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Chapter 3

Equalization

The main focus of Chapter 1 was a single use of the channel, signal set, and detector to transmit one
of M messages, commonly referred to as “one-shot” transmission. In practice, the transmission system
sends a sequence of messages, one after another, in which case the analysis of Chapter 1 applies only
if the channel is memoryless: that is, for one-shot analysis to apply, these successive transmissions
must not interfere with one another. In practice, successive transmissions do often interfere with one
another, especially as they are spaced more closely together to increase the data transmission rate.
The interference between successive transmissions is called intersymbol interference (ISI). ISI can
severely complicate the implementation of an optimum detector.

Figure 3.1 illustrates a receiver for detection of a succession of messages. The matched filter outputs
are processed by the receiver, which outputs samples, zk, that estimate the symbol transmitted at time
k, x̂k. Each receiver output sample is the input to the same one-shot detector that would be used on an
AWGN channel without ISI. This symbol-by-symbol (SBS) detector, while optimum for the AWGN
channel, will not be a maximum-likelihood estimator for the sequence of messages. Nonetheless, if the
receiver is well-designed, the combination of receiver and detector may work nearly as well as an optimum
detector with far less complexity. The objective of the receiver will be to improve the performance of
this simple SBS detector. More sophisticated and complex sequence detectors are the topics of Chapters
4, 5 and 9.

Equalization methods are used by communication engineers to mitigate the effects of the intersym-
bol interference. An equalizer is essentially the content of Figure 3.1’s receiver box. This chapter studies
both intersymbol interference and several equalization methods, which amount to different structures
for the receiver box. The methods presented in this chapter are not optimal for detection, but rather are
widely used sub-optimal cost-effective methods that reduce the ISI. These equalization methods try to
convert a bandlimited channel with ISI into one that appears memoryless, hopefully synthesizing a new
AWGN-like channel at the receiver output. The designer can then analyze the resulting memoryless,
equalized channel using the methods of Chapter 1. With an appropriate choice of transmit signals,
one of the methods in this chapter - the Decision Feedback Equalizer of Section 3.6 can be generalized
into a canonical receiver (effectively achieves the highest possible transmission rate even though not an
optimum receiver), which is discussed further in Chapter 5 and occurs only when special conditions are
met.

Section 3.1 models linear intersymbol interference between successive transmissions, thereby both
illustrating and measuring the problem. In practice, as shown by a simple example, distortion from
overlapping symbols can be unacceptable, suggesting that some corrective action must be taken. Section
3.1 also refines the concept of signal-to-noise ratio, which is the method used in this text to quantify
receiver performance. The SNR concept will be used consistently throughout the remainder of this text
as a quick and accurate means of quantifying transmission performance, as opposed to probability of
error, which can be more difficult to compute, especially for suboptimum designs. As Figure 3.1 shows,
the objective of the receiver will be to convert the channel into an equivalent AWGN at each time k,
independent of all other times k. An AWGN detector may then be applied to the derived channel, and
performance computed readily using the gap approximation or other known formulae of Chapters 1 and
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Figure 3.1: The band-limited channel with receiver and SBS detector.

2 with the SNR of the derived AWGN channel. There may be loss of optimality in creating such an
equivalent AWGN, which will be measured by the SNR of the equivalent AWGN with respect to the best
value that might be expected otherwise for an optimum detector. Section 3.3 discusses some desired
types of channel responses that exhibit no intersymbol interference, specifically introducing the Nyquist
Criterion for a linear channel (equalized or otherwise) to be free of intersymbol interference. Section 3.4
illustrates the basic concept of equalization through the zero-forcing equalizer (ZFE), which is simple to
understand but often of limited effectiveness. The more widely used and higher performance, minimum
mean square error linear (MMSE-LE) and decision-feedback equalizers (MMSE-DFE) are discussed in
Sections 3.5 and 3.6. Section 3.7 discusses the design of finite-length equalizers. Section 3.8 discusses
precoding, a method for eliminating error propagation in decision feedback equalizers and the related
concept of partial-response channels and precoding. Section 3.9 generalizes the equalization concepts to
systems that have one input, but several outputs, such as wireless transmission systems with multiple
receive antennas called “diversity.”

The area of transmit optimization for scalar equalization, is yet a higher performance form of equal-
ization for any channel with linear ISI, as discussed in Chapters 4 and 5.
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3.1 Intersymbol Interference and Receivers for Successive Mes-

sage Transmission

Intersymbol interference is a common practical impairment found in many transmission and storage
systems, including voiceband modems, digital subscriber loop data transmission, storage disks, digital
mobile radio channels, digital microwave channels, and even fiber-optic (where dispersion-limited) cables.
This section introduces a model for intersymbol interference. This section then continues and revisits
the equivalent AWGN of Figure 3.1 in view of various receiver corrective actions for ISI.

3.1.1 Transmission of Successive Messages

Most communication systems re-use the channel to transmit several messages in succession. From Section
1.1, the message transmissions are separated by T units in time, where T is called the symbol period,
and 1/T is called the symbol rate.1 The data rate of Chapter 1 for a communication system that
sends one of M possible messages every T time units is

R
∆=

log2(M )
T

=
b

T
. (3.1)

To increase the data rate in a design, either b can be increased (which requires more signal energy to
maintain Pe) or T can be decreased. Decreasing T narrows the time between message transmissions and
thus increases intersymbol interference on any band-limited channel.

The transmitted signal x(t) corresponding to K successive transmissions is

x(t) =
K−1∑

k=0

xk(t − kT ) . (3.2)

Equation (3.2) slightly abuses previous notation in that the subscript k on xk(t−kT ) refers to the index
associated with the kth successive transmission. The K successive transmissions could be considered an
aggregate or “block” symbol, x(t), conveying one of MK possible messages. The receiver could attempt
to implement MAP or ML detection for this new transmission system with MK messages. A Gram-
Schmidt decomposition on the set of MK signals would then be performed and an optimum detector
designed accordingly. Such an approach has complexity that grows exponentially (in proportion to MK)
with the block message length K. That is, the optimal detector might need MK matched filters, one for
each possible transmitted block symbol. As K → ∞, the complexity can become too large for practical
implementation. Chapter 9 addresses such “sequence detectors” in detail, and it may be possible to
compute the à posteriori probability function with less than exponentially growing complexity.

An alternative (suboptimal) receiver can detect each of the successive K messages independently.
Such detection is called symbol-by-symbol (SBS) detection. Figure 3.2 contrasts the SBS detector
with the block detector of Chapter 1. The bank of matched filters, presumably found by Gram-Schmitt
decomposition of the set of (noiseless) channel output waveforms (of which it can be shown K dimen-
sions are sufficient only if N = 1, complex or real), precedes a block detector that determines the
K-dimensional vector symbol transmitted. The complexity would become large or infinite as K becomes
large or infinite for the block detector. The lower system in Figure 3.2 has a single matched filter to the
channel, with output sampled K times, followed by a receiver and an SBS detector. The later system
has fixed (and lower) complexity per symbol/sample, but may not be optimum. Interference between
successive transmissions, or intersymbol interference (ISI), can degrade the performance of symbol-by-
symbol detection. This performance degradation increases as T decreases (or the symbol rate increases)
in most communication channels. The designer mathematically analyzes ISI by rewriting (3.2) as

x(t) =
K−1∑

k=0

N∑

n=1

xknϕn(t − kT ) , (3.3)

1The symbol rate is sometimes also called the “baud rate,” although abuse of the term baud (by equating it with data
rate even when M 6= 2) has rendered the term archaic among communication engineers, and the term “baud” usually now
only appears in trade journals and advertisements.
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Figure 3.2: Comparison of Block and SBS detectors for successive transmission of K messages.

where the transmissions xk(t) are decomposed using a common orthonormal basis set {ϕn(t)}. In (3.3),
ϕn(t − kT ) and ϕm(t − lT ) may be non-orthogonal when k 6= l. In some cases, translates of the basis
functions are orthogonal. For instance, in QAM, the two bandlimited basis functions

ϕ1(t) =

√
2
T

cos
(

mπt

T

)
· sinc

(
t

T

)
(3.4)

ϕ2(t) = −
√

2
T

sin
(

mπt

T

)
· sinc

(
t

T

)
, (3.5)

or from Chapter 2, the baseband equivalent

ϕ(t) =
1√
T

sinc
(

t

T

)
. (3.6)

(with m a positive integer) are orthogonal for all integer-multiple-of-T time translations. In this case,
the successive transmissions, when sampled at time instants kT , are free of ISI, and transmission is
equivalent to a succession of “one-shot” uses of the channel. In this case symbol-by-symbol detection
is optimal, and the MAP detector for the entire block of messages is the same as a MAP detector used
separately for each of the K independent transmissions. Signal sets for data transmission are usually
designed to be orthogonal for any translation by an integer multiple of symbol periods. Most linear
AWGN channels, however, are more accurately modeled by a filtered AWGN channel as discussed in
Section 1.7 and Chapter 2. The filtering of the channel alters the basis functions so that at the channel
output the filtered basis functions are no longer orthogonal. The channel thus introduces ISI.

3.1.2 Bandlimited Channels

The bandlimited linear ISI channel, shown in Figure 3.3, is the same as the filtered AWGN channel
discussed in Section 1.7. This channel is used, however, for successive transmission of data symbols.
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Figure 3.3: The bandlimited channel, and equivalent forms with pulse response.
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The (noise-free) channel output, xp(t), in Figure 3.3 is given by

xp(t) =
K−1∑

k=0

N∑

n=1

xkn ·ϕn(t − kT ) ∗ h(t) (3.7)

=
K−1∑

k=0

N∑

n=1

xkn · pn(t − kT ) (3.8)

where pn(t) ∆= ϕn(t) ∗ h(t). When h(t) 6= δ(t), the functions pn(t − kT ) do not necessarily form an
orthonormal basis, nor are they even necessarily orthogonal. An optimum (MAP) detector would need
to search a signal set of size MK , which is often too complex for implementation as K gets large. When
N = 1 (or N = 2 with complex signals), there is only one pulse response p(t).

Equalization methods apply a processor, the “equalizer”, to the channel output to try to convert
{pn(t − kT )} to an orthogonal set of functions. Symbol-by-symbol detection can then be used on the
equalized channel output. Further discussion of such equalization filters is deferred to Section 3.4. The
remainder of this chapter also presumes that the channel-input symbol sequence xk is independent and
identically distributed at each point in time. This presumption will be relaxed in later Chapters.

While a very general theory of ISI could be undertaken for any N , such a theory would unnecessarily
complicate the present development.2 This chapter handles the ISI-equalizer case for N = 1. Using
the baseband-equivalent systems of Chapter 2, this chapter’s (Chapter 3’s) analysis will also apply to
quadrature modulated systems modeled as complex (equivalent to two-dimensional real) channels. In
this way, the developed theory of ISI and equalization will apply equally well to any one-dimensional
(e.g. PAM) or two-dimensional (e.g. QAM or hexagonal) constellation. This was the main motivation
for the introduction of bandpass analysis in Chapter 2.

The pulse response for the transmitter/channel fundamentally quantifies ISI:

Definition 3.1.1 (Pulse Response) The pulse response of a bandlimited channel is de-
fined by

p(t) = ϕ(t) ∗ h(t) . (3.9)

For the complex QAM case, p(t), ϕ(t), and h(t) can be complex time functions.

The one-dimensional noiseless channel output xp(t) is

xp(t) =
K−1∑

k=0

xk · ϕ(t − kT ) ∗ h(t) (3.10)

=
K−1∑

k=0

xk · p(t − kT ) . (3.11)

The signal in (3.11) is real for a one-dimensional system and complex for a baseband equivalent quadra-
ture modulated system. The pulse response energy ‖p‖2 is not necessarily equal to 1, and this text
introduces the normalized pulse response:

ϕp(t)
∆=

p(t)
‖p‖

, (3.12)

where
‖p‖2 =

∫ ∞

−∞
p(t)p∗(t)dt = 〈p(t), p(t)〉 . (3.13)

The subscript p on ϕp(t) indicates that ϕp(t) is a normalized version of p(t). Using (3.12), Equation
(3.11) becomes

xp(t) =
K−1∑

k=0

xp,k · ϕp(t − kT ) , (3.14)

2Chapter 4 considers multidimensional signals and intersymbol interference, while Section 3.7 considers diversity re-
ceivers that may have several observations a single or multiple channel output(s).
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Figure 3.4: Illustration of intersymbol interference for p(t) = 1
1+t4 with T = 1.

where
xp,k

∆= xk · ‖p‖ . (3.15)

xp,k absorbs the channel gain/attenuation ‖p‖ into the definition of the input symbol, and thus has
energy Ep = E

[
|xp,k|2

]
= Ex · ‖p‖2. While the functions ϕp(t − kT ) are normalized, they are not

necessarily orthogonal, so symbol-by-symbol detection is not necessarily optimal for the signal in (3.14).

EXAMPLE 3.1.1 (Intersymbol interference and the pulse response) As an exam-
ple of intersymbol interference, consider the pulse response p(t) = 1

1+t4 and two successive
transmissions of opposite polarity (−1 followed by +1) through the corresponding channel.
Figure 3.4 illustrates the two isolated pulses with correct polarity and also the waveform
corresponding to the two transmissions separated by 1 unit in time. Clearly the peaks of the
pulses have been displaced in time and also significantly reduced in amplitude. Higher trans-
mission rates would force successive transmissions to be closer and closer together. Figure
3.5 illustrates the resultant sum of the two waveforms for spacings of 1 unit in time, .5 units
in time, and .1 units in time. Clearly, ISI has the effect of severely reducing pulse strength,
thereby reducing immunity to noise.

EXAMPLE 3.1.2 (Pulse Response Orthogonality - Modified Duobinary) A PAM
modulated signal using rectangular pulses is

ϕ(t) =
1√
T

(u(t) − u(t − T )) . (3.16)

The channel introduces ISI, for example, according to

h(t) = δ(t) + δ(t − T ). (3.17)
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Figure 3.5: ISI with increasing symbol rate.
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The resulting pulse response is

p(t) =
1√
T

(u(t) − u(t − 2T )) (3.18)

and the normalized pulse response is

ϕp(t) =
1√
2T

(u(t) − u(t − 2T )). (3.19)

The pulse-response translates ϕp(t) and ϕp(t− T ) are not orthogonal, even though ϕ(t) and
ϕ(t − T ) were originally orthonormal.

Noise Equivalent Pulse Response

Figure 3.6 models a channel with additive Gaussian noise that is not white, which often occurs in practice.
The power spectral density of the noise is N0

2 · Sn(f). When Sn(f) 6= 0 (noise is never exactly zero at
any frequency in practice), the noise psd has an invertible square root as in Section 1.7. The invertible
square-root can be realized as a filter in the beginning of a receiver. Since this filter is invertible, by
the reversibility theorem of Chapter 1, no information is lost. The designer can then construe this filter
as being pushed back into, and thus a part of, the channel as shown in the lower part of Figure 3.6.
The noise equivalent pulse response then has Fourier Transform P (f)/S

1/2
n (f) for an equivalent filtered-

AWGN channel. The concept of noise equivalence allows an analysis for AWGN to be valid (using the
equivalent pulse response instead of the original pulse response). Then also “colored noise” is equivalent
in its effect to ISI, and furthermore the compensating equalizers that are developed later in this chapter
can also be very useful on channels that originally have no ISI, but that do have “colored noise.” An
AWGN channel with a notch in H(f) at some frequency is thus equivalent to a “flat channel” with
H(f) = 1, but with narrow-band Gaussian noise at the same frequency as the notch.

3.1.3 The ISI-Channel Model

A model for linear ISI channels is shown in Figure 3.7. In this model, xk is scaled by ‖p‖ to form xp,k

so that Exp = Ex · ‖p‖2. The additive noise is white Gaussian, although correlated Gaussian noise can
be included by transforming the correlated-Gaussian-noise channel into an equivalent white Gaussian
noise channel using the methods in the previous subsection and illustrated in Figure 3.6. The channel
output yp(t) is passed through a matched filter ϕ∗

p(−t) to generate y(t). Then, y(t) is sampled at the
symbol rate and subsequently processed by a discrete time receiver. The following theorem illustrates
that there is no loss in performance that is incurred via the matched-filter/sampler combination.

Theorem 3.1.1 (ISI-Channel Model Sufficiency) The discrete-time signal samples yk =
y(kT ) in Figure 3.7 are sufficient to represent the continuous-time ISI-model channel output
y(t), if 0 < ‖p‖ < ∞. (i.e., a receiver with minimum Pe can be designed that uses only the
samples yk).

