 output bits of G are used to select one of the 16 eight-dimensional cosets, C0

8 , ..., CF8 , and the 17
remaining bits would specify which of the parallel transitions in the selected Ci8 would be transmitted,
requiring a look-up table with 217 = 131, 072 8-dimensional locations for each coset. Since there are 16

210

(
 r	
 =	
 3	
 /	
 4	
 	
 	
 c	
 o	
 n	
 v	
 o	
 l	
 u	
 t	
 i	
 o	
 n	
 a	
 l	
 	
 	
 e	
 n	
 c	
 o	
 d	
 e	
 r	
)	

v	
 5	
 =	

 v	
 3	
 +	

 v	
 5	
 ;	
 v	
 4	
 =	

 v	
 2	
 +	

v	
 4	

v	
 3	
 =	

 v	
 0	
 +	

v	
 1	
 ;	
 v	
 2	
 =	

 v	
 5	

v	
 1	
 =	

 v	
 4	
 ;	
 v	
 0	
 =	

 v	
 1	
 +	

v	
 4	

(
 b	
 i	
 n	
 a	
 r	
 y	
 	
 	
 l	
 o	
 g	
 i	
 c	
 	
 	
 -­‐	
 	
 	
 l	
 i	
 n	
 e	
 a	
 r	
)	

(
 r	
 =	
 5	
 /	
 6	
 	
 	
 c	
 o	
 n	
 v	
 o	
 l	
 u	
 t	
 i	
 o	
 n	
 a	
 l	
 	
 	
 e	
 n	
 c	
 o	
 d	
 e	
 r	
)	

 u	
 1	

 u	
 2	

 u	
 3	

 u	
 4	

 u	
 5	

 v	
 0	

 v	
 1	

 v	
 2	

 v	
 3	

 v	
 4	

 v	
 5	

6	
 :	
 3	
 	

	
 m	
 u	
 x	

}	
 1	

}	
 2	

1	
 s	
 t	
 /	
 2	
 n	
 d	
 	

	
 4	
 D	
 	
 	
 s	
 y	
 m	
 b	
 o	
 l	

2	
 :	
 1	
 	

	
 m	
 u	
 x	

 u	
 6	

 u	
 7	

c	
 3	
 =	

 c	
 2	
 +	

c	
 3	
 ;	
 c	
 2	
 =	

 c	
 0	
 +	

 c	
 1	

c	
 1	
 =	

 c	
 3	
 ;	
 c	
 0	
 =	

 c	
 1	

(
 b	
 i	
 n	
 a	
 r	
 y	
 	
 	
 l	
 o	
 g	
 i	
 c	
 	
 	
 -­‐	
 	
 	
 l	
 i	
 n	
 e	
 a	
 r	
)	

 v	
 0	

 v	
 1	

 v	
 2	

 v	
 3	

 v	
 4	

 v	
 5	

 c	
 0	
 c	
 1	
 c	
 2	
 c	
 3	

1	
 s	
 t	
 /	
 2	
 n	
 d	
 /	
 3	
 r	
 d	
 /	
 4	
 t	
 h	
 	

	
 2	
 D	
 	
 	
 s	
 y	
 m	
 b	
 o	
 l	

1	
 {	

2	
 {	

}	
 1	

}	
 2	

}	
 3	

}	
 4	

4	
 :	
 2	
 	

	
 m	
 u	
 x	

1	
 2	
 :	
 3	
 	

	
 m	
 u	
 x	

i	
 n	
 n	
 e	
 r	
 /	
 o	
 u	
 t	
 e	
 r	
 	

	
 l	
 e	
 f	
 t	
 /	
 r	
 i	
 g	
 h	
 t	
 	

	
 u	
 p	
 p	
 e	
 r	
 /	
 l	
 o	
 w	
 e	
 r	
 	

	
 s	
 e	
 l	
 e	
 c	
 t	

(
 5	
 1	
 2	
 	
 	
 l	
 o	
 c	
 a	
 t	
 i	
 o	
 n	
 s	
)	

 u	
 8	

 u	
 9	

 u	
 1	
 0	

 u	
 1	
 1	

 u	
 1	
 2	

 u	
 1	
 3	

 u	
 1	
 4	

 u	
 1	
 5	

 u	
 1	
 6	

 s	
 s	
 0	

 s	
 s	
 1	

 s	
 s	
 2	

 s	
 s	
 3	

 s	
 s	
 4	

 s	
 s	
 5	

 s	
 s	
 6	

 s	
 s	
 7	

 s	
 s	
 8	

 s	
 s	
 9	

 s	
 s	
 1	
 0	

 s	
 s	
 1	
 1	

2	
 D	
 	
 	
 S	
 i	
 g	
 n	
 a	
 l	
 	
 	
 S	
 e	
 l	
 e	
 c	
 t	

4	
 :	
 1	
 	
 	
 m	
 u	
 x	

 u	
 1	
 7	
 u	
 1	
 8	
 u	
 1	
 9	
 u	
 2	
 0	

1	
 s	
 t	
 /	
 2	
 n	
 d	
 /	
 3	
 r	
 d	
 /	
 4	
 t	
 h	
 	

	
 2	
 D	
 	
 	
 s	
 y	
 m	
 b	
 o	
 l	

(
 6	
 4	
 	
 	
 l	
 o	
 c	
 a	
 t	
 i	
 o	
 n	
 s	
 ;	
 	
 	
 4	
 0	
 	
 	
 a	
 r	
 e	
 	
 	
 u	
 s	
 e	
 d	
)	

8	
 D	
 	
 	
 S	
 i	
 g	
 n	
 a	
 l	
 	
 	
 C	
 o	
 n	
 c	
 a	
 t	
 e	
 n	
 a	
 t	
 i	
 o	
 n	

 x	
 m	

 c	
 3	

 c	
 2	

 c	
 1	

 c	
 0	

H D() = D5 +D3 D3 +D2 D D6 +D 4 +1!
"#

$
%&

Figure 10.41: 8D Coset Select Implementation

ss2 ss1 ss0 position
0 0 0 left-top-inner
0 0 1 left-bottom-inner
0 1 0 right-top-inner
0 1 1 right-bottom-inner
1 0 0 outer

Table 10.19: Truth Table for inner/outer selection (even b)

such cosets, the encoder would nominally need 2,097,152 8-dimensional locations in a look-up table to
implement the mapping from bits to transmitted signal. The large memory requirement can be mitigated
to a large extent by using the structure illustrated in Figure 10.41. From the partitioning structure,
each 8D coset of C0

8 can be written as the union of four Cartesian products, for instance

C0
8 =

(
C0

4 ⊗ C0
4

)⋃(
C2

4 ⊗ C2
4

)⋃(
C4

4 ⊗ C4
4

)⋃(
C6

4 ⊗ C6
4

)
, (10.252)

and each of these Cartesian products is a R4D4 sublattice coset. Bits u4 and u5 specify which of these
four Cartesian products contains the selected signal. The original convolutional encoder was rate 3/4,
and it now becomes rate 5/6. The six bits v0 ... v5 can then be input into a linear circuit with the
relations illustrated in Figure 10.41 that outputs six new bits in two groups of three bits each. The
first such group selects one of the eight 4D cosets C0

4 ... C7
4 for the first 4D constituent sub-symbol and

the second group does exactly the same thing for the second constituent 4D subsymbol. The encoder
uses two more bits u6 and u7 as inputs to exactly the same type of linear circuit that was used for the
previous four-dimensional code example. We could have redrawn this figure to include u6 and u7 in the
convolutional encoder, so that the overall convolutional encoder would have been rate 7/8. Note that
k(E8) = 4 (u4, u5, u6, and u7). The nine bits u8 ... u16 then are used to specify inner/outer selection
abbreviated by Table 10.19. The 9 output bits of this inner/outer selection follow identical patterns for
the other 2D constituent subsymbols. There are 512 combinations (44 + 4 · 43), prohibiting more than

211

one outer from occuring in any 8D symbol.
The final encoder requires only 512 locations for the “inner/outer/left/right/upper/lower” circuit,

and 64 locations (only 40 actually used) for the specification of each constituent subsymbol. This is a
total of only 552 locations, significantly less than 2,097,152, and each is only two-dimensional. Further
reduction of the size of the 64-location memory occurs by noting that the 4 two-dimensional cosets can
be generated by taking any one of the cosets, and performing sign permutations on the two dimensions
within the subsymbol. Then, the memory requirement would be (with a little extra logic to do the sign
changes) 528 locations.

10.6.2 Decoder Complexity

The straightforward implementation of this maximum likelihood sequence detector for 4D and 8D codes
can be very complex. This is because of the (usually) large number of parallel transitions between any
two pairs of states. In one or two dimensions with (possibly scaled) Z or Z2 lattices, the closest point to
a received signal is found by simple truncation. However, the determination of the closest point within
a set of parallel transitions that fall on a dense 4D or 8D lattice can be more difficult. This subsection
studies such decoding for both the D4 and E8 lattices. A special form of the Viterbi Algorithm can also
readily be used in resolving the closest point within a coset, just as another form of the Viterbi Algorithm
is useful in deciding which sequence of multidimensional cosets is closest to the received sequence.

Decoding the D4 Lattice By definition:

D4 = R4Z
4
⋃(

R4Z
4 + [0, 1, 0, 1]

)
(10.253)

=
(
R2Z

2 ⊗R2Z
2
)⋃(

(R2Z
2 + [0, 1])⊗ (R2Z

2 + [0, 1])
)

, (10.254)

which can be illustrated by the trellis in Figure 10.25. Either of the two paths through the trellis
describes a sequence of two 2D subsymbols which can be concatenated to produce a valid 4D sym-
bol in D4. Similarly, upon receipt of a 4D channel output, the decoder determines which of the
paths through the trellis in Figure 10.25 was closest. This point decoder can use the Viterbi Al-
gorithm to perform this decoding function. In so doing, the following computations are performed:

trellis position subsymbol (1 or 2) adds (or compares)
R2Z

2 1 1 add
R2Z

2 2 1 add
R2Z

2 + [0, 1] 1 1 add
R2Z

2 + [0, 1] 2 1 add
middle states – 2 adds

final state – 1 compare
Total 1 & 2 7 ops

The R4D4 Lattice has essentially the same lattice as shown in Figure 10.42. The complexity for decoding
R4D4 is also the same as in the D4 lattice (7 operations).

To choose a point in each of the 8 cosets of Λ′ = R4D4 in a straightforward manner, the Viterbi
decoding repeats 8 times for each of the 8 cosets of R4D4. This requires 56 operations for the coset
determination alone. However, 32 operations are sufficient: First, the two cosets of D4 partition Z4 into
two parts, as illustrated in Figure 10.43. The 2 dimensional cosets B2,0 and B2,1 for both the first 2D
subsymbol and the second 2D subsymbol are common to both trellises. Once the decoder has selected the
closest point in either of these two cosets (for both first subsymbol and again for the second subsymbol),
it need not repeat that computation for the other trellis. Thus, the decoder needs 7 computations to
decode one of the cosets, but only 3 additional computations (2 adds and 1 compare) to also decode
the second coset, leaving a total of 10 computations (which is less than the 14 that would have been
required had the redundancy in the trellis descriptions for the two cosets not been exploited).

Returning to R4D4, the 8 trellises describing the 8 cosets, Ci4, i = 0, ..., 7, used in a 4D (Z4/R4D4)
trellis code are comprised of 4 2D cosets (C0

2 , C1
2 , C2

2 and C3
2) for both the first 2D subsymbol and

for the second 2D subsymbol. The decoding of these cosets (for both subsymbols) thus requires 8
additions. Then the decoding performs 3 computations (2 adds and 1 compare) for each of the 8 trellises

212

2Z 2 2Z 2

2Z 2 + 1 1!
"#

$
%&

2Z 2 + 1 1!
"#

$
%&

Figure 10.42: Trellis for the R4D4 Lattice

 B	
 4	

0	
 B	
 4	

1	

 B	
 2	

1	

 B	
 2	

1	

 B	
 2	

1	

 B	
 2	

1	

 B	
 2	

0	

 B	
 2	

0	
 B	
 2	

0	

 B	
 2	

0	

Figure 10.43: Trellis for the two cosets of the D4 lattice

213

corresponding to the 8 cosets, requiring an additional 24 computations. Thus, the total computation
required to decode all 8 cosets is 32 computations. Normalized to 1 dimension, there are 8 computations
for all 8 cosets of the D4 lattice.

We can now return to the complexity of decoding the entire coset code. The complexity of decoding
using the Viterbi detector for the trellis code, after parallel transitions have been resolved is

ND(trellis) = 2ν
(
2k adds + 2k − 1 compares

)
. (10.255)

The overall complexity ND(C) is the sum of the complexity of decoding the 2k+rG cosets of Λ′ plus the
complexity of decoding the sequences of multidimensional codewords produced by the trellis code.

EXAMPLE 10.6.1 (Wei’s 16-state 4D code, with r = 2/3) This code is based on the
partition Z4/R4D4 and thus requires 32 operations to decode the 8 sets of parallel transitions.
Also as k = 2 and 2ν = 16, there are 16(4+3) = 112 operations for the remaining 4D sequence
detection. The total complexity is thus 112 + 32 = 144 operations per 4D symbol. Thus
N̄D = 144/4 = 36, which was the corresponding entry in Table 10.16 earlier.

The rest of the N̄D entries in the 4D table are computed in a similar fashion.

10.6.3 Decoding the Gossett (E8) Lattice

The decoding of an E8 lattice is similar to the decoding of the D4 lattice, except that it requires more
computation. It is advantageous to describe the decoding of the 16 cosets of E8 in Z8 in terms of the
easily decoded 2D constituent symbols.

The E8 lattice has decomposition:

E8 = R8D8

⋃
(R8D8 + [0, 1, 0, 1, 0, 1, 0, 1]) (10.256)

= (R4D4)
2
⋃

(R4D4 + [0, 0, 1,−1])
2

(10.257)⋃
(R4D4 + [0, 1, 0, 1])

2
⋃

(R4D4 + [0, 1, 1, 0])
2

, (10.258)

which uses the result
R8D8 = (R4D4)

2
⋃

(R4D4 + [0, 0, 1,−1])
2

. (10.259)

The trellis decomposition of the E8 in terms of 4D subsymbols as described by (10.258) is illustrated in
Figure 10.27. The recognition that the 4D subsymbols in Figure 10.27 can be further decomposed as in
Figure 10.25 leads to Figure 10.28. The coset leader [1,−1] is equivalent to [1, 1] for the “C-level” cosets
in two dimensions, which has been used in Figures 10.27 and 10.28.

The complexity of decoding the E8 lattice requires an addition for each of the 4 cosets of R2D2

for each of the 4 2D subsymbols, leading to 16 additions. Then for each of the (used) 4 cosets of
R4D4, decoding requires an additional (2 adds and 1 compare) leading to 12 computations for each 4D
subsymbol, or 24 total. Finally the 4D trellis in Figure 10.27 requires 4 adds and 3 compares. The total
is then 16+24+7=47 operations.

All 16 cosets of the E8 lattice require 16 additions for the 4 2D C-level partitions, and 48 computations
for both sets (first 4D plus second 4D) of 8 cosets of R4D4 that are used, and finally 16(7)=112 compu-
tations for decoding all sixteen versions of Figure 10.27. This gives a total of ND = 16 + 48 + 112 = 176,
or N̄D = 22.

EXAMPLE 10.6.2 (Wei’s 64-state 8D code, with r = 3/4) This code is based on the
partition Z8/E8 and requires 176 operations to decode the 16 cosets of E8. Also with
k = 3 and 2ν = 64, there are 64(8 + 7) = 960 operations for the remaining 8D sequence
detection. The total complexity is thus 960 + 176 = 1136 operations per 8D symbol. Thus
N̄D = 1136/8 = 142, which was the corresponding entry in Table 10.17 earlier.

10.6.4 Lattice Decoding Table

Table 10.20 is a list of the decoding complexity to find
all the cosets of Λ′ in Λ.

214

Λ Λ′ |Λ/Λ′| ND N̄D
Z2 D2 2 2 1
Z2 2Z2 4 4 2
Z2 2D2 8 8 4
Z2 4Z2 16 16 8

Z4 D4 2 10 2.5
Z4 R4D4 8 32 8
Z4 2D4 32 112 28
Z4 2R4D4 128 416 104
D4 R4D4 4 20 5
D4 2D4 16 64 16
D4 2R4D4 64 224 56

Z8 D8 2 26 3.25
Z8 E8 16 176 22
Z8 R8E8 256 2016 257
Z8 2E8 4096 29504 3688
D8 E8 8 120 15
D8 R8E8 128 1120 140
D8 2E8 2048 15168 1896
E8 R8E8 16 240 30
E8 2E8 256 2240 280

Table 10.20: Lattice Decoding Complexity for all Cosets of Selected Partitions

215

10.7 Shaping Codes

Shaping codes for the AWGN improve shaping gain up to a maximum of 1.53 dB (see also Problems 10.17
and 10.18). Following a review of this limit, this section will proceed to the 3 most popular shaping-code
methods.

The shaping gain of a code is again

γs
∆
=

V
2/N

x̃
Ēx̃
V

2/N

x
Ēx

. (10.260)

Presuming the usual ZN -lattice cubic reference, best shaping gain occurs for a spatially uniform distri-
bution of constellation points within a hypersheric volume7 . For an even number of dimensions N = 2n,
an N -dimensional sphere of radius r is known to have volume

V (sphere) =
πn · r2n

n!
, (10.261)

and energy

Ē(sphere) =
1

2

[
r2

n+ 1

]
. (10.262)

The asymptotic equipartition analysis of Chapter 8 suggests that if the number of dimensions goes to
infinity, so that n→∞, then there is no better situation for overall coding gain and thus for shaping thant
the uniform distribution of equali-size regions throughout the volume. For the AWGN, the marginal
one- (or two-) dimensional input distributions are all Gaussian at capacity and correspond to a uniform
distribution over an infinite number of dimensions.8 Since the coding gain is clearly independent of
region shape, then the shaping gain must be maximum when the overall gain is maximum, which is thus
the uniform-over-hypershere/Gaussian case. Thus, the asymptotic situation provides an upper bound
on shaping gain. The uncoded reference used throughout this text is again

Ēx =
1

12

(
22b̄ − 1

)
(10.263)

V
2/N
x = 22b̄ · 1 . (10.264)

Then, algebraic subsitution of (10.261) -(10.264) into (10.260) leads to the shaping-gain bound

γs ≤
πr2(n!)−

1
n / r2

2(n+1)

12
(
1− 2−2b̄

) =
π

6

(n!)−
1
n · (n+ 1)

1− 2−2b̄
. (10.265)

Table 10.21 evaluates the formula in (10.265) for b → ∞ while Table 10.22 evaulates this formula for
n→∞. With b̄ infinite, and then taking limits as n→∞ for the asymmptotic best case using Stirling’s
approximation (see Problems 10.17 and 10.18),

lim
n→∞

γs ≤ lim
n→∞

π

6
· n+ 1

(n!)
1
n

=
π

6
lim
n→∞

n+ 1
n
e

=
π · e

6
= 1.53 dB . (10.266)

Equation (10.265) provides a shaping-gain bound for any finite b and n, and corresponds to uniform
density of the 2b points with a 2n-dimensional sphere. Equation (10.266) is the overall asymptotically
attainable bound on shaping gain.

7Inspection of (10.260)’s numerator observes that for any given radius, which is directly proportional to the square root

of energy
√

Ēx̃, a sphere has largest volume and thus largest number of points if they can be uniformly situated spatially.
8A simple Gaussian proof sketch: A point component in any dimension can be obtained by linear projection, which has

an infinite number of terms, thus satisfying the central limit theorem in infinite dimensions. Thus all the components’ (or
marginal) distributions are Gaussian. QED.

216

b̄ γs(n→∞)
∞ 1.53 dB
4 1.52 dB
3 1.46 dB
2 1.25 dB
1 0.28 dB
0 0 dB

Table 10.21: Shaping gain limits for an infinite number of dimensions.

n(N) γs(b̄→∞)

1 (2) 0.20 dB
2 (4) 0.46 dB
3 (6) 0.62 dB
4 (8) 0.73 dB

12 (24) 1.10 dB
16 (32) 1.17 dB
24 (48) 1.26 dB
32 (64) 1.31 dB

64 (128) 1.40 dB
100 (200) 1.44 dB
500 (64) 1.50 dB
1000 (2000) 1.52 dB
10000 (20000) 1.53 dB

Table 10.22: Shaping gain limits for an infinite number of constellation points.

217

i=1

i=2

i=3

i=4

i=5

Figure 10.44: Shell Construction Illustration for 32SH (=32CR).

10.7.1 Non-Equiprobable Signaling and Shell Codes

Shell constellations were introduced by former EE379 student Paul Fortier in his PhD dissertation.
They are conceptually straightforward and partition any constellation into shells (or rings). Each
“shell” is a group of constellation points contained on a shell (or circle in 2D) as in Figure 10.44.
Shell (SH)constellations have all points within a group (or shell) at constant energy. These shell groups
are indexed by i = 1, ..., G, and each has energy Ei and contains Mi points. The probability that a
point from group i is selected by an encoder is pi. For the example of Figure 10.44, there are 5 shell
groups with two-dimensional energies (for d = 2) E1 = 2, E2 = 10, E3 = 18, E4 = 26, E5 = 34. Each
contains M1 = 4, M2 = 8, M3 = 4, M4 = 8, and M5 = 8 points respectively. The shells have respective
probabilities p1 = 1/8, p2 = 1/4, p3 = 1/8, p4 = 1/4 and p5 = 1/8 if each point in the constellation is
equally likely to occur. The average energy of this constellation can be easily computed as

Ex =

G∑
i=1

pi · Ei =

[
2

8
+

10

4
+

18

8
+

26

4
+

34

4

]
= 20 , (10.267)

with consequent shaping gain

γs =
(1/6)31 · d2

20
=

31

30
= 0.14 dB . (10.268)

The rectangular-lattice constellation (a coset of 2Z2) in 2D that uses the least energy for 32 points is
32CR=32SH, because it corresponds to using the shells with the least successive energies first.

