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Chapter 12

Multi-User Fundamentals

The last 4 chapters of this text investigate the important area of multiple-user communications systems.
This chapter (12) establishes a few bounds and basic models and concepts that characterize multi-user
transmission. The goal of this chapter is establishment of a familiarity with some basic multi-user
procedures in simpler cases, with later chapters exploring more detailed implementation.

Section 12.1 begins with a definition of a user before proceeding with a discussion of the rate region,
a generalization to more than one user of Chapter 8’s capacity. Multi-user detection is also summarized
in Section 12.1. A general characterization of capacity regions c(b) concludes Section 12.1, particularly
introducing user order as a missing element in previous multi-user capacity-region characterization. The
user-order concept allows all multi-user capacity regions to be specified in terms of elementary mutual
information and set operations. Section 12.2 proceeds to the important multiple-access channels where
several users’ signals converge on a single receiver, developing successive decoding as the logical subset
of Chapter 5’s generalized decision feedback. Successive decoding can be used to simplify the general
capacity region of Section 12.1 specifically characterizing the possible sums of users’ rates that can be
achieved. A dual to the multiple-access channel is the broadcast channel of Section 12.3. Broadcast
channels transmit from a common modulator to multiple (often physically separated) receivers. Section
12.3 simplifies the capacity region for the broadcast channel. Section 12.4 concludes with interference
channels where multiple users’ signals simultaneously occupy a single channel, but both transmitters
and receivers are separated for all users.
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12.1 Multi-user Channels and Bounds

Transmission channels often accommodate more than one user. Such channels in general are called
“multi-user” channels.1 At the physical layer or modulation layer, there are 3 basic configurations of
interest: Figures 12.1, 12.2, and 12.3 illustrate respectively the multiple-access, broadcast, and interfer-
ence multi-user communication channels for U users, u = 1, ..., U . They are respectively distinguished
by coordination, or lack thereof, of users signals at the transmitter, receiver, or both. Other multi-user
channels can be represented as some combination of these 3 basic types. This text’s use of the term
“multi-user” forces all user’s transmitters to be independent of any receiver’s output (decoding) of any
user’s message. Specifically then “relay” channels are not directly considered where a chain of interme-
diate users can successively pass the same message from a first user to an ultimate intended recipient
of that message. These relay channels are instead a special case of an enlarged multi-user channel as
discussed in Section 12.1.4. This user-independent-of-receiver restriction is important as it allows a char-
acterization of the capacity region of all multi-user channels - a characterization that appears elusive
without this restriction. This section of this chapter generally characterizes the achievable data rates
(Subsections 12.1.1 and 12.1.3) and the detection methods (Subsection 12.1.2) that apply to all 3 types
of multi-user channels.

In single-user communication, the concept of a user is obvious, but there are subtleties in multi-user
communication as to what constitutes a user. In some sense, failure to recognize the importance of
definition of a user has lead many researchers to conclude that some multi-user channels (like the inter-
ference channel) have unknown bounds (or unknown capacity regions, where capacity regions are defined
in Subsection 12.1.1) – however, with the proper definition of users, these bounds can be determined as
in this chapter. A natural tendency would be to associate a transmitter in the MAC or IC or a receiver
in the BC or IC with a user, and this is typically the case. However, it may be possible that one or more
of the up to U receivers can detect, with vanishingly small error probability, some part (sub-message)
of one of up to U transmitters’ messages but not the entire message. Should this happen for any given
set of inputs and channel, then the corresponding message should be decomposed into multiple users
for which the smallest intersections of detectable message components now become these new users.
Thus, the number of transmitters or receivers may be a lower bound on the number of users for general
multi-user channels. The original users’ rates can be recomputed easily as in Section 12.1.5. The concept
that a user is either reliably detectable or not is fundamental to the construction of capacity regions in
this text. For Gaussian inputs, such decomposition degenerates into the U original Gaussian transmit
signals. For other input distributions, the decomposition may be complicated. An example would be
the sum of a binary sequence of ±1 and a Gaussian code. If the variance of the Gaussian code is less
than 1/3 (SNR = 3 or 4.7 dB), then the binary component may be detectable at some receivers, but the
Gaussian component not also detectable for at least one receiver. In this case, the transmitter would be
decomposed into a simple 2-user sub-broadcast channel.

Definition 12.1.1 (user) A user in a multi-user channel is defined by the smallest non-
zero information-bearing component, that is Hxu

6= 0, that can be reliably detected with
vanishingly small probability of error at one or more receivers in the multi-user channel.
Thus, this definition of a user can depend on both the channel probability distribution py/x
and the input distribution px.

The definition of a user is channel- and input-dependent in this text. Again, Section 12.1.5 shows how
a single user may be decomposed into several sub-users, increasing U , but then adding these sub-users’
rates back into a single user rate.

The single receiver of Figure 12.1’s multiple-access channel (MAC) accepts signals from U phys-
ically separated transmitters, each with its own transmit symbol vector xu, u = 1, ..., U . The single
receiver processes the single channel-output vector y. There are thus multiple users accessing a multi-
input channel with a single output, whence the name “multiple-access” channel. The single output
vector y (as well as each of the input vectors) may have N ≥ 1, thus creating a vector multiple

1This text use a hyphen in “multi-user” instead of writing the compound “multiuser” often found elsewhere as the
author could find no evidence that such a word exists.
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Figure 12.1: The multiple-access channel.

access channel. It will be assumed that all users have the same number of dimensions – when this is
not the case physically, dummy unused dimensions can be augmented to transmit symbols or receiver
vectors as necessary so that N is determined as the maximum number of dimensions used by any user.
In multiple-access channels, the single output allows a single “coordinated” receiver to detect all the
transmitted messages. The use of a single receiver also simplifies analysis of a MAC. The inputs cannot
be coordinated or co-generated in the multiple-access channel. If a single user could be decomposed into
two or more transmit-cooperating users for some px, then the channel ceases to be a MAC. If such a
single user decomposes into two or more separated transmitters, then the channel remains a MAC but
with a larger value for U .

Multiple-access channels abound in communications, often occuring where several subscribers com-
municate to a central service provider: For instance, a wireless channel may have several user transmitters
that each share a common frequency band in transmitting “uplink” to an “access point” or “base sta-
tion.” Such architectures occur in both cell phones (GSM, CDMA, all generations) and in higher-speed
wireless data transmission with WiFi (wireless hi-fidelity) or WiMax, LTE, LT-advanced networks. The
upstream2 direction of a cable or passive-optical network is also an example of a multiple-access channel
with various residential customers all sharing a common frequency band for transmissions to a central
“hub” receiver. Upstream DSL systems form an interesting vector multiple-access channel when the
twisted pair packed together in a binder of wires crosstalk electromagnetically into one another. Yet
another example is a disk drive where a single receive (read) head (or an array of such read heads) may
sense the signals (simultaneously) of several previously written adjacent tracks.

Of interest in multiple-access channels are the maximum achievable data rates for each user (which
may be a function of the data rates selected by the other users, complicating design and analysis).
Section 12.2 provides some basic bounds and methods that will be specific to and simplified for the
MAC. Section 12.2 also includes a simplified description and construction of the so-called “rate region”
for the MAC. Chapter 13 studies the MAC in more detail.

The dual of the multiple-access channel is Figure 12.2’s broadcast channel (BC) in which a single
transmitter generates the channel input x. The BC also has U physically separated outputs yu. When
the single input is a vector, the channel is vector broadcast. In the BC, each of the user signals are
embedded within the single transmitter’s channel-input symbol x, and so “coordination” of transmit
signals – i.e., co-generation of the single input with knowledge of all the users’ message signals is possible.
Coordinated reception of the U outputs is not possible in a broadcast channel. Section 12.3 provides some
bounds and techniques for the BC, while Chapter 14 studies the broadcast channel in more detail. If some
user associated with a receiver location can be decomposed into more than one user with cooperating
receivers, then the channel is no longer a BC. If such a user decomposes into two isolated receivers, then
the channel remains BC with a increased value for U .

Examples of broadcast channels would be the opposite direction of transmission for multiple-access

2Upstream is the term used for customers’ transmissions to a central site in cable and DSL, while “uplink” is the term
used in wireless even though it is not a word (upstream is a word).
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Figure 12.2: The broadcast channel.

channels from a service provider to a customer: For instance a “downlink” in wireless or the “downstream
directions” in cable or DSL networks. Broadcast channels also occur for television and radio where no
reverse multiple-access-like channel occurs (usually).

The third channel type is the interference channel (IC) of Figure 12.3. No coordination of either
inputs nor outputs is possible. Each of U possible receivers can attempt independent detection of one or of
all the U transmitted messages. In the vector interference channel, some of the inputs and/or outputs,
are vectors. Interference channels occur when multiple transmitters and receivers share a frequency
band (wireless) or medium (wire-line). Some examples include some types of home networks that share
unregulated bands and establish links on an ad-hoc basis (some wireless ultra wideband, power-line
home-plug, or home-phone that establish connections by ad-hoc exploration of “who is out there?”).
Military and espionage channels may also then fall into the category of interference channel where loss
of a central coordinating receiver or transmitter would not result in loss of all communication. The IC
may be enlarged to U2 users since any of the U transmit locations might more generally be attempting
to transmit non-zero information content to any of the receivers. If any of the users may be decomposed
into two or more users that could coordinate at either or both of the transmitter and receiver, then the
channel is no longer an interference channel. If such a decomposition retains independence of transmit
locations and receive locations for each component user, then the overall channel remains an IC with
yet a larger value (maybe in excess of U∗) for the number of users.

This text also defines a distributed-control interference channel DCIC for situations with
Gaussian noise. The DCIC imposes a design restriction that the design of the transmit signals for any
one user may not know the channel descriptions from the other users’ inputs to their outputs nor the
crosstalking channel descriptions; the modem receiver can only identify its channel, and the other users’
signals are viewed only as noise (known only in terms of total received power spectra into that modem’s
receiver). The DCIC basically models “unbundled” or “unlicensed” situations where several competing
services or users may share a common facility, but will not share information. Section 12.4 investigates
the IC bounds, while Chapter 15 investigates some approaches to interference channels and DCICs.

Linear Additive-noise multi-user channel models

The linear additive noise channel (particularly with Gaussian noise) is particularly important and merits
some additional consideration in this subsection. Table 12.1 lists the possible dimension sizes of inputs
and outputs for each of the simple3 linear multi-user channels of the additive-noise form

y = Hx + n . (12.1)

3Simple means that N = 1 or 2 (or in a few cases infinite with no finite values in between). Intermediate values are
considered in Chapter 13.
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Figure 12.3: The interference channel.

chan x y H
Number of inputs Number of outputs

multiple access U 1 [HU ... H2 H1]

broadcast 1 U








HU

...
H2

H1








interference U U








HUU ... HU1

...
. . .

...
H2U ... H21

H1U ... H11








Table 12.1: Table of dimensionality for the multi-user Gaussian channel y = Hx + n.

Chapters 12 through 15 will use the designation H for channels, and this will presume to describe
the channel and any part of transmitter or receiver filters that cannot be changed by designers.4 Later
chapters revisit this model with multi-dimensional users. This Chapter (12) largely addresses only simple
capacity/bound results for the U × 1 multiple-access, 1 × U broadcast, and U × U “scalar” interference
channels. Some level of intersymbol interference is addressed in an asymptotic sense here, but extensions
to the more practical finite-length packets and possibly vector-user inputs and vector-user outputs for
all channels occur in Chapters 13-15.

Multi-user transmission channels are characterized in the same way as are single-user channels. The
general characterization of any channel (multiple-user or not) remains a conditional probability distribu-
tion py/x. The input is characterized by a probability distribution px. All other probability distributions

4This “H” was sometimes called a pulse response and the letter “P” used previously in Chapters 3, 4, and 5. There
will be potential transmit filter designs for any given H as was seen in Chapters 4 and 5, but the use of “P” was continued
there because of the proximity to Chapter 3 and intersymbol-interference discussions. The reader at this point is presumed
sufficiently mature to model the channel without continued discussion here of every detail in so doing.
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are consequently determined. For the IC and MAC, the input distribution must factor as

px =

U∏

u=1

pxu
. (12.2)

The factorization of input probability distributions for MAC and IC holds for any channel model (and not
just additive noise). In some situations for the BC, the channel output distribution may also factor, but
this is not necessarily always true. While the users’ input information “bit” streams may be independent,
their corresponding input components need not necessarily be independent. Independence of xu for the
linear AWGN can happen for certain inputs jointly with what is known as worst-case additive noise of
Section 5.5, an important case later developed in Chapter 14.

12.1.1 Data Rates and Rate Regions

This section generalizes the concept of a data rate to the more general concept of a rate region. Two
types of mutual information are of interest in a multi-user channel: the sum of the rates of all the
users I(x; y) and the individual user mutual information I(xu; y), u = 1, ..., U .5 I(x; y) is thus a
maximum sum rate for the given input distribution to the channel. If each user has bits per symbol
bu, u = 1, ..., U , then

U∑

u=1

bu ≤ I(x; y) , (12.3)

with the inequality constraint imposed because inputs, outputs, or both may not be coordinated.6 Also,
the best average rate is

I(xu; y) ≤ I(x; y) , (12.4)

where the other U − 1 users are averaged over their distributions in calculation of I(xu; y). The distri-
butions used in 12.34 are

pxu
=

∫

v∈x\xu

px(v)dv (12.5)

and

pxu,y =

∫

v∈x\xu

px,y(v)dv . (12.6)

The operation indicated by \ means to remove an element (or subset) from a larger set. I(xu; y)
may be conditioned upon a set of other users u ⊆ {1, ..., U} to obtain the conditional average rate
I(xu; y/xu). The conditional mutual information is of interest when other users’ (u’s)signals might
be first detected or somehow known and then used to remove those other signals degrading effect upon
subsequent detection of the user of interest.

Definition 12.1.2 (Detectable prior user set for user u and output y) The set Uu(y) ⊂
U includes any and all other users u′ 6= u ∈ U that are decodable from multi-user channel
output vector y. (Decodable means that with Pe,u → 0.) Uu(y) is tacitly also a function of
py/x and px.

This subset of users essentially represents at any particular output y (which could be written yi, i =
1, ..., U for the BC and IC) a set of other users who could be detected reliably and removed before user
u is decoded. This subset need not be unique, because it depends on the choice of input distribution.
This approach to identifying decodable other users is the reason for the definition of a user in Definition
12.1.1.

5The individual mutual information rates for a particular output I(xu; y
u
) are also of interest in the interference

channel.
6There is a presumption of a common symbol period in multi-user communication that essentially assumes a synchro-

nization that may not be present in practice. However, a sufficiently long symbol interval may always be defined so that
essentially all users conform to it. Introduction of multiple symbol rates or actual data rates obfuscates basic principles
and adds little to the discussion, but such a constraint would need consideration in practice.
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Figure 12.4: Rate Region.

All three mutual-information quantities, I(x; y), I(xu; y), and I(xu; y/xu), may be of interest to a
particular user u. The mutual information I(xu; y) is of interest to the uth particular user, but presumes
a probability distribution on all users. It is a data rate average treating all other users as noise. Thus,
this data rate I(xu; y) tacitly depends on all the other users and may be significantly affected by the
other users’ choices of input distributions. The maximum of I(xu; y) found over all choices of input
probability distributions for xu is a capacity, but this capacity remains a function of the choices of
the codes/distributions of the other users. Furthermore, this bound does not account for the potential
collaboration between users (for instance, one user could be decoded first and its effect subsequently
subtracted at the receiver). So it is possible for bu to exceed I(xu; y), but never to exceed I(x; y).
I(xu; y/xu) attempts to characterize the prior removal of other users (u) by a decoder, but there are
2U−1 possible choices for the subset u along with a check to see if those other users could be reliably
detected. The bound of best average conditional rate is

max
u⊆Uu(y)

bu ≤ I(xu; y/xu) (12.7)

where the maximization is over the possible subsets Uu(y) of U that contain only all those other (u′ 6= u)
users that can be first decoded without error. Thus, the discerning of best data rate is more complicated
than in the single-user case. Equation (12.7) is key, again depending on Definition 12.1.1, and allows
capacity region specification to follow.

Thus, there may be several “capacities” in multi-user transmission, unlike single-user transmission
where the single-user’s data rate is upper bounded by only one capacity. The interdependencies among
users complicates the interpretation of theoretical bounds on maximum performance with a range of
consequent contingencies. The general approach to characterizing the proliferation of capacities for a
multi-user channel is the capacity rate region, such as generally illustrated for two users in Figure 12.4.
The rate region is a plot of all the possible U -tuples of data rates that can be achieved by all the users.
The points on the outer boundary represent best multiple-user code designs. Interior points represent
systems using codes that have performance below best. Rate regions vary with the type of channel, and
may be difficult to construct. The end of this section provides a general capacity rate region that applies
to all U ×1 multiple-access, 1×U broadcast, and U ×U interference channels, as well as any (non-relay)
multi-user channels as defined in this text.