Sketch of Proof:
Define

ϕp,k(t) ∆= ϕp(t − kT ) , (3.20)

where {ϕp,k(t)}k∈(−∞,∞) is a linearly independent set of functions. The set {ϕp,k(t)}k∈(−∞,∞)

is related to a set of orthogonal basis functions {φp,k(t)}k∈(−∞,∞) by an invertible transfor-
mation Γ (use Gram-Schmidt an infinite number of times). The transformation and its
inverse are written

{φp,k(t)}k∈(−∞,∞) = Γ({ϕp,k(t)}k∈(−∞,∞)) (3.21)

{ϕp,k(t)}k∈(−∞,∞) = Γ−1({φp,k(t)}k∈(−∞,∞)) , (3.22)

where Γ is the invertible transformation. In Figure 3.8, the transformation outputs are
the filter samples y(kT ). The infinite set of filters {φ∗

p,k(−t)}k∈(−∞,∞) followed by Γ−1 is
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Figure 3.6: White Noise Equivalent Channel.

Figure 3.7: The ISI-Channel model.
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Figure 3.8: Equivalent diagram of ISI-channel model matched-filter/sampler

equivalent to an infinite set of matched filters to
{

ϕ∗
p,k(−t)

}
k∈(−∞,∞)

. By (3.20) this last set

is equivalent to a single matched filter ϕ∗
p(−t), whose output is sampled at t = kT to produce

y(kT ). Since the set {φp,k(t)}k∈(−∞,∞) is orthonormal, the set of sampled filter outputs in
Figure 3.8 are sufficient to represent yp(t). Since Γ−1 is invertible (inverse is Γ), then by the
theorem of reversibility in Chapter 1, the sampled matched filter output y(kT ) is a sufficient
representation of the ISI-channel output yp(t). QED.

Referring to Figure 3.7,

y(t) =
∑

k

‖p‖ · xkq(t − kT ) + np(t) ∗ ϕ∗
p(−t) , (3.23)

where
q(t) ∆= ϕp(t) ∗ ϕ∗

p(−t) =
p(t) ∗ p∗(−t)

‖p‖2
. (3.24)

The deterministic autocorrelation function q(t) is Hermitian (q∗(−t) = q(t)). Also, q(0) = 1, so the
symbol xk passes at time kT to the output with amplitude scaling ‖p‖. The function q(t) can also exhibit
ISI, as illustrated in Figure 3.9. The plotted q(t) corresponds to qk = [−.1159 .2029 1 .2029 − .1159] or,

equivalently, to the channel p(t) =
√

1
T · (sinc(t/T ) + .25 · sinc((t − T )/T ) − .125 · sinc((t − 2T )/T )), or
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Figure 3.9: ISI in q(t)

P (D) = 1√
T
· (1 + .5D)(1 − .25D) (the notation P (D) is defined in Appendix A.2). (The values for qk

can be confirmed by convolving p(t) with its time reverse, normalizing, and sampling.) For notational
brevity, let yk

∆= y(kT ), qk
∆= q(kT ), nk

∆= n(kT ) where n(t) ∆= np(t) ∗ ϕ∗
p(−t). Thus

yk = ‖p‖ · xk︸ ︷︷ ︸
scaled input (desired)

+ nk︸︷︷︸
noise

+ ‖p‖ ·
∑

m 6=k

xmqk−m

︸ ︷︷ ︸
ISI

. (3.25)

The output yk consists of the scaled input, noise and ISI. The scaled input is the desired information-
bearing signal. The ISI and noise are unwanted signals that act to distort the information being trans-
mitted. The ISI represents a new distortion component not previously considered in the analysis of
Chapters 1 and 2 for a suboptimum SBS detector. This SBS detector is the same detector as in Chap-
ters 1 and 2, except used under the (false) assumption that the ISI is just additional AWGN. Such a
receiver can be decidedly suboptimum when the ISI is nonzero.

Using D-transform notation, (3.25) becomes

Y (D) = X(D) · ‖p‖ · Q(D) + N (D) (3.26)

where Y (D) ∆=
∑∞

k=−∞ yk ·Dk. If the receiver uses symbol-by-symbol detection on the sampled output
yk, then the noise sample nk of (one-dimensional) variance N0

2 at the matched-filter output combines
with ISI from the sample times mT (m 6= k) in corrupting ‖p‖ · xk.

There are two common measures of ISI distortion. The first is Peak Distortion, which only has
meaning for real-valued q(t): 3

Definition 3.1.2 (Peak Distortion Criterion) If |xmax| is the maximum value for |xk|,
then the peak distortion is:

Dp
∆= |x|max · ‖p‖ ·

∑

m 6=0

|qm| . (3.27)

3In the real case, the magnitudes correspond to actual values. However, for complex-valued terms, the ISI is charac-
terized by both its magnitude and phase. So, addition of the magnitudes of the symbols ignores the phase components,
which may significantly change the ISI term.
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For q(t) in Figure 3.9 with xmax = 3, Dp = 3·‖p‖(.1159+.2029+.2029+.1159) ≈ 3·
√

1.078·.6376 ≈ 1.99.
The peak distortion represents a worst-case loss in minimum distance between signal points in the

signal constellation for xk, or equivalently

Pe ≤ NeQ


‖p‖

dmin
2 − Dp

σ


 , (3.28)

for symbol-by-symbol detection. Consider two matched filter outputs yk and y′k that the receiver at-
tempts to distinguish by suboptimally using symbol-by-symbol detection. These outputs are generated
by two different sequences {xk} and {x′

k}. Without loss of generality, assume yk > y′k, and consider the
difference

yk − y′k = ‖p‖


(xk − x′

k) +
∑

m 6=k

(xm − x′
m)qk−m


+ ñ (3.29)

The summation term inside the brackets in (3.29) represents the change in distance between yk and y′k
caused by ISI. Without ISI the distance is

yk − y′k ≥ ‖p‖ · dmin , (3.30)

while with ISI the distance can decrease to

yk − y′k ≥ ‖p‖


dmin − 2|x|max

∑

m 6=0

|qm|


 . (3.31)

Implicitly, the distance interpretation in (3.31) assumes 2Dp ≤ ‖p‖dmin.4

While peak distortion represents the worst-case ISI, this worst case might not occur very often in
practice. For instance, with an input alphabet size M = 4 and a q(t) that spans 15 symbol periods,
the probability of occurrence of the worst-case value (worst level occurring in all 14 ISI contributors) is
4−14 = 3.7×10−9, well below typical channel Pe’s in data transmission. Nevertheless, there may be other
ISI patterns of nearly just as bad interference that can also occur. Rather than separately compute each
possible combination’s reduction of minimum distance, its probability of occurrence, and the resulting
error probability, data transmission engineers more often use a measure of ISI called Mean-Square
Distortion (valid for 1 or 2 dimensions):

Definition 3.1.3 (Mean-Square Distortion) The Mean-Square Distortion is defined
by:

Dms
∆= E



|
∑

m 6=k

xp,m · qk−m|2


 (3.32)

= Ex · ‖p‖2 ·
∑

m 6=0

|qm|2 , (3.33)

where (3.33) is valid when the successive data symbols are independent and identically dis-
tributed with zero mean.

In the example of Figure 3.9, the mean-square distortion (with Ex = 5) is Dms = 5‖p‖2(.11592+ .20292+
.20292 + .11592) ≈ 5(1.078).109 ≈ .588. The fact

√
.588 = .767 < 1.99 illustrates that Dms ≤ D2

p. (The
proof of this fact is left as an exercise to the reader.)

The mean-square distortion criterion assumes (erroneously5) that Dms is the variance of an uncor-
related Gaussian noise that is added to nk. With this assumption, Pe is approximated by

Pe ≈ Ne ·Q

[
‖p‖dmin

2
√

σ2 + D̄ms

]
. (3.34)

4On channels for which 2Dp ≥ ‖p‖dmin, the worst-case ISI occurs when |2Dp − ‖p‖dmin| is maximum.
5This assumption is only true when xk is Gaussian. In very well-designeddata transmission systems, xk is approximately

i.i.d. and Gaussian, see Chapter 6, so that this approximation of Gaussian ISI becomes accurate.

161



One way to visualize ISI is through the “eye diagram”, some examples of which are shown in Figures
3.10 and 3.11. The eye diagram is similar to what would be observed on an oscilloscope, when the trigger
is synchronized to the symbol rate. The eye diagram is produced by overlaying several successive symbol
intervals of the modulated and filtered continuous-time waveform (except Figures 3.10 and 3.11 do not
include noise). The Lorentzian pulse response p(t) = 1/(1 + (3t/T )2) is used in both plots. For binary
transmission on this channel, there is a significant opening in the eye in the center of the plot in Figure
3.10. With 4-level PAM transmission, the openings are much smaller, leading to less noise immunity.
The ISI causes the spread among the path traces; more ISI results in a narrower eye opening. Clearly
increasing M reduces the eye opening.
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Figure 3.10: Binary eye diagram for a Lorentzian pulse response.

Figure 3.11: 4-Level eye diagram for a Lorentzian pulse response.
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Figure 3.12: Use of possibly suboptimal receiver to approximate/create an equivalent AWGN.

3.2 Basics of the Receiver-generated Equivalent AWGN

Figure 3.12 focuses upon the receiver and specifically the device shown generally as R. When channels
have ISI, such a receiving device is inserted at the sampler output. The purpose of the receiver is to
attempt to convert the channel into an equivalent AWGN that is also shown below the dashed line. Such
an AWGN is not always exactly achieved, but nonetheless any deviation between the receiver output zk

and the channel input symbol xk is viewed as additive white Gaussian noise. An SNR, as in Subsection
3.2.1 can be used then to analyze the performance of the symbol-by-symbol detector that follows the
receiver R. Usually, smaller deviation from the transmitted symbol means better performance, although
not exactly so as Subsection 3.2.2 discusses. Subsection 3.2.3 finishes this section with a discussion of
the highest possible SNR that a designer could expect for any filtered AWGN channel, the so-called
“matched-filter-bound” SNR, SNRMFB. This section shall not be specific as to the content of the box
shown as R, but later sections will allow both linear and slightly nonlinear structures that may often be
good choices because their performance can be close to SNRMFB .

3.2.1 Receiver Signal-to-Noise Ratio

Definition 3.2.1 (Receiver SNR) The receiver SNR, SNRR for any receiver R with
(pre-decision) output zk, and decision regions based on xk (see Figure 3.12) is

SNRR
∆=

Ex
E|ek|2

, (3.35)

where ek
∆= xk − zk is the receiver error. The denominator of (3.35) is the mean-square

error MSE=E|ek|2. When E [zk|xk] = xk, the receiver is unbiased (otherwise biased) with
respect to the decision regions for xk.

The concept of a receiver SNR facilitates evaluation of the performance of data transmission systems
with various compensation methods (i.e. equalizers) for ISI. Use of SNR as a performance measure
builds upon the simplifications of considering mean-square distortion, that is both noise and ISI are
jointly considered in a single measure. The two right-most terms in (3.25) have normalized mean-square
value σ2 + D̄ms. The SNR for the matched filter output yk in Figure 3.12 is the ratio of channel output
sample energy Ēx‖p‖2 to the mean-square distortion σ2 + D̄ms. This SNR is often directly related to
probability of error and is a function of both the receiver and the decision regions for the SBS detector.
This text uses SNR consistently, replacing probability of error as a measure of comparative performance.
SNR is easier to compute than Pe, independent of M at constant Ēx, and a generally good measure
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Figure 3.13: Receiver SNR concept.

of performance: higher SNR means lower probability of error. The probability of error is difficult to
compute exactly because the distribution of the ISI-plus-noise is not known or is difficult to compute.
The SNR is easier to compute and this text assumes that the insertion of the appropriately scaled SNR
(see Chapter 1 - Sections 1.4 - 1.6)) into the argument of the Q-function approximates the probability of
error for the suboptimum SBS detector. Even when this insertion into the Q-function is not sufficiently
accurate, comparison of SNR’s for different receivers usually relates which receiver is better.

3.2.2 Receiver Biases

Figure 3.13 illustrates a receiver that somehow has tried to reduce the combination of ISI and noise.
Any time-invariant receiver’s output samples, zk, satisfy

zk = α · (xk + uk) (3.36)

where α is some positive scale factor that may have been introduced by the receiver and uk is an
uncorrelated distortion

uk =
∑

m 6=0

rm · xk−m +
∑

m

fm · nk−m . (3.37)

The coefficients for residual intersymbol interference rm and the coefficients of the filtered noise fk will
depend on the receiver and generally determine the level of mean-square distortion. The uncorrelated
distortion has no remnant of the current symbol being decided by the SBS detector, so that E [uk/xk] = 0.
However, the receiver may have found that by scaling (reducing) the xk component in zk by α that
the SNR improves (small signal loss in exchange for larger uncorrelated distortion reduction). When
E [zk/xk] = α · xk 6= xk, the decision regions in the SBS detector are “biased.” Removal of the bias is
easily achieved by scaling by 1/α as also in Figure 3.13. If the distortion is assumed to be Gaussian
noise, as is the assumption with the SBS detector, then removal of bias by scaling by 1/α improves the
probability of error of such a detector as in Chapter 1. (Even when the noise is not Gaussian as is the
case with the ISI component, scaling the signal correctly improves the probability of error on the average
if the input constellation has zero mean.)

The following theorem relates the SNR’s of the unbiased and biased decision rules for any receiver
R:

Theorem 3.2.1 (Unconstrained and Unbiased Receivers) Given an unbiased receiver
R for a decision rule based on a signal constellation corresponding to xk, the maximum
unconstrained SNR corresponding to that same receiver with any biased decision rule is

SNRR = SNRR,U + 1 , (3.38)
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where SNRR,U is the SNR using the unbiased decision rule.

Proof: From Figure 3.13, the SNR after scaling is easily

SNRR,U =
Ēx
σ̄2

u

. (3.39)

The maximum SNR for the biased signal zk prior to the scaling occurs when α is chosen to maximize
the unconstrained SNR

SNRR =
Ex

|α|2σ2
u + |1− α|2Ex

. (3.40)

Allowing for complex α with phase θ and magnitude |α|, the SNR maximization over alpha is equivalent
to minimizing

1 − 2|α|cos(θ) + |α|2(1 +
1

SNRR,U
) . (3.41)

Clearly θ = 0 for a minimum and differentiating with respect to |α| yields −2 + 2|α|(1 + 1
SNRR,U

) = 0

or αopt = 1/(1 + (SNRR,U )−1). Substitution of this value into the expression for SNRR finds

SNRR = SNRR,U + 1 . (3.42)

Thus, a receiver R and a corresponding SBS detector that have zero bias will not correspond to a max-
imum SNR – the SNR can be improved by scaling (reducing) the receiver output by αopt. Conversely,
a receiver designed for maximum SNR can be altered slightly through simple output scaling by 1/αopt

to a related receiver that has no bias and has SNR thereby reduced to SNRR,U = SNRR − 1. QED.

To illustrate the relationship of unbiased and biased receiver SNRs, suppose an ISI-free AWGN
channel has an SNR=10 with Ex = 1 and σ2

u = N0
2

= .1. Then, a receiver could scale the channel output
by α = 10/11. The resultant new error signal is ek = xk(1 − 10

11
) − 10

11
nk, which has MSE=E[|ek|2] =

1
121 + 100

121(.1) = 1
11 , and SNR=11. Clearly, the biased SNR is equal to the unbiased SNR plus 1. The

scaling has done nothing to improve the system, and the appearance of an improved SNR is an artifact
of the SNR definition, which allows noise to be scaled down without taking into account the fact that
actual signal power after scaling has also been reduced. Removing the bias corresponds to using the
actual signal power, and the corresponding performance-characterizing SNR can always be found by
subtracting 1 from the biased SNR. A natural question is then “Why compute the biased SNR?” The
answer is that the biased receiver corresponds directly to minimizing the mean-square distortion, and
the SNR for the “MMSE” case will often be easier to compute. Figure 3.27 in Section 3.5 illustrates
the usual situation of removing a bias (and consequently reducing SNR, but not improving Pe since the
SBS detector works best when there is no bias) from a receiver that minimizes mean-square distortion
(or error) to get an unbiased decision. The bias from a receiver that maximizes SNR by equivalently
minimizing mean-square error can then be removed by simple scaling and the resultant more accurate
SNR is thus found for the unbiased receiver by subtracting 1 from the more easily computed biased
receiver. This concept will be very useful in evaluating equalizer performance in later sections of this
chapter, and is formalized in Theorem 3.2.2 below.

