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Chapter 14

The Gaussian Vector Broadcast
Channel

The Gaussian Vector Broadcast Channel (BC ) first appeared in Chapter 12, where a single transmit
signal containing U users’ possibly simultaneous messages passed over several parallel (and not necessarily
independent) channels to U physically distinct receivers. Chapter 12’s introduction considered mainly
scalar transmit signals. This chapter investigates the design of best transmitters and receivers for the
BC. While the special-case 1 × U BC of Chapter 12 admitted both a successive-decoding receiver or a
precoder as a best implementation, the precoder method is more general and will apply to all BC ’s. This
precoder approach allows the construction of the BC ’s dual-channel as a MAC. The dual-channel’s
dual-GDFE then can be used to determine the corresponding best BC transmit and receiver processing.
The dual MAC channel will have each user with the same data rate and a corresponding set of input
autocorrelation matrices for these user rates. The sum of the U input energies for the dual MAC channel
will equal the energy for the BC. Chapter 13’s design methods for maximum rate sum or individual rate
points (minPMAC) can then be applied to the dual MAC channel’s realization, and then consequently
the best BC implmentation then also follows.

Section 14.1 introduces a vector model for the BC that is essentially the transpose of the model for
the MAC in Section 13.1. Section 14.1 then revisits the precoder method from Section 12.3 and further
refines that method before stating the more general BC form of the capacity region for the BC.

Section 14.2 then progresses to a discussion of worst-case noise and how it may be of use generally in
the BC because of its GDFE feedforward-section diagonalization property, which is particularly useful
in directly computing the BC maximum rate sum. A caution in the use of worst-case noise also occurs in
the form of a simple 1×2 BC example, which is then better addressed through the concept of the scalar
duality of Section 12.3. This then motivates Section 14.3 that will introduce a general form of duality
using the concepts of dual channels and input deflection. The dual-GDFE of a the BC ’s dual channel
(said dual channel being a MAC ) then allows design of the best BC transmitter (and somewhat trivial
receiver) from the components of the dual-GDFE transmitter and receiver designs. The feedback section
of the dual-GDFE will become the precoder of the GDFE for the BC , while the feedforward processing
of the dual-GDFE becomes the transmit matrix filter for the BC , and the dual channel is the transpose
of the original BC H matrix. Section 14.4 then concludes with the Vector-DMT approach for the BC .

The determination of the best input autocorrelation in ?? for any point b ∈ c(b) follows by re-using
the minimum-energy-sum Mohseni methods (and software) of Section 13.4 on the appropriately defined
dual MAC channel for any BC, thus generating a set of input covariances and an order (which is again
the same on all tones if a VDMT implementation) for implementation of the precoder and receivers for
any point in the BC capacity region, as well as the algorithmic generation of the capacity region.
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14.1 The Vector Broadcast Channel

The Gaussian vector broadcast channel parallels Chapter 13’s MAC in many ways, but most simply and
importantly, the BC can be viewed as the (conjugate) transpose of a MAC . Subsection 14.1.1 provides
this transpose model for the BC . Subsection 14.1.2 revisits Forney’s Crypto Precoder to describe an
encoder that could be used for the BC before restating the BC form of the capacity region from Chapter
12.

14.1.1 Modeling the BC

Figure 14.1 illustrates the BC. The single vector input x has dimensionality Lx(N + ν) × 1 and is the
sum of U independent components for the Gaussian channel

x =

U∑

u=1

xu . (14.1)

Figure 14.1: The BC model.

The sufficiency of linear modulation and all Gaussian users was established more generally in Chapter
12 and is presumed throughout this chapter. Each of U channel matrices Hu u = 1, ..., U multiplies this
same input to produce an LyNU × 1 channel output vector that satisfies

y =






yU
...

y1
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HU
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...
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LyNU×1

(14.2)

500



y = Hx + n . (14.3)

The individual components yn of y are processed individually by U physically separated receivers in the
BC case. Each of the individual channel matrices Hu is LyN × Lx(N + ν), and the noise vector is also
denoted more compactly as n. The input autocorrelation matrix is

Rxx =
U∑

u=1

Rxx(u) . (14.4)

A single overall transmit-power constraint is expressed as

trace{Rxx} ≤ Ex . (14.5)

14.1.2 Forney’s Crypto Precoder

Figure 14.2 illustrates again Forney’s Crypto Precoder of Section 12.3.1. A basic interpretation of this
precoder occurs for uniform input vu over Lattice Λu’s Voronoi region V (Λu): The output xu of the

modulo device is then independent of the input xu and of the added signal −
∑U

i=u+1 gu,i ·xi, and more
importantly this output has the same energy as the input vu, Evu

= Exu
. The result holds for gu,i equal

to any set of coefficients. The second adder at the input to the channel is the other users’ signals and

Figure 14.2: Forney’s Crypto Precoder.

may be viewed as “side” information for any of the other signals that occur earlier in an ordering of
users. User u views users 1, ..., u− 1 as Gaussian noise. Thus, user 1 may consequently chose its data
rate as if no other crosstalk is present from other users, while user U must consider all other signals as
Gaussian noise in computing its data rate.

Figure 14.3 is more explicit in showing a precoder for which each user creates a new dimension (or
dimensions when LxN > 1), while a linear transmit shaping matrix A combines the U inputs into an
input of dimensionality Lx(N + ν)., where

A = [AU ... A2 A1] . (14.6)

Figure 14.3 uses the GDFE-like description with a “white” input v that has components (each on its
own dimensions vu , u = 1, ..., U . Feedback in this precoder implementation is on each of the successive
user inputs to the transmit matrix A. The modulo device in this implementation could change with
each user’s code in an actual system, but in the case of Gaussian codes on all users with Γ = 0 dB,
this device can be viewed as forcing over an infinite number of dimensions the transmitted symbol to
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Figure 14.3: GDFE Precoder.

lie inside a Gaussian sphere with unity energy per dimension (all subsequent scaling occurring in the
A matrix so that the transmit user energy components meet whatever energy assignment is desired).
Equivalently, each Λu modulo (and associated matrix multiply Au) operation forces a Gaussian output
characterized by autocorrelation Rxx(u). In the scalar case of Lx(N +ν) = 1, then this could be viewed
as a reflection about an infinite-dimensional hypersphere of radius squared equal to the transmit energy.
For a vector system, each set of Lx(N + ν) user dimensions will have its own modulo Gaussian offset

that is followed by a linear filter of with characteristic R
1/2
xx(u) where any square root is allowed - such

transmit matrices are generally denoted by Au as in Figure 14.3, where A = [A1...AU ]. Figure 14.3 also
shows the U receivers that would each allow processing of the received signals independently. This may
or may not correspond to a GDFE, as is investigated in Section 14.2.

In practice, the modulo device (|Lambdau) in Figure 14.3 would be realized over a finite number of
users and dimensions and may be some finite lattice (or even a simple slicer) for which some energy loss
(beyond the non-zero gap) that occurs in a precoder like a “Tomlinson” precoder. This Chapter, like
Chapter 13, does not deal with non-zero gaps thus consequently ignores finite-precoder loss in practice.
Good design with good codes should make this loss negligible. With the use of a second modulo-Λu
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device at receiver yu, those other earlier users in the order have no effect on decision for user u.
The precoder interpretation allows independent specification of each of the users maximum rates by

basic mutual information expression that includes only earlier users as noise. The achievable rate region
for any given set of input autocorrelation matrices is then traced by U -dimensional “boxes” of the form:

A′(b, π) =

{

b | 0 ≤ bu ≤
1

2
log2

|
∑u

i=1 HuRxx(i)H∗
u + Rnn(i)|

|
∑u−1

i=1 HuRxx(i)H∗
u + Rnn(i)|

}

. (14.7)

where the non-causal precoder is used to pre-subtract those users who are later in the order. The remain-
ing earlier users are then considered as Gaussian noise in the denominator of the mutual-information
log term. Such noise again in this chapter will be denoted R̃noise(u) and differs from the MAC in that
the index of summation is constant on Hu; specifically equal to u, instead of varying with the index i.
Additionally, there is a reversal of order.

Following the general capacity region of Chapter 12, the union or more exactly the convex hull over
all U ! orders of these achievable regions is

A(b) =
conv⋃

π

A′(b, π) . (14.8)

Such an achievable region exists for all allowed input autocorrelations, and thus the capacity region is
then1

c(b) =

conv⋃

{Rxx(u)}
∑U

u=1 trace{Rxx(u)} ≤ Ex

A(b) . (14.9)

1A superscript of “conv” means all convex combinations or “convex hull.”
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14.2 Worst-Case Noise and BC Rate Sums (WCN)

Chapter 5, Section 5.5, first introduced the concept of a worst-case noise (WCN) for Gaussian channels.
Worst-case noise occurs when the autocorrelation of the noise Rnn is optimized over the off-diagonal
terms while the diagonal noise-power terms are held constant to minimize the mutual information. For
the BC case, the diagonal terms are actually LyN × LyN block element matrices Rnn(u) equal to the
noise autocorrelation matrices for each of the noises at the U outputs of the BC. The off-diagonal terms
become the remaining blocks in the overall LyNU × LyNU noise autocorrelation matrix Rnn. Those
off-diagonal blocks are considered variable in WCN determination.

The precise generalization of WCN is then that Rnn that satisfies:

min
Rnn

I(x; y) = log2

|HRxxH∗ + Rnn|

|Rnn|
(14.10)

ST : Rnn(u) fixed (BC values) . (14.11)

The constraint amounts to holding constant the noise covariances for each “user,” or for each set of
dimensions for which noise must have a specified covariance. With some effort, it can be shown that the
solution to this optimization problem is any matrix that satisfies

R−1
wcn − [HRxxH∗ + Rwcn]

−1
= D block diagonal . (14.12)

The wcnoise software of Chapter 5 allows only unit-variance (or more generally identity matrix) con-
straints on each of the users’ noise autocorrelation blocks, so then more generally only an identity matrix
for Rnn. Thus, to use that software, the individual user channels have to be pre-whitened to be

H̄u = R
−1/2
nn (u) · Hu . (14.13)

Each BC receiver then may have its own noise-whitening as a first processing step for its received signal
to form an equivalent BC channel. This individual receiver noise whitening requires no coordination
among other users’ receivers.