Definition 12.1.3 (Capacity Rate Region) The capacity region C(b) of any multiple-
user channel is defined as the largest union (or convex hull) of all U -dimensional bits/symbol
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vectors b = [b1, b2, ..., bU ] such that any of the receiver(s) may decode its user(s) of interest
with arbitrarily small probability of error.

Furthermore, any point outside this region results in at least one of the receivers having
probability of error bounded away from 0 no matter what coding method is used.

The capacity region is less formal in definition than the more precise mutual-information definition
used for single-user channels earlier in Chapter 8. The following lemma is useful and perhaps immediately
obvious:

Lemma 12.1.1 (Convexity of Capacity Rate Region) The capacity rate region is con-
vex, meaning that any convex combination of two rate tuples within the region produces an-
other rate tuple within the region. Mathematically, if bα ∈ C(b), bβ ∈ C(b), and α + β = 1,
then α · bα + β · bβ ∈ C(b).

Proof: The basic proof follows from the definition: The convex combination of two rate
tuples corresponds to dimension (“time”) sharing of the two codes, and the corresponding
receivers, for the same fraction of dimensions (time slots) as used in the convex combination.
Such a system is an allowable implementation, and thus corresponds to a point that can be
realized within the capacity region.

Technically, the concept of “time-sharing” or dimensional-sharing of two different single-user message
components requires a sub-division of that user into two (or more) users according to the definition of
a user in Definition 12.1.1. Subsection 12.1.5 deals with recombining users into larger “macro” users of
several independent components.

12.1.2 Optimum multi-user detection

The optimum detector for a multi-user channel is a generalization of the optimum detector for the single-
user channel in Chapter 1. The set of all possible multi-user channel inputs is denoted Cx, and contains
M = |Cx| possible distinct symbols, which may be a large number for the multiple-user channel. Cx is
thus a signal constellation, equivalently a code, for the set of all users that represents the aggregation of
the individual users’ codes, most generally described by px.

Theorem 12.1.1 (Optimum multi-user detection - maximum à posteriori) The prob-
ability of multi-user-symbol error is minimum when the detector selects x̂ ∈ Cx to maximize
px/y and is known as the maximum à posteriori multi-user detector. When all possible
multi-user input symbol values are equally likely, this optimum detector simplifies to maxi-
mization of the conditional probability py/x over the choice for x̂ ∈ Cx, and is called the
maximum likelihood multi-user detector.

Proof: See Chapter 1. QED.

For the broadcast and interference channels, each physically distinct output yl replaces the general y

in the above Theorem 12.1.1. Thus, each receiver optimally detects each of the inputs (with possibly
different performance for each user xi, i = 1, ..., U and/or at each receiver yu for u = 1, ..., U). Only
user u = i may be of interest at receiver yu in such detection. The probability of error then becomes a
function of u that is not shown explicitly here.

The overall probability of error for detecting all users is (as always)

Pe = 1 − Pc = 1 −
Mx−1
∑

i=0

Pc/i · px(i) . (12.8)

This probability has meaning for all multi-user channels, but in particular may be of most interest in
the MAC where a single receiver detects all users.

408



For the BC and the IC, the probability of error for such a MAP receiver would be a function of which
receiver; in particular a function of u for the uth channel output. Such a detector observes only yu then
minimizes the likelihood that the receiver for user u may have incorrectly detected user u’s message:

Pe(u) = 1 − Pc(u) = 1 −
M∑

i=1

Pc/i(u) · pi(u) (12.9)

where Pc/i(u) is the probability that user u’s ith possible message is correctly detected from yu. Equation
(12.9) also could vary with the user index at each output – that is, each receiver may have different
Pc(u, j)’s for each of the users j, but user u is probably most of interest.

The users are often modeled as being independent in their choice of transmit messages so that

px =
U∏

u=1

pxu
. (12.10)

Then, a MAP decoder simplifies to an ML decoder if each of the users independently also has a uniform
distribution. The independent-inputs assumption is always made on the MAC and IC.

An ML decoder has a probability of error that is approximated by the NNUB for the AWGN channel

Pe ≤ Ne · Q(
dmin
2σ

) , (12.11)

where the number of nearest neighbors, Ne, now includes all multi-user-symbol values in the calculation
and similarly the minimum distance is calculated over the entire set of all multi-user symbol values.
However, such a decoder only has interest for the MAC. Again (12.11) can vary for each receiver with
broadcast and interference channels.

Definition 12.1.4 (Crosstalk-Free Channel) A Crosstalk-free multi-user channel
(CFC) has a conditional probability distribution that satisfies

py/x =

U∏

u=1

py
u
/xu

. (12.12)

That is, the channel probability distribution factors into independent terms for each of the
users. When the channel is not CFC, it is said to have crosstalk.

A receiver for a CFC trivializes into an independent set of single-user receivers:

Theorem 12.1.2 (Independent Detection) The ML decoder for the CFC is equivalent
to a set of independent optimum decoders for each individual user.

The proof follows trivially from inspection of py/x, which factors into U independent terms

that can each be independently maximized to implement the ML detector (and ML detection
tacitly assumes that (12.10) holds.)

Independent detection means that the designer can use a separate receiver for each user, potentially
then enormously simplifying the detector implementation. The absence of crosstalk essentially renders
the channel to be a set of independent single-user channels. Such a receiver is analogous to a symbol-
by-symbol detector for an ISI-free channel, except now more appropriately termed perhaps “user by
user.” Orthogonal multiplexing in Chapter 5’s Appendix A attempts to ensure an CFC for channels
with neither ISI nor crosstalk. Such systems are the norm in early multi-user transmission designs, but
the assumption of an CFC may not be true especially when users are not well coordinated or channels
are not accurately known during design. Transformation of the channel into a CFC by linear matrix
multiplication (like “equalization”) is not necessarily a mechanism that enables the best points in the
rate region to be achieved, because sharing of dimensions by users may provide larger data rates.

409



The overall probability of error on the CFC channel for all users is (a receiver index l is not shown
but would normally be used in a BC or IC)

Pe = 1 −
U∏

u=1

Pc,u , (12.13)

and the overall probability of error can never be less than the probability of error for any one of the
users

Pe ≥ Pe,u ∀ u ∈ {1, ..., U} . (12.14)

The individual user probability distribution can be computed directly from the overall conditional
distribution according to

pxu/y =

∫

x\xu

px/yd{x \ xu} . (12.15)

The conditional distribution can thus be computed from known quantities, using also the fact that

px/y =
py/x · px

py
. (12.16)

Equivalently, the individual ML detector for xu given y uses the distribution

py/xu
=

∫

x\xu

py/x · px\xu
· d{x \ xu} . (12.17)

Detection might also be given some of the other users signals if these other users’ signals could be and
were decoded first. Two definitions are necessary to simplify such conditional detection: First, an order
of user detection, sometimes denoted π, a one-to-one mapping of user indices onto themselves where
π(1) is the first decoded user, π(i) is the ith decoded user and π(U) is the last decoded user. There
are U ! possible orders of user detection for any particular user’s receiver. Second, there is a set of users
Xπ(u, y) for user u, output vector y, and each order π such that all xi ∈ Xπ(u) that occur before user
u in order π (that is, π(i) < π(u)) that can be decoded with arbitrarily small probability of error for the
given input multi-user probability distribution px

Xπ(u, y) =
{
xπ(i) | xπ(i) ∈ {Uu(y)} ∧ π(i) < π(u)

}
. (12.18)

Xπ(u, y) differs from Uu(y) in that it is also a function of the given order and includes all decodable users
prior to π(u). Thus, Xπ(u, y) is one of the all the possible | Uu(y) | elements that could occur for user u
and channel output y. The inclusion of order makes this a single unique set. The set U \ [u ∪ Xπ(u, y)]
is the other-users “noise” in detecting user u from channel output y.

EXAMPLE 12.1.1 (sum of 3 Gaussian signals and noise) Three Gaussian signals are
summed with noise to form

y = x1 + x2 + x3 + n . (12.19)

The energies are σ2
n = .001, E1 = 3.072, E2 = 1.008, and E3 = .015. Gaussian codes (px

Gaussian) are selected so that b1 = 1, b2 = 3 and b3 = 2. There are 6 possible orders of
decoding in this case as in the table below. For each order π, Xπ(1), Xπ(2), and Xπ(3)
are listed. The first number in the ordered triple for order is the first signal that would be
attempted to be decoded (and must be decoded in the presence of all other users as noise),
the second is the second attempted to be decoded (and for which possibly the first user in
the order was decoded if the SNR was high enough), and the last is the last to be decoded
(allowing possibly for up to both of the previous users to possibly be decoded).
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Order π Xπ(1) check decode of pi(1) Xπ(2) check decode of π(2) Xπ(3)

(1,2,3) ∅ 0.5 · log2

(

1 + E1

E2+E3+σ2

)

= 1 ≥ b1 1 0.5 · log2

(

1 + E2

E3+σ2

)

= 3 ≥ b2 1,2

(1,3,2) ∅ 1 0.5 · log2

(

1 + E3

E2+σ2

)

= .016 < b3 ∅
(2,1,3) ∅ 0.5 · log2

(

1 + E2

E1+E3+σ2

)

= .2 < b2 ∅ ∅
(2,3,1) ∅ ∅ ∅
(3,1,2) ∅ 0.5 · log2

(

1 + E3

E1+E2+σ2

)

< b1 ∅ ∅
(3,2,1) ∅ ∅ ∅

For this set of Gaussian signals as characterized by their energies, it is better to have user 1
earlier in the order because only user 1 can be decoded in the presence of both (or either)
the other two users as noise.

Thus, the ML decoder then maximizes over the values for xu

py/xu;Xπ(u) =

∫

x\Xπ(u)

py/x · px\Xπ(u) · d{x \ Xπ(u)}} . (12.20)

The detector for the order π∗ with smallest Pe,u would then be the best for that particular order. The
same order, however, is not necessarily the best for all users, so one might write the best order as π∗(u).

Detection for the linear multi-user AWGN

The linear multi-user AWGN is
y = Hx + n . (12.21)

For detection of only user u, it may be that the overall minimum distance in Equation 12.11 is too small.
That is, a single fixed value for xu may correspond to the two multi-user codewords that determine the
overall dmin. So, this text defines a

dmin,u = min
x6=x′∧xu 6=x′

u

‖H(x− x′)‖ . (12.22)

Trivially,
dmin,u ≥ dmin (12.23)

with equality if and only if any codewords in Cx corresponding to the overall dmin also correspond to
different values for the uth user’s symbol contribution. Also,

min
u

dmin,u = dmin . (12.24)

This more clearly illustrates how it is possible for a detector extracting a single user to have better
performance than one that extracts all users.

Sequences can be handled in a straight forward extension of the channel to

Y (D) = H(D) · X(D) + N(D) (12.25)

where all the vector/matrix D-transforms are defined by finding the D transform of each element and
D corresponds to a delay of one symbol period (which may be a large packet of data).

EXAMPLE 12.1.2 (2 users in 2 dimensions) Two users both use 4-QAM with identi-
cal symbol periods, but different energy levels. The combined constellation when these two
signals are added is shown in Figure 12.5. The users’ symbol contributions are not orthogo-
nal, and both occupy both dimensions. The first signal has the smaller dmin,1, which is equal
to the overall dmin. The second signal has a larger dmin,2 and whose values corresponds to
the distance between the 4 colors in the figure.

A detector for both signals simply selects the closest of the 16 points to a received two-
dimensional value Y and then outputs the corresponding two messages. The probability of
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Figure 12.5: Illustration of two-dimensional two-user channel constellation.

error for the first user and for the overall detector are approximately the same. However
a detector for only the second user (the different colors) clearly would perform significantly
better. In this simple example, a detector that assumed user 1 was Gaussian noise have the
same decision regions as the optimum detector for user 2, but such simplification is usually
not the case.

12.1.3 A General Multi-User Capacity Region

The general capacity-region specification for a multi-user channel can be stated in terms of a search over
all (U !)U possible orders of users. Such a search may require large computation.

The general specification proceeds in 3 separate optimization/searches as enumerated in this para-
graph:

For a general multi-user channel with fixed input distribution px and channel py/x, there is an
order vector let π = [π1, π2, · · · , πU ], where πu, u = 1, · · · , U , is the decoding order for the receiver of
user u. Thus there are (U !)U decoding orders for a U -user channel. The capacity region of the general
multiple-user channel is described U already corresponds to the situation in Definition 12.1.1, and so
U may be more than the “actual set of users” on the channel, see Subsection 12.1.5 to reconstruct the
original users). Thus, U may vary for each choice of input distribution, but an exhaustive search over
all such distributions still must occur (no matter how U may vary as that search proceeds). For any
given order vector π and given input probability distribution px, receiver u uses an optimal decoder for
its component order πu to achieve a vector of user bits/symbol denoted bu(π, px). The particular order
will determine the receiver’s data rates for each of the users with all later users in the order at receiver
u viewed as noise and all earlier users decoded first. The notation

bi(u, π, px)
∆
= I(xi; yi|xπu(1), xπu(2), · · · , xπu(i−1)) (12.26)

denotes the uth component of bu(π, px) (user u data rate) at receiver i.
The data rates achievable for this order and input distribution may not be achievable at other

receivers i 6= u. Equivalently, user u’s data rate at receiver u may not be achievable at some or all of the
other receivers. Indeed, there will be a minimum data rate for user u across all receivers for the given
order vector π and the given input distribution px:

bu(π, px) = min
i

bi(u, π, px) . (12.27)
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This minimum can be achieved at all receivers for the given order and input distribution. A vector of
these minimum rates can be constructed as

b(π, px) =

U⊗

u=1

bu(π, px) , (12.28)

where
⊗

corresponds to Cartesian product (or simply form an ordered U -tuple). Each element data
rate of b(π, px) can be achieved at all receivers, and any user data rate that exceeds its corresponding
entry in b(π, px) cannot be achieved for this order π and this input px at one or more receivers (and
thus a higher data rate would be a single-user capacity violation at one or more receivers for decoding).
There are many ((U !)U orders, and so there are many points b(π, px). Any time-sharing of the designs
corresponding to these points is allowed; equivalently the convex hull of the region formed by the set of
points over all orders for any given px is achievable (some interpretation according to Subsection 12.1.5
may be necessary here):

A(b, px) =

conv⋃

π

b(π, px) . (12.29)

Any point outside this convex hull has at least one user’s data rate, that for the given px, corresponds
to at least one receiver that cannot decode that one user, no matter what order is used. Such a point
then violates a single-user capacity limit for all orders and the given input px. Finally then,

cgeneral(b) =

conv⋃

px

A(b, px) (12.30)

where the convex hull over all possible input spectra allows input distributions for each independent user
that each must satisfy the particular user’s input constraints.

The unions in Equations (12.29) and (12.30) may cause the value of U to change for each possible
element in the set over which the union is taken accordingly the general definition of a user. However,
each such b(π, px or A(b, px can be reconstructed in terms of the original set of users as described in
Section 12.1.5.

12.1.4 Enlarged Channels (Relays)

An enlarged multi-user channel is one where the number of users U according to Defintion 12.1.1 exceeds
the number of transmit (MAC, IC, or general multi-user) or receive (BC, IC, or general multi-user)
locations in the channel description. The results and capacity regions of this chapter then apply to
the enlarged number of users. This region could then be called the enlarged capacity region7. The
next Subsection 12.1.5 discusses computation of the desired capacity region from the enlarged-channel
capacity region. Enlarged multi-user channels allow the description of the capacity region for the enlarged
number of users and allow the concept of order and successive decoding (or precoding) to be used heavily
in the general capacity region description of Subsection 12.1.3.

An example of an enlarged channel is what is sometimes called a “relay channel.” In a relay channel,
an intermediate user may decode and then forward a message from one user to a third user. For instance,
an IC with nominally U users might instead be viewed as a system with U ′ = U2 users where U is the
number of transmitter/receiver locations, but in fact the capacity description for some orders might
indeed be described in terms of probability distributions that tacitly imply a larger number of users.
Indeed the capacity description could imply up to U2 users, and presuming any and all messages from
one transmit site to another receiver site could not be further decomposed. (For the linear Gaussian IC
channel, the maximum number of users need not exceed U ′ = U2.) When an IC is viewed as a relay
channel, the number of users actually becomes (at least) U ′ = U2 + U if receiver sites identify with
actual users desiring messages. The U2 component refers to the number of possibly intermediate users’
messages. Nonetheless, for this enlarged number of users, the capacity region can be calculated according
to Subsection 12.1.3. Relay channels may generalize to have m intermediate “hops,” which then means

7“Enlarged” means that U is enlarged so that there are more dimensions.
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that the number of users would increase to U ′ = (U2)m + U . Many of the actual users may have zero
transmission paths and thus can be eliminated as not of interest. The capacity region for the enlarged
multi-user or relay channel would then need to add an additional calculation to the enlarged-channel’s
capacity region that would be

bu→u′ = max
(i,j)m∈(U⊗U)

m
{min (Ru→i, ....., Rj→u′)} . (12.31)

Essentially, then the enlarged channel is searched over all possible enlarged rate tuples for the maximum
possible transfers over all possible multi-hop paths. While the concept is fairly straightforward, the
actual search could be enormously complex.