218

128CR does not have such a least-energy property. A 128SH constellation is more complicated. The
128-point shell constellation 128SH constellation uses 17 shells of energies (number of points) (for d = 2)
of 2 (4), 10 (8), 18 (4), 26 (8), 34 (8), 50 (12), 58 (8), 74 (8), 82 (8), 90 (8), 98 (4) , 106 (8) , 123 (8),
130 (16), 146 (8), 162 (4), and 170 (4 of 16 possible). The 128SH uses the points (±9,±9) that do not
appear in 128CR. The shaping gain of 128SH is .17 dB and is slightly higher than the .14 dB of 128CR.
Problem 10.26 discusses a 64SH constellation (which is clearly not equal to 64SQ).

The number of bits per dimension can approach the entropy per dimension with well-designed input
buffering (and possibly long delay) as in Chapter 8. While a constellation may have a uniform density over
N dimensions, the marginal distribution for one- or two-dimensional constituent subsymbols need not
be uniform. Sometimes this is used in shaping to effect large-dimensional γs with unequal probabilities
in a smaller number of dimensions. The entropy per symbol of any constellation with point probabilities
pij for the jth point in the ith group upper bounds the bits per one-or-two-dimensional, or any finite-
dimensional, symbol

b ≤ H =

G∑
i=1︸︷︷︸

shells

Mi∑
j=1︸︷︷︸

pts in shell

pij log2

(
1

pij

)
. (10.269)

Equation (10.269) holds even when the groups are not shells. When all points are equally likely, b is
simply computed in the usual fashion as

b = H =

G∑
i=1

Mi∑
j=1

1

M
log2 (M) = log2(M) = log2

(∑
i

Mi

)
. (10.270)

When each point within a group has equal probability of occuring (but the group probability is not
necessarily the same for each group as in the 32CR and 128SH examples above), pij = pi

Mi
, the same H

can be written

H =

G∑
i=1

pi
Mi

Mi∑
j=1

log2(
Mi

pi
) =

G∑
i=1

pi log2(
Mi

pi
) , (10.271)

which if bi
∆
= log2(Mi), then becomes

H =

G∑
i=1

pi log2

(
1

pi

)
+

G∑
i=1

pi · bi = H(p) +

G∑
i=1

pi · bi , (10.272)

where H(p) is the entropy of the group probability distribution. good shaping code design would cause
b = H, as is evident later. Equation (10.272) supports the intuition that the over all data rate is the
sum of the data rates for each group plus the entropy of the group probability distribution.

The one-dimensional slices of the constellation should favor points with smaller energy; that is smaller
energies have a higher probability of occurrence. For instance in 32CR, a one-dimensional slice has
p±1 = 12

32 , p±3 = 12
32 , but p±5 = 8

32 . As the dimensionality N → ∞, the enumeration of shells can
be very tedious, but otherwise follows the two-dimensional examples above. Furthermore as N → ∞
the one-dimensional distribution of amplitudes (for large numbers of points) approaches Gaussian9 with
very large amplitudes in any dimension having low probability of occurrence. Such low probability of
occurrence reduces energy of that dimension, thus increases shaping gain. The non-uniform distribution
in a single (or two) dimensions suggests that a succession of two-dimensional constellations viewed as
a shaping-code codeword might have extra points (that is more than 22b̄, as also in trellis codes) with
points in outer shells (or groups) having lower probability than an equally likely 2−2b̄ in one dimension.
For instance, a 32CR constellation might be used with b̄ = 2 < 2.5, but with points in the outer shells at
much lower probability of occurence than points in the inner shell when viewed over a succession of N/2
2D-constellations as one large shaping codeword. Then, the two-dimensional “M” in equation (10.272)

9The result if viewed in terms of 2D constellations is that the 2D complex amplitudes approach a complex Gaussian
distribution.

219

i=1

i=2

i=3

i=4

i=5

i=6

i=7

Figure 10.45: 48SH Constellation (with extra 4 “empty” points for 52SH).

220

is greater than 22b̄, but Equation (10.272) still holds with b directly computed even though pij 6= 1
M , but

pij = pi · 1
Mi

. The number of points in two dimensions is not the
(
N
2

)th
root of the true N -dimensional

M . Indeed,

b = H(p) +

G∑
i=1

pi · log2(Mi) (10.273)

is a good equation to use since it avoids the confusion on M applying to a larger number of dimensions
than 2.

Such was the observation of Calderbank and Ozarow in their Nonequiprobable Signalling (NES).
In NES, A 2D constellation is expanded and viewed as a part of a larger multi-dimensional constellation.
INES chooses outer groups/shells less frequently than inner groups (or less frequently than even Mi

22b̄).
A simple example of nNES was the 48CR constellation used for 4D constellations earlier in this

chapter. In that constellation, the 32 inner two-dimensional points had probability of occurence 3/4
while the 16 outer points had probability only 1/4. While this constellation corresponds also to a 2D
shell constellation (see Figure 10.45), the probabilities of the various groups are not simply computed by
dividing the number of points in each group by 48. Furthermore,the constellation is not a 4D shell, but
does have a higher shaping gain than even the two-dimensional 128SH. In one dimension, the probabilities
of the various levels are

p±1 =
12

32
· 3

4
+

4

16
· 1

4
=

11

32
(10.274)

p±3 =
12

32
· 3

4
+

2

16
· 1

4
=

10

32
(10.275)

p±5 =
8

32
· 3

4
+

4

16
· 1

4
=

8

32
(10.276)

p±7 = 0 +
6

16
· 1

4
=

3

32
. (10.277)

Equations (10.274 -(10.276) illustrate that large points in one dimension have low probability of occur-
rence. This 48CR constellation can be used to transmit 5.5 bits in two dimensions, emphasizing that
25.5 < 48 so that the points are not equally likely. An astute reader might note that 4 of the points in
the outer most 2D shell in Figure 10.45 could have been included with no increase in energy to carry an
additional 1

4 ·
4
16 · 1 = 1

16 bit in two dimensions. The energy of 48CR (and of thus of 52CR) is

Ex =
3

4
20 +

1

4

(
50 · 12 + 58 · 4

16

)
= 28 , (10.278)

leading to a shaping gain of for b = 5.5 of

γs =
(1/6) · 25.5 · 4

28
= .23 dB , (10.279)

and for 52CR’s b = 5.625 of .42 dB. The higher shaping gain of the 52SH simply suggests that sometimes
best spherical approximation occurs with a number of points that essentially covers all the points interior
to a hypersphere and is not usually a nice power of 2.

The 48CR/52CR example is not a shell constellation in 4D, but does provide good shaping gain
relative to 2D because of the different probabilities (3/4 and 1/4) of inner and outer points. Essentially,
48CR/52CR is a 4D shaping method, but uses 2D constellations with unequal probabilities. The four-
dimensional probability of any of the 4D 48SH/52SH points is still uniform and is 2−4b̄. That is, only the
2D component constellations have non-uniform probabilities. Again, for large number of constellation
points and infinite dimensionality, the uniform distribution over a large number of dimensions with an
average energy constraint leads to Gaussian marginal distributions in each of the dimensions.

For the 48CR/52CR or any 4D inner/outer design with an odd number of bits per symbol, Table
10.18 provided a nonlinear binary code with 3 bits in and 4 bits out that essentially maps input bits into
two partitions of the inner group or the outer group. The left-inner and right-inner partitioning of Table
10.18 is convenient for implementation, but the essence of that nonlinear code is the mapping of inputs

221

into a description of “inner” group (call it “0”) and “outer” group (call it “1”). This general description
would like as few 1’s (outers) per codeword as possible, with the codewords being (0,0), (1,0), and (0,1)
but never (1,1). For even numbers of bits in four dimensions, Table 10.18 was not necessary because
there was no attempt to provide shaping gain – in Section 10.6, the interest was coding gain and the use
of inner/outer constellations there was exclusively to handle the “half-bit” constellations, coincidentally
providing shaping gain. However, the concept of the 3 codewords (0,0), (1,0), (0,1) remains if there are
extra points in any 2D constellation beyond 22b̄. The set of 2D constellation points would be divided
into two groups, inner and outer, where the size of the outer group M1 is most easily exactly10 1/2 the
size of the inner group M0 if the probabilities of the groups are to remain 3/4 and 1/4 respecively. This
type of view of course begs the question of generalization of the concept.

Calderbank and Ozarow essentially generalized this “low maximum number of 1’s” concept in an
elegant theory that is simplified here for design. This text calls these “NE” (Non-Equal probability)
codes. NE codes require the partitioning of the constellation into equal numbers of points in each group.
For a binary (nonlinear) code that spans n dimensions11 where no more than m ones occur, the NE
shaping code rate is easily

2b̄ =
1

n
log2


m∑
j=0

(
n
j

) , (10.280)

and the probability of a 0 in any position is given by

p0 =

∑m
j=0

(
n
j

)
· (n− j)

n ·
∑m
j=0

(
n
j

) . (10.281)

The probability of a 1 is then easily p1 = 1 − p0. Such an NE code is labelled Bn,m for “binary” code
with n positions and no more than m of these positions containing 1’s. The 1’s correspond to the outer
group of points in a 2D constellation, while the 0’s correspond to inner points in the same constellation.
Such a binary code then specifies which points are inner or outer. The numerator of the code rate in
(10.280) is unlikely to be an integer, so an efficient implementation of the mapping into codewords may
have to span several successive codewords. Alternatively, the least integer in the numerator can instead

be chosen. For instance, a B12,3 code has 299 codewords and thus rate log2(299)
12 = .6853 and might likely

be rounded down to 8
12 so that 8 bits enter a non-linear memory (look-up table like that of Table 10.18)

while 12 bits leave. In such a code in 12 successive 2D symbols, no more than 3 symbols would be outer
points. The shaping gain of such a code is easily and exactly computed from the p0 in (10.281) as

γs =

1
6

(
22b̄−1

)
· d2

p0 · E0 + (1− p0) · E1
≤ 1.53 dB . (10.282)

Calderbank and Ozarow provide a number of contellation-size independent approximations for various
large block lengths and large numbers of constellation points in their work, but this author has found
that direct calculation of the exact gain is probably more covenient, even though it requires knowledge
of the exact constellation and inner-outer energies.

EXAMPLE 10.7.1 (8D 40CR and 44SH constellation) The 8D 40CR constellation
of Figure 10.40 is also a 40SH constellation in 2D, but is not an 8D shell constellation.
The 4 points (±5,±5) were previously not used, so they are added here to form 44SH, which
is divided into two equal groups of 22 points as shown in Figure 10.46. The nonlinear B4,1

code rate is

2b̄ = (1/4) · log2(1 + 4) =
log2(5)

4
= .5805 . (10.283)

10Please note we’ve re-indexed the groups starting with 0 in this case.
11these dimensions correspond to 2D sub-constellation points in a 2n-dimensional shaping-code symbol or codeword.

222

Figure 10.46: 44SH Constellation.

The probability of an inner point with straightforward use of the B4,1 NE is computed as

p0 =
1 · 4 + 4 · 3
4 · (1 + 4)

=
4

5
, (10.284)

and thus the outer point has probability 1/5. The overall shaping-code rate is then

log2(22) +H(.2) = 4.4594 + .7219 = 5.1814 bits per 2D symbol . (10.285)

The shaping gain requires the two energies, so

E0 =
4 · 2 + 8 · 10 + 4 · 18 + 6 · 26

22
=

316

22
= 14.3636 (10.286)

E1 =
2 · 26 + 8 · 34 + 12 · 50

22
=

872

22
= 39.6364 , (10.287)

and

γs =
(1/6)(25.1814 − 1) · 4

.8 · 14.3636 + .2 · 39.6364
=

23.5243

19.4182
= 1.2115 = .83 dB . (10.288)

This compares favorably with the original use in trellis coding where the shaping gain was
only .15 dB. Table 10.22 has a bound for 8 dimensional shaping that is .7 dB, an apparent
contradiction with the gain in this example. However, those bounds are for infinite numbers of
points in the constellation and do not consider the nuances in detail of specific constellations,
so .8dB (which is still less than the maximum of 1.53 dB, which always holds for any number
of points) is not unreasonable, especially when one considers that a code rate of .5805 would
effectively need to be implemented over a large number of dimensions anyway (thus, the
example could not truly be called “8-dimensional” because the bit-fractioning process itself
can add shaping gain as in Section 10.6’s 40CR example earlier.) Unfortunately, realization
constraints will reduce this shaping gain. For instance, an implementation might choose
nonlinear code rate of b̄ = .5625 = 9/16. Since there are 5 possible codewords ([0000], [1000],
[0100], [0010], [0001]) per symbol, 4 successive codewords would have 54 = 625 possibilities
of which 29 = 512 with the least energy would be used, reducing code rate to 9/16. Of the
625 possibilities, 500 will have a 0 in any particular position and 125 > 113 would have a 1

223

in that same particular position. There are 256 codewords with four 1’s in the orginal code.
113 of these can be deleted. The probability that a 1 is in the same particular position after
deletion would then be .2(113/256)=.0883.

log2(22) +H(.0883) = 4.4594 + .4307 = 4.89bits per 2D symbol . (10.289)

The shaping gain would then be a lower value of

γs =
(1/6)(24.89 − 1) · 4

.9117 · 14.3636 + .0883 · 39.6364
=

19.102

16.5947
= 1.15 = .60 dB , (10.290)

and effectively corresponds to a 32-dimensional realization and is below the bound for both
8 and 32 dimensions. The original 8D trellis coded system by coincidence had .15 dB of
shaping gain simply because the 40CR constellation was closer to a circle than a square.
Interestingly enough, with no increase in energy, that constellation could have transmitted
another 4 points and thus (1/8)(1/2)(1) = 1/16 bit/2D. The shaping gain would thus increase
by (25.25+.0625−1)/(25.25+.0625−1) = 1.0455 = = .19 dB, to become then .15+.19 = .34 dB.
Clearly the earlier system with trellis code is easier to implement in terms of look-up tables,
but NE codes do have a gain as this example illustrates.

The above example illustrates that at least when groups are chosen in cocentric fashion that NE
provides good shaping gain in effectively a few dimensions with reasonable complexity. Calderbank and
Ozarow found some limitation to the use of binary codes. So for large number of constellation points,
they found shaping gains for binary Bn,m codes to be limited to about .9 dB for up to n = 20. An obvious
extension is to use more groups, but then the code is no longer binary. NE codes with 4 cocentric groups
make use of 2 binary codes for the each of the bits in a 4-ary label to the group, so for a concatenation
of two Bm,k codes

0 → 00 (10.291)

1 → 01 (10.292)

2 → 10 (10.293)

3 → 11 (10.294)

The probabilities of the 4 groups are then

p00 → p1 · p2 (10.295)

p01 → (1− p1) · p2 (10.296)

p10 → (1− p2) · p1 (10.297)

p11 → (1− p1) · (1− p2) . (10.298)

Energy and shaping gain then follow exactly as in general with 4 groups contributing to all calculations.
An extra .2 dB for sizes up to n = 20 for a total shaping gain of 1.1 dB was found by Calderbank and
Ozarow for 4 groups.

Essentially, the designer needs to compute exact gain for particular constellations, but generally
Calderbank and Ozarow’s NE codes will provide good shaping gain for reasonable constellation sizes.

10.7.2 Voronoi/Block Shaping

Forney’s Voronoi constellations have shaping boundaries that approximate a hypersphere in a finite
number of dimensions. These boundaries are scaled versions of the decision (or “Voronoi”) regions of
dense lattices. The closeness of the approximation depends on the lattice selected to create the constel-
lation boundary – very good lattices for coding will have decision regions that approach hyperspheres,
and thus can also provide good boundaries for constellation design12. This subsection describes a proce-
dure for encoding and decoding with Voronoi shaping regions and also enumerates the possible shaping

224

2Z

24Zs =Λ

Figure 10.47: Tesselation of two-dimensional space by shaping lattice 4Z2 with constellation based on
Z2 + (1

2 ,
1
2)

gains for some reasonable and common lattice choices. This subsection prepares the reader for the
generalization to trellis shaping in Subsection 10.7.3.

Since nearly all the codes in this chapter (and the next) are based on (cosets of) origin-centered ZN

lattices (usually coded or uncoded sequences of one- or two-dimensional sub-symbols), the objective will
be to cirumscribe such points by the origin-centered larger Voronoi shaping region of some reasonable
scaled-by-power-of-two lattice. The Voronoi shaping regions of such a scaled lattice will tesselate the
N -dimensional space into mutually disjoint regions. Tesselation means that the union of all the Voronoi
regions is the entire space, and so there are no interstial gaps between the Voronois shaping regions.
Points on Voronoi-region boundaries need to be assigned in a consistent way so that each such region
is closed on some of the faces of the Voronoi region and is open on the others. Each such Voronoi
shaping region should essentially “look the same” in terms of the center of the region relative to which
boundaries are open and closed. A two-dimensional example appears in Figure 10.47. Figure 10.47 shows
a Voronoi region of 4Z2, which is a square of side 4. The closed boundaries (solid lines) are the upper
and right-most faces, while the open boundaries (dashed lines) are the lower and left-most faces. Such
two-dimensional squares with closed-open boundaries precisely tesselate two-dimensional space. Each
contains 16 points from Z2 + (1

2 ,
1
2). In general, the number of included points is the ratio of the volume

of the Voronois shaping region to the volume of the underlying constellation lattice’s decision region,
(42/12) = 16 in Figure 10.47.

In general, one-half the boundaries should be closed and one-half should be open. The closed bound-
aries should be a connected set of points (that is any point on the closed part of the boundary can be
connected to any other point on the closecd part of the boundary by passing through other boundary
points that are included in the closed part of the boundary). Thus, the use of top and bottom for the
closed boundaries and left/right for the open boundaries is excluded from consideration. Constellation
points on a closed face of the shaping lattice’s Voronoi region are included, while those on an open face
are not included if such a situation arises (it does not arise in Figure 10.47 because of the coset offset of
(1

2 ,
1
2)). In some cases including the rest of this section, it may be easier to add coset offsets as the last

step of encoding, and so situations of points on boundaries may occur prior to such a last coset-offset

12There are limiting definitions of lattice sequences that do approach hyperspheres and thus capacity, but the practical
interest in such systems is for a smaller number of dimensions like 4, 8, 16, 24, or 32.

225

x ML	
 decode	

Λs	

sx

[]ec E−=

-­‐	

e x~

+	
 s (H-­‐1)*	

torsbinary vec
ldimensiona-

 2
b

b

torsbinary vec
ldimensiona-

 2
N

b

Figure 10.48: Voronoi encoder for a shaping code.

step.
While the concept is easily pictured in two-dimensions, the encoding of points in multiple dimensions

nominally might require a large table-look-up operation as well as a difficult search to find which points
are in/out of the Voronoi region of the selected shaping lattice of size M ·V (ZN). Figure 10.48 provides
a simplified implementation that uses a maximum-likelihood search in the encoder. The ML search (say
implemented by Viterbi algorithm, as for instance for the lattices studied earlier in Section 10.5 of this
chapter) finds that point in the shaping lattice xs that is closest to an input point x in ZN . Any such
closest point has an error that is within the Voronoi/decision region. Thus, the error is transmitted, since
it must be within the desired shaping region. As long as the input constellation points x to such a search
are reasonably and carefully chosen, then the output errors e will be in a one-to-one correspondence
with those input points. Thus as in Figure 10.49, decoding of e by any true ML decoder for x̃− c in a
receiver can be inverted to the corresponding input.

Since the Voronoi regions tesselate the complete space, a square region when 22b̄ is even and a

rectangular region of sides 22b b̄2 c and 22b b̄2 c+1 when 22b̄ is odd, will suffice for x in two dimensions. For
more general M , care must be exercised to ensure that two input vectors do not correspond to the same
error vector e at the ML search output. Such care is the subject of Subsection 10.7.2 below. With such
care, the ML decoder invertibly maps easily generated inputs x into “error” vectors for transmission
in the Voronoi shaping region. Thus, the shaping gain will be that of the Voronoi shaping region,
presumably good because the shaping lattice is well chosen. The volume of the shaping lattice must
be at least M times the volume of the underlying code constellations, typically V (ZN) = 1, making
V (Λs) = M , where M is the number of points in the N -dimensional constellation. The number of these
points may exceed 2b in situations where a code is already in use. However, the shaping is independent of
such coding. Thus, convenience of notation for the rest of this section presumes that b = log2(M) where
M is the number of points in the N -dimensional constellation. So as far as shape-encoding is concerned,
M is simply the total number of points in the constellation including any earlier-introduced redundancy
for coding. The final coset addition for centering (making the mean value zero) the constellation is also
shown in Figure 10.48. The added vector c should be the negative of the mean value of the points in
the constellation corresponding to the values of e.

EXAMPLE 10.7.2 (R2D2 simple shaping) Figure 10.50 illustrates the shaping of 3 bits
in a rectangular pattern on the grid of Z2 into the shape of R2D2. The points with squares
and circles are the original 8 points x in a rectangular pattern that is simple to create.
By tesselating the two-dimensional space with the diamond R2D2 shapes of volume 8 (with
right-sided boundaries included and left-sided boundaries not included), it is clear the original
points do not fit the shape. However, by taking the error of any point with respect to the
center of the closest region, the points map as shown as the dark circles e. Four points

226

ŝML	
 decode	

z2	

c

ênx +~
-­‐	
 Inverse	
 map	

Figure 10.49: Decoding of AWGN with shaping inversion included.

remain in the original positions, but the other 4 move as a result of the ML search and
consequent transmission of the corresponding error vector. A point on a boundary has error
vector with respect to the center of the Voronoi region that has that point on the closed
boundary. There is no shaping gain in this example, but the concept of the mapping into
Voronoi regions is clear. The 8 points in the shaped constellation are darkened. Those points
have characteristics

e point Ēe(i) me(i)

1
2 [±1, ±1] 1

4 [0, 0]

1
2 [3, ±1] 5

4 [3
2 , 0]

1
2 [1, ±3] 5

4 [1
2 , 0]

average 3
4 [1

2 , 0]

Since the constellation after shaping has non-zero mean, energy can be reduced by subtracting
that non-zero mean from all points, so c = −[1

2 , 0]. Then the energy is

Ex =
3

4
− 1

2

{(
1

2

)2

+ 02

}
=

3

4
− 1

8
=

5

8
, (10.299)

which is the same energy as an 8SQ constellation and so has no shaping advantage. The

shaping gain with respect to the common reference Z2 is also (8−1)
12 · 8

5 = 14
15 or about -0.1

dB. Thus R2D2, while easy for illustration , is not a particularly good lattice for shaping.