14.2.1 WCN GDFE diagonalization

The worst-case noise GDFE analysis of chapter 5 can be summarized with some generalization in the
following steps:

Given Rxx and H , where ρ(H) = ρ(Rwcn) = UNLy,

1. compute Rwcn via [Rwcn,bwcn] = wcnoise(Rxx, H, Ly)

2. D = R−1
wcn − [HRxxH∗ + Rwcn]

−1
, block diagonal D ≥ 0.

3. [0R]Q∗ = R−1
wcnH via QR factorization2

4. Q = [q1Q1], where if H is square, Q1 = Q and q1 = ∅.

5. UU∗ = Q∗
1RxxQ1, Cholesky factorization where U is upper triangular.

6. DA = diag{RU}

7. G = D−1
A RU (feedback section)

8. A = Q1R
−1DAG (transmit filter/matrix3).

9. S−1
0 = D−1

A DD−1
A = SNR (or simply S−1

0 (i) = D(i)
D2

A
(i)

.

2The number of zero columns in the left matrix is zero in cases where H square. R is upper triangular. Q is an

orthogonal matrix. See Example 14.2.1 for manipulation of matlab to produce precisely this filter.
3So HRxxH∗ = HAA∗H∗ is a check on this value of A, and indeed for this zero-null-space construction of Rxx, then

Rxx = AA∗ , although when H is singular, only HRxxH∗ = HAA∗H∗ may hold.
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10. Wunb = (SNR − I)−1G−∗A∗H∗R−1
wcn = (SNR − I)−1DA (diagonal feed-forward filter4).

11. Gunb = I + SNR(SNR − I)−1(G − I) (unbiased feedback section for precoder)

Figure 14.4 shows the realization of the GDFE via precoder so that the receiver consists of U sub-
receivers that are not coordinated, as in a BC channel.

Figure 14.4: GDFE for worst-case noise with diagonal feedforward matrix - same as Figure 14.3, except
that now with worst-case noise, the diagonalized receiver is known to be optimum.

EXAMPLE 14.2.1 (Worst-Case Noise for square Channel with GDFE) >> H = 1.0000 0.5000

0 1.0000 0.5000

0.3000 0.6000 1.0000

>> Rxx = 1.0000 0.8000 0.6400

0.8000 1.0000 0.8000

4The superscript of “unb” was used for unbiased, rather than a subscript of U as in Chapters 3 and 5 to avoid confusion

with the number of users or an index value of U .
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0.6400 0.8000 1.0000

>> [Rwcn,bmax]=wcnoise(Rxx,H,1)

Rwcn = 1.0000 0.3871 0.4898

0.3871 1.0000 0.6541

0.4898 0.6541 1.0000

bmax = 1.4336

>> D=inv(Rwcn)-inv(H*Rxx*H’+Rwcn)

0.4847 0.0000 0.0000

0.0000 0.1985 0.0000

0.0000 0.0000 0.4675

>> Htilde=inv(Rwcn)*H

1.1643 0.1798 -0.2285

-0.4787 1.0409 -0.2427

0.0428 -0.1690 1.2707

>> J3=hankel([0 0 1]);

>> [Q,R]=qr(J3*Htilde’*J3);

>> Q=(J3*Q*J3) =

0.9059 0.4221 -0.0334

0.4226 -0.8967 0.1317

0.0257 -0.1334 -0.9907

>> R=(J3*R*J3)’ =

1.1250 0.3607 0.2112

0 -1.1030 0.3936

0 0 -1.2826

>> Rxxrot=Q’*Rxx*Q =

1.6598 -0.6412 -0.8230

-0.6412 0.5138 0.5003

-0.8230 0.5003 0.8264

>> U=(J3*chol(J3*Rxxrot*J3)*J3)’ =

0.8621 -0.3113 -0.9053

0 0.4593 0.5503

0 0 0.9091

>> DA=diag(diag(R*U)) =

0.9699 0 0

0 -0.5067 0
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0 0 -1.1660

>> G=inv(DA)*R*U =

1.0000 -0.1902 -0.6475

0 1.0000 0.4918

0 0 1.0000

>> A=Q*inv(R)*DA*G =

0.7810 -0.0881 -0.6182

0.3643 -0.5434 -0.7563

0.0222 -0.0693 -0.9974

>> Rxx-A*A’ = 1.0e-015 *

-0.6661 -0.4441 -0.2220

-0.4441 -0.4441 -0.1110

-0.2220 -0.1110 0

(note in this case the null space [of H] component of Rxx is zero).

>> S0=DA*inv(D)*DA =

1.9406 0.0000 0.0000

0.0000 1.2929 -0.0000

0.0000 -0.0000 2.9083

>> W=inv(S0-eye(3))*DA =

1.0311 0.0000 0.0000

-0.0000 -1.7299 -0.0000

-0.0000 -0.0000 -0.6110

>> Gunb=eye(3)+S0*inv(S0-eye(3))*(G-eye(3)) =

1.0000 -0.3924 -1.3358

-0.0000 1.0000 2.1710

-0.0000 0.0000 1.0000

Theorem 14.2.1 (Worst-case Noise GDFE as Best BC Receiver) The single-user GDFE,
with at least one appropriate single-user input, designed for a BC’s worst-case noise achieves
the highest possible (sum) data rate for the BC , which is Iwcn. Furthermore, the feedfor-
ward section of the GDFE is (block) diagonal and requires thus no coordination on the BC.
Finally, this unbiased MMSE GDFE necessarily performs exactly the same as the ZF-GDFE
for this channel. Proof: First, the diagonal GDFE feedforward section corresponds to
the worst-case-noise for any channel with the appropriate input illustrated by construction
in the text and example preceding this theorem. The a data rate Iwcn corresponds to this
diagonal-W GDFE and represents the maximum possible data rate for the worst-case noise
on this channel, or equivalently the rate of the MMSE-GDFE for this noise, input, and chan-
nel viewed as a single user. Any other set of receivers for the BC would necessarily have
to also be a linear block diagonal. In fact, the mutual information for any user now viewed
as one (possibly set) of the dimensions of the single-user input, with preceding Gaussian
users added to the channel noise Gaussian noise, I(xu; yu/[x1 ...xu−1], cannot be improved
and is achieved by any (block) “scalar” multiplication and a subsequent maximum-likelihood
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(or mod-Λu) decoder. However, all these settings were considered as possible in the MMSE
optimization of the GDFE, and had they lead to a higher sum rate than Iwcn, then they
would have been selected by the MMSE-GDFE. Thus, this sum rate Iwcncannot be exceeded.

Lastly, because the individual SNR’s (generally
|Rxx|

|R̃noise(u)|
) cannot be improved without co-

operation among the different users’ receivers, any scaling (multiplication by block-diagonal
elements in general case) of the individual user outputs of the BC cannot change the set of
SNRs nor the overall (sum) data rate. Thus, the feedforward section of the overall GDFE
for this worst-case noise cannot improve the SNR’s – it too, then, is useless in terms of
overall data rate improvement. A ZF-GDFE for this same channel, noise, and input would
be designed by QR factorization of R−1

wcnH also, and the multiplication by any diagonal or
input-only-dependent upper triangular matrix as in step 7 of the preceding procedure for
GDFE construction will remain zero forcing, and cannot change the overall performance.
Indeed, the ZF-GDFE for the worst-case-noise-equivalent channel and the same input as the
MMSE-GDFE could have been initially designed (although without the GDFE theory, the
exact feedforward-diagonalizing decomposition of Rxx would have been obscured). QED.

This theorem’s last part is ultimately the most useful, zero-forcing is the same as MMSE under
worst-case noise (and this worst-case corresponds to best performance of the BC for any given input).
Section 14.3 will introduce a simple dual GDFE construction and the ZF-GDFE will be obvious in that
construction, and because of Theorem 14.2.1, it will be then known to be optimum.

The determination of the diagonalized GDFE receiver can be somewhat simplified when ρ(H) <
NLyU , in other words the channel is singular as is for instance the case on a simple U ×1 channel where
the rank is 1 and the BC channel matrix is tall. In this “degraded broadcast” case, the worst-case-noise
design process follows this equation from Chapter 5

R−1
wcnHAG−1S−1

0 G−∗A∗H∗R−1
wcn = D (14.14)

where D is the same diagonal matrix that characterizes the original worst-case noise equation in (14.12).
In this case, since H is singular, some of the diagonal terms of D will be equal to zero and only ρ(H) of
them will be nonzero. QR factorization of the matrix R−1

wcnH in this singular case causes a modification
of the design procedure for the GDFE-diagonalizing input choice. For this singular case,

R−1
wcnH =

[
R 0
0 0

]

Q∗ . (14.15)

The choice of A that solves (14.14) is

A = Q

[
R−1 0

0 I

]

DAG (14.16)

The matrix DA is again diagonal. The follow steps then allow G and A to be computed:

1. compute Rwcn via [Rwcn,bwcn] = wcnoise(Rxx, H, Ly)

2. D = R−1
wcn − [HRxxH∗ + Rwcn]

−1
, block diagonal D =

[
d 0
0 0

]

≥ 0.

3.

[
R 0
0 I

]

Q∗ = R−1
wcnH via QR factorization. R is upper triangular of rank ρ(H). Q is a (full-rank)

orthogonal matrix.

4. UU∗ = Q∗RxxQ, Cholesky factorization where U is upper triangular.

5. DA = diag

{[
R 0
0 I

]

U

}

.

6. G = D−1
A

[
R 0
0 I

]

U (feedback section)
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Figure 14.5: Simple BC example.

7. A = Q

[
R−1 0
0 I

]

DAG (transmit filter/matrix, so Rxx = AA∗ is a check on this value of A).

8.

[
S−1

0 0
0 0

]

= D−1
A DD−1

A =

[
SNR 0

0 0

]

(or simply S−1
0 (i) = d(i)

d2

A
(i)

, i = 1, ..., ρ(H).