Reduction to the capacity region for the original actual users then requires the summing of user
components as Subsection 12.1.5.

12.1.5 Macro User Groups

Macro user groups are essentially groups of users that correspond to all the decodable components of one
user for enlarged multi-user channels. The capacity region for the enlarged channel is consructed. From
it, sums of allowed user components in rate tuples can be computed for all rate tuples in a macro-user
group, thus “compressing” (reducing the number of dimensions) the length of the rate tuple. Such sums
correspond to actual users that happened to decompose into more than one user earlier. Certainly by
finding the largest possible enlarged multi-user channel rate region, the compression to sums creates all
possible points for the actual users rates (some of which could be repeated by several designs) but the
region created would be the largest possible (since any point outside the region would correspond to a
point not allowed in the enlarged capacity region).
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12.2 Capacity Rate Regions for the multiple-access channel

This section describes the rate region for any multiple-access channel. The general capacity region in
Equations (12.27) - (12.30) of Section 12.1.3 can be alternately specified through the use of rate sums for
only the MAC for any particular probability distribution. This rate-sum formulation is more common
than the general formulation in (12.27) - (12.30) for MACs. This rate-sum formulation is often simpler
since there is only one receiver, and the operation in (12.28) is not necessary. Section 12.2.1 handles
the general case from the perspective of rate sums and relates the original region specification to the
rate-sum version, showing they provide the same region from different perspectives. Section 12.2.2 shows
how simple extension of Chapter 4’s water-filling can be used to compute the maximum rate sum and
corresponding distribution for Gaussian MACs.

12.2.1 The General Multiple-access Rate Region

A MAC analysis often focuses upon the sum of users’ data rates: The MAC receiver simply treats all
inputs as the collection of individual users’ inputs into a single input vector x = [x1, x2, ..., xU ], and
the mutual information is then the single-user mutual information for the channel from x to y. Such
a rate-sum treatment shows no preference for the distribution of data rates among the users on the
multiple-access channel. As in in (12.34) and (12.7), an individual bu may exceed I(xu; y) if the other
users are known, an important observation for constructing rate regions. A best case would be that
all the other users’ signals were somehow known to the common receiver of the multiple-access channel
output. Then

bu ≤ I(xu; y/xi 6=u, i=1,...,U) . (12.32)

If one or more of the users is inactive, then subsets (indexed here by a vector of indices u, which is a
subset of the entire set of user indices U = {1, 2, ..., U}) have mutual information to the channel output

I(xu; y) ∀ u ⊆ U , (12.33)

and represent partial maximum rate sums over a subset of user indices that describe the user-index
vector u if the other users, denoted in set notation as U \ u, are unknown.

These partial rate sums are maximums over the average statistics of the excluded users, so the effect
of the others is averaged as if they were a “noise” to the decision. A higher rate sum can be achieved for
any group of users specified by u by conditioning the mutual information on all the other users, {U \u},
which essentially means all the other users are known and eliminated or canceled in terms of their effects
on the detection of the first set of users. Being given the set {U \u} can only help optimal detectors, thus
increasing the bound. Since both are mutual information quantities, they represent maximum (sum)
data rates for the group of users in u in the respective conditions (from single-user information theory
in Chapter 8 where the single user is the set u). Then the following bounds hold for all possible u and
any given input probability distribution and channel:

∑

u∈u⊆U

bu ≤ I(xu; y/{U \ u}) . (12.34)

Equations (12.32), (12.33) and all the instances of (12.34) over user subsets will specify an achievable
multi-user rate region for the multiple-access channel for any given input distribution px.

The proof that this achievable region is the bound on b for any given probability distribution can
use single-user mutual information bounds and the so-called chain rule of information theory:

Theorem 12.2.1 (Chain Rule) The chain rule of mutual information is

I(x; y) = I(x1; y) + I(x2; y/x1) + ... + I(xU ; y/[x1, x2, ..., xU−1]) (12.35)

=

U∑

u=1

I(xu; y/[x1, x2, ..., xu−1]) (12.36)

The proof is trivial and follows from factorization of px,y into a chain of conditional proba-
bility distributions.
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Essentially, the chain rule could apply for any order of users, and the rate sum for all orders is the same.
The chain rule could also be applied within any subset of users and their partial rate sums would be the
same for the situation that all others are given. So, instead of specifying orders as in Section 12.1.3, an
equivalent enumeration of situations to consider is all the possible rate sums for different subsets of user
indices.

The chain rule provides a successive decoding strategy for achieving any of the points correspond-
ing to a rate sum. The successive-decoding interpretation for the chain rule is that the code for user 1
can be designed as if all other users were “noise” or according to the mutual information averaged over
all the other users’ distributions. When the single receiver correctly decodes user 1 (with Pe,1 → 0),
user 1 can be accepted as given for the decoding of user 2, which implies a certain “non causality” in
decoding: technically x1 should be known over all time to be decoded with zero error. User 2’s code is
designed for the case where users 3,...,U were “noise” or according to the mutual information averaged
over all the other users’ distributions, but as if user 1 were known. The successive decoding procedure
can thus achieve the maximum sum of data rates I(x; y). There are U ! orderings, and thus U ! data

rate U -tuples that achieve the same maximum sum. Any set of data rates satisfying
∑U

u=1 bu = I(x; y)
is achievable simply by designing a set of codes that time-share the appropriate U ! points. However,
the rate sum need be computed only once for any of the orders, thus simplifying the need to compute
the same rate sum repeatedly if it is the only quantity of interest (a deficiency of the more general
capacity-region generating strategy in Section 12.1.3). Successive decoding is essentially a non-causal
generalization the GDFE procedure of Chapter 5 when N = U on an AWGN and when the multi-user
Gaussian input distribution is such that it has diagonal autocorrelation matrix.

The chain rule can be applied to all the subsets of users denoted by u. Any order within each partial

rate sum can be used. There are thus
∑U

u=1

(
U
u
)

= 2U − 1 < U ! (when U > 3) partial rate sums

to compute, which may be a substantial reduction in calculations depending on exactly the designer’s
objectives. The procedure in 12.1.3) also requires forming convex combinations, which may be tedious.
However, as this section later shows, essentially the two procedures are equivalent. Once given all the
partial rate sums for any probability distribution, then the capacity rate region follows:

Theorem 12.2.2 (Multiple-Access Channel Rate Region) The general multiple-access
rate region A(b) for a given user input distribution px is the set of all U -dimensional rate
vectors b that satisfy:

A(b) =






b
∣
∣ b ∈

conv⋃

u⊆U

0 ≤
∑

u

bu ≤ I(xu; y/xũ∈U \u)






. (12.37)

xũ is the given set of all input symbols not in u.

Proof: For achievement of any point in this region, see the discussion leading to this theorem
on successive decoding with single-user capacity-achieving codes independently used for each
user. Any point outside the region violates at least one of the rate sums and would be a
single-user capacity-theorem violation for at least one user corresponding to that rate sum,
with other users in U \ u given. QED.

The intersection in 12.37 essentially runs through all orders, but recognizing for the MAC that the
“sub order” used in computing a rate sum does not change the rate sum, nor does the “sub order” within
the users excluded for the computation of the rate sum.

Lemma 12.2.1 (Capacity Region for the Multiple Access Channel) The capacity re-
gion C(b) is the maximum, or technically the convex hull of the union of the A(b), over all
the possible joint input probability distributions allowed on the particular channel.

C(b) =






b
∣
∣b ∈

conv⋃

px

A (b(px))






(12.38)
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Figure 12.6: Rate Region for two-user multiple-access channel.

where the union is over all allowed probability distributions.

Proof: Any possible input distribution leads to a valid rate region according to Theorem
12.2.2. The union of such regions is thus also achievable for at least one of the distributions.
The convex hull of the union corresponds to points that may time-share (or dimension-share)
some of the different possible probability distributions – assuming such a time-sharing is an
allowed input probability distribution. (See the qualifications in Subsection 12.1.5.)

By contrast, any point outside the region C(F ) violates at least one single-user capacity
theorem and so cannot be achieved with arbitrarily small probability of error. QED.

An example of the general rate region for 2 users and a particular px appears in Figure 12.6 using
both the method of subsection 12.1.3’s Equations (12.29) - (12.30) and the rate-sum method. This 2-user
region is a pentagon with the boundary lines shown. Each of the 3 rate sums has been computed to
bound the region, tracing the pentagon for any particular input distribution px. 3 calculations were
necessary to compute the rate sums (the points of intersection admittedly require some additional linear-
equation solving that is somewhat trivial in the case of U = 2). The approach of Section 12.1.3 is also
fairly easy to compute for any given px. Points in the left rectangle are those for which user 1 is decoded
first and then used to assist the decoding of user 2. The lower rectangle corresponds to decoding first
user 2 and then user 1. The lower left corner corresponding to the overlap of the two rectangles admits
either order of decoding. The upper right triangular “time-share” region more precisely corresponds to
dimension-sharing (convex hull of union) the two codes and decoding orders. Each particular px again
corresponds to a pentagon after the dimension-sharing.

Extending the example to U = 3 users, the rate-sum approach must compute 7 rate sums and the
associated intersecting lines and points, which are defined by the 6 points corresponding to boxes and
each of the 6 orders from the procedure in Section 12.1.3, along with all possible convex combinations.
The corners of the boxes are the intersection points of the planes defined by the rate sums. The region
is 10 sided in 3 dimensions for any given px. For U = 4, there are 15 rate sums plus intersections,
or equivalently 24 4D boxes that correspond to 24 orders and the resultant convex combinations. In
general, there are 2U − 1 partial rate sums to compute or U ! boxes corresponding to all the possible
orders. The result is a region with 2U + U − 1 faces for any given px.

The union of regions for multiple px possibilities need not be a pentagon with 2 users, nor any
2U + U − 1-sided face in general, but will always be convex.
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Figure 12.7: Gaussian multiple-access channel.

12.2.2 The Gaussian multiple-access channel.

The Gaussian MAC rate region exactly follows the general region, but can be more directly computed
using familiar signal-to-noise ratio quantities. All inputs may be Gaussian for the Gaussian MAC and
in particular must be Gaussian at the boundary of the region. The sufficiency and necessity of Gaussian
inputs is proved easily by reversing the chain rule and looking at the last user decoded in successive
decoding. This last user sees only Gaussian noise, so by single-user capacity has highest rate when
Gaussian. Then, since this last user is Gaussian, the noise plus crosstalk seen by the 2nd to last is also
Gaussian, that user and all earlier users must also be Gaussian by induction. Figure 12.7 illustrates the
Gaussian multiple-access channel. Each MAC user has a gain Hu to the channel output where a common
Gaussian noise n is added to construct y. Since for each and every rate sum, the users contributing to
the sum can be considered as a single “group user,” the joint distribution of that single group user must
be Gaussian when the noise is Gaussian. Then, each of the marginals or individual users are then also
Gaussian. The mutual information quantities of the general MAC capacity region rate-sum descriptions
become log-signal-to-noise ratio quantities where the signal power for any user is the product of the
input energy Ēu and the channel gains |Hu|2, and the noise is the sum of the Gaussian noise and any
uncanceled other users. Mathematically,

Ī(xu; y/xũ∈U \u) =
1

2
log2

(

1 +
Ēu · |Hu|2

σ2 +
∑

i∈U\u Ēi · |Hi|2

)

. (12.39)

For example if U = 2 and H = [h1 h2], then

y = h1 · x1 + h2 · x2 + n . (12.40)

Each rate sum is associated with an SNR:

SNR1 =
E1 · |h1|2

σ2
(12.41)

SNR2 =
E2 · |h2|2

σ2
(12.42)

SNR =
E1 · |h1|2 + E2 · |h2|2

σ2
, (12.43)
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Figure 12.8: Simple example of capacity calculation for 2-user AWGN.

and

b1 ≤ 1

2
log2 (1 + SNR1) (12.44)

b2 ≤ 1

2
log2 (1 + SNR2) (12.45)

b1 + b2 ≤ 1

2
log2 (1 + SNR) . (12.46)

The SNR’s and thus rate sums for all possible Gaussian input distributions would all be less than
those shown because trivially each of the SNR’s either stays the same or is reduced for any Gaussian
distributions other than those using the maximum energy. Thus, the 3 equations above also specify the
capacity region.

EXAMPLE 12.2.1 (AWGN channel with large capacity) Figure 12.8 illustrates a sim-
ple 2-user AWGN channel. The overall capacity for this system is easy to compute because
the relationship between the channel input and z is one-to-one for discrete on users 1 and
2. Thus, the overall capacity of the channel is I(x; y) = I(z; y) = .5 log2(1 + 104) =6.64
bits/dimension. However, consideration of either user’s signal as Gaussian noise into the
other leads to capacities of

I(x2; y) =
1

2
log2

(

1 +
.36 · 1

.0001 + .64

)

= .32 bits/dimension (12.47)

I(x1; y) =
1

2
log2

(

1 +
.64 · 1

.0001 + .36

)

= .74 bits/dimension (12.48)

total = 1.06 bits/dimension , (12.49)

which is well below the maximum rate sum.

Decoding x2 first (point B) leads to

I(x1; y/x2) =
1

2
log2 (1 + SNR1) =

1

2
log2

(

1 +
.64 · 1
.0001

)

= 6.32 bits/dimension , (12.50)

or decoding x1 first (point A) leads to

I(x2; y/x1) =
1

2
log2 (1 + SNR2) =

1

2
log2

(

1 +
.36 · 1
.0001

)

= 5.90 bits/dimension (12.51)

In either case, the sum is the same as .32+6.32=.74+5.90=6.64 bits/dimension.

Figure 12.9 illustrates the specific rate region and the two successive-decoding points. Figure
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Figure 12.9: 2-user AWGN rate region.

12.10 illustrates the two successive-decoding receivers for this channel. Other points along
the slanted line imply time-sharing the two receivers and codes. In the Gaussian case,
time-sharing of two different distributions always corresponds to a single vector Gaussian
distribution for each user. For instance, a time-sharing of 3/4 point B and 1/4 point A yields
point C with

Ex1
=

1

4
(1) +

3

4
(1) = 1 (12.52)

Ex2
=

1

4
(1) +

3

4
(1) = 1 (12.53)

b1 =
1

4
(.74) +

3

4
(6.32) = 4.92 (12.54)

b2 =
1

4
(5.90) +

3

4
(.32) = 1.72 (12.55)

b1 + b2 = 6.64 . (12.56)

This means that each user decomposes into 2 sub-users. Technically, this is no longer a MAC.
However, the box of (12.28) is now 4-dimensional, and still applies for this U = 4 multi-user
channel. As in Subsection 12.1.5 the rates of the sub-users can be added to generate a
2-dimensional box corresponding to point C. The receiver is then 3/4, 1/4 time-share of
receivers A and B.

Non-Zero Gaps

The rate regions so far have used a Γ = 0 dB gap. Strictly speaking, the chain rule does not exactly
hold when the gap is nonzero. For instance, in the above example with 3 dB gap, I(x2; y) → 0.1788
and I(x1; y) → 0.4587 while I(x1; y/x2) → 5.8222 and I(x2; y/x1) → 5.403. The two rate sums are no
longer equal, .01788 + 5.8222 = 5.8301 ≤ 0.4587 + 5.403 = 5.866, and there is a higher rate sum when
decoding user 1 first. Furthermore, 5.866 < 6.144 = .5 log2(1 + 10, 000/Γ), where the latter “overall
gap-reduced capacity” really has no direct bearing for non-zero gaps. Any point on the line between
[.01788 , 5.8222] and [.4587 , 5.403] could be achieved by time/dimension sharing, but the line does not
have slope −1, and is not even necessarily the boundary to the “gap-reduced” rate region. Generally,
some caution should be exercised with rate regions with non-zero gaps. Jagannathan investigates the
construction of non-zero-gap exact achievable rate regions (p. 164-173 of his 2008 Stanford dissertation).
His findings show that the rate-sum-bounding-plane method no longer applies. As the gap grows, so does
the deviation. His approach basically follows the more general approach of Equations (12.27) to (12.30)
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Figure 12.10: Example GDFEs.

in section 12.1.3 where each mutual information is replaced by the corresponding 1
2
· log(1+SNR/Γ) style

term and the convex-hull-union process becomes more involved but still produces an achievable rate
region. Even this approach assumes that other users can be decoded without error (which may not be
true for non-zero code gaps) and that furthermore the users are all Gaussian codes (which of course they
may not be with non-zero gaps). Thus, with sophisticated systems of the type that these later chapters
analyze, the price of using a powerful code (with close to zero gap) may be only a small fraction of the
multi-user design costs. This text thus returns to the use of zero gaps in these last 4 chapters unless
otherwise specifically noted.

