
Contents

13 The Gaussian Vector Multiple Access Channel 462
13.1 The Gaussian Vector MAC Model . 463

13.1.1 Vector Model Basics . 463
13.1.2 The SWF rate-sum criterion for the Gaussian Vector MAC 465
13.1.3 The use of GDFE’s in the MAC . 470

13.2 Iterative Water Filling . 472
13.2.1 The IW algorithm and related distributed implementations 472
13.2.2 Fixed-Margin (Min Power) Iterative Water-filling 474

13.3 Vector DMT for Multiple Access . 476
13.3.1 SWF for the Vectored DMT MAC . 479
13.3.2 Tonal GDFE’s . 480
13.3.3 Spatial Correlation of Noise . 482

13.4 Minimization of an energy sum - Mohseni’s Algorithm . 486
13.4.1 Minimizing a Weighted Energy Sum . 486
13.4.2 Tonal Decomposition of the Lagrangian . 487
13.4.3 Mohseni’s Algorithm and minPMAC program . 488

13.5 Tracing the Rate Region . 499
13.5.1 Satisfaction of an energy vector constraint . 499
13.5.2 Examples of the use of admMAC . 503
13.5.3 Distributed Implementations . 505

Exercises - Chapter 13 . 507

461

Chapter 13

The Gaussian Vector Multiple
Access Channel

The Gaussian multiple-access channel (MAC) first appeared in Section 12.2, where examples added the
sum of two or more users’ signals to Gaussian noise before processing by a single dimension of a common
receiver. This chapter returns to this Gaussian MAC and more completely analyzes the common output
with possibly multiple dimensions for inputs and outputs, and thus generalizes to the “Vector MAC,”
which is abbreviated in these notes as MAC1 This MAC will be completely handled by the GDFE
theory of Chapter 5.

Section 13.1 models the MAC, particularly describing the H matrix. This detailed model allows a
more thorough specification of MAC -input implementation of a particular point b within the rate region
c(b), finding a generalization of Section 12.2’s simultaneous water-filling for the maximum MAC rate
sum. Section 13.2 introduces the simple iterative water-filling algorithm for determining a simulta-
neous water-filling solution. Iterative water-filling then can be used to maximize the users’ rate sum on
any MAC. Iterative water-filling can be used with no order, or equivalently its results can be used with
any of U ! orders, and will for each situation produce a possibly different set of users’ input covariances
that all have the same maximum rate sum. Each such ordered-decoder maximum-rate-sum point b is
then a vertex of that maximum rate sum. Section 13.2 also describes a fixed-margin (FM) iterative
water-filling procedure that will produce a set of input covariances that achieve any rate vector b ∈ c(b),
although there will be no absolute guarantee for such points that the corresponding energy constraints
for all the users will be satisfied or that any user, or the set of users, necessarily uses minimum sum
energy. This FM IW will have uses as a component of other procedures.

Section 13.3 then proceeds to Vector DMT solutions that simplify the MAC implementation for
many practical situations and allow essentially a tone-by-tone approach to the MAC. In particular,
time(dimension)-sharing will yield to frequency-sharing. An otherwise difficult rate-region construction
associated with dimension-sharing of various user-order rate-point choices simplifies, with large numbers
of tones, to a single best order(same on all tones) for implementation of any rate-region point. This best
rate-point solution is no longer SWF at non-rate-sum-maximizing points. An alternate procedure (of M.
Mohseni) determines the input covariances and best order simultaneously in Section 13.4. Section 13.5
progresses to tracing of the rate region or determining the correct the best energy and bit distribution
for any point with the MAC rate region. Section 13.5 also suggests a distributed implementation that
may be important for applications where the central MAC controller does not attempt to implement
complex algorithms for time-variation of the channels and maintains the use of bit swapping to keep a
solution close to optimal with minimal complexity.

1Thus, the boldface MAC implies vector and Gaussian.

462

13.1 The Gaussian Vector MAC Model

This section develops a consistent vector model for the MAC and generalizes SWF for this model.

13.1.1 Vector Model Basics

Figure 13.1 illustrates the basic vector AWGN channel with the linear channel matrix H . Lx denotes the
number of non-temporal input dimensions per user (non temporal means not associated with stacking
of N time samples to form a packet, so like number of antennas or number of lines in a DSL system).
In situations where different users may have different numbers of dimensions, the largest number of said
dimensions defines Lx (and dummy dimensions are inserted into the analysis on other users). Similarly,
Ly is the number of non-temporal dimensions at the common MAC output. Each element of the channel
matrix Hu is LyN ×LxN (or more precisely LyN ×Lx(N + ν) with guard bands2, see Chapter 4). The
channel is thus described by the LyN × Lx(N + ν)U matrix H . If all outputs and all inputs could

Figure 13.1: The Gaussian MAC.

be coordinated as vectors, then the channel is truly a single-user channel at the physical layer even if
many users’ signals are carried at a higher level of use. In this vector single-user case, the vector coding

of Chapter 4, with R
−1/2
nn H = FΛM∗ determined by singular value decomposition, can be used with

transmit signal
x = MX , (13.1)

with receive matched matrix-filter output

Y = F ∗y , (13.2)

and with a water-filling distribution of energy computed for up to Ñ = min (LyN, Lx(N + ν)U) channel
input dimensions. Defining the channel signal to noise gains as

gn
∆
= λ2

n , (13.3)

the water-filling distribution is well-known as

En +
1

gn
= constant , n = 1, ..., Ñ (13.4)

En ≥ 0 . (13.5)

A good low-gap code Γ can be applied to all subchannels with corresponding single-user decoders for
that same code’s use on the AWGN channel. With such good codes, the vector-coded transmission
system will perform as close to capacity as that code would perform as when that same code is applied

2If guard bands are used, they are presumed of the same length and to occur at the same time for all users.

463

to a simple AWGN with no crosstalk nor ISI. The overall sum of all users’ number of bits per symbol is
then approximated as (and becomes exact if Γ = 1)3

b =

Ñ∑

n=1

1

2
log2

(

1 +
En · gn

Γ

)

; b̄ =
b

Lx · (N + ν)
(13.6)

with overall SNR

SNRV C =
22b̄ − 1

Γ
. (13.7)

The number of bits is the capacity b̄ = c̄ when Γ = 1 (0 dB) and then

SNRV C = 22c̄ − 1 . (13.8)

When the input energy distribution is not water-filling, there is a mutual information Ī < c̄. With
good codes on each of the dimensions, the vector coding system will perform for that non-water-fill
energy distribution (input covariance) as

SNRV C = 22Ī − 1 , (13.9)

which is the highest level of performance for this particular choice of Gaussian input energy distribution.
The energy constraint will sometimes be denoted by a diagonal matrix

Evec = diag{E} . (13.10)

Any GDFE with the same input energy distribution and independent input dimensions, or more precisely
the same Rxx = Mdiag(E)M∗ = GvSvG∗

v, will perform at the same level given by (13.9). That mutual
information (from Chapter 5) is

Ī =
1

2Lx(N + ν)
log2

|Ryy |

|Rnn|
=

1

2Lx(N + ν)
log2

|HRxxH∗ + Rnn|

|Rnn|
. (13.11)

An interesting almost-MAC like channel occurs when inputs can be coordinated but multiple energy
constraints exist instead of a single sum-energy constraint. Systems with integer or quantized information
units (like integer bit restrictions) can use Levin-Campello (LC) loading algorithms as in Chapter 4. Such
LC algorithms readily incorporate any type of power-spectral-density, peak, or sum-energy constraints
expressed by (mu,n can be viewed as the gain to the nth dimension by the uth user)

Lx(N+ν)U
∑

n=1

|mu,n|
2 · en ≤ Eu , (13.12)

where en is an individual dimensional energy constraint (using lower case en to distinguish energy for
dimension n from energy per user). The weights mu,n could be viewed as the elements of the uth column
of the matrix M in the single-user-with-dimensional-energy-constraints problem, but need not be so
constrained and could be any set of weights in general. Such constraints in the multi-user channel might
correspond to individual antenna-driver (or line-driver) maximum average energy, or even dimensional-
peak-energy, constraints. LC algorithms simply need evaluate the constraints in (13.12) after each bit has
been assigned the next least energy position. The incremental energy tables of Chapter 4 for each tone
are then updated to reflect an infinite cost in the position of any subsequent bit allocation that would
cause violation of the constraints. Such multi-energy-constraint channels may have practical interest
and fall somewhere in between a multiple-input-multiple-output single-user channel and a MAC. This
approach assumes, however, that the SVD remains optimum for vector coding, which may only be
approximately true. The loss of optimality of a single SVD is more pronounced in the case of the full
MAC.

3Tacitly assumes real dimensions, there is no factor of 1/2 if H is a complex matrix.

464

For the MAC, the inputs are more limited by the lack of coordination between users in addition
to having individual-user energy constraints. Thus, the water-filling solution of Equation (13.5) may be
impossible to generate within the uncoordinated-input constraint of the MAC because of the structure
of the M matrix. The equivalent of the data rate for the single-user channel is the sum of all users’ data
rates. Thus, for whatever choice of energy distribution or input covariances {Rxx(u)}u=1,...,U by the
users, the best possible sum-of-data-rates performance is also given by (13.9). Again, the performance
for this choice of input autocorrelation Rxx (understood to be a more limited set in MAC’s than in
single-user channels and block diagonal) has sum-rate performance as in (13.9) when a GDFE receiver
is used for these independent MAC inputs4.

The single-user total-energy constraint Ex now for the MAC becomes a vector of constraints, as in
(13.10). The sum-rate formulation of capacity is convenient and restated here as

c(b) =
conv⋃

Rxx(u)

conv⋃

u⊂U

{

b |
∑

u∈u

bu ≤ I(xu; y/xu ∈ U \ u)

}

(13.13)

=

conv⋃

Rxx(u)

conv⋃

u⊂U

{

b |
∑

u∈u

bu ≤
1

2
log2

| H ·Rxx · H∗ + Rnn |

|
∑

u∈U\u Hu ·Rxx(u) · H∗
u + Rnn |

}

. (13.14)

The MAC input autocorrelation matrix is restricted to be a block diagonal matrix

Rxx =








Rxx(U) 0 ... 0
0 Rxx(U − 1) ... 0
...

. . .
...

...
0 0 ... Rxx(1)








. (13.15)

The individual energy constraints are imposed by

trace{Rxx(u)} ≤ Eu . (13.16)

13.1.2 The SWF rate-sum criterion for the Gaussian Vector MAC

Rate-sum or mutual-information maximization for the MAC fortunately follows the SWF principle of
Section 12.2. In the scalar MAC case, any user’s water filling treats all the others as noise, presuming all
are using single-user-AWGN capacity-achieving codes. The Gaussian vector MAC follows a generalized
version of this same basic principle.

The maximization of mutual information in (13.11) reduces to

max
{Rxx(u)}u=1,...,U

|H ·Rxx · H∗ + Rnn| (13.17)

where Rxx(u) is the autocorrelation for user u and the inputs are independent as in (13.15). By rewriting
the maximization in the form

max
{Rxx(u)}

|H ·Rxx(u) · H∗ +
∑

i 6=u

Hi · Rxx(i) ·H∗
i + Rnn|

︸ ︷︷ ︸

Rnoise(u)

(13.18)

the problem separates into U optimizations where each user views all the rest as “noise,” as indicated
by Rnoise(u) in (13.18), specifically

Rnoise
∆
=
∑

i 6=u

Hi · Rxx(i) ·H∗
i + Rnn . (13.19)

Each of Rxx(u) is then determined by the usual water-filling on the vector-coded channel R
−1/2
noise(u) ·Hu.

The overall rate-maximization problem is convex in the U autocorrelation matrices and thus has a
solution that can be found by various “descent” or gradient methods. One such method, “iterative
water-filling,” has a strong intuitive appeal and appears in Section 13.2. Then, formally:

4Independent inputs allow GDFE performance to be canonical.

465

Theorem 13.1.1 (Optimality of SWF for the MA channel) The autocorrelation ma-
trices Ro

xx(u) that are simultaneously water-filling, that is each Ro
xx(u) is the solution to a

single-user water-filling problem while all other R
(o)
xx(i 6= u) are treated as noise, maximize

the rate sum for the Gaussian MA channel.

proof: See the preceding paragraph and note that the optimization problem is separable for
each of the Rxx(u) as a well-known water-filling problem. QED.

The exact determination of the water-filling energies can first form the singular-value-decomposition
of the uth user’s noise-whitened channel equivalent

R
−1/2
noise(u) · Hu = Fu · Λu · M∗

u . (13.20)

Then the energies are assigned according to (where gu,n = λ2
u,n)

Eu,n +
1

gu,n
= constant ∀ u , (13.21)

such that
Lx(N+ν)
∑

n=1

Eu,n = Eu , (13.22)

and
Eu,n ≥ 0 . (13.23)

The uth user’s input is constructed as
xu = Mu ·Xu , (13.24)

where the elements of Xu are independent and each has energy Eu,n.

Implications of the Chain Rule for various decoding orders

Successive decoding (or the GDFE) follows the Chain Rule as in Chapter 12, where

I(x; y) = I(x1; y) + I(x2; y/x1) + ... + I(xU ; y/[x1 x2 ... xU−1]) (13.25)

for any of the U ! possible order(s). The given inputs in each term of the chain rule are those that have
already been decoded by the receiver. An alternate form of the rate sum is5

I(x; y) =
1

2
log2

(

|
∑U

u=1 Hu · Rxx(u) · H∗
u + Rnn|

|
∑U

u=2 Hu · Rxx(u) · H∗
u + Rnn|

)

(b1)

+
1

2
log2

(

|
∑U

u=2 Hu · Rxx(u) · H∗
u + Rnn|

|
∑U

u=3 Hu · Rxx(u) · H∗
u + Rnn|

)

(b2)

+
...

+
1

2
log2

(
|HU · Rxx(U) ·H∗

U + Rnn|

|Rnn|

)

. (bU) (13.26)

These equations could be written with the use of the noise-equivalent channel H̄u
∆
= R

−1/2
nn · Hu as

I(x; y) =
1

2
log2

(

|
∑U

u=1 H̄uRxx(u)H̄∗
u + I|

|
∑U

u=2 H̄uRxx(u)H̄∗
u + I|

)

(b1)

+
1

2
log2

(

|
∑U

u=2 H̄uRxx(u)H̄∗
u + I|

|
∑U

u=3 H̄uRxx(u)H̄∗
u + I|

)

(b2)

5Again, no factor of 1/2 appears if the channel is complex.