9. Wunb =

[
(SNR − I)−1 0

0 0

]

DA (feedforward filter).

10. Gunb = I +

[
SNR 0

0 0

] [
(SNR − I)−1 0

0 0

]

(G− I) (unbiased feedback section for precoder)

The simple 1 × 2 BC channel of Section 12.3 is revisited here and repeated in Figure 14.5 for con-
venience. The total energy of the two user input energies, which are summed, is Ex = 1. The capacity
region reappears in Figure 14.7. The capacity region for the channel was traced by using the precoder for-

mulas with user 1 in the preferred position of order, producing the table:

E1 E2 b1 b2 b1 + b2

1.0 0 6.32 0 6.32
.75 .25 6.12 .20 6.32
.50 .50 5.82 .50 6.32
.25 .75 5.32 1.0 6.32
.10 .9 4.66 1.66 6.32
.05 .95 4.16 2.20 6.26
0 1 0 5.64 5.64

Simple duality was used in Chapter 12 for the situation where each user on the BC used 1/2 unit of
energy, and the corresponding MAC then had E1 = 2501/2502 and E2 = 1/2502, and the corresponding
order was reversed (so the MAC had user 2 in the preferred position of going last in the MAC GDFE
decoding order).

EXAMPLE 14.2.2 (return to simple 1 × 2 BC) For this BC, the worst-case noise can
easily be found using software or simple calculus to be

Rwcn =

[
1 5

8
5
8 1

]

. (14.17)

This Rwnc is only a function of total transmit energy and does not depend on the division
of energy between the two users. A GDFE is somewhat trivial on this channel, since it
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Figure 14.6: Equivalent Broadcast channel with summer viewed in channel.

estimates the input x. The mutual information corresponding to the worst-case noise is
6.322 bits/dimension, the maximum rate sum. Clearly, the GDFE would be diagonal with
gain W1 = 1/80 on user 1’s receiver and W2 = 0 on user 2’s receiver because user 2’s data rate
at receiver 1 is always higher than user 2’s data rate is at receiver 2. The mutual information
for the two-dimensional channel-output vector y, even though the GDFE feedforward section
is diagonal and corresponding to worst-case noise, only measures the data rate that can be
achieved by all users to all the receivers, including in particular receiver 1.

Thus, while worst-case noise and the GDFE are powerful concepts that simplify greatly multi-
user channels, their use does yet truly consider each of the users’ receivers in the BC. The
clever reader may be tempted to construct the perfectly valid equivalent channel in Figure
14.6.

>>> H =

80 80

50 50

>> Rxx =

0.5000 0

0 0.5000

>> J2 =

0 1

1 0

>> [Rwcn,bsum]=wcnoise(Rxx,H,1)

Rwcn =

1.0000 0.6250

0.6250 1.0000

bsum = 6.3220

>> D=inv(Rwcn)-inv(H*Rxx*H’+Rwcn) =
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0.9998 0.0000

0.0000 0.0000

>> Htilde=inv(Rwcn)*H =

79.9999 79.9999

0.0002 0.0002

>> [Q,R]=qr(J2*Htilde’*J2) ;

>> Q=J2*Q*J2;

>> R=(J2*R*J2)’;

>> R=R*J2 =

-113.1369 -0.0000

-0.0002 0

>> Q=Q*J2 =

-0.7071 0.7071

-0.7071 -0.7071

>> R*Q’-Htilde = 1.0e-013 *

0 -0.1421

0 0

>> U=(J2*chol(J2*Rxxrot*J2)*J2)’=

0.7071 0

0 0.7071

>> r=R(1,1)= -113.1369

>> Rnew=[r 0

0 1] =

-113.1369 0

0 1.0000

>> DA=diag(diag(Rnew*U)) =

-79.9999 0

0 0.7071

>> G=inv(DA)*Rnew*U =

1 0

0 1

>> A=Q*inv(Rnew)*DA*G =

-0.5000 0.5000

-0.5000 -0.5000

>> S0inv=inv(DA)*D*inv(DA);
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Figure 14.7: Rate region for broadcast channel

>> S0=[1/S0inv(1,1) 0

0 0] =

1.0e+003 *

6.4010 0

0 0

>> Wunb= diag([ 1/(S0(1,1)-1) 0 ])*DA =

-0.0125 0

0 0

While the GDFE flows easily and estimates both inputs with worst-case noise as a diagonal
feedforward filter, again user 2’s path is zeroed because receiver 1 can always achieve a higher
mutual information for any input energy distribution. The unasisted GDFE in this case is
still attempting to estimate that maximum rate.

EXAMPLE 14.2.3 (simple BC via dual GDFE) For the same BC channel, this exam-
ple instead notes that a GDFE MAC could be designed for the dual channel of Section 12.3.
In particular, the channel used for duality was the transpose of the original BC, which then
became a U × 1 MAC. The GDFE designed for this MAC will provide a correct precoder
and transmit filter (as well as diagonal feedforward) section for all the receivers’ correct data
rates for any energy distribution.

>> H=[50 80];

>> Rxx=[1/2502 0

0 2501/2502] =

0.0004 0

0 0.9996
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>> 0.5*log2(det(H*Rxx*H’+1))

6.3219

>> Rbinv=H’*H+inv(Rxx) = 1.0e+003 *

5.0020 4.0000

4.0000 6.4010

>> Gbar=chol(Rbinv) =

70.7248 56.5572

0 56.5887

>> G=inv(diag(diag(Gbar)))*Gbar =

1.0000 0.7997

0 1.0000

>> S0=diag(diag(Gbar))*diag(diag(Gbar)) = 1.0e+003 *

5.0020 0

0 3.2023

>> b=.5*log2(det(Rxx*S0)) =

6.3219

>> b=.5*log2(diag(Rxx*S0)) =

0.4997

5.8222

>> SNR=Rxx*S0 = 1.0e+003 *

0.0020 0

0 3.2010

>> Wunb=SNR*inv(SNR-eye(2))*inv(S0)*inv(G’)*H’ =

0.0200

0.0125

>> Gunb=eye(2)+SNR*inv(SNR-eye(2))*(G-eye(2)) =

1.0000 1.6000

0 1.0000

>> Rvv=Rxx*inv(diag(Wunb)) =

0.0200 0

0 79.9680

Figure 14.8 illustrates the two GDFE’s for the MAC and dual BC. The MAC design was easy
and did not require knowledge of the worst-case noise. The feeback section has a feedback
coefficient in both (the MAC GDFE feedback section and the BC GDFE precoder) that
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Figure 14.8: Dual GDFE.

is 5/8, which may have been obvious in this simple case but provides guidance to future
designs with more complex channels. The diagonal (no coordination) transmit filters of the
MAC correspond to the diagonal feedforward section of the BC channel GDFE. Similarly
the transmit filter of the BC corresponds to the receive filter of the GDFE. In the case of the
BC channel, the GDFE is both zero-forcing and MMSE (but only MMSE in the case of the
MAC). This BC-only equivalence of ZF and MMSE makes clear that the simple transpose
and reversal of the BC with respect to the MAC correspond to the correct optimum settings
because they trivially synthesize the triangular feedback Gunb.

An issue is that the transmit constraint on energy must be satisfied correctly in each case, but
Chapter 12 showed that a certain selection of the MAC energies will correspond exactly to
the BC channel energies, and the bit rates for all users will be identical (in this example 1/2
and 1/2 on the BC channel energies while 2501/2502 and 1/2502 on the MAC). The energies
for the transposed-reversed BC channel GDFE need simple adjustment on the precoder so
that those going into the channel provide the correct bit rates. However, the realization of
the transposed triangular channel is independent of these energies prior to the W matrix,
and the cascade synthesizes the transpose of Gunb.

Those transmit energies are then

Ev,1 = (80)2 ·
1

2
= 3200 (14.18)

Ev,2 = (50)
2 ·

1

2
= 1250 . (14.19)

These energies are at both the input and output of the precoder, which on each of the two
dimensions for the transmitted Guassian code words chooses the modulo for the infinite-
dimensional hypersphere/Gaussian signal on each dimension to match these energies.

The example illustrates the key concept enabled by worst-case noise (which need not actually be
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computed in the dual formulation): the ZF-GDFE is the same as MMSE-GDFE on the worst-case-noise
channel. This means that the synthesis (with a diagonal feedforward matrix) of a triangular (Gunb)∗

that corresponds to the precoder is not only possible but optimum, and follows from the GDFE of the
dual MAC.

14.2.2 Yu’s Maximum Rate Sum for the BC

Former EE479 student Wei Yu was the first to find an expression for the maximum rate sum of the BC,
which follows as that water-filling input Ro

xx for which the Rwcn equation is satisfied. Problem 14.9
further develops software for the simple convergent process of

1. Initialize Rxx =
Ex
N

· I.

2. Compute the Rwcn for the given Rxx.

3. Compute the water-filling Rxx for the given Rwcn

4. If W is block diagonal, stop. Otherwise, return to step 2.

The stopping criterion could also be that successively computed Rxx are nearly equal, or successively
computed Rwcn are nearly equal. The convergence is assured in that step 3’s corresponding GDFE rate
sum always must be less than that same rate sum on the previous instance of step 3 (if not the GDFE
W would have already been diagonalized).
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14.3 Vector Duality for the BC

This section extends the concept of duality to vector channels. Some care is initially necessary in this
extension to avoid singularity and to construct of an appropriate square channel matrix for any channel
(square or non-square) without loss of information. The dual channel will simply be the conjugate
transpose of the original channel. By appropriate mapping of input energies between broadcast users
and a dual set of multiple-access users, it will be possible to set all user rates equal while maintaining
also the same energy sum. Such duality then allows ready and easy description of a dual GDFE, from
which the best BC design can be quickly derived. The input autocorrelation matrices for the BC are
determined through calculation of the dual autocorrelation matrices for the dual MAC channel.