Theorem 3.2.2 (Unbiased MMSE Receiver Theorem) Let R be any allowed class of
receivers R producing outputs zk, and let Ropt be the receiver that achieves the maximum
signal-to-noise ratio SNR(Ropt) over all R ∈ R with an unconstrained decision rule. Then
the receiver that achieves the maximum SNR with an unbiased decision rule is also Ropt, and

max
R∈R

SNRR,U = SNR(Ropt) − 1. (3.43)

Proof. From Theorem 3.2.1, for any R ∈ R, the relation between the signal-to-noise ratios of unbiased
and unconstrained decision rules is SNRR,U = SNRR − 1, so

max
R∈R

[SNRR,U ] = max
R∈R

[SNRR]− 1 = SNRRopt − 1 . (3.44)
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QED.
This theorem implies that the optimum unbiased receiver and the optimum biased receiver settings

are identical except for any scaling to remove bias; only the SNR measures are different. For any SBS
detector, SNRR,U is the SNR that corresponds to best Pe. The quantity SNRR,U + 1 is artificially high
because of the bias inherent in the general SNR definition.

3.2.3 The Matched-Filter Bound

The Matched-Filter Bound (MFB), also called the “one-shot” bound, specifies an upper SNR limit
on the performance of data transmission systems with ISI.

Lemma 3.2.1 (Matched-Filter Bound SNR) The SNRMFB is the SNR that character-
izes the best achievable performance for a given pulse response p(t) and signal constellation
(on an AWGN channel) if the channel is used to transmit only one message. This SNR is

SNRMFB =
Ēx‖p‖2

N0
2

(3.45)

MFB denotes the square of the argument to the Q-function that arises in the equivalent
“one-shot” analysis of the channel.

Proof: Given a channel with pulse response p(t) and isolated input x0, the maximum output sample
of the matched filter is ‖p‖ · x0. The normalized average energy of this sample is ‖p‖2Ēx, while the
corresponding noise sample energy is N0

2
, SNRMFB = Ēx‖p‖2

N0
2

. QED.

The probability of error, measured after the matched filter and prior to the symbol-by-symbol detector,
satisfies Pe ≥ Ne ·Q(

√
MFB). When Ēx equals (d2

min/4)/κ, then MFB equals SNRMFB ·κ. In effect the
MFB forces no ISI by disallowing preceding or successive transmitted symbols. An optimum detector is
used for this “one-shot” case. The performance is tacitly a function of the transmitter basis functions,
implying performance is also a function of the symbol rate 1/T . No other (for the same input constel-
lation) receiver for continuous transmission could have better performance, if xk is an i.i.d. sequence,
since the sequence must incur some level of ISI. The possibility of correlating the input sequence {xk}
to take advantage of the channel correlation will be considered in Chapters 4 and 5.

The following example illustrates computation of the MFB for several cases of practical interest:

EXAMPLE 3.2.1 (Binary PAM) For binary PAM,

xp(t) =
∑

k

xk · p(t − kT ) , (3.46)

where xk = ±
√
Ex. The minimum distance at the matched-filter output is ‖p‖ · dmin =

‖p‖ · d = 2 · ‖p‖ ·
√
Ex, so Ex =

d2

min
4

and κ = 1. Then,

MFB = SNRMFB . (3.47)

Thus for a binary PAM channel, the MFB (in dB) is just the “channel-output” SNR,
SNRMFB. If the transmitter symbols xk are equal to ±1 (Ex = 1), then

MFB =
‖p‖2

σ2
, (3.48)

where, again, σ2 = N0
2 . The binary-PAM Pe is then bounded by

Pe ≥ Q(
√

SNRMFB) . (3.49)
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EXAMPLE 3.2.2 (M-ary PAM) For M-ary PAM, xk = ±d
2 , ±3d

2 , ..., ± (M−1)d
2 and

d

2
=

√
3Ex

M2 − 1
, (3.50)

so κ = 3/(M2 − 1). Thus,

MFB =
3

M2 − 1
SNRMFB , (3.51)

for M ≥ 2. If the transmitter symbols xk are equal to ±1,±3, , ..., ±(M − 1), then

MFB =
‖p‖2

σ2
. (3.52)

Equation (3.52) is the same result as (3.48), which should be expected since the minimum
distance is the same at the transmitter, and thus also at the channel output, for both (3.48)
and (3.52). The M’ary-PAM Pe is then bounded by

Pe ≥ 2(1 − 1/M ) · Q(

√
3 · SNRMFB

M2 − 1
) . (3.53)

EXAMPLE 3.2.3 (QPSK) For QPSK, xk = ±d
2
± d

2
, and d = 2

√
Ēx, so κ = 1. Thus

MFB = SNRMFB . (3.54)

Thus, for a QPSK (or 4SQ QAM) channel, MFB (in dB) equals the channel output SNR. If
the transmitter symbols xk are ±1 ± , then

MFB =
‖p‖2

σ2
. (3.55)

The best QPSK Pe is then approximated by

P̄e ≈ Q(
√

SNRMFB) . (3.56)

EXAMPLE 3.2.4 (M-ary QAM Square) For M-ary QAM, <{xk} = ±d
2
, ±3d

2
, ..., ± (

√
M−1)d

2
,

={xk} = ±d
2
, ±3d

2
, ..., ± (

√
M−1)d

2
, (recall that < and = denote real and imaginary parts,

respectively) and

d

2
=

√
3Ēx

M − 1
, (3.57)

so κ = 3/(M − 1). Thus

MFB =
3

M − 1
SNRMFB , (3.58)

for M ≥ 4. If the real and imaginary components of the transmitter symbols xk equal
±1,±3, , ..., ±(

√
M − 1), then

MFB =
‖p‖2

σ2
. (3.59)

The best M’ary QAM Pe is then approximated by

P̄e ≈ 2(1 − 1/
√

M) · Q(

√
3 · SNRMFB

M − 1
) . (3.60)
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In general for square QAM constellations,

MFB =
3

4b̄ − 1
SNRMFB . (3.61)

For the QAM Cross constellations,

MFB =

2Ēx‖p‖2

31
48 M− 2

3

σ2
=

96
31 · 4b̄ − 32

SNRMFB . (3.62)

For the suboptimum receivers to come in later sections, SNRU ≤ SNRMFB . As SNRU → SNRMFB,
then the receiver is approaching the bound on performance. It is not always possible to design a receiver
that attains SNRMFB , even with infinite complexity, unless one allows co-design of the input symbols
xk in a channel-dependent way (see Chapters 4 and 5). The loss with respect to matched filter bound
will be determined for any receiver by SNRu/SNRMFB ≤ 1, in effect determining a loss in signal power
because successive transmissions interfere with one another – it may well be that the loss in signal power
is an acceptable exchange for a higher rate of transmission.
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3.3 Nyquist’s Criterion

Nyquist’s Criterion specifies the conditions on q(t) = ϕp(t) ∗ ϕ∗
p(−t) for an ISI-free channel on which a

symbol-by-symbol detector is optimal. This section first reviews some fundamental relationships between
q(t) and its samples qk = q(kT ) in the frequency domain.

q(kT ) =
1
2π

∫ ∞

−∞
Q(ω)eωkT dω (3.63)

=
1
2π

∞∑

n=−∞

∫ (2n+1)π
T

(2n−1)π
T

Q(ω)eωkT dω (3.64)

=
1
2π

∞∑

n=−∞

∫ π
T

− π
T

Q(ω +
2πn

T
)e(ω+ 2πn

T )kTdω (3.65)

=
1
2π

∫ π
T

− π
T

Qeq(ω)eωkT dω , (3.66)

where Qeq(ω), the equivalent frequency response becomes

Qeq(ω) ∆=
∞∑

n=−∞
Q(ω +

2πn

T
) . (3.67)

The function Qeq(ω) is periodic in ω with period 2π
T . This function is also known as the folded or aliased

spectrum of Q(ω) because the sampling process causes the frequency response outside of the fundamental
interval (− π

T , π
T ) to be added (i.e. “folded in”). Writing the Fourier Transform of the sequence qk as

Q(e−ωT ) =
∑∞

k=−∞ qke−ωkT leads to

1
T

·Qeq(ω) = Q(e−ωT ) ∆=
∞∑

k=−∞

qke−ωkT , (3.68)

a well-known relation between the discrete-time and continuous-time representations of any waveform
in digital signal processing.

It is now straightforward to specify Nyquist’s Criterion:

Theorem 3.3.1 (Nyquist’s Criterion) A channel specified by pulse response p(t) (and
resulting in q(t) = p(t)∗p∗(−t)

‖p‖2 ) is ISI-free if and only if

Q(e−ωT ) =
1
T

∞∑

n=−∞
Q(ω +

2πn

T
) = 1 . (3.69)

Proof:
By definition the channel is ISI-free if and only if qk = 0 for all k 6= 0 (recall q0 = 1 by
definition). The proof follows directly by substitution of qk = δk into (3.68). QED.

Functions that satisfy (3.69) are called “Nyquist pulses.” One function that satisfies Nyquist’s
Criterion is

q(t) = sinc
(

t

T

)
, (3.70)

which corresponds to normalized pulse response

ϕp(t) =
1√
T

sinc
(

t

T

)
. (3.71)

The function q(kT ) = sinc(k) = δk satisfies the ISI-free condition. One feature of sinc(t/T ) is that it has
minimum bandwidth for no ISI. No other function has this same minimum bandwidth and also satisfies
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Figure 3.14: The sinc(t/T) function.

the Nyquist Criterion. (Proof is left as an exercise to the reader.) The sinc(t/T ) function is plotted in
Figure 3.14 for −20T ≤ t ≤ 20T .

The frequency 1
2T

(1/2 the symbol rate) is often construed as the maximum frequency of a sampled
signal that can be represented by samples at the sampling rate. In terms of positive-frequencies, 1/2T
represents a minimum bandwidth necessary to satisfy the Nyquist Criterion, and thus has a special name
in data transmission:

Definition 3.3.1 (Nyquist Frequency) The frequency ω = π
T or f = 1

2T is called the
Nyquist frequency.6

3.3.1 Vestigial Symmetry

In addition to the sinc(t/T ) Nyquist pulse, data-transmission engineers use responses with up to twice
the minimum bandwidth. For all these pulses, Q(ω) = 0 for |ω| > 2π

T
. These wider bandwidth responses

will provide more immunity to timing errors in sampling as follows: The sinc(t/T ) function decays in
amplitude only linearly with time. Thus, any sampling-phase error in the sampling process of Figure 3.7
introduces residual ISI with amplitude that only decays linearly with time. In fact for q(t) = sinc(t/T ),
the ISI term

∑
k 6=0 q(τ +kT ) with a sampling timing error of τ 6= 0 is not absolutely summable, resulting

in infinite peak distortion. The envelope of the time domain response decays more rapidly if the frequency
response is smooth (i.e. continuously differentiable). To meet this smoothness condition and also satisfy
Nyquist’s Criterion, the response must occupy a larger than minimum bandwidth that is between 1/2T
and 1/T . A q(t) with higher bandwidth can exhibit significantly faster decay as |t| increases, thus
reducing sensitivity to timing phase errors. Of course, any increase in bandwidth should be as small as
possible, while still meeting other system requirements. The percent excess bandwidth7, or percent
roll-off, is a measure of the extra bandwidth.

Definition 3.3.2 (Percent Excess Bandwidth) The percent excess bandwidth α is
determined from a strictly bandlimited Q(ω) by finding the highest frequency in Q(ω) for

6This text distinguishes the Nyquist Frequency from the Nyquist Rate in sampling theory, where the latter is twice the
highest frequency of a signal to be sampled and is not the same as the Nyquist Frequency here.

7The quantity alpha used here is not a bias factor, and similarly Q(·) is a measure of ISI and not the integral of a
unit-variance Gaussian function – uses should be clear to reasonable readers who’ll understand that sometimes symbols
are re-used in obviously differenct contexts.
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Figure 3.15: The sinc2(t/T ) Function – time-domain

which there is nonzero energy transfer. That is

Q(ω) =
{

nonzero |ω| ≤ (1 + α) π
T

0 |ω| > (1 + α) π
T

.
. (3.72)

Thus, if α = .15 (a typical value), the pulse q(t) is said to have “15% excess bandwidth.” Usually, data
transmission systems have 0 ≤ α ≤ 1. In this case in equation (3.69), only the terms n = −1, 0, +1
contribute to the folded spectrum and the Nyquist Criterion becomes

1 = Q(e−ωT ) (3.73)

=
1
T

{
Q

(
ω +

2π

T

)
+ Q (ω) + Q

(
ω − 2π

T

)}
− π

T
≤ ω ≤ π

T
. (3.74)

Further, recalling that q(t) = ϕp(t) ∗ ϕ∗
p(−t) is Hermitian and has the properties of an autocorrelation

function, then Q(ω) is real and Q(ω) ≥ 0. For the region 0 ≤ ω ≤ π
T (for real signals), (3.74) reduces to

1 = Q(e−ωT ) (3.75)

=
1
T

{
Q (ω) + Q

(
ω −

2π

T

)}
. (3.76)

For complex signals, the negative frequency region (− π
T
≤ ω ≤ 0) should also have

1 = Q(e−ωT ) (3.77)

=
1
T

{
Q (ω) + Q

(
ω +

2π

T

)}
. (3.78)

Any Q(ω) satisfying (3.76) (and (3.78) in the complex case) is said to be vestigially symmetric
with respect to the Nyquist Frequency. An example of a vestigially symmetric response with 100% excess
bandwidth is q(t) = sinc2(t/T ), which is shown in Figures 3.15 and 3.16.

3.3.2 Raised Cosine Pulses

The most widely used set of functions that satisfy the Nyquist Criterion are the raised-cosine pulse
shapes:
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Figure 3.16: The sinc2(t/T ) function – frequency-domain

Figure 3.17: Raised cosine pulse shapes – time-domain
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Figure 3.18: Raised Cosine Pulse Shapes – frequency-domain

Definition 3.3.3 (Raised-Cosine Pulse Shapes) The raised cosine family of pulse shapes
(indexed by 0 ≤ α ≤ 1) is given by

q(t) = sinc
(

t

T

)
·

[
cos
(

απt
T

)

1 −
(

2αt
T

)2

]
, (3.79)

and have Fourier Transforms

Q(ω) =





T |ω| ≤ π
T (1 − α)

T
2

[
1 − sin

(
T
2α(|ω| − π

T )
)]

π
T (1 − α) ≤ |ω| ≤ π

T (1 + α)
0 π

T (1 + α) ≤ |ω|
. (3.80)

The raised cosine pulse shapes are shown in Figure 3.17 (time-domain) and Figure 3.18 (frequency-
domain) for α = 0, .5, and 1. When α = 0, the raised cosine reduces to a sinc function, which decays
asymptotically as 1

t for t → ∞, while for α 6= 0, the function decays as 1
t3 for t → ∞.

3.3.3 Square-Root Splitting of the Nyquist Pulse

The optimum ISI-free transmission system that this section has described has transmit-and-channel
filtering ϕp(t) and receiver matched filter ϕ∗

p(−t) such that q(t) = ϕp(t) ∗ϕ∗
p(−t) or equivalently

Φp(ω) = Q1/2(ω) (3.81)

so that the matched filter and transmit/channel filters are “square-roots” of the Nyquist pulse. When
h(t) = δ(t) or equivalently ϕp(t) = ϕ(t) , the transmit filter (and the receiver matched filters) are square-
roots of a Nyquist pulse shape. Such square-root transmit filtering is often used even when ϕp(t) 6= ϕ(t)
and the pulse response is the convolution of h(t) with the square-root filter.

The raised-cosine pulse shapes are then often used in square-root form, which is

√
Q(ω) =





√
T |ω| ≤ π

T (1 − α)√
T
2

[
1 − sin

(
T
2α

(|ω| − π
T

)
)]1/2 π

T
(1 − α) ≤ |ω| ≤ π

T
(1 + α)

0 π
T (1 + α) ≤ |ω|

. (3.82)
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This expression can be inverted to the time-domain via use of the identity sin2(θ) = .5(1− cos(2θ)), as
in the exercises, to obtain

ϕp(t) =
4α

π
√

T
·
cos
(
[1 + α]πt

T

)
+

T ·sin([1−α] πt
T )

4αt

1 −
(

4αt
T

)2 . (3.83)
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3.4 Linear Zero-Forcing Equalization

This section examines the Zero-Forcing Equalizer (ZFE), which is the easiest type of equalizer to
analyze and understand, but has inferior performance to some other equalizers to be introduced in later
sections. The ISI model in Figure 3.7 is used to describe the zero-forcing version of the discrete-time
receiver. The ZFE is often a first non-trivial attempt at a receiver R in Figure 3.12 of Section 3.2.