In general for U > 2 AWGN channels summed together to form a multiple-access channel, the
pentagon generalizes to an U -dimensional region with 2U +U −1 sides in U -space for U users. Each axis
has a maximum data-rate plane orthogonal to that axis and forms a boundary for the U -dimensional
capacity region at Cu = .5 log2(1 + SNRu) where SNRu = Eu|Hu|2/σ2. There are planes for all possible
subsets u, each as

∑

u∈u Ru ≤ Cu = 1/2 log2(1 + SNRu) where SNRu =
∑

u∈u Eu|Hu|2/σ2.
Non-white (that is, noise that is correlated) noise is handled for the Gaussian multiple-access channel

by the same noise-whitening transformation as is used in the single-user case.

GDFEs and relation to Successive Decoding

The GDFE of Chapter 5 could be used with a non-singular U × U matrix channel H where the specific
input autocorrelation matrix Rxx = Rvv is diagonal. Instead of viewing the input as U dimensions,
that same input could be viewed as U independent users, each with its own input dimension, but possibly
contributing to as many as all U of the MAC output dimensions. The contributions of all the inputs
are summed in the MAC to the common output y, upon which the GDFE acts to estimate each of
those independent input dimensions (or users). Such a system achieves the cannonical sum-rate equal
to the appropriate conditional mutual information for each user/dimension in each of the U ! possible
GDFE user/dimension orderings. Each successive user/dimension has the benefit of removal of the
crosstalk from previous users/dimensions in the triangular back-subsitution GDFE solution of Chapter
5. However, the feedback sections are not quite the same. The GDFE would use a MMSE feedback
section formed by a matrix G 6= H in general (for certain trivial H like diagonals, the two are the same
after bias removal). Successive decoding directly uses H : for instance, user 2 would use the first column
of H , h1, to multiply by x1 and then subtract from y. The difference of these two identically performing
systems that both directly correspond to a MMSE solution is subtle: this difference depends upon the
type of detector: The GDFE uses a dimension-by-dimension (user-by-user) simple slicing decision on
each and every dimension/user of the feedforward section output. The successive decoder would use an
N -dimensional decoder for y, treating other users as noise on each of those N dimensions. The ML
detection for each user is more complex and involves search of closest possible noise-free (this includes
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Figure 12.11: GDFE structure for multiple-access receiver.

no other-user noise) channel outputs to the actual y value. Instead, the GDFE with linear processing,
can simplify this detection to one dimension (where other users are also noise filtered by feedforward
section). This decoder-complexity difference is the reason for the different feedback sections. Otherwise
the two perform the same when all users are Gaussian codes with zero-dB gap, and when there is no error
propagation. With these powerful (zero-gap) codes, the extra ML or “successive decoding” complexity
is higher than the GDFE, but they perform the same. Essentially the GDFE is “focusing” the single
dimension of each user that was spread by the channel into N dimensions back to a single dimension.
Successive decoding does not so focus on to a single dimension, but performs the same – just more
complicated. Each GDFE user decision is largely free (in MMSE sense) of other user noise when N ≥ U
so that noise from other users is very small tending to zero as true noise goes to zero, when N ≥ U .

The relationship between DFE’s and successive decoding extends in certain interesting ways even
when ρ(H) < N , and in this case the other-user/dimension noise will be significantly larger. When
there is only one output dimension N = 1, the GDFE’s usual elimination of channel singularity is
then not feasible in the MAC with U > N (that is the MAC does not allow coordination of channel-
input dimensions so that elimination of channel signularity is not possible physically). Thus many users
may share a dimension and the one-to-one association between dimensions and users of the preceding
paragraph when N ≥ U is lost.

This multi-user approach provides an extension of GDFE’s to the situation of a channel rank ρ(H) <
U . GDFE theory can proceed with this singular channel by forming by forming

z = H∗y = (H∗H)x + n′ (12.57)

where
Rf = H∗H (12.58)

is a singular N × U matrix of rank ρ(H), and Rn′n′ = Rf . Any input components that are in the null
space of the singular H are lost, but each MAC user has at least some non-zero energy in the pass space
as long as no column of H is zero. Since these inputs are one dimensional in the MAC, any user’s dmin,u

must lie upon this one dimension, of which some energy passes to the channel output. (Effectively the
MAC’s uncoordinated-input restriction prevents placement of two constellation points for any user so
that the line between them will align with a singular vector of H that is zeroed in the channel. Equation
(12.57) is a forward canonical model since the autocorrelation of the filtered noise is also Rf (assuming
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the original noise was white, or already whitened, with unit variance on all components). There exists
a (not necessarily unique) backward channel where

x = Rbz + e , (12.59)

where the U × U Rb is the MMSE estimator of the channel input vector. R−1
b can be computed and

factored as
R−1

b = Rf + R−1
xx = G∗ · S0 · G , (12.60)

as in Chapter 5’s GDFE theory. Again, a decision-feedback arrangement can be used to estimate
xU first, then xU−1, ..., x1. The “ISI” or “crosstalk” from other dimensions was minimized in the
MMSE approach. This inter-dimensional interference now includes other users’ signals, and these signal’s
MMSE components may be quite large if they’ve not yet been cancelled. When the number of output
dimensions of the channel equals or exceeds the number of input dimensions, then signal components in
the minimized mean-square error are usually small (if noise is much less than the signal levels generally),
as was the case in Chapter 5 where input and channel singularity were prudently removed to ensure
such a condition holds. However, when the number of input dimensions exceeds the number of output
dimensions, as often happens in the MAC, the MMSE can contain very significant signal components
even when the noise is very small. In the single-user case of Chapter 5, such a situation was viewed as
“injecting energy” into the null space of the channel and thus wasting energy that contributed nothing
to improvement of performance. In the MAC, such energy loss is often inevitable because of the physical
separation of the users. In this case, the loss of signal energy into the null space can also be viewed
as adding a large signal component to the MMSE for the GDFE. The need for “non-causal” successive
decoding is reduced to a simple “correct” previous decision assumption. From any perspective, the
same GDFE approach will now do all the “book-keeping” for any order of the users, as Example 12.2.2
illustrates:

EXAMPLE 12.2.2 (A singular multi-user GDFE) A 3-user channel has N = 1 so
that

y =
√

10 · (x1 + x2 + x3) + n =
√

10 · [1 1 1]
︸ ︷︷ ︸

H

x + n . (12.61)

The noise variance is σ2 = 1, and the input users are independent so Rxx = I. Clearly
this channel has a two-dimensional null space and one-dimensional pass space - any input
that does not lie along the vector [1 1 1]’ is lost. However, the receiver can still detect all
3 inputs, just with greater MMSE level caused by the large signal-dependent components in
the MMSE. The following sequence of Matlab commands designs a MMSE GDFE for this
channel:

>> h=sqrt(10)*[1 1 1] = 3.1623 3.1623 3.1623

>> Rf=h’*h

10.0000 10.0000 10.0000

10.0000 10.0000 10.0000

10.0000 10.0000 10.0000

>> Rbinv=Rf+eye(3)

11.0000 10.0000 10.0000

10.0000 11.0000 10.0000

10.0000 10.0000 11.0000

>> Gbar=chol(Rbinv)

3.3166 3.0151 3.0151

0 1.3817 0.6580

0 0 1.2150

>> G=inv(diag(diag(Gbar)))*Gbar

1.0000 0.9091 0.9091

0 1.0000 0.4762

0 0 1.0000
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This monic upper-triangular G matrix illustrates that user 1 is actually detected first, then
user 2, and user 3. Another order can be attempted by simply re-indexing inputs. Since this
channel is symmetric in all inputs, then all orders are essentially the same. However, the first
user detected sees much higher MMSE as the next few equations show:

>> S0=diag(diag(Gbar))*diag(diag(Gbar))

11.0000 0 0

0 1.9091 0

0 0 1.4762

>> SNR=det(S0) = 31.0000

While the overall SNR may be reasonably high (13 dB), energy has been lost into the null
space of the channel. The 3 units of input energy might have been better used if not for
the physically separated nature of the 3 users associated with the 3 input dimensions. Each
dimension has a biased SNR on the diagonal of S0, and so for instance user 1 sees an unbiased
SNR of .4762, which is also the ratio of 10/(10+10+1) – that is user 1’s 10 units of energy
divided by the 20 units of combined energy in users 2 and 3 plus the 1 unit of noise energy.
Similarly user 2 sees an SNR of .9091 = 10/(10+1), while user 3 sees unbiased SNR = 10/1
= 10. The GDFE automatically does all the mathematical “chain-rule” bookkeeping. The
GDFE also produces a forward path calculated as:

>> W=inv(S0)*inv(G’)

0.0909 0 0

-0.4762 0.5238 0

-0.3226 -0.3226 0.6774

>> unbiasedSNR=S0-eye(3)

10.0000 0 0

0 0.9091 0

0 0 0.4762

>> unbiasedW=S0*inv(unbiasedSNR)*W

0.1000 0 0

-1.0000 1.1000 0

-1.0000 -1.0000 2.1000

>> unbiasedG=S0*inv(unbiasedSNR)*(G-eye(3))+eye(3)

1.0000 1.0000 1.0000

0 1.0000 1.0000

0 0 1.0000

>> W*Rf

0.9091 0.9091 0.9091

0.4762 0.4762 0.4762

0.3226 0.3226 0.3226

>> Wunbiased=S0*inv(unbiasedSNR)*inv(S0)*inv(G’)*h’

0.3162

0.3162

0.3162

>> Wunbiased*h

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

This basically shows that the output of the feedforward processing in the GDFE is essentially
a reproduction of the same sum-channel 3 times. Thus, the GDFE does nothing in this case
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but suggest a successive-decoding scheme. However, the GDFE machinary is very powerful
as will become evident. Furthermore, the non-causal decoding of the entire sequence of
another user reduces to the “correct” instantaneous decisions assumption, well known in
DFEs generally and the GDFE specifically.

The corresponding unbiased GDFE is shown in Figure 12.11. The result of the overall channel
plus feedforward section is such that the channel does not appear triangularized as in Chapter
5. This is because remaning other-user noise is still present in large measure for user 1 (first
to be decoded) and user 2 (second to be decoded). Otherwise the GDFE works and the
overall (biased) SNR of 31 is exactly correct (or 30) and corresponds to the rate sum of the
users. Each of the 3 users’ data rates can be computed as

>> (0.5/log(2))*log(diag(S0))

1.7297

0.4664

0.2809 .

Any of these 3 data rates could be attained by any of the users by re-ordering. Further, a
set of 6 GDFE’s could be used to time share according to the different orders to produce any
convex combination of these rates. By zeroing any of the inputs energy, a simpler 2-input
GDFE problem could also be solved to provide additional planes that bound the MAC rate
region.

The example clearly illustrates the utility of GDFE theory. In practice, this example is trivial because
the channel has no memory and so a ZF solution corresponds exactly to a MMSE-GDFE for N = 1.
However, a designer could easily extend to N dimensions and U · N corresponding input contributions
and via ordering compute one user’s input estimates, then the next, and so forth. Indeed this works for
any ρ(H) and thus any Gaussian MAC. Chapter 13 will study this area more completely.

MMSE-DFE

A GDFE-style structure can also be constructed using a MMSE-DFE, and in fact the channels from users
to the common output can each have intersymbol interference and crosstalk that corresponds to channel
memory (non-flat channels) on all paths to the common receiver. Figure ?? illustrates this successive-
decoding or GDFE-like concept. The chain rule suggests that a single first user can be decoded as if
all the others were noise, and the result subsequently used to remove its effect from the received signal
before proceeding to decode the second user. Thus a MMSE-DFE for this first user treats all other
users as part of the noise spectrum used in the design of the MMSE-DFE, proceding as in Chapter
3. The coefficients in the feedback section of this MMSE-DFE are used in causal way to eliminate
trailing intersymbol interference from the minimum-phase version of the other-users-as-noise-plus-true-
noise-equivalent channel. If the other users are Gaussian signals, this approach does exactly produce a
data rate for the first user that is I(x1/; y). The error-free decisions of the first MMSE-DFE then are
filtered by a replica of the channel h1(D) and subtracted from the common channel output before it
goes through a second MMSE-DFE, removing all effect of x1(D). Other than the possibly infinite-length
delay implied by the feedforward-filtering of the second MMSE-DFE, the removal can be implemented
sample-by-sample. The design then recursively repeats in causal fashion in successively removing each
user’s effect upon later users. If there were no memory in the channel (thus no ISI within or among any
of the users), each MMSE-DFE degenerates into a simple decision device in Figure 12.12, causing a pure
successive decoding.

For the U × 1 degenerate MAC channel, there is no intersymbol interference and the noise is white
Gaussian. MMSE-DFE’s and ZF-DFE’s are the same in this special case. More generally, the singular
GDFE will turn into a MMSE-DFE where other uncanceled users are treated as noise (whatever their
spectra) and any ISI is also handled for the channel in the usual way by the MMSE-DFE for the combined
noise. The conditional expectations in the chain rule correspond to MMSE-DFE’s and thus the successive
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Figure 12.12: MMSE-DFE interpretation of successive cancelation.

decoding steps may be construed in more general cases as using the coefficients of the feedback filter
(which are not in general equal to hu values) for removal of ISI or other users on the same dimension.
This observation forebodes some easily made mistakes in successive cancelation that often always use
Hu for cancelation when those actually correspond to ZF-DFE solutions and not MMSE-DFE solutions.
In the trivial cases considered in this chapter, ZF and MMSE just happen to be the same.

Figure 12.12 illustrates this concept. The cancelation becomes trivial in the case of xu being white
signals (so all noises or users plus noises are white) and the cancelation coefficient is the channel gain. But
if the users spectra are not white, or there is any memory in the channel, then MMSE’s will estimate an
innovations white component of xu and the feedback sections will be based on that component or equiv-
alently determined by MMSE-DFE feedback sections that have that component on the input. For more,
see Chapter 13. This subtle reduction to white innovations essentially allows a causal implementation.

The MMSE-DFE has SNR = 22Ī(x(D);y(D)) − 1 and is canonical, and the I(x(D); y(D)) can cor-
respond to a chain-rule implementation for any order. If the symbol sequence x(D) has time index k,
each symbol could be viewed as a distinct user in a multiple-access system with the order of decoding
selected as the order of transmission in time. The successive decoding view would suggest simple re-
moval of the contribution of each user with coefficient hu=k, which would correspond to a ZF-DFE and
a GDFE. The subtle difference is that for each xk, treating all future (uncanceled) x>k symbols are
treated as noise and an ML detector that observes the entire future is necessary given the past. Such an
ML detector is more than the feed-forward section of the ZF-DFE. However, the feed forward section
of the MMSE-DFE with appropriate use of the coefficients gk 6= hk for feedback leads to a situation
where an instantaneous (correct) decision has the same SNR as could be obtained by the infinite-length
ML detector for Gaussian inputs. Thus, the ZF-DFE misses only in that instantaneous decisions do not
have a canonical SNR, but a full future-observing ML detector (and not simply the feed-forward section
of the ZF-DFE) would achieve the canonical performance level and the coefficients hk could be used in
such a situation. A similar argument can be made for the ZF-GDFE in that it’s instantaneous SNRs are
deficient, but a full ML detector could be augmented to obtain the canonical performance more easily
obtained with the MMSE-GDFE.
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Figure 12.13: 2-user AWGN multiple-access capacity region.

12.2.3 Capacity regions for the N = 1 Gaussian Multiple Access Channel
with ISI

The development of Subsection 12.2.2 essentially assumes that the energy of each user Eu, or more
generally the spectrum of each user, is known and bounded.

For the situation of linear time-invariant channels with pulse responses pu(t), then Eu is the individual
energy constraint that applies to user u’s integrated power spectral density. Such channels could be
viewed as limiting cases of discrete time-invariant channels with DMT systems used by every user (with
common symbol boundary of all users at the receiver, which is a special case of the GDFE with vector
coding used and a cyclic prefix used on each of the users - in particular then the transmit singular matrix
becomes constant at the channel input and is thus constant for every user and implementable without
coordination).8 There may be more than one power spectral density that meets the energy constraint for
any particular user. Any of these spectra could be used with any of the possible spectra for other users,
leading to a large range of possibilities for construction of rate regions. Each different power spectral
density is a possible Gaussian distribution for that input that should be considered when forming the
convex hull over all input probability densities. Each combination of spectra might have a different rate
region.