Vector duality follows the scalar concept, but requires some mathematical sophistication to handle
the various matrix generalizations of the scalar dual concepts. Subsection 14.3.1 introduces some refined
channel duality concepts, defining a dual channel to be simply the conjugate transpose of a certain
noise-equivalent channel. Subsection 14.3.2 then proceeds to use the duality concept to determine a
set of autocorrelation matrices for the BC and its dual MAC. The more general approach taken here
easily shows that the mutual information of dual channels must be the same (so the rate sums are the
same) and that the sum of the energies are also the same, eliminating the need for the algebraic proof
in Chapter 12.

14.3.1 Channel Equivalences

Any vector Gaussian channel can be written as

y = Hx + n , (14.20)

where H is an ly × lx matrix. The initial application of duality in this section will be to a square channel
matrix H . Fortunately, any non-square channel can be transformed into a square channel with the same
mutual information by using dummy variables. When ly = lx, the channel is square. Otherwise:

When lx > ly, the matrix H is augmented by lx − ly new zeroed rows of lx zeros each, at the bottom
of the matrix:

H →

[
H
0

]

. (14.21)

Similarly the noise n, and thus channel output y can be extended by lx − ly arbitrary dummy positions
that are ignored in actual implementation and do not exist

y →

[
y

don’t care

]

; n →

[
n

don’t care

]

. (14.22)

It is convenient to let the “don’t care” noise be Gaussian and independent of all other dimensions. Such
noise can have unit variance on each dimension so that

Rnn →

[
Rnn 0

0 I

]

. (14.23)

The noise equivalent channel is then

H̄ →

[

R
−1/2
nn H
0

]

=

[
Rnn 0

0 I

]−1/2

·

[
H
0

]

. (14.24)

The resultant noise-equivalent channel matrix H̄ is square lx×lx. The mutual information for the system
remains I(x; y) because the extra zeroed rows do not change the information transfer.

When ly > lx, some dummy artificial input dimensions are created to make H square ly × ly. The
new channel matrix becomes

H → [H 0] , (14.25)

with ly − lx extra columns of ly zeros each. The output y and noise n remain ly × 1 vectors. The input
x has an extra ly − lx zero elements at the bottom (these could be anything because of the zeros in the
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Figure 14.9: Illustration of the dual channel with white noise.

channel, but a choice of zero keeps energy to a minimum on the extra dummy dimensions)5. The input
autocorrelation matrix becomes

Rxx →

[
Rxx 0

0 0

]

. (14.26)

The noise-equivalent channel is

H̄ = R
−1/2
nn · H . (14.27)

The mutual information remains I(x; y).
For all channels the mutual information can always be computed according to (real baseband, remove

1/2 for complex case)

I(x; y) =
1

2
log2 | I + H̄ ·Rxx · H̄∗ | . (14.28)

Theorem 14.3.1 (Dual Channels) The square channel with white noise has a dual that
is shown in Figure 14.9 both these channels have the same mutual information

I(x; y) = I(x̄; ȳ) (14.29)

and the same input energy
trace (Rxx) = trace (Rx̄x̄) . (14.30)

proof: The invariance of the mutual information follows from singular value decomposition
of the square channel’s noise-equivalent channel matrix

H̄ = F · Λ · M∗ . (14.31)

Then

y = F · ΛM∗ · x + n (14.32)

y′ ∆
= F ∗y = Λ · (M∗ · x) + n′ (14.33)

= Λ · F ∗ · (F · M∗ · x) + n′ (14.34)

= Λ · F ∗ · x̄ + n′ (14.35)

ȳ
∆
= My′ = M · Λ · F ∗ · x̄ + n̄ (14.36)

ȳ = H̄∗ · x̄ + n̄ (14.37)

5Calculations for normalized quantities to the number of dimensions should continue to use lx and not ly .
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The noise n̄ also has an indentity for a covariance (since the original noise had an identity
autocorrelation on the noise-equivalent channel and the new noise was obtained only through
orthogonal transformations from original noise). Through the series of equations (14.32) -
(14.37), all transformations were orthgonal and 1-to-1 so the mutual information is preserved.
Equation (14.37) corresponds to the dual channel in Figure 14.9. Thus,

I(x; y) = I(x̄; ȳ) (14.38)

1

2
log2 | I + H̄RxxH̄∗ | =

1

2
log2 | I + H̄∗Rx̄x̄H̄ | . (14.39)

Essentially then a square channel H with white noise, and its conjugate also with white noise,
have the same mutual information when the inputs are related according to

x̄ = F ·M∗ · x . (14.40)

The input autocorrelation matrices are related by

Rx̄x̄ = F · M∗ · Rxx ·M · F ∗ . (14.41)

Because both of the transformations in (14.40), F and M∗ are orthogonal, they are energy
preserving and so the trace remains the same. QED.

When lx > ly, it is possible that the input x and consequently its autocorrelation matrix Rxx have
energy in the null space of the channel. While this energy is useless, it created an initial need for the
square channel. The energy of both the dual channel and the original channel

Ex = Ex(pass) + Ex(null) (14.42)

because of our careful squaring of H̄ . If the rank of a non-square initial H̄ is ρ(H̄) when lx > ly , then the
rank of a non-square initial H̄ is ρ(H̄) when lx > ly , then the F in the F (and M) in the singular value
decomposition of the square channel may be replaced by the first ρ(H̄) columns of F (M) (presuming
the SVD associates these columns with the ρ(H̄) non-zero singular values). In this case, then F and M
will both become non square ρ(H̄) × lx matrices. Then,

F ∗x̄ = M∗x (14.43)

still holds. The quality on the right M∗x only contains components in the pass space of H̄ . Computing
the squared norm of the vector written in (14.43)

x̄∗FF ∗x̄ = x∗MM∗x (14.44)

‖x̄‖2 = ‖x‖2
pass . (14.45)

Thus, duality can be excuted with only the ρ(H̄) columns of F and M in the equations above, and
then energy in the pass space (which is all of concern for the channel) is the same. If the singular value
decomposition of the original channel were instead executed directly, then the F obtained would have
been directly an ly × ly matrix instead of the ρ(H̄) × lx matrix of columns formed an used in (14.43).
The nonsingular columns of M remain the same and are still lx dimensional in both singular value
decompositions (of square H̄ and non-square H̄). However, (14.43) still holds, so the energies in the
pass space remain equal. Clearly, the mutual information also remains equal between the dual and the
original channel. Thus, the dual channel H∗ may directly be formed without channel squaring at all
as long as F and the M matrices are replaced by only the columns corresponding to non-zero singular
values and Figure 14.9 holds without need of H̄ being square. The dual channel and the original channel
have the same mutual information and the same input energies.

The dual channels could be viewed with H̄ as a BC and H̄∗ as a MAC. Each user of the BC has a
channel element H̄u associated with it, and consequently the dual MAC user has a corresponding dual
channel H̄∗

u. This duality is at a user level, as well as the overall channels being duals from a single-user
perspective. The overall system’s energy equivalence tells us that the sum of the BC users’ energy must
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Figure 14.10: The transpose channel with different noise autocorrelation matrix.

equal the sum of the energies on the input to the MAC channel. However, the individual channels have
white noise and corresponding bit rates bu that are not the bit rates of interest in the BC and MAC.
Those bit rates include “other-user” noise in calculations involving H̄u and those other user noises are
not yet included in the simple duality that occurs from the conjugate transpose. In fact, there is no
guarantee that an input Rxx for the BC will correspond to an input with no coordination (that is
a block-diagonal) autocorrelation matrix on the dual MAC. Further a certain set of autocorrelation
matrices on the MAC channel need not necessarily correspond to a dual BC that would have a GDFE
with diagonal feedforward section. The following input deflection concept provides the last missing
element necessary for duality.

The following theorem is quite general, but will be used in the context of the deflecting matrix being
the square root of a R̃noise(u) matrix for a given order in duality.

Theorem 14.3.2 (Input Deflection with Correlated Noise in Duality) The two dual
channels shown in Figure 14.11 have the same mutual information as the channel in Figure
14.10. Proof: From Chapter 5, the invertible transformation of the channel input by
matrix mutiplication does not change the mutual information. Or directly mathematically
noting simply that there is a mutiplication by an identity does not change the expression,

H̄ · R−1/2
n̄n̄ ·

(

R
1/2
n̄n̄ · Rxx ·R∗/2

n̄n̄

)

︸ ︷︷ ︸

R ˜x ˜x

·R−∗/2
n̄n̄ H̄∗ = H̄ · Rxx · H̄∗ . (14.46)

The mutual information remains the same6, namely

I(x̃; y) = I(x; y) , (14.47)

when
x̃ = R

1/2

ññ · x . (14.48)

For this new channel at the top of Figure 14.11 between x̃ and y, the channel matrix is now

˜̄H = H̄ · R−1/2
n̄n̄ . (14.49)

Thus deflection of the input can be viewed as corresponding to a similar deflection in the dual-
channel noise-equivalent output. The dual for this new channel then derives from singular
value decomposition on the new channel

˜̄H = F̃ · Λ̃ · M̃∗ , (14.50)

and leads to the lower channel in Figure 14.11 having the same mutual information as the
original channel

I(˜̄x; ˜̄y) = I(x̃; y) = I(x; y) , (14.51)

6The input energy, however, may not be maintained.
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Figure 14.11: The dual of transpose channel with different noise autocorrelation matrix.

where the input transformation is

˜̄x = F̃ · M̃∗ · x̃ = F̃ · M̃∗ ·R
1/2

n̄n̄ · x . (14.52)

The autocorrelation matrix relationships are

R ˜̄x ˜̄x = F̃ · M̃∗ · Rx̃x̃ · M̃ · F̃ ∗ = F̃ · M̃∗ · R
1/2

n̄n̄ · Rxx · R
∗/2

n̄n̄ · M̃ · F̃ ∗ . (14.53)

This second noise-absorbing use of dual channels appears in the dual channel to absorb the
user-dependent R̃noise terms that occur in the BC and MAC. QED.

This concept of input deflection and the dual channel will be applied not to the overall channel H
9where the overall duality preserved sum rate and total sum energy), but instead to the individual user
data rates and channel elements in dual BC and MAC channels in Subsection 14.3.2.