Encoder Simplification for Voronoi Shaping

A key concept in Voronoi-encoding simplification, cleverly constructed by Forney, makes use of the
observation in Appendix C that (scaled) binary lattices tesselate ZN . Essentially every point in ZN is in
some coset of the binary shaping lattice Λs if ZN/2mΛS/2

mZN where m ≥ 1. In Appendix C, m = 1. In
such an m = 1 case, the shape of Λs may be desirable, but its volume may not equal M . If constellations
have a power of two number of points, then the factor 2m represents the additional enlargement (scaling)
necessary of the desired Voronoi shaping region to cover the M points in N dimensions. This subsection
first describes encoder implementation with m = 1, and then proceeds to m > 1.

227

R2D2+(.5,.5)

Z2+(.5,.5) (0,0)

Figure 10.50: Shaping 3 input bits in Z2 into an R2D2 boundary.

Appendix C notes that every point in ZN can be constructed by some point in the partitioning (and
shaping) binary lattice Λs plus some coset offset. A binary code with linear binary block encoder Gs
and corresponding binary-block parity matrix Hs defines a binary lattice Λs as in Appendix C. The
order of the partition is

| ZN/Λs |= 2b = M . (10.300)

Then, as in Appendix C, the distinct 2b cosets of Λs whose union is ZN are in a one-to-one relationship
with the 2b distinct syndrome vectors of the binary code (such syndrome vectors being generated by
taking any of the 2b binary b-row-vectors and postmultiplying by the parity matrix H∗s). Since these
binary-code syndrome vectors are easily generated as any or all of the 2b binary b vectors, then they are
equivalent to an easily generated input as in Figure 10.51. The transformation by the inverse-transpose
parity matrix generates a set of distinct N -vector cosets that when added to any and all points in Λs
generate ZN . These coset vectors now in ZN represent the distinct error vectors with respect to the
closest points in Λs modulo 2, but are not necessarily the error vectors of minimum Euclidean norm.
These inputs x are now assured of each mapping in a one-to-one relationship with one of the 2b distinct
syndromes/error-vectors e. The ML search simply re-maps them into the Voronoi shaping region of
minimum total energy. The channel with any receiver decoding is eventually viewed as hard coding
to one of 2b possible N -dimensional e values. The original binary syndrome vectors (viewed as the b
information bits here) is recovered in the receiver by multiplying x̂ by H∗ after executing a modulo-
2 operation. The modulo-2 operation precedes the syndrome re-generation because the vectors e are
equivalent modulo 2 to the original x vectors, and then the binary arithmetic of the parity matrix can
be directly applied. The decoder is shown in Figure 10.52 for m = 1.

The situation with m > 1 corresponds to (m− 1)N + k bits. The coset-indicator outputs in Figure
10.53 are multiplied by 2m−1 and added to a binary N -vector um−2 of N bits and multiplying it by
2m−2 and then adding it in turn to another vector of N bits um−1 multiplied by 2m−2 ... and adding it
to the last binary vector of N bits unscaled. Essentially , the scaling by decreasing powers of 2 on the
integer vector x’s components allows the contributions at each stage to represent the “least significant

228

x
ML decode

Λs	

sx

c

+

e x~
+ s (H-1)*

torsbinary vec
ldimensiona-

 2
b

b

torsbinary vec
ldimensiona-

 2
N

b

Figure 10.51: Voronoi encoder for shaping code with syndrome generation of input vectors.

xML	
 decode	

Ζ Ν	

x̂

[]ec E=

ê
nx +~ +	
 ŝH*	
 (
 	
 	
)2	

Figure 10.52: Voronoi decoder for shaping code with syndrome generation of input vectors.

229

()Dx
ML	
 decode	

Cs	

()Dsx

()Dc

+	

()De ()De~

+	

()Ds H(D)-­‐*	

sequencebinary
ldimensiona

)1(Nmb −− sequence
ldimensiona−N

x	

12 −m

+	

Binary N sequence

x	

22 −m

+	

Binary N sequences

x	

02 . . .

sequence
ldimensiona- N

()D0u

()Dm 2−u

Figure 10.53: Voronoi encoder for shaping code with syndrome generation of input vectors with scaling
and m > 2.

contributions” with respect to values scaled with a larger power of 2. For decoding in Figure 10.54, a
modulo-2 operation recovers the upper binary N -vector û0 from the ML decoder output integer, while
after removal of those decided bits with integer subtraction, the remaining N -dimensional vector can
be processed modulo 22, then its components divided by 21. Continuing through stage index i, the
next remaining N -dimensional vector is produced by an operation of modulo 2i+1 and the components
divided by 2i=1 to produce ûi, and so forth until the last remaining N -dimensional vector is modulo 2m

and devided by 2m−1 prior to multiplication by the parity transpose for deciding the syndrome bits of
the encoder.

A drawback of the encoder is that only integer multiples (that is m − 1) of N bits are allowed to
be added to the k-dimensional syndrome vector of bits, severely limiting bit rates when N is large. If
some intermediate number of bits corresponds to the desired data rate, then this number of bits will fall
between two values for m. If some fractional value of m = 1 + p

p+q > 1 of N -bit blocks is desired, then
p successive block-packets are used with m− 1 = p, followed by q packets with m− 1 = q. The shaping
gain is assumed to be the same for both designs, although a slight deviation related to the number of
points might alter the actual shaping gain. The decoder is altered correspondingly.

EXAMPLE 10.7.3 (Continuing R2D2 shaping example) For the earlier 8-point ex-
ample, the generator matrix is G = [1 1] and the parity matrix is also H = [1 1]. An
acceptable left inverse is H−∗ = [1 0]. However, this H is for D2, so that R2D2 has m = 2.
Thus, a single bit s times [1 0] is scaled by 21 = 2 before adding it to the 4 possible binary
2-vector values of u0 in Figure 10.55. The constellation produced is not exactly the same as
in Figure 10.47, but is equivalent. The decoder in Figure 10.56 adds back the mean [1

2 0]
coset offset and does ML slicing for the offset of the constellation shown. The 8 points at
the output then processed modulo 2 to produce the bits u2 and u1. These bits are then
subtracted from the ML slicing output and will produce either the points [0 0] when u3 = 0
or will produce one of the points [−2 0] or [0 − 2] when u3 = 1. The encoder multiplication

230

xML	
 decode	

Ζ Ν	

()Dê

() ()[]DED ec =

() ()DD ne +~ +	

()Dŝ
H*(D)	

(
 	
 	
)2	

-­‐	

()Dê

. . .

(
 	
 	
)2i+1	

-­‐	

()Diû

. . .

(
 	
 	
)2m	

()D0û

÷

i2

÷

12 −m

Figure 10.54: Voronoi decoder for shaping code with syndrome generation of input vectors with m > 2.

x
ML	
 decode	

R2D2	

sx

]0[2
1−=c

+	

e x~

+	

[1	
 0]	

0] [2or 0] [0 vectors
ldimensiona-2

x	

2

+	
 2 bits
u0

vectors
ldimensiona-2ight E

1 bit
(s)

Figure 10.55: Voronoi encoder for example.

231

xML	
 decode	

Ζ 2	

x̂

[]02
1=c

nx +~ +	

1or 0 ŝ

(
 	
 	
)2	

-­‐	

1000
1101

ˆ 0u

ê
(
 	
 	
)4	
 ⎥

⎦

⎤
⎢
⎣

⎡

1
1[]

[] []00or
02
20

−

−

[]
[] []00or

02
20

[]
[] []00or

01
10

÷2

Figure 10.56: Voronoi decoder for the R2D2 shaping code example.

by 2 is inverted by first processing these two points modulo 4 (that is by modulo-2m+1, and
then dividing by 2. The final step is adding the two dimensions (since H = [1 1]) to produce
0+0=0 when u3 = 0 and 1+0=1 when u3 = 1.

Voronoi Shaping Code Design

The shaping gain of a Voronoi shaping code is precisely computed only if b is known as

γs =
22b̄

12EΛs
(1− 2−2b̄)

, (10.301)

but for large values of b, the asymptotic gain can be listed and approximated by the continuous approx-
imation that replaces the term 22b̄/EΛs by

22b̄/EΛs
≈

∫
V (Λs)

‖x‖2dV∫
V (Λs)

dV
. (10.302)

Table 10.7.2 enumerates the shaping gain for some well-known lattices.
The gains for the Barnes-Wall Lattice Λ16 and the Leech Lattice Λ24 are provided to get an idea of

the increase in shaping gain with N . The ML-search for these structures may be excessive for the gain
provided and trellis shaping in Subsection 10.7.3 provides an easier alternative. For the dual of the D8

lattice

HD⊥8
=



0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 1 0 0 0 0 0


(10.303)

232

2ν code rate γs (dB) H(D) H(D)−∗

2 1/2 .59 [1 +D 1] [0 1]

4 1/2 .97 [1 +D +D2 1 +D2] [D 1 +D]

8 1/2 1.05 [1 +D2 +D3 1 +D +D3] [1 +D D]

8 D⊥8 .47 see (10.303) see (10.304)

8 E8 .65 see (10.305) see see (10.306)

16 Λ16 .86 not provided not provided

24 Λ24 1.03 not provided not provided

with transmitter inverse

H−∗
D⊥8

=



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1
0 0 1 1 0 0 1 1


. (10.304)

For the implementation of the self-dual E8 shaping

HE8
=


0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 0 1 1 0

 (10.305)

and

H−∗E8
=


0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 1
0 0 0 1 0 1 0 0
1 0 0 0 1 0 0 0

 (10.306)

10.7.3 Trellis Shaping

Voronoi shaping extends naturally to the use of trellis codes or lattice-sequences to define a shaping region
from which constellation points must be selected. This concept was introduced by Forney and called
Trellis Shaping. This method can achieve shaping gains of over 1 dB with relatively low complexity. The
ML search becomes a semi-infinite trellis search (Viterbi algorithm) and thus implies infinite delay. Thus,
the search is terminated after an appropriate number of stages. There may thus be a small probability
of sending the wrong sequence and thus of the receiver detecting correctly that wrong sequence. By

233

()Dx
ML	
 decode	

Cs	

()Dsx

()Dc

+	

()De ()De~

+	

()Ds H(D)-­‐*	

sequencebinary
ldimensiona

)1(Nmb −− sequence
ldimensiona−N

x	

12 −m

+	

Binary N sequence

x	

22 −m

+	

Binary N sequences

x	

02 . . .

sequence
ldimensiona- N

()D0u

()Dm 2−u

Figure 10.57: Trellis-shaping encoder for shaping code with syndrome generation of input vectors with
scaling and m ≥ 2.

using feed-back-free parity realization in the receiver for recovery of the “syndrome” sequence, any such
errors with finite small non-zero probability are limited to a finite run (of course the transmit shaping
code needs to be non-catastrophic also).

Calculation of the exact transmit energy basically is achieved via computer simulation in trellis
shaping as it appears no known method for computing these gains exists (even for infinite number of
points in the constellation). Figure 10.57 shows the encoder diagram, which works for N ≥ 2 and m ≥ 2
(the cases of smaller numbers of bits and dimensions is considered later in this subsection). When
N = 2, then odd integer numbers of bits can be handled directly and an even integer number of bits
requires the upper most encoding path choose only the sequences (0,0) or (1,1) instead of all 4 binary
2-tuples. For N > 2, then the granularity to integer bits is achieved in a similar manner as Voronoi
shaping codes (as long as m is large enough). As with Voronoi codes, duals of good codes (lattices)
tend to be best because the redundancy introduced is least (that is, a potentially desired event is H−∗

is (b− [m− 1]N)× (b− [m− 1]N + 1) so that only a doubling in constellation size is necessary; however,
E8 is a self dual and quadruples constellation size and has good shaping gain.)

Figure 10.58 illustrates the corresponding receiver. Again, the parallels with the Voronoi situation
are clear. The sequences are processed N dimensions at a time. The H(D) matrix should be chosen to
be feed-back free to avoid error propagation.

Table 10.23 lists the two-dimensional trellis-shaping codes and their simulated gains (along with the
delay in the ML search and b). These gains are all for 7 bits/symbol and a 256-point square constellation
for x in Figure 10.57. The gains do not increase substantially for higher numbers of bits per dimension,
but will reduce for lower numbers of bits per dimension. Feed-back-free parity matrices have been
provided, but there are many generalized left inverses. In the last two codes, inverses with feedback
were used (because they’re easy to determine). Feedback in the transmitter is acceptable (but not in
the receiver). However, the zeros in an inverse with 0 feedback reduces the redundancy in the two-
dimensional constellation (fewer points can be selected in any two-dimensional symbol because of the

234

xML	
 decode	

Ζ Ν	

()Dê

() ()[]DED ec =

() ()DD ne +~ +	

()Dŝ
H*(D)	

(
 	
 	
)2	

-­‐	

()Dê

. . .

(
 	
 	
)2i+1	

-­‐	

()Diû

. . .

(
 	
 	
)2m	

()D0û

÷

i2

÷

12 −m

Figure 10.58: Trellis-shaping decoder for shaping code with syndrome generation of input vectors with
scaling and m ≥ 2.

zeros).
The drawback of the encoder is that only multiples (that is m − 1) of N = 2 bits is somewhat less

restrictive with trellis-shaping codes than with Voronoi codes. However, the same method for fraction
m values as in the Voronoi section can be used. Four and eight dimensional trellis shaping codes were
investigated by Forney, but the shaping gains are less (although constellation expansion is less also).
One-dimensional trellis shaping is capable of higher gains, but typically quadruples the number of points
in one dimension, which may be unacceptable from an implementation standpoint. The additional gain
is about .2 dB, but requires more states (and ML decoders than run at double the speed). Thus, the
two-dimensional shaping codes seem preferred when trellis shaping may be used.

235

2ν γs (dB) H(D) H(D)−∗ delay

2 0.59 [1 +D 1] [1 D] 8

4 0.97 [1 +D2 1 +D +D2] [D 1 +D] 26

8 1.05
[

1 +D2 +D3 1 +D +D3
] [

1 +D D
]

34

8 1.06

[
1 +D3 0 D

0 1 +D3 D2

] [1
1+D3 0 0

0 1
1+D3 0

]
42

16 1.14

[
1 +D +D4 0 D +D2 +D3

0 1 +D +D4 D2

] [1
1+D+D4 0 0

0 1
1+D+D4 0

]
100?

Table 10.23: Simulated gains and parity matrices for 2-dimensional trellis shaping at b = 7.

236

10.8 Block Codes

Block codes are a special case of convolutional codes when ν = 0, as defined in Section 10.1. The
inputs and the outputs of the encoder will be elements of a finite field (in this text exclusively a Galois
Field, see Appendix A). There is a vast body of knowledge on block codes, their structure, properties,
and efficient decoding on discrete memoryless channels. As with convolutional codes, this textbook is
concerned largely with use of block codes, their enumeration, encoder and decoder implementations, and
their performance analysis. There are numerous excellent textbooks dedicated to block codes like those
of Wilson, of Lin and Costello, and of Blahut to which the reader is referred for more comprehensive
treatments. This text views them as component tools in the design of the basic physical and link-layer
digital transmission.

While there is much elegant theory of block codes, perhaps the most widely used codes are a special
cyclic class of block codes known as Reed-Solomon codes. These are very powerful codes with high dmin
and low redundancy that are used on DMC’s to drive a nominal probability of bit error on the inner
channel such as P̄b = 10−6 to essentially zero. Such codes find good use in applications from wireline
and wireless transmission to disk storage. Such block codes drive random bit errors to essentially
zero, achieving then Shannon’s promise of arbitrarily low probability of error in systems that desire
or need essentially zero errors. Typically, block codes’ symbol length N is much, much larger than in
convolutional codes13, albeit with ν = 0. Some digital transmission applications (for instance digitized
voice or video) are relatively insensitive to occasional errors, and block codes may not be used. However,
the retrieval of a file from a disk with even 1 bit error in the recovered file could lead to a very unhappy
file user. Similarly transmission of a file or message over the internet with a few errors in it could have
catastrophic consequences for the communicants. Even though in the internet case, the transmission-
control protocol TCP allows for detection and retransmission of errored packets, such retransmission can
lead to delays, large intermediate memory requirements, and low throughput so reduction of error rates
to acceptably small levels may be the function of the block code. Then the upper layer retransmission
methods will have an easier design.

Reed Solomon block codes are often used with hard-decoding outside an inner coding system that
may use soft decoding (see Chapter 11 for concatenated codes). They easily have blocks of hundreds
to thousands of bits or Galois Field symbols to gain high efficiency (k/n → 1) and large minimum
distance, but straightforward maximum-likelihood decoding is computationally complex. Thus, the
block codes of greatest interest are those that have structures that simplify enormously such decoding
wihtout sacrificing too much efficiency. Similarly, there are channels that defy stationary or Gaussian
descriptions that frustrate the types of ML receivers elsewhere in this text,leaving patches of errors that
somehow need to be “cleaned up.” modeling this inner frustrated system as a DMC then enables the
outer block code to expunge the errors, no matter what their cause, although possibly this will lead to
code rates k/n that are much less than one but nevertheless necessary to ensure quality communication.

Subsection 10.8.1 investigates the performance analysis of block codes on a DMC. There are some
basic bounds on minimum distance versus code rate and block length that appear along with some
useful methods to compute overall bit and symbol error probabilities as a function of the DMC (or most
often BSC) error probability. Subsection 10.8.2 progresses to cyclic codes and their special “rotationally
invariant” structure that simplifies many aspects of very powerful codes’ implementations. The main
codes discussed as special cases are Bose C... H... (BCH) and Reed Solomon codes, the latter of
which can have very efficient encoder and decoder implementations as in Subsection 10.8.3 and 10.8.4
respectively. Subsection 10.8.5 then investigates selection of such codes to meet a system requirement.

10.8.1 Block Code Performance Analysis

10.8.2 Cyclic Codes

Cyclic codes have good distance properties and simplified implementations because they exploit the finite-
field equivalent (on a memoryless channel) of circulant matrices that were discussed in Chapter 4 on

13Note the use of N instead of lower-case n has returned for block codes because the ambiguity with N = ∞ for
convolutional codes has been removed.

237

DMT and OFDM transmission methods. Just as FFT’s or Fourier Transforms allow large simplification
there, certain equivalents in a finite field simplify when all appears periodic. Blahut’s classic textbook on
Error-Correction Codes does indeed comprehensively pursue this avenue of cyclic-transform connection
and the reader is deferred there for full understanding of such structure. The present development will
consider only some essential points with the aim of code use rather than structural elegance.

For convolutional codes, it was convenient to use a placeholder D to correspond to successive symbol
time positions in an infinite-length code word. For cyclic block codes, N will typically be large aso the
placeholder D will be reintroduced (even though with ν = 0 in a convolutional code, there is no D) to
correspond to successive time positions within the finite-length codeword. Thus,

v(D) = vN−1D
N−1 + vN − 2DN−2 + ...+ v1D + v0 . (10.307)

The individual elements are scalars in some Galois Field (rather than vectors as in the convolutional
code); however Galois Extension Field scalar elements coincidentally often constructed from binary (or
p-ary)vectors themselves. The usage should be clear from the context whether semi-infinite-length con-
volutional codewords or finite-length block codewords are intended. This entire section focuses entirely
on the latter, while all other previous sections focus only on the former.

Definition 10.8.1 (Cyclic Code) A code C is cyclic if any (and all) cyclic shifts of code-
words are also codewords:

if v(D) ∈ C , then
(
Div(D)

)
(DN−1)

∈ C . (10.308)

Modulo DN−1 simply corresponds to replacing DN by 1 in a polynomial where higher-order polynomial
terms Di≥n (and those correspond to terms outside the block length of interest anyway). This also
corresponds to circular right shift, an operation easily undertaken in implementations. Thus, ,Di means
circular right shift i times. If i < 0, then left circular shift by i positions is implied, which produces the
same result as circular right shift by N − i positions.

This text is only interested in linear cyclic block codes, and it is possible to write any linear block
codeword as

v(D) = u(D) · g(D) (10.309)

where g(D) is a generator polynomial. Linear cyclic codes have a special generator form.

Theorem 10.8.1 (Cyclic Code Generator) A linear cyclic code has a generator g(D)
that is the unique greatest common divisor (GCD) of all codewords.

Proof: The GCD of all codewords must have degree less than n − 1 because no codeword
has a degree that exceeds n−1. Further, the unique GCD of any set of polynomials is always
(from basic algebra) a linear combination of those polynomials so

g(D) =
∑
i

ai(D) · vi(D) (10.310)

=

(∑
i

ai(D) · vi(D)

)
(DN−1)

(10.311)

=
∑
i

(ai(D) · vi(D))(DN−1) , (10.312)

which is a linear combination of codewords of a linear code and so therefore g(D) is a
codeword itself. Clearly then u(D) · g(D) is a linear combination of codewords for all inputs
u(D) and thus all linear cyclic block code codewords are so generated. QED.

If g(D) is of degree P ≤ N − 1, which means14 that gP = 1 and g0 6= 0, then possible inputs u(D) must
be of degree K − 1 where N = K + P and the code rate is r = K/N . There are thus P redundant
“parity” symbols per codeword.

14g(D) can always be scaled so that gP = 1 without changing the code.

238

By writing

v′(D) =
(
DK+1 · g(D)

)
(DN−1)

= [gP−1 ... g1 g0 0...0 1] (10.313)

= DK+1cdotg(D)−
(
DN − 1

)
(10.314)

so then

v′(D)−DK+1cdotg(D) = −
(
DN − 1

)
(10.315)

multiple ofg(D) =
(
DN − 1

)
(10.316)

and the generator g(D) is also a factor of DN − 1. Thus, finding the factors of DN − 1 is one way to
design cyclic codes.

Furthermore, setting

h(D) =
DN − 1

g(D
(10.317)

defines a form of a “parity” polynomial because v(D) · h(D) = u(D) · (DN − 1), which is zero modulo
DN−1. The implementation of such a parity polynomial with cyclic shift registers appears in Subsection
10.8.4.