The ZFE sets R equal to a linear time-invariant filter with discrete impulse response wk that acts
on yk to produce zk, which is an estimate of xk. Ideally, for symbol-by-symbol detection to be optimal,
qk = δk by Nyquist’s Criterion. The equalizer tries to restore this Nyquist Pulse character to the
channel. In so doing, the ZFE ignores the noise and shapes the signal yk so that it is free of ISI. From
the ISI-channel model of Section 3.1 and Figure 3.7,

yk = ‖p‖ · xk ∗ qk + nk . (3.84)

In the ZFE case, nk is initially viewed as being zero. The D-transform of yk is (See Appendix A.2)

Y (D) = ‖p‖ · X(D) ·Q(D) . (3.85)

The ZFE output, zk, has Transform

Z(D) = W (D) · Y (D) = W (D) ·Q(D) · ‖p‖ ·X(D) , (3.86)

and will be free of ISI if Z(D) = X(D), leaving the ZFE filter characteristic:

Definition 3.4.1 (Zero-Forcing Equalizer) The ZFE transfer characteristic is

W (D) =
1

Q(D) · ‖p‖
. (3.87)

This discrete-time filter processes the discrete-time sequence corresponding to the matched-filter output.
The ZFE is so named because ISI is “forced to zero” at all sampling instants kT except k = 0. The
receiver uses symbol-by-symbol detection, based on decision regions for the constellation defined by xk,
on the output of the ZFE.

3.4.1 Performance Analysis of the ZFE

The variance of the noise, which is not zero in practice, at the output of the ZFE is important in
determining performance, even if ignored in the ZFE design of Equation (3.87). As this noise is produced
by a linear filter acting on the discrete Gaussian noise process nk, it is also Gaussian. The designer can
compute the discrete autocorrelation function (the bar denotes normalized to one dimension, so N = 2
for the complex QAM case) for the noise nk as

r̄nn,k = E
[
nln

∗
l−k

]
/N (3.88)

=
∫ ∞

−∞

∫ ∞

−∞
E
[
np(t)n∗

p(s)
]
ϕ∗

p(t − lT )ϕp(s − (l − k)T )dtds (3.89)

=
∫ ∞

−∞

∫ ∞

−∞

N0

2
δ(t − s)ϕ∗

p(t − lT )ϕp(s − (l − k)T )dtds (3.90)

=
N0

2

∫ ∞

−∞
ϕ∗

p(t − lT )ϕp(t − (l − k)T )dt (3.91)

=
N0

2

∫ ∞

−∞
ϕ∗

p(u)ϕp(u + kT )du (letting u = t − lT ) (3.92)

=
N0

2
q∗−k =

N0

2
qk , (3.93)

or more simply

R̄nn(D) =
N0

2
Q(D) , (3.94)
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where the analysis uses the substitution u = t− lT in going from (3.91) to (3.92), and assumes baseband
equivalent signals for the complex case. The complex baseband-equivalent noise, has (one-dimensional)
sample variance N0

2 at the normalized matched filter output. The noise at the output of the ZFE,
nZFE,k, has autocorrelation function

r̄ZFE,k = r̄nn,k ∗ wk ∗ w∗
−k . (3.95)

The D-Transform of r̄ZFE,k is then

R̄ZFE(D) =
N0

2
Q(D)

‖p‖2 · Q2(D)
=

N0
2

‖p‖2 · Q(D)
. (3.96)

The power spectral density of the noise samples nZFE,k is then R̄ZFE(e−ωT ). The (per-dimensional)
variance of the noise samples at the output of the ZFE is the (per-dimensional) mean-square error
between the desired xk and the ZFE output zk. Since

zk = xk + nZFE,k , (3.97)

then σ2
ZFE is computed as

σ2
ZFE =

T

2π

∫ π
T

− π
T

R̄ZFE(e−ωT )dω =
T

2π

∫ π
T

− π
T

N0
2

‖p‖2 ·Q(e−ωT )
dω =

N0
2

‖p‖2
γZFE =

N0
2

‖p‖
· w0 , (3.98)

where

γZFE =
T

2π

∫ π
T

− π
T

1
Q(e−ωT )

dω = w0 · ‖p‖ . (3.99)

The center tap of a linear equalizer is w0, or if the ZFE is explicity used, then wZFE,0. This tap is
easily shown to always have the largest magnitude for a ZFE and thus spotted readily when plotting the
impulse response of any linear equalizer. From (3.97) and the fact that E [nZFE,k] = 0, E [zk/xk] = xk,
so that the ZFE is unbiased for a detection rule based on xk. The SNR at the output of the ZFE is

SNRZFE =
Ēx

σ2
ZFE

= SNRMFB · 1
γZFE

. (3.100)

Computation of dmin over the signal set corresponding to xk leads to a relation between Ēx, dmin, and
M , and the NNUB on error probability for a symbol-by-symbol detector at the ZFE output is (please,
do not confuse the Q function with the channel autocorrelation Q(D))

PZFE,e ≈ Ne · Q
(

dmin
2σZFE

)
. (3.101)

Since symbol-by-symbol detection can never have performance that exceeds the MFB,

σ2 ≤ σ2
ZFE‖p‖2 = σ2 T

2π

∫ π
T

− π
T

dω

Q(e−ωT )
= σ2 · γZFE (3.102)

SNRMFB ≥ SNRZFE (3.103)
γZFE ≥ 1 , (3.104)

with equality if and only if Q(D) = 1.
Finally, the ZFE equalization loss, 1/γZFE , defines the SNR reduction from the MFB:

Definition 3.4.2 (ZFE Equalization Loss) The ZFE Equalization Loss, γZFE in deci-
bels is

γZFE
∆= 10 · log10

(
SNRMFB

SNRZFE

)
= 10 log10

‖p‖2 · σ2
ZFE

σ2
= 10 log10 ‖p‖ ·wZFE,0 , (3.105)

and is a measure of the loss (in dB) with respect to the MFB for the ZFE. The sign of the
loss is often ignored since it is always a negative (or 0) number and only its magnitude is of
concern.

Equation (3.105) always thus provides a non-negative number.
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Figure 3.19: Noise Enhancement

3.4.2 Noise Enhancement

The design of W (D) for the ZFE ignored the effects of noise. This oversight can lead to noise enhance-
ment, a σ2

ZFE that is unacceptably large, and the consequent poor performance.
Figure 3.19 hypothetically illustrates an example of a lowpass channel with a notch at the Nyquist

Frequency, that is, Q(e−ωT ) is zero at ω = π
T . Since W (e−ωT ) = 1/(‖p‖ · Q(e−ωT )), then any noise

energy near the Nyquist Frequency is enhanced (increased in power or energy), in this case so much
that σ2

ZFE → ∞. Even when there is no channel notch at any frequency, σ2
ZFE can be finite, but large,

leading to unacceptable performance degradation.
In actual computation of examples, the author has found that the table in Table 3.1 is useful in

recalling basic digital signal processing equivalences related to scale factors between continuous time
convolution and discrete-time convolution.

The following example clearly illustrates the noise-enhancement effect:

EXAMPLE 3.4.1 (1 + .9D−1 - ZFE) Suppose the pulse response of a (strictly bandlim-
ited) channel used with binary PAM is

P (ω) =
{ √

T
(
1 + .9eωT

)
|ω| ≤ π

T
0 |ω| > π

T

. (3.106)

Then ‖p‖2 is computed as

‖p‖2 =
1
2π

∫ π
T

− π
T

|P (ω)|2dω (3.107)

=
1
2π

∫ π
T

− π
T

T [1.81 + 1.8 cos(ωT )] dω (3.108)

=
T

2π
1.81

2π

T
= 1.81 = 12 + .92 . (3.109)

The magnitude of the Fourier transform of the pulse response appears in Figure 3.20. Thus,
with Φp(ω) as the Fourier transform of {ϕp(t)},

Φp(ω) =

{ √
T

1.81

(
1 + .9eωT

)
|ω| ≤ π

T

0 |ω| > π
T

. (3.110)
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Table 3.1: Conversion factors of T .
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Figure 3.20: Magnitude of Fourier transform of (sampled) pulse response.

Then, (using the bandlimited property of P (ω) in this example)

Q(e−ωT ) =
1
T
|Φp(ω)|2 (3.111)

=
1

1.81
|1 + .9eωT |2 (3.112)

=
1.81 + 1.8 cos(ωT )

1.81
(3.113)

Q(D) =
.9D−1 + 1.81 + .9D

1.81
. (3.114)

Then

W (D) =
√

1.81D
.9 + 1.81D + .9D2

. (3.115)

The magnitude of the Fourier transform of the ZFE response appears in Figure 3.21. The
time-domain sample response of the equalizer is shown in Figure 3.22.

Computation of σ2
ZFE allows performance evaluation, 8

σ2
ZFE =

T

2π

∫ π
T

− π
T

N0
2

Q(e−ωT ) · ‖p‖2
dω (3.116)

=
T

2π

∫ π
T

− π
T

(1.81/1.81) · N0
2

1.81 + 1.8 cos(ωT )
dω (3.117)

=
N0

2
1
2π

∫ π

−π

1
1.81 + 1.8 cos u

du (3.118)

8From a table of integrals
∫

1
a+b cos u

du = 2√
a2−b2

Tan−1

(√
a2−b2 tan( u

2 )

a+b

)
.
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Figure 3.21: ZFE magnitude for example.

Figure 3.22: ZFE time-domain response.
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= (
N0

2
)

2
2π

[
2√

1.812 − 1.82
Tan−1

√
1.812 − 1.82 tan u

2

1.81 + 1.8

∣∣∣∣∣

π

0

(3.119)

= (
N0

2
)

4
2π

√
1.812 − 1.82

·
π

2
(3.120)

= (
N0

2
)

1√
1.812 − 1.82

(3.121)

=
N0

2
(5.26) . (3.122)

The ZFE-output SNR is

SNRZFE =
Ēx

5.26N0
2

. (3.123)

This SNRZFE is also the argument of the Q-function for a binary detector at the ZFE output.
Assuming the two transmitted levels are xk = ±1, then we get

MFB =
‖p‖2

σ2
=

1.81
σ2

, (3.124)

leaving
γZFE = 10 log10(1.81 · 5.26) ≈ 9.8dB (3.125)

for any value of the noise variance. This is very poor performance on this channel. No matter
what b is used, the loss is almost 10 dB from best performance. Thus, noise enhancement
can be a serious problem. Chapter 9 demonstrates a means by which to ensure that there
is no loss with respect to the matched filter bound for this channel. With alteration of the
signal constellation, Chapter 10 describes a means that ensures an error rate of 10−5 on this
channel, with no information rate loss, which is far below the error rate achievable even when
the MFB is attained. thus, there are good solutions, but the simple concept of a ZFE is not
a good solution.

Another example illustrates the generalization of the above procedure when the pulse response is complex
(corresponding to a QAM channel):

EXAMPLE 3.4.2 (QAM: −.5D−1 + (1 + .25) − .5D Channel) Given a baseband equiv-
alent channel

p(t) =
1√
T

{
−

1
2
sinc

(
t + T

T

)
+
(
1 +



4

)
sinc

(
t

T

)
−



2
sinc

(
t − T

T

)}
, (3.126)

the discrete-time channel samples are

pk =
1√
T

[
−1

2
,
(
1 +



4

)
, − 

2

]
. (3.127)

This channel has the transfer function of Figure 3.23. The pulse response norm (squared) is

‖p‖2 =
T

T
(.25 + 1 + .0625 + .25) = 1.5625 . (3.128)

Then qk is given by

qk = q(kT ) = T
(
ϕp,k ∗ ϕ∗

p,−k

)
=

1
1.5625

[
− 

4
,

5
8
(−1 + ) , 1.5625 , −5

8
(1 + ) ,



4

]

(3.129)
or

Q(D) =
1

1.5625

[
− 

4
D−2 +

5
8
(−1 + )D−1 + 1.5625− 5

8
(1 + )D +



4
D2

]
(3.130)
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Figure 3.23: Fourier transform magnitude for pulse response for complex channel example.

Then, Q(D) factors into

Q(D) =
1

1.5625
{
(1 − .5D)

(
1 − .5D−1

) (
1 + .5D−1

)
(1 − .5D)

}
, (3.131)

and
WZFE(D) =

1
Q(D)‖p‖

(3.132)

or

WZFE(D) =
√

1.5625
(−.25D−2 + .625(−1 + )D−1 + 1.5625− .625(1 + )D + .25D2)

. (3.133)

The Fourier transform of the ZFE is in Figure 3.24. The real and imaginary parts of the
equalizer response in the time domain are shown in Figure 3.25 Then

σ2
ZFE =

T

2π

∫ π
T

− π
T

N0
2

‖p‖2Q(e−ωT )
dω , (3.134)

or
σ2

ZFE =
N0

2
w0

‖p‖ , (3.135)

where w0 is the zero (center) coefficient of the ZFE. This coefficient can be extracted from

WZFE (D) =
√

1.5625
[

D2(−4)
{(D + 2) (D − 2) (D − .5) (D + .5)}

]

=
√

1.5625
[

A

D − 2
+

B

D + 2
+ terms not contributing to w0

]
,

where A and B are coefficients in the partial-fraction expansion (the residuez and residue
commands in Matlab can be very useful here):

A =
4(−4)

(2 + 2)(2 + .5)(1.5)
= −1.5686− .9412 = 1.82936 − 2.601 (3.136)
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Figure 3.24: Fourier transform magnitude of the ZFE for the complex baseband channel example.

Figure 3.25: Time-domain equalizer coefficients for complex channel.
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B =
−4(−4)

(−2 − .5)(−2− 2)(−1.5)
= .9412 + 1.5685 = 1.82936 1.030 . (3.137)

Finally

WZFE (D) =
√

1.5625
[

A(−.5)
1 − .5D

+
B(−.5)

(1 − .5D)
+ terms

]
, (3.138)

and

w0 =
√

1.5625 [(−.5)(−1.5686− .9412)− .5(.9412 + 1.5686)] (3.139)

=
√

1.5625(1.57) = 1.96 (3.140)

The ZFE loss can be shown to be

γZFE = 10 · log10(w0 · ‖p‖) = 3.9 dB , (3.141)

which is better than the last channel because the frequency spectrum is not as near zero
in this complex example as it was earlier on the PAM example. Nevertheless, considerably
better performance is also possible on this complex channel, but not with the ZFE.

To compute Pe for 4QAM, the designer calculates

P̄e ≈ Q
(√

SNRMFB − 3.9 dB
)

. (3.142)

If SNRMFB = 10dB, then P̄e ≈ 2.2× 10−2. If SNRMFB = 17.4dB, then P̄e ≈ 1.0× 10−6. If
SNRMFB = 23.4dB for 16QAM, then P̄e ≈ 2.0× 10−5.
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3.5 Minimum Mean-Square Error Linear Equalization

The Minimum Mean-Square Error Linear Equalizer (MMSE-LE) balances a reduction in ISI
with noise enhancement. The MMSE-LE always performs as well as, or better than, the ZFE and is of
the same complexity of implementation. Nevertheless, it is slightly more complicated to describe and
analyze than is the ZFE. The MMSE-LE uses a linear time-invariant filter wk for R, but the choice of
filter impulse response wk is different than the ZFE.

The MMSE-LE is a linear filter wk that acts on yk to form an output sequence zk that is the best
MMSE estimate of xk. That is, the filter wk minimizes the Mean Square Error (MSE):

Definition 3.5.1 (Mean Square Error (for the LE)) The LE error signal is given by

ek = xk − wk ∗ yk = xk − zk . (3.143)

The Minimum Mean Square Error (MMSE) for the linear equalizer is defined by

σ2
MMSE−LE

∆= min
wk

E
[
|xk − zk|2

]
. (3.144)

The MSE criteria for filter design does not ignore noise enhancement because the optimization of this
filter compromises between eliminating ISI and increasing noise power. Instead, the filter output is as
close as possible, in the Minimum MSE sense, to the data symbol xk.

3.5.1 Optimization of the Linear Equalizer

Using D-transforms,
E(D) = X(D) − W (D)Y (D) (3.145)

By the orthogonality principle in Appendix A, at any time k, the error sample ek must be uncorrelated
with any equalizer input signal ym. Succinctly,

E
[
E(D)Y ∗(D−∗)

]
= 0 . (3.146)

Evaluating (3.146), using (3.145), yields

0 = R̄xy(D) − W (D)R̄yy(D) , (3.147)

where (N = 1 for PAM, N = 2 for Quadrature Modulation)9

R̄xy(D) = E
[
X(D)Y ∗(D−∗)

]
/N = ‖p‖Q(D)Ēx

R̄yy(D) = E
[
Y (D)Y ∗(D−∗)

]
/N = ‖p‖2Q2(D)Ēx +

N0

2
Q(D) = Q(D)

(
‖p‖2Q(D)Ēx +

N0

2

)
.