14.3.2 Duality

Figure 14.13 illustrates the BC and its MAC dual. The astute reader immediately notes that Theorem
14.3.2 applies directly to this channel (both noises are white) so that the rate sums of all users on both
channels are equal and the total energy used by each channel is the same (that is the sum of the users
energies is the same). However, duality can also be applied at an interior level, in particular with input
deflection, to each of the user channels to cause the individual user rates to also be equal. This requires
the use of input deflection on the individual channels (but the outer duality is also retained overall at
all steps). Thus the individual user data rates will be set equal via input deflection for user-dependent
colored noise, and so their energies will not be equal – however, the outer duality will be maintained
always so that the rate sums and energy sums overall is maintained, as will follow:

The order on the BC is presumed to be reversed from the normal order with position U now as the
least favorable and position 1 as the most favorable. The autocorrelation matrices will be indexed by a
superscript of M for the MAC and B for the BC. Each system has an equivalent noise for each user
that consists of other users not already cancelled or precoded:

R̃noise,M(u) = I +

U∑

i=u+1

H̄∗
i · RM

xx(i) · H̄i (14.54)

R̃noise,B(u) = I + H̄u ·

(
u−1∑

i=1

RB
xx(i)

)

· H̄∗
u . (14.55)
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Figure 14.12: Dual Vector BC and MAC channels.
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The data rates of each user on each of the two dual channels will be set equal, and those data rates are

bMAC
u =

1

2
log2

| H̄∗
u · RM

xx(u) · H̄u + R̃noise,M(u) |

| R̃noise,M(u) |
(14.56)

bBC
u =

1

2
log2

| H̄u ·RB
xx(u) · H̄∗

u + R̃noise,B(u) |

| R̃noise,B(u) |
. (14.57)

These user rates are the same as the original channels when viewed as MAC and BC respectively.
These two individual user channels corresponding to the data rates in (14.56) and (14.57) look almost
like duals except they have different noises. As in Figure 14.11, different noises can be accommodated
by input deflections. Each individual channel can be viewed in terms of equivalent noise with crosstalk
that is not white for its individual data rate. Thus each of these channels may have their input deflected
by the square-root noise autocorrelation of the other, where the noise autocorrelation contains the other
users as in Equations (14.54) and (14.55). Such input deflection does not change the mutual information,
so the rates of the two channels with noise-input deflection are maintained equal, and thus (equating
the arguments of the logarithms in (14.56) and (14.57))

| H̄∗
u · R̃

−∗/2
noise,B(u) · RM

x̃x̃(u) · R̃
−/2
noise,B(u) · H̄u + R̃noise,M(u) |

| R̃noise,M(u) |
= (14.58)

| H̄u · R̃−/2
noise,M(u) · RB

x̃x̃(u) · R̃−/2
noise,M(u) · H̄∗

u + R̃noise,B(u) |

| R̃noise,B(u) |
, (14.59)

where

x̃
M
u = R

∗/2
noise,B(u) · xM

u (14.60)

x̃B
u = R

1/2
noise,M(u) · xB

u . (14.61)

By dividing the denominator noise into both terms, and defining

˜̄Hu
∆
= R̃

−1/2
noise,B(u) · H̄u · R̃

−/2
noise,M(u) , (14.62)

the dual equations become (for setting each user’s MAC and BC bit rates equal)

| ˜̄H
∗

u ·RM
x̃x̃(u) · ˜̄Hu + I |=| ˜̄Hu ·RB

x̃x̃(u) · ˜̄H
∗

u + I | . (14.63)

Using the results of Figure 14.11, then an SVD of ˜̄Hu yields

˜̄Hu = F̃u · Λ̃uM̃∗
u , (14.64)

and a relationship of the two input autocorelation matrices as

RM
x̃x̃(u) = F̃u · M̃∗

u · RB
x̃x̃ · M̃u · F̃ ∗

u . (14.65)

Furthermore, from the input deflections

RM
x̃x̃(u) = R̃

∗/2
noise,B(u) · RM

xx(u) · R̃
1/2
noise,B(u) , (14.66)

and equivalently

RB
x̃x̃(u) = R̃

1/2
noise,M(u) · RB

xx(u) · R̃
∗/2
noise,M(u) . (14.67)

Combing the equations (14.63), (14.65), and (14.67), the desired relation between MAC and BC covariances
is the established as (BC to MAC)

RM
xx(u) = R̃

−∗/2
noise,B(u) · F̃u · M̃∗

u · R̃1/2
noise,M(u) · RB

xx(u) · R̃∗/2
noise,M(u) · M̃u · F̃ ∗

u · R̃−/2
noise,B(u) , (14.68)
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which reverses from simple algebra to the MAC-to-BC relationship

RB
xx(u) = R̃

−/2
noise,M(u) · M̃u · F̃ ∗

u · R̃
∗/2
noise,B(u) ·RM

xx(u) · R̃
1/2
noise,B(u) · F̃u · M̃∗

u · R̃
−∗/2
noise,M(u) . (14.69)

The relationships are indexed by u. Recursive use of Equation 14.68 must start with user U and work
down because each successive R̃noise,M(u) in (14.54) depends on higher indices of RM

xx(i > u). Equation

(14.69) must start with user 1 and work up because each successive R̃noise,B(u) in (14.55) depends on
lower indices of RB

xx(i < u).
The dual relationships correspond to a recursion that is illustrated in the flow chart of Figure ??. In

this case R̃noise,B(u) must be constructed recursively after each successive step of duality.
The overall channels (viewed from single-user perspective) are still duals and have the same rate

sum. The energies of the individual users are not the same because of the input deflection that makes
individual BC and MAC users’ bit rates equal, or equivalently they were never the same in the original
overall channel, just their sums were equal.

mac2BCMimo Program (Mohseni)

The mac2BCMimo program is provided for computing duals. The 3 inputs are:

1. Rxx(u) (called S by author of program), specified as U square Lx × Lx autocorrelation matrices
(the program calls U instead K and Lx instead r). The user index is the last in this 3-dimensional
tensor input.

2. H̄∗, each of the user matrices specified in succession with the last index in this 3-dimensional tensor
also corresponding to the user. The H in the program is actually the MAC channel not the BC.

3. π a 1 × U order vector representing the order for the MAC.

There is only one ouput, which is a tensor of the \vbc autocorrelation matrices with again the user

% This function converts the covariace matrices in a Gaussian MAC to corresponding

% covariance matrices in its Dual BC. These covariance matrices achieve the

% same set of rates in the dual BC by the GDFE precoding coding scheme. The

% encoding order in the BC is the reverse of the decoding order in the MAC.

% The total number of users is denoted by K. The decoding order in the MAC

% is given by K by 1 vector pi. pi(k) is the user that is decoded kth in

% the successive decoding. H is a t by r by K matrix containing all the

% channel matrices of the MAC. H(:,:,k) is the channel matrix for user k in

% the MAC. t and r are the number of transmit and receive antennas in the

% BC. S is a r by r by K matrix containing the covariance matrices of the

% MAC. S(:,:,k) is the covariance matrix for user k in the MAC. G is the

% function output which will contain the covariance matrices of the BC.

% G(:,:,k) is the covariance matrix for user k. This function is for just

% an MIMO-BC and does not include parallel MIMO-BCs.

function G = mac2BcMimo(S, H, pi)

H = H(:,:,pi);

S = S(:,:,pi);

[t, r, K] = size(H);

Gtot = zeros(t,t);
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Figure 14.13: BC to MAC duality flow chart.
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% Gtot is the transmit covariance matrix of the BC

B = zeros(t,t,K);

A = zeros(r,r,K);

% A and B matrices are the Rtildenoise for BC and MAC respectively

B(:,:,K) = eye(t);

for k = K:-1:2

B(:,:,k-1) = B(:,:,k) + H(:,:,k)*S(:,:,k)*H(:,:,k)’;

end

A(:,:,1) = eye(r);

for k = 1:K

temp_A = inv(sqrtm(A(:,:,k)));

temp_B = inv(sqrtm(B(:,:,k)));

[F L M] = svd(temp_B * H(:,:,k) * temp_A);

M = [M zeros(r,t-r)];

G(:,:,k) = temp_B * F * M’ * sqrtm(A(:,:,k)) * S(:,:,k) * sqrtm(A(:,:,k)) * M * F’ * temp_B;

Gtot = Gtot + G(:,:,k);

if k~=K

A(:,:,k+1) = eye(r) + H(:,:,k+1)’ * Gtot * H(:,:,k+1);

end

end

G(:,:,pi) = G;

14.3.3 Determination of Rxx for given rate tuple

The dual MAC for a BC allows ready determination of the feasibility of a rate tuple b. This rate
tuple can be inserted, along with H̄∗, and the weight vector w = [111...1], as inputs to minPMAC. The
resultant output energy should be summed and compared with the total energy constraint. If the total
energy constraint is not exceeded, then the point is feasible (in the capacity region) and a GDFE can
be designed for the set of user input energies on the dual MAC.

14.3.4 The dual GDFE

The dual GDFE for the set of input autocorrelation matrices Rxx(u) then can be translated as in Figure
14.8 of Section 14.2. The transmit autocorrelation matrices have to be ensured at the output of the
transmitter A matrix, which means that each square term Au must be prescaled by a matrix Su so that
AuSuS∗

uA∗
u = Rxx(u). The desired data rate vector b if feaasible on the dual MAC with energy less

than the total constraint then corresponds exactly to the data rate vector on the BC.