466

+
...

+
1

2
log2

(
|H̄URxx(U)H̄∗

U + I|
)

. (bU) (13.27)

or with the order-dependent equivalent noise-normalized channels defined as:

˜̄Hu
∆
= R̃

−1/2
noise(u) ·Hu (13.28)

with

R̃noise(u)
∆
=

U∑

i=u+1

HiRxxH∗
i + Rnn , (13.29)

and thus

I(x; y) =
1

2
log2

(

| ˜̄H1Rxx(1) ˜̄H
∗

1 + I|
)

(b1)

+
1

2
log2

(

| ˜̄H2Rxx(2) ˜̄H
∗

2 + I|
)

(b2)

+
...

+
1

2
log2

(

| ˜̄HURxx(U) ˜̄H
∗

U + I|
)

. (bU) (13.30)

The chain-rule decomposition explicitly shows the “other users later in order” as noise R̃noise. A GDFE
would be equivalent, but as in Section 12.2, the other-user noise would be tacitly but automatically,
included in the minimum-mean-square error quantities.

There are U ! possible decoding orders in (13.26) and (13.30) that all provide the same rate sum,
but usually correspond to different rate tuples b. While each term in (13.26) appears to view other
user’s signals as noise, this noise only includes others that are not previously decoded in the successive
decoding, or equivalently excludes earlier users in the selected order. There is a difference between the
Rnoise (no tilde) that helps determine SWF and the R̃noise that can be used to determine the individual
user data rates after a SWF has been found. The rate sum that would be produced in (13.27) above
would not be correct if Rnoise were used and more specifically the rates of the users are NOT computed
with ALL the other users as noise except for the first user rate in any chosen order.

An interesting special case occurs when Lx = 1 and Ly = U , as a direct map to Chapter 5’s GDFE.
The individual terms in the chain-rule sum are the bits/dimension to be used in encoding for each user
and add to the rate sum of I(x; y) in a GDFE that corresponds to a U ×U square non-singular channel.
That is, the GDFE is used as the receiver and each user corresponds to its own dimension. There may be
up to U ! distinct SWF solutions that provide the same rate sum for the GDFE (meaning as is well known
from Chapter 5 that the ordering or indexing of dimensions in the GDFE does not change the single-user
data rate). Each order corresponds to a b that is a vertex for the corresponding {Ro

xx(u)}. It is possible
in the general MAC to have [Lx(N +ν)U]! different orderings of user dimensions, all providing the same
rate sum. However, this text considers only U ! orders for reasons that will eventually become apparent
in Section 13.4.

The diagram in Figure 13.2 applies with the coefficients gu determined by a GDFE Cholesky factor-
ization. The GDFE allows, in the absence of error propagation, symbol-by-symbol decoding without loss
in SNR, although with Gaussian signals the decoder itself would theoretically span all time to decode
the signal before it could be subtracted from the next user in succession. However, that subtraction will
use the “white” independent part of the input rather than a correlated part (so a vu rather than an xu

in the terminology of Chapter 5). The usual approach to successive decoding requires xu, which may
not be white and indeed would add complexity to the decoders used. With the GDFE, the decoders
are those of only the applied Gaussian codes and need know nothing of the channel or “undecoded”
users “noise” correlation. When ρ(H) < U , then some users will share at least one dimension, and a
MMSE-DFE with all uncanceled users viewed as Gaussian noises is used to estimate each user. This

467

Figure 13.2: GDFE Successive decoding for 3 users.

formulation arises directly and naturally from the GDFE without need for bookkeeping after an order
is selected.

There is one special GDFE case where all orders have the same rate tuple. In this case, the users
are separated orthogonally from one another – in particular, this corresponds to the one FDM solution
when Lx = Ly = 1 in Chapter 12 as N → ∞. When Lx or Ly exceeds one, such an orthogonal solution
need not necessarily exist as was first shown by former EE479 student W. Rhee (even with N → ∞).

Alternate view of the existence of the SWF point

This subsection further investigates satisfaction of the SWF criterion, leading towards the iterative-
water-filling algorithm of Section 13.2.

First, the convergence of a sequence of water-filling steps where each treats all other users as noise
is established heuristically.6 Figure 13.3 illustrates the basic rate region for two users. The 2 users x1

and x2 contribute to the common MA output y. Then, by the chain rule,

I(x; y) = I(x1; y) + I(x2; y/x1) = I(x2; y) + I(x1; y/x2) , (13.31)

and there are two ways to achieve the same rate sum I(x; y), that is U ! = 2 orders. Since either order can
be used, the receiver can decode x1 first, and water-fill for user x1 first with user x2 as noise. Reversing
the order of decoding maintains the rate sum, but sends the implementation to point B on the same
(red) pentagon. But, with the opposite order and maintaining user 1’s spectrum, user 2 now water fills.
Since user 1 is decoded first and does not change spectrum, user 1’s rate is maintained. But user 2 must
increase its rate (because of water-filling) and so it moves up on the blue pentagon. Again maintaining
the rate sum, the order can again be reversed so that the upper corner point on the blue pentagon is
now achieved. Since user 2 now maintains the same spectra, user 2’s rate does not change. However,
user 1’s rate increases to point c if another iteration of water filling is used. Clearly the pentagons must
keep moving up and to the right unless the rate sum line is SWF everywhere. That SWF everywhere
could correspond to a single point (shown in purple), or in cases where multiple SWF may exist a 45o

6Since the SWF condition corresponds to a convex optimization, and descent algorithm can be used and will thus
converge, but the objective here is a more heuristic explanation.

468

Figure 13.3: Illustration that SWF solution achieves MA channel maximum rate sum.

line that bounds the capacity region. Thus, the result is established for U = 2. By setting a single user
w to correspond to the rate sum b̄1 + b̄2 and introducing a 3rd user x3, the concept can be repeated with
w replacing x1 and x3 replacing x2. Thus by induction, the iteration of water-filling must converge to
a rate-sum-maximizing point and thus SWF.

In general, the receiver implementation will be successive decoding (or a GDFE), and there may be
many orderings that achieve the maximum rate sum if the rate sum boundary is a plane or hyperplane.
These orderings may all have different constituent user rates. In practical situations where the system is
not undersampled so that no individual water-fill band is the entire frequency band of the MAC, then
usually only one rate-sum-maximizing point exists and all orders would produce this single point that
necessarily then has the same constituent rates for all users also. For Lx = Ly = 1, this single point
will be frequency-division multiplexed as N → ∞ for a linear-time-invariant channel with stationary
Gaussian noise. However, for finite N , general block channels, and/or Ly ≥ 1, the single point with
different orders need not necessarily correspond to an orthogonal use of available dimensions.

EXAMPLE 13.1.1 ((.8,.6) AWGN revisited) The capacity region for an AWGN MA
channel with L = N = 1 and U = 2 with P1 = .8, P2 = .6 and σ2 = .0001 is shown in Figure
13.4. This channel was studied in Example 12.2.1 previously in Chapter 12. This region is
a pentagon. Since the two user’s channels are flat, flat energy use on both simultaneously
satisfies the SWF criterion trivially. Both corner points are rate-sum maxima for the MA
channel. The value summing each rate when the other is viewed as noise is .74+.32=1.06
and is not equal to the maximum rate sum for the MA channel of 6.64, again indicating that
individual user rates must be associated with one of the U ! = 2 orders.

To extend the analysis of this channel, the designer could let N → ∞ while keeping Lx =
Ly = 1. With an infinite N , there are an infinite number of simultaneous water-filling
solutions possible, some of which are shown in Figure 13.5. Solution (a) corresponds to both
users flat over the entire band and use of a GDFE at one of the corner points. Solution
(b) corresponds to an FDMA solution that is also SWF and has 47.6% of the bandwidth
allocated to User 1 and remaining 52.4% of the bandwidth allocated to User 2. Both are
flat over their ranges, and clearly both satisfy SWF criteria. The GDFE degenerates into
2 independent decoders (no feedback or successive decoding necessary) in this FDM case.
Solution (c) corresponds to a mixture of the two that is part FDMA and part sharing of
bandwidth – thus a mixture of solution a and solution b. Because the boundary of this

469

Figure 13.4: Simple MA AWGN Example 13.1.1.

capacity region is a non-zero length flat line with slope -1, several SWF solutions are possible
for this example, each corresponding to a point on this line. The representative decoder

Figure 13.5: Example SWF spectra for Example 13.1.1.

structure is also shown below each choice of spectra.

13.1.3 The use of GDFE’s in the MAC

The input autocorrelation matrix for a MAC is always block diagonal and can be factored in a block
diagonal form in terms of a white input v as

Rxx =








Rxx(U) 0 ... 0
0 Rxx(U − 1) ... 0
...

...
. . .

...
0 ... 0 Rxx(1)








(13.32)

470

=








AU 0 ... 0
0 AU−1 ... 0
...

...
. . .

...
0 ... 0 A1








︸ ︷︷ ︸

A

· (13.33)








Rvv(U) 0 ... 0
0 Rvv(U − 1) ... 0
...

...
. . .

...
0 ... 0 Rvv(1)








︸ ︷︷ ︸

Rvv

·








A∗
U 0 ... 0
0 A∗

U−1 ... 0
...

...
. . .

...
0 ... 0 A∗

1








︸ ︷︷ ︸

A∗

(13.34)

where Rvv(u) are all diagonal matrices. If singularity occurs in any of the inputs, then the Generalized
Cholesky decomposition discussed in Chapter 5 can be applied for the corresponding input factorization
if a triangular decomposition is desired. Channels with ρ(HA) > UN need have no dimension sharing
of users. The GDFE theory of Chapter 5 applies directly and follows formulation of a canonical forward
channel matrix

Rf = A∗ ·H∗ ·R−1
nn · H · A , (13.35)

from which a canonical backward channel matrix is formed and factored

R−1
b = Rf + R−1

vv = G∗ · S0 ·G . (13.36)

The GDFE feedback section (or successive decoding) then is G with bias removal to a GU = I +
[[SNRu + I] · [SNRu]−1 · [G − I], where SNR = RvvR−1

ee − RvvS0 and SNRu = RvvS0 − I. The
overall feed-forward processing is

W = [SNRu + I] · [SNRu]−1 · S−1
0 · G−∗ ·A∗ · H∗ · R−1

nn . (13.37)

When ρ(HA) < UN , the GDFE auto includes other-users’ noise on all dimensions/decisions for a given
order.

471

13.2 Iterative Water Filling

This section introduces several forms of iterative water-filling. Iterative water-filling was noted by
Rhee and Ginis as a mechanization of more general convex-optimization solution to the MAC rate-
sum maximization problem. Essentially iterative water-filling has each user compute a water-fill spectra
while other users’ spectra are presumed held constant. Iterative water-filling proceeds to execute water
filling for each user successively, perhaps several cycles for all users. The process will converge eventually
to an SWF solution {Ro

xx}u=1,...,U. Iterative water filling is a simple implementation of what would
otherwise be a mathematical, but insight lacking, procedure had it not been for their observation. A
second benefit beyond simplicity is the recognition that essentially each user can autonomously determine
its own input autocorrelation without a need for central control, which may have advantages in practice
with time variation or under various coordination limitations.

13.2.1 The IW algorithm and related distributed implementations

The Rate Adaptive (RA) Iterative Water-filling (IW) of Figure 13.6 is an iterative algorithm
that converges to an SWF-criterion satisfying point for the MAC. In Figure 13.6, no order is presumed
so all users view all others as noise and no successive decoding is presumed in the calculations. The
process may take several iterations of the outer loop, but will converge as is shown shortly. In Figure
13.6, u is a user index, j is an index that counts the number of times that U water-fillings have been
performed (one for each user), and jmax is a number chosen sufficiently large that the designer thinks
the algorithm has converged.

Figure 13.6: Flowchart of (rate adaptive) Iterative Water-filling.

This procedure converges as was illustrated in Section 13.1. Choosing an order allows an implemen-

472

tation and will then specify each user’s constituent rate in the maximum rate sum. The consequent
water-filling autocorrelation matrix for any user (denoted Ro

xx(u)) is derived from viewing a total noise
of Rnoise(u) =

∑

i 6=u Hi ·R
o
xx(i) · H∗

i + Rnn.
The global convergence for MAC is established by again using the convexity of the MAC problem:

Theorem 13.2.1 (Convergence of IW algorithm to limiting point) The IW algorithm
always converges to a limiting solution that satisfies the SWF criterion on the MAC. proof
(Yu): First the problem is convex, so there is a solution. Any user’s data rate will be in-
creased (or not decreased if no further improvement possible) by running water-fill with all
other users as noise. In at least one order, this user is first and the maximum rate sum is
valid for this and all orders. All other users will not reduce their rates in this order because
they all remove this first user in successive decoding and are thus unaffected by this first user’s
new water-fill spectrum. The same is true for the next iterative water-filling order (with at
least one, different, order). Thus the rate-sum is non-decreasing at each step and with this
convex system, the procedure eventually will reach the maximum. QED.

EXAMPLE 13.2.1 (simple AWGN channel) This example returns to the (P1 = .8, P2 =
.6) MA channel. The first step of IW produces E1 = 1 and b̄1 = 6.32 bits/dimension. Using
this flat spectrum as additional noise for the second step, IW produces E2 = 1 and b̄2 = .32
bits/dimension.

Starting with user 2 would produce the other corner point of the capacity region.

Distributed Implementations

The IW algorithm in Figure 13.6 does not directly show that coordination is not necessary. Indeed that
algorithm is using information about all the channels, input powers, spectral densities, etc to compute
other spectra. Such an algorithm could of course be easily programmed in centralized software (Matlab)

for the analysis of any particular set of ˜̄Hu matrices and power constraints. In actual implementation,
a master matlab program or analysis may not be possible. Each user’s “loading” might independently

execute a water-filling algorithm based on the measured ˜̄Hu for that channel only, and the measured
noise autocorrelation Rnoise(u) (which includes all the other users as if they were noise). Such field
implementation produces the same result but requires very little coordination other than users knowing
who proceeds them in order. Since the MAC allows receiver coordination and the receiver can actually
measure all the signals and noises, then this distributed feature is not so interesting, but may be of
interest to simplify practical implementation.