Then the MMSE-LE becomes

W (D) =
R̄xy(D)
R̄yy(D)

=
1

‖p‖ (Q(D) + 1/SNRMFB)
. (3.148)

The MMSE-LE differs from the ZFE only in the additive positive term in the denominator of (3.148).
The transfer function for the equalizer W (e−ωT ) is also real and positive for all finite signal-to-noise
ratios. This small positive term prevents the denominator from ever becoming zero, and thus makes
the MMSE-LE well defined even when the channel (or pulse response) is zero for some frequencies or
frequency bands. Also W (D) = W ∗(D−∗). Figure 3.26 repeats Figure 3.19 with addition of the MMSE-
LE transfer characteristic. The MMSE-LE transfer function has magnitude Ēx/σ2 at ω = π

T , while the
ZFE becomes infinite at this same frequency. This MMSE-LE leads to better performance, as the next
subsection computes.

9The expression Rxx(D)
∆
= E

[
X(D)X∗(D−∗)

]
is used in a symbolic sense, since the terms of X(D)X∗(D−∗) are of

the form
∑

k
xkx∗

k−j, so that we are implying the additional operation limK→∞[1/(2K + 1)]
∑

−K≤k≤K
on the sum in

such terms. This is permissable for stationary (and ergodic) discrete-time sequences.
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Figure 3.26: Example of MMSE-LE versus ZFE.

3.5.2 Performance of the MMSE-LE

The MMSE is the time-0 coefficient of the error autocorrelation sequence

R̄ee(D) = E
[
E(D)E∗(D−∗)

]
/N (3.149)

= Ēx − W ∗(D−∗)R̄xy(D) − W (D)R̄∗
xy(D−∗) + W (D)R̄yy(D)W ∗(D−∗) (3.150)

= Ēx − W (D)R̄yy(D)W ∗(D−∗) (3.151)

= Ēx −
Q(D)

(
‖p‖2 · Q(D)Ēx + N0

2

)

‖p‖2 (Q(D) + 1/SNRMFB)2
(3.152)

= Ēx − ĒxQ(D)
(Q(D) + 1/SNRMFB)

(3.153)

=
N0
2

‖p‖2 (Q(D) + 1/SNRMFB)
(3.154)

The third equality follows from

W (D)R̄yy(D)W ∗(D−∗) = W (D)R̄yy(D)R̄yy(D)−1R̄∗
xy(D

−∗)

= W (D)R̄∗
xy(D−∗) ,

and that
(
W (D)R̄yy(D)W ∗(D−∗)

)∗ = W (D)R̄yy(D)W ∗(D−∗). The MMSE then becomes

σ2
MMSE−LE =

T

2π

∫ π
T

− π
T

R̄ee(e−ωT )dω =
T

2π

∫ π
T

− π
T

N0
2 dω

‖p‖2 (Q(e−ωT ) + 1/SNRMFB)
. (3.155)

By recognizing that W (e−ωT ) is multiplied by the constant N0
2 /‖p‖ in (3.155), then

σ2
MMSE−LE = w0

N0
2

‖p‖ . (3.156)

From comparison of (3.155) and (3.98), that

σ2
MMSE−LE ≤ σ2

ZFE , (3.157)

with equality if and only if SNRMFB → ∞. Furthermore, since the ZFE is unbiased, and SNRMMSE−LE =
SNRMMSE−LE,U +1 and SNRMMSE−LE,U are the maximum-SNR corresponding to unconstrained and
unbiased linear equalizers, respectively,

SNRZFE ≤ SNRMMSE−LE,U =
Ēx

σ2
MMSE−LE

− 1 ≤ SNRMFB . (3.158)
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One confirms that the MMSE-LE is a biased receiver by writing the following expression for the
equalizer output

Z(D) = W (D)Y (D) (3.159)

=
1

‖p‖ (Q(D) + 1/SNRMFB)
(Q(D)‖p‖X(D) + N (D)) (3.160)

= X(D) − 1/SNRMFB

Q(D) + 1/SNRMFB
X(D) +

N (D)
‖p‖ (Q(D) + 1/SNRMFB)

, (3.161)

for which the xk-dependent residual ISI term contains a component

signal-basis term = −1/SNRMFBw0 · ‖p‖ · xk (3.162)

= −1/SNRMFB ·
σ2

MMSE−LE‖p‖2

N0
2

xk (3.163)

= −
σ2

MMSE−LE

Ēx
· xk (3.164)

= −
1

SNRMMSE−LE
· xk . (3.165)

(3.166)

So zk =
(
1 − 1

SNRMMSE−LE

)
xk − e′k where e′k is the error for unbiased detection and R. The optimum

unbiased receiver with decision regions scaled by 1 − 1

SNRMMSE−LE
(see Section 3.2.1) has the signal

energy given by (
1 − 1

SNRMMSE−LE

)2

Ēx . (3.167)

A new error for the scaled decision regions is e′k = (1 − 1/SNRMMSE−LE) xk−zk = ek− 1

SNRMMSE−LE
xk,

which is also the old error with the xk dependent term removed. Since e′k and xk are then independent,
then

σ2
e = σ2

MMSE−LE = σ2
e′ +

(
1

SNRMMSE−LE

)2

Ēx , (3.168)

leaving

σ2
e′ = σ2

MMSE−LE−
(

1
SNRMMSE−LE

)2

Ēx =
SNR2

MMSE−LEσ2
MMSE−LE − Ēx

SNR2
MMSE−LE

=
Ēx (SNRMMSE−LE − 1)

SNR2
MMSE−LE

.

(3.169)
The SNR for the unbiased MMSE-LE then becomes (taking the ratio of (3.167) to σ2

e′)

SNRMMSE−LE,U =

(SNRMMSE−LE−1)2

SNR2
MMSE−LE

Ēx

Ēx (SNRMMSE−LE−1)

SNR2
MMSE−LE

= SNRMMSE−LE − 1 , (3.170)

which corroborates the earlier result on the relation of the optimum biased and unbiased SNR’s for any
particular receiver structure (at least for the LE structure). The unbiased SNR is

SNRMMSE−LE,U =
Ēx

σ2
MMSE−LE

− 1 , (3.171)

which is the performance level that this text always uses because it corresponds to the best error
probability for an SBS detector, as was discussed earlier in Section 3.1. Figure 3.27 illustrates the
concept with the effect of scaling on a 4QAM signal shown explicitly. Again, MMSE receivers (of which
the MMSE-LE is one) reduce noise power at the expense of introducing a bias, the scaling up removes
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Figure 3.27: Illustration of bias and its removal.

the bias, and ensures the detector achieves the best Pe it can. Since the ZFE is also an unbiased receiver,
(3.158) must hold. The first inequality in (3.158) tends to equality if the ratio Ēx

σ2 → ∞ or if the channel

is free of ISI (Q(D) = 1). The second inequality tends to equality if Ēx
σ2 → 0 or if the channel is free of

ISI (Q(D) = 1).
The unbiased MMSE-LE loss with respect to the MFB is

γMMSE−LE =
SNRMFB

SNRMMSE−LE,U
=
(‖p‖2σ2

MMSE−LE

σ2

)(
Ēx

Ēx − σ2
MMSE−LE

)
. (3.172)

The ‖p‖2σ2
MMSE−LE

σ2 in (3.172) is the increase in noise variance of the MMSE-LE, while the term Ēx
Ēx−σ2

MMSE−LE

term represents the loss in signal power at the equalizer output that accrues to lower noise enhancement.
The MMSE-LE also requires no additional complexity to implement and should always be used in

place of the ZFE when the receiver uses symbol-by-symbol detection on the equalizer output.
The error is not necessarily Gaussian in distribution. Nevertheless, engineers commonly make this

assumption in practice, with a good degree of accuracy, despite the potential non-Gaussian residual ISI
component in σ2

MMSE−LE. This text also follows this practice. Thus,

Pe ≈ NeQ
(√

κSNRMMSE−LE,U

)
, (3.173)

where κ depends on the relation of Ēx to dmin for the particular constellation of interest, for instance
κ = 3/(M − 1) for Square QAM. The reader may recall that the symbol Q is used in two separate ways
in these notes, for the Q-function, and for the transform of the matched-filter-pulse-response cascade.
The actual meaning should always be obvious in context.)

3.5.3 Examples Revisited

This section returns to the earlier ZFE examples to compute the improvement of the MMSE-LE on these
same channels.

EXAMPLE 3.5.1 (PAM - MMSE-LE) The pulse response of a channel used with bi-
nary PAM is again given by

P (ω) =
{ √

T
(
1 + .9eωT

)
|ω| ≤ π

T
0 |ω| > π

T

. (3.174)
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Figure 3.28: Comparison of equalizer frequency-domain responses for MMSE-LE and ZFE on baseband
example.

Let us suppose SNRMFB = 10dB (= Ēx‖p‖2/N0
2 ) and that Ex = 1.

The equalizer is

W (D) =
1

‖p‖ ·
(

.9
1.81

D−1 + 1.1 + .9
1.81

D
) . (3.175)

Figure 3.28 shows the frequency response of the equalizer for both the ZFE and MMSE-LE.
Clearly the MMSE-LE has a lower magnitude in its response.

The σ2
MMSE−LE is computed as

σ2
MMSE−LE =

T

2π

∫ π
T

− π
T

N0
2

1.81 + 1.8 cos(ωT ) + 1.81/10
dω (3.176)

=
N0

2
1√

1.9912 − 1.82
(3.177)

=
N0

2
(1.175) , (3.178)

which is considerably smaller than σ2
ZFE. The SNR for the MMSE-LE is

SNRMMSE−LE,U =
1 − 1.175(.181)

1.175(.181)
= 3.7 (5.7dB) . (3.179)

The loss with respect to the MFB is 10dB - 5.7dB = 4.3dB. This is 5.5dB better than the
ZFE (9.8dB - 4.3dB = 5.5dB), but still not good for this channel.

Figure 3.29 compares the frequency-domain responses of the equalized channel. Figure 3.30
compares the time-domain responses of the equalized channel. The MMSE-LE clearly does
not have an ISI-free response, but mean-square error/distortion is minimized and the MMSE-
LE has better performance than the ZFE.

The relatively small energy near the Nyquist Frequency in this example is the reason for
the poor performance of both linear equalizers (ZFE and MMSE-LE) in this example. To
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Figure 3.29: Comparison of equalized frequency-domain responses for MMSE-LE and ZFE on baseband
example.

Figure 3.30: Comparison of equalized time-domain responses for MMSE-LE and ZFE on baseband
example.
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Figure 3.31: Comparison of MMSE-LE and ZFE for complex channel example.

improve performance further, decision-assisted equalization is examined in Section 3.6 and
in Chapter 5 (or codes combined with equalization, as discussed in Chapters 10 and 11).
Another yet better method appears in Chapter 4.

The complex example also follows in a straightforward manner.

EXAMPLE 3.5.2 (QAM - MMSE-LE) Recall that the equivalent baseband pulse re-
sponse samples were given by

pk =
1√
T

[
−1

2
,
(
1 +



4

)
, − 

2

]
. (3.180)

Again, SNRMFB = 10dB (= Ēx‖p‖2/N0
2

), Ēx = 1, and thus

σ2
MMSE−LE = w0

N0

2
‖p‖−1 . (3.181)

The equalizer is, noting that N0
2

= Ēx‖p‖2

SNRMF B
= 1.5625/10 = .15625,

W (D) =
1

(Q(D) + 1/SNRMFB) ‖p‖ (3.182)

or

=
√

1.5625
−.25D−2 + .625(−1 + )D−1 + 1.5625(1 + .1) − .625(1 + )D1 + .25D2

. (3.183)

Figure 3.31 compares the MMSE-LE and ZFE equalizer responses for this same channel. The
MMSE-LE high response values are considerably more limited than the ZFE values. The
roots of Q(D) + 1/SNRMFB , or of the denominator in (3.183), are

D = 2.2176 −1.632 = −.1356− 2.213 (3.184)
D = 2.2176 .0612 = 2.213 + .1356 (3.185)
D = .4516 −1.632 = −.0276− .4502 (3.186)
D = .4516 .0612 = .4502 + .0276 , (3.187)
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and (3.183) becomes

W (D) =

[√
1.5625D2/(.25)

]

(D − 2.226 −1.632)(D − 2.226 .0612)(D − .4516 −1.632)(D − .4516 .0612)
(3.188)

or
W (D) =

A

D − 2.226 −1.632 +
B

D − 2.226 .0612 + ... , (3.189)

where the second expression (3.189) has ignored any terms in the partial fraction expansion
that will not contribute to w0. Then,

A =
√

1.5625(−4)(2.226 −1.632)2

(2.226 −1.632 − 2.226 .0612)(2.226 −1.632 − .4516 −1.632)(2.226 −1.632 − .4516 .0612)

=
√

1.5625(−.805 + 1.20) = 1.0079 + 1.5025 (3.190)

B =
√

1.5625(−4)(2.226 .0612)2

(2.226 .0612 − 2.226 −1.632)(2.226 .0612 − .4516 −1.632)(2.226 .0612 − .4516 .0612)

=
√

1.5625(1.20− .805) = −1.5025− 1.0079 . (3.191)

Then, from (3.189),

w0 = A(−.4516 1.632) + B(−.4516 −.0612) =
√

1.5625(1.125) . (3.192)

Then
σ2

MMSE−LE = 1.125
N0

2
= 1.125(.15625) = .1758 , (3.193)

SNRMMSE−LE,U =
[1 − 1.125(.15625)]

1.125(.15625)
= 4.69 ( 6.7 dB ) , (3.194)

which is 3.3 dB below the matched filter bound SNR of 10dB, or equivalently,

γMMSE−LE = 10 log10(10/4.69) = 10 log10(2.13) = 3.3 dB , (3.195)

but .6 dB better than the ZFE. It is also possible to do considerably better on this channel,
but structures not yet introduced will be required. Nevertheless, the MMSE-LE is one of the
most commonly used equalization structures in practice.

Figure 3.31 compares the equalized channel responses for both the MMSE-LE and ZFE.
While the MMSE-LE performs better, there is a significant deviation from the ideal flat
response. This deviation is good and gains .6 dB improvement. Also, because of biasing,
the MMSE-LE output is everywhere slightly lower than the ZFE output (which is unbiased).
This bias can be removed by scaling by 5.69/4.69.

3.5.4 Fractionally Spaced Equalization

To this point in the study of the discrete time equalizer, a matched filter ϕ∗
p(−t) precedes the sampler,

as was shown in Figure 3.7. While this may be simple from an analytical viewpoint, there are several
practical problems with the use of the matched filter. First, ϕ∗

p(−t) is a continuous time filter and
may be much more difficult to design accurately than an equivalent digital filter. Secondly, the precise
sampling frequency and especially its phase, must be known so that the signal can be sampled when it is
at maximum strength. Third, the channel pulse response may not be accurately known at the receiver,
and an adaptive equalizer (see Chapter 7), is instead used. It may be difficult to design an adaptive,
analog, matched filter.

For these reasons, sophisticated data transmission systems often replace the matched-filter/sampler/equalizer
system of Figure 3.7 with the Fractionally Spaced Equalizer (FSE) of Figure 3.32. Basically, the sampler
and the matched filter have been interchanged with respect to Figure 3.7. Also the sampling rate has
been increased by some rational number l (l > 1). The new sampling rate is chosen sufficiently high so
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Figure 3.32: Fractionally spaced equalization.

as to be greater than twice the highest frequency of xp(t). Then, the matched filtering operation and the
equalization filtering are performed at rate l/T , and the cascade of the two filters is realized as a single
filter in practice. An anti-alias or noise-rejection filter always precedes the sampling device (usually an
analog-to-digital converter). This text assumes this filter is an ideal lowpass filter with gain

√
T transfer

over the frequency range −l π
T
≤ ω ≤ l π

T
. The variance of the noise samples at the filter output will then

be N0
2 l per dimension.
In practical systems, the four most commonly found values for l are 4

3
, 2, 3, and 4. The major

drawback of the FSE is that to span the same interval in time (when implemented as an FIR filter, as is
typical in practice), it requires a factor of l more coefficients, leading to an increase in memory by a factor
of l. The FSE outputs may also appear to be computed l times more often in real time. However, only(

1
l

)th of the output samples need be computed (that is, those at the symbol rate, as that is when we need
them to make a decision), so computation is approximately l times that of symbol-spaced equalization,
corresponding to l times as many coefficients to span the same time interval, or equivalently, to l times
as many input samples per symbol.