The capacity region for this case of linear channels is the union or convex hull of all allowed rate
regions. Figure 12.13 illustrates such a union of pentagon regions for U = 2. For a specific choice of
power spectral densities, the capacity region is just one pentagon. Different user power spectral densities
lead to possibly different pentagons. The union of pentagons in the general case can provide a smooth
convex region that contains all the pentagons (or their convex hull, which is the same as the union
for the Gaussian noise case). Each point on the boundary of the capacity region may correspond to
a different use of spectra. Any such point is achievable with capacity achieving codes, and a single
GDFE. The use of time-sharing is less important for achieving points in this more general capacity
region, because the designer can always find a pentagon for which one of the corner points corresponds
to the selected point on the capacity region boundary – that is time-sharing of GDFE’s is an abberation
caused by over-restriction of the input.9 Equivalently, time-sharing really more generally corresponds
to “dimension” sharing where dimensions could be time, frequency, space, or any linear combinations

8This tone-by-tone approach is explored further in Chapters 13 and 14.
9Even on two flat channels, the designer could decide to divide the spectrum according to rate (and user-channel SNR)

such that a GDFE could be used in the receiver, potentially just a simple FDM or vector-coded version, to decode.
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thereof. The capacity C1 or C2 in Figure 12.13 with all other users zeroed limits the maximum data
rate for any particular user – the boundary for the capacity region may be a straight line (vertical or
horizontal lines for C1 and C2 in Figure 12.13 respectively) at these C1 and C2 points. Usually, the
region curves gradually to these points for practical channels with N > 1 and there are no such straight
lines. These straight lines occur only on channels with a user who can use the entire band available
or more (which is usually caused by sampling too slow in modern transmission systems and practical
channels).

Calculation of the rate region for any channel (for any particular choice of input energies and power-
spectral densities) can calculate the maximum rate sums for all subsets of the set of users, as in the
beginning of this section. Then if all power spectral densities were somehow enumerated, the convex hull
of all 2U +U − 1-sided polytopes describes the rate region. The enumeration of power spectral densities
for a Gaussian channel is equivalent to enumerating all input probability densities.

EXAMPLE 12.2.3 (Two-user ISI) Two synchronized users use a guard period of ν = 1
sample with N = 2 output samples on the two independent paths of a MAC with H2(D) =
1 + .9D and H1(D) = 1 − D. The noise is white of variance σ2 = .181 and added as two
dimensional noise to the sum of the two channel outputs for each 2-sample packet at the com-
mon MAC receiver. These are not one-dimensional channels but are packet approximations
for such channels. There are 6 input dimensions, 3 for each user and 2 output dimensions.
Nonetheless, GDFE theory can be applied for any set of input autocorrelation matrices. This
example first examines the situation of 6 independent input dimensions, each of energy 1 per
sample:

>> P =[P2 P1]

1.0000 0.9000 0 1.0000 -1.0000 0

0 1.0000 0.9000 0 1.0000 -1.0000

>> bsum=(.5/log(2))*log((det(P*eye(6)*P’+.181*eye(2))/det(.181*eye(2))))

4.4622

In this case, User 1 will be decoded first on each of its 3 dimensions by a GDFE in the
receiver. The sum rate is not the highest possible, but corresponds to the choice of input
spectra (autocorrelation matrices) for the two users. GDFE design continues as:

>> Rf=(1/.181)*P’*P

5.5249 4.9724 0 5.5249 -5.5249 0

4.9724 10.0000 4.9724 4.9724 0.5525 -5.5249

0 4.9724 4.4751 0 4.9724 -4.9724

5.5249 4.9724 0 5.5249 -5.5249 0

-5.5249 0.5525 4.9724 -5.5249 11.0497 -5.5249

0 -5.5249 -4.9724 0 -5.5249 5.5249

>> Rbinv=Rf+eye(6)

6.5249 4.9724 0 5.5249 -5.5249 0

4.9724 11.0000 4.9724 4.9724 0.5525 -5.5249

0 4.9724 5.4751 0 4.9724 -4.9724

5.5249 4.9724 0 6.5249 -5.5249 0

-5.5249 0.5525 4.9724 -5.5249 12.0497 -5.5249

0 -5.5249 -4.9724 0 -5.5249 6.5249

>> Gbar=chol(Rbinv)
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2.5544 1.9466 0 2.1629 -2.1629 0

0 2.6853 1.8517 0.2838 1.7737 -2.0575

0 0 1.4305 -0.3674 1.1801 -0.8127

0 0 0 1.2772 -0.7177 0.2234

0 0 0 0 1.5225 -0.4967

0 0 0 0 0 1.1553

>> G=inv(diag(diag(Gbar)))*Gbar

1.0000 0.7621 0 0.8467 -0.8467 0

0 1.0000 0.6896 0.1057 0.6605 -0.7662

0 0 1.0000 -0.2568 0.8249 -0.5681

0 0 0 1.0000 -0.5619 0.1749

0 0 0 0 1.0000 -0.3262

0 0 0 0 0 1.0000

>> S0=diag(diag(Gbar))*diag(diag(Gbar))

6.5249 0 0 0 0 0

0 7.2107 0 0 0 0

0 0 2.0463 0 0 0

0 0 0 1.6312 0 0

0 0 0 0 2.3182 0

0 0 0 0 0 1.3346

>> bvec=diag((0.5/log(2))*log(S0))

1.3530

1.4251

0.5165

0.3530

0.6065

0.2082

>> sum(bvec) = 4.4622

As expected, the mutual information is the sum of the data rates. User 1 (decoded first) is
at a significant disadvantage in terms of data rate and SNR that is evident. The order of the
two users could be reversed to get a different decomposition of bit rates where user 2 is at a
disadvantage. The feedforward processing is also of interest:

>> W=inv(S0)*inv(G’)

0.1533 0 0 0 0 0

-0.1057 0.1387 0 0 0 0

0.2568 -0.3370 0.4887 0 0 0

-0.3870 -0.1734 0.1574 0.6130 0 0

0.2424 -0.1081 -0.2936 0.2424 0.4314 0

0.0063 0.2564 0.2256 0.0063 0.2444 0.7493

>> MSWMF=(1/.181)*W*P’

0.8467 0

0.1057 0.7662
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-0.2568 0.5681

0.3870 -0.1749

-0.2424 0.3262

-0.0063 -0.2507

>> MSWMF*P

0.8467 0.7621 0 0.8467 -0.8467 0

0.1057 0.8613 0.6896 0.1057 0.6605 -0.7662

-0.2568 0.3370 0.5113 -0.2568 0.8249 -0.5681

0.3870 0.1734 -0.1574 0.3870 -0.5619 0.1749

-0.2424 0.1081 0.2936 -0.2424 0.5686 -0.3262

-0.0063 -0.2564 -0.2256 -0.0063 -0.2444 0.2507

>> G

1.0000 0.7621 0 0.8467 -0.8467 0

0 1.0000 0.6896 0.1057 0.6605 -0.7662

0 0 1.0000 -0.2568 0.8249 -0.5681

0 0 0 1.0000 -0.5619 0.1749

0 0 0 0 1.0000 -0.3262

0 0 0 0 0 1.0000

The overall feedforward processing and G are interesting to compare. Feedback coefficients
are identical to the forward channel as they should be. However, it is clear that the contri-
bution of MMSE for User 1 is very significant both from feedforward ISI (GDFE packet not
sufficiently long) and from User 2.

Perhaps of yet more interest would be the case where the designer recognizes that energy
inserted into the individual null spaces of channel 1 and channel 2 is wasted and can be
eliminated (while energy into the null space of the combined channel cannot be so avoided).
In this case, the following sequence is obtained:

>> P2=[1 .9 0

0 1 .9]

1.0000 0.9000 0

0 1.0000 0.9000

>> [F2, L2, M2]=svd(P2)

F2 = -0.7071 -0.7071

-0.7071 0.7071

L2 = 1.6462 0 0

0 0.9539 0

M2 = -0.4295 -0.7412 0.5158

-0.8161 0.0741 -0.5731

-0.3866 0.6671 0.6368

>> M2ns=M2(1:3,1:2)

-0.4295 -0.7412
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-0.8161 0.0741

-0.3866 0.6671

>> Ruu2= 1.5*eye(2)

1.5000 0

0 1.5000

>> Rxx2=M2ns*Ruu2*M2ns’

1.1009 0.4434 -0.4927

0.4434 1.0073 0.5474

-0.4927 0.5474 0.8918

>> H2=P2*M2ns

-1.1640 -0.6745

-1.1640 0.6745

>> P1=[1 -1 0

0 1 -1]

1 -1 0

0 1 -1

>> [F1, L1, M1]=svd(P1)

F1 = -0.7071 0.7071

0.7071 0.7071

This F1 is essentially the same as F2, a happy coincidence that will raise some questions
about design heading to Chapter 13.

L1 = 1.7321 0 0

0 1.0000 0

M1 = -0.4082 0.7071 0.5774

0.8165 0.0000 0.5774

-0.4082 -0.7071 0.5774

>> M1ns=M1(1:3,1:2)

-0.4082 0.7071

0.8165 0.0000

-0.4082 -0.7071

>> Ruu1=1.5*eye(2)

1.5000 0

0 1.5000

>> Rxx1=M1ns*Ruu1*M1ns’

431



1.0000 -0.5000 -0.5000

-0.5000 1.0000 -0.5000

-0.5000 -0.5000 1.0000

>> H1=P1*M1ns

-1.2247 0.7071

1.2247 0.7071

>> P =[P2 P1]

1.0000 0.9000 0 1.0000 -1.0000 0

0 1.0000 0.9000 0 1.0000 -1.0000

>> Rxx = [ Rxx2 zeros(2,2)

zeros(2,2) Rxx1 ];

>> bsum=(.5/log(2))*log((det(P*Rxx*P’+.181*eye(2))/det(.181*eye(2))))

5.0252

This rate sum is the mutual information, now for the different inputs. These inputs waste
no energy into the null space of the individual user channels and thus lead to a greater rate
sum. A GDFE can be designed for the 4-dimensional white input of u1 and u2.

>> Rf=(1/.181)*H’*H

14.9724 -0.0000 0.0000 -9.0951

-0.0000 5.0276 9.1286 0.0000

0.0000 9.1286 16.5746 0.0000

-9.0951 0.0000 0.0000 5.5249

>> Rbinv=Rf+inv(Ruu)

15.6390 -0.0000 0.0000 -9.0951

-0.0000 5.6943 9.1286 0.0000

0.0000 9.1286 17.2413 0.0000

-9.0951 0.0000 0.0000 6.1915

>> Gbar=chol(Rbinv)

3.9546 -0.0000 0.0000 -2.2999

0 2.3863 3.8255 0.0000

0 0 1.6147 0.0000

0 0 0 0.9498

>> G=inv(diag(diag(Gbar)))*Gbar

1.0000 -0.0000 0.0000 -0.5816

0 1.0000 1.6031 0.0000

0 0 1.0000 0.0000

0 0 0 1.0000
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>> S0=diag(diag(Gbar))*diag(diag(Gbar))

15.6390 0 0 0

0 5.6943 0 0

0 0 2.6072 0

0 0 0 0.9022

>> (0.5/log(2))*log(det(Ruu)*det(S0))

5.0252

>> bvec=diag((0.5/log(2))*log(Ruu.*S0))

2.2760

1.5472

0.9837

0.2182

>> sum(bvec)

5.0252

>> b2=sum(bvec(1:2))

3.8233

>> b1=sum(bvec(3:4))

1.2019

>> W=inv(S0)*inv(G’)

0.0639 0 0 0

0.0000 0.1756 0 0

-0.0000 -0.6149 0.3836 0

0.6446 -0.0000 -0.0000 1.1084

>> MSWMF=(1/.181)*W*H’

-0.4112 -0.4112

-0.6545 0.6545

-0.3039 0.3039

0.1846 0.1846

>> MSWMF*H

0.9574 -0.0000 0.0000 -0.5816

0.0000 0.8829 1.6031 0.0000

-0.0000 0.4099 0.7443 0.0000

-0.4297 0.0000 0.0000 0.2611

>> G

1.0000 -0.0000 0.0000 -0.5816

0 1.0000 1.6031 0.0000
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0 0 1.0000 0.0000

0 0 0 1.0000

The 4-dimensional channel is very interesting. Again User 1 sees significant inteference from
User 2 that is not removed. User 2 sees no interference nor ISI beyond that removed from user
1. This happy result occured because the vector coding choice, coincidentally, diagonalized
both of the users. Chapter 13 will show a way to induce such an effect on any set of linear-
time-invariant channels within a MAC via “vectored DMT.”

The maximum rate sum over all power spectra

From Chapters 4 and 8 earlier, a single rate (whether the other users are treated as noise or zeroed) is
easily computed according to water-filling for the subsequent imposed single-user channel. A variation
of that procedure known as simultaneous water-filling appears in this subsection.

The limiting aggregate MT sum rate for all users in the case of ISI can be written as

b̄ =

∫ ∞

−∞

1

2
log2

[

1 +

∑U
u=1 Sx,u(f) · |H(f)|2

Sn(f)

]

df , (12.62)

where the sum is replaced by an integral over all the infinitesimally small tones of a MT system. The
individual energy constraints of each user cause the rate-sum maximization problem to differ slightly
from straightforward water-filling. Forming the Lagrangian for each integrand with respect to input user
spectra and the side constraint of non-negative power spectral density integrating to the given energy
Eu, provides

Su(f) +
σ2 +

∑

i 6=u Si(f) · |Hi(f)|2
|Hu(f)|2 = λu . (12.63)

Since the original function’s integrand was convex and all the constraints are convex (linear inequality),
then a solution exists. Each instance of (12.62) for u = 1, ..., U is water-filling with all the other users
viewed as “noise.” This leads to the following lemma:

Lemma 12.2.2 (Simultaneous Water-Filling Optimum) The maximum of the sum of
data rates

∑

u bu∈u for the scalar (N = 1) 10 Gaussian AWGN with input power spectral
density Su(f) for the uth user satisfies

Su(f) +
σ2

u(f)

|Hu(f)|2 = λu (12.64)

where
σ2

u(f) = σ2 +
∑

i 6=u

Si(f) · |Hi(f)|2 (12.65)

with
Su(f) ≥ 0 , (12.66)

and ∫ ∞

−∞
Su(f) · df = Pu . (12.67)

Hu(f) is the Fourier transform of the uth channel impulse response, and Pu is the U th user’s
power constraint. proof: See above paragraph.

The simultaneous water-filling (SWF) result is a powerful result that finds a particular solution for
maximizing a particular MAC rate sum. Chapter 13 returns to find a modification of the SWF criterion
that does allow rate-region construction.

10Chapter 13, Section 2 generalizes this to any Gaussian MAC channel, but the additional notational burden adds
nothing to the present development.
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Figure 12.14: 2-user AWGN channel with ISI.

Figure 12.15: 2-user AWGN capacity region for P1(D) = P2(D) case.

Figure 12.14 illustrates the more general 2-user AWGN with intersymbol interference. A special
case arises when the two channels have equal pulse responses, H1(D) = H2(D): In this case, the rate
region remains a pentagon as illustrated in Figure 12.15 with C1, C2, and CTotal all being water-filling
capacities for the multiple-access channel. Three simultaneous water-filling spectra situations appear
in Figure 12.15. Any division of the water-filling spectra that achieves CTotal and also satisfies each
individual power constraint corresponds to a valid point on the slanted boundary of the pentagon.
Figure 12.15 illustrates the corresponding water-fill spectra for the 3 different situations, A, B, and C.
The two corner points need not correspond to the use of a water-fill spectra for one of the two users.
However, at point A, user 1 has a WF spectra when user 2 is viewed as noise, while user 2 has WF
spectra as if user 1 were zero (i.e., removed by GDFE). The corresponding opposite is true for point B.
Both points A and B also satisfy SWF as is evident in the power-spectral-density diagrams in Figure
12.15. Points in between can correspond to frequency-division or any other division of energy in the total
water-fill region that satisfies each of the individual water-filling constraints also. Each such division
corresponds to a different pair of rates with R1 + R2 = CTotal (R1, R2) along the slanted boundary. At
least one point corresponds to non-overlapping spectra (frequency-division multiplexing or FDM) if the
channel output is one-dimensional. This FDM point clearly satisfies SWF individually as each user is
zero in the others band. At this point, the sum of the individual user rates treating all others as noise
is equal to the maximum rate sum (which is not often true for other non FDM points). An FDM point
is CFC and has an independent set of optimum receivers.

For situations that are not necessarily the maximum rate sum, Chapter 13 provides methods for
computing the best input spectra to achieve a point; said spectra are not necessarily simultaneous
water-filling.
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12.3 Rate regions for the Gaussian broadcast channel

The general broadcast capacity region is also described by Equations (12.27) - (12.30) in Section 12.1.3.
Further simplification awaits invention for the general case of BC or IC. For the additive Gaussian noise
case, BC rate regions can be somewhat more succinctly described and an actual algorithm implemented
to construct them. A few basic concepts in Sections 12.3.1 allow illustration of BC rate regions for
the ISI free channel first in Section 12.3.2. ISI channels and the vector broadcast channel (with inputs
and outputs possibly corresponding to more than one dimension) are deferred to Chapter 14. Section
12.3.3 introduces the concept of duality (a concept first emanating from many former students and
instantiations of this EE479 class).