Loading algorithms in practice are likely to be continuously implemented in operation as transmissions
systems could turn on or off, as well as during initialization. Chapter 4 suggested in practice that methods
such as the Levin-Campello or others might be used basically to approximate water-filling with discrete
bit loading. The question then arises as to their convergence.

Lemma 13.2.1 (Global Convergence of Levin-Campello Method for MA channel)
The use of sufficiently fast bit-swapping according to the Levin-Campello algorithm of Chap-
ter 4 necessarily converges to within U − 1 information units of the maximum rate sum for
the MAC. For large N , the overall loss per dimension thus goes to zero.

proof: One need only granulate time finely enough to force any update of the LC algorithm
to be executed distinctly. Any such step necessarily then increases the rate for that user and
since all other users remain at their sum values, the rate increases. Because of the granularity
it is possible that up to U − 1 of the users could be each 1 bit (information unit) away from
the best solution. For large N >> U , this is negligible. In practice, the LC algorithms
cannot instantaneously measure the updated noise and change the bit distribution through a
bit swap. However, on average, simple execution will ensure that on average the rate sum is
increasing. Thus finite-execution time simply might slow convergence (in several senses) of
the algorithm, but not prevent it as long as all channels themselves are otherwise stationary
(or vary sufficiently slowly).

473

Caution needs to be exercised in interpreting chain-rule concepts when the gap is non-zero, as in the
following Example 13.2.2.

EXAMPLE 13.2.2 (non-zero gap) A U = 2 MAC with N = 1 has user SNRs SNR1 =
Ē1

σ2 = 22 dB and SNR2 = Ē2

σ2 = 29 dB. A gap of 9.5 dB for Pe = 10−7 is used for both users,
Γ1 = Γ2 = Γ = 9.5 dB. Both users use QAM with symbol rates of 10 MHz and the noise is
AWGN.7 The maximum data rates for the two users are

R1,last ≤ 107 · log2

(

1 +
SNR1

Γ1

)

= 44.2 Mbps (13.38)

R2,last ≤ 107 · log2

(

1 +
SNR2

Γ2

)

= 64.9 Mbps (13.39)

and represent corner points for the Γ-dependent rate region that correspond to decoding the
other user first. The rates for decoding first are

R1,first = 107 · log2

(

1 +
SNR1

(1 + SNR2) · Γ1

)

= 0.3 Mbps (13.40)

R2,first = 107 · log2

(

1 +
SNR2

1 + SNR1) · Γ2

)

= 6.4 Mbps (13.41)

The larger rate sum corresponds to decoding user 1 first and user 2 last and is 64.9+.3 =
65.2 Mbps. Order is important to maximum rate sum when the gap is non-zero. The other
order would have produced a rate sum of 44.2+6.4 = 50.6 < 65.2 Mbps. When the gap is
zero, either order would produce the rate sum

Rsum,Γ=0 = 107 · log2 (1 + SNR1 + SNR2) = 99 Mbps . (13.42)

Also

Rmax sum = 65.2 < 107 · log2

(

1 +
SNR1 + SNR2

Γ

)

= 67.5 Mbps . (13.43)

The latter expression on the right in (13.43) is an easy mistake to make if one errors by
applying the chain rule with non-zero gaps.

The area of non-zero gaps with iterative water-filling has been addressed by Jagannathan in his
Stanford dissertation. Problem 13.10 investigates this area further.

13.2.2 Fixed-Margin (Min Power) Iterative Water-filling

Fixed-margin (FM) water-filling is reviewed in Figure 13.7. The gap is again as in RA water-filling
and used for actual systems that cannot operate exactly at capacity, but this section initially assumes
that Γ = 0 dB. FM water-filling is very close to margin-adaptive8 water-filling in Section 4.3. The only
difference is the last step in Figure 4.9 of Chapter 4,

γmax =
Eu

∑N∗

n=1 Eu,n

, (13.44)

is omitted in FM water-filling. Thus, the power is minimized for the given data rate of b̄u that is desired
(for the given gap). Thus, FM introduces an element of “politeness” to the other users.

FM IW follows Figure 13.6 with RA replaced by an FM box containing the algorithm of Figure

13.7, except that the gains gi now corresponding to the singular value decomposition of ˜̄Hu for each u
in some given order selected for FM IW. The FM IW always converges for some selected order in one
pass through all users. The converged multiuser Rxx(u) u = 1, ..., U point obtained may not satisfy the
original energy constraints unfortunately. Several orders (or all U !) can be attempted. If any, or any
time-shared combination thereof, satisfies the energy constraints, a solution has been found. If not, the
methods of Sections 13.4 and 13.5 are necessary.

7Note - no 1/2 is used in this case because the channels are complex.
8Take care that we used the acronym MA to stand for “margin adaptive” in Chapter 4, while it means “multiple access”

here so we fully write margin adaptive in Chapters 13-15 where appropriate.

474

Figure 13.7: Fixed-Margin Water-filling for any user u.

475

Figure 13.8: Illustration of Vector DMT timing alignment.

13.3 Vector DMT for Multiple Access

Vector DMT systems were first introduced in Chapter 5 for a linear time-invariant channel. The as-
sumption of linear time invariance is continued throughout this section. Figure 13.8 illustrates the
synchronization of multiple-access DMT symbols at a common receiver. Each transmitter uses the same
size DMT symbol and offsets symbol boundaries so that all users arrive at a common receiver symbol
boundary. Such alignment presumes the receiver supplies a common clock through a reverse channel to
all transmitters (essentially telling these transmitters to advance or delay their transmit symbol bound-
ary until all are aligned at the receiver). Such alignment can be achieved in up-channel direction (and
simultaneously the down-channel direction) as described in Section 4.6 of Chapter 4 on digital duplexing
or “zippering.” MMAC ’s need only synchronize in the “up” direction. A bi-directional alignment will
be important for systems that use Vector DMT in both directions and thus also have a vector BC , as
in Chapter 14. There are Lx IFFT’s implemented at each of the U users’ transmitters. There are Ly

FFT’s implemented at the common receiver.
Such alignment will, if the common cyclic extension of DMT partitioning is longer than the length of

any of the response entries corresponding to each and all of the ˜̄Hu (that is νT ′ ≥ length
{

maxu,i

(
˜̄hu,i(t)

)}

,

lead to no intersymbol interference and to crosstalk on any particular tone n that is a function ONLY
of other users’ signals on that same tone n of other users. Each tone of the Ly receivers’ FFT outputs
can then be modeled in Figure 13.9 as

Y n
︸︷︷︸

Ly×1

= Hn
︸︷︷︸

Ly×LxU

· Xn
︸︷︷︸

LxU×1

+ Nn
︸︷︷︸

Ly×1

, (13.45)

where

Hn = [HU,n ... H1,n] (13.46)

Xn =






XU,n

...
X1,n




 (13.47)

Y n =






yLy ,n

...
y1,n




 (13.48)

476

Figure 13.9: Illustration of the Vector DMT system.

Xu,n =






xu,Lx,n

...
xu,1,n




 . (13.49)

The (ly , lx)th entry of Hu,n is the DFT of the response from line/antenna lx of user u to line/antenna ly
of the common output. The energy constraints become

∑

n

trace
{
RXX(u, n)

}
≤ Eu ∀ u = 1, ..., U . (13.50)

This tone-indexed model, as illustrated in Figure 13.10, for DMT leads to tremendous computational
reduction with respect to the full successive decoding (or GDFE) structure of Section 13.1. Essentially
that structure is now applied independently to each tone. Effectively, N small successive-decoding
channels of size Ly × Lx · U replace a giant successive decoding of size Ly · N · Lx × N · U . The GDFE
computational advantage when Lx = 1 and Ly = U is a complexity of U ·N · log2(N)+ NU2 versus the
much larger (N ·U)2, or if N = 128 and U = 4, the savings is a factor of about 50 times less computation
(262,144 vs 5,632)9.

For further analysis, given an order of decoding with Vector DMT, the Ly × Lx matrix

˜̄Hu,n
∆
= R̃

−1/2
noise(u, n) · Hu,n , (13.51)

and

R̃noise(u, n) = RNN (n) +

U∑

i=u+1

Hi,n · RXX (i, n) · H∗
i,n , (13.52)

can be constructed. There are U ! possible user orders that could be used in computing such an
R̃noise(u, n). All correspond to valid GDFE’s for the tone.

Vector coding code be applied to each of these tones through singular value decomposition:

˜̄Hu,n = F̃u,n · Λ̃u,n · M̃∗
u,n , (13.53)

9One can only hope that the uninformed who incorrectly claimed less complexity for single-carrier approaches will be
staggered by such overwhelming complexity reduction for multi-carrier in the multiple-access case!

477

Figure 13.10: Tonal Equivlaent of the Vector DMT system.

478

Figure 13.11: Vector-DMT with equivalent noise-whitened appoach.

so that an input is designed where M̃u,n is a transmit matrix such that

RXX (u, n) = M̃u,n · Rvv(u, n) · M̃∗
u,n (13.54)

with Rvv(u, n) diagonal,

g̃u,l,n
∆
= λ̃2

u,l,n ∀ l = 1, ..., Lx . (13.55)

Figure 13.11 illustrates the implementation, which is in effect a special form of both a GDFE and
successive decoding. This figure shows one user, which has transmit and receiver vector-coding matrix
filters designed with noise whitening based on the equivalent noise R̃noise(u). Subsection 13.3.2 will use
the GDFE directly on each tone to simplify the design.

13.3.1 SWF for the Vectored DMT MAC

Simultaneous water-filling for Vector DMT follows the more general case for the maximum rate sum.
Any user u water-fills with Rnoise(u, n) =

∑

i 6=u Hi,n ·RXX (i, n) ·H∗
i,n+RNN as noise. The equivalent

channels are thus determined by H̄u,n = R
−1/2
noise(u, n) ·Hu,n = Fu,n ·Λu,n ·M

∗
u,n. The energy distribution

is determined by

Eu,l,n +
1

gu,l,n
= constantu ∀n, l . (13.56)

The input autocorrelation matrix for user u is then formed by

Ro
XX (u, n) = Mu,n · diag · {Evec(u, n)} · M∗

u,n ∀ n . (13.57)

Such Ro
XX

can be determined by the iterative water-filling in Section 13.2. To determine a rate-
sum=maximizing bit distribution, each input autocorrelation can be factored so that

Ro
XX (u, n) = Pu,n · Ẽvec(u, n) · P ∗

u,n (13.58)

where Ẽvec is diagonal matrix of input energies on each dimension. Then an order is selected and

R̃noise(u, n) =
[
∑U

i=u+1 Hu,n ·Ro
xx(u, n) · H∗

u,n

]

+ RNN formed for this order. Then

˜̄Hu,n = R̃
−1/2
noise(u, n) ·Hu,n · Mu,n = F̃u,n · Λ̃u,n · M̃∗

u,n . (13.59)

Defining g̃u,l,n
∆
= λ2

u,l,n, then the number of bits carried by user u in that chosen order is

bu =
∑

n

bu,n =
∑

n

Lx∑

l=1

log2

(

1 + Ẽu,l,n · g̃u,l,n

)

. (13.60)

479

(a factor of 1/2 is introduced if the channel is real baseband, but this happens in DMT only for the DC
and Nyquist tones, which are often not used anyway.10) This number of bits will be different with order
for each user, but the overall rate sum

b =

U∑

u=1

bu =

U∑

u=1

∑

n

bu,n (13.61)

is always the same and is constantly equal to the maximum for all (U !)N orders. For the case of Lx > 1,
the existence of an FDM solution is not guaranteed. When Lx = 1, there exists a rate-sum vector bmax

for which all orders provide the same bu set - an FDM point, as N → ∞.

13.3.2 Tonal GDFE’s

While Ro
XX

may maximize the rate sum, a GDFE exists for any set of input autocorrelation matrices.

To implement the Vector-DMT GDFE with known RXX(n) = AnRvv(n)A∗
n with Rvv(n) diagonal,

the receiver forms

Zn =
[

A∗
n ·H∗

n · R−1

NN
(n)
]

· Y n (13.62)

= A∗
n · H∗

n · R−1

NN
(n) · Hn · AnV n + N

′
n (13.63)

= Rf,n · V n + N ′
n , (13.64)

a forward canonical channel for tone n. The entity R̃noise(u) does not appear explicitly in the GDFE
design, which instead uses directly Rf,n. The given order of the GDFE, which is implied by the ordering
of inputs in V n, does assign later users as noise. Different orders then simply correspond to re-indexing
the GDFE dimensions in the channel model. There are N such forward canonical channels that act
independently, one for each tone. The canonical backward channel is characterized by the backward
matrix with Cholesky factorization

R−1
b,n = Rf,n + R−1

vv(n) = G∗
n · S0,n · Gn , (13.65)

The upper triangular Cholesky factor Gn determines the feedback section. The diagonal matrix SNR

contains the biased SNR’s for the estimation of all dimensions of all users and is

SNRn = Rvv(n) · S0,n . (13.66)

The unbiased feedforward section that processes the channel output vector Y n is

Wn = [SNRn] · [SNRn − I]
−1

· S−1
0,n · G−∗

n · A∗
n ·H∗

nR−1

NN
(n) . (13.67)

The unbiased11 feedback section is

Gunb
n = I + SNRn [SNRn + I]

−1
[Gn − I] . (13.68)

When the channel rank is N · U · Lx, then there is no “other user” noise and each user occupies a
dimension, directly analogous to Chapter 5’s estimation of each dimension. When the rank is less, other
users naturally become significant constituents of most dimensions’ error signals. Figure 13.12 illustrates
the GDFE structure for each tone. Decisions are made on each element of the vector V n in succession
from bottom (user 1, antenna/line 1) to top (user U)according to the users’ order. A GDFE structure
exits for each and every order.

10For a real baseband channel, the number of tones is typically N/2 because of conjugate symmetry. We shall tacitly
assume the designer knows the correct number of DMT tones, and we often write

∑

n
to avoid the notational complication.

11A superscript of “unb” is used to denote “unbiased” to avoid confusion with the use of U as a user index.