10.8.3 Reed Solomon Encoder Implementations

10.8.4 Reed Solomon Decoder Implementations

10.8.5 Block Code Selection

239

Exercises - Chapter 10

10.1 Our first convolutional encoder.

2u

1u

D D

2v

1v

3v+	

Figure 10.59: A convolutional encoder

a. (1 pt) Determine the rate and the constraint length of the convolutional encoder shown in Fig-
ure 10.59.

b. (3 pts) Determine the generator matrix G(D) and the parity matrix H(D) for the encoder.

c. (3 pts) Draw the trellis diagram. Please use the same notation and conventions as used in the
trellis diagrams in the notes. Hint: Because u1 is not stored as a state, you will have multiple
paths between states. That is, you can have two different outputs that both have the same origin
state and the same destination state but differ in the value of u1.

10.2 Systematic encoders, or encoding with feedback.

a. (3 pts) For the convolutional encoder shown in figure 10.60, we have,

G(D) =
[

1 +D2 D2 1 +D +D2
]

and one possible choice of H(D) is (Remember that G(D)H∗(D)=0),

H(D) =

[
D 1 D

1 +D D 1

]
(Verify this!)
Convert G(D) to a systematic generator matrix Gs(D). Show that

C(G) = C(Gs).

Hint: Can you use the H(D) matrix to show this?

b. (3 pts) Implement the systematic encoder Gs(D). (i.e., draw a flow diagram.) The systematic
encoder will involve feedback.

10.3 Convolutional Code Analysis.
A convolutional code is described by the trellis shown in Figure 10.61. The state label is uk−1. The

upper state is 0 and the lower state is 1. Other labellings follow the conventions in the text. There are
2 outputs; v2 and v1.

a. (2 pt) Determine the rate and the constraint length of the convolutional encoder corresponding to
this trellis. Hint: Can you see from the trellis that the encoder has only one input u?

b. (2 pts) Determine the generator matrix G(D) for the code.

c. (2 pts) Draw a circuit that realizes G(D).

240

1u D D 2v

1v

3v+	

+	
 +	

Figure 10.60: Another convolutional encoder.

0	
 3	

2	
 1	

1−ku

0	

1	

Figure 10.61: Trellis corresponding to a convolutional encoder.

d. (1 pt) Find dfree.

e. (3 pts) Find the extended transfer function T (W,L, I) for the code. How many codewords are
there, each of weight 3? How many input bit errors occur in an output error event of length l?

10.4 A catastrophy.

2u

1u

D

D

2v

1v

+	

+	

Figure 10.62: A rate 1 convolutional code.

a. (5 pts) Draw an extended transfer function flow diagram (i.e. include W , L, and I weights.) for
the rate 1 (!) convolutional code shown in Figure refcv3. We will use this diagram only to see if
there are any pathological loops causing the code to be catastrophic. Thus, you don’t have to draw
the paths from the “in” state 00 or paths to the “out” state 00. This should make your drawing
task a little easier.

b. (2 pts) Specify the loops and their corresponding gains which show that this code is catastrophic.

241

c. (2 pts) Give two examples of pairs of input sequences which have an infinite Hamming distance
between them but produce corresponding output sequences (using the convolutional encoder above)
that have only a finite Hamming distance between them.

d. (1 pt) A non-catastrophic rate 1 convolutional code cannot have a dfree larger than 1. Give an
example of a simple rate 1 convolutional code which achieves dfree = 1 and is not catastropic.
Hint: By simple, we mean very simple.

10.5 Coding Gain
Assume we are using a binary transmission system on an AWGN channel which has SNR = 6.5dB.

a. (1 pt) Determine the Pe for uncoded binary PAM on this channel.

b. (2 pts) Suppose that we’re allowed to double our symbol rate (and hence, the bandwidth), but
we cannot increase transmit power. With these constraints, we need to transmit at the same data
rate R as in part (a). Use the tables provided in Section 10.2 to find the code which provides the
largest free distance (among those on the tables) of all the codes which do not reduce the rate r by
more than a factor of two, and which require no more than six delay elements for implementation.
Give G(D) for the code.

c. (2 pts) What is the coding gain of this code? Use ing soft decoding, approximate the Pe of the
coded system. How much did coding reduce our Pe?

10.6 Convolutional Code Design.
A baseband PAM ISI channel with Gaussian noise is converted to an AWGN channel, by using a

ZF-DFE, operating at a symbol rate 1/T = 10 kHz. It is calculated that SNRZF−DFE = 7.5 dB.

a. (2 pts) For the AWGN channel produced by the DFE, what is the capacity C and C?

b. (1 pt) Find the Pe for uncoded 2-PAM transmission on this channel.

c. (5 pts) The Pe produced by uncoded PAM (part (b)) is intolerable for data transmission. We
would like to use convolutional coding to reduce the Pe. However, since we’re using a DFE that
has been designed for a specific symbol rate, we cannot increase the symbol rate (ie. bandwidth).
Nor are we allowed to increase the transmitted signal power. Further, we have a limit on the
decoder complexity for the convolutional code, which is represented mathematically as,

1

k
· [2ν(2k + 2k − 1) + 2n] ≤ 320

where k, n, ν have the usual meaning for a convolutional code. Under these constraints, design a
convolutional encoder, using the convolutional coding tables of Section 10.2, so as to achieve the
highest data rate R for Pe < 10−6. What is this maximum R?
Hint: Use the soft decoding approximation to calculate Pe and remember to account for Ne.

d. (2 pts) Draw the systematic encoder and modulator for the convolutional code designed in part
(c).

10.7 Concatenated Convolutional Code Design - 19 pts - Midterm 1997
A baseband AWGN has SNR = 8 dB for binary uncoded transmission with symbol rate equal to

clock rate of 1 Hz. (Recall that the clock rate of an AWGN channel can be varied when codes are used.)

a. What is the capacity C of the AWGN channel in bits/sec? (1 pt)

b. Design a convolutional code with r = 3/4 bits per dimension that achieves the lowest probability
of error using one of the codes listed earlier in this chapter, assuming a soft MLSD decoder. This
coded system should have the same data rate as the uncoded system. (4 pts) (“Design” means for
you to provide an acceptable generator matrix G(D) and to compute the corresponding probability
of symbol error.)

242

c. Model the system in part b as a binary symmetric channel (BSC) and assume that Nb for the code
you selected is 2. Provide the value p =? (1 pt)

d. For the BSC in part c, Design a convolutional code of rate r = 2/3 that achieves the lowest
probability of symbol error using codes listed in Section 10.2 (4 pts)

e. What is the combined data rate R of the “concatenation” of the codes you designed in parts b and
d? (2 pt)

f. Return to the uncoded transmission system and now design an r = 1/2 convolutional code with
soft decoding that has lowest probability of error based on codes in Chapter 7. This coded system
should have the same information rate, R, as the concatenated code above in part e. (Hint - think
carefully about what clock rate you would use.) (4 pts)

g. Compare the system in part f to the system in part d. What does this comparison tell you about
concatenation of codes? (3 pts)

10.8 Coset codes – an ineffective design.
You will show that simple uncoded modulation, and a simplistic application of convolutional codes

to QAM, are both (ineffective) special cases of coset codes.

a. (2 pts) For the special case of uncoded (379A) 4-QAM modulation, specify k, b, and the order of
the partition.

b. (1 pt) With Ēx = 1, compute dmin, the minimum distance between two valid signals for the encoder
of the previous part. Recall that for QAM, we have

d =

√
12Ēx

4b̄ − 1
.

c. (2 pts) For the case of 16-QAM modulation preceeded by a rate 2/4 convolutional code, specify k,
b, and the order of the partition. Note that the situation described here is simply a convolutional
code cascaded with a modulator. It is not a ‘normal’ coset code.

d. (1 pt) Keeping Ēx = 1, compute dmin for the 16-QAM constellation.

e. (2 pts) Continuing with the encoder of the previous two parts, assume that for the convolutional
encoder of the coset code, we use two copies of the 4 state, rate 1/2 code given in Table 7.1 which
has dfree = 5 (We use 2 copies so that there are 2 inputs and 4 outputs overall). Let’s make the
following assumptions,

• Assume soft decoding of the coset code at the receiver (so that the d2 metric is relevant).

• Assume that the d2
min for the coset code occurs when the transmitted sequence of symbols is

0, 0, 0, 0, 0, ... and the detected sequence is 0, 3, 2, 3, 0, ... (see figure below for labelling conven-
tions). Note that these sequences are consistent with the rate 1/2 convolutional code trellis.
Note also that the minimum distance of the 16-QAM constellation is as found in part (d).

Show that with these assumptions, the minimum distance between two valid signals for this encoder
is exactly the same as that found in part (b). Thus, this simple example of a ‘coset’ code does not
provide any coding gain. This shows that one has to carefully design coset codes in order to get
coding gain.

10.9 32-CR trellis code.
Here, we examine a coset code where the trellis error distance is less than the intra-coset error

distance. This code has Λ = 32-CR (with minimum distance between the lattice points d = 1) and

G(D) =

[
1 0 D2

1+D3

0 1 D
1+D3

]
.

Note that this G(D) is examined in detail in Subsection 10.4.2.

243

Figure 10.63: 16-QAM used in the coset code.

a. (2 pts) Draw the encoder. Explicitly draw the convolutional coder. Hint: Most of the encoder can
be copied from the relevant diagram in the course reader!

b. (3 pts) Draw the 32-CR constellation and give the Ungerboeck labeling of the points (i.e. {D0, . . . , D7}).
Label each point by its associated bit pattern (v4, v3, v2, v1, v0) also. Important: To make sure that
we have a common notation, ensure that the labeling you have on the inner 16 points of the 32-CR
constellation is the same as the Ungerboeck labeling for the 16-QAM constellation of Subsection
10.4.2.

c. (3 pts) We need to find the minimum distance for the code. As a first step, fill in the following
table with the minimum distance between the various cosets. Some of the entries have been filled
in for you.

D0 D1 D2 D3 D4 D5 D6 D7

D0 2
√

2 1
√

2
D1
D2
D3
D4
D5
D6
D7

d. (3 pts) Now conclude that the trellis distance (ie. distance between a sequence of cosets) and
intra-coset distance (ie. the parallel transitions distance) for our coset code are exactly the trellis
distance and intra-coset distance of the code in Subsection 10.3.2.

e. (3 pts) Compute the shaping gain, coding gain, and fundamental gain of our coset code.

10.10 A one dimensional trellis code.
Consider the trellis code G(D) = [a0 ⊕ a1D a2 ⊕ a3D] with an M-PAM constellation. Let d be the

minimum distance of the M-PAM constellation.

244

a. (4 pts) For M = 8; what are the values of b, rG and k. Draw the signal constellation and give the
Ungerboeck labeling for the required level of partitioning (label so that the most negative point of
the constellation is included in the C0 coset). What is the intra-coset error distance? Repeat for
M = 4. What is the intra-coset error distance?

b. (4 pts) For the convolutional encoder G(D) = [1 1⊕D] and M = 4, find the trellis error distance
using the zero input (top branch) as reference. This is not the minimum distance of the trellis
code. Try to find a pair of sequences that are at a smaller distance. What is the true value of
the minimum distance of the code? Moral of the problem: Even though the G(D) is a linear
convolutional encoder, yet the dmin of the trellis encoder cannot be evaluated just by comparing
with the all zero-coset sequence.

10.11 Capacity and Design. 14 pts - Midterm 2003
An AWGN channel has SNR=18 dB with uncoded PAM transmission at a symbol rate of 10 MHz.

For parts a-d, a symbol rate of 10 MHz is maintained. The data rate is 20 Mbps.

a. What is the capacity of this channel in bits per second? (2 pts)

b. What is b̄? (1 pt)

c. What is the probability of symbol error for uncoded PAM transmission at the data rate of 20
Mbps? (2 pts)

d. Design a trellis-coded system that achieves P̄e ≤ 10−6, showing (5 pts total)

(i) P̄e calculation. (1 pt)

(ii) show the constellation and bit labels for each point (2 pts)

(iii) show G(D) circuit implementation in systematic form (2 pts)

e. Could a convolutional code with hard decoding be used directly somehow to achieve the same P̄e?
If so, how and what is the smallest number of states that could be used? (4 pts)

10.12 Coset code design for HDTV.
A digital satellite channel with SNR = 17.5 dB uses two dimensional symbols (QAM) with a symbol

rate of 35 MHz to send 140 Mbps digital HDTV signals.

a. (2 pts) How many information bits per 2-D symbol are required to send the HDTV signals?
What 2-D constellation would typically be used to send this many bits (uncoded)? What 2-D
constellation would typically be used to send the same number of information bits in a coset code?

b. (1 pt) What is the Pe obtained by uncoded transmission using the constellation found in the
previous part?

c. (2 pts) What γ̃f is needed for a coset code to achieve Pe ≤ 10−6?

d. (3 pts) Find the lowest complexity code that will achieve Pe ≤ 10−6. Find the associated Pe,
parity matrix, and systematic encoder matrix.

e. (3 pts) Draw the encoder circuit and the Ungerboek labeled constellation.

Note: A satellite channel typically has no ISI. Therefore, no DFE is required, and so, there is no
problem of error propagation.

10.13 Coset code decoding.
Consider a one dimensional trellis code with 2 uncoded bits being coded to 3 bits and with G(D) =

[1 +D2 D]. The coded constellation is illustrated in Figure 1 with labeling (v2, v1, v0).

245

000 001 010 011 100 101 110 111

Figure 10.64: Coded PAM constellation.

a. (3 pts) Find the sequence of constellation points produced by the coset code described above, given
the following sequence of input bits. Assume that the initial state of the convolutional coder is 00.

01 11 10 00 11 11

Each pair of input bits in the above sequence is written as u2 u1.
Follow the notation in the text - in particular, note that v2 = u2 here (refer to fig. 8.14 in the
text).
Note : Hopefully, you’ve recognised that the G(D) for this code is the Ungerboeck 4-state, rate
1/2 convolutional coder. The trellis for this can be found in the text.

b. (2 pts) The constellation points found in the previous part are sent over a noisy channel producing
the following points at the receiver:

-1.02 3.25 3.44 -2.45 1.6 4.2

Discuss the complexity of a maximum likelihood decoder for this sequence. Specifically, show that
the complexity will be ND = 2ν+k(2 − 2−k). What is the numerical value of ND for our coset
code?

c. (5 pts) Decode the received sequence using MLSD. Assume that the initial state is 00.

10.14 Sum constraints.
The constraints we derive below are not likely to come up in the future. However, proving them

will deepen your understanding of the lattices involved. Hint: Every time you impose an even or odd
constraint on the sum of components of the N -dimensional points in a lattice (coset), you are reducing
the effective number of possible points to half. E.g.: if you impose x1 + x2 = even in Z2 then you get
D2.

a. (2 pts) Show that (x1, x2) is an element of D2 = R2Z
2 iff x1 + x2 is even.

b. (1 pt) For the rest of the problem we will be interested in eight-dimensional points x = (x1, x2, . . . , x8).
We will specifically be interested in showing that certain 8-D lattices can be described in terms of
constraints on the four pair sums

k+1∑
i=k

xi for k ∈ {1, 3, 5, 7}.

Show that x ∈ R8Z
8 iff all four pair sums are even.

c. (2 pts) Show that x ∈ DE8 iff either all four pair sums are even or all four pair sums are odd.

d. (2 pts) Show that x ∈ D4
2 iff

p1p2p3p4 ∈ {eeee, oooo, eeoo, ooee}

where pi refers to the ith pair sum and e and o indicate that the pair sum is even or odd. Restate
this as a constraint on two quad-sums.

e. (2 pts) Show that x ∈ D8 iff an even number of the four pair sums are odd. Restate this as a
constraint on the sum of the eight terms.

246

f. (Optional, 0 pt) We derived sum constraints for

Z8/D8/D4
2/DE8/R8Z

8.

It is often more useful to replace R8Z
8 with E8 because of its superior distance properties. Give

a sum constraint for E8 that provides an if and only if relationship. (You need not prove your
relationship.)

10.15 8D is too easy.
In this problem, we’ll test our understanding of lattices by considering those with more than 8

dimensions.

a. (2 pts) Construct D16 using D8. What sum constraint do the elements in D16 satisfy?
Hint: Basically, extend the idea of lattices D2, D4, D8 to define the 16 dimensional lattice D16.

b. (2 pts) Consider the 16D constellation formed by choosing points from 8 separate 4QAM constella-
tions. The four points in the 4QAM are x0 = (1, 1), x2 = (−1,−1), x1 = (1,−1) and x3 = (−1, 1).
For the point [x1 x2 x3 x2 x∗ x0 x0 x0] in D16, what are the possible values of x∗?
Hint: Use a modification of the result in part (a). The modification is required because, strictly
speaking, the 4-QAM constellation given above is not part of the Z2 lattice.

c. (1 pt) What is the value of γf for D16.

d. (2 pts) Consider now the case D2M , where M is a positive integer. What sum constraint do the
elements in D2M satisfy? What is the value of γf?

e. (1 pt) What problem do we encounter, as far as lattice gain is concerned, as M grows?

10.16 A Lattice Code based on the E8 lattice.
The code consists of a sequence of points chosen from the E8 lattice. There is no redundancy used

(ie. rG = 0). Thus, this is a simple example of a lattice code. It was shown in the text that this code
has a fundamental gain γf = 3 dB.
Note that each E8 lattice point is actually transmitted as a sequence of four 2D QAM symbols.

a. (2 pts) Assume that there are b = 12 input bits u1, ..., u12. Each block of these 12 bits has to
be encoded into one E8 lattice point. The first step in encoding is to select a sequence of four
2D cosets to be transmitted. How many of the input bits are used to specify this sequence of 2D
cosets?
Hint : Look at the 2D trellis for the E8 lattice shown in the text.

b. (2 pts) Argue that, in order to transmit the 12 bits of information using this lattice code, each of
the four 2D symbols should be selected from a 16 SQ-QAM constellation.

c. (2 pts) The 16 QAM constellation with Ungerboeck labeling is shown in Figure 10.65. Denote each
symbol by the pair (x,y). Assuming that the symbol (0.5,-0.5) is in the sub-lattice 2Z2 (ie. the
origin has been appropriately shifted), redraw the 2D trellis for the E8 lattice, such that the 2D
cosets are labeled C0, C1, C2, C3.
Hint : The 2Z2 label in a branch of the trellis is replaced by the C0 label, etc.

d. (3 pts) Which of these 2D sequences represent valid E8 lattice points?

(i) (0.5,-0.5),(0.5,-0.5),(-1.5,1.5),(0.5,1.5)

(ii) (1.5,0.5),(-0.5,0.5),(0.5,-0.5),(1.5,0.5)

(iii) (0.5,0.5),(-0.5,1.5),(0.5,-1.5),(1.5,-0.5)

Hint : Use the trellis drawn in part (c).

247

e. (1 pt) An E8 lattice point is transmitted (as a sequence of four 16 QAM symbols) over an AWGN
channel. At the channel output, the following noisy sequence is obtained (0.6,-0.5),(-0.5,0.7),(0.5,0.9),(-0.7,-1.6)
A (sub-optimal) 2D symbol-by-symbol detector would select the nearest 16 QAM point for each
of the above received symbols. Decode the above sequence in this sub-optimal manner to get a
sequence of four 16 QAM symbols. Does this sequence represent a point in the E8 lattice?

f. (4 pts) Decode the received sequence in part (e) optimally, using MLSD, to get the transmitted
E8 lattice point.
Hint : Use the 2D trellis found in part (c).

10.17 Shaping gain limit.

In this problem we will show that the limit for γs is actually 1.53 dB. For this we will calculate V
2/N
x /Ē

of the N -dimensional (where N is even) square Amplitude Modulated Constellation (ie. a generalization

of SQ-QAM for N dimensions), and compare it to the V
2/N
x /Ē for the most power efficient signal strategy

in N -dimensions, which is to choose points uniformly from within an N -dimensional sphere centered at
the origin. Note that Vx refers to the total volume of the constellation (ie. product of the Voronoi region
volume and the number of constellation points). It is assumed that there are a large number of points
in both constellations.

a. (2 pts) Show that for the N -dimensional Amplitude Modulation, we get the approximate formula

V 2/N

Ē
= 12

This is our reference constellation.
Hint : Recollect the Ē formula for such a constellation. It would be helpful to note that PAM,QAM,TAM,
etc. follow a similar Ē expression.

b. (2 pts) Now, we need to calculate the same quantity for the spherical constellation. To this end,
note that the volume of an N -dimensional sphere is πkr2k/k!, where N = 2k. Using the continuous
approximation for constellation power evaluation

Ē =
1

NV (Λ)

∫
r∈Λ

r2dV (r)

to evaluate the Ē for the N -dimensional spherical constellation, we get

Ē =
R2

2(k + 1)
,

where R is the radius of the sphere. Verify this for N = 2.

c. (3 pts) Calculate γs as a function of k. Verify that the limit as k →∞ is πe
6 which is 1.53 dB.

Hint : You may need to use the Stirling approximation formula for factorials,

k! ≈
√

2πk

(
k

e

)k
for large k

10.18 Sphere bound on fundamental gain. (Due in part to Forney)
In this problem, we investigate the bound on the fundamental gain γf .

a. (1 pt) The absolute minimum volume that could be associated with dmin = 2r in an N -dimensional
lattice is the volume of the N -dimensional hyper-sphere of radius r. Why? Note that we cannot
actually achieve a volume this small with a real lattice.

248

b. (1 pt) Use the observations of the previous part to provide an upper bound for the fundamental
gain achievable by a lattice of dimension N = 2k. This is called the ‘sphere bound’. Recollect that
the volume of an N = 2k dimensional hyper-sphere with radius r is

V =
πk

k!
r2k.

c. (2 pts) As mentioned in part (a), this bound cannot be achieved by real lattices. Compare (in dB)
the fundamental gain of the best lattices in 4 and 8 dimensions (that you’ve seen) with the sphere
bound on the best possible fundamental gain in 4 (i.e., 1.5 dB for the D4 lattice) and 8 (i.e., 3 dB
for the E8 lattice) dimensions.

d. (1 pt) Use Stirling’s formula,

k! ≈
√

2πk

(
k

e

)k
for large k

to conclude that the sphere bound on fundamental gain grows without bound as k increases.

e. (1 pt) While the sphere bound is only a bound, it is true that the actual fundamental gain also
grows without bound as k increases. This would seem to contradict the fact that for Pe = 10−6,
the gap to capacity for uncoded transmission is only 9 dB. Explain this apparent contradiction.