12.3.1 Basic concepts for Broadcast Capacity

This subsection reviews some basic aspects of transmission that are useful for simplifying BC capacity
rate-region description.

Decomposition of Gaussian process into user message components

Any stationary random process xk decomposes into and has a one-to-one relationship with its “innova-
tions” process vk. For a Gaussian process, the innovations sequence is found by linear MMSE prediction
as discussed earlier in Chapter 5. The innovations process is also Gaussian. The entropy of the process
xk, and of the innovations vk are equal, Hx = Hv, which means their “information content” is equal.
All the components of the innovations sequence are independent (which follows directly from Chapter
5’s linear-prediction interpretation). If the process xk is shared to convey simultaneously several users’
messages, xu,k, each of these messages would have an image component in the innovations sequence,
vu,k. Thus, for the Gaussian BC channel, at least a Gaussian input could be so decomposed into in-
dependent constituents for each of the users. The following theorem addresses the sufficiency of the
Gaussian input itself:

Theorem 12.3.1 (Gaussian inputs are sufficient) For any (linear) multi-user channel
with additive Gaussian noise, the capacity region is largest with all users jointly Gaussian in
distribution.

proof:

The general capacity region in (12.27) - (12.30) is revisited here. Each of the individual
“boxes” for any single output u, namely bu(π, px) in (12.28) could be considered a MAC
for that particular output (without regard to other receivers for other users) and therefore
is largest when all users are Gaussian. Similarly, the convex hull operation for that same
receiver over all orders in (12.29) can not be any larger than when the inputs are all Gaussian
(again by analogy with the MAC for this one receiver). The Cartesean product in (12.28)
necessarily then is also largest when all are Gaussian. Finally, then the capacity region in
(12.30) need not consider distributions other than joint Gaussian as those lead to the largest
set of regions (now for each covariance describing such joint Gaussian inputs) in the previous
3 steps. QED.

The above theorem makes the address of capacity regions for Gaussian BC (or any linear additive
Gaussian noise channel) simpler. As with the single-user case and the MAC, it is sufficient to con-
sider only Gaussian inputs for all users when the noise is additive Gaussian. Since the messages are
independent, and each can be Gaussian without loss

Hx =

U∑

u=1

Hvu
. (12.68)

Furthermore, since the sum

x =

U∑

u=1

xu (12.69)
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Figure 12.16: Non-causal precoding in place of successive decoding.

has also this same entropy Hx, then there is no loss whatsoever in investigating an encoder that is
the sum of the individual Gaussian components with one-to-one mappings from some white Gaussian
sequence vu ↔ xu. As shown by Kailath, the innovations is a complete and unique representation of a
Gaussian process, and clearly this innovations can be constructed by a sum of the message modulator
outputs. No greater entropy or information can be contained in any other representation. Thus, there
is no loss for the Gaussian Broadcast channel in assuming that the messages of the individual users are
summed into a single transmit vector x = x1 +x2 + ... +xU . This result holds regardless of the number
of dimensions, presence of ISI, etc. In effect, the Gaussian innovations vu can be viewed as the message
content of Gaussian user u.

The Lossless non-causal “dirty paper” precoder

Figure 12.16 illustrates non-causal precoding, which is sometimes also known as “dirty paper” precoding.
An interesting result in non-causal precoding is that the addition of a sequence s in the channel known
only to the transmitter does not change the capacity of the link. This result was first noted by Costa
in the early 1980’s for Gaussian channels and eventually extended to all channels by Forney in 2003
through a use of the so-called “crypto-lemma”:

Theorem 12.3.2 (Forney’s Crypto Lemma) Given the channel in Figure 12.16 with
both v and s uniform in distribution over some Voronoi region Λ, then x′ = modΛ(x) has
energy Ev, Hx = Hv, and x′ is independent of s and v.

proof: Addition modulo Λ is a group operation so that any two points added together will pro-
duce another point within the region. Let v and s first be random and uniform over Λ with s

independent of v, then px′/v(x′	v) = ps(x′	v) ≡ constant (since s has uniform distribution)
for all x′ and any and all particular v. Thus x′ is uniform and independent of v.

Continuing if s is deterministic and not random nor uniform, then a precomputed uniform
random dither sequence d may be added to s at the transmitter and subtracted at the receiver
without loss. The sum s ⊕ d is uniform and the theorem then still applies. (Dither is not
necessary in realization, but it helps prove the uniformity and independence.) QED.

Essentially the crypto lemma describes a block precoder that executes modulo arithmetic over a block
of N sample periods, where N is the number of dimensions per symbol (as usual) or the dimensionality
of Λ. Because of the second modulo device in the receiver, the precoder completely removes the effect of
the channel’s sequence s, and a detector for v can be applied at the receiver modulo’s output to recover
v. This decoder need not know anything about s. The name “crypto” arises from the independence of
v from x′, which basically means the input is disguised if somehow s was used as a key in encryption.

The crytpo lemma has a use in BCs: This use is for asymptotic results on the BC channel as
N → ∞. In the infinite-length case, the uniform distribution for a constrained average total energy per
dimension over an infinite number of dimensions is Gaussian in any particular dimension. Essentially
then all quantities become Gaussian, and the modulo device conceptually observes the entire sequence
before reflecting it inside a infinite-dimensional hypersphere. This proves Costa’s Gaussian result as
a special case – the so-called ”dirty paper” precoder, but it also allows one to consider s as another
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known user, previously encoded. Such encoding requires infinite delay, but then allows a subsequent
user to be encoded with its level of energy (Gaussian case), and no more, without any loss in capacity
as if the previous known user were not present or zero. This is a transmitter version of infinite delay in
successive decoding, now using the modulo device at the transmitter and receiver to replace the sequence
of decodings. However, there is now an order in encoding (precoding) at the transmitter, with the last
user to be encoded being in the most favored position. However, earlier users in the precoder order must
treat later users as noise for encoding. Broadcast channels, for reasons that will become apparent later
in the discussion of MAC/BC duality, typically consider user u = 1 to be the one that sees only channel
noise (so really last in the order since all other users u > 1 must therefore already be known). The
”causality” of the GDFE will again be useful in BCs to transform a non-causal precoder into effectively
an implementable precoder.

Essentially when the number of users is less than N , the non-causal precoder turns into the block
“Tomlinson/Laroia/flexible” precoders of Chapter 5 over a region Λ selected from the various constella-
tions. While a real “causal finite-dimensional” precoder will increase energy slightly depending on the
constellation choices and energies, the reader will recall such energy loss is small. Thus, for at least the
situation of more dimensions than users, a simple precoder may suffice to handle broadcast channels.
Precoders are revisited again in Chapter 14.

Of interest to the user, but not further used in this text, is the curious result of Forney that extends
the CDEF result for finite block lengths via the crypto lemma, namely that the highest rate achievable
for any situation

c̄(Λ) ≥ c̄ − 1

2
log2 (2πeG(Λ)) (12.70)

where G(Λ) is the so-called normalized second moment of the lattice Λ’s Voronoi (or decision) region,

G(Λ) =
E(Λ)

V (Λ)2/N
. (12.71)

and E(Λ) is the energy of a continuous uniform distribution over the Voronoi region. Essentially, then
the non-causal precoder achieves a capacity less than the full capacity by the amount shown in Equation
(12.70), which goes to zero as N → ∞. Basically, the MMSE-GDFE structure can be implemented as a
precoder without loss in the Gaussian case.

precoding

The crypto lemma is used in BC’s by letting x = x2 so effectively user 2 is encoded first (with user
1 viewed as noise or random), but then user 1 treats the ultimate user-2 encoder output x2 (over the
entire block of N samples) as known à priori for the encoding of x1, which is achieved modulo Λ. User 1
essentially is then free of the effects of user 2. Precoding via the crytpo lemma concept is an alternative
transmitter-side implementation of successive decoding. Figure 12.17 illustrates the transmitter and the
corresponding user receivers for precoding.

Thus, with this interpretation, precoding can be used mod-sphere without loss, allowing the GDFE
theory to also apply to the BC without loss. This application of GDFE theory lead to what is often
called BC/MAC duality.

Successive Decoding

Successive decoding is the receiver’s equivalent of non-causal precoding. A Gaussian BC system can
use either successive decoding or non-causal precoding to achieve best performance. Thus, the precoder
circuitry prior to and including mod at the transmitter in Figure 12.17 can be avoided if successive
decoding at each receiver is preferred as the implementation where those users of higher index in the
current order are decoded first (as they can be, since they were encoded viewing this user and all ahead
of themselves as noise). Figure 12.18 illustrates successive decoding for the same situation as the non-
causal precoder of Figure 12.17. The overall complexity, as well as the complexity of each receiver is
higher with successive decoding than with precoding, but the transmitter is simpler. Overall, precoding
is simpler to implement and often preferred.
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Figure 12.17: Transmitter and receivers for BC with precoders.

Figure 12.18: Transmitter for BC with successive decoding receivers.
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Worst-Case Noise Autocorrelation Diagonalizes the MS-WMF of a GDFE

For any linear Gaussian noise channel
y = Px + n (12.72)

with a rank-U channel, Chapter 5 proved that the performance of a MMSE-GDFE will have the lowest
possible SNR (biased or unbiased) when the Gaussian noise autocorrelation matrix is such that the MS-
WMF matrix/filter of a GDFE is diagonal, and furthermore there exists a specific implementation of
the input autocorrelation matrix that led to the worst-case noise for which a canonical GDFE (i.e., with
white diagonal input v) can be implemented for this diagonal MS-WMF (or worst-case noise) situation.
A restriction noted in Chapter 5 was that the channel rank ρ(H) must equal the number of output
dimensions – BCs can easily violate this condition and thus can be rank deficient. When the channel
is rank deficient, the input energy lost in singular dimensions should be eliminated from the transmit
signal or better reallocated to the useful dimensions. It is then possible to determined a GDFE for the
remaining channel-pass-space input dimensions for which the overall feedforward processing is diagonal.
The diagonal MS-WMF is pertinent to the BC channel because it corresponds to “no coordination”
among the receivers, but is also a highest performance MMSE GDFE with maximum SNR for the given
worst-case noise.

As early in Sections 12.2.2 and 12.2.3, the GDFE extends readily to the case of all ranks of the
MAC by recognizing the signal-energy component of the MMSE as other users’ energy. This same
concept extends to the BC channel where the feedback section coefficients are implemented as part of
the precoder, possibly now adding other-user energy on to shared dimensions in the common case where
ρ(H) < U . Diagonalization of the GDFE receiver forward-processing corresponds to no coordination
among the receivers, or equivalent satisfies the BCs’ no-coordination constraint. For broadcast channels
with rank less than the number of outputs, this diagonizalization however may be somewhat trivial in
scope as an example later in this section shows. The worst-case noise equation (see Chapter 5, Sections
5.3.6 and 5.5.5) of

R−1
wcn − [HRxxH∗ + Rwcn]

−1
= −D (diagonal) (12.73)

can be satisfied for any dimensionality of the channel and input, subject to the maintenance of the
indivdual noise covariance (power) constraints for each of the separate receiver-input noises.

12.3.2 Gaussian BC Channel Capacity regions without ISI

The two-user scalar AWGN BC appears in Figure 12.19. For this simple case, no generality is lost in
assuming the noise variances on the two channels are equal and that |h1| ≥ |h2|.11 More generally, the
channel SNR quantities

gu =
|hu|2
σ2

u

(12.74)

are reintroduced without loss of generality assuming g1 ≥ g2, or essentially |hu| = σu ·√gu. (Effectively,
the noise variances are set equal because any difference can be accommodated in redefining the scale
factors h1 and h2.) The energy is partitioned between the two users who share the common signal x so
that

E1 = α · Ēx (12.75)

E2 = (1 − α) · Ēx , (12.76)

where 0 ≤ α ≤ 1. A successive-decoding approach to this channel would decode the entire signal x2

first in receiver 1, and thus remove its effect prior to decoding x1. The receiver of user 2 treats user 1’s
signal as Gaussian noise. Then the data rates are bounded by the achievable combinations

b̄1 ≤ I(x1; y1/x2) =
1

2
log2

(
1 + α · Ēx · g1

)
(12.77)

11This relation leads eventually to user 1 being last in a best decoding/precoding order, unlike this text’s usual convention
of the last user being last. The reason is this order will be convenient for reasons not yet apparent until the duality of
Section 12.3.3.
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Figure 12.19: Simple two-user broadcast AWGN channel with g1 ≥ g2.
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b̄2 ≤ I(x2; y2) =
1

2
log2

(

1 +
(1 − α) · Ēxg2

1 + α · Ēx · g2

)

(12.78)

Equivalently, user 2 could be side information for a noiseless precoder that is used in encoding user 1 (no
successive decoding then at receiver 1). Clearly the data rate of user 1 cannot be higher by single-user
capacity results for any value of α. For each such value of α, the b̄2 that corresponds to this same value
of α is also the highest because x1 will be Gaussian and because x itself is Gaussian. Then x2 can
also use a Gaussian code since (from earlier sections) there is then no loss since user 1 and the noise
are Gaussian, and the channel is linear. Furthermore, since g2 < g1, then receiver 2 cannot decode x1

(even if x2 were known, which it is not). Thus, any higher rate than that in Equation 12.78 would be
a violation of the single-user capacity-theorem converse for user 2 with user1-plus-noise as the noise. In
effect, no other probability distributions than those with the full sum energy of 1 need to be considered
in constructing the general Gaussian capacity region’s boundary.

This result extends by induction for U > 2, by numbering the users (without loss of generality) so
that g1 > g2 > g3 > ... > gU . Then user U is decoded first at receiver U with all the other signals
considered as Gaussian noise, then receiver U −1 decodes user U −1 with users 1...U−2 treated as noise
but user U removed (non-causally) and so forth. (A sequence of lossless precoders could also instead be
used at the transmitter.) U , U − 1, ..., 1 is the only order that needs to be considered in this simple
BC channel because, by induction from the case of 2 users, all other rate points for other orders will lie
within this region (as long as energies are such that their sum is the maximum sum energy allowed).
To trace the boundary of the capacity rate region, then the designer needs to compute rate tuples for
all possible combinations of U -way energy assignments that sum to the total energy. This requires in
general U − 1 energy factors αu such that

Eu = αu · E ∀ u = 1, ..., U (12.79)

where αU = 1 −∑U−1
i=1 αi and

0 ≤ αu ≤ 1 . (12.80)

The following numerical example illustrates the BC’s data-rate loss caused by not being able to
coordinate at the receiver in the capacity region for a simple 2-user broadcast channel

EXAMPLE 12.3.1 (Simple Broadcast Channel) Returning to Figure 12.19, let h1 =
.8 and h2 = .5 and σ2 = .0001. The mutual information upper bound (that may require
receiver coordination and not be attainable) is

I(x; y) =
1

2
log2

( |Ryy |
|Rnn|

)

=
1

2
log2

(
(.6401) · (.2501)− .42

.00012

)

= 6.56 bits/dimension.

(12.81)
The sum of the data rates thus cannot exceed 6.56 bits/dimension for the BC. Using the
exact formulas in (12.77) and (12.78) for various α produces the following table:

α b1 b2 b1 + b2

1.0 6.32 0 6.32
.75 6.12 .20 6.32
.50 5.82 .50 6.32
.25 5.32 1.0 6.32
.10 4.66 1.66 6.32
.05 4.16 2.20 6.26
0 0 5.64 5.64

The corresponding rate region appears in Figure 12.20. The maximum rate sum in (12.81)
is never attained, indicating the loss from the inability to coordinate the two receivers. The
rate sum in this example is relatively fixed except for very small values of α. Such a nearly
fixed rate sum need not be the case in general.

For this channel, all input energy allocations in the table correspond to a GDFE with Ex = 1.
There is a worst-case noise and the steps to the diagonalization are as below.
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Figure 12.20: Rate region for broadcast channel

>> H=100*[.5

.8] =

50

80

>> [Rwcn,rate]=wcnoise(1,H,1)=

1.0000 0.6250

0.6250 1.0000

rate = 6.3220

>> Htilde=inv(Rwcn)*H =

0.0002

79.9999

>> J2=[ 0 1

1 0];

>> J1=1;

>> [Q,R]=qr(J1*Htilde’*J2)

Q = 1

R = 79.9999 0.0002

>> Q=J1*Q*J1;

>> R=(J1*R*J2)’ =

0.0002

79.9999

>> R*Q’ =
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0.0002

79.9999 (checks)

>> U=1;

>> D=inv(Rwcn)-inv(H*H’ + Rwcn) =

0.0000 0.0000

0.0000 0.9998

>> A=1;

>> Rbinv=H’*inv(Rwcn)*H + 1 =

6.4010e+003

>> G=1;

>> S0=Rbinv;

>> W=inv(S0)*inv(G’)*A’*H’*inv(Rwcn) =

0.0000 0.0125

>> snr=10*log10(det(S0)-1) = 38.0618

>> .5/log10(2)*log10(1+10^(snr/10)) = 6.3220

The value of W clearly indicates the GDFE is telling us the best energy assignment is to
allocate all energy to user 1. While a GDFE can be defined to estimate each of the two
inputs x1 and x2 for any modulation input matrix A by simply augmenting the channel to

H =

[
.5 .5
.8 .8

]

, (12.82)

this singular channel has a rank less than the number of outputs, the condition in Chapter
5 for which a diagonalization of the GDFE foward processing does not exist. One can check
the worst-case noise does exist (and in fact is the same as for the original channel), but the
diagonalizing input cannot exist. Under such situations, a component of the input that does
not pass the channel should actually be considered as noise (or a contribution to a MMSE
as we saw for the GDFE on MAC channels), and this new set of noise variances is then
used to determine the worst-case noise/MSE correlation. This annomaly lead to the concept
of duality, first posed and addressed in an earlier version of these course notes, and to be
addressed shortly.