480

Figure 13.12: Tonal GDFE

Column dominance

A special case of the GDFE occurs when Rnn(n) = I and Hn · An is column dominant. Column
dominance means that the diagonal element of each column is much greater than the other elements in
that column, so if Pn = Hn ·An, then

|Pn(u, u)| >> |Pn(i 6= u, u)| ∀i 6= u . (13.69)

In this case, then Rf and thus R−1
b become approximately diagonal matrices, and then G → I. There

is no feedback in this situation, and order is irrelevent in the GDFE – all orders produce the same
result. Indeed each user best uses a water-filling energy distribution with respect to the same noise.
This situation occurs in some DSL channels when the upstream noise is “white.” The “other user” noise
is completely eliminated by the action of the feedforward matrix.

The bit rate on tone n for user u’s lth input line/antenna is

bu,l,n = log2 (Eu,l,n · S0,u,l,n) . (13.70)

The bit rate for user u is then

bu =
∑

n

Lx∑

l=1

bu,l,n . (13.71)

The rate sum for tone n is

bn =

U∑

u=1

bu,n (13.72)

and is the rate for tone n’s GDFE.
The ZF-GDFE may also be of interest and when Hn has rank Lx = U nonsingular (nor close to

singular) because the ZF-GDFE then works at nearly the same performance as the GDFE (MMSE).
The procedure for design is for the “Q-R” factorization (Gn is monic upper triangular, Qn is orthogonal,
and Dn is diagonal)

R
−1/2

NN
Hn = Qn ·Dn ·Gn (13.73)

and the feedback section as Gn and the feedforward section as Wn = D−1
n · Q∗

n, thus avoiding some
of the matrix algebra at essentially no loss in performance when ZF is close to MMSE. In this form,
no matched filtering is directly used. Following, this same form and including the noise-whitening, the

entire feedforward matrix is D−1
n ·Q∗

n · R
−1/2

NN
. The unbiased SNRs are computed by

SNRu,l,n = Eu,l,n · [Du,l,n]
2

. (13.74)

481

The complexity of the tonal GDFE is dramatically less with Vector DMT than would be the case
with single-carrier type modulation. The tonal DFE complexity in multiply-accummulate operations is

Tonal GDFE operations = N · (LU)2 + L · N log2(N) (13.75)

while the complexity of the full GDFE without DMT is

Full GDFE operations = (NLU)2 . (13.76)

For instance, with N = 1024, L = 1, and U = 10, the complexity is roughly 100,000 operations per
symbol for vector DMT, or 100 per sample. By contrast, the full GDFE would require approximately
100 million operations per symbol or roughly 100,000 operations per sample, a factor of 1000 times
more complexity (some level of zeros might exist in the GDFE matrices, but this is of course channel
dependent and unreliable as a complexity-reducing mechanisum). Thus, the complexity advantages of
DMT in the single-user case magnify greatly with multiple users.

13.3.3 Spatial Correlation of Noise

Spatial correlation refers to the possibly non-diagonal structure of the matrix RNN (n) on any (or
many/all) of the independent tone-indexed matrix channels of the vector-DMT system. The GDFE
easily handles such correlation in concept. System designers may often assume such non-crosstalk noise
to be “white” or diagonal. For any given set of diagonal values of the noise, a “white” assumption may
reduce estimates of system capacity greatly.

It is clear from Equation (13.63) that a singular or near-singular RNN (n) with consequent tiny or
zero determinant in the denominator could produce a very high data rate sum. For vector-MA systems,
such near-singular spatial noise correlation may be common: Figure 13.13 illustrates the basic situation
where a common noise source impinges on each of two channels (lines or antennae). There is a high
correlation of the noise on the two channels because the source is the same. If this were the only noise,
the capacity would be infinite. One receiver could measure the noise and then subtract the noise from
the other channel output if receiver coordination is allowed as in the MAC , leaving noise-free operation
with infinite capacity. Figure 13.13 also illustrates the basic channel from noise to receivers (itself a
single-user channel with one input and two outputs).

If the noise in the upper portion of Figure 13.13 is white on the input, then the autocorrelation
matrix is

RNN (n) =

[
h2

2 h2h1

h1h2 h2
1

]

, (13.77)

which is singular, leading to infinite capacity. Suppose instead the situation in the lower portion of
Figure 13.13 occurs with two independent noise sources. Then, the noise correlation becomes

RNN (n) =

[(
h2

2a + h2
2b

)
· σ2

a h2a · h1aσ
2
a + h2b · h1bσ

2
b

h2a · h1aσ2
a + h2b · h1bσ

2
b

(
h2

1a + h2
1b

)
σ2

b

]

, (13.78)

which is generally not singular. Indeed, as more and more noise sources contribute, on average, the
RNN matrix will become less singular (and capacity decreases). However, if for the case of two noise
sources, Ly = 3, then RNN (n) is singular again and the capacity is large/infinite. In general, if the
number of independent noise sources is less than Ly, then the capacity is infinite. For practical systems,
each receiver front-end will have some small independent noise so infinite capacity never occurs – however
data rates may be very high if the number of external noise sources is less than Ly (presuming receiver
front-end noise is small, and will essentially determine capacity). The spatial-singularity effect cannot
occur if Ly = 1. Thus vector multiple-access systems may have enormous capacity in both wireless and
wireline applications. In wireless systems, if the number of receive antennae exceeds the number of “other
users” (i.e., from adjacent cells) then if the system can be optimized by vector-DMT, the Uplink capacity
will consequently be enormous. In wireline DSL systems, this result means that upstream capacity can
be enormous even in the presence of uncoordinated crosstalk, as long as the number of lines coordinated
exceeds the number of significantly contributing crosstalkers outside the MAC. Such results can also

482

Figure 13.13: Spatial noise correlation.

483

Figure 13.14: VDSL with and without vectoring - no spatial correlation of other noises.

indirectly be used to help down-direction transmissions because if the upstream direction has very high
rates, then more bandwidth or dimensions can be allocated for downstream transmission (where spatial
correlation cannot be exploited as well unless the receiver also uses multiple lines/antennae).

EXAMPLE 13.3.1 (VDSL) VDSL is a zippered DMT system as described in Section 4.6.
The upstream direction is a vectored multiple-access channel if the DSLAM uses coordination.
This system then is vectored DMT if all upstream DMT transmissions use the same master
clock. The tone spacing is 4.3125 kHz with a cyclic extension of 640 samples on a sampling
clock of 16 × 2.208 MHz. Up to 4096 tones can be used in either direction. Two frequency
plans have been used for a frequency-division separation of upstream and downstream bands.
The so-called 998 plan of North America allows up and down transmission below 138 kHz
(tone 32), and also up-only transmission between 4 MHz and 5.2 MHz and between 8.5 MHz
and 17.6 MHz. Two uncorrelated and uncoordinated types of crosstalk noise noise A - (less
severe) and noise F (more severe) are used for testing.

Two options are investigated in Figure 13.14. In the lower curves, the upstream data rate
for simple DMT use with water-filling in each of the FDM bands is used upstream with no
vectored coordination or GDFE. The upper curve is the data rate achieved with vectoring
and the same noises. At short line lengths, the self-crosstalk from same-direction VDSL
signals dominates (while at longer distances it does not). No spatial correlation of the Noise
A or Noise F was used in Figure 13.14.

Figure 13.15 illustrates the situation if the other crosstalkers are fewer in number than the
number of vectored users in the upstream direction. The data rate plotted is the overall
rate sum divided by the number of users since all the lines have the same channel in the
configuration investigated. Again, yet an even higher data rate is achieved at short lengths.
In this case the other crosstalkers overlap the band used by the upstream VDSL. No frequency
plan was used and the loops simply adapted to best band use with 14.5 dBm of upstream
transmit power. As can be seen in Figure 13.15, yet further data rate increase is large when
spatial correlation of noise can be fully exploited. This example is revisted for bi-directional
downstream vector BC and upstream vector MAC in Chapter 14.

484

Figure 13.15: VDSL with vectoring - spatial correlation of other noises have fewer sources than the
number of lines terminated on the DSLAM.

485

13.4 Minimization of an energy sum - Mohseni’s Algorithm

This section uses some optimization-theory concepts to find the minimum weighted sum of energies
(or traces of input autocorrelation matrices in general) and bit distributions of a vector DMT design
that corresponds to any data rate vector b. Such energy-sum minimization may be of interest when
“radiation” into other systems (i.e., those that do not share the same receiver and are not part of the
MAC) is to be somehow contained. The minimization of a weighted energy sum is also an intermediate
step that enables the solution for finding the energy and bit distributions corresponding to all users to
realize any point within a capacity rate region for a MAC in Section 13.5.

This section first poses the problem and introduces some convex/concave optimization concepts that
lead to an algorithm by Mohseni that finds the minimized weighted energy sum. Essentially the same
algorithm can be used to solve some related problems like maximization of a weighted rate sum and the
inclusion of various constraints in the capacity formulation.

13.4.1 Minimizing a Weighted Energy Sum

The basic problem addressed is the determination of a set of U user inputs that minimize a weighted
sum of energies to implement a transmission system that achieves a given set of user data rates specified
by a rate tuple [b1 b2 ...bU] where b is considered to be fixed and RXX(u) to be variable.

min
{Rxx(u)}

∑U
u=1 wu · trace {Rxx(u)} (13.79)

ST : b � [b1,min b2,min ...bU,min] � 0 .

While ad-hoc in terms of radiated energy, a designer with some knowledge of the details of the transmis-
sion environment outside the MAC would adjust the weights in the sum of energies to reflect a desire
of minimum radiated energy. If one user’s energy use were suspected to be more offensive, it could
be weighted higher in the sum. The vector w � 0 controls such weighting, and it would a reasonable
assumption to force this vector to have a unit sum of its elements (but not necessary). The vector
w = [11...1] corresponds to the energy sum. More theoretically, this problem forces a particular solution
for a given b in general. The solution does not have to be contained in the rate region c(b), but the
extension to such an additional constraint on individual user energies is subsequently easily addressed
in Section 13.5. The energies of individual users are reflected in the trace

{
RXX (u)

}
terms when

Lx > 1. When Lx = 1, these terms reduce to the individual energies of users Eu, making the analogy to
a minimum sum energy more obvious.

The criterion of 13.79 can be specialized to VDMT as

min{
RXX (u,n)

}

∑U
u=1

∑N
n=1 wu · trace

{
RXX (u, n)

}
(13.80)

ST : b =
∑N

n=1 [b1,n b2,n ...bU,n] � bmin � 0 .

Equation (13.79) could be obtained from Problem (13.80) by setting N = 1 mathematically, likely
meaning in practice that the actual size of RXX → Rxx in general could be quite large, losing the
benefit of VDMT’s reduction of the problem into many smaller problems of less complexity. Thus solving
(13.80) solves the original problem if N = 1. The tonal decomposition will be helpful also in simplifying
the solution to the overall problem, as in Subsection 13.4.2. Both criteria are concave and always have a
solution as should be obvious because using sufficient energy will always obtain the rate tuple for some
order of decoding in a MAC.

The so-called “Lagrangian” for (13.80) is formed as

L(RXX , b, w, θ) =

U∑

u=1

(

wu ·

[
∑

n

trace
{
RXX(u, n)

}

]

− θu ·

{[
∑

n

bu,n

]

− bu

})

, (13.81)

with an additional implied convex constraint that any tone must have a rate tuple bn that lies within
the capacity region for the tone and any given set of RXX(u, n), u = 1, ..., U for that tone, namely

bn ∈ cn(RXX (u, n), H̄n) (13.82)

486

where the capacity region for tone and given noise, channel, and input correlation is provided in Section
13.1 and generated by rate-sum bounds for the 2U − 1 possible rate sums. The non-negative quantities
θu are rate-control constants that contribute nothing to the Lagrangian’s value when the rate constraints
are met, but cause the Lagrangian to reflect the constraint in a way that causes increase in its value
when the constraints are not met. Minimization of the Lagrangian for the maximum non-negative values
of θ leads to a solution of the overall problem if the point satisfies the implied data-rate constraint. The
implied-constraint region is convex because it is a capacity region for that tone and given RXX (u, n)
set. Any rate tuple for tone n outside this set is not achievable on this tone, and all rate tuples within
the set are achievable. This implied constraint is a key to simplification of a algorithmic solution.

An interesting observation is that the solution to the dual problem

max{
R
XX

(u,n)
}

∑N
n=1 θu · bu,n (13.83)

ST : E �
∑U

u=1

∑

n trace
{
RXX (u, n)

}
� 0 ,

which has essentially the same Lagrangian (other than constants that disappear under differentiation),
thus could be optimized by essentially the same algorithm. Furthermore, when the minimum energy sum
has all equal weights, so w = 1, the weighted rate-sum-maximization almost never has all equal weights,
and vice-versa. Tracing the weighted rate-sum is a mechanism for generating the capacity region, and
thus the minimum weighted energy sum is also closely related to rate-region generation. Thus, a designer
might address the problem

Given:b, w Find:RXX , θ (13.84)

or equivalently the problem
Given:E, θ Find:b, w . (13.85)

13.4.2 Tonal Decomposition of the Lagrangian

The finite sums over indices u and n in (13.81) can be exchanged to obtain

L(RXX , b, w, θ) =

N∑

n=1







U∑

u=1

[

wu · trace
{
RXX(u, n)

}
−

U∑

u=1

θu · bu,n

]

︸ ︷︷ ︸

Ln(RXX (u,n),bn,w,θ)







+ θu · bu , (13.86)

where Ln(RXX (n), bn, w, θ) is a tonal Lagrangian term. The boldface R in RXX denotes all users
included. This term for the user bit distribution in b, or equivalently bu values, and any given θ depends
only on tone n quantities. Thus, the overall “maximin” can be decomposed as

L∗ = max
θ

N∑

n=1

Lmin(θ, n) = max
θ

Lmin(θ) (13.87)

where
Lmin(θ, n) = min

{RXX (u,n)},bu,n

Ln(RXX(n), bn, w, θ) . (13.88)

The minimization part is thus N independent problems that may be each individually investigated for
a given θ. The outer maximization can be later considered after each of the internal minimizations for
any given θ has been addressed.