EXAMPLE 14.3.1 (ISI and BC via duality) User 2 has a 1 + .9D channel with white
input E = 1 on the dual MAC channel. User 1 has a 1 − D channel with white input
calE2 = 1 on the dual MAC channel. Both BC output noises are white with variance
σ2 = 0.181:

>> P2=(1/sqrt(.181))*[1 .9 0
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0 1 .9] =

2.3505 2.1155 0

0 2.3505 2.1155

>> P1=(1/sqrt(.181))*[1 -1 0

0 1 -1] =

2.3505 -2.3505 0

0 2.3505 -2.3505

>> H1=P1’;

>> H2=P2’;

>> H=[H2

H1]

H =

2.3505 0

2.1155 2.3505

0 2.1155

2.3505 0

-2.3505 2.3505

0 -2.3505

>> P=[P2 P1];

>> Rbinv=H*H’+eye(6) =

6.5249 4.9724 0 5.5249 -5.5249 0

4.9724 11.0000 4.9724 4.9724 0.5525 -5.5249

0 4.9724 5.4751 0 4.9724 -4.9724

5.5249 4.9724 0 6.5249 -5.5249 0

-5.5249 0.5525 4.9724 -5.5249 12.0497 -5.5249

0 -5.5249 -4.9724 0 -5.5249 6.5249

>> Gbar=chol(Rbinv) =

2.5544 1.9466 0 2.1629 -2.1629 0

0 2.6853 1.8517 0.2838 1.7737 -2.0575

0 0 1.4305 -0.3674 1.1801 -0.8127

0 0 0 1.2772 -0.7177 0.2234

0 0 0 0 1.5225 -0.4967

0 0 0 0 0 1.1553

>> G=inv(diag(diag(Gbar)))*Gbar =

1.0000 0.7621 0 0.8467 -0.8467 0

0 1.0000 0.6896 0.1057 0.6605 -0.7662

0 0 1.0000 -0.2568 0.8249 -0.5681

0 0 0 1.0000 -0.5619 0.1749

0 0 0 0 1.0000 -0.3262

0 0 0 0 0 1.0000

>> S0=diag(diag(Gbar))*diag(diag(Gbar)) =
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6.5249 0 0 0 0 0

0 7.2107 0 0 0 0

0 0 2.0463 0 0 0

0 0 0 1.6312 0 0

0 0 0 0 2.3182 0

0 0 0 0 0 1.3346

>> b=0.5*log2(diag(S0)) =

1.3530

1.4251

0.5165

0.3530

0.6065

0.2082

>> Wunb=inv(S0-eye(6))*inv(G’)*H =

0.4254 0

0.0522 0.3785

-0.2137 0.4727

0.4254 -0.1923

-0.1814 0.2441

-0.0107 -0.4254

>> Gunb=eye(6)+S0*inv(S0-eye(6))*(G-eye(6)) =

1.0000 0.9000 0 1.0000 -1.0000 0

0 1.0000 0.8006 0.1227 0.7669 -0.8896

0 0 1.0000 -0.5023 1.6134 -1.1111

0 0 0 1.0000 -1.4520 0.4520

0 0 0 0 1.0000 -0.5737

0 0 0 0 0 1.0000

>> Wbc=A’ =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

>> Abc=Wunb’ =

0.4254 0.0522 -0.2137 0.4254 -0.1814 -0.0107

0 0.3785 0.4727 -0.1923 0.2441 -0.4254

>> Gbc=Gunb’ =

1.0000 0 0 0 0 0

0.9000 1.0000 0 0 0 0

0 0.8006 1.0000 0 0 0
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1.0000 0.1227 -0.5023 1.0000 0 0

-1.0000 0.7669 1.6134 -1.4520 1.0000 0

0 -0.8896 -1.1111 0.4520 -0.5737 1.0000

>> Rxxm1=eye(3);

>> Rxxm2=eye(3);

>> Rnoisem1=eye(2)+H2’*Rxxm1*H2 =

11.0000 4.9724

4.9724 11.0000

>> Rnoisem2=eye(2);

>> Rnoiseb1=eye(3);

>> Hbtilde1=inv(sqrtm(Rnoiseb1))*H1*inv(sqrtm(Rnoisem1)) =

0.7728 -0.1846

-0.9574 0.9574

0.1846 -0.7728

>> [F1,L1,M1]=svd(Hbtilde1)

F1 = -0.4082 -0.7071 0.5774

0.8165 0 0.5774

-0.4082 0.7071 0.5774

L1 = 1.6582 0

0 0.5881

0 0

M1 = -0.7071 -0.7071

0.7071 -0.7071

>> Rxxb1=inv(sqrtm(Rnoisem1))*M1*F1(1:3,1:2)’*inv(sqrtm(Rnoiseb1’))*Rxxm1*inv(sqrtm(Rnoiseb1))

*F1(1:3,1:2)*M1’*inv(sqrtm(Rnoisem1’)) =

0.1143 -0.0516

-0.0516 0.1143

>> Rnoiseb2=eye(3)+H2*Rxxb1*H2’ =

1.6312 0.2828 -0.2568

0.2828 1.6289 0.3370

-0.2568 0.3370 1.5113

>> Hbtilde2=inv(sqrtm(Rnoiseb2))*H2*inv(sqrtm(Rnoisem2)) =

1.7121 -0.0235

1.5175 1.6910

-0.0211 1.5409

>> [F2,L2,M2]=svd(Hbtilde2)

F2 = -0.4295 0.7412 0.5158

-0.8161 -0.0741 -0.5731
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-0.3866 -0.6671 0.6368

L2 = 2.7799 0

0 1.6557

0 0

M2 = -0.7071 0.7071

-0.7071 -0.7071

>> Rxxb2=inv(sqrtm(Rnoisem2))*M2*F2(1:3,1:2)’*inv(sqrtm(Rnoiseb2’))*Rxxm2*inv(sqrtm(Rnoiseb2))

*F2(1:3,1:2)*M2’*inv(sqrtm(Rnoisem2’)) =

0.5307 -0.0145

-0.0145 0.5307

>> A1=Abc(:,4:6) =

0.4254 -0.1814 -0.0107

-0.1923 0.2441 -0.4254

>> A2=Abc(:,1:3) =

0.4254 0.0522 -0.2137

0 0.3785 0.4727

>> [Mb1,Sv1]=eig(Rxxb1)

Mb1 =

-0.7071 0.7071

-0.7071 -0.7071

Sv1 =

0.0626 0

0 0.1659

>> [Mb2,Sv2]=eig(Rxxb2)

Mb2 =

0.7071 0.7071

-0.7071 0.7071

Sv2 =

0.5452 0

0 0.5162

>> G12=G(4:6,1:3) =

0.8467 0.1057 -0.2568

-0.8467 0.6605 0.8249

0 -0.7662 -0.5681

>> Feedback=Mb2*A2*G12*pinv(A2) =

0.0173 0.1895

-1.0634 -0.5055

(design separate GDFE for each user at receiver using Rxx(u), Hu, and earlier-user noise)

The example illustrates the appropriate setting of the Rxx(u) at the output of the transmit filter
matrix A. This process basically aborbs the Au into the feedback coefficients between different users.
Since the point fed back is xu, then a pseudoinverse (inverts only on pass space and zeros in null space
of Au) ensures the correct input to the feedback portion of the precoder. The Au has been “pushed”
back through the modulo device and summer. The Mu matrix is a square root of RB

xx(u) used to shape
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Figure 14.14: GDFE BC transmitter adjustment for matching dual energies.

the channel input, which also must then be used to filter the feedback subtractions since this alters the
channel by this same amount.
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Figure 14.15:

14.4 Vector DMT and the BC

As with the MAC, vector DMT leads to enormous complexity reduction in stationary broadcast channels
with intersymbol interference. Subsection 14.4.1 reviews VDMT and poses the alterations necessary for
the BC. Subsection 14.4.1 will decompose (perhaps almost obviously at this point to the reader after
Chapters 4, 5, and 13) into a set of many small parallel and largely independent scalar BCs on each
tone. Finally, Subsection 14.4.2 concludes the VDMT section with an example in VDSL.

14.4.1 VDMT for the BC

Vector DMT systems were first introduced in Chapter 5 for the linear time-invariant channel and reviewed
in Section 13.3 for the MAC. Section 4.8 also discusses the Zipper method by Isaksson that is presumed
throughout here. The assumption of linear time invariance is continued throughout this section. Figure
14.15 illustrates the synchronization of the broadcast transmitter DMT symbols. Each transmitter uses
the same size DMT symbol and aligns symbol boundaries so that all users arrive at a common receiver
symbol boundary. The alignment is easier in broadcast channels than for the MAC. However, often
systems are bi-directional, so both cyclic prefixes and cyclic suffixes can be used to align both directions
of transmission for a downstream (or down-link) or an upstream (up-link) system so that all symbols
at the common hub of multiple-access receivers and broadcast transmitters are aligned. Such alignment
ensures that interference from “down back into up” can be easily cancelled at the hub with a single
complex coefficient per tone. Such cancellers are often called “NEXT” cancelers (and are not the same
as cancellers that exploit spatial correlation of noise in Section 13.3.4). Instead NEXT cancellers remove
any effect from the broadcast signal into the recieved multiple-access signals.

Such alignment will, if the common cyclic extension of DMT partitioning is longer than the length of

any of the response entries corresponding to each and all of the H̄u (that is νT ′ ≥ length
{

maxu,i

(
˜̄hu,i(t)

)}

,

lead to no intersymbol interference and to crosstalk on any particular tone n that is a function ONLY
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of other users’ signals on that same tone n of other users. Each tone of the LyU receivers’ FFT outputs
can then be modeled as

Y n
︸︷︷︸

LyU×1

= Hn
︸︷︷︸

LyU×Lx

· Xn
︸︷︷︸

Lx×1

+ Nn
︸︷︷︸

LyU×1

, (14.70)

where

Hn =






H1,n

...
HU,n




 (14.71)

Xn =






x1,n

...
xLx,n




 (14.72)

Y n =






Y 1,n

...
Y U,n




 (14.73)

Y u,n =






Yu,1,n

...
Yu,Ly,n




 . (14.74)

The (ly , lx)th entry of Hu,n is the DFT of the response from line/antenna lx to line/antenna ly of user
u’s output. The energy constraint becomes

∑

n

trace
{
RXX (n)

}
≤ Ex . (14.75)

The input autocorrelation on tone n is

RXX(n) =

U∑

u=1

RXX (u, n) . (14.76)

This tone-indexed model for DMT leads to tremendous computational reduction with respect to the
full precoding (or GDFE) structure. Effectively, N small channels of size Ly · U × Lx replace a giant
channel of size Ly · N · U × N · Lx. The GDFE/precoder computational advantage when Lx = U and
Ly = 1 is a complexity of U · N · log2(N) + NU2 versus the much larger (N · U)2, or if N = 128 and
U = 4, the savings is a factor of about 50 times less computation (262,144 vs 5,632). Figure 14.16 is the
result of the modeling.