10.19 Multi-dimensional trellis code.
The 2-state 4D code of Figure 10.25 is used to send b = 8 bits/4D-symbol. We will implement this

4D system using successive 2D transmissions.

a. (3 pts) Find an appropriate 2D constellation to use for our implementation. Your 2D constellation
will have four 2D cosets, C0, C1, C2, C3. Label the points in your constellation so that the point
in the upper right quadrant closest to the origin is C0 and the point in the upper left quadrant
closets to the origin is C1.

b. (3 pts) Draw an encoder that generates each 4D output as two successive 2D outputs.

c. (4 pts) Assume the 2D constellation has scaled and shifted so that it has minimum distance 1 and
the points are in Z2 + (1

2 ,
1
2). Three 4D symbols are transmitted after the state was known to be

0. The 4D received values are:
(.56, .45, 1.45, -1.55), (-.5, -2.5, -.6, 1.5), (.45, -.55, .5, -1.6)

Using the coset labelling of (a), find the minimum squared error sequence of 4D cosets. Also find
the associated sequence of 2D cosets. Give the overall squared error of the minimum squared error
sequence. How close was the nearest alternative to this squared error?

10.20 Integer bit constellation restriction with trellis codes - 11 pts.
An AWGN has an SNR of 23 dB when the symbol rate is 1/T = 1 MHz. QAM transmission is used

with the restriction that the modulator can only implement SQ QAM constellations with an integer
number of bits (that is only 4QAM, 8 SQ, 16 QAM, 32 SQ, etc. are allowed).

a. What is the maximum bit rate with uncoded transmission for which the probability of symbol
error is less than 10−6? (1 pt)

b. The encoder for the 4D 16-state Wei code is available for use. Theoretically with no restrictions
on constellation design, what is the maximum bit rate that could be achieved when this code is
used? What is the lower bit rate that is achieved when only the SQ constellations above can be
used and each constellation point appears on average with the same probability? (2 pts)

c. Design a look-up table that could be inserted between the Wei encoder output and the SQ-QAM
modulator that would allow 6 Mbps transmission and possibly different probabilities for the dif-
ferent constellation points. Then design a feedforward encoder, table, and constellation that can
be used and show labels for points in the constellation. (3 pts)

249

d. Suppose instead that the modulator can be time-varying in that constellations of different SQ sizes
can be sent on subsequent symbol periods, allowing both number of levels transmitted to change
and the distance between points on any given transmitted symbol to vary (which means energy
can vary from symbol to symbol in time). Now redesign avoiding the use of the look table, and
compute the new coding gain for this case. Was much lost? (3 pts)

e. Often in transmission, a system designer may be presented with an even number of parallel AWGN
transmission channels with the same symbol rate that have different SNR. Application of a code
individually on each channel leads to longer system/decoder delay, so application of a code across
the parallel channels is desirable. How might a 4D trellis code be applied in this case? (1 pt)

f. Does the modulator as described present any difficulty for 1D constellations? (hint: we are looking
for a one sentence answer not a reiteration of this entire problem.) (1 pt)

10.21 Basic Trellis Code Design - 8 pts - Final 1997
An AWGN channel has SNR=16.4 dB. QAM modulation is to be used on this channel with symbol

rate 5 MHz. The probability of symbol error, Pe, needs to be less than 10−7.

a. What is the highest data rate than can be achieved with uncoded QAM transmission? (1 pt)

b. What is the capacity of this channel? (1 pt)

c. Design a system with a 2-dimensional trellis code that achieves a data rate of 20 Mbps and still
meets the probability of symbol error requirement. Write a systematic convolutional encoder
matrix G(D) and show a labeled constellation with octal notation and the least significant bits
indicating the coset index. (4 pts)

d. Assume that an add or compare operation takes one instruction on a programmable processor
being used to implement the maximum likelihood decoder for your design in part c. How many
instructions per second must the computer be able to execute to implement your design? (2 pts)

10.22 Design with a popular code - 10 pts - Final 1997
We are to use a popular 16-state four-dimensional code on an AWGN with b = 6 over the N = 4

dimensions.

a. How many points would you use in a 2D coded constellation? (1 pt)

b. Show your constellation (1 pt). (hint: don’t label cosets yet)

c. What is the minimum SNR required on the AWGN to achieve a symbol error probability of less
than 10−6? (1 pt)

d. What are the four-dimensional offset vectors gi, i = 0, , 3 for a linear implementation of the coset
selection/offset? Cite any potential problems with this linear implementation. (2 pts)

e. For your constellation in part b and offsets in part d, label the two-dimensional cosets and use the
modulo-4 integer addition (presumably implemented more simply than real-valued vector addition)
as in the table below to implement the labeling of your constellation. This mod-4 addition is to be
applied independently to the value of the transmitted symbol in each of the two dimensions. Show
in your implementation diagram the position where the constant [−.5,−.5] should be added to

each two-dimensional constituent subsymbol. (3 pts).
value 0 1 2 3
mod-4 value 0 1 2 -1

Remember

to recompute energy.

f. The fundamental gain of this code can be increased by 1 dB for certain values of b without increase
in complexity. Find these values. (hint: minimum distance for trellis codes is the smallest of the
parallel transisition distance and the distance between two sequences that span more than one
symbol). (2 pts)

250

10.23 Code Complexity - 12 pts - Final 1997
An E8 lattice is used alone as an 8-dimensional code when b = 20 on an AWGN.

a. How many points would appear in two dimensional constituent symbols? (1 pt)

b. What is the decoder complexity, ND , if the Viterbi algorithm is used according to the trellis in
Figure 10.27? (1 pt)

c. Suppose instead that a ML decoder was used that simply computed the sum squared differences
between each possible codeword and the received sequence. What would be the complexity of this
decoder? Compare this answer to your answer in part b. (1 pt)

Let us suppose that a new ”superstar” trellis code has been found based on the partition Z8/2E8
, which has an effective fundamental coding gain of 7.1 dB, and fundamental coding gain of 7.3
dB, with and minimum distance paths dominating in determining effective coding gain. This code
has 8192 states. This code also is used for transmission with b = 20. The eight-dimensional
constellation for the superstar has double the number of points that would appear in an uncoded
8-dimensional constellation.

d. What is the rate of the convolutional code inside the trellis code, rG =? (1 pt)

e. What 2D constellation should be used? (1 pt)

f. How many subsets would partition this 2D constellation and what letter in the alphabet should
we use to describe them? (1 pt)

g. What is the normalized complexity of the Viterbi decoder for this code,N̄D = ? (2 pts)

h. Suppose at any stage of Viterbi decoding of the trellis corresponding to the convolutional code, only
33 survivors are kept (those with the 33 smallest cost functions). Approximate the new maximum
normalized complexity be for this suboptimum decoder? Compare to the answer in part g. (2 pts)

i. Given that large noise samples are rare with Gaussian noise, how much would you expect the
suboptimum decoder in part h to lose in performance with respect to the full Viterbi detector
characterized by the complexity in part g? (2 pts)

10.24 Combined Convolutional and Trellis Code Design - 10 pts - Final 1997 A combination of a trellis
code and a rate-3/4 convolutional code are used on a bandlimited channel with a SNRMMSE−DFE,U
= 8.4 dB. The number of information bits/dimension transmitted is b̄ = .75. The system must have
probability of bit error less than 10−7. Assume a Tomlinson precoder will be used to avoid error
propagation, but the loss of such precoding needs to be included in your design.

a. Which code, trellis or convolutional, must be the inner code, assuming no iterative decoding? (1
pt)

b. What is the lowest probability of bit error that the one-dimensional trellis code alone can achieve
(at b̄ = 1) with trellis codes known to you in EE379B? You may assume a symbol error leads to
an average of 5 bit errors with your choice of code. (4 pts)

c. Model the system in part b as a binary symmetric channel (BSC). Provide the value p =? (1 pt)

d. For the BSC in part c, Compute the probability of bit error for the best convolutional code that
you know from EE379B, again assuming that one symbol error in the decoder corresponds to 5 bit
errors. (2 pts)

e. How might you further reduce probability of error? (2 pts)

251

10.25 Lost Charger (10 pts) – Final 2006
Your PDA nominally uses (uncoded) 16 QAM to transfer data at 10 Mbps to a local hub over a

wireless, stationary AWGN channel probability of symbol error 10−6. In transferring data, 100 mW of
transmit power uses 500 mW of total PDA battery power, and you may assume that the ratio of 5:1
consumed/transmitted power holds over a range of a factor 4 above or below 100 mW. Unfortunately,
youve lost your battery charger and must transfer a 10 Mbyte file (your exam) sometime within the next
3 hours to the internet for grading, or get an F otherwise, at the same sufficiently low probability of
error at the fixed symbol rate of nominal use. Your battery has only 1.5 Joules of energy left (1 Watt =
Joule/second). You may assume that the binary logic for a convolutional code, as well as any coset and
point-selection hardware, uses negligible energy in a trellis encoder.

a. Design a 2-dimensional trellis encoded system that allows you to transmit the file, showing the
encoder, constellation, and labeling at the same symbol rate. (5 pts)

b. The hub receiver is a separate device that would have consumed 0.1 Joules of energy for nominal
uncoded transmission, assuming ND = 1. How much energy will it consume for your design in
part a? (2 pts)

c. Suppose the symbol rate could be changed. What is the minimum energy that any code could use
to transmit this (10 Mbyte) file? Equivalently what is the largest size file that could be transferred
with your battery (1.5 Joules)? (3 pts)

10.26 SH Diagrams - 11 pts
Section 10.7 describes A 128 shell constellation for d = 2.

a. Draw this constellation showing all 17 shells. (4 pts)

b. How many shells does a 64SH constellation have? (2 pts)

c. Draw a 64SH constellation and show the shells (3 pts)

d. What is the shaping gain of 64SH? (2 pts)

10.27 Hexagonal Shells - 9 pts
Consider hexagonal packing and shaping gains in this problem.

a. For a constellation based on the A2 hexagonal lattice, how many shells are necessary for a 24-point
constellation? (4 pts)

b. What is the average energy of the 24SH constellation based on A− 2? (3 pts)

c. What is the total coding gain of this constellation? (1 pt)

d. For equal numbers of constellation points, do rectangular or hexagonal points have more shells?
(1 pt)

252

Figure 10.65: 16 QAM with Ungerboeck labeling.

253

Appendix A

Finite-Field Algebra Review

Coding theory uses the concepts of finite fields, algebras, groups and rings. This brief appendix concisely
reviews the basics of these topics.

A.1 Groups, Rings, and Fields

A group is a set of objects, that is closed under an operation addition, associative over that same
operation, and for which an identity and inverse exist in the group. More formally,

Definition A.1.1 (Group) A group S is a set, with a well-defined operation for any two
members of that set, call it addition and denote it by +, that satisfies the following four
properties:

a. Closure ∀ s1, s2 ∈ S, the sum s1 + s2 ∈ S.

b. Associative ∀ s1, s2, s3 ∈ S, s1 + (s2 + s3) = (s1 + s2) + s3.

c. Identity There exists an identity element 0 such that s+ 0 = 0 + s = s, ∀ s ∈ S.

d. Inverse ∀ s ∈ S, there exists an inverse element (−s) ∈ S such that s + (−s) =
(−s) + s = 0.

The identity element 0 is unique. When the group also exhibits the commutative property,
s1 + s2 = s2 + s1, the group is said to be an Abelian group. A subgroup is a subset of S that satisfies
all the properties of a group.

A ring is an Abelian group with the additional operation of multiplication, such that closure and as-
sociativity also hold for multiplication, and that multiplication distributes over addition. More formally,

Definition A.1.2 (Ring) A ring R is an Abelian group, with the additional well-defined
operation for any two members of that set, call it multiplication and denote it by · (or by
no operation symbol at all), that satisfies the following three properties:

a. Closure for multiplication ∀ r1, r2 ∈ R, the product r1 · r2 ∈ R.

b. Associative for multiplication ∀ r1, r2, r3 ∈ R, r1 · (r2 · r3) = (r1 · r2) · r3.

c. Distributive ∀ r1, r2, r3 ∈ R, we have r1 · (r2 + r3) = r1 · r2 + r1 · r3 and (r1 + r2) · r3 =
r1 · r3 + r2 · r3.

A ring often has a multiplicative identity denoted by 1, and if multiplication is commutative, the
ring is called a commutative ring. Any element of a ring R, call it r, for which a multiplicative inverse
1/r also exists in R is called a unit or prime. A field is a ring that defines division:

Definition A.1.3 (Field) A field F is a ring, with the additional operation of division, the
inverse operation to multiplication, denoted by /. That is for any f1, f2 ∈ F , with f2 6= 0,
then f1/f2 = f3 ∈ F , and f3f2 = f1.

254

A somewhat weaker version of division occurs in what is known as the integral domain, which is
a ring with the following additional property: f1 · f2 = f1 · f3 implies f2 = f3 if f1 6= 0.

A field may contain a finite or infinite number of member objects. A field of interest in this chapter
is the finite field with two elements GF (2) = {0, 1}, with addition defined by 0 + 0 = 0, 0 + 1 = 1, and
1 + 1 = 0, multiplication defined by 0 · 0 = 0, 0 · 1 = 0, and 1 · 1 = 1. The only unit or prime in GF (2)
is 1.

Another example of a field is F (D) defined in Section 10.1, the ratios of all binary polynomials in D,
where multiplication and division are defined in the obvious way, with modulo 2 addition.

Vector spaces are used often in this text in other Chapters and there often refer to vectors of real or
complex numbers. More generally, and specifically, in coding, the vector space can have elements in any
field, in particular a fine field.

Definition A.1.4 (Vector Space) An n-dimensional Vector Space V over a field F con-
tains elements called vectors v = [vn−1, ..., v0], each of whose components vi i = 0, ..., n− 1
is itself an element in the field F . The vector space is closed under addition (because the field
is) and also under scalar multiplication where fi · v ∈ V for any element fi ∈ F where

fiv = [fi · vn−1, ..., fi · v0] . (A.1)

The vector space captures the commutativity, associativity, zero element (vector of all zero
components), and additive inverse of addition and multiplication (by scalar of each element)
of the field F . Similarly, the mulitplicative identity is the scalar fi = 1. A set of J vectors is
linearly independent if

J∑
j=1

fj · vj = 0 (A.2)

necessarily implies that
fj = 0 ∀j . (A.3)

A.2 Galois Fields

Galois Fields are essentially based on arithmetic modulo a prime number p (or a power of a prime
number pm as to be shown shortly). The elements of a Galois field can be written

GF(p) = {0, 1, ..., p− 1} . (A.4)

The simplest Galois Field GF(2)uses binary arithmetic, where the prime is p = 2 and the elements
are 0 and 1. Addition and subtraction reduce to binary “exclusive or,” multiplication is binary “and,”
while division for non-zero elements is trivially 1/1=1. Figure A.1 illustrates a less trivial example
for p = 5, or GF(5). In Figure A.1, a modulo-arithmetic circle illustrates addition, consistent with
this text’s previous use of modulo addition. Addition corresponds to moving clockwise around the
circle while subtraction is counter clockwise. A multiplication table also appears in Figure A.1. This
choice of multiplication definition simply multiplies integers and then takes the result modulo 5. Each
row or column of this symmetric multiplication table contains each element of GF(5) only once, which
means that the reciprocal of an element is the column index for the entry 1 in the corresponding row
of that element. (Division then occurs by multiplying by the reciprocal.) This reciprocal is the unique
multiplicative inverse needed for a field.

Lemma A.2.1 (GF(p)) The elements 0, 1, ... p− 1 of GF(p) form a field under addition
and multiplication modulo p, where p is prime.

Proof: Closure of addition, subtraction (additive inverse), closure of multiplication, and the
zero and identity element (1) follow trivially from the properties of integers, as do commu-
tative and associative properties (all modulo p). Division and the multiplicative inverse do

255

0=p=5

1

2 3

4

+

140 ==αα

1α

2α

3α

2=α

3=α

3α
1α

2α

1	
 2	
 3	
 4	

1	
 1	
 2	
 3	
 4	

2	
 2	
 4	
 1	
 3	

3	
 3	
 1	
 4	
 2	

4	
 4	
 3	
 2	
 1	

×

{ }43210)5(αααα=GF

α	

 α2	

 α3	

 α4	

2	
 4	
 3	
 1	

3	
 4	
 2	
 1	

Figure A.1: Illustration of GF(5).

not trivially follow. If a multiplication table is formed, each row and column will contain
all the non-zero elements exactly one time: This completeness of a row (or column) follows
from observing that multiplication of an element 0 < α ≤ p − 1 by two distinct elements
0 < a1 ≤ p− 1 and 0 < a2 < a1 cannot create the same result modulo p, for if they did

α · a1 = p · d1 + r (A.5)

α · a2 = p · d2 + r . (A.6)

Equivalently,
α(a1 − a2) = p(d1 − d2) > 0 and = (0)p . (A.7)

For such an equality to hold true, noting that α < p and also 0 < a1 − a2 < p since a1 and
a2 are distinct, then neither the first or second term on the left can equal p and both are less
than p. This necessarily implies that 0 < d1 − d2 ≤ min(α, (a1 − a2)) and thus

α(a1 − a2)

d1 − d2
= p (A.8)

a factorization of a prime number and a contradiction. Thus, each element can occur only
once in each row and column if p is prime. QED.

Galois Fields often equivalently represent their nonzero elements by power of a primitive element α

GF(p) = {0, 1, α1, α2, ..., αp−2} . (A.9)

Figure A.1 illustrates the use of both α = 2 and α = 3 to generate GF(5). The successive powers of
each such primitive element (primative elements are prime numbers in this case) visits each and every
non-zero GF5 element exactly once before αp−1 = 1, and α4 = 1 in both cases. The element α = 4

256

does not generate the entire field and instead generates {0, 1, α = 4}, a subfield of 3 elements (which is
GF(3) where addition is refined with these symbols as 1 + 1 = α, α + α = 1, and 1 + α = 0 essentially
redefining the symbol 4 to be 2. This “symbol interpretation” of the Galois Field is often good to keep
in mind as addition and multiplication need not necessarily be defined in a direct correspondence with
integer addition and multiplication (even though this example has done so outside of this observation
on GF(3) as a subfield of GF(5) for the elements 0, 1, and 4. While the multiplication table in Figure
A.1, and thus multiplication, is invariant to the use of the prime α as 2 or 3.

More generally for GF(p), the multiplicative identity is α0 = 1 for all elements α ∈ GF(p). The
(p − 1)th power of any element must always be unity, αp−1 = 1 since the field contains p elements
and thus a non-zero element’s powers must repeat some nonzero value once a maximum p− 1 non-zero
elements have been generated. This value that first repeats must be 1 by the uniqueness of the inverse
already established. From the uniqueness of the rows and columns of the multiplication table, any
prime-integer α > 1 in GF(p) is a primitive element and can be selected for the value of α to generate
all the other nonzero GF(p) elements α0 = 1, α1, α2, ..., αp−2. A non-prime integer has the liability
of being the product of primes, so that each movement corresponding to another multiplication by α
in going from αi to αi+1 actually corresponds to multiplication by each element in this non-prime’s
factorization (and so the repeating of the sequence occurs earlier because there are more steps implicit
in this multiplication (or in fact more than one multiplication) and so “we get to 1 faster.”

The use of the notation αi is useful for multiplication because the exponents can be added, so

αi · αj = α(i+j)(p−1) . (A.10)

Adding of exponents is executed mod p− 1 because αp−1 = 1 ∀α ∈ GF(p). Further, division is executed
by multiplying by the inverse α−i = αp−1−i so simple addition on exponents allows all multiplication
and division within the field. Storage of each element’s index as a power of α and its inverse’s index
as a power of α, along with simple mod-p addition or subtraction allows all computation with minimal
computational effort. If addition is thus viewed as trivial, then perhaps the circle in Figure A.2 is more
useful. Each multiplication by α consistently refers to rotation by 90 degrees clockwise in the figure (and
division by α is rotation by 90 degrees in the opposite direction).

The use of Galois Fields is perhaps most useful when extended to vectors of elements (typically
vectors of bits). Such a Galois Field is denoted GF(pm) where p is prime. This field has pm distinct
elements. The elements of GF(pm) are m-dimensional vectors or m-tuples of GF(p) elements. Typically
p = 2 so these become vectors of bits, typically with m = 8 (so bytes in a digital system). However,
any prime value of p and any positive integer m defines a Galois Field. It is convenient in such fields to
think of an element as represented by a polynomial

α(D) = α0 + α1 ·D + α2 ·D2 + ...+ αm−1D
m−1 (A.11)

where α ∈ GF(p). The powers of the variable D are used to represent positions within the vector, and
multiplication by D corresponds to a shift of the elements (dealing with Dm will be addressed shortly).
Addition in GF(pm) is simple polynomial addition modulo p, or equivalently add the elements of like
power modulo p.

Multiplication is based on GF(p) multiplication of polynomial coefficients to create new coefficients
in GF(p) but extends the concept of modulo arithmetic for a polynomial to be modulo also a prime
polynomial so that Di≥m can be replaced by lower positive powers of D and thus map to one of the
pm − 1 nonzero elements in the field. This concept of multiplication differs significantly from typical
binary multiplication in digital computers where the multiplication of two 8-bit quantities would produce
a 16-bit result. In Galois fields, multiplication of two 8-bit quantities produces another 8-bit quantity.
The mapping back into the original field also requires removal of all multiples of a primitive polynomial
p(D) and retaining just the remainder, which is often called “multiplication modulo p(D)”. A primitive
polynomial is a polynomial of degree m that cannot be factored into the product of lower-order polyno-
mials of degree 1 or larger in GF (p). A primitive polynomial or element is similar to the prime number p
in the simpler GF(p) arithmetic. In straightforward GF(p) multiplication of two polynomials, multiples
of p(D) must be removed or if

α(D) · β(D) = d(D) · p(D) + r(D) , (A.12)

257

140 ==αα

1α3α

2=α

3=α

α×

{ }43210)5(αααα=GF

2α

×

Figure A.2: Multiplicative generation of nonzero elements in GF(5).

258

where r(D) is the remainder of degree m− 1 or less, then

(α(D) · β(D))p(D) = r(D) . (A.13)

It is possible to compute r(D) and thus the product by polynomial long divison of α(D) ·β(D) by p(D),
but there are simpler methods to compute the result more quickly. Conceptually, such a simple method
recognizes that setting p(D) = 0 in the above equation determines r(D) quickly.