As above, there is an implied GDFE constraint (or successive decoding constraint) that the bit
vector and the autocorrelation for any tone must satisfy the known capacity relation for that tone with
U users:

bn ∈






bn | 0 ≤

∑

u⊆U

bu,n ≤ log2

∣
∣
∣
∣
∣

(
U∑

u=1

H̄u,nRXX(u, n)H̄∗
u,n

)

+ I

∣
∣
∣
∣
∣






= cn

({
RXX (n)

}
, H̄n

)
,

(13.89)

487

where again

H̄u,n = R
−1/2

NN
(n) · Hu,n . (13.90)

Thus, there are N independent problems to be solved, each of the equivalent form:

max
θ

∑U
u=1 θu · bu,n − wu · trace{RXX(u, n)} = −Lmin(θ, n) (13.91)

ST : b ∈ cn

({
RXX (u, n)

}
, H̄n

)
.

A fact noted by Tze is that for any θ � 0 within the tone’s capacity region that

max{
R
XX

(u,n)
}

(
U∑

u=1

θu · bu,n

)

(13.92)

can only occur at one of the vertices of the region in (13.89). Any point between vertices is convex
combination, and thus optimization selects the vertex with the largest θu to go last in order, and so
forth. Thus, θ determines the order for the problem of maximizing a convex combination of the rates.
Given such a best order π(u), it would be such that

θπ−1(U) ≥ θπ−1(U−1) ≥ ... ≥ θπ−1(1) . (13.93)

Since the second term on the right in (13.91) does not depend on θ, then a constraint is that a vertex
point must maximize the overall tone criterion in (13.91) for each tone. Furthermore, the constant θ

(with respect to tone index n) relates that the best order is the same on all tones.
To minimize the expression on the right in (13.91), the relationship between the bits per user/tone

bu,n and tone autocorrelation RXX (u, n) can be inferred from the known best order (that is at given
θ), and the tonal capacity relation becomes

bu,n = log2

∣
∣
∣
∣
∣

u∑

i=1

H̄π−1(i),nRXX (π−1(i), n)H̄∗
π−1(i),n + I

∣
∣
∣
∣
∣
−log2

∣
∣
∣
∣
∣

u−1∑

i=1

H̄π−1(i),nRXX(π−1(i), n)H̄∗
π−1(i),n + I

∣
∣
∣
∣
∣

.

(13.94)

When computing the sum
∑U

u=1 θu · bu,n, each “log” term in the equation above appears twice, with
different value of θi so with simplification the sum becomes

U∑

u=1

θu · bu,n =
U∑

u=1

[
θπ−1(u) − θπ−1(u)+1

]
·

∣
∣
∣
∣
∣

u∑

i=1

H̄π−1(i),nRXX (π−1(i), n)H̄∗
π−1(i),n + I

∣
∣
∣
∣
∣

. (13.95)

Equation (13.95) permits (13.91) to be written purely as a function of the tone autocorrelation RXX(u, n)
matrices, u = 1, ..., U . This concave function can then be maximized as in Subsection 13.4.3 to find the
best set of autocorrelation matrices for this tone and the given value of θ.

13.4.3 Mohseni’s Algorithm and minPMAC program

Mohseni’s algorithm computes the solution to the overall sum-energy minimization problem by iterating
between a step of finding the best autocorrelation matrices RXX(u, n) for each tone that minimize
(13.91) and adding them for a fixed value of θ and a subsequent step of finding the best θ for the given
set of Ro

XX
(u, n). With appropriate initialization, this iterative alternation between RXX (u, n) and θ

optimization will rapidly converge to the overall optimum solution if each step uses appropriate convex
optimization procedures that converge to individual best solutions based on the given parameter(s). It
can be summarized in two steps after initialization of θ = 1:

Rxx step For given θ and each tone n = 1, ..., N , compute Lmin(θ, n) in (13.88) for each tone via some
convex minimization procedure, most likely a steepest descent procedure as in Subsection 13.4.3.
Sum the Lmin(θ, n) over n and add θ

∗
bu as in (13.86) to form L(RXX , b, w, θ) for the determined

set of all users’ tonal autocorrelation matrices.

488

Order Step Determine for the given outputs L(RXX , b, w, θ), which is evaluated at the best set of all users’
tonal autocorrelation matrices from step 1, the value of θ that maximizes this expression for the
given RXX , b, and w. Use this new value of θ and return to step 1. This step typically uses an
elliptical or “sub-gradient” optimization algorithm as in Subsection 13.4.3.

The algorithm converges if each step uses convergent algorithm for the intermediate convex optimization.
The algorithm can be terminated when successively computed L(RXX , b, w, θ) on successive step 2’s
are sufficiently close to each other, or when all user bit constraints are met.

Order step and initialization

The “order step” determines the best order and may be implemented with an elliptical algorithm.
The minimization from an Rxx step of Mohseni’s algorithm produces a set of Ro

XX
(u, n) and

corresponding related set of bo
u,n. These can be substituted into the Lagrangian expression to create a

function of θ, Lo(θ), that is

Lo(θ) =

N∑

n=1

U∑

u=1

Ln(Ro
XX(u, n), bo

u,n, w, θ) . (13.96)

This function can be evaluated at any argument, so an offset from the fixed θ of the Rxx step is selected,
that is θ → θ + ∆θ. The function Lo(θ + ∆θ) by direct algebraic manipulation is then at this new
argument

Lmin(θ + ∆θ) ≤ Lo(θ + ∆θ) = Lmin(θ) +

U∑

u=1

∆θu ·

[

bu −

N∑

n=1

bu,n

]

= Lmin(θ) + ∆θ∗∆b , (13.97)

where Lmin(θ) is the value from (13.88). If ∆b = 0, then the best θ is already known and equal to the
value used in the immediately preceeding Rxx step, and the algorithm is finished. If not, the expression
(13.97) then allows that12

Lmin(θ + ∆θ) ≤ Lmin(θ) + ∆θ∗∆b = Lo(θ + ∆θ) . (13.98)

So the objective is to determine such a ∆θ that maximizes Lo(θ + ∆θ), and then a new θ is generated
for return to step Rxx. Essentially, the components of ∆b, sign and magnitude, give an indication of
desirable values of θ that upon a subsequent Rxx step would push ∆b, with any consequent change in
order, to zero. ∆b is known as a “sub-gradient” in optimization theory for the function Lmin(•).

The ellipsoid method exploits the sub-gradient in an iterative procedure that will converge to the
optimum value of θo. The algorithm must start with an ellipsoid O(θ) that contains θo. The algorithm
iteration index will be k so at any iteration k, the estimate of θ

o is θk and will be viewed as the center
of an ellipsoid, Ok(θ), viewed as a function of θ. An ellipsoid of smaller volume, Ok+1(θ) at iteration
k + 1 is recursively determined as the smallest containing the intersection of Ok with the half-space

(θ − θk)∗∆b ≥ 0. Defining ∆θk
∆
= (θ − θk), the new ellipsoid is then

Ok+1 = Omin

{

Ok(θ)
⋂

∆θ
∗
k∆b ≥ 0

}

. (13.99)

Each ellipse can be specified as

Ok =
{
θ | (θ − θk)

∗
A−1

k (θ − θk) ≥ 1
}

, (13.100)

where Ak is a positive definite symmetric matrix that specifies the ellipsoid axes. The ellipsoid-
normalized rate-difference sub-gradient vector is defined as

∆b̃k
∆
=

∆bk
√

∆b∗k ·A−1
k · ∆bk

, (13.101)

12If ∆θ
∗∆b < 0, then Lmin(θ + ∆θ) ≤ Lmin(θ) and θ + ∆θ cannot be the optimal solution. Recall the idea is to find

a ∆θ that does minimize Lmin.

489

which is used to simplify the recursions to get a new ellipse covering the intersection of the half plane
and the old ellipse:

θk+1 = θk −
1

U + 1
Ak · ∆b̃k new center (13.102)

Ak+1 =
U2

U2 − 1

[

Ak −
2

U + 1
Ak · ∆b̃k · ∆b̃

∗

k ·Ak

]

new axes . (13.103)

The volume of the ellipsoid decreases as

vol (Ok+1) ≤ e−
1

2U vol (Ok) , (13.104)

implying exponential convergence in terms of the number of iterations within any single order step of
Mohseni’s algorithm.

To determine the initial ellipsoid that contains θ
o on any order step, any order is selected and a user

bit distribution is selected so that

bi 6=u = bo
i (13.105)

bu = bo
u + 1 . (13.106)

A single pass13 FM iterative water-filling for the selected order and bit distribution in (13.105) and
(13.106) is made through all users to obtain this bit distribution, thus generating a set of {RXX(u, n)}.
This set of autocorrelation functions is substituted into the Lagrangian equation, which must always be
non-negative for θo � 0, so

0 ≤ Lmin(θo) ≤

[
U∑

u=1

∑

n

wu · trace
(
RXX (u, n)

)

]

+

[
U∑

u=1

(

bu −
∑

n

bu,n

)]

︸ ︷︷ ︸

−1

·θo
u (13.107)

must hold. Rearranging this equation leads to

0 ≤ θo
u ≤

U∑

u=1

∑

n

wu · trace
(
RXX (u, n)

)
= θu,max . (13.108)

The step in (13.108) is repeated for each user (that is incrementing one of the users by one bit as in
(13.105) and (13.106)) to generate a θu,max as in (13.108). Thus by executing U single-pass FM IW’s for
each of the U bit distributions (each incrementing one user by one bit while others are held constant),
a box containing θ

o is obtained. The ellipsoid that covers this box is then defined by

A−1
0 =








(
1

θ1,max

)2

0 ... 0

...
. . .

. . .
...

0 ... 0
(

1
θU,max

)2








. (13.109)

Interior point or discrete-quantization algorithm

The Rxx step can be implemented with a gradient descent method independently for each tone. Basically,

l
∆
= Lmin(θ, n) is minimized by moving in the direction of the negative gradient of L according to

Lk+1 = Lk − µ
(
52Lk

)−1
5 Lk (13.110)

where 52L is the 2nd-derivative matrix or “Hessian” of L and 5L is the gradient of L, both respect to
the positive-definite-matrix entries of RXX(u, n). The positive step size µ is chosen to be less than half
the inverse of the trace of the Hessian. The Hessian is complicated but contained within the software
in Subsection 13.4.3. The proper Hessian calculation should also include constraints that ensure the
autocorrelation matrices are positive semi-definite.

13The water-filling need be executed only once for each user because a single pass using R̃noise(u) for some order will
produce a solution, which is all that is necessary for initialization.

490

Matlab Implementation of Mohseni’s Algorithm

Mehdi Mohseni has graciously donated a “minPMAC” program for the case where L − x = 1.
The call of the program is basically

(E, theta, bun) = minPMAC (G, bu, w)

The inputs to the function are

• w is a U × 1 vector of weights for the energy sum (typically w=ones(U,1).

• bu is a U × 1 vector of non-negative bits per symbol for each user.

• G is an Ly × U × N tensor of Ly × U matrices [G1 G2 ... GN] with Gn = R
−1/2

NN
(n) · Hn from a

vector DMT system. (This is the same as H̃ .)

The outputs from the function are

• E is a U × N matrix of energies Eu,n.

• theta is a U × 1 vector of rates that determines the best order.

• b is a U × N matrix of bu,n.

These programs are available to all at the EE479 web site. The main program is again minPMAC
and is listed here for the curious reader. minPMAC is the main program to run, all the inputs and
outputs are described in the function, it basically runs ellipsoid algorithm.

function [E, theta, b] = minPMAC(G, bu, w);

% This is the ellipsoid method part and the main function to call.

% the inputs are:

% 1) G, an Ly by U by N channel matrix. Ly is the number of receiver dimensions/tone,

% U is the total number of users and N is the total number of tones.

% G(:,:,n) is the channel matrix for all users on tone n

% and G(:,u,n) is the channel for user u on tone n. This code assumes each user

% only has single transmit dimension/user, thus G(:,u,n) is a column vector.

% 2) w, a U by 1 vector containing the weights for each user’s power.

% 3) bu, a U by 1 vector containing the target rates for all the users.

% the outputs are:

% 1) E, a U by N matrix containing the powers for all users and over all tones

% that minimizes the weighted-sum power. E(u,:) is the power allocation for

% user u over all tones.

% 2) theta, the optimal U by 1 dual variable vector containing optimal weights

% of rates. theta determines the decoding order. (Largest theta is decoded last.)

% 3) b, a U by N matrix containing the rates of all users on all tones after convergence.

bu = bu * log(2); %conversion from bits to nuts

err = 1e-6;

w_0 = 1000;

count = 0;

[Ly, U, N] = size(G);

theta = w_0 * ones(U,1);

A = eye(U) * (U * w_0^2);

g = w_0 * ones(U,1);

491

while sqrt(g’ * A * g) > err

ind = find(theta < zeros(U,1));

while ~isempty(ind)

g = zeros(U,1);

g(ind(1)) = -1;

gt = g / sqrt(g’ * A * g);

theta = theta - 1 / (U + 1) * A * gt;

A = U^2 / (U^2 - 1) * (A - 2 / (U + 1) * A * gt * gt’ * A);

ind = find(theta < zeros(U,1));

end

[f, b, E] = Lag_dual_f(G, theta, w, bu);

g = sum(b,2) - bu;

gt = g / sqrt(g’ * A * g);

theta = theta - 1 / (U + 1) * A * gt;

A = U^2 / (U^2 - 1) * (A - 2 / (U + 1) * A * gt * gt’ * A);

count = count+1

end

b = b /log(2); %conversion from nuts to bits

The subroutine minPtone is the core of the code (Interior Point method). It optimizes the weighted
sum of rates minus weighted sum of the powers over the capacity region. It just solves it over one tone
and the results are combined in Lag dual f to compute the dual function over all tones.

function [f, b, e] = minPtone(G, theta, w)

% minPtone maximizes f = sum_{u=1}^U theta_u * b_u - sum_{u=1}^U w_u * e_u

% subject to b \in C_g(G,e)

% the inputs are:

% 1) G, an Ly by U channel matrix. Ly is the number of receiver antennas,

% U is the total number of users.

% G(:,u) is the channel for user u. In this code we assume each user

% only has single transmit antenna, thus G(:,u) is a column vector.

% 2) theta, a U by 1 vector containing the weights for the rates.

% 3) w, a U by 1 vector containing the weights for each user’s power.

% the outputs are:

% 1) f, the minimum value (or maximum value of the -1 * function).

% 2) b, a U by 1 vector containing the rates for all users

% that optimizes the given function.

% 3) e, a U by 1 vector containing the powers for all users

% that optimizes the given function.