The input for each tone then decomposes as in Section 14.2 or

RXX (n) =

U∑

u=1

RXX(u, n) =

U∑

u=1

Au,n · RV
′

V
′(u, n) · A∗

u,n . (14.77)

A complete noise for any order (on any tone) can be found then as

R̃noise(u, n) = RNN (u, n) +

U∑

i=u+1

Hu,n ·RXX (i, n) · H∗
u,n . (14.78)

The noise-equivalent channel is then

H̄u,n = R̃
−1/2
noise(u, n)
︸ ︷︷ ︸

Ly×Ly

· Hu,n
︸ ︷︷ ︸

Ly×Lx

· Au,n
︸︷︷︸

Lx×ρu,n

. (14.79)
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Figure 14.16: Illustration of the Vector DMT BC system.

Each tonal BC has a dual MAC and the overall dual of the VDMT BC is the VDMT MAC corresponding
to the collection of the duals on each tone. Thus, for a rate vector b of all the users’ desired rate, a
minPMAC GDFE design can be checked for its total energy if less than the total allowed when the
user-power weight vector w is uniform (all ones). The dual GDFE on each tone is then designed and
translated into the BC GDFE with precoder on each tone. The input autocorrelation matrices for each
of the BC users on each tone are computed by the duality procedure on each tone. Finally, the correct
autocorrelation matrix on each tone for each user’s component can be assured by a by

Rxx(u, n) = Au,nGp,u,nRV V (u, n)G∗
p,u,nA∗

u,n , (14.80)

where Gp,u,n is generalized monic triangular as in Section 14.3 and RV V is a diagonal matrix of energies
for each user.

14.4.2 Design Assessment

EXAMPLE 14.4.1 (VDSL) We visit again the vectored VDSL Example 13.3.1. In this
case, the downstream direction is a BC if the DSLAM uses transmitter coordination as
illustrated in Figure 14.17. This system then is vectored DMT if all downstream DMT
transmissions use the same master clock. The tone spacing is 4.3125 kHz with a cyclic
extension of 640 samples on a sampling clock of 16 × 2.208 MHz. Up to 8192 (VDSL2 so
twice as many possible as in Example 13.3.17) tones can be used in either direction. Three
noise configurations have been suggested as of interest by all phone companies in North
America. The first is a flat -125 dBm/Hz noise level (various levels of spatial correlation will
be assumed for upstream, but note spatial correlation is of no consequence to downstream
or more formally to the BC). This noise is considered to come from outside the coordinated
lines and is not “analog front-end” noise. Configuration 1 attempts to model RF noise
of radio signals for instance. Configuration 2 is a lower flat level of -140 dBm/Hz and is
considered to be “analog front-end” noise and so would always have no spatial correlation
(which again is only of interest for the upstream MAC that will also be shown in curves to
follow). Configuration 3 is the same as Configuration 2 except that 6 T1 noise crosstalkers
are assumed from outside the vectored group with varying degrees of spatial correlation.

7VDSL2 actually doubles carrier frequency width and leaves the number of tones at 4096 to cover exactly the same

bandwidth, but the program used here was based on 4.3125 kHz spacing.
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Figure 14.17: Downstream vectored BC for VDSL2.

Two frequency plans have been used for a frequency-division separation of upstream and
downstream bands. The so-called 998 plan of North America allows up and down transmis-
sion below 138 kHz (tone 32), and also up-only transmission between 4 MHz and 5.2 MHz
and and between 8.5 MHz and 17.6 MHz. These are the same as those in Example 13.3.1
were used except that now 7 bands are used with the highest additional cut-off frequencies
set at 17 and 25 MHz. The results allow FDM of up and down so there is no up-into-down
crosstalk of concern.

Figures 14.18 - 14.20 illustrate the achievable data rates with vectoring (up and down) with
respect to goals posed by phone companies. As one can see, vectoring in either direction
provides an enormous gain over expectations.
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Figure 14.18: VDSL2 Data rates for BC and vdmt for Configuration 1.

Figure 14.19: VDSL2 Data rates for BC and vdmt for Configuration 2.
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Figure 14.20: VDSL2 Data rates for BC and vdmt for Configuration 3.
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14.5 Generation of the BC Capacity Rate Region

The steps for tracing the BC Capacity Region are:

1. create a dual MAC channel (with coefficients H̄∗ and noise autocorrelation I.

2. for each b′ with b′1 = 0, ..., b1,max, ... b′U = 0, ..., bU,max with increments selected appropriately
and maximums chosen sufficiently large to be outside the rate region (i.e., equal to the single user
capacity for all other users zeroed)

(a) Find the energy vector Evec for a given b on the dual MAC using the minPmac program of
Section 13.5.

(b) if
∑

u Eu ≤ Evec, then the point is in the region, so cnew(b) = {b′
⋃

cold(b)}.

3. Trace the boundary for all points in which
∑

u Eu = Evec.
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Exercises - Chapter 14

14.1 Simple Gaussian Broadcast Channel.
Given a1 × U Gaussian BC with

H =








h1

h2

...
hU








where |h1| > |Hi| ∀i > 1 , (14.81)

and Rnn(u) = 1 ∀u, let h1 = 200. The transmit symbol has energy 1 unit.

a. (2 pts) What is the maximum rate sum? (call this Iwcn. (2 pts)

b. (2 pts) Is the solution to part a “fair” to all users?

c. (2 pts) Is the mutual information with worst-case noise dependent upon the energy distribution
among the users on this channel?

d. (2 pts) Can Iwcn be achieved by some GDFE receiver that has a diagonal feedforward matrix?

e. (2 pts) Does this Iwcn correspond to the maximum rate sum for all energy distributions that sum
to the unit energy constraint?

14.2 GDFE with WCN.
Given a1 × U Gaussian BC with

H =





.9 1 0 0
0 .9 1 0
0 0 .9 1



 (14.82)

and Rxx = I, while the channel output Gaussian noise has variance per dimension 0.181 on each output
dimension.

a. (2 pts) Find Rwcn and bwcn (2 pts)

b. (6 pts) Show a GDFE with a loss precoder at the xmit and a diagonal feedfoward matrix/filter
realization.

14.3 Dual Design for simple Gaussian BC.
Given a1 × U Gaussian BC with

H =





.8

.5

.3



 (14.83)

and Rnn(u) = .0001 u = 1, 2, 3. The transmit symbol has energy 1 unit.

a. (2 pts) Find Rwcn and bwcn.

b. (2 pts) Find a GDFE realization for which Wunb is diagonal and Gunb is realized as a lossless
precoder at the transmitter.

c. (4 pts) Suppose E1=.8, E2=.5, and E3=.3 , what is b =?

d. (4 pts) Show the dual MAC channel and its corresponding GDFE?

e. (4 pts) Show an acceptable GDFE realization for the original channel with the user data rates in
part b?
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14.4 Zero Forcing Vector Code (8 pts).
A BC has Ly > 1 and thus each user may have a multi-dimensional “vector” receiver.

a. (1 pt) In user u’s receiver (for any u, does any use of a feedforward matrix for that user’s Ly

dimensions need to be diagonal and thus correspond to a worst-case noise for user u?

b. (2 pts) Following part a, can any linear matrix filter Wu change the data rate of user u? Why or
why not?

c. (3 pts) From Section 14.2, WCN was observed to equate the performance of a ZF-GDFE and a
MMSE-GDFE. Could a ZF-GDFE be used for user u alone? If your answer is yes, state the precise
form of that ZF-GDFE.

d. (2 pts) If H = QR is a qr factorization, is there a simple way to describe the action of the GDFE
using Q and R on the broadcast channel without resorting to worst-case noise calculation (and
without using duality)?

14.5 Admission Problem (9 pts).

For the BC H =

[
.9
.6

]

with σ2 = .01, the input is restricted to unit energy per sample/symbol.

a. (2 pts) Sketch the rate region for this channel.

b. (2 pts) Using only the minPMAC software from Chapter 3, devise a scheme to dtermine if a specific
rate vector b ∈ c(b).

c. (3 pts) Test your answer in part b for 3 largest points in capacity region that satisfy b2 = 10b1,
b1 = 10b2, and b1 = b2.

d. (2 pts) What would it mean in the use of minPMAC for testing broadcast points if the weight
vector were not uniform?

14.6 Reciprocity (7 pts).
A wireless hub system uses the same frequencies for uplink and downlink transmission (with a ping-

pong or time-division access). The channel varies slowly. The noises at each of the downlink locations
is the same variance and independent, as are the noises at the common uplink receiver. The wireless
channel is said to exhibit reciprocity in this situation in that the downlink channel is the conjugate
transpose of the uplink channel. All uses have symmetric transmission. The downlink total transmit
power is restricted, but not the indivdual user’s signals, and this total is the same as the sum of the
uplink transmit powers.

a. (2 pts) Explain how a designer might avoid the need for feedback of channel information to the
transmitters.

b. (2 pts) Is the treatment of the downlink and uplink transmitters in the way described ever optimal?
If so, when?

c. (3 pts) Why might such a system not be used in practice? (give 3 reasons).

14.7 Wifi.
An 802.11(N) transmission system uses 64 tones in an OFDM/DMT arrangement with 4 transmit

antennas at an access point and a cyclic prefix of 32 complex samples. Each of 3 receivers can use two
receive antennas.

a. (3 pts) Determine Lx, U , and N for this application.
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b. (4 pts) What are the dimensions of the matrices Hu and of the matrix H itself with and without
the use of vector DMT?

c. (3 pts) For user 3, describe and draw a crypto precoder.