Figure 12.21 illustrates the 2-user precoder instead of a successive decoder, as opposed to the GDFE
implied in the above example. The signals are Gaussian and the modulo device is presumed the infinite-
dimensional hypershpherical device with output power E1. The total energy is Ex = E1 + E2. The
precoding gain g̃2 = g2

1+α1·Ē ·g2

presumes the use of scalar noise whitening (scaling) for the equivalent

noise that is the sum of a scaled user 1 (encoded last in the order) and noise 2. Thus, x2 is the “side”
information in this precoder.

The broadcast capacity region for general 1 × U Gaussian channel is then (assuming the ordering
|h1| ≥ |h2| ≥ |h3| ≥ ... ≥ |hU |) can be written using mutual information as

b1 ≤ I(x1; y1/x2, x3, ..., xU) =
1

2
log2

(
1 + α1 · Ēxg1

)
(12.83)

b2 ≤ I(x2; y2/x3, ..., XU) =
1

2
log2

(

1 +
α2 · Ēx · g2

1 + α1 · Ēx · g2

)

(12.84)

b3 ≤ I(x3; y3/x4, ..., XU) =
1

2
log2

(

1 +
α3 · Ēx · g3

1 + (α1 + α2) · Ēx · g3

)

(12.85)
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Figure 12.21: Precoder for 2-user case with Gaussian signals.

... (12.86)

bU ≤ I(xU ; yU) =
1

2
log2

(

1 +
αU · Ēx · gU

1 + (
∑U−1

u=1 αu) · Ēx · gU

)

(12.87)

The rate regions in (12.77) and (12.78) follow in the obvious direct way for nonzero gaps. As with
the MA case, the regions are approximate because the gap approximation is not exact:

b1 ≤ I(x1; y1/x2) =
1

2
log2

(

1 +
α · Ēx|h1|2

Γ · σ2

)

(12.88)

b2 ≤ I(x2; y2) =
1

2
log2

(

1 +
(1 − α) · Ēx|h2|2

Γ · (σ2 + α · Ēx · |h2|2)

)

. (12.89)

This can be expanded to more than two users in the obvious way. Further, as with the MAC, the results
confuse the gap concept. An investigation (such as done by S. Jagannathan in Problem 12.14) awaits
the efforts of a motivated engineer).

12.3.3 Scalar duality for Gaussian MAC/BC Channels

Duality is a concept that arises from the GDFE approach to multi-user transmission (and was first
posed in an earlier on-line edition of this book). The interchange of successive decoding and non-
causal precoding (both as instances of a possibly degenerate GDFE) essentially allows movement of the
“coordinated end” of a multi-user Gaussian channel from transmitter to receiver and vice-versa, just as
they are moved in GDFE theory. The “other-user” noise into receiver u in the BC case is filtered by the
same filter hu for all other users; while for the common MAC receiver, the “other-user” noise from user
i component is filtered by hi for detection of user u. The BC has a single common energy constraint

U∑

u=1

Eu ≤ Ex , (12.90)

which more directly follows the GDFE single energy constraint, while the MAC has additional restrictions
of energy per component Eu individually bounded or an energy vector E such that






E1

...
EU




 � E (12.91)
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where � denotes component-wise ≤. Duality envisions a set of MAC’s, each with its own E such that
any and all sum-of-components is less than Ex or

{E | 1∗E ≤ Ex} . (12.92)

There is also an order reversal in duality that will allow the energy-sum constraint to be retained for both
MAC and BC energies (as is shown momentarily). The gap is 0 dB, and thus Gaussian capacity-achieving
codes are used by all users.

The following table lists the number of bits per user for the MAC and the BC with the order reversal
in most preferred position evident (User 1 is most preferred on the BC while user U is most preferred
on the MAC. The reason for the earlier order reversal is now apparent as it simplifies the indexing in
the ensuing table of dualities.) The bits per user symbol in the table have been assumed equal, thus
imposing a constraint on the energies selected12

MAC BC

b1 = 1
2 log2

(

1 +
EMAC

1
·g1

1+EMAC

2
·g2+...+EMAC

U
·gU

)

b1 = 1
2 log2

(

1 +
EBC

1
·g1

1

)

b2 = 1
2 log2

(

1 +
EMAC

2
·g2

1+EMAC

3
·g3+...+EMAC

U
·gU

)

b2 = 1
2 log2

(

1 +
EBC

2
·g2

1+EBC

1
·g2

)

...
...

bU = 1
2

log2

(

1 +
EMAC

U
·gU

1

)

bU = 1
2

log2

(

1 +
EBC

U
·gU

1+[EBC

1
+...+EBC

U−1
]·gU

)

For equality of bit rates, these equations follow

EBC
1 = EMAC

1 · 1

1 + EMAC
2 · g2 + ... + EMAC

U · gU
(12.93)

EBC
2 = EMAC

2 · 1 + EBC
2 · g2

1 + EMAC
3 · g3 + ... + EMAC

U · gU
(12.94)

... =
... (12.95)

EBC
U = EMAC

U ·
(
1 +

[
EBC
1 + ... + EBC

U−1

]
· gU

)
(12.96)

(12.97)

Theorem 12.3.3 (Equal Sum Energy for Duality) The sum of the energies in scalar
duality is the same for the MAC and the BC when the bit rates are set equal, namely

U∑

u=1

EBC
u =

U∑

u=1

EMAC
u . (12.98)

Proof: The sum of the equations:

EBC
1 ·

[
1 + EMAC

2 · g2 + ... + EMAC
U · gU

]
= EMAC

1 (12.99)

12While the bit rates could always be set equal and the consequent energies of MAC derived from those of BC, the
reversed-order of preference allows the sum of the energies to be the same.
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EBC
2 ·

[
1 + EMAC

3 · g3 + ... + EMAC
U · gU

]
= EMAC

2 ·
[
1 + EBC

2 g2

]
(12.100)

... =
... (12.101)

EBC
U = EMAC

U ·
(
1 +

[
EBC
1 + ... + EBC

U−1

]
· gU

)

equals

U∑

i=1

EBC
i +

U∑

i=1

EBC
i ·

U∑

k=i+1

gk · EMAC
k =

U∑

i=1

EMAC
i +

U∑

i=2

EMAC
i · gi ·

i−1∑

k=1

EBC
k (12.102)

Inspection of the result of the 2nd terms on the left and on the right in (12.102) when U = 3
provides insight:

EBC
1

(
g2 · EMAC

2 + g3 · EMAC
3

)
+EBC

2 ·g3EMAC
3 = g2·EBC

1 ·EMAC
2 +g3·

(
EBC
1 · EMAC

3 + EBC
2 · EMAC

3

)
:

(12.103)
They are equal, and thus the remaining terms on the left and right of (12.102) are also equal.
In general, the 2nd term on the left then can be rewritten

U∑

i=2

·EMAC
i · gi ·

i−1∑

k=1

EBC
k (12.104)

and thus again is equal to the 2nd term on the right, leaving the energy sums equal for the
BC and the MAC. QED.

A simpler and more intuitive proof appears in Chapter 14, Section 5, but requires a vector generalization
and some nomenclature and defined quantities not yet introduced nor otherwise needed here in the scalar
case.

EXAMPLE 12.3.2 (Example 12.3.1 revisited with duality) Returning again to Fig-
ure 12.19, let h1 = .8 and h2 = .5 and σ2 = .0001. As an example point for duality, let
EBC
1 = EBC

2 = .5, or equivalently α = .5. Then, g1 = 802, g2 = 502 and

EMAC
2 =

EBC
2

1 + EBC
1 · g2

=
1

2

(
1

1 + 2500(.5)

)

=
1

2502
, (12.105)

while then

EMAC
1 = EBC

1 · (1 + g2 · EMAC
2 ) = (.5) ·

(

1 +
2500

2502

)

=
2501

2502
= 1 − EMAC

2 . (12.106)

The sum of energies is again 1 as it should be.

Then the two rates for the dual MAC channel are

b1 =
1

2
log2

(

1 +
EMAC
1 · g1

1 + EMAC
2 · g2

)

= 5.82 (12.107)

b2 =
1

2
log2

(

1 +
EMAC
2 · g2

1

)

= .50 , (12.108)

which are the same as for this energy point in the original instance of this example. Thus,
the rate region could be traced for set of dual MAC channels for which the sum of the energy
constraints are 1.

The GDFE for this dual MAC channel could be designed similar to the example in Section,
where the diagonalization of the receiver corresponds to the separation of the transmitters
inherent in the “choice” of the input (really the restrictions of the input to no collaboration).
As channels with full rank occur in Chapters 13 and 14, a richer relationship of the duals
and GDFE evolves.
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Duality makes use of an existing MAC capacity-region program generator (for instance an easy
pentagon generator for U = 2 and the Gaussian scalar MAC) and then forms the union of such regions
for all possible energies that sum to the total allowed. The vector of energy constraints for a MAC is

E =






E1,max

...
EU,max




 . (12.109)

The capacity rate region of the linear Gaussian BC would then be traced by the union of all the rate
regions for the MAC:

1. Initialize capacity set to {c(b)} = ∅.

2. for all E such that 1∗E = Ex
• Compute a(b) for the MAC defined by g1, ..., gU with E as energy constraint.

• Form {c(b)} =
⋃ {{c(b)}, a(b)}.
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Figure 12.22: Interference-channel example.

12.4 The Interference Channel

This section provides a 2×2 AWGN example of IC capacity region construction using the general method
of Section 12.1.3. Very little more is known about simplification of the region’s construction, unlike the
BC and MAC situations. This section further addresses only the Gaussian situation.

Figure 12.22 shows the IC example. There are only two orders that need to be considered π =
{(1, 2) , (2, 1)}. Some useful expressions are

1

2
log2

(

1 +
.64

.0001

)

= 6.3220 (12.110)

1

2
log2

(

1 +
.36

.0001

)

= 5.9071 (12.111)

1

2
log2

(

1 +
.64

.2501

)

= 0.9157 (12.112)

1

2
log2

(

1 +
.36

.4901

)

= 0.3973 (12.113)

1

2
log2

(

1 +
.49

.3601

)

= 0.6196 (12.114)

1

2
log2

(

1 +
(.5).64

.0001

)

= 5.8222 (12.115)

1

2
log2

(

1 +
(.5).36

.0001

)

= 5.4073 (12.116)

1

2
log2

(

1 +
.64

.1251

)

= 1.3063 (12.117)

1

2
log2

(

1 +
.18

.4901

)

= 0.2257 (12.118)

1

2
log2

(

1 +
.49

.1801

)

= 0.9478 (12.119)

1

2
log2

(

1 +
.36

.2451

)

= 0.6519 (12.120)
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1

2
log2

(

1 +
.5(.64)

.2501

)

= 0.5944 (12.121)

1

2
log2

(

1 +
.5(.49)

.3601

)

= 0.3744 (12.122)

1

2
log2

(

1 +
.5(.25)

.6401

)

= 0.1287 (12.123)

1

2
log2

(

1 +
.25

.3201

)

= 0.4163 (12.124)

Again from Section 12.1.1, Xπ(u) is defines a set of users in order π that can be decoded prior to u.
This set is either the null set ∅, or {1} when u = 2 and π = (1, 2), and either ∅ ir {2} when u = 1 and
π = (2, 1). The following table considers the order (1,2) for both users:

E1 E2 X(1,2)(1) X(1,2)(2) b1 b2

1 1 ∅ ∅ .9157 .3973
1 1 ∅ 1 .6196 5.9071
1 0 ∅ ∅ 6.3220 0
0 1 ∅ ∅ 0 5.9071
1 .5 ∅ ∅ 1.3063 .2257
1 .5 ∅ 1 .9478 5.4073

.5 1 ∅ ∅ .5944 .6519

.5 1 ∅ 1 .3744 5.9071

The following table considers the order (2,1) for both users:
E1 E2 X(2,1)(1) X(2,1)(2) b1 b2

1 1 ∅ ∅ .9157 .3973
1 1 2 ∅ 6.322 .2378

1 0 ∅ ∅ 6.3220 0
0 1 ∅ ∅ 0 5.9071

1 .5 ∅ ∅ 1.3063 .2257
1 .5 2 ∅ 6.3220 .1287
.5 1 ∅ ∅ .5944 .6519
.5 1 2 ∅ 5.8222 .4163

One could investigate the situations of different

orders on the two different receivers but would find easily that the points generated describe rectangles
interior to the ones in the above two tables.

Figure 12.23 sketches the corresponding rate region. Rectangles trace the region, but not so simply
as in the BC or MAC cases in that points with less energy than the maximum on one of the two users
can correspond to boundary points in the interference channel. The enumeration of all energies for more
than 2 users and a simple channel could be complex.
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Figure 12.23: Interference-channel example.
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Exercises - Chapter 12

12.1 AWGN’s
Derive for the complex additive Gaussian noise channel y = Hx + n that

I(x; y) = log2

|Ryy |
|Rnn| = log2

|Rxx|
|Ree|

. (12.125)

Find equivalent expressions when the channel is real baseband.
(Hint: ok to use Chapter 5 results.)

12.2 multiple-user channel types - row vector
A multiple-user channel with additive Gaussian noise of power spectral density σ2 = .001 on all

outputs has channel matrix H = [1 2]. The input user-energy constraints are Ex,1 = 1 and Ex,2 = 1.

a. What type of multi-user channel is this?

b. Find I(x; y).

c. Can the rate in part b be achieved? If so, describe how you would achieve it.

12.3 multiple-user channel types - column vector
A multiple-user channel with additive Gaussian noise of power spectral density σ2 = .001 on all

outputs has channel matrix H =

[
1
2

]

. The noises at each output are independent. The input user-

energy constraints are Ex,1 = 1 and Ex,2 = 1.

a. What type of multi-user channel is this?

b. Find I(x; y) (Linear modulation may be assumed.)

c. Can the rate in part b be achieved? If so, describe how you would achieve it.

12.4 2 way or not 2 way? - 10 pts
Figure 12.24 shows a wireless cellphone system with 2 users. The “downlink” channel allows com-

munication from one base station to two mobile customers who may share the wireless frequency band’s
dimensions. The “uplink” channel is the path shared from these two users to the base station in a
different frequency band than the downlink band.

Figure 12.24: One way or two ways.

a. What type of channel is the downlink transmission system and at least how many users? (2 pts)

b. What type of channel is the uplink transmission system and at least how many users? (2 pts)
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c. Suppose the downlink and uplink transmissions can share the same dimensions (frequency or time).
At least how many users are there? ( 2 pts)

d. Using only IC, BC, and MAC as components describe the channel of part c as recursive represen-
tation of the 3 basic multi-channel types assuming that all input signals are Gaussian. (4 pts)

12.5 multiple-user channel types - matrix
A multiple-user channel with additive Gaussian noise of power spectral density σ2 = .001 on all

outputs has channel matrix H =

[
2 1
1 1

]

. The input user-energy constraints are Ex,1 = 1 and Ex,2 = 1.

a. What type of multi-user channel is this if the transmitters and receivers cannot cooperate?

b. What other types of multi-user channels are possible for this H? Describe them.

c. Find I(x; y).

d. Which multi-user systems can always achieve the data rate in part c?

12.6 3 × 3 MAC
For an IC with 3 users:

a. How many user decoding orders are possible?

b. Enumerate the orders for part a.

c. For any given order and px, what is the shape of the achievable region?

d. For the convex combinations of only any 2 orders, what are the types of shapes of achievable
regions?

e. For the convex combinations of only any 3 orders, what are the types of shapes of achievable
regions? (extra credit).

Hint: For parts d and e, you may pick 2 or 3 arbitrary rate-tuples corresponding to different decoding
orders and plot achievable rate regions for all convex combinations of them.

12.7 Detectors
For the additive Gaussian channel y = x1 + x2 + n with x1 as uncoded 4 QAM with dmin = 4 and

x2 as uncoded 16 QAM with dmin = 1:

a. Show decision regions for joint detection of user 1 and user 2.

b. Show decision regions if user 1 is given and your corresponding receiver.

c. Show decision regions if user 2 is given and your corresponding receiver.

d. If user 2 is more important in terms of reliable decisions, should it go first or last in decoding order
of successive decoding?

e. If user 1 is more important in terms of reliable decisions, should it go first or last in decoding order
of successive decoding?