[Ly, U] = size(G);

[stheta, ind] = sort(-theta);

stheta = -stheta;

sG = G(:,ind);

sw = w(ind);

492

NT_max_it = 1000; % Maximum number of Newton’s

% method iterations

dual_gap = 1e-6;

mu = 10; % step size for t

alpha = 0.01; % back tracking line search parameters

beta = 0.5;

count = 1;

nerr = 1e-5; % acceptable error for inner loop

% Newton’s method

e = ones(U,1); % Strictly feasible point;

t = .1;

l_p = 1; % for newton’s method termination

while (1+U)/t > dual_gap

t = t * mu;

l_p = 1;

count = 1;

while l_p > nerr & count < NT_max_it

f_val = eval_f(t * stheta, sG, e, t * sw);

% calculating function value

% calculating the hessian and gradient

[g, h] = Hessian(t * stheta, sG, e, t * sw);

de = -h\g; % search direction

l_p = g’ * de; % theta(e)^2 for Newton’s method

s = 1; % checking e = e+s*de feasible

% and also back tracking algorithm

e_new = e + s * de;

if e_new > zeros(U,1)

f_new = eval_f(t * stheta, sG, e_new, t * sw);

feas_check = (f_new > f_val + alpha * s * g’ * de);

else

feas_check = 0;

end

while ~feas_check

493

s = s * beta;

if s < 1e-40

l_p = nerr/2;

break

end

e_new = e + s * de;

if e_new > zeros(U,1)

f_new = eval_f(t * stheta, sG, e_new, t * sw);

feas_check = (f_new > f_val + alpha * s * g’ * de);

else

feas_check = 0;

end

end

e = e + s * de; % update e

count = count + 1; % number of Newtons method iterations

end

end

M = eye(Ly) + sG(:,1) * sG(:,1)’ * e(1);

b = zeros(U,1);

b(1) = 0.5 * log(det(M));

for u = 2:U

b(u) = -0.5 * log(det(M));

M = M + sG(:,u) * sG(:,u)’ * e(u);

b(u) = b(u) + 0.5 * log(det(M));

end

b(ind) = b;

e(ind) = e;

f = theta’ * b - w’ * e;

Lag dual f sums the individual tones to compute the overall Lagrangian:

function [f, b, E] = Lag_dual_f(G, theta, w, bu);

% this function computes the Lagrange dual function by solving the

% optimization problem (calling the function minPtone) on each tone.

% the inputs are:

% 1) G, an Ly by U by N channel matrix. Ly is the number of receiver antennas,

% U is the total number of users and N is the total number of tones.

% G(:,:,n) is the channel matrix for all users on tone n

% and G(:,u,n) is the channel for user u on tone n. In this code we assume each user

% only has single transmit antenna, thus G(:,u,n) is a column vector.

% 2) theta, a U by 1 vector containing the weights for the rates.

% 3) w, a U by 1 vector containing the weights for each user’s power.

% 4) bu, a U by 1 vector containing the target rates for all the users.

% the outputs are:

% 1) f, the Lagrange dual function value.

% 2) b, a U by N vector containing the rates for all users and over all tones

494

% that optimizes the Lagrangian. b(u,:) is the rate allocation for user

% u over all tones.

% 3) E, a U by N vector containing the powers for all users and over all tones

% that optimizes the Lagrangian. E(u,:) is the power allocation for

% user u over all tones.

[Ly, U, N] = size(G);

f = 0;

b = zeros(U,N);

E = zeros(U,N);

% Performing optimization over all N tones,

for i = 1:N

[temp, b(:,i), E(:,i)] = minPtone(G(:,:,i), theta, w);

f = f + temp;

end

f = f - theta’ * bu;

The subroutines eval f and Hessian are two functions that compute the value of the cost function,
the gradient and the Hessian of it. I have added the expressions for the gradient and the Hessian inside
the Hessian file.

function f = eval_f(theta, G, e, w)

% This function evaluates the value of the function,

% f(e) = (theta_1 - theta_2)/2 * log det(I + G_1 * G_1^H * e_1) +

% (theta_2 - theta_3)/2 * log det(I + G_1 * G_1^H * e_1 + G_2 * G_2^H * e_2) + ...

% (theta_{U-1} - theta_U)/2 * log det(I + G_1 * G_1^H * e_1 + ... +

% G_{U-1} * G_{U-1}^H * e_{U-1}) +

% theta_U/2 * log det(I + G_1 * G_1^H * e_1 + ... + G_U * G_U^H * e_U) - w^T * e

% + sum_{u=1}^U log(e_u)

% theta should be in decreasing order, theta_1 >= theta_2 >= ... >=theta_U.

% the inputs are:

% 1) theta, a U by 1 vector of weights for the rates.

% 2) G, an Ly by U channel matrix. G(:,u) is the channel

% vector for user u. Again each user has just one transmit antenna.

% 3) e, a U by 1 vector containing each user’s power.

% 4) w, a U by 1 vector containing weights for each user’s power

% the output is f the function value given above.

[Ly,U] = size(G);

theta = 0.5 * (theta - [theta(2:U); 0]);

M = zeros(Ly,Ly,U); % M(:,:,i) = (I + sum_{u=1}^i G_u * G_u^H * e_u)

% M is computed recursively

M(:,:,1) = eye(Ly) + G(:,1) * G(:,1)’ * e(1);

f = theta(1) * log(det(M(:,:,1))) + log(e(1)) - w(1) * e(1);

for u = 2:U

M(:,:,u) = M(:,:,u-1) + G(:,u) * G(:,u)’ * e(u);

495

f = f + theta(u) * log(det(M(:,:,u))) + log(e(u)) - w(u) * e(u);

end

function [g, H] = Hessian(theta, G, e, w)

% This function calculates the gradiant (g) and the Hessian (H) of the

% function f(e) = (theta_1 - theta_2)/2 * log det(I + G_1 * G_1^H * e_1) +

% (theta_2 - theta_3)/2 * log det(I + G_1 * G_1^H * e_1 + G_2 * G_2^H * e_2) + ...

% (theta_{U-1} - theta_U)/2 * log det(I + G_1 * G_1^H * e_1 + ... + G_{U-1} * G_{U-1}^H * e_{U-1}) +

% theta_U/2 * log det(I + G_1 * G_1^H * e_1 + ... + G_U * G_U^H * e_U) - w^T * e + sum_{u=1}^U log(e_u)

% theta should be in decreasing order, theta_1 >= theta_2 >= ... >=theta_U.

% the inputs are:

% 1) theta, a U by 1 vector of weights for the rates.

% 2) G, an Ly by U channel matrix. G(:,u) is the channel

% vector for user u. Again each user has just one transmit antenna.

% 3) e, a U by 1 vector containing each user’s power.

% 4) w, a U by 1 vector containing weights for each user’s power

% the outputs are:

% 1) g, U by 1 gradiant vector.

% 2) H, U by U Hessian matrix.

[Ly,U] = size(G);

theta = 0.5 * (theta - [theta(2:U); 0]);

M = zeros(Ly,Ly,U); % M(:,:,i) = (I + sum_{u=1}^i G_u * G_u^H * e_u)^{-1}

% M is computed recursively using matrix inversion lemma

M(:,:,1) = eye(Ly) - G(:,1) * G(:,1)’ * e(1) / (1 + e(1) * G(:,1)’ * G(:,1));

for u = 2:U

M(:,:,u) = M(:,:,u-1) - M(:,:,u-1) * G(:,u) * G(:,u)’ * M(:,:,u-1) * e(u) / (1 + e(u)

* G(:,u)’ * M(:,:,u-1) * G(:,u));

end

g = zeros(U,1);

% g_u = sum_{j=u}^U theta_j * G_u * M_j * G_u^H - w_u + 1/e_u

for u = 1:U

for j = u:U

g(u) = g(u) + theta(j) * G(:,u)’ * M(:,:,j) * G(:,u);

end

end

g = g + 1./ e - w;

% H_{u,l} = sum_{j = max(u,l)}^U -theta_j * tr(G_u * G_u^H * M_j * G_l * G_l^H * M_j)

% - 1/e_u^2 * delta(u-l)

H = zeros(U,U);

for u = 1:U

for l = 1:U

496

for j = max(u,l):U

H(u,l) = H(u,l) - theta(j) * trace(G(:,u) * G(:,u)’ * M(:,:,j) * G(:,l)

* G(:,l)’ * M(:,:,j));

end

end

end

H = H - diag(1./(e.^2));

Example uses of minPMAC software

EXAMPLE 13.4.1 (simple scalar MAC) This first example returns to the simple scalar
MAC with gains h2 = 0.8 and h1 = 0.6 of Section 12.2, Example 12.2.1. For this channel
the number of tones can be set as N = 1, while U = 2 and Ly = 1. The input energies are
E1 = E2 = 1, but are not used in the minPMAC software. a bit rate of 3 bits/dimension for
each user is attempted. The noise variance is 0.0001, so the effective noise-whitened channel
gains are 80 and 60 respectively. The matlab steps follow:

>> H=zeros(1,2,1) % dimensioning a tensor

H = 0 0

>> H(1,1,1)=80;

>> H(1,2,1)=60

H= 80 60

>> b = [3

3];

>> w = [1

1];

>> [E, theta, B]=minPMAC(H, b, w)

count = 96

E = 0.6300

0.0176

theta = 1.2801

1.2957 % indicates last position in order

B = 2.9958

3.0043

>> 0.5*log2(1+(6400*E(1))/(1+3600*E(2))) = 2.9858

>> 0.5*log2(1+(3600*E(2))) = 3.0043

The data rates are achieved and the energies fortunately are within the constraints, so this
is a viable solution to achieve the rate pair of b = [3, 3]∗.

This same example could be revisted with N = 4 to obtain (note that the rate vector is
multipled by 4 since there are now 12 bits in 4 dimensions for each user

>> H=zeros(1,2,4);

>> H(1,1,:)=80 ;

>> H(1,2,:)=60 ;

>> [E, theta, B]=minPMAC(H, 4*b, w)

count = 96

E =

0.6300 0.6300 0.6300 0.6300

497

0.0175 0.0175 0.0175 0.0175

theta =

1.1906

1.2026

B =

3.0000 3.0000 3.0000 3.0000

3.0000 3.0000 3.0000 3.0000

In this case, not surprisingly, all the dimensions are shared equally. If the data rate were
increased, then the result would be:

>> [E, theta, B]=minPMAC(H, 5*R, w)

count = 98

E =

5.0918 5.0918 5.0918 5.0918

0.0500 0.0500 0.0500 0.0500

theta =

9.5305

9.5645

B =

3.7497 3.7497 3.7497 3.7497

3.7504 3.7504 3.7504 3.7504

In this case, the data rate is too high, so the minimum energy violates the energy constraint.
This second example illustrates that minPMAC does not accept energy constraints and only
minimizes a weighted energy sum. Thus, it will always produce an “answer,” and thus the
designer needs more. The admMAC program of the next Section is the missing element for
design.

498

13.5 Tracing the Rate Region

The MAC capacity rate region is characterized by U individual energy constraints, one for each user.
Minimization of a sum of energies may have meaning in the context of radiated energy from a MAC into
other systems, but does not necessarily lead to a solution that satisfies these U individual energy con-
straints. However, Mohseni’s Algorithm of Section 13.4 can be applied with minor modification to find
a solution that also satisfies the energy constraints. Subsection 13.5.1 describes the modified procedure,
which can be used to trace c(b). Subsection 13.5.3 describes a distributed implementation of these al-
gorithms where bit-swapping is retained and active on each user independent of the others as would be
necessary in any system trying to react to noise/channel changes in real time.

13.5.1 Satisfaction of an energy vector constraint

The modification of the minimum-energy-sum problem is:

min{
RXX (u,n)

} 0 (13.111)

ST : 0 � bmin �
∑

n [b1,n b2,n ...bU,n]

0 �
∑

n trace
{
RXX (u, n)

}
� [E1 E2 ... EU] = E

bn ∈ cn(H̄n, {RXX (u, n)}u=1,...,U .

The problem in (13.111) is the same as the minimum energy constrained problem with zero weights on
all individual user energy terms, except that a new constraint bounding each energy has been added.
The new Lagrangian becomes

L(RXX , b, w, θ) =
U∑

u=1

wu ·

[
N∑

n=1

trace
{
RXX(u, n)

}
− Eu

]

− θu ·

[
N∑

n=1

bu,n − bu

]

, (13.112)

with both w � 0 and θ � 0 now as variables to be determined along with the best set of positive-semi-
definite autocorrelation matrices. Thus, after minimization of the Lagrangian over the set of autocorre-
lation matrices for any given θ and w, it can be viewed as a function of both θ and w, so

Lmin(w, θ) = min{
RXX (u,n)

}L(RXX , b, w, θ) ≤ 0 . (13.113)

The minimized Lagrangian is only positive (by inspection) if the constraints cannot be satisfied for the
given b. If such a positive result occurs for any θ � 0 and/or w � 0, then no solution exists.

Mohseni’s algorithm still applies, but the “order” step now has an ellipsoid that is a function of
both θ and w, which are combined into a larger vector θ̃ = [w, θ]. If after any Rxx step in Mohseni’s
algorithm, a positive Lmin(w, θ) occurs, then the algorithm terminates and declares that the energy
constraints cannot be met. Defining

∆E
∆
=






∑

n trace
{
RXX (1, n)

}
− E1

...
∑

n trace
{
RXX(U, n)

}
− EU




 , (13.114)

the sub-gradient vector now becomes

gk =

[
∆E

∆b

]

. (13.115)

and the recursions now use normalized sub-gradient

∆g̃
∆
=

∆gk
√

∆g∗
k ·A−1

k · ∆gk

, (13.116)

499

which is used to simplify the recursions:

θ̃k+1 = θ̃k −
1

U + 1
Ak ·∆g̃k (13.117)

Ak+1 =
2U2

4U2 − 1

[

Ak −
2

2U + 1
Ak ·∆g̃k ·∆g̃∗

k · Ak

]

. (13.118)

The volume of the ellipsoid decreases as

vol (Ok+1) ≤ e−
1

4U vol (Ok) . (13.119)

Initialization is easier in this case of the ellipse. Because the Lagrange multipliers w and θ could be
arbitrarily scaled, essentially any ellipse that satisfies the positivity constraints would contain a solution
if such a solution exists. Thus an acceptable initialization overs the unit cube and would then be:

A−1
0 =






1 0 ... 0
...