As an example, for p = 2 and m = 4 (so “nibble” arithmetic in GF(16)), the polynomial p(D) =
1+D+D4 cannot be factored, and so is a primitive polynomial that can be used to define multiplication.
Multiplication of 1 +D3 by 1 +D2 leads to

(1 +D3) · (1 +D2) = 1 +D2 +D3 +D5 , (A.14)

but p(D) = 0 implies that D4 = 1 +D and thus D5 = D +D2 so

(1 +D3) · (1 +D2) = 1 +D2 +D3 +D +D2 = 1 +D +D3 . (A.15)

The multiplication was easily executed without need for long division. There are actually 16 polynomials
and a table of multiplication can be created for GF(16). Such a multiplication table again has the
property that each element of GF(pm) appears only once in each row or column. The proof of this
exactly follows the earlier proof. Thus, any non-zero element has a multiplicative inverse, thus defining
division and confirming that this group is a field. Another viewd of multiplication enumerates the
elements

GF(pm) = {0, 1, α, α2, α3, ..., αp
m−2} , (A.16)

where α is any primitive element that cannot be factored as a polynomial in GF(p). Following
identically the earlier development αp

m−1 = 1 for all nonzero α in GF(pm). For the case of m > 1, there
is no circular addition diagram like in Figure A.1 because modulo addition is done in each component
of the vector of polynomial. However, multiplication is preserved.

A simple example is GF(4) with primitive polynomial 1+D+D2 = p(D) or equivalently D2 = 1+D.
The four elements are GF(4)={0, 1, D, 1 +D} with D2 = 1 +D and D(1 +D) = 1. Each element is its
own additive inverse, and addition is trivial. However, care should be taken to avoid thinking that 1 + 3
is equal to zero (since 4 mod 4 is zero). In GF(4) 1+3 = 2 , or 1 + (1 +D) = D.

Matlab has a finite field facility that allows simle execution of Galois Field arithmetic. For example
the following sequence generates the same multiplication table as in Figure A.1:

>> A=gf(ones(4,1)*[0 1 2 3],2)

A = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

>> B=gf([0 1 2 3]’*ones(1,4),2)

B = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

>> A.*B

ans = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

259

Array elements =

0 0 0 0

0 1 2 3

0 2 3 1

0 3 1 2

A slightly more complicated example is GF(16) with primitive polynomial P (D) = D4 + D + 1 so
(using hexadecimal notation)

(5·B)p(D) =
(
(D2 + 1) · (D3 +D + 1)

)
D4+D+1

=
(
D5 +D3 +D2 +D3 +D + 1

)
p(D)

= D(D+1)+D2+D+1 = 1 ,

(A.17)
so B = 5−1 in GF(16). A multiplication table for GF(16) can be found (using Matlab as):

A=gf(ones(16,1)*[0:15],4);

B=gf([0:15]’*ones(1,16),4);

A.*B

ans = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 4 6 8 10 12 14 3 1 7 5 11 9 15 13

0 3 6 5 12 15 10 9 11 8 13 14 7 4 1 2

0 4 8 12 3 7 11 15 6 2 14 10 5 1 13 9

0 5 10 15 7 2 13 8 14 11 4 1 9 12 3 6

0 6 12 10 11 13 7 1 5 3 9 15 14 8 2 4

0 7 14 9 15 8 1 6 13 10 3 4 2 5 12 11

0 8 3 11 6 14 5 13 12 4 15 7 10 2 9 1

0 9 1 8 2 11 3 10 4 13 5 12 6 15 7 14

0 10 7 13 14 4 9 3 15 5 8 2 1 11 6 12

0 11 5 14 10 1 15 4 7 12 2 9 13 6 8 3

0 12 11 7 5 9 14 2 10 6 1 13 15 3 4 8

0 13 9 4 1 12 8 5 2 15 11 6 3 14 10 7

0 14 15 1 13 3 2 12 9 7 6 8 4 10 11 5

0 15 13 2 9 6 4 11 1 14 12 3 8 7 5 10

Alternately, we could enumerate all 15 powers of a primitive element such as 2:

A=gf(gf((2*ones(16,1)’),4).^[0:15],4)

A = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

1 2 4 8 3 6 12 11 5 10 7 14 15 13 9 1

\begin{verbatim}

where each element appears once until the element 1 repeats itself in the 16th position. Further, the inverses are easily found as

\begin{verbatim}

gf(ones(1,16)./A,4)

1 9 13 15 14 7 10 5 11 12 6 3 8 4 2 1

which is simply the reversed sequence of powers of the primitive element. Thus, essentially 16 (4-bit)
elements could be stored in 8 bytes of memory, adjoined with a high-speed 4-bit adder (for the index)
along with simple 4-places of binary addition to create an exceptionally high-speed and low-cost GF(16)
general purpose arithmetic implementation. Even for GF(256), only 256 bytes of storage and a simple
8-bit adder (plus eight 1-bit adders) are sufficient for high-speed very efficient arithmetic. When one of
the elements is fixed, as is often the case in coding, much further simplification yet is possible, as in a
later subsection.

Primitive elements of GF(pm) cannot be factored when viewed as polynomials with coefficients in
GF(p). Such primitive elements are however be roots of higher-degree polynomials with coefficients in

260

GF(p), for instance such a primitive element α always satisfies f(D = α) = αp
m−1 − 1 = 0 and f(D)

in this case has coefficients (1 and -1) in GF(p). The polynomial with GF(p) coefficients of minimum
degree for which fα(D) = 0 when D = α is called the minimal polynomial of the primitive element
α. Clearly fα(D) must be a factor of Dp∗m − 1.

Conjugates

The polynomial (α+ β)p has binomial expansion

(α+ β)p = αp +

[
p−1∑
k=1

(p
k
)
α ∗ p− kβk

]
+ βp . (A.18)

With mod p arithmetic where p is prime, then(p
k
)

= p · (p− 1) · · · (p− k + 1)

k!
= 0 mod p (A.19)

because this quantity is an integer and since k < p cannot divide p, it must divide the remaining factors.
Then the quantity is an integer multiple of p and thus zero. This then means that

(α+ β)p = αp + βp (A.20)

for all prime p in modulo-p arithmetic, and thus for arithmetic in GF(pm) for any m ≥ 1. The statement
is obvious for p = 2 of course. Further, then it is true by induction that

(α+ β)p
i

= αp
i

+ βp
i

(A.21)

since it holds for i = 1 already, and raising (A.21) to the pth power corresponds to i→ i+ 1 and then

(α+ β)p
i+1

=
(
αp

i

+ βp
i
)p

=
(
αp

i
)p

+
(
βp

i
)p

= αp
i+1

+ βp
i+1

. (A.22)

The successive powers of a primitive element αp
i

for i = 0, ...r − 1 are called its conjugates. Since
GF(pm) contains a finite number of elements, eventually this set must repeat and that occurs for the

first r for which αp
r

= 1. The set {α, αp, ..., αpr−1} is called the conjugacy class of the primitive element
α. Each primitive element has its own conjugacy class, and these classes are mutually exclusive (if not
mutually exclusive one the two primitive elements has the other as a factor, a contradiction of their
being prime elements).

All elements in a conjugacy class are roots of the corresponding class’ minimal polynomial. This is
easily proved by noting

[fα(D = α)]
pj

= 0p = 0 (A.23)

=
[
f0 + f1 · α+ ...+ fj · αj

]pj
(A.24)

= fp
j

0 + fp
j

1 · αp + ...+ fp
j

j · α
pj (A.25)

= f0 + f1 · αp + ...+ fj · αp
j

(A.26)

= fα(αp
j

) (A.27)

so αp
j

is also a root. The minimal polynomial has minimum degree and contains all the elements in the
conjugacy class so that degree is equal to the number of elements in the conjugacy class, namely

fα(D) = (D − α) · (D − αp) · · (D − αr−1) l. (A.28)

There is a minimal polynomial for each of the primitive elements (and all products of primitive elements,
generating thus the entire non-zero portion of the Galois Field). Since all the non-zero elements are
determined by

Dpm−1 − 1 = 0 (A.29)

then
Dpm−1 − 1 = (D − 1) ·

∏
α

fα(D) . (A.30)

261

Appendix B

Various Results in Encoder
Realization Theory

B.1 Invariant Factors Decomposition and the Smith Canonical
Forms

Our goal in this appendix is to present a procedure that will eventually generate the invariant factors
decomposition of Section B.2, or equivalently the Smith canonical form of the generator matrix G(D).
This form is again:

G = AΓB , (B.1)

where we have dropped the placeholder D for notational brevity in this appendix.
The procedure is:

a. Extract the least-common multiple, φ(D) of any denominator terms by forming G̃(D) = φ(D)G(D),
thus making the elements of G(D) polynomials in f [D].

b. Use row and/or column switches to move nonzero element with lowest degree (in D) to the (1,1)
position, and keep track of the operations.

c. Use the (1,1) entry together with row and column operations to eliminate (if possible) all other
elements in the first row and column. Use only polynomials in D; you may not be able to eliminate
the element, but still try to eliminate as much of it (in terms of Dk quantities) as possible. Keep
track of the operations here also.

Example: [
D(

1 +D3
) · · · (D2)× row 1 + row 2 = D3 + (1 +D3) = 1

in (1,1) spot. – can’t do better.
(B.2)

d. If (1,1) entry is now not of the lowest degree in D, return to 2.

e. Since the (1,1) entry is now of lowest degree, repeat 2 except now move next lowest degree term
in D to (2,2). Then repeat 3.

This process, although potentially tedious, will produce the matrix of invariants. It is the same
procedure as is used to find the Smith-Macmillan form of a transfer matrix for a MIMO linear system.

Having kept track of the row and column operations, we have

Ln · · ·L2L1G̃R1R2 · · ·RM = Γ (B.3)

(G̃ is φG). Therefore,
G̃ = (· · ·L2L1)−1Γ(R1R2 · · ·)−1 = AΓB (B.4)

262

where A = (Li · · ·L2L1)−1 = L−1
1 L−1

2 · · ·L
−1
i and B = (R1R2 · · ·Rj)−1 = R−1

j R−1
j−1 · · ·R

−1
1 .

Notes:

a. (Li · · ·L2L1)−1 and (R1R2 · · ·Rj)−1 exist because each Li and Ri must be individually unimodular,
with determinant 1; so the determinants of the products (· · ·L2L1) and (· · ·R1R2) are also 1; so
the inverses exist and all elements are polynomials in D, provided we used only polynomials (and
not polynomial fractions) in 3.

b. In G = AΓB = (L−1
1 · · ·L

−1
i)Γ(R−1

j · · ·R
−1
1) A and B are not unique; what one comes up with

depends upon the order of operations in 2-5. But Γ is unique for G.

c. Matrix inversions when elements are binary-coefficient polynomials are easy - just calculate the
determinants of the adjoints, since the denominator determinant is 1 (re: Cramer’s Formula for
inverses).

EXAMPLE B.1.1 (Example 10.4 of Section 10.1) Let

G(D) =

 1 0 0 0

0 1 0 D2

1+D3

0 0 1 D
1+D3

 =
1

1 +D3

 1 +D3 0 0 0
0 1 +D3 0 D2

0 0 1 +D3 D

 . (B.5)

So we begin with

G̃(D) =

 1 +D3 0 0 0
0 1 +D3 0 D2

0 0 1 +D3 D

 (B.6)

The term of lowest degree is D, so swap rows 1 and 3; columns 1 and 4: i.e.

 0 0 1
0 1 0
1 0 0

 G̃(D)


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 = L1G̃R1 (B.7)

=

 D 0 1 +D3 0
D2 1 +D3 0 0
0 0 0 1 +D3

 (B.8)

Note that

L1 =

 0 0 1
0 1 0
1 0 0

 swaps rows 1 & 3 and (B.9)

R1 =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 swaps columns 1 & 4 (B.10)

Now try to eliminate the remaining entries in column 1 D 0 1 +D3 0
D2 1 +D3 0 0
0 0 0 1 +D3

 (B.11)

⇒ row 2 → row 2 + D row 1

L2 =

 1 0 0
D 1 0
0 0 1

 (B.12)

263

which gives  D 0 1 +D3 0
0 1 +D3 D(1 +D3) 0
0 0 0 1 +D3

 . (B.13)

Now eliminate entries in row 1, by ⇒ column 3 → column 3 + D2 (not D
1+D3 , as we must

have a f [D] matrix) × column 1

R2 =


1 0 D2 0
0 1 0 0
0 0 1 0
0 0 0 1

 (B.14)

produces  D 0 1 0
0 1 +D3 D(1 +D3) 0
0 0 0 1 +D3

 (B.15)

Move the (1,3) element to (1,1), since it is now the nonzero element with lowest degree in D.

column 1 ↔ column 3

R3 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 (B.16)

gives  1 0 D 0
D(1 +D3) 1 +D3 0 0

0 0 0 1 +D3

 (B.17)

⇒ row 2 → row 2 + D(1+D3) × row 1

L3 =

 1 0 0
D(1 +D3) 1 0

0 0 1

 (B.18)

and
⇒ column 3 → column 1 ·D + column 3

R4 =


1 0 D 0
0 1 0 0
0 0 1 0
0 0 0 1

 (B.19)

gives  1 0 0 0
0 1 +D3 D2(1 +D3) 0
0 0 0 1 +D3

 (B.20)

The (1,1) term is ”done”. We add D2 times column 2 to column 3

R5 =


1 0 0 0
0 1 D2 0
0 0 1 0
0 0 0 1

 (B.21)

gives  1 0 0 0
0 1 +D3 0 0
0 0 0 1 +D3

 (B.22)

264

The (2,2) element is also ”done”; then swap columns 3 and 4, i.e.

R6 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (B.23)

gives  1 0 0 0
0 1 +D3 0 0
0 0 1 +D3 0

 = Γ (B.24)

Therefore
L3L2L1G̃R1R2R3R4R5R6 = Γ (B.25)

L3L2L1 = L =

 0 0 1
0 1 D4

1 0 0

 (B.26)

Note order L3 L2 L1 preserves order of operations done on G̃.

A = L−1 =

 0 0 1
D4 1 0
1 0 0

 (B.27)

R1R2R3R4R5R6 = R (B.28)

B = R−1 =


0 0 D3 D
0 1 D4 D2

1 0 0 0
0 0 D2 1

 (B.29)

so G̃ = AΓB

=

 0 0 1
D4 1 0
1 0 0

  1 0 0 0
0 1 +D3 0 0
0 0 1 +D3 0




0 0 D3 D
0 1 D4 D2

1 0 0 0
0 0 D2 1

 (B.30)

Bringing back the 1
1+D3 factor,

G =

 0 0 1
D4 1 0
1 0 0

  1
1+D3 0 0 0

0 1 0 0
0 0 1 0




0 0 D3 D
0 1 D4 D2

1 0 0 0
0 0 D2 1

 = AΓB (B.31)

• Note that we have different unimodulars than in Section ?? (ok)

• the hardest part above was collecting Li, Ri; but was really more tedious than hard.

EXAMPLE B.1.2 (Example 10.1.2 in Section 10.1 continued)

G(D) =

[
1 D 0
D2 1 D

]
(B.32)

265

a. col 2 ⇒ col 2 + D × col 1

R1 =

 1 D 0
0 1 0
0 0 1

 (B.33)

gives [
1 0 0
D2 1 +D3 D

]
(B.34)

b. row 2 ⇒ row 2 + D2 × row 1

L1 =

[
1 0
D2 1

]
(B.35)

gives [
1 0 0
0 1 +D3 D

]
(B.36)

c. col 2 ⇒ col 3

R2 =

 1 0 0
0 0 1
0 1 0

 (B.37)

gives [
1 0 0
0 D 1 +D3

]
(B.38)

d. col 3 ⇒ col 3 + D2 × col 2

R3 =

 1 0 0
0 1 D2

0 0 1

 (B.39)

gives [
1 0 0
0 D 1

]
(B.40)

e. col 2 ⇒ col 3

R4 = R2 gives

[
1 0 0
0 1 D

]
(B.41)

f. col 3 ⇒ col 3 + D × col 2

R5 =

 1 0 0
0 1 D
0 0 1

 (B.42)

gives [
1 0 0
0 1 0

]
= Γ (B.43)

L = L1 =

[
1 0
D2 1

]
(B.44)

A = L−1
1 (B.45)

R = R1R2R3R4R5 =

 1 D D3

0 1 D
0 D2 1 +D3

 (B.46)

B = R−1 =

 1 D 0
0 1 +D3 D
0 D2 1

 (B.47)

Therefore

G =

[
1 0
D2 1

] [
1 0 0
0 1 0

]  1 D 0
0 1 +D3 D
0 D2 1

 (B.48)

266

B.2 Canonical Realizations of Convolutional Encoders

Section 10.1 earlier discussed equivalent encoders, for which the (output) codes were the same. Any
code can be realized by canonical encoders that have several useful properties:

a. G(D) has a feedback-free right inverse, G−1(D), an n × k matrix, such that G(D)G−1(D) = I,
that is, all entries of G−1(D) are in F [D].

b. G(D) is feedback free (G(D) also has all entries in F [D]).

c. ν is a minimum, that is ν = µ.

The structure of such encoders and the algebra to translate a non-canonical encoder into canonical form
are studied in this Section. The invariant factors decomposition of an encoder matrix G(D) will be
central to the reduction of any encoder to canonical form. The existence of and examples of this IV
decomposition will be studied in Subsection B.2.1. The minimal encoder has a minimum number of delay
elements are used in the realization. A minimal encoder will need to be delay preserving (i.e. input
sequences are not delayed), degree preserving (i.e., an interesting dual property to delay preservation for
sequences running backwards in time), and non-catastrophic – Subsection B.2.2 studies these properties
and proves the equivalence of these properties to a minimal encoder. The construction of such minimal
encoders is nontrivial and requires a two step procedure. The first step is the construction of the basic
encoder, which is developed in Subsection B.2.3. The second step that produces the minimal encoder
from a basic encoder is developed in Section B.2.4. Systematic encoders can also be found when the
property that the encoder be feedback free is eliminated. The canonical systematic encoder with feedback
is constructed in Subsection B.2.5.

B.2.1 Invariant Factors

The invariant factors for G(D) are analogous to the singular values of a real matrix. These factors
specify some of the most important structural aspects of the convolutional code. All entries in G(D)
will be elements in the set (ring) of all binary polynomials in F [D], that is no feedback. Any G(D) with
entries in Fr(D) can be transformed to another feedback-free encoder by premultiplying the original
generator by A = φ(D)I (A ∈ F (D)), where φ(D) is the least common multiple of all the feedback
polynomials used in the original generator. This premultiplication will not change the codewords. When
all elements of G(D) are in F [D], there exists an invariant factors decomposition of G(D). The
ensuing development drops the D from notation to simplify notation.

Theorem B.2.1 (Invariant Factors Theorem) Let G be a k × n matrix of polynomials
in F [D], then

G = AΓB (B.49)

where

a. A and B are square k× k and n× n F [D] matrices with unit determinants |A| = 1 and
|B| = 1, respectively, that is they are unimodular.

b. A−1 and B−1 are also square F [D] matrices.

c. Γ is a k × n matrix with the following structure:

Γ =


γ1 0 ... 0 0 ... 0
0 γ2 ... 0 0 ... 0
...

...
. . .

...
...

. . .
...

0 0 ... γk 0 ... 0

 . (B.50)

d. γi ∈ f [D] are the unique invariant factors for G(D) and

γi =
∆i

∆i−1
. (B.51)

267

e. ∆i is the greatest common divisor (GCD) of all determinants of i × i submatrices of
G(D), with ∆0 = 1.

f. γi divides γi+1, that is γi is a factor of γi+1.

Proof: Any A (B) with |A| = 1 can be represented as a product of matrices that is equiv-
alent to a series of elementary row (column) operation (examples of the procedure generally
described in this proof appear in Appendix B), each such operation being in one of the
following two forms:

• interchange rows (columns)

• linear combination of rows (columns) such that |A| = 1 (|B| = 1).

i). If G is not already diagonal, let α and β be elements in the same column where α does
not divide β (if it always did, there would have to be a β in some other column that could be
added to the present column to make β not divisible by α, or the dimensionality would be
less than k, which violates our original restriction that G(D) be of rank k; or the code would
be a rate 1/n code that can be trivially put into invariant-factors form). Let ∆ = GCD(α, β)
be the greatest common divisor of α and β.
ii). Then the procedure finds x and y, both in F [D], such that αx+βy = ∆, and does elemen-
tary column and/or row interchanges (always unimodular) and one additional unimodular
transformation of the form x y 0

− β
∆

α
∆ 0

0 0 I

 α
β

 =

 ∆
0

 (B.52)

iii). IF ∆ divides all other elements in the matrix (for instance if ∆ = 1, as it often does),
then zero the remainder of the first row and column with[

1 0
β
∆ 1

] [
∆
β

]
or [∆ β]

[
1 β

∆
0 1

]
(B.53)

type transformations.
OTHERWISE, repeat i). and ii) until this occurs (see also Appendix B).

Eventually this step will produce a matrix of the form

Γ1 =


γ1 0 ... 0
0
...
0

G1

 . (B.54)

iv). Repeat this process recursively for G1, then G2, ... Gk.

Results 1-6 follow from the construction.QED.

As an example of a matrix that qualifies as a unimodular A matrix:

A =

[
1 1 +D
1 D

]
; |A| = D +D + 1 = 1 (B.55)

A−1 =

[
D 1 +D
1 1

]
; |A−1| = D +D + 1 = 1 . (B.56)

EXAMPLE B.2.1 (4-state r = 1/2 code from Example 10.1.1) Returning to the ear-
lier 4-state G = [1 +D +D2 1 +D2] example, ∆0 = ∆1 = 1, so γ1 = 1:

G =
[
1 +D +D2 1 +D2

]
(B.57)

= [1] · [1 0]

[
1 +D +D2 1 +D2

a(D) b(D)

]
(B.58)

= AΓB . (B.59)

268

The values of a(D) and b(D) are such that |B| = 1. To get |B| = 1, let a(D) = a0+a1D+a2D
2

and b(D) = b0 + b1D + b2D
2. Then

a(D)
(
1 +D2

)
+ b(D)

(
1 +D +D2

)
= 1 . (B.60)

Equating terms in D0 ... D4 yields:

D0 : a0 + b0 = 1 or a0 = b̄0 , so let b0 = 0 a0 = 1 (B.61)

D1 : a1 + b0 + b1 = 0 or a1 = b1 , so let b1 = 1 a1 = 1 (B.62)

D2 : a0 + a2 + b0 + b1 + b2 = 0 or a2 = b2 , so let b2 = 0 a2 = 0 (B.63)

D3 : a1 + b1 + b2 = 0 , checks (B.64)

D4 : a2 + b2 = 0 , checks (B.65)

So then,
a(D) = 1 +D b(D) = D (B.66)

is a valid solution for the B matrix, and

G = AΓB = [1] · [1 0]

[
1 +D +D2 1 +D2

1 +D D

]
(B.67)

The invariant factor decomposition was readily obtained for this example. The complicated
construction in the proof was not necessary. This is usually the case. However, sometimes
a regular method of the form of the proof is necessary, and this method is illustrated in
Appendix B.