12.8 Simple MAC
An scalar multiple-access AWGN channel has two scalar inputs with unit eneries, gains .7 and 1.5

with noise variance .0001.

a. Find the maximum sum rate. (2 pts)

b. Find the maximum rates of the two users if the other user is treated as noise. (2 pts)
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c. Find the capacity rate region for this channel. (2 pts)

d. Find any corner-point GDFE receiver. (1 pt)

e. Design a GDFE receiver and transmitter for the situation where the the two users have equal data
rates. (3 pts)

f. Find a simultaneous water-filling spectrum solution for the two users that has maximum sum rate.
(3 pts)

12.9 Nonsingular GDFE.
A MAC has channel matrix

H =





1 .9 0
0 1 .9
a 0 1



 (12.126)

with additive Gaussian noise of autocorrelation matrix Rnn = 0.1 · I.
For both a = 0 and a = .9, answer each of the following questions.

a. (2 pt) How many users are there?

b. (4 pts) Find the highest rate sum for the users.

c. (4 pts) What can you say about the 6 possible orderings in terms of combinations that lead to the
maximum sum rate?

d. (6 pts) Design a GDFE receiver for this channel showing G, and then unbiased feed-forward matrix
processing and unbiased feedback sections.

e. (4 pts) Suppose input coordination were allowed for a single-user vector channel - what would the
maximum data rate be?

12.10 Singular GDFE.
A MAC has channel matrix

H = [1 .9 .81] (12.127)

with additive Gaussian noise of autocorrelation matrix Rnn = 0.1 · I.

a. (2 pt) How many users are there?

b. (4 pts) Find the highest rate sum for the users.

c. (4 pts) Design a GDFE receiver for this channel showing G, and then unbiased feed-forward matrix
processing and unbiased feedback sections.

d. (5 pts) Find the possible rate-triples for each of the other 5 possible orderings.

12.11 Infinite-finite mixed GDFE.
A MAC has channel has N = 1 with ISI on each of two users who have pulse responses in discrete

time H1(D) = 1 + .9D−1 and H2(D) = 1√
10

· (1 + .8D), The AWGN noise variance is 0.017.

a. (4 pts) Find the highest rate sum for the users.

b. (4 pts) Design a GDFE receiver using two infinite-length MMSE-DFEs and also showing successive
elimination of user 2 first in order from user 1.

c. (2 pts) What happens to the rate sum if the order is reversed.

12.12 Simultaneous Water-Fill
For the multiple access channel with P1 = (1 +D) and P2 = 1−D with AWGN variance σ2 = 1 and

E1 = E2 = 1 (T = 1):
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a. Find the maximum sum rate. (3 pts)

b. Sketch the capacity rate region for this channel. (3 pts)

c. Find an FDM simulataneously water-filling solution for this channel that achieves maximum sum
rate. (Hint: you probably found this in part a - 1 pt.)

d. Design a single GDFE receiver and two transmitters for the situation in part c where the two users
have equal data rates. (3 pts)

12.13 Rate region for a 2-user multiple access example

Figure 12.25: Figure for Problem 12.13

This problem considers 2 users, with energies E1 and E2 respectively as shown in Figure 12.25. The
additive noise, n ∼ N (0, σ2). Let C( E

N ) = 1
2 log

(
1 + E

N

)
denote the capacity of a single user Gaussian

channel with signal to noise ratio E
σ2 . Let T = 1.

a. (1 pt) The rates for user 1 (R1) and user 2 (R2) are bounded by C1 and C2 respectively. Find the
expressions for C1 and C2.

b. (2 pts) Similarly, R1 + R2 is bounded by C3. We proceed to find C3.

R1 + R2 ≤ I(x1, x2; y) (12.128)

= I(x1 + x2; y) (12.129)

≤ 1

2
log

(

1 +
E1 + E2

σ2

)

(12.130)

(i) Explain why (2) is true.
(ii) Explain why (3) is true.

c. (2 pts) Using the bounds found in (a) and (b), sketch the capacity region for the 2-user example
on an R1-R2 plane.

d. (5 pts)
(i) By letting user 1 achieve C1, what’s the maximum rate that user 2 can achieve? Describe a
decoding scheme for this transmission. Mark this (R1, R2) point on the rate region.
(ii) By letting user 2 achieve C2, what’s the maximum rate that user 1 can achieve? Mark this
(R1, R2) point on the rate region.
(iii) How can we achieve any point on the rate-sum curve given by R1 + R2 = C(E1+E2

σ2 )? Hint:
think GDFEs.

12.14 Jagannathan’s Non-Zero Gaps (Best achievable rate region of a scalar MAC with non-zero gap)
Consider a scalar 2-user multiple access channel (with gains h1 and h2 and AWGN σ2). Let the gap

of the codes for the two users be Γ > 1 (i.e. > 0 dB).

a. Find the rate pairs that are achieved using successive decoding. Assume that both users completely
use their energies E1 and E2.
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b. (Bonus) Prove the claim that when either or both users do not use their energies completely, the
resulting rate pairs achieved by successive decoding lie within the pentagon defined by the rate
pairs found in a.

c. Find the rate pair that maximizes the sum rate for the MAC when a FDM scheme is used. (Hint:
Think of the best FDM scheme when the gap is 0 dB and the energies of the two users are scaled
by 1/Γ).

d. Using the results of parts a, b and c, determine the scheme that achieves the maximum sum rate.
Comment about the optimality of successive decoding for this channel.

e. The boundary of the best achievable rate region for this channel can be shown to be characterized
by the convex combination of the successive decoding rate pairs and the rate pairs achieved by
FDM. You need not prove this result for this problem. Assuming this result, compute and plot the
best achievable rate region for the scalar 2-user MAC when h1 = 1, h2 = 2, E1 = E2 = 1, σ2 = 1
and Γ = 4 dB. Compare this with the capacity region of the the scalar MAC when the gap is 0 dB
but the energies of the 2 users are scaled by 1/Γ (in linear units).

12.15 FDMA scheme for the 2-user Multiple Access example
The multiple access scheme used in Problem 12.13(d) is called Code Division Multiple Access

(CDMA). In Frequency Division Multiple Access (FDMA) scheme, disjoint frequency bands are al-
located to different users so that they don’t interfere with each other. This simplifies the decoding as
compared to the decoding for CDMA. We will now find the rate region for the FDMA scheme and
compare it to the one for CDMA.
Consider again the 2-user example shown in Fig. 1 where E1, E2 and σ2 are as defined in Problem 2. Let
α be the fraction of bandwidth assigned to user 1.

a. (3 pts) Write down the rate expressions R1, R2 for user 1 and 2.

b. (2 pts) Sketch the rate region (R1,R2) for 0 ≤ α ≤ 1 and compare it to the rate region for CDMA.
You can use Matlab.

c. (2 pts) Notice that the FDMA curve lies inside the rate region for CDMA, and only touches the
rate-sum curve at one point. Again, the rate-sum curve is given by R1 + R2 = C(E1+E2

σ2 ).We will
now find the value of α that achieves the rate-sum point for the FDMA scheme.
Let C(α) = R1 +R2 where R1, R2 are found in (a). Show that α? = E1

E1+E2

achieves the maximum
and find C(α?).

12.16 FDMA scheme for unequal 2-user multiple access channels with ISI

Figure 12.26: Figure for Problem 12.16

Figure 12.26 shows 2 users with energies E1 and E2 respectively and a noise power spectral density
of 1.

a. (2 pts) Let G(ω) and H(ω) be two bandpass filters with non-overlapping passbands. Describe how
the optimal input PSD’s for both users can be determined.

456



b. (11 pts total) Now, let G(ω) = 1/
√

2 and H(ω) = 1/
√

ω + 1. Also, normalize the total bandwidth
to 1, i.e., 0 ≤ ω ≤ 1. In this case, the channel frequency responses overlap with one another. The
optimal input PSD’s for both users for an FDMA scheme can be found using the scaling approach
described in Section 12.2.3. Specifically, such scaling arbitrarily fixes the water-filling level to be 1
for both users, and finds the scaling factors of b1 and b2 such that the individual power constraints
are met. Note that the individual power constraints are now b1 · E1 and b2 · E2 with the scaling as
in Figure 12.27. Assume T = 1.

Figure 12.27: 2-user scaled multiaccess channel with ISI.

(i) (2 pts) Sketch the water-filling diagram that describes how the optimal PSD’s are split for
the FDMA scheme for the 2-user scaled multiaccess channel with ISI. Annotate your diagram
with the scaling factors b1 and b2.

(ii) (1 pt) Let w? denote the frequency where the scaled, inverted SNR curves of both users
intersect. Find w? in terms of b1 and b2.

(iii) (1 pt) Write down the power constraint for user 1 in terms of b1, b2 and P1.

(iv) (1 pt) Write down the power constraint for user 2 in terms of b1, b2 and P2.

(v) (2 pts) Letting P1 = P2 = 1, solve for b1, b2 and w? (Hint: use conv and roots in Matlab).

(vi) (2 pts) What are the respective rates achieved by user 1 and user 2?
(Hint:

∫
lnx = x lnx − x).

(vii) (2 pts) Sketch the water-filling diagram without the scaling factors. (The water-filling levels
for both users will be different).

12.17 Simple broadcast rate region
The scalar broadcast AWGN channel of Figure 12.19 has two scalar outputs with unit energy input.

Both noise variances are equal to N0

2 = .0001.

a. Sketch the rate region for gains p1 = 2 and p2 = .4. (2 pts)

b. Sketch the rate region for gains p1 = .4 and p2 = 2. (1 pt) (2 pts)

c. Sketh the rate region for gains p1 = 1 and p2 = 1. (2 pts)

d. Estimate the maximum rate sum for each of parts a, b, and c (3 pts).

12.18 Yu’s Region
This question investigates various aspects of the capacity rate region for the broadcast channel.

a. Describe the capacity rate region with equations for the 3-user AWGN broadcast channel with
gains p1 = 1, p2 = .5 and p3 = .25. (3 pts)

b. For the general AWGN broadcast channel, relate the mutual information I([x1 x2 ...xu] ; y) and
the two autocorrelation matrices Ry/[x1 x2 ...xu] and R⊥

y/[x1 x2 ...xu] where Ry/[x1 x2 ...xu] +

R⊥
y/[x1 x2 ...xu] = Ryy . (2 pts)
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c. Use your expressions in part c to write a bound on the maximum rate sum. (2 pts)

d. Describe the ordering that produces the largest bound achievable rate region? (2 pts)

e. Is the rate sum bound in part c achievable? Compare this rate sum bound to the rate sum bound
of the multiple access channel – how do they differ?(3 pts)

12.19 Simple IC rate region
The scalar IC AWGN channel of Figure 12.22 has two scalar inputs with unit energy input. The gain

from user 1 to its output is changed to 1. The gain from user 2 to its output is changed to 2. The gain
from user 1 to user 2 is now labelled a < 1, a variable. Similarly, the gain from user 2 to user 1 is b < a.

a. Sketch the rate region for gains a = .4 and b = .1. (6 pts)

b. Describe what happens to the rate region as b approaches a = .4 in magnitude. (2 pts)

c. What happens to the rate region when a >> b? (2 pts)

12.20 Kim’s MAC - 10 pts
Consider the following 1 × 2 single-user channel with a total transmitting energy constraint of Ex =

E(|x1|2 + |x2|2) ≤ 2.

y = [2 i]

[
x1

x2

]

+ n, (12.131)

where n ∼ CN (0, 1) is an additive complex Gaussian noise at the receiver.

a. Calculate the capacity of this channel in bits per one complex dimensional symbol. (2 pts)

b. Suppose that there is an additional per-antenna energy constraint, i.e., each antenna should use
energy of Eu,n ≤ 1. Calculate the capacity under these energy constraints. (3 pts)

c. Suppose this system is instead a two-user-multiple-access-channel (MAC), where each user occu-
pies each antenna and sends its own independent signal. Specifically, no coordination is allowed
between the transmitted signals. If each user has individual transmit energy constraint of 1, cal-
culate the maximum rate sum for this MAC channel. (3 pts)

d. Discuss your results. (2 pts)

12.21 Worst-Case Noise for Broadcast Channels - Mohseni1 - 14 pts
Consider the following scalar broadcast channel with U = 2 users,

[
y1

y2

]

=

[
1
2

]

x +

[
z1

z2

]

, (12.132)

where z1, z2 ∼ N (0, 1) are additive Gaussian noises at each receiver. Let P = 1 be the average transmit
power constraint, E(x2) ≤ P .

a. Plot the capacity region for this broadcast channel. By examining different pre-coding orders
show that the capacity region is obtained when the better user (user 2) is pre-coded second. Find
the maximum rate-sum point in the capacity region and prove this point is achieved by only
transmitting to the best user. (4 pts)
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b. Since for broadcast channels, coordination is not possible at receivers’ side, the capacity region
only depends on the marginal probability densities, p(y1|x) and p(y2|x). Thus the capacity region
does not depend on the correlation coefficient among receiver noises, E(z1z2) = α. Hence for any
−1 ≤ α ≤ 1, I(x; y1, y2) is an upper bound on the maximum sum-rate or equivalently

R1 + R2 ≤ min
|α|≤1

I(x; y1, y2). (12.133)

Find α ∈ [−1, 1] that minimizes

I(x; y1, y2) =
1

2
log

∣
∣
∣
∣

[
1
2

]

P
[

1 2
]
+

[
1 α
α 1

]∣
∣
∣
∣

∣
∣
∣
∣

[
1 α
α 1

]∣
∣
∣
∣

. (12.134)

show that for this value of α, the matrix,

[
1 α
α 1

]−1

−
([

1
2

]

P
[

1 2
]
+

[
1 α
α 1

])−1

(12.135)

is a diagonal matrix. This minimizing noise covariance matrix corresponds to the Worst Case
noise. (4 pts)

c. Show that the minimum value of I(x; y1, y2) obtained in part (b) is actually equal to maximum
R1 + R2 from part (a). ( 2 pts)

d. Now suppose the receivers could some how cooperate with each other and also assume the noise
covariance matrix is equal to the one obtained in part (b). Show that the feed forward whitening
matched filter of a GDFE receiver only operates on received symbol of user 2. In other words,
I(x; y1, y2) can be achieved by a GDFE receiver without any required coordination and only user
2 communicates with the transmitter, the fact that you have already shown in part (c). ( 4 pts)

In general, it can be shown that this filter is diagonal and can be employed even without coordi-
nation at receivers. Also the successive decoding at the receiver can be transferred to transmitter
side by performing Dirty Paper Pre-coding at the transmitter. As a result, the upper bound of part
(b) on maximum sum-rate is achievable, and is known as the sum-capacity of Gaussian broadcast
channels.

(For those of you who have not had a chance to take EE379C, GDFE receiver is an optimal
receiver that could achieve the capacity of a single user point-to-point channel. This receiver
consists of a feed forward filter that whitens the receiver noise and converts the channel into an
upper triangular one and a successive decoder that decodes each symbol after subtracting the
effects of previously decoded symbols from current symbol. Since the channel matrix is converted
into an upper triangular one, the first symbol to be decoded does not suffer from interference
caused by other symbols and by subtracting this symbol after decoding, its effect is removed from
decoding of successive ones. For this receiver, feed forward filter is given by L−1HT S−1

z , where Sz

is the noise covariance matrix, H is the channel matrix including all transmit covariance shaping
matrices and L is a lower triangular matrix such that LLT = I + HT S−1

z H and can be found by
cholesky factorization.)

12.22 Very Strong and Strong Interference Channels (Mohseni 2): - 10 pts
Consider the following scalar interference channel with U = 2 users,

[
y1

y2

]

=

[
1 a1

a2 1

] [
x1

x2

]

+

[
z1

z2

]

, (12.136)

where z1, z2 ∼ N (0, 1) are additive Gaussian noises at each receiver. Let P1 and P2 be the average
transmit power constraints for user 1 and user 2 respectively, E(x2

1) ≤ P1 and E(x2
2) ≤ P2.
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a. Suppose a2
1 ≥ 1 + P1 and a2

2 ≥ 1 + P2. This scenario is usually referred to as Very Strong
Interference Channel. Show that the capacity region of a very strong interference channel is the
same as the capacity of an interference channel with a1 = a2 = 0. Please provide justifications for
both achievability and converse parts.

b. Now suppose a1 ≥ 1 and a2 ≥ 1. This interference channel is known as Strong Interference
Channel. Show that any rate pair (b1, b2) ∈ R2

+ satisfying the following properties is achievable,

b1 ≤ 1

2
log(1 + P1)

b2 ≤ 1

2
log(1 + P2)

b1 + b2 ≤ min{1

2
log(1 + P1 + a2

1P2),
1

2
log(1 + P2 + a2

2P1)}.

It can be shown that this region is in fact the capacity region of a very strong interference channel.
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