. . .
. . .

...
0 ... 0 1




 . (13.120)

The interior point method step remains the same for each tone with the w and θ from previous
iterations (the first iteration can set both equal to all ones). The tonal Lagrangian is computed in exactly
the same manner for each tone, but the overall sum should conform to the Lagrangian in (13.112).

Tracing the Capacity Region

The capacity region is then found by gradually increasing the elements of b in a nested U -loop that calls
Mohseni’s algorithm and checks to see if b has a solution. If the algorithm does not abort, then the b

point will be in the capacity region. If not, the point is not in the capacity region. This is sometimes
called the admission problem tp see of b is an “admissable” data rate vector.

Mohseni’s admMAC program

Mehdi Mohseni has kindly also provided a program that implements the admission problem, and it is
called “ adminMAC”. This program also makes use of the minPtone, Hessian and eval f subroutines
that were used with minPMAC in Section 13.4 and are listed there. A new subroutine called dual adm
is also added and listed here.

The inputs to the adminMAC function are

• G (or H̄) is an Ly × U × N matrix of channel coefficients (Lx = 1).

• bu is a U × 1 vector of non-negative bits per symbol b for each user.

• Eu is the U × 1 vector Evec of non-negative energies per symbol for each user.

The outputs from the function are

• E, a U × N matrix containing the energies Eu,n. An all zero E indicates that the given rates in b

are not achievable with given powers in Evec.

• bu is a U × N matrix of bu,n. Again, all zero rates indicates that given b is not achievable with
the given Evec.

• theta, the U × 1 vector of weightings for user bits per symbol.

• w, the U × 1 vector of weightings for user energies per symbol

• f, the actual value of the minimized Lagrangian.

500

function [E, b, theta, w, f] = admMAC(G, bu, Eu);

% This is the ellipsoid method part and the main function to call.

% the inputs are:

% 1) G, an Ly by U by N channel matrix. Ly is the number of receiver antennas,

% U is the total number of users and N is the total number of tones.

% G(:,:,n) is the channel matrix for all users on tone n

% and G(:,u,n) is the channel for user u on tone n. In this code we assume each user

% only has single transmit antenna, thus G(:,u,n) is a column vector.

% 2) Eu, a U by 1 vector containing power constraints for all the users.

% 3) bu, a U by 1 vector containing the target rates for all the users.

% the outputs are:

% 1) E, a U by N matrix containing the powers for all users and over all tones

% that support the rate vector given in bu. E(u,:) is the power allocation for

% user u over all tones. An all zero E indicates that the given rates

% in bu are not achievable with given powers in Eu.

% 2) b, a U by N matrix containing the rates of all users on all tones after convergence.

% Again, all zero rates indicates that given bu is not achievable with

% Eu.

% 3) theta, the optimal U by 1 dual variable vector containing optimal weights

% of rates. theta determines the decoding order.

% 4) w, the optimal U by 1 dual variable vector containing optimal weights

% of powers.

% 5) f, the dual optimal value.

bu = bu * log(2); %conversion from bits to nuts

err = 1e-6;

w_0 = 1;

count = 0;

[Ly, U, N] = size(G);

w = w_0 * ones(U,1);

theta = w_0 * ones(U,1);

A = eye(2 * U) * (2 * U * w_0^2);

g = w_0 * ones(2 * U,1);

while sqrt(g’ * A * g) > err

ind = find([w;theta] < zeros(2 * U,1));

while ~isempty(ind) % This part is to make sure that [w;theta]

g = zeros(2 * U,1);

g(ind(1)) = -1;

gt = g / sqrt(g’ * A * g);

temp = [w;theta] - 1 / (2 * U + 1) * A * gt;

w = temp(1:U);

theta = temp(U + 1:2 * U);

A = (2 * U)^2 / ((2 * U)^2 - 1) * (A - 2 / (2 * U + 1) * A * gt * gt’ * A);

ind = find([w;theta] < zeros(2 * U,1));

end

[f, b, E] = Dual_adm(G, theta, w, bu, Eu);

if f < -err

501

E = zeros(U,N);

b = zeros(U,N);

return

end

g = [Eu - sum(E,2);sum(b,2) - bu];

gt = g / sqrt(g’ * A * g);

temp = [w;theta] - 1 / (2 * U + 1) * A * gt;

w = temp(1:U);

theta = temp(U + 1:2 * U);

A = (2 * U)^2 / ((2 * U)^2 - 1) * (A - 2 / (2 * U + 1) * A * gt * gt’ * A);

count = count+1

end

b = b /log(2); %conversion from nuts to bits

The function dual adm is called and computes the Lagrangian dual function as the sum of the results
from each tone.

function [f, b, E] = Dual_adm(G, theta, w, bu, Eu);

% this function computes the Lagrange dual function by solving the

% optimization problem (calling the function minPtone) on each tone.

% the inputs are:

% 1) G, an Ly by U by N channel matrix. Ly is the number of receiver antennas,

% U is the total number of users and N is the total number of tones.

% G(:,:,n) is the channel matrix for all users on tone n

% and G(:,u,n) is the channel for user u on tone n. In this code we assume each user

% only has single transmit antenna, thus G(:,u,n) is a column vector.

% 2) theta, a U by 1 vector containing the weights for the rates.

% 3) w, a U by 1 vector containing the weights for each user’s power.

% 4) bu, a U by 1 vector containing the target rates for all the users.

% 5) Eu, a U by 1 vector containing the power constraints for all the

% users.

% the outputs are:

% 1) f, the Lagrange dual function value.

% 2) b, a U by N vector containing the rates for all users and over all tones

% that optimizes the Lagrangian. b(u,:) is the rate allocation for user

% u over all tones.

% 3) E, a U by N vector containing the powers for all users and over all tones

% that optimizes the Lagrangian. E(u,:) is the power allocation for

% user u over all tones.

[Ly, U, N] = size(G);

f = 0;

b = zeros(U,N);

E = zeros(U,N);

% Performing optimization over all N tones,

for i = 1:N

[temp, b(:,i), E(:,i)] = minPtone(G(:,:,i), theta, w);

f = f + temp;

end

502

f = f - theta’ * bu + w’ * Eu;

13.5.2 Examples of the use of admMAC

This section returns to the example of Section 13.4.3 to find the admissability and then also the proper
weight vector for use in minPMAC.

EXAMPLE 13.5.1 (scalar MAC revisited) The scalar MAC channel is revisted for the
data rate of 3 bits per symbol on each of the two users.

>> H

H(:,:,1) = 80 60

H(:,:,2) = 80 60

H(:,:,3) = 80 60

H(:,:,4) = 80 60

>> b =

3

3

>> energy = [1

1];

>> [E, B, theta, w, L]=admMAC(H, b*4, 4*energy)

E =

0.8799 0.8799 0.8799 0.8799

0.8912 0.8912 0.8912 0.8912

B =

0.7310 0.7310 0.7310 0.7310

5.8240 5.8240 5.8240 5.8240

theta = 1.0e-007 *

0.3601

0.2771

w = 1.0e-006 *

0.0898

0.1082

L = 3.0497e-007

>> [Eopt, thetaopt, Bopt]=minPMAC(H, 4*b, w)

count = 104

Eopt =

1.3389 1.3389 1.3389 1.3389

1.1342 1.1342 1.1342 1.1342

thetaopt = 1.0e-007 *

0.2012

0.1211

Bopt =

0.8157 0.8157 0.8157 0.8157

5.9979 5.9979 5.9979 5.9979

>> [Eopt, thetaopt, Bopt]=minPMAC(H, 4*R, 1e6*w)

count = 97

Eopt =

0.6303 0.6303 0.6303 0.6303

0.0175 0.0175 0.0175 0.0175

thetaopt =

0.1147

0.1167

503

Bopt =

3.0006 3.0006 3.0006 3.0006

2.9997 2.9997 2.9997 2.9997

The first instance of the use of minPMAC has numerical problems, but notice the uniform
scaling of the w weighting of the users’ energy removes the issue on the second instance.
Continuing we see that the rate pair (2,4) produces:

>> b=[2

4];

>> energy =[1

1];

>> [E, B, theta, w, L]=admMAC(H, 4*b, 4*energy)

count = 345

E =

0.9121 0.9121 0.9121 0.9121

0.6463 0.6463 0.6463 0.6463

B =

0.9052 0.9052 0.9052 0.9052

5.5924 5.5924 5.5924 5.5924

theta = 1.0e-007 *

0.4236

0.2745

w = 1.0e-006 *

0.0882

0.1107

L = 4.2049e-007

>> [Eopt, thetaopt, Bopt]=minPMAC(H, 4*b, 1e6*w)

count = 96

Eopt =

0.5998 0.5998 0.5998 0.5998

0.0708 0.0708 0.0708 0.0708

thetaopt =

0.1131

0.1218

Bopt =

1.9999 1.9999 1.9999 1.9999

4.0000 4.0000 4.0000 4.0000

However, increasing the rates to just outside the region produces:

>> [E, B, theta, w, L]=admMAC(H, 5*b, 4*energy)

E = 0 0 0 0

0 0 0 0

B = 0 0 0 0

0 0 0 0

theta =

1.1029

1.2991

w =

0.7308

0.8258

504

L =

-0.6669

The negative Lagrangian value means the point is outside the capacity region and thus cannot
be realized within the energy constraints.

For the inter-symbol interference example of Section 13.4, a similar investigation produces

EXAMPLE 13.5.2 >> H=zeros(1,2,8);

>> H(1,1,:)=abs(fft([1 .9],8));

>> H(1,2,:)=abs(fft([1 -1],8));

>> H=(1/sqrt(.181))*H;

>> b=[1

1];

>> H=(1/sqrt(.01))*H;

>> energy=[1

1];

>> [E, B, theta, w, L]=admMAC(H, 9*R, 8*energy)

count = 377

E =

1.3818 1.3169 1.0554 0.8112 0.7529 0.8112 1.0554 1.3169

0.6463 0.7676 1.0087 1.2261 1.2789 1.2261 1.0087 0.7676

B =

2.4180 1.4474 0.4511 0.0686 0.0010 0.0686 0.4511 1.4474

0 0.9004 1.8012 2.2963 2.4355 2.2963 1.8012 0.9004

theta = 1.0e-007 *

0.6328

0.3116

w = 1.0e-006 *

0.1303

0.1051

L = 1.0818e-007

[Eopt, thetaopt, Bopt]=minPMAC(H, 9*b, 1e6*w)

count = 83

Eopt =

1.2276 1.2191 0.3660 0.0000 0.0000 0.0000 0.3660 1.2191

0.0000 0.0000 1.0060 1.3747 1.3825 1.3747 1.0060 0.0000

thetaopt =

3.3294

3.0007

Bopt =

2.3358 2.2219 1.1102 0.0000 0.0000 0.0000 1.1102 2.2219

0 0.0000 0.8796 2.3756 2.4898 2.3756 0.8796 0.0000

>> sum(Bopt(1,:))= 9.0001

>> sum(Bopt(2,:))= 9.0003

>> sum(Eopt(1,:)) = 4.3978

>> sum(Eopt(2,:)) = 6.1440

13.5.3 Distributed Implementations

Figure 13.16 shows a possible implementation of a MAC system where a complex controller executes
Mohseni’s algorithm for all U users and passes the resulting bit and energy distributions to each of the
users. The experienced transmission engineer will note that a noise change (or an energy/rate change of
any of the users) or a channel change results in the need for the re-execution of Mohseni’s algorithm. The

505

Figure 13.16: Central Control for swapping .

area of efficient incremental changes remains open to innovation although some methods may already
exist.

It is possible to continue distributed “bit-swapping” (and possibly some minor gain swapping within
a user’s tones) to accommodate a change. First an implementation would need to ensure some margin
γu for each of the users (it can be the same margin or different). Then an initial pass of Mohseni’s
algorithm is run with the following constraints:

1. reduce the energy constraints by γu for users if an admission problem

2. increase crosstalk by γu for any crosstalk component generated by user u, whether admission or
min-E-sum problem

3. upon (any) completion increase the individual user energies by γu (recalling that the actual
crosstalk in the transmission system and not in the algorithm execution is smaller by γu for any
crosstalk generated by user u).

The results of the above single Mohseni execution the are initialized to the transceivers (or updated at
sufficiently infrequent intervals to allow the controller to be able to solve the basic problem for all users).
Each user then maintains an incremental energy table for its receiver and transmitter, based only upon
measured noise (which includes users not yet decoded in the final optimal order from Mohseni’s algorithm
initial execution). A bit is swapped for any user if the difference in measured margin (or difference in
next greatest and last smallest) energy exceeds 3 dB or more finely anytime the minimum margin across
all tones for the user grows. The applicable PSD from infrequent uses of Mohseni’s algorithm can be
updated with possible change of the order. Such a PSD (and/or order) change will lead to a number of
swaps but will lead to the correct bit distribution being implemented.

This procedure eliminates the need for a centralized bit-swapping procedure, which may be too
complex or invoke other undesirable transmitter-synchronization effects.

506

Exercises - Chapter 13

13.1 Orthogonal Codes in Space
This problem consider a multiple-access problem in a wireless system. There is a single base station

(BS) and 2 users (A, B). A, B and BS each have 2 antennas. (Figure 13.17)

A B

B S

Figure 13.17: Two users with two antennas for Problem 13.1

The channel from user A to BS can be represented by 2×2 matrix H1, and the channel from user B
to BS can be represented by 2×2 matrix H2. Then the received signal Y at the BS can be found from
the following equation.

Y = H1X1 + H2X2 + N

X1 and X2 are transmitted signals from user A and B respectively, and N is the receiver noise (N is
2×1 AWGN, the power density of each noise component is -60dBm/Hz). Also, the following are known.