EXAMPLE B.2.2 (8-state Ungerboeck code revisited) Continuing with the 8-state,
r = 2/3, convolutional code of Example 10.1.2, ∆0 = ∆1 = ∆2 = 1, so γ1 = γ2 = 1 for the
generator matrix

G =

[
1 D 0
D2 1 D

]
(B.68)

=

[
1 0
0 1

] [
1 0 0
0 1 0

] 1 D 0
D2 1 D
a(D) b(D) c(D)

 (B.69)

The quantities a(D), b(D), and c(D) satisfy

c(D) + b(D) ·D +D
[
c(D) ·D2 +D · a(D)

]
= 1 . (B.70)

Let c(D) = 1 to satisfy the D0 constraint. Then

b(D) ·D +D3 +D2a(D) = 0 (B.71)

Then a solution is a(D) = 1 and b(D) = D2 +D, leaving

G =

[
1 0
0 1

] [
1 0 0
0 1 0

] 1 D 0
D2 1 D
1 D +D2 1

 (B.72)

The third example encoder cannot be decomposed by IVT directly because that 8-state, r = 3/4
encoder had feedback. This section extends the concept of invariant factors before proceeding to decom-
pose G with feedback. Multiplication by φ(D), as described earlier, clears the denominators (eliminates
feedback).

269

Extended Invariant Factors Let a more general G(D) have rational fractions of polynomials as
entries, that is the elements of G(D) are in Fr(D). Then,

ϕG = AΓ̃B (B.73)

where ϕ is the least common multiple of the denominators in G, thus permitting the invariant factors
decomposition as shown previously on ϕG. Then

G = A
Γ̃

ϕ
B = AΓB , (B.74)

where Γ = Γ̃
ϕ is in Fr(D), but A and B are still in F [D]. We let

γi =
αi
βi

, (B.75)

where αi and βi are in F [D]. Since γi divides γi+1, then αi divides αi+1 and βi+1 divides βi.

EXAMPLE B.2.3 (8-state Ungerboeck code with feedback revisited) Returning to
the third earlier example,

G =

 1 0 0 0

0 1 0 D2

1+D3

0 0 1 D
1+D3

 (B.76)

Since u3(D) = v4(D), the nontrivial portion of the encoder simplifies to have generator

G =

[
1 0 D2

1+D3

0 1 D
1+D3

]
(B.77)

The LCM of the denominators is ϕ = 1 +D3, so

G̃ = ϕG =

[
1 +D3 0 D2

0 1 +D3 D

]
. (B.78)

The GCD’s for G̃ are
∆̃0 = ∆̃1 = 1 , ∆̃2 = 1 +D3 , (B.79)

and
γ̃1 = 1 , γ̃2 = 1 +D3 . (B.80)

So,

Γ̃ =

[
1 0 0
0 1 +D3 0

]
(B.81)

It is desirable for the bottom row of G̃ to be proportional to 1 + D3. Adding D times the
bottom row to the top row and interchanging rows accomplishes this proportionality:

G̃1 = A1G̃ =

[
0 1
1 D

]
G̃ =

[
0 1 +D3 D

1 +D3 D(1 +D3) 0

]
. (B.82)

Then

G̃1 =

[
1 0
0 1

] [
1 0 0
0 1 +D3 0

] 0 1 +D3 D
1 D 0
a b c

 (B.83)

For unimodular B,
D · c+ (1 +D3) · c+D(b+ aD) = 1 (B.84)

270

k	
 	
 	
 b	
 i	
 t	
 s	

A	

k	
 	
 	
 ×	

	
 	
 k	

S	
 c	
 r	
 a	
 m	
 b	
 l	
 e	
 r	

γ	

1	

γ	

2	

γ	

k	

γ	

k	
 -­‐	
 1	

0	

0	

B	

S	
 c	
 r	
 a	
 m	
 b	
 l	
 e	
 r	

n	
 	
 	
 ×	

	
 	
 n	

v	

n	
 	
 	
 b	
 i	
 t	
 s	

u	

Figure B.1: Scrambler interpretation of IVT.

and c = 1 +D, b = 1, a = D(1 +D) is a solution. Then, G̃ = A−1
1 G̃1

G̃ =

[
D 1
1 0

] [
1 0 0
0 1 +D3 0

] 0 1 +D3 D
1 D 0

D(1 +D) 1 1 +D

 (B.85)

or that

G =

[
D 1
1 0

] [
1

1+D3 0 0

0 1 0

] 0 1 +D3 D
1 D 0

D(1 +D) 1 1 +D

 (B.86)

The rate 3/4 G with feedback is

G =

 1 0 0
0 D 1
0 1 0

 1 0 0 0
0 1

1+D3 0 0

0 0 1 0




1 0 0 0
0 0 1 +D3 D
0 1 D 0
0 D(1 +D) 1 1 +D

 . (B.87)

The true IVT form requires reversal of the first and second diagonal entries to:

G =

 0 1 0
D 0 1
1 0 0

 1
1+D3 0 0 0

0 1 0 0
0 0 1 0




0 0 1 +D3 D
1 0 0 0
0 1 D 0
0 D(1 +D) 1 1 +D

 . (B.88)

Scrambler Interpretation of the Invariant Factors Decomposition of G A physical interpre-
tation of the Invariant Factors Decomposition is illustrated in Figure B.1. The input uk can be any
k-dimensional sequence of bits and since A is nonsingular, its output can also be any k-dimensional
sequence - all the A matrix does is “scramble” the input bits, but otherwise does not affect the code.
The same can be said of the Γ matrix. Thus the code generator vectors are thus the first k rows of
B, call it Gb. This code is in F [D] and is thus free of feedback, and is equivalent to the original code.
Additionally since B−1 ∈ F [D], the first k columns of B−1 constitute a feedback-free inverse for Gb.

The effect of additional unitary factors in the matrix B only effects the labeling of the n-dimensional
axes of the codewords, but otherwise the critical code parameters, the distances between codewords and
the number of codewords at each distance, remain the same.

271

Tests for a Noncatastrophic Code The following theorem describes two equivalent tests for a
noncatastrophic test that derive from the invariant factors decomposition (and avoid searching the state
transition diagram for distance-zero loops):

Theorem B.2.2 (Catastrophic Tests) The following three statements are equivalent:

a. An encoder corresponding to a k × n generator G(D) is noncatastrophic.

b. The numerators αi, i = 1, ..., k of the invariant factors γi are of the form Dm, m ≥ 0 ∈
Z, (powers of D).

c. The greatest common divisor of the k × k determinants of ϕG(D) is equal to Dδ for
some δ ≥ 0.

d. G−1(D) is feedback free.

Proof:
(1) ⇒ (2): By contradiction, assume αk 6= Dm, then let u(D) = γ−1

k ekA
−1, where ek =

[0 , ..., 0 1], which is an input sequence of necessarily infinite weight. Then, u(D)G(D) = ekB
is of finite weight (since B ∈ F [D]), and thus by contradiction αk = Dm.
(2) ⇒ (3): The proof follows directly from the definition of αi.
(3)⇒ (4): G−1 = B−1Γ−1A−1. Since B−1, A−1 have all elements in F [D], they are feedback
free, and since α = Dm, then Γ−1 is also feedback free.
(4)⇒ (1): If we take any finite weight code sequence v(D) and apply to the inverse invariant
factors, v(D)B−1Γ−1A−1 ∈ F [D], then we must have a corresponding input of finite weight.
QED.

B.2.2 Minimal Encoders

A minimal encoder, G(D) ∈ f [D], has a minimum number of delay elements in the obvious realization.
A minimal encoder is generated by finding an equivalent encoder that has the property that all its
elements are in F [D]. A more physical interpretation of the minimal encoder is that it preserves the
length (noncatastrophic, finite → finite, infinite → infinite), as well as degree and delay of a sequence.
The justification for this assertion will become more clear as this section proceeds.

A precise definition of a delay-preserving convolutional encoder follows:

Definition B.2.1 (Delay-Preserving Generator) A delay-preserving generator is such
that that for any u(D) ∈ Fk, del(u) = del(uG).

The constant matrix G0 = G(0) corresponding to the zeroth power of D in G(D) must be nonzero
for delay to be preserved. More formally:

Lemma B.2.1 The following are equivalent statements for an encoder G(D) in F [D], or
G(D) =

∑ν
m=0GmD

m:

a. G(D) preserves the delay of Laurent sequences, del(u) = del(uG) ∀ u(D) ∈ Fk.

b. The k × n matrix of constant coefficients, G0, has rank k.

c. G(D) has a causal right inverse, G−1(D), in F (D).

Proof:
(1)⇒ (2): By contradiction, we assume that the rank of G0 is less than k. Then there exists
a constant sequence u(D) = u0 such that u0G0 = 0. Then 0 = del(u0) 6= del(u0G(D)) = 1
is a contradiction, so that G0 must be of full rank k.
(2) ⇒ (3): We augment the rank-k G0 to an n × n constant matrix Ḡ0 that is of rank n,
by adding constant rows to the bottom of G0. Then, we can also add these same rows to
the bottom of G(D) to get Ḡ(D), which can be written as Ḡ(D) = Ḡ0 + DḠ′(D), where
Ḡ′(D) is some n × n matrix with entries in F [D]. Ḡ(D) has a simple matrix inverse given

by Ḡ−1(D) =
(
In +DḠ−1

0 Ḡ′(D)
)−1

Ḡ−1
0 , which is a matrix with no factors of D in the

272

denominator, so it must therefore be causal (starts at time zero or after). Thus, the first k
columns of Ḡ−1(D) form a causal right inverse for G(D). (Note the last (n − k) columns
form a causal parity matrix H(D) also).
(3) ⇒ (1): If G(D) has a causal right inverse G−1(D), then u(D)G(D)G−1(D) = u(D).
Since G−1(D) is causal, it cannot reduce the delay, so that del(u) = del(uG).
QED.

Study the degree-preserving property of a generator G(D) “reverses time” by defining

G̃(D−1)
∆
=


D−ν1 0 ... 0

0 D−ν2 ... 0
.
0 0 ... D−νk

G(D) , (B.89)

which can be written as G̃(D−1) =
∑ν
m=0 G̃mD

−m. The quantity νi is the same for both G(D) and

G̃(D−1), i = 1, ..., k, and the entries in G̃(D−1) are in F [D−1], if the entries in G(D) are in F [D].

Lemma B.2.2 The following are equivalent statements for an encoder G̃(D−1) in F [D−1],
for which G̃(D) =

∑ν
m=0 G̃mD

−m, as above:

a. G̃(D−1) preserves the degree of anti-Laurent sequences, deg(u) = deg(uG̃) ∀ u(D) ∈
F ((D−1))k.

b. The k × n matrix of constant coefficients, G̃0, has rank k.

c. G̃(D−1) has an anticausal right inverse, G̃−1(D−1), in F (D−1).

Proof: Essentially the same as for Lemma B.2.1.

Definition B.2.2 (Degree-Preserving Generator) A degree-preserving generator is
such that that for all finite-length u(D),

deg(uG) = max
1≤j≤k

[deg(uj) + νj] . (B.90)

G(D) is degree preserving if G̃ preserves the degree of anti-Laurent sequences, as in Lemma B.2.2.
The conditions necessary for a minimal encoder are:

Theorem B.2.3 (Minimal Encoders) An encoder G(D) is minimal if and only if all three
of the following conditions are met:

a. G(D) is delay preserving (or G0 has rank k).

b. G(D) is degree preserving (or G̃0 has rank k).

c. G(D) is non-catastrophic.

Proof:
First we show that a minimal encoder must satisfy the 3 conditions listed in the theorem:
condition 1: (by contradiction). Assume the rank of G0 is less than k, then ∃ u0, a constant
vector, such that u0G0 = 0. For those rows of G(D) corresponding to nonzero elements of the
constant vector u0, let j correspond to the the one with largest degree, νj . We can replace
row j of G(D) by any linear combination of rows in G(D) that includes a nonzero multiple
of row j. The choice of this linear combination to be D−1u0G(D) reduces the degree of this
row and yet still produces an equivalent encoder. Thus, the original encoder could not have
been minimal, and by contradiction, G(D) must be delay preserving.
condition 2: (by contradiction). Assume the rank of G̃0 is less than k, then ∃ u0, a constant
vector, such that u0G̃0 = 0. For those rows of G̃(D) corresponding to nonzero elements of
the constant vector u0, let j correspond to the the one with largest degree, νj . Row j in G(D)
can be replaced by any linear combination of rows in G(D) that includes a nonzero multiple

273

of row j. Let us define an input ũ(D) = [uk,0D
νj−ν1 uk−1,0D

νj−ν2 ... u1,0D
νj−νk], whose

elements are in F [D]. The linear combination ũ(D)G(D) is an n-vector in F [D] of degree no
more than νj−1. The replacement of row j in G(D) by this n-vector reduces the complexity
of the encoder G(D), but still maintains an equivalent encoder. Thus, the original encoder
could not have been minimal, and by contradiction, G(D) must also be degree preserving.
condition 3: (by contradiction). Let u(D) be some infinitely long sequence that produces
a finite-length output v(D) = u(D)G(D). Then we can write v(D) =

∑s
m=r vmD

m. If
some of the nonzero elements of u(D) were of finite length, then they could only affect a
finite number of output codewords (since G(D) ∈ F [D]) so that they could not change the
output v(D) to be of infinite length (or weight). Thus, we can ignore all nonzero elements
of u(D) that have finite weight or length. For those rows of G(D) corresponding to nonzero
elements of the constant vector u0 = u(D) |D=0, again let j correspond to the the one with
largest degree, νj . The successive removal of finitely many terms urD

r, ur+1D
r+1, ...uτD

τ

by altering the input sequence produces a corresponding output codeword v′(D) such that
deg(v′) < νj (that is “the denominator” of u(D) must cancel the “numerator” of G(D) ex-
actly at some point, so that degree is reduced). The replacement of row j by this codeword
produces an encoder with lower complexity, without changing the code. Thus, the original
encoder could not have been minimal, and by contradiction, a minimal encoder must also be
non-catastrophic.

Second, we prove that the 3 conditions are sufficient to ensure a minimal encoder. When con-
ditions 1,2, and 3 apply, len(gi) = deg(gi)−del(gi)+1 = νi+1 (gi(D) is the row vector corre-
sponding to the ith row ofG(D)), since del(gi) = 0. Also, len(uG) = max1≤j≤k [len(uj) + νj].
Since the minimal encoder, call it Gmin, is equivalent to G, we have that Gmin(D) = AG(D),
where A is an invertible matrix with entries in F (D). We call the ijth entry (row i, column
j) aij(D), and the ith row of A, ai(D). Then, for any row i of Gmin(D)

len(gmin,i) = len(aiG) = max
1≤j≤k

[len(aij) + νj] ≥ max
j

(νj) (B.91)

from which we infer by summing over i, that µ ≥ ν; but since Gmin is already minimal,
µ = ν, and therefore G(D) is minimal. QED.

B.2.3 Basic Encoders

Basic coders are used as an intermediate step on the way to deriving a minimal encoder.

Definition B.2.3 (Basic Encoder Properties) An encoder is a basic encoder if

a. G(D) preserves delay for any u(D) ∈ Fk.

b. If v(D) ∈ (F [D])
n

and finite weight, then u(D) ∈ (F [D])
k

and wH(u) is finite (that is
the code is not catastrophic).

A minimal encoder is necessarily basic. A basic encoder is minimal if the encoder preserves degree.
Through the following theorem, a basic encoder has αk = 1, the numerator of the last invariant factor
γk is one). αk = 1 also implies that αi = 1 i = 1, ..., k.

Theorem B.2.4 (Basic Encoders) An encoder is basic if and only if αk = 1 in the in-
variant factors decomposition .

Proof: First, we proof that if αi = 1, then the encoder is basic: When αi = 1, then
γ−1
i = βi ∈ F [D], and therefore G−1 = B−1Γ−1A−1 has entries in F [D] (that is a feedback-

free inverse). Then for any finite weight v(D), then v(D)G−1(D) = u(D) must also be of
finite weight, so that the encoder is non-catastrophic. If G(D) is not delay preserving, then
there exists a u0 such that u0G0 = u0A0Γ0B0 = 0, and at least one αi must be zero. Thus,
by contradiction, G(D) is delay preserving.

274

Second, we proof that if the encoder is basic, then αi = 1. By contradiction, assume αk 6= 1,
then either αk = Dm m > 0 or αk = 1 + α′(D) with α′(D) 6= 0. In either case, pick an
input u(D) = γ−1

k εkA
−1, where εk = [0 , ..., 0 1]. If αk = 1 + α′, then wH(u) = ∞, but

u(D)G(D) = bk ∈ F [D], so the encoder is catastrophic. Thus, by contradiction in this
case, then α 6= 1 + α′. If αk = Dm, and noting that the last row of A−1 must have at
least one term with degree zero (otherwise |A| 6= 1), then del(u) = −m, m > 0. However,
the corresponding output bk can have delay no smaller than 0, so by contradiction (with
the delay-preserving condition) m = 0. Thus, as both possibilities for αk 6= 0 have been
eliminated by contradiction, αi = 1. QED.

The following theorem shows that every convolutional encoder is equivalent to a basic encoder.

Theorem B.2.5 (Basic Encoder Equivalent) Every encoder G is equivalent to a basic
encoder.

Proof: We use the invariant factors decomposition G = AΓB and denote the ith row of B
by bi. We note that for any particular codeword v0 that

v0 = u0G (B.92)

= (u0AΓ)B (B.93)

=

n∑
i=1

(u0AΓ)i bi (B.94)

=

k∑
i=1

(u0AΓ)i bi (B.95)

= u1G0 (B.96)

since (u0AΓ)i = 0 ∀ i > k. Since this is true for any v0, the original code is equivalent to
G0, a basic encoder (invariant factors decomposition is I[I 0]B).

Conversely, we can show G0 is equivalent to the original encoder G by writing v1 = u1G0 =
[u1 0...0]B. Thus v1 = (u0AΓ)B = u0G, where u0 = u1Γ−1A−1. QED.

Essentially, the last theorem extracts the top k rows of B in the invariant factors decomposition to
obtain a basic equivalent encoder. Also, the last (n − k) columns of B−1 form a parity matrix for the
code.

B.2.4 Construction of Minimal Encoders

The construction of the minimal encoder from the basic encoder is contained within the proof of the
following result:

Theorem B.2.6 (Construction of the Minimal Encoder) Every basic encoder G (∈
F [D]) is equivalent to the minimal encoder Gmin through a transformation A such that
|A| = 1 (A is unimodular).

Proof:
In order to obtain a minimal encoder from a basic encoder, we need the additional property
that G̃0 has rank k. If this property is not yet satisfied by the basic encoder, then we find
u0, a constant vector, such that u0G̃0 = 0. Among all rows of G(D) that correspond to
nonzero components of u0, let j correspond to the one with largest degree. The replacement
of gj(D) by

∑k
i=1 ui,0D

νj−νigi(D) produces a new gj that has degree less than νj . This
replacement can be performed by a series of row operations with |A| = 1. This replacement
process continues until the resulting G̃0 has full rank k. QED.

When G̃0 has full rank k, all k × k determinants in G̃0 are nonzero. This is equivalent to stating
that the maximum degree of all the k × k determinants of G(D) is equal to µ, when G(D) is minimal.

275

⊕	

 ⊕	

⊕	

D	

D	

v	
 1	
 ,	
 m	

v	
 2	
 ,	
 m	

⊕	

u	
 2	
 ,	
 m	

v	
 3	
 ,	
 m	

G	
 	
 	
 =	
 	
 	
 1	
 +	
 D	

D	

D	

1	
 +	
 D	

1	

0	

ν	

=	
 2	

µ	

=	
 1	

D	
 ⊕	

⊕	

v	
 1	
 ,	
 m	

µ	

=	
 1	
 G	
 	
 	
 =	
 	
 	
 1	

D	

1	

1	
 +	
 D	

1	

0	

ν	

=	
 1	

n	
 o	
 n	
 -­‐	
 m	
 i	
 n	
 i	
 m	
 a	
 l	
 	
 	
 e	
 n	
 c	
 o	
 d	
 e	
 r	
 e	
 q	
 u	
 i	
 v	
 a	
 l	
 e	
 n	
 t	
 	
 	
 m	
 i	
 n	
 i	
 m	
 a	
 l	
 	
 	
 e	
 n	
 c	
 o	
 d	
 e	
 r	

u	
 1	
 ,	
 m	

u	
 1	
 ,	
 m-­‐1	

()Dv1

()Dv3

()Dv2

()Du1

()Du1

()Du2

()Du2
u	
 2	
 ,	
 m	

u	
 1	
 ,	
 m	
 v	
 3	
 ,	
 m	

v	
 2	
 ,	
 m	

()Dv1

()Dv3

()Dv2

Figure B.2: Example 1 - a non-minimal encoder.

Since these determinants also are invariant to elementary row and column operations, then µ = max
degree of the k × k determinants in any basic encoder. This also tells us the number of times (ν − µ)
that the reduction procedure in the previous proof may have to be applied before we obtain a full rank
G̃0. This later result (k × k determinants) is sometimes quicker to check than forming G̃ and finding
G̃0. The parity matrix forms a dual code, and if we also find the minimal realization of the dual code,
then the degree of the minimal generator Hmin(D), which is also the parity matrix must be the same
as the degree of Gmin(D).