14.8 DSL
An VDSL transmission system uses 4096 tones in a baseband DMT arrangement with 25 twisted-pairs

in the same crosstalking binder at a transmitter. The cyclic prefix contains 40(16)=650 real samples.
Each of 25 separated receivers in different homes can receive downstream signals.

a. (3 pts) Determine Lx, U , and N for this application.

b. (4 pts) What are the dimensions of the matrices Hu and of the matrix H itself with and without
the use of vector DMT?

c. (4 pts) For user 4, describe and draw a crypto precoder and describe the associated receiver.

14.9 Rate Sum Maximization.
This problem develops and tests software to determine the Broadcast Channel rate sum maximum.

The specific example will be for U = 3, but the program should work for any number of users.

a. (3 pts) Find or write a water-filling program for a vector channel specified by H and an input total
energy constraint trace(Rxx) ≤ Ex. The input can have up to N dimensions. Test this program
on the channel specified in Section 14.2’s example.

b. (4 pts) Write an program that iterates between the use of your water-filling program in part a
and WCN determination for a set of noise variances. Use this on the same channel as part a to
determine the noise and input that simulataneously satisfy water-filling and WCN.

c. (1 pts) Determine the Maximum rate sum.

d. (3 pts) Determine the diagonal GDFE matrix W that corresponds to your answer in part c.

e. (4 pts) Draw the transmitter and receiver for the maximum-rate-sum achieving system specified
earlier in this problem.

f. (2 pts) Determine the data rates of each of the 3 users that achieve this maximum rate sum point.

14.10 Sum capacity of MIMO Broadcast channels: (10 pts).
Consider a vector broadcast channel with U = 2 users given by

[
y1

y2

]

=

[
H1

H2

]

x +

[
n1

n2

]

where y1, y2 are Ly×1 received vectors, x is Lx×1 transmitted vector and n1, n2 ∼ N (0, I) are receivers’
noises. Let Ex denote on the total transmit power. Based on the duality theory, the maximum rate-sum
of this BC that is achievable by using “Dirty Paper Coding” scheme (or the lossless pre-coder studied
in this course) is equal to maximum rate-sum of an equivalent MAC with channel matrices H∗

1 and H∗
2

and sum power constraint equal to Ex. This problem’s objective is to prove this maximum rate-sum is
actually equal to the sum-rate capacity. Let S1 and S2 denote on the transmit covariance matrices of
user 1 and user 2 in the equivalent MAC respectively. As it was shown earlier, optimal S1 and S2 must
simultaneously satisfy the water-filling conditions and since there is a total power constraint, the water
level is the same for both users. Let 1/2λ be the optimal water-level, then the water-filling conditions
can be written as,

1

2
H1

(
HT

1 S1H1 + HT
2 S2H2 + I

)−1
HT

1 + Φ1 = λI,

1

2
H2

(
HT

1 S1H1 + HT
2 S2H2 + I

)−1
HT

2 + Φ2 = λI,
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where Φ1, Φ2 are two symmetric positive semi-definite matrices satisfying Tr(S1Φ1) = Tr(S2Φ2) = 0.
These conditions together with the power constraint Tr(S1)+Tr(S2) = Ex, are also known as the Karush
Kuhn-Tucker optimality conditions and you do not need to verify them. Define the symmetric matrix
Q to be

Q =
1

2λ

(
HT

1 S1H1 + HT
2 S2H2 + I

)−1
.

Consider a point to point MIMO channel
y = x + z

with Gaussian noise vector z ∼ N (0, Q) and the same transmit power constraint Ex.

a. Justify the claim that the capacity of this point to point channel is an upper bound on the sum-
capacity of the original BC. For this part you cannot use the fact that sum-capacity of the original
BC is actually equal to the maximum rate-sum obtained by dirty paper coding scheme.

b. Using the KKT conditions given above, prove that the optimal covariance matrix that achieves
the capacity of the point-to-point channel is equal to

Rxx =
1

2λ
I − Q.

In other words, prove that Rxx is positive semi-definite, has trace less than or equal to Ex and
satisfy the water-filling condition.

c. Show that the capacity of this point to point channel that is obtained for the transmit covariance
matrix of part (b) is equal to maximum rate-sum of the equivalent MAC and hence it is equal to
maximum rate-sum of the original BC. Use this equality together with the upper bound property
of part (a) to conclude that the maximum rate-sum of dirty paper coding scheme is equal to sum
capacity and both are equal to capacity of the point to point channel.

14.11 BC capacity region in a two-user-two-tone case (10 pts).
This problem tries to find the BC capacity region boundary in a 2-user-2-tone case.

a. (2 user single tone case) Start with a simple single-tone case and find the capacity region of the
following BC. Ēx = 1 and σ2

n = 1 for both users. (3 pts)

y1 = 2 · x + n1 (14.84)

y2 = x + n2 (14.85)

Hint. Placement of the user with a better channel in a preferable decoding position traces the
region boundary. Subsequent division and assignment of the total power to each user appropriately
determines each user’s rate.

b. (Geometric Programming) Since the capacity region is convex, its boundary can be found by
maximizing the linear combination of each user’s rate, i.e.,

max a1b1 + a2b2

s.t b1 ≤ 1
2 log2(1 + 22E1)

b2 ≤ 1
2 log2{1 + E2

1+E1

}

E1 + E2 ≤ 1,

where a1, a2 ∈ [0, 1] and a1+a2 = 1. Show that this problem can be reformulated into the following
geometric programming form. Geometric programming can be easily converted into a convex form
and be efficiently solved by the existing convex optimization tool.

max f0(x) (14.86)

s.t fi(x) ≤ 1, i = 1, · · · , m, (14.87)

541



where the constraint x � 0 is implicit and f0, · · · , fm are in the form of f(x) =
∑K

k=1 ckxa1k
1 xa2k

2 · · ·xank
n (ck >

0). This kind of function is called a posynomial function. (3 pts)

Hint. Remove E1 and E2 terms using the total power constraint and reformulate the problem only
with b1 and b2.

c. (Extension to two tone case) Finally, extend the problem to a two tone case. The channel in the
nth tone for the uth user is defined as follows.

Yu,n = Hu,nXn + Nu,n (u = 1, 2 & n = 1, 2) (14.88)

In both tones, suppose that user 1 always has the better channel than user 2, i.e., |H1,n| > |H2,n|
(n=1,2). Thus, user 1 is decoded last in both tones. Similar to (b), the attempt to find the
capacity region boundary is equivalent to solving the following optimization problem as we sweep
the variable a1 and a2.

max a1b1 + a2b2

s.t b1 ≤ 1
2

log2(1 + |H1,1|2E1,1) + 1
2

log2(1 + |H1,2|2E1,2)

b2 ≤ 1
2 log2

(

1 +
|H2,1|

2E2,1

1+|H2,1|2E1,1

)

+ 1
2 log2

(

1 +
|H2,2|

2E2,2

1+|H2,2|2E1,2

)

E1,1 + E1,2 + E2,1 + E2,2 ≤ 1,

Reformulate this problem as a geometric programming form. (4 pts)

Hint. Think of this as a virtual 4-user-single-tone case.

14.12 Rate Sum Maximization and Duality (10 pts).
Reconsider the vector BC that was introduced in Section 14.2’s example, which is repeated here for

readers’ convenience. The channel parameters for this example are Lx = 3,Ly = 1,U = 3,N = 1 and
Ex = 10. 



y1

y2

y3



 = y = Hx + n =





2 1 .5
1 3 .2
2 .1 4



x +





n1

n2

n3



 (14.89)

This can be rewritten as yi = Hix + ni (i = 1, 2, 3),

where σ2
ni

= 1 and Hi’s are the row vectors such that H =





H1

H2

H3



.

a. Write a dual MAC channel for this vector BC. (2 pts)

b. Using the program you wrote in Problem 13.10, find out the maximum rate sum for this dual MAC
and the optimal power distribution among users. Also determine this sum rate for the situation of
a maximum sum of energies.(4 pts)

c. Using MAC-to-BC transformation in Section 14.3.2, transform the result you found in part b to
BC and compare the result with what you found in Problem 14.9. (4 pts)

14.13 Worst case noise calculation: (10 pts).
Consider the same Broadcast channel of problem 14.10. In this problem, the structure of worst-case

noise corresponding to maximum rate-sum point is investigated through duality between MAC and BC.
This problem exploits the results of problem 14.4 and the algorithm devised in problem 13.10 of chapter
13 to compute the worst case noise. To remind you, worst case noise is a zero mean Gaussian noise with
covariance matrix Sz that minimizes I(x; y) for the following point to point channel

y =

[
H1

H2

]

x + n
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subject to Rnn(i) = I. Where Rnn(i) is the ith diagonal sub-block of the matrix Rnn. This point
to point channel is obtained from original BC by allowing coordination at the receivers’ side. Note that
worst case noise is defined for any transmit covariance matrix Rxx, however this problem considers the
one corresponding the optimal transmit covariance matrix Sx that maximizes the mutual information
term.

a. Define the matrix Q exactly the same as the one in problem 14.10. Show that capacity of the point-
to-point channel introduced in problem 14.10 is an upper bound on capacity of the point-to-point
channel defined in this problem with the noise covariance matrix given as,

Rnn =

[
H1

H2

]

Q

[
H1

H2

]∗

.

b. Prove that capacity of the point to point channel defined here with Rnn of part (a) is still an
upper bound on the sum-capacity of the original broadcast channel. Hence, sum-capacity of the
original BC is a lower bound on this capacity. However, this lower bound is equal the upper bound
of part (a) based on the result of problem 14.10. Therefore, capacity of this point-to-point channel
is equal to sum-capacity of BC. Note that for given Rnn, Rnn(i), diagonal sub-block matrices, are
not necessarily equal to identity matrix, however it can be shown that, if these sub-block matrices
be replaced by identity matrix the worst case noise is obtained.

c. (Bonus) Prove the claim that by replacing Rnn(i) = HiQH∗
i with I, I(x, y) does not change and

the worst case noise is obtained.

d. Based on what is proved in previous parts, use the algorithm of problem 13.10 to find the matrix
Q and the worst case noise for example of Section 14.2.
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