The FSE will digitally realize the cascade of the matched filter and the equalizer, eliminating the need
for an analog matched filter. (The entire filter for the FSE can also be easily implemented adaptively, see
Chapter 7.) The FSE can also exhibit a significant improvement in sensitivity to sampling-phase errors.
To investigate this improvement briefly, in the original symbol-spaced equalizers (ZFE or MMSE-LE)
may have the sampling-phase on the sampler in error by some small offset t0. Then, the sampler will
sample the matched filter output at times kT + t0, instead of times kT . Then,

y(kT + t0) =
∑

m

xm · ‖p‖ · q(kT − mT + t0) + nk , (3.196)

which corresponds to q(t) → q(t + t0) or Q(ω) → Q(ω)e−ωt0 . For the system with sampling offset,

Q(e−ωT ) → 1
T

∑

n

Q(ω − 2πn

T
)e−(ω− 2πn

T )t0 , (3.197)

which is no longer nonnegative real across the entire frequency band. In fact, it is now possible (for
certain nonzero timing offsets t0, and at frequencies just below the Nyquist Frequency) that the two
aliased frequency characteristics Q(ω)e−ωt0 and Q(ω − 2π

T
)e−(ω− 2π

T )t0add to approximately zero, thus
producing a notch within the critical frequency range (- π

T
, π

T
). Then, the best performance of the ensuing

symbol-spaced ZFE and/or MMSE-LE can be significantly reduced, because of noise enhancement. The
resulting noise enhancement can be a major problem in practice, and the loss in performance can be
several dB for reasonable timing offsets. When the anti-alias filter output is sampled at greater than
twice the highest frequency in xp(t), then information about the entire signal waveform is retained.
Equivalently, the FSE can synthesize, via its transfer characteristic, a phase adjustment (effectively
interpolating to the correct phase) so as to correct the timing offset, t0, in the sampling device. The
symbol-spaced equalizer cannot interpolate to the correct phase, because no interpolation is correctly
performed at the symbol rate. Equivalently, information has been lost about the signal by sampling at
a speed that is too low in the symbol-spaced equalizer without matched filter. This possible notch is an
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example of information loss at some frequency; this loss cannot be recovered in a symbol-spaced equalizer
without a matched filter. In effect, the FSE equalizes before it aliases (aliasing does occur at the output
of the equalizer where it decimates by l for symbol-by-symbol detection), whereas the symbol-spaced
equalizer aliases before it equalizes; the former alternative is often the one of choice in practical system
implementation, if the extra memory and computation can be accommodated. Effectively, with an FSE,
the sampling device need only be locked to the symbol rate, but can otherwise provide any sampling
phase. The phase is tacitly corrected to the optimum phase inside the linear filter implementing the
FSE.

The sensitivity to sampling phase is channel dependent: In particular, there is usually significant
channel energy near the Nyquist Frequency in applications that exhibit a significant improvement of
the FSE with respect to the symbol-spaced equalizer. In channels with little energy near the Nyquist
Frequency, the FSE is avoided, because it provides little performance gain, and is significantly more
complex to implement (more parameters and higher sampling rate).

Infinite-Length FSE Settings To derive the settings for the FSE, this section assumes that l, the
oversampling factor, is an integer. The sampled output of the anti-alias filter can be decomposed into l
sampled-at-rate-1/T interleaved sequences with D-transforms Y0(D), Y2(D), ..., Yl−1(D), where Yl(D)
corresponds to the sample sequence y[kT − iT/l]. Then,

Yi(D) = Pi(D) · X(D) + Ni(D) (3.198)

where Pi(D) is the transform of the symbol-rate-spaced-ith-phase-of-p(t) sequence p[kT − (i − 1)T/l],
and similarly Ni(D) is the transform of a symbol-rate sampled white noise sequence with autocorrelation
function Rnn(D) = l · N0

2
per dimension, and these noise sequences are also independent of one another.

A column vector transform is

Y (D) =




Y0(D)
...

Yl−1(D)


 = P (D)X(D) + N (D) . (3.199)

Also

P (D) ∆=




P0(D)
...

Pl−1(D)


 and N (D) =




N0(D)
...

Nl−1(D)


 . (3.200)

By considering the FSE output at sampling rate 1/T , the interleaved coefficients of the FSE can also be
written in a row vector W (D) = [W1(D) , ..., Wl(D)]. Thus the FSE output is

Z(D) = W (D)Y (D) . (3.201)

Again, the orthogonality condition says that E(D) = X(D) − Z(D) should be orthogonal to Y (D),
which can be written in vector form as

E
[
E(D)Y ∗(D−∗)

]
= RxY (D) − W (D)RY Y (D) = 0 , (3.202)

where

R
xY (D) ∆= E

[
X(D)Y ∗(D−∗)

]
= ĒxP ∗(D−∗) (3.203)

RY Y (D) ∆= E
[
Y (D)Y ∗(D−∗)

]
= ĒxP (D)P ∗(D−∗) + l · N0

2
I . (3.204)

MMSE-FSE filter setting is then

W (D) = RxY (D)R−1

Y Y
(D) = P ∗(D−∗)

[
P (D)P ∗(D−∗) + l/SNR

]−1
. (3.205)

The corresponding error sequence has autocorrelation function

R̄ee(D) = Ēx − R
xY (D)R−1

Y Y
(D)RY x

(D) =
l · N0

2

P ∗(D−∗)P (D) + l/SNR
. (3.206)
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Figure 3.33: Passband equalization, direct synthesis of analytic-equivalent equalizer.

The MMSE is then computed as

MMSEMMSE−FSE =
T

2π

∫ π
T

− π
T

l · N0
2

dω

‖P (e−ωT )‖2 + l/SNR
= MMSEMMSE−LE , (3.207)

where ‖P (e−ωT )‖2 =
∑l

i=1 |Pi(e−ωT )|2. The SNR’s, biased and unbiased, are also then exactly the
same as given for the MMSE-LE, as long as the sampling rate exceeds twice the highest frequency of
P (f).

The reader is cautioned against letting N0
2 → 0 to get the ZF-FSE. This is because the matrix

RY Y (D) will often be singular when this occurs. To avoid problems with singularity, an appropriate
pseudoinverse, which zeros the FSE characteristic when P (ω) = 0 is recommended.

Passband Equalization

This chapter so far assumed for the complex baseband equalizer that the passband signal has been de-
modulated according to the methods described in Chapter 2 before filtering and sampling. An alternative
method, sometimes used in practice when ωc is not too high (or intermediate-frequency up/down con-
version is used), is to commute the demodulation and filtering functions. Sometimes this type of system
is also called “direct conversion,” meaning that no carrier demodulation occurs prior to sampling. This
commuting can be done with either symbol-spaced or fractionally spaced equalizers. The main reason
for the interchange of filtering and demodulation is the recovery of the carrier frequency in practice.
Postponing the carrier demodulation to the equalizer output can lead to significant improvement in the
tolerance of the system to any error in estimating the carrier frequency, as Chapter 6 investigates. In the
present (perfect carrier phase lock) development, passband equalization and baseband equalization are
exactly equivalent and the settings for the passband equalizer are identical to those of the corresponding
baseband equalizer, other than a translation in frequency by ωc radians/sec.

Passband equalization is best suited to CAP implementations (See Section 4 of Chapter 2) where the
complex channel is the analytic equivalent. The complex equalizer then acts on the analytic equivalent
channel and signals to eliminate ISI in a MMSE sense. When used with CAP, the final rotation shown
in Figure 3.33 is not necessary – such a rotation is only necessary with a QAM transmit signal.

The passband equalizer is illustrated in Figure 3.33. The phase splitting is the forming of the analytic
equivalent with the use of the Hilbert Transform, as discussed in Chapter 2. The matched filtering and
equalization are then performed on the passband signal with digital demodulation to baseband deferred
to the filter output. The filter wk can be a ZFE, a MMSE-LE, or any other desired setting (see Chapter
4 and Sections 3.5 and 3.6). In practice, the equalizer can again be realized as a fractionally spaced
equalizer by interchanging the positions of the matched filter and sampler, increasing the sampling rate,
and absorbing the matched filtering operation into the filter wk, which would then be identical to the
(modulated) baseband-equivalent FSE with output sample rate decimated appropriately to produce
outputs only at the symbol sampling instants.

Often in practice, the cross-coupled nature of the complex equalizer W (D) is avoided by sampling the
FSE at a rate that exceeds twice the highest frequency of the passband signal y(t) prior to demodulation.
(If intermediate frequency (IF) demodulation is used, then twice the highest frequency after the IF.) In
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this case the phase splitter (contains Hilbert transform in parallel with a unit gain) is also absorbed into
the equalizer, and the same sampled sequence is applied independently to two equalizers, one of which
estimates the real part, and one the imaginary part, of the analytic representation of the data sequence
xkeωckT . The two filters can sometimes (depending on the sampling rate) be more cost effective to
implement than the single complex filter, especially when one considers that the Hilbert transform is
incorporated into the equalizer. This approach is often taken with adaptive implementations of the
FSE, as the Hilbert transform is then implemented more exactly adaptively than is possible with fixed
design.10 This is often called Nyquist Inband Equalization. A particularly common variant of this
type of equalization is to sample at rate 2/T both of the outputs of a continuous-time phase splitter,
one stream of samples staggered by T/4 with respect to the other. The corresponding T/2 complex
equalizer can then be implemented adaptively with four independent adaptive equalizers (rather than
the two filters, real and imaginary part, that nominally characterize complex convolution). The adaptive
filters will then correct for any imperfections in the phase-splitting process, whereas the two filters with
fixed conjugate symmetry could not.

10However, this structure also slows convergence of many adaptive implementations.
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Figure 3.34: Decision feedback equalization.

3.6 Decision Feedback Equalization

Decision Feedback Equalization makes use of previous decisions in attempting to estimate the current
symbol (with an SBS detector). Any “trailing” intersymbol interference caused by previous symbols
is reconstructed and then subtracted. The DFE is inherently a nonlinear receiver. However, it can be
analyzed using linear techniques, if one assumes all previous decisions are correct. There is both a MMSE
and a zero-forcing version of decision feedback, and as was true with linear equalization in Sections 3.4
and 3.5, the zero-forcing solution will be a special case of the least-squares solution with the SNR→ ∞.
Thus, this section derives the MMSE solution, which subsumes the zero-forcing case when SNR → ∞.

The Decision Feedback Equalizer (DFE) is shown in Figure 3.34. The configuration contains a linear
feedforward equalizer, W (D), (the settings for this linear equalizer are not necessarily the same as those
for the ZFE or MMSE-LE), augmented by a linear, causal, feedback filter, 1−B(D), where b0 = 1. The
feedback filter accepts as input the decision from the previous symbol period; thus, the name “decision
feedback.” The output of the feedforward filter is denoted Z(D), and the input to the decision element
Z′(D). The feedforward filter will try to shape the channel output signal so that it is a causal signal.
The feedback section will then subtract (without noise enhancement) any trailing ISI. Any bias removal
in Figure 3.34 is absorbed into the SBS.

This section assumes that previous decisions are correct. In practice, this may not be true, and
can be a significant weakness of decision-feedback that cannot be overlooked. Nevertheless, the analysis
becomes intractable if it includes errors in the decision feedback section. To date, the most efficient way to
specify the effect of feedback errors has often been via measurement. Section 3.7 provides an exact error-
propagation analysis for finite-length DFE’s that can (unfortunately) require enormous computation on
a digital computer. Section 3.8.1 shows how to eliminate error propagation with precoders.

3.6.1 Minimum-Mean-Square-Error Decision Feedback Equalizer (MMSE-
DFE)

The Minimum-Mean-Square Error Decision Feedback Equalizer (MMSE-DFE) jointly optimizes
the settings of both the feedforward filter wk and the feedback filter δk − bk to minimize the MSE:

Definition 3.6.1 (Mean Square Error (for DFE)) The MMSE-DFE error signal is

ek = xk − z′k . (3.208)

The MMSE for the MMSE-DFE is

σ2
MMSE−DFE

∆= min
wk,bk

E
[
|xk − z′k|2

]
. (3.209)

The error sequence can be written as

E(D) = X(D) − W (D) · Y (D) − [1 − B(D)]X(D) = B(D) · X(D) − W (D) · Y (D) . (3.210)
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For any fixed B(D), E [E(D)Y ∗(D−∗)] = 0 to minimize MSE, which leads us to the relation

B(D) · R̄xy(D) − W (D) · R̄yy(D) = 0 . (3.211)

Thus,

W (D) =
B(D)

‖p‖
(
Q(D) + 1

SNRMF B

) = B(D) · WMMSE-LE(D) , (3.212)

for any B(D) with b0 = 1. (Also, W (D) = WMMSE-LE(D) · B(D), a consequence of the linearity of
the MMSE estimate, so that E(D) = B(D) · EMMSE-LE(D))

The autocorrelation function for the error sequence with arbitrary monic B(D) is

R̄ee(D) = B(D)ĒxB∗(D−∗) − 2<
{
B(D)R̄xy(D)W ∗(D−∗)

}
+ W (D)R̄yy(D)W ∗(D−∗)(3.213)

= B(D)ĒxB∗(D−∗) − W (D)R̄yy(D)W ∗(D−∗) (3.214)

= B(D)ĒxB∗(D−∗) − B(D)
R̄xy(D)

‖p‖
(
Q(D) + 1

SNRMFB

)B∗(D−∗) (3.215)

= B(D)RMMSE−LE(D)B∗(D−∗) (3.216)

where RMMSE−LE(D) =
N0
2

‖p‖2 1/(Q(D) + 1/SNRMFB) is the autocorrelation function for the error
sequence of a MMSE linear equalizer. The solution for B(D) is then the forward prediction filter
associated with this error sequence as discussed in the Appendix. The linear prediction approach is
developed more in what is called the “linear prediction DFE,” in an exercise where the MMSE-DFE is
the concatenation of a MMSE-LE and a linear-predictor that whitens the error sequence.

In more detail on B(D), the (scaled) inverse autocorrelation has spectral factorization:

Q(D) +
1

SNRMFB
= γ0 ·G(D) · G∗(D−∗), (3.217)

where γ0 is a positive real number and G(D) is a canonical filter response. A filter response G(D) is
called canonical if it is causal (gk = 0 for k < 0), monic (g0 = 1), and minimum-phase (all its poles
are outside the unit circle, and all its zeroes are on or outside the unit circle). If G(D) is canonical,
then G∗(D−∗) is anti-canonical i.e., anti-causal, monic, and “maximum-phase” (all poles inside the
unit circle, and all zeros in or on the unit circle). Using this factorization,

R̄ee(D) =
B(D) · B∗(D−∗)

Q(D) + 1/SNRMFB
·

N0
2

‖p‖2
(3.218)

=
B(D)
G(D)

· B∗(D−∗)
G∗(D−∗)

·
N0
2

γ0‖p‖2
(3.219)

ree,0 ≥
N0
2

γ0‖p‖2
, (3.220)

with equality if and only if B(D) = G(D). Thus, the MMSE will then be σ2
MMSE−DFE =

N0
2

γ0‖p‖2 . The
feedforward filter then becomes

W (D) =
G(D)

‖p‖ · γ0 · G(D) · G∗(D−∗)
=

1
‖p‖ · γ0 · G∗(D−∗)

. (3.221)

The last step in (3.220) follows from the observations that

ree,0 = ‖B

G
‖2

N0
2

γ0 · ‖p‖2
, (3.222)

the fractional polynomial inside the squared norm is necessary monic and causal, and therefore the
squared norm has a minimum value of 1. B(D) and W (D) specify the MMSE-DFE:
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Lemma 3.6.1 (MMSE-DFE) The MMSE-DFE has feedforward section

W (D) =
1

‖p‖ · γ0 · G∗(D−∗)
(3.223)

(realized with delay, as it is strictly noncausal) and feedback section

B(D) = G(D) (3.224)

where G(D) is the unique canonical factor of the following equation:

Q(D) +
1

SNRMFB
= γ0 · G(D) ·G∗(D−∗) . (3.225)

This text also calls the joint matched-filter/sampler/W (D) combination in the forward path of
the DFE the “Mean-Square Whitened Matched Filter (MS-WMF)”. These settings
for the MMSE-DFE minimize the MSE as was shown above.