H1 = FΛ1M
∗, H2 = FΛ2M

∗

Λ1 =

(
3 0
0 0.1

)

, Λ2 =

(
0.2 0
0 4

)

Note that the only singular values are different from H1 and H2. (i.e F and M are same for both!)
Total bandwidth of the system (=W) is 1MHz, and the maximum total power (=P) that can be used
by each user at each moment is 10 dBm.

a. Find the maximum data rate of user A and B if a TDMA scheme, where only one user A transmits
for half of the time, and only user B transmits for the other half of the time, is used. (Hint :
What is the optimal transmission scheme if channel information is known to both transmitter and
receiver?)

b. Find the maximum data rate of user A and B if a FDMA scheme, where only user A transmits in
one half of the total bandwidth and user B transmits in the other half bandwidth (assume ideal
rectangular filter), is used. Compare the results with TDMA results in (a). Can you explain why
they are same or why they are different?

c. Both A and B want to share all of the frequencies over all time. Can you come up with an easy
way of avoiding co-channel interference? What would be the codes for each user? (Hint : What’s
the common structure between H1 and H2?) For your chosen codes, calculate maximum data rate
for each user. How much more data rate in % can we achieve compared to TDMA and FDMA
cases in (a) and (b)?

(Comment : Generally, finding a set of orthogonal space codes for given multiuser wireless channel
is very hard even with perfect channel knowledge. However, in this problem, we can easily exploit
the structure of channel to enhance performance.)

507

A B

B S

Figure 13.18: Two users with two antennas in Problem 13.2

13.2 Chain Rule for a Matrix Channel
Consider the 2-user case in figure 13.18 represented by

Y = H1X1 + H2X2 + N

where N is the receiver noise (N is 2×1 AWGN, the variance of each independent noise component is
0.1). The input autocorrelation matrices user 1 and user 2 are identity matrices. Also, the following are
known.

H1 =

[
4.5315 −2.1131
2.1131 4.5315

]

, H2 =

[
3 1
4 2

]

a. First assume that each user will communicate treating the other user’s signals as Gaussian inter-
ference, that is that the two receivers do not cooperate. What is the data rates that user 1 can
achieve?

b. Repeat part a for user 2.

c. Instead, the designer wants to use a GDFE where coordinated joint reception is possible. What is
the maximum b1 that receiver 1 can detect reliably? While maintaining this rate for user 1, what
is the maximum b2 the receiver can achieve for user 2?

d. Reverse the order and roles of user 1 and 2 in part c and repeat.

e. What can you say about the sum rates in parts c and d?

13.3 Rate Region for non-zero Gap
An scalar (L = 1) multiple-access AWGN channel has two scalar inputs with unit eneries, gains .7

(user 2) and 1.5 (user 2) with noise variance .0001. The gap is 8.8 dB for Pe = 10−6 on all parts of this
problem.

a. Find the maximum individual rates for each user. (2 pts)

b. Find the maximum rates of the two users if the other user is treated as noise. (2 pts)

c. Find the maximum sum rate for this particular gap. (1 pt)

d. Create a formula in terms of the two independent SNRs for the two channels and the non-zero gap
that has a single log term and provides the maximum sum rate. (2 pts)

e. How might other points be realized on this channel? (1 pt)

508

13.4 2-user packet channel with VC
Two users in a MAC channel with the same sampling rate have channels H1(D) = 1 + .8D and

H2(D) = 1 − D. The common AWGN noise power-spectral-density level is 0.1. Both users have 9
dimensional identity autocorrelation matrices for the situation of a packet size of N = 8 samples and a
guard period of ν = 1. The symbol rates of the two transmitters are synchronized at 1/9 the sampling
rate.

The gap is 0 dB.

a. Find the rate sum in bits/symbol received. (4 pts)

b. Find the rate tuple for a GDFE that decodes user 1 first. (4 pts)

c. Find the rate tuple for a GDFE that decodes user 2 first. (4 pts)

d. Repeat part b if each user instead uses a vector-coding water-fill distribution for a noise that
consists of the other user and background noise.

e. Repeat part c if each user instead uses a vector-coding water-fill distribution for a noise that
consists of the other user and background noise.

13.5 2-user packet channel with DMT
Repeat Problem 13.4 for DMT. Is there a clear structure that emerges that might simplify imple-

mentation?

13.6 Basic GDFE Program.
Given the 2-user vector MA channel with additive white Gaussian noise (both outputs same and

independent) of σ2 = .1 and

P (D) =

[
1 + .9D .8D

.6D 1 + .5D

]

(13.121)

Both inputs have Ēx = 1. Vector DMT is used with N = 512 and a negligible cyclic prefix length of
ν = 1 on each of the two synchronized users. Lx = 1.

a. (2 pts) Determine the GDFE receiver settings and draw at frequency n = 128, and n = 160.

b. (2 pts) Determine the GDFE receiver settings at draw at frequency n = 0, and n = 256.

c. (4 pts) Write a GDFE program that automatically generates a GDFE for an input-specified tone
n of a vector DMT system. The inputs should be the matrix Hn and the corresponding noise
autocorrelation matrix for tone n. The nonzero input energies corresponding to each of the columns
of H are also inputs. The outputs are the GDFE MS-WMF matrix and the feedback matrix G for
tone n, along with the rate sum, and a vector of the bits per each dimension overall and individual
SNRs.

d. (1 pt) Check your answers to part a and b with your program from part c.

13.7 Vector IW Program.
This problem generates an IW program. You may assume Lx = 1.

a. (2 pts) Write a water-filling program (or find one from EE379C) that accepts channel and noise
spectra and provides energy and bits.

b. (4 pts) Modify this program to implement a IW program that treats all other users as noise

c. (2 pts) Use your program to perform vector-multiple-access IW for computation maximum rate
sum on the channel of Problem 13.6 for gap= 0dB.

d. (2 pts) What are the input energies and tone rate sums for tones n = 0, 128, 160, and 256?

509

13.8 Iterative Water-filling for MA channel.
Refer to Problem 13.7 to begin this problem.

a. (3 pts) Modify the IW program you created in Problem 13.7 for the MA channel with a specified
order so only undetected users in the order are treated as noise.

b. (3 pts) Apply your new program to a MA channel that has user 1 with P1(D) = 1 + .9D, P2(D) =
1− .9D, and N0

2 = .181 for the common single-dimensional output. The two inputs each have unit
energy. What is the maximum sum rate? What are the rate tuples for the two possible orders?

c. (3 pts) Repeat part b except with the two channels P1(D) = 1 − D2 and P2 = 1 − D.

13.9 Rate Region for high/low.
Using the Program of Section 13.5:

a. (3 pts) Write a program that attempts all energy pairs E = [i1 ·0.1 , i2 ·0.1] for imax,1 = imax,2 = 10
to estimate the rate region. Show your matlab code.

b. (3 pts) Find the minimum energy for the MA channel with N0

2 = .1 and Pu(D) = 1 + u · .1 ·D for
U = 10 with highest rate sum. What does this tell you?

13.10 Sum rate of an ISI MAC with non-zero gap, courtesy S. Jagannathan
Consider a U-user multiple access channel with ISI. When the gap is 0 dB, for any given set of PSDs

for the users, the capacity region has a polymatroid structure and contains a hyperplane on its boundary
at an angle of 45o with respect to all the axes. However, when the gap is non-zero (i.e. Γ > 1 in linear
units), the rate region for a given set of PSDs is a polytope that does not have a 45o hyperplane on
its boundary in general. Therefore, for a fixed PSD for each user, the sum rate is maximized at one of
the U! corner points. EE479 student Joseph C. Koo has provided a dynamic programming algorithm to
reduce the computational burden of enumerating all the U! points and provides the maximum sum rate
and resulting spectrum allocation for the multiple access channel with non-zero gap.

In this problem, consider a 2-user ISI MAC with a single antenna at each transmitter as well as at
the receiver. The results can easily be extended to U users. Let the gap for the codes of the 2 users be
Γ > 1 (i.e. > 0 dB).

a. Argue that an FDM scheme maximizes the sum rate of this channel. What can you say about the
ordering problem for this case? (Hint: Consider a tonal decomposition of the channel resulting in
approximately flat tones. Which scheme maximizes the sum rate on each tone?).

b. Consider the MA channel that has user 1 with H1(D) = 1 + .9D, user 2 with H2(D) = 1 − .9D,
and N0

2 = .01 for the common single-dimensional output. The gap Γ = 4 dB. The two inputs each
have unit energy. Using Joseph’s code, determine the maximum sum rate? Plot the spectrums for
the 2 users. What does this tell you?

c. For the same channel, use the iterative water filling code of problem 13.6 with the energies reduced
by Γ in linear units for each user and with gap = 0 dB. Find the resulting sum rate and plot the
spectrums for the 2 users. Compare your results with part b and explain your observations.

d. Repeat parts b and c with the channels H1(D) = 1 − D2 and H2 = 1 − D.

13.11 Rate Regions.
Using the program generated in Problem 13.7:

a. (2 pts) Estimate the rate region for the channel used in Problem 13.6 with a gap of 0 dB.

b. (2 pts) What is the maximum data rate possible for User 1?

510

c. (2 pts) What is the maximum data rate possible for User 2?

13.12 FM IW for vector multiple access.
Modify your program in Problem 13.7 to execute fixed-margin IW for any specified rate tuple. (3

pts)

a. (2 pts) Use your program to plot the spectrum use of each of the users when the two rates are
equal and as large as possible with a gap of 3 dB.

b. (2 pts) Use your program to plot the spectrum use of each of the users when the rate of the first
user is 1/2 the rate of the second and both are otherwise large as possible with a gap of 3 dB.

13.13 Sum capacity of MA channel under a sum power constraint
This problem generates a program that calculates the sum capacity of a MAC under a sum-power

constraint using the parameters of Problems 13.6 and 13.7 as an example test. The following steps are
taken to reach this goal:

a. (Single User Water-filling with a fixed water-level) This problem uses fixed-margin water-filling
with a given fixed water-level, so that the total used power is the result. Modify the program you
wrote in Problem 13.7(a) to implement FM water-filling. (2 pts)

b. (MAC water-filling with a fixed water-level) Using the program you wrote in part (a), write a
second program that implements FM iterative water-filling for the MAC. That is, one user consid-
ers all other users as noise and executes FM water-filling, and other users execute the same FM
water-filling iteratively. All users use the same water-level during the processes. This algorithm
also converges and outputs the used energies as a result. (4 pts)

c. (Bi-section method) Suppose that the sum-power constraint is given in Problem 13.6. That is,
∑U

u=1

∑N
n=1 En,u ≤ NU Ēx(= Ptot) instead of the current individual power constraint of

∑N
n=1 En,u ≤

N Ēx, (u = 1, · · · , U). In order to determine the correct water-level (=λ∗) for the given sum power
Ptot, the following bi-section method is used as an outer algorithm. That is, it first fixes λ and
determines the total used power by running the program obtained in part b. Then, this program
keeps adjusting λ until λ∗ is found. Write a program that performs the following procedures.(4
pts)
Bi-section method *
1. Set λh = λhigh and λl = λlow .
(λhigh/λlow should be high/low enough such that λ∗ ∈ [λlow, λhigh].)
2. Set λ = λh+λl

2 .
3. Run the program in Problem 13.7(b) with the water-level of λ and find the sum power used by
all users. Denote this sum power as P
4. If P < Ptot, set λl = λ, else, set λh = λ.
5. Repeat the steps from 2 to 4 until desired accuracy

d. What are the input energies and tone rates for tones n=0,128,160 and 256? (2 pts)

13.14 Characterizing the Capacity region of a 2 user Vector DMT MAC: - M. Mohseni.
This problem develops and uses MATLAB code to characterize the boundary points of the capacity

region of a Vector DMT MAC using the provided admMAC.m function. This problem studies a Vector
DMT MAC with U = 2 transmitters, each with Lx = 1 transmit dimension and a receiver with Ly = 2

511

receive dimensions on N = 2 tones. Both transmitters have unit energies, E1 = E2 = 1, and the whitened
equivalent channel is H̄n = RNN(n)−1/2Hn:

H̄1 =

[
−0.5 0.1
−1.7 0.2

]

H̄2 =

[
−1.2 1.1
1.1 −0.1

]

.

You can download minPMAC.m, admMAC.m and all necessary functions from class web page
http://eeclass.stanford.edu/ee479/ under the handout section.

a. Using the provided function admMAC.m, develop MATLAB code to find the boundary point of the
capacity region of the given channel that lies on the line b2 = αb1 for any given α ≥ 0. Use your
code to find the boundary point that lies on the line b1 = b2. You are not required to calculate the
energy distributions that achieve this point. Hint: This problem may be solved by choosing b1 = b
and b2 = αb for some positive b and checking whether this rate tuple is achievable for this channel
or not by using the provided function. Subsequent increase or decrease of b to find the maximum
value for which the rate pair (b, αb) is achievable.

b. The MATLAB function minPMAC.m employs the ellipsoid method to minimize a weighted-sum of
powers satisfying a given set of rate constraints for each user. Closer inspection of this function
reveals that the starting ellipsoid is very large, and an appropriate initialization step such as the
one given in the lecture notes is missing. Modify this function to include this initialization step
from the notes.

c. Using the modified minPMAC.m, find the minimum sum-power of two users that could achieve the
boundary point you have found in part (a). Find the corresponding energy and bit distributions.

13.15 Facets of a Gaussian Multiple-User Channel - Midterm 2008.
Figure 13.19 illustrates a multi-user channel that uses Gaussian codes on all inputs and has additive

Gaussian noise with power spectral density σ2.01, The output is a single dimension scalar real sequence.

Figure 13.19: A MAC with ISI.

a. What kind of multi-user channel is this? What is U? (2 pts)

b. For parts b) to e), please let a = 0, h1 = 10, and h2 = 20. Draw the capacity region of this
channel? (3 pts)

c. What is maximum rate sum? (1 pt)

d. Find frequency-division-multiplexed simultaneous water-filling spectra for the user power levels as
in the figure while attaining the rate in part c and specify the corresponding rate pair? (4 pts)

512

e. Describe a time-sharing solution equivalent to part d . (1 pt)

f. Now please let a = 0.8 and h1 = h2 = 1, and you may use Vector DMT.

g. What does the frequency-division-multiplexed simultaneous water-filling spectal solution look like
now? (2 pts).

h. What is the maximum rate sum? (2 pts).

i. Suppose b̄2 = 2 · b̄1 and b̄1 = 1. Find an energy and bit distribution for N = 4 in VDMT for this
data rate pair. (4 pts).

j. Find roughly the largest data rate pair of the form (2b̄1 , b̄1) for this channel. (3 pts).

k. Show the 4 GDFEs that correspond to part i, by specifying the feedfoward sections, feedback
section (or coefficient) for each of the 4 tones. (8 pts)

513