As an example, consider the encoder in Figure B.2. There,

G =

[
1 +D D 1
D 1 +D 0

]
. (B.97)

For this encoder, ν = 2, but that µ = 1 (from rank of G̃0 = 1, indicating that this basic encoder is not
minimal. Thus,

G̃ =

[
1 +D−1 1 D−1

1 1 +D−1 0

]
, (B.98)

and the linear combination f = [1 1] (adding the rows) produces fG̃ = [D−1 D−1 D−1]. The replacement
of G̃ by

G̃ =

[
D−1 D−1 D−1

1 1 +D−1 0

]
, (B.99)

and conversion to Gmin, by multiplying by D, produces

Gmin =

[
1 1 1
D 1 +D 0

]
. (B.100)

The corresponding minimum equivalent encoder is also shown in Figure B.2.
As another example, consider

G =

[
1 D 0
0 1 +D3 D

]
, (B.101)

276

which is basic, but ν = 4 and µ = 3. Note this example is illustrated in Appendix B, as the alternative
“Smith Canonical Form” of Example (10.1.2) in this chapter. Then,

G̃ =

[
D−1 1 0

0 1 +D−3 D−2

]
, (B.102)

and again f = [1 1] so that fG̃ = [D−1 D−3 D−2] and thus our new G̃ is

G̃ =

[
D−1 1 0
D−1 D−3 D−2

]
, (B.103)

leaving a minimal encoder

G =

[
1 D 0
D2 1 D

]
, (B.104)

with µ = ν = 3, which was the original encoder!
As another example uses the Smith Canonical Form for the last example of Appendix B:

G =

 0 1 +D3 0 D
1 0 0 0
0 D4 1 D2

 , (B.105)

which is non-minimal with ν = 7 and µ = 3.
Then

G̃ =

 0 1 +D−3 0 D−2

1 0 0 0
0 1 D−4 D−2

 , (B.106)

and f = [1 0 1] and fG̃ = [0 D−3 D−4 0]. The new G̃ is then

G̃ =

 0 1 +D−3 0 D−2

1 0 0 0
0 D−3 D−4 0

 , (B.107)

(where the factor D−3 could be divided from the last row by returning to G through multiplication by
D7, and then realizing that the encoder is still not minimal and returning by multiplying by D4) and
another f = [1 0 1] with fG̃ = [0 D−3 D−1 D−2]. The final G̃ is then

G̃ =

 0 D−3 D−1 D−2

1 0 0 0
0 1 D−1 0

 , (B.108)

leaving the final minimal encoder as

G =

 0 1 D2 D
1 0 0 0
0 D 1 0

 , (B.109)

for which µ = ν = 3, which is not the same as our minimal encoder for this example in Section ??, but
is nevertheless equivalent to that encoder.

B.2.5 Canonical Systematic Realization

Every encoder is also equivalent to a canonical systematic encoder, where feedback may be necessary to
ensure that the encoder realization is systematic. Systematic codes are (trivially) never catastrophic.

The canonical systematic encoder is obtained by following these 3 steps:

a. Find the minimal encoder

277

b. Every k × k determinant cannot be divisible by D (otherwise G0 = 0, and the encoder would not
be minimal) – find one that is not.

c. Premultiply Gmin by the inverse of this k × k matrix.

As an example, we again return to Example (10.1.2), where

G =

[
1 D 0
D2 1 D

]
. (B.110)

The first two columns are

M =

[
1 D
D2 1

]
, (B.111)

with inverse

M−1 =

[
1 D
D2 1

]
1 +D3

, (B.112)

so that Gsys = M−1Gmin, or

Gsys =
1

1 +D3

[
1 +D3 0 D2

0 1 +D3 D

]
=

[
1 0 D2

1+D3

0 1 D
1+D3

]
, (B.113)

which is Example (10.4), ignoring the pass-through bit.
Our last example begins with the rate 3/4 encoder:

G =

 0 1 D2 D
1 0 0 0
0 D 1 0

 . (B.114)

If we denote the left-most 3× 3 matrix by M , then

M−1 =
1

1 +D3

 0 1 +D3 0
1 0 D2

D 0 1

 . (B.115)

Then

Gsys =
1

1 +D3

 0 1 +D3 0
1 0 D2

D 0 1

 0 1 D2 D
1 0 0 0
0 D 1 0

 (B.116)

=
1

1 +D3

 1 +D3 0 0 0
0 1 +D3 0 D
0 0 1 +D3 D2

 (B.117)

=

 1 0 0 0
0 1 0 D

1+D3

0 0 1 D2

1+D3

 . (B.118)

278

Appendix C

Lattices

The theory of coset codes depends heavily on the concept of a lattice:

Definition C.0.4 (Lattice) A lattice, Λ, is an N -dimensional group of points that is
closed under addition in that the sum of any two points in the group is also a point in
the group. Lattice addition is presumed to be real vector addition where used in this text.

Any constellation that is a subset of Λ is also denoted by Λ (in a slight abuse of notation),
and the number of constellation points in such a Λ is written |Λ|.

Examples of lattices include, Z, the (one-dimensional) set of integers; Z2, the two-dimensional set of

all ordered-pairs of any two integers, Z2 ∆
= {(x1, x2)|x1 ∈ Z, x2 ∈ Z}; ZN , the N -dimensional integer

lattice, and D2, a two-dimensional lattice that is formed by taking “every other point” from Z2 (that is
take the points where x1 + x2 is a even integer). Λ′ is a sublattice of Λ, where a sublattice is defined as

Definition C.0.5 (Sublattice) A sublattice Λ′ of a lattice Λ is an N -dimensional lattice
of points such that each point is also a point in Λ.

Definition C.0.6 (Coset of a Lattice) A coset of a lattice is an N -dimensional set of
points, written Λ + c, described by the translation

Λ + c
∆
=
{
x | x′ + c ; x′ ∈ Λ , c ∈ RN

}
, (C.1)

where RN is the N -dimensional set of vectors with real components.

A sublattice Λ′ partitions its parent lattice Λ into a group of cosets of Λ′ whose union is λ. The
partitioning is written Λ/Λ and the set of all cosets as [Λ/Λ]. The number of subsets is called the order
of the partition, |Λ/Λ′| and thus

Λ = {λ+ c|λ ∈ Λ′ , c ∈ [Λ/Λ]} . (C.2)

A partition chain is formed by further partitioning of the sublattice into its sublattices and can be
abbreviated:

Λ/Λ′/Λ′′ . (C.3)

As a simple example of partitioning in two dimensions

Z2/D2/2Z
2/2D2/4Z

4... (C.4)

Each subsequent partition has order 2, that is there are two cosets of the sublattice to form the immediate
parent lattice. Also, a four-way partition would be Z2/2Z4 which has |Z2/2Z4| = 4 and

[
Z2/2Z4

]
=

{(0, 0), (1, 0), (0, 1), (1, 1)}. More sophisticated lattices in two and higher dimensions are introduced
and used in Sections 10.5 and code6.

279

C.1 Elementary Lattice Operations

The cartesian product of one lattice with another has dimensionality equal to the sum of the dimen-
sionality of the original two lattices and is formed (as was defined in Chapter 1) by taking all possible
points in the first lattice and pairing them with each and every point in the second lattice. This is
typically written

Λ1 ⊗ Λ2 = {(λ1, λ2) | λ1 ∈ Λ1 , λ2 ∈ Λ2} . (C.5)

An important special case of the cartesian product for lattices is the so-called squaring construction:

Definition C.1.1 (Squaring Construction) The squaring construction, performed on
a lattice Λ, is given by

Λ2 ∆
= Λ⊗ Λ , (C.6)

that is, the (cartesian) product of Λ with itself.

Examples of the squaring construction are Z2 = Z ⊗ Z, Z4 = Z2 ⊗ Z2, and Z8 = Z4 ⊗ Z4.
The cartesian product has a “distributive” property over set union:(

A
⋃
B
)
⊗
(
C
⋃
D
)

= (A⊗ C)
⋃

(A⊗D)
⋃

(B ⊗ C)
⋃

(B ⊗D) . (C.7)

The Rotation Operator RN is used to rotate a lattice when N is even.

Definition C.1.2 (Rotation Operator) The rotation operator R2 is defined by

R2
∆
=

[
1 1
1 −1

]
(C.8)

It is applied to a two-dimensional lattice Λ in the following sense:

R2Λ =

{
(x, y) |

[
x
y

]
= R2

[
λx
λy

]
3 (λx, λy) ∈ Λ

}
. (C.9)

A larger-dimensional rotation matrix is computed recursively according to

R2N =

[
RN 0
0 RN

]
. (C.10)

C.2 Binary Lattices and Codes

Binary lattices characterize most used coset codes. A lattice Λ(N, k) is a binary lattice if it can be
partioned by the lattice 2ZN . In other words, a partition chain

ZN/Λ(N,k)/2Z
N (C.11)

exists for a binary lattice. The overall partition ZN/2ZN clearly has order |ZN/2ZN | = 2N . When the
subscript (N, k) is used, then

|ZN/Λ(N,k)| = 2N−k = 2rG (C.12)

|Λ(N,k)/2Z
N | = 2k (C.13)

so that rG
∆
= N − k. The number rG is associated with the “number of parity bits” of a related

binary code, just as rG is used in Section 10.5 to characterize the number of parity bits in underlying
convolutional codes. A binary lattice may be mapped to a binary code C with generator G and rG
parity bits so that N -dimensional binary codewords v are generated from any binary input k-tuple u
according to

v = uG . (C.14)

280

Any point in the corresponding binary lattice, λ, can be constructed as

λ = v + 2ZN . (C.15)

Essentially then the 2k distinct codewords of the binary code C are the set of coset leaders in the
partition of the binary lattice Λ(N,k) by 2ZN . This may also be written as

λ = v + 2m , (C.16)

where m ∈ ZN . The mapping to a binary code can provide a simple mechanism to generate points in
the binary lattice. As discussed in Section 10.1, a dual code for the binary code is defined by a parity
matrix H for the original code. The parity matrix H has the property for any codeword v in C that

vH∗ = 0 , (C.17)

or the rows of the parity matrix are orthogonal to the codewords. The dimensionality of the matrix H
is (N − k)×N = rG ×N and defines the dual code C⊥ such dual-code codewords are generated by any
(N − k) dimensional binary vector according to

v⊥ = uH∗ . (C.18)

Any codeword in the dual code is orthogonal to all codewords in the original code and vice-versa:

v⊥v∗ = 0 . (C.19)

The dual code of a linear binary code is clearly also a linear binary code1 and thus defines a binary
lattice itself. This binary lattice is known as the dual lattice Λ⊥(N,k. There is a partition chain

ZN/Λ⊥(N,k/2Z
N , (C.20)

with

|ZN/Λ⊥(N,k| = 2k (C.21)

|Λ⊥(N,k/2Z
N | = 2N−k . (C.22)

Then, the inner product of any λ point in the original lattice is orthogonal modulo-2 to any point in the
dual lattice

λ⊥λ∗ = v⊥v∗ + 2 · (some integer vector) (C.23)

or thus (
λ⊥λ∗

)
2

= 0 . (C.24)

The notation (·)2 means modulo-2 on all components (so even integers go to zero and odd integers go
to 1). The dual lattice has 2rG cosets in 2ZN . Decoding of any binary N -vector ṽ for the closest vector
in the code C often computes an rG = (N − k)-dimensional vector syndrome s of ṽ as

s
∆
= ṽH∗ . (C.25)

The syndrome s can be any of the 2rG possible rG-dimensional binary vectors since the rank of H is rG
and ṽ can be any binary vector. The syndrome concept can be generalized to the lattice Λ(N,k) for any
N -dimensional vector in ZN because

s =
(
λ̃H∗

)
2

. (C.26)

An example of such a binary lattice in two dimensions is D2, since Z2/D2/2Z
2. The corresponding

binary code is a rate 1/2 code with rG = 1 and codewords {(0, 0), (1, 1)}. This code is its own
dual. The 2rG = 2 syndromes are the one-dimensional vectors s ∈ {0, 1}. These two one-dimensional

1If v⊥1 and v⊥2 are in C⊥, then
(
v⊥1 + v⊥2

)
v∗ = 0 and thus

(
v⊥1 + v⊥2

)
is also in C⊥.

281

BSC	

v~

H*	

s

(H-­‐1)*	

c

+	

v̂

(G-­‐1)*	

û

Figure C.1: Basic syndrome decoder.

syndromes can be found by taking any two-dimensional binary vector ṽ ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}
and multiplying by H∗ = [1 1]∗.

Any point in a coset of the partition set
[
ZN/Λ(N,k)

]
can again be written as

λ̃ = c+ λ (C.27)

where c ∈ Z2. Thus, any “received” point in the same coset of Λ(N,k) will have the same syndrome,
which is easily proven by writing

s = (c+ λ)H∗ = (c+ v + 2m)H∗ = (cH∗)2 . (C.28)

Thus, the 2rG cosets of Λ(N,k) in ZN are enumerated by any and all of the 2rG possible distinct rG-
dimensinal binary syndrome vectors of the code C, which are simply all possible rG-dimensional binary
vectors.

The rG-dimensional parity matrix H has a right inverse H−1 such that (binary operations implied)

HH−1 = IrG . (C.29)

Similarly by taking the transpose
(H−1)∗H∗ = IrG . (C.30)

Thus the 2rG N -dimensional coset leaders can be enumerated according to

c =
(
s(H−1)∗

)
2

, (C.31)

where s runs through all 2rG possible binary rG-dimensional vectors. The syndromes correspond to
the 2rG possible error vectors or offsets from actual transmitted codewords on a binary channel. After
computing the syndrome, the corresponding binary vector c that satisfies s = ṽH∗ can be computed
by Equation (C.31, then leading to v̂ = ṽ ⊕ c. If the channel is a BSC, then v̂ is the ML estimate of
the codeword (and indeed if the code is systematic, then the input is determined). For non-systematic
codes, the relationship û = v̂

(
G−1

)∗
determines the ML estimate of the input on the BSC. Figure C.1

illustrates such binary block-code decoding. Syndromes are used in the shaping codes of Section 10.7
and in binary block codes of Section 10.8.

C.2.1 Association of lattices with binary codes

Partitionings of lattices can be associated with various binary codes, some of which are well known.
This subsection lists some of those partitionings and associated codes. To describe a binary code, it will
be indicated by an ordered triple (N, k, dfree). Thus, for instance, (4,3,2) would describe a binary code
with 23 = 8 codewords of length 4 bits each and a minimum Hamming distance between the closest 2 of
2 bit positions. A code with (N,k=N,1) must necessarily be uncoded and have free distance 1. A code
with (N,0, ∞) has infinite free distance and only one codeword of all zeros.

282

One-dimensional partitioning of binary lattices

The one-dimensional partitioning chain
Z/2Z (C.32)

is somewhat trivial and corresponds to the code (1,1,1).

Two-dimensional partitioning of binary lattices

The two-dimensional partitioning chain of interest is

Z2/D2/2Z
2 (C.33)

making D2 a binary lattice associated with the code (2,1,2). The codewords of this code are [0 0] and
[1 1]. The lattice D2 can be written as

D2 = 2Z2 + u1 · [1 1]︸︷︷︸
G(2,1,2)

(C.34)

where u1 is the single input bit to the rate-1/2 linear binary code with generator GD2 = G(2,1,2) = [1 1].
Such a binary code, and thus the associated lattice, is its own dual so

HD2
= GD2

= GD⊥2 (C.35)

and
H−∗ = [0 1] (C.36)

is an acceptable left inverse for H∗.

Four-dimensional parititioning of binary lattices

The four-dimensional partitioning chain of most interest in code is

Z4/D4/R4Z
4/R4D4/2Z

4 , (C.37)

which is equivalent to the linear binary code partitioning chaing (each linear code is a linear binary-code
subset of its parent in the chain)

(4, 4, 1)︸ ︷︷ ︸
Z4

/ (4, 3, 2)︸ ︷︷ ︸
D4

/ (4, 2, 2)︸ ︷︷ ︸
R4Z4

/ (4, 1, 4)︸ ︷︷ ︸
R4D4

/ (4, 0,∞)︸ ︷︷ ︸
2Z4

. (C.38)

The generating matrices can easily be built from the bottom of the chain upward:

R4D4 = 2Z4 + u1 ·
[

1 1 1 1
]︸ ︷︷ ︸

(4,1,4)

(C.39)

R4Z
4 = 2Z4 + [u2 u1]

[
1 0 1 0
1 1 1 1

]
︸ ︷︷ ︸

(4,2,2)

(C.40)

D4 = 2Z4 + [u3 u2 u1]

 0 1 1 0
1 0 1 0
1 1 1 1


︸ ︷︷ ︸

(4,3,2)

(C.41)

Z4 = 2Z4 + [u4 u3 u2 u1]


0 0 0 1
0 1 1 0
1 0 1 0
1 1 1 1

 (C.42)

283

Each successive step adds another row to the generator for the partitioning. The dual codes also form
a “reverse” partition chain

(4, 4, 1)︸ ︷︷ ︸
Z4

/ (4, 3, 2)︸ ︷︷ ︸
(R4D4

)⊥/ (4, 2, 2)︸ ︷︷ ︸
R4Z4

/ (4, 1, 4)︸ ︷︷ ︸
D⊥4

/ (4, 0,∞)︸ ︷︷ ︸
2Z4

. (C.43)

The lattice R4D4 = (D2)2 is a self-dual and so its generator and parity matrix are the same. However,

D⊥4 = R4D4 (C.44)

(R4D4)⊥ = D4 (C.45)

and thus

HD4
= GR4D4

(C.46)

HR4D4
= GD4

. (C.47)

Eight-dimensional parititioning of binary lattices

The eight-dimensional partitioning chain of most interest in code is

Z8/D8/(D4)2/DE8/E8/R8D8/(R4D4)2/R8DE8/2Z8 , (C.48)

which is equivalent to the linear binary code partitioning chaing (each linear code is a linear binary-code
subset of its parent in the chain)

(8, 8, 1)︸ ︷︷ ︸
Z8

/ (8, 7, 2)︸ ︷︷ ︸
D8

/ (8, 6, 2)︸ ︷︷ ︸
(D4)2

/ (8, 5, 2)︸ ︷︷ ︸
DE8

/ (8, 4, 4)︸ ︷︷ ︸
E8

/ (8, 3, 4)︸ ︷︷ ︸
R8D8

/ (8, 2, 4)︸ ︷︷ ︸
(R4D4)2

/ (8, 1, 4)︸ ︷︷ ︸
R8DE8

/ (8, 0,∞)︸ ︷︷ ︸
Z8

. (C.49)

The generating matrices can easily be built from the bottom of the chain upward, starting this time
with one generator for E8 and working upward:

E8 = Z8 + [u4 u3 u2 u1] +


0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 0 1 1 0


︸ ︷︷ ︸

(8,4,4)

(C.50)

DE8 = Z8 + [u5 u4 u3 u2 u1]


0 0 0 0 0 0 1 1
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 0 1 1 0


︸ ︷︷ ︸

(8,5,2)

(C.51)

(D4)2 = Z8 + [u6 u5 u4 u3 u2 u1]


0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 1
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 0 1 1 0


︸ ︷︷ ︸

(8,6,2)

(C.52)

284

D8 = Z8 + [u7 u6 u5 u4 u3 u2 u1]



0 0 0 1 0 0 0 1
0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 1
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 0 1 1 0


︸ ︷︷ ︸

(8,7,2)

(C.53)

D8 = Z8 + [u8 u7 u6 u5 u4 u3 u2 u1]



0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1
0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 1
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 0 1 1 0


︸ ︷︷ ︸

(8,8,1)

(C.54)

These generators are not unique for any of the binary codes, but each provides a partitioning chain that
corresponds to the sequence of binary codes shown, or more generally to binary linear codes with the
correct parameters for a valid lattice partitioning chain. Thus, the rows need not match exactly those
in the partitioning sections for multi-dimensional trellis codes and lattices. The Gosset lattice is its own
dual. Also, R8DE8 is the dual of D8, (R4D4)2 would already have been known from four-dimensional
partitioning to be the dual of (D4)2. Finally, R8D8 is the dual of DE8.

C.2.2 16, 24, and 32 dimensional partitioning chains

Partitions in 16, 24, and 32 dimensions are sometimes used in advanced coset coding, but not in this
chapter. They may be binary lattices or mod-4 lattices (meaning they have 4ZN as a sub-lattice).
However, it is possible to associate binary lattice partition chains with the code partitioning

(16, 16, 1)/(16, 15, 2)/..../(16, 1, 16)/(16, 0,∞) . (C.55)

Some special lattices sometimes used in coding are

D16
∆
= 2Z16 + (16, 15, 2) (C.56)

H16
∆
= 2Z16 + (16, 11, 4) (C.57)

Λ16
∆
= 4Z16 + 2(16, 15, 2) + (16, 5, 8) (C.58)

The lattices H16 (H for “half” lattice) and Λ16 are sometimes called 16-dimensional “Barnes-Wall”

lattices and Λ16 has a coding gain 4.52 dB (21.5), while H16 has a coding gain of 2
11
8 =4.14 dB. D16 is a

16-dimensional checkerboard and has coding gain of 27/8 = 2.63 dB.
32 dimensional lattices follow the same binary linear code partitioning (now with 32 steps) with

D32
∆
= 2Z32 + (32, 31, 2) (C.59)

X16
∆
= 2Z32 + (32, 26, 4) (C.60)

H32
∆
= 4Z32 + 2(32, 31, 2) + (32, 16, 8) (C.61)

Λ32
∆
= 4Z32 + 2(32, 26, 4) + (32, 6, 16) . (C.62)

These are all also (32-dimensional) Barnes-Wall lattices wit coding gains 2
15
16 =2.82 dB, 2

13
8 =4.89 dB,

2
31
16 =5.83 dB, and 4=6.02, dB respectively.

285

There is also a 24-dimensional series of partitions in the same fashion that is of particular interest
because it contains a very special high-gain lattice Λ24 known as the Leech lattice

D24
∆
= 2Z24 + (24, 23, 2) (C.63)

X24
∆
= 2Z24 + (24, 18, 2) (C.64)

H24
∆
= 4Z32 + 2(24, 23, 2) + (24, 12, 8) (C.65)

Λ32
∆
= 4Z24 + 2(24, 18, 4) + (24, 6, 16)′ . (C.66)

the notation (24,6,16)’ means the set of all binary linear combinations modulo 4 of a set of six generators
wose coordinates are integers modulo 4. This not a binary lattice, but what is called a mod-4 lattice.
These have coding gains 2

11
12 =2.76 dB, 2

3
2 =4.52 dB, 2

23
12 =5.77 dB, and 4=6.02, dB respectively.

286