3.6.2 Performance Analysis of the MMSE-DFE

Again, the autocorrelation function for the error sequence is

R̄ee(D) =
N0
2

γ0 · ‖p‖2
. (3.226)

This last result states that the error sequence for the MMSE-DFE is “white” when minimized (since

R̄ee(D) is a constant) and has MMSE or average energy (per real dimension)
N0
2

‖p‖2 γ−1
0 . Also,

T

2π

∫ π
T

− π
T

ln
(

Q(e−ωT ) +
1

SNRMFB

)
dω = ln(γ0) +

T

2π

∫ π
T

− π
T

ln
(
G(e−ωT )G∗(e−ωT )

)
dω(3.227)

= ln(γ0) . (3.228)

This last result leads to a famous expression for σ2
MMSE−DFE , which was first derived by Salz in 1973,

σ2
MMSE−DFE =

N0
2

‖p‖2
· e
− T

2π

∫ π
T
− π

T
ln
(
Q(e−ωT ) + 1

SNRMFB

)
dω

. (3.229)

The SNR for the MMSE-DFE can now be easily computed as

SNRMMSE−DFE =
Ēx

σ2
MMSE−DFE

= γ0 · SNRMFB (3.230)

= SNRMFBe

T
2π

∫ π
T
− π

T
ln
(
Q(e−ωT ) + 1

SNRMFB

)
dω

. (3.231)

From the k = 0 term in the defining spectral factorization, γ0 can also be written

γ0 =
1 + 1/SNRMFB

‖g‖2
=

1 + 1/SNRMFB

1 +
∑∞

i=1 |gi|2
. (3.232)

From this expression, if G(D) = 1 (no ISI), then SNRMMSE−DFE = SNRMFB + 1, so that the SNR
would be higher than the matched filter bound. The reason for this apparent anomaly is the artificial
signal power introduced by biased decision regions. This bias is noted by writing

Z′(D) = X(D) − E(D) (3.233)

= X(D) − G(D) · X(D) +
1

‖p‖ · γ0 · G∗(D−∗)
Y (D) (3.234)

= X(D) − G(D)X(D) +
Q(D)

γ0G∗(D−∗)
X(D) + N (D)

1
‖p‖γ0G∗(D−∗)

(3.235)

= X(D) − 1/SNRMFB

γ0 · G∗(D−∗)
X(D) + N (D)

1
‖p‖ · γ0 ·G∗(D−∗)

. (3.236)
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The current sample, xk, corresponds to the time zero sample of 1 − 1/SNRMFB

γ0·G∗(D−∗) , and is equal to (1 −
1

SNRMMSE−DFE
)xk. Thus z′k contains a signal component of xk that is reduced in magnitude. Thus,

again using the result from Section 3.2.1, the SNR corresponding to the lowest probability of error
corresponds to the same MMSE-DFE receiver with output scaled to remove the bias. This leads to the
more informative SNR

SNRMMSE−DFE,U = SNRMMSE−DFE − 1 = γ0 · SNRMFB − 1 . (3.237)

If G(D) = 1, then SNRMMSE−DFE,U = SNRMFB . Also,

γMMSE−DFE =
SNRMFB

SNRMMSE−DFE,U
=

SNRMFB

γ0 · SNRMFB − 1
=

1
γ0 − 1/SNRMFB

. (3.238)

Rather than scale the decision input, the receiver can scale (up) the feedforward output by 1
1− 1

SNRMMSE−DF E

.

This will remove the bias, but also increase MSE by the square of the same factor. The SNR will then
be SNRMMSE−DFE,U . This result is verified by writing the MS-WMF output

Z(D) = [X(D) · ‖p‖ · Q(D) + N (D)]
1

‖p‖ · γ0 · G∗(D−∗)
(3.239)

where N (D), again, has autocorrelation R̄nn(D) = N0
2 Q(D). Z(D) expands to

Z(D) = [X(D) · ‖p‖ · Q(D) + N (D)]
1

‖p‖ · γ0 · G∗(D−∗)
(3.240)

= X(D)
γ0 · G(D) ·G∗(D−∗) − 1/SNRMFB

γ0 · G∗(D−∗)
+ N (D)

1
‖p‖ · γ0 · G∗(D−∗)

(3.241)

= X(D) · G(D) − X(D)
SNRMFB · γ0 · G∗(D−∗)

+ N ′(D) (3.242)

= X(D)
[
G(D) − 1

SNRMMSE−DFE

]
+

1
SNRMMSE−DFE

[
1 − 1

G∗(D−∗)

]
X(D) + N ′(D)(3.243)

= X(D)
[
G(D) − 1

SNRMMSE−DFE

]
+ E′(D) , (3.244)

where N ′(D) is the filtered noise at the MS-WMF output, and has autocorrelation function

R̄n′n′(D) =
N0
2 Q(D)

‖p‖2 · γ2
0 · G(D) ·G∗(D−∗)

=
Ēx

SNRMMSE−DFE

[
1 − 1/SNRMFB

Q(D) + 1/SNRMFB

]
, (3.245)

and
e′k = −ek +

1
SNRMMSE−DFE

xk . (3.246)

The error e′k is not a white sequence in general. Since xk and e′k are uncorrelated, σ2
e = σ2

MMSE−DFE =

σ2
e′ + Ēx

SNR2
MMSE−DF E

. If one defines an “unbiased” monic, causal polynomial

GU(D) =
SNRMMSE−DFE

SNRMMSE−DFE,U

[
G(D) − 1

SNRMMSE−DFE

]
, (3.247)

then the MMSE-DFE output is

Z(D) =
SNRMMSE−DFE,U

SNRMMSE−DFE
X(D)GU (D) + E′(D) . (3.248)

ZU (D) removes the scaling

ZU (D) = Z(D)
SNRMMSE−DFE

SNRMMSE−DFE,U
= X(D)GU (D) + EU (D) , (3.249)
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Figure 3.35: Decision feedback equalization with unbiased feedback filter.

where EU(D) = SNRMMSE−DF E

SNRMMSE−DF E,U
E′(D) and has power

σ2
eU

=

(
σ2

MMSE−DFE − Ēx
SNR2

MMSE−DFE

)(
SNRMMSE−DFE

SNRMMSE−DFE,U

)2

(3.250)

=
SNR2

MMSE−DFEσ2
MMSE−DFE − Ēx

SNR2
MMSE−DFE

SNR2
MMSE−DFE

SNR2
MMSE−DFE,U

(3.251)

=
Ēx[(SNRMMSE−DFE/Ēx)SNRMMSE−DFEσ2

MMSE−DFE − 1]
SNR2

MMSE−DFE,U

(3.252)

=
Ēx[SNRMMSE−DFE − 1]

SNR2
MMSE−DFE,U

(3.253)

=
Ēx

SNRMMSE−DFE,U
. (3.254)

SNR for this scaled and unbiased MMSE-DFE is thus verified to be Ēx
Ēx/SNRMMSE−DFE,U

= SNRMMSE−DFE,U .

The feedback section of this new unbiased MMSE-DFE becomes the polynomial 1−GU(D), if the scaling
is performed before the summing junction, but is 1 − G(D) if scaling is performed after the summing
junction. The alternative unbiased MMSE-DFE is shown in Figure 3.35.

All the results on fractional spacing for the LE still apply to the feedforward section of the DFE
– thus this text does not reconsider them for the DFE, other than to state that the characteristic of
the feedforward section is different than the LE characteristic in all but trivial channels. Again, the
realization of any characteristic can be done with a matched filter and symbol-spaced sampling or with
an anti-alias filter and fractionally spaced sampling, as in Section 3.5.4.

3.6.3 Zero-Forcing DFE

The ZF-DFE feedforward and feedback filters are found by setting SNRMFB → ∞ in the expressions
for the MMSE-DFE. The spectral factorization (assuming ln(Q(eωT ) is integrable over (− π

T , π
T ), see

Appendix A)
Q(D) = η0 · Pc(D) · P ∗

c (D−∗) (3.255)

then determines the ZF-DFE filters as
B(D) = Pc(D) , (3.256)

W (D) =
1

η0 · ‖p‖ · P ∗
c (D−∗)

. (3.257)

Pc is sometimes called a canonical pulse response for the channel. Since q0 = 1 = η0 · ‖Pc‖2, then

η0 =
1

1 +
∑∞

i=1 |pc,i|2
. (3.258)

202



Equation (3.258) shows that there is a signal power loss of the ratio of the squared first tap magnitude
in the canonical pulse response to the squared norm of all the taps. This loss ratio is minimized for a
minimum phase polynomial, and Pc(D) is the minimum-phase equivalent of the channel pulse response.
The noise at the output of the feedforward filter has (white) autocorrelation function N0

2 /(‖p‖2 · η0), so
that

σ2
ZFDFE =

N0
2

‖p‖2

1
η0

=
N0
2

‖p‖2
e
−

T
2π

∫ π
T
− π

T
ln
(
Q(eωT )

)
dω

. (3.259)

The corresponding SNR is then

SNRZF−DFE = η0 · SNRMFB =
1

1 +
∑∞

i=1 p2
c,i

· SNRMFB . (3.260)

3.6.4 Examples Revisited

EXAMPLE 3.6.1 (PAM - DFE) The pulse response of a channel used with binary PAM
is again given by

P (ω) =
{ √

T
(
1 + .9eωT

)
|ω| ≤ π

T
0 |ω| > π

T

. (3.261)

Again, the SNRMFB is 10dB and Ex = 1.

Then Q̃(D) ∆= Q(D) + 1/SNRMFB is computed as

Q̃(e−ωT ) =
1.81 + 1.8 cos(ωT ) + 1.81/10

1.81
(3.262)

Q̃(D) =
1

1.81
(1 + .9D)(1 + .9D−1) + .1 (3.263)

=
1

1.81
(
.9D + 1.991 + .9D−1

)
. (3.264)

The roots of Q̃(D) are −.633 and −1.58. The function Q̃(D) has canonical factorization

Q̃(D) = .785(1 + .633D)(1 + .633D−1) . (3.265)

Then, γ0 = .785. The feedforward section is

W (D) =
1√

1.81(.785)(1 + .633D−1)
=

.9469
1 + .633D−1

, (3.266)

and the feedforward filter transfer function appears in Figure 3.36. The feedback section is

B(D) = G(D) = 1 + .633D , (3.267)

with magnitude in Figure 3.37. The MS-WMF filter transfer function appears in Figure 3.38,
illustrating the near all-pass character of this filter.

The MMSE is
σ2

MMSE−DFE =
N0

2
1

‖p‖2γ0
= .

.181
1.81 · .785

= .1274 (3.268)

and
SNRMMSE−DFE,U =

1 − .1274
.1274

= 6.85 (8.4dB) . (3.269)

Thus, the MMSE-DFE is only 1.6dB below the MFB on this channel. However, the ZF-
DFE for this same channel would produce η0 = 1/‖pc‖2=.5525. In this case σ2

ZFDFE =
.181/(.5525)1.81 = .181 and the loss with respect to the MFB would be η0 = 2.6 dB, 1 dB
lower than the MMSE-DFE for this channel.

It will in fact be possible to do yet better on this channel, using sequence detection, as
discussed in Chapter 9, and/or by codes (Chapters 10 and 11). However, what originally
appeared as a a stunning loss of 9.8 dB with the ZFE has now been reduced to a much
smaller 1.6 dB.
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Figure 3.36: Feedforward filter transfer function for real-channel example.

Figure 3.37: Feedback filter transfer function for real-channel example.
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Figure 3.38: MS-WMF transfer function for real-channel example.

The QAM example is also revisited here:

EXAMPLE 3.6.2 (QAM - DFE) Recall that the equivalent baseband pulse response
samples were given by

pk =
1√
T

[
−1

2

(
1 +



4

)
− 

2

]
. (3.270)

The SNRMFB is again 10 dB. Then,

Q̃ =
−.25D−2 + .625(−1 + )D−1 + 1.5625(1 + .1) − .625(1 + )D + .25D2

1.5625
. (3.271)

or

Q̃ = (1 − .4516 1.632D)(1 − .4516 −.0612D)(1 − .4516 −1.632D−1)(1 − .4516 .0612D−1) ·

· −

1.5625 · 4 · (.4516 −1.632)(.4516 .0612)
(3.272)

from which one extracts γ0 = .7866 and G(D) = 1−.4226(1+)D+.2034D2. The feedforward
and feedback sections can be computed in a straightforward manner, as

B(D) = G(D) = 1 − .4226(1 + )D + .2034D2 (3.273)

and
W (D) =

1.017
1 − .4226(1− )D−1 − .2034D−2

. (3.274)

The MSE is
σ2

MMSE−DFE = (.15625)
1

.7866(1.5625)
= .1271 . (3.275)

and the corresponding SNR is

SNRMMSE−DFE,U =
1

.1271
− 1 = 8.4dB . (3.276)
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The loss is (also coincidentally) 1.6 dB with respect to the MFB and is 1.7 dB better than
the MMSE-LE on this channel.

For the ZF-DFE,

Q(D) = (1 − .56 π/2D)(1 − .5D)(1 − .56 −π/2D−1)(1 − .5D−1) · (3.277)

· −

1.5625 · 4 · (.56 −π/2)(.5)
(3.278)

and thus η0 = .6400 and Pc(D) = 1 − .5(1 + )D + .25D2. The feedforward and feedback
sections can be computed in a straightforward manner, as

B(D) = Pc(D) = 1 − .5(1 + )D + .25D2 (3.279)

and
W (D) =

1.25
1 − .5(1 − )D−1 − .25D−2

. (3.280)

The output noise variance is

σ2
ZFDFE = (.15625)

1
.6400(1.5625)

= .1563 . (3.281)

and the corresponding SNR is

SNRZFDFE =
1

.1563
= 6.4 = 8.0dB . (3.282)

The loss is 2.0 dB with respect to the MFB and is .4 dB worse than the MMSE-DFE.
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Figure 3.39: Polyphase subchannel representation of the channel pulse response.

3.7 Finite Length Equalizers

The previous developments of discrete-time equalization structures presumed that the equalizer could
exist over an infinite interval in time. Equalization filters, wk, are almost exclusively realized as finite-
impulse-response (FIR) filters in practice. Usually these structures have better numerical properties
than IIR structures. Even more importantly, adaptive equalizers (see Section 3.8 and Chapter 13) are
often implemented with FIR structures for wk (and also for bk, in the case of the adaptive DFE). This
section studies the design of and the performance analysis of FIR equalizers.

Both the LE and the DFE cases are examined for both zero-forcing and least-squares criteria. This
section describes design for the MMSE situation and then lets SNR→ ∞ to get the zero-forcing special
case. Because of the finite length, the FIR zero-forcing equalizer cannot completely eliminate ISI in
general.

3.7.1 FIR MMSE-LE

Returning to the FSE in Figure 3.32, the matched filtering operation will be performed digitally (at
sampling rate l/T ) and the FIR MMSE-LE will then incorporate both matched filtering and equalization.
Perfect anti-alias filtering with gain

√
T precedes the sampler and the combined pulse-response/anti-alias

filter is p̃(t). The assumption that l is an integer simplifies the specification of matrices.
One way to view the oversampled channel output is as a set of l parallel T -spaced subchannels whose

pulse responses are offset by T/l from each other as in Figure 3.39. Each subchannel produces one of
the l phases per symbol period of the output set of samples at sampling rate l/T . Mathematically, it is
convenient to represent such a system with vectors as shown below.

The channel output y(t) is

y(t) =
∑

m

xm · p̃(t − mT ) + n(t) , (3.283)

which, if sampled at time instants t = kT − iT
l , i = 0, ..., l− 1, becomes

y(kT − iT

l
) =

∞∑

m=−∞
xm · p̃(kT − iT

l
− mT ) + n(kT − iT

l
) . (3.284)

The (per-dimensional) variance of the noise samples is N0
2 · l because the gain of the anti-alias filter,

√
T ,

is absorbed into p(t). The l phases per symbol period of the oversampled y(t) are contained in

yk =




y(kT )
y(kT − T

l
)

...
y(kT − l−1

l
T )


 . (3.285)
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The vector yk can be written as

yk =
∞∑

m=−∞
xm · pk−m + nk =

∞∑

m=−∞
xk−m · pm + nk , (3.286)

where

pk =




p̃(kT )
p̃(kT − T

l )
...

p̃(kT − l−1
l T )


 and nk =




n(kT )
n(kT − T

l )
...

n(kT − l−1
l T )


 (3.287)

The response p̃(t) is assumed to extend only over a finite time interval. In practice, this assumption
requires any nonzero component of p(t) outside of this time interval to be negligible. This time interval
is 0 ≤ t ≤ νT . Thus, pk = 0 for k < 0 , and for k > ν. The sum in (3.284) becomes

yk = [ p0 p1 , ..., pν ]




xk

xk−1

...

...
xk−ν




+ nk . (3.288)

Each row in (3.288) corresponds to a sample at the output of one of the filters in Figure 3.39. More
generally, for Nf successive l-tuples of samples of y(t),

Y k
∆=




yk

yk−1
...

yk−Nf+1


 (3.289)

=




p0 p1 ... pν 0 0 ... 0
0 p0 p1 ... ... pν ... 0
...

...
. . . . . . . . . . . .

...
0 ... 0 0 p0 p1 ... pν







xk

xk−1

...

...
xk−Nf−ν+1




+




nk

nk−1

...
nk−Nf +1


 . (3.290)

This text uses P to denote the large (Nf · l) × (Nf + ν) matrix in (3.290), while Xk denotes the data
vector, and N denotes the noise vector. Then, the oversampled vector representation of the channel is

Y k = P Xk + N k . (3.291)

When l = n/m (a rational fraction), then (3.291) still holds with P an [Nf · n
m ]× (Nf + ν) matrix that

does not follow the form in (3.290), with each row possibly having a set of coefficients unrelated to the
other rows.11

An equalizer is applied to the sampled channel output vector Y k by taking the inner product of an
Nf l-dimensional row vector of equalizer coefficients, w, and Y k, so Z(D) = W (D)Y (D) can be written

zk = wY k . (3.292)
11In this case, (3.283) is used to compute each row at the appropriate sampling instants. Nf · n

m
should also be an

integer so that P is constant. Otherwise, P becomes a “time-varying” matrix P k .
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For causality, the designer picks a channel-equalizer system delay ∆ · T symbol periods,

∆ ≈ ν + Nf

2
, (3.293)

with the exact value being of little consequence unless the equalizer length Nf is very short. The delay
is important in finite-length design because a non-causal filter cannot be implemented, and the delay
allows time for the transmit data symbol to reach the receiver. With infinite-length filters, the need for
such a delay does not enter the mathematics because the infinite-length filters are not realizable in any
case, so that infinite-length analysis simply provides best bounds on performance. ∆ is approximately
the sum of the channel and equalizer delays in symbol periods. The equalizer output error is then

ek = xk−∆ − zk , (3.294)

and the corresponding MSE is

σ2
MMSE−LE = E

{
|ek|2

}
= E {eke∗k} = E

{
(xk−∆ − zk) (xk−∆ − zk)∗

}
. (3.295)

Using the Orthogonality Principle of Appendix A, the MSE in (3.295) is minimized when

E {ekY ∗
k} = 0 . (3.296)

In other words, the equalizer error signal will be minimized (in the mean square sense) when this error
is uncorrelated with any channel output sample in the delay line of the FIR MMSE-LE. Thus

E {xk−∆ Y ∗
k} − wE {Y kY ∗

k} = 0 . (3.297)

The two statistical correlation quantities in (3.297) have a very special significance (both y(t) and xk

are stationary):

Definition 3.7.1 (Autocorrelation and Cross-Correlation Matrices) The FIR MMSE
autocorrelation matrix is defined as

RY Y
∆= E {Y kY ∗

k} /N , (3.298)

while the FIR MMSE-LE cross-correlation vector is defined by

RY x

∆= E
{
Y kx∗

k−∆

}
/N , (3.299)

where N = 1 for real and N = 2 for complex. Note RxY = R∗
Y x

, and RY Y is not a
function of ∆.

With the above definitions in (3.297), the designer obtains the MMSE-LE:

Definition 3.7.2 (FIR MMSE-LE) The FIR MMSE-LE for sampling rate l/T , delay ∆,
and of length Nf symbol periods has coefficients

w = R∗
Y x

R−1

Y Y = RxY R−1

Y Y , (3.300)

or equivalently,
w∗ = R−1

Y Y RY x . (3.301)

In general, it may be of interest to derive more specific expressions for RY Y and RxY .

RxY = E {xk−∆Y ∗
k} = E {xk−∆X∗

k}P ∗ + E {xk−∆N∗
k} (3.302)

=
[

0 ... 0 Ēx 0 ... 0
]
P ∗ + 0 (3.303)

= Ēx [ 0 ... 0 p∗
ν ... p∗

0 0 ... 0 ] (3.304)
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RY Y = E {Y kY ∗
k} = PE {XkX∗

k}P ∗ + E {NkN∗
k} (3.305)

= ĒxP P ∗ + l · N0

2
· Rnn , (3.306)

where the (l · N0
2

-normalized) noise autocorrelation matrix Rnn is equal to I when the noise is white.
A convenient expression is

[0...0 p∗
ν ...p∗

0 0...0] = 1∗
∆P ∗ , (3.307)

so that 1∆ is an Nf +ν-vector of 0’s and a 1 in the (∆+1)th position. Then the FIR MMSE-LE becomes
(in terms of P , SNR and ∆)

w = 1∗
∆P ∗

[
P P ∗ +

1
SNR

Rnn

]−1

= 1∗
∆

[
P ∗R−1

nnP +
l

SNR
· I
]−1

P ∗R−1
nn . (3.308)

The matrix inversion lemma of Appendix B is used in deriving the above equation.
The position of the nonzero elements in (3.304) depend on the choice of ∆. The MMSE, σ2

MMSE−LE,
can be found by evaluating (3.295) with (3.300):

σ2
MMSE−LE = E

{
xk−∆x∗

k−∆ − xk−∆Y ∗
kw∗ − wY kx∗

k−∆ + wY kY ∗
kw∗

}
(3.309)

= Ēx − RxY w∗ − wRY x + wRY Y w∗ (3.310)
= Ēx − wRY Y w∗ (3.311)

= Ēx − RxY R−1

Y Y RY x (3.312)

= Ēx − wRY x , (3.313)

With algebra, (3.313) is the same as

σ2
MMSE−LE =

l · N0
2

‖p‖2
1∗

∆

(
P ∗R−1

nnP

‖p‖2
+

l

SNRMFB
I

)−1

1∆ =
l · N0

2

‖p‖2
1∗

∆Q̄−11∆ , (3.314)

so that the best value of ∆ (the position of the 1 in the vectors above) corresponds to the smallest
diagonal element of the inverted (“Q-tilde”) matrix in (3.314) – this means that only one matrix need be
inverted to obtain the correct ∆ value as well as compute the equalizer settings. A homework problem
develops some interesting relationships for w in terms of P and SNR. Thus, the SNR for the FIR
MMSE-LE is

SNRMMSE−LE =
Ēx

σ2
MMSE−LE

, (3.315)

and the corresponding unbiased SNR is

SNRMMSE−LE,U = SNRMMSE−LE − 1 . (3.316)

The loss with respect to the MFB is, again,

γMMSE−LE =
SNRMFB

SNRMMSE−LE,U
. (3.317)

3.7.2 FIR ZFE

One obtains the FIR ZFE by letting the SNR→ ∞ in the FIR MMSE, which alters RY Y to

RY Y = P P ∗Ēx (3.318)

and then w remains as
w = RxY R−1

Y Y . (3.319)
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Because the FIR equalizer may not be sufficiently long to cancel all ISI, the FIR ZFE may still have
nonzero residual ISI. This ISI power is given by

σ2
MMSE−ZFE = Ēx − wRY x . (3.320)

However, (3.320) still ignores the enhanced noise at the FIR ZFE output.12 The power of this noise is
easily found to be

FIR ZFE noise power =
N0

2
· l · ‖w‖2

Rnn
, (3.321)

making the SNR at the ZFE output

SNRZFE =
Ēx

Ēx − wRY x + N0
2 l‖w‖2

Rnn

. (3.322)

The ZFE is still unbiased in the finite-length case:13

E [wY k/xk−∆] = RxY R−1

Y Y {P E [Xk/xk−∆] + E[Nk]} (3.323)

= [0 0 ...1 0]E
{
P ∗(P P ∗)−1PXk/xk−∆

}
(3.324)

= [0 0 ...1 0]P ∗(P P ∗)−1P E








xk

xk−1

...
xk−Nf

don’t care




/xk−∆





(3.325)

= xk−∆ . (3.326)

Equation (3.326) is true if ∆ is a practical value and the finite-length ZFE has enough taps. The loss is
the ratio of the SNR to SNRZFE ,

γZFE =
SNRMFB

SNRZFE
. (3.327)

3.7.3 example

For the earlier PAM example, one notes that sampling with l = 1 is sufficient to represent all signals.
First, choose Nf = 3 and note that ν=1. Then

P =




.9 1 0 0
0 .9 1 0
0 0 .9 1


 . (3.328)

With a choice of ∆ = 2, then

RY x = ĒxP




0
0
1
0


 (3.329)

=




0
1
.9


 , (3.330)

12The notation ‖w‖2
Rnn

means wRnnw∗.
13The matrix P ∗(PP ∗)−1P is a “projection matrix” and PP ∗ is full rank; therefore the entry of xk−∆ passes directly

(or is zeored, in which case ∆ needs to be changed).
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Figure 3.40: FIR equalizer performance for 1 + .9D−1 versus number of equalizer taps.

and

RY Y = Ēx
(

PP ∗ +
1

SNR
I

)
(3.331)

=




1.991 .9 0
.9 1.991 .9
0 .9 1.991


 , (3.332)

The FIR MMSE is

w∗ = R−1

Y Y RY x =




.676 −.384 .174
−.384 .849 −.384
.174 −.384 .676






0
1
.9


 =




−.23
.51
.22


 (3.333)

Then

σ2
MMSE−LE =


1 − [−.23 .51 .22]




0
1
.9




 = .294 (3.334)

The SNR is computed to be

SNRMMSE−LE,U =
1

.294
− 1 = 2.4 (3.8 dB) . (3.335)

which is 6.2dB below MFB performance and 1.9dB worse than the infinite length MMSE-LE for this
channel.

With sufficiently large number of taps for this channel, the infinite length performance level can be
attained. This performance is plotted as versus the number of equalizer taps in Figure 3.40. Clearly, 15
taps are sufficient for infinite-length performance.

EXAMPLE 3.7.1 For the earlier complex QAM example, sampling with l = 1 is sufficient
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to represent all signals. First, choose Nf = 4 and note that ν = 2. Then

P =




−.5 1 + /4 −/2 0 0 0
0 −.5 1 + /4 −/2 0 0
0 0 −.5 1 + /4 −/2 0
0 0 0 −.5 1 + /4 −/2


 . (3.336)

The matrix (P ∗P + .15625 · I)−1 has the same smallest element 1.3578 for both ∆ = 2, 3, so
choosing ∆ = 2 will not unnecessarily increase system delay. With a choice of ∆ = 2, then

RY x = ĒxP




0
0
1
0
0
0




(3.337)

=




−.5
1 + /4
−.5
0


 , (3.338)

and

RY Y = Ēx
(

PP ∗ +
1

SNR
I

)
(3.339)

=




1.7188 −0.6250− 0.6250 /4 0
−0.6250 + 0.6250 1.7188 −0.6250− 0.6250 /4

−/4 −0.6250 + 0.6250 1.7188 −0.6250− 0.6250
0 −/4 −0.6250 + 0.6250 1.7188


 .

The FIR MMSE is

w∗ = R−1

Y Y RY x =




0.2570− 0.0422
0.7313− 0.0948
−0.1182− 0.2982
−0.1376 + 0.0409

.


 (3.340)

Then

σ2
MMSE−LE = (1 − wRY x) (3.341)

= .2121 . (3.342)

The SNR is computed to be

SNRMMSE−LE,U =
1

.2121
− 1 = 3.714 (5.7 dB) , (3.343)

which is 4.3 dB below MFB performance and 2.1 dB worse than the infinite-length MMSE-LE
for this channel. With sufficiently large number of taps for this channel, the infinite-length
performance level can be attained.

3.7.4 FIR MMSE-DFE

The FIR DFE case is similar to the feed-forward equalizers just discussed, except that we now augment
the fractionally spaced feed-forward section with a symbol-spaced feedback section. The MSE for the
DFE case, as long as w and b are sufficiently long, is

MSE = E
{
|xk−∆ − wY k + bxk−∆−1|2

}
, (3.344)
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where b is the vector of coefficients for the feedback FIR filter

b
∆= [ b1 b2 ... bNb ] , (3.345)

and xk−∆−1 is the vector of data symbols in the feedback path. It is mathematically convenient to
define an augmented response vector for the DFE as

w̃
∆=
[
w

... − b

]
, (3.346)

and a corresponding augmented DFE input vector as

Ỹ k
∆=
[

Y k

xk−∆−1

]
. (3.347)

Then, (3.344) becomes
MSE = E

{
|xk−∆ − w̃Ỹ k|2

}
. (3.348)

The solution, paralleling (3.299) - (3.301), is determined using the following two definitions:

Definition 3.7.3 (FIR MMSE-DFE Autocorrelation and Cross-Correlation Matrices)
The FIR MMSE-DFE autocorrelation matrix is defined as

R ˜Y ˜Y
∆= E

{
Ỹ kỸ

∗
k

}
/N (3.349)

=
[

RY Y E[Y kx∗
k−∆−1]

E[xk−∆−1Y
∗
k] ĒxINb

]
(3.350)

=

[
Ēx
(
P P ∗ + l·Rnn

SNR

)
ĒxP J∆]

ĒxJ∗
∆P ∗ ĒxINb

]
, (3.351)

where J∆ is an (Nf + ν)× Nb matrix of 0’s and 1’s, which has the upper ∆ + 1 rows zeroed
and an identity matrix of dimension min(Nb, Nf + ν − ∆ − 1) with zeros to the right (when
Nf + ν − ∆− 1 < Nb), zeros below (when Nf + ν − ∆− 1 > Nb), or no zeros to the right or
below exactly fitting in the bottom of J∆ (when Nf + ν − ∆ − 1 = Nb).

The corresponding FIR MMSE-DFE cross-correlation vector is

R ˜Y x

∆= E
{
Ỹ kx∗

k−∆

}
/N (3.352)

=
[

RY x
0

]
(3.353)

=
[

ĒxP1∆

0

]
, (3.354)

where, again, N = 1 for real signals and N = 2 for complex signals.

The FIR MMSE-DFE for sampling rate l/T , delay ∆, and of length Nf and Nb has coefficients

w̃ = R
x

˜Y
R−1

˜Y ˜Y
. (3.355)

Equation (3.355) can be rewritten in detail as
[
w

...− b

]
· Ēx ·

[
P P ∗ + l

SNRRnn P J∆

J∗
∆P ∗ INb

]
=
[
Ēx · 1∗

∆P ∗...0
]

, (3.356)

which reduces to the pair of equations

w

(
PP ∗ +

l

SNR
Rnn

)
− bJ∗

∆P ∗ = 1∗
∆P ∗ (3.357)

wPJ∆ − b = 0 . (3.358)
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Then
b = wP J∆ , (3.359)

and thus

w

(
P P ∗ − P J∆J∗

∆P ∗ +
l

SNR
Rnn

)
= 1∗

∆P ∗ (3.360)

or

w = 1∗
∆P ∗

(
P P ∗ − PJ∆J∗

∆P ∗ +
l

SNR
Rnn

)−1

. (3.361)

Then

b = 1∗
∆P ∗

(
P P ∗ − P J∆J∗

∆P ∗ +
l

SNR
Rnn

)−1

P J∆ . (3.362)

The MMSE is then

σ2
MMSE−DFE = Ēx − w̃R ˜Y x

(3.363)

= Ēx − wRY x (3.364)

= Ēx

(
1 − 1∗

∆P ∗
(

P P ∗ − PJ∆J∗
∆P ∗ +

l

SNR
Rnn

)−1

P1∆

)
, (3.365)

which is a function to be minimized over ∆. Thus, the SNR for the unbiased FIR MMSE-DFE is

SNRMMSE−DFE,U =
Ēx

σ2
MMSE−DFE

− 1 =
w̃R ˜Y x

Ēx − w̃R ˜Y x

, (3.366)

and the loss is again

γMMSE−DFE =
SNRMFB

SNRMMSE−DFE,U
. (3.367)

EXAMPLE 3.7.2 (MMSE-DFEs, PAM and QAM) For the earlier example with l =
1, Nf = 2, and Nb = 1 and ν = 1, we will also choose ∆ = 1. Then

P =
[

.9 1 0
0 .9 1

]
, (3.368)

J∆ =




0
0
1


 , (3.369)

1∆ =




0
1
0


 , (3.370)

and

RY Y =
[

1.991 .9
.9 1.991

]
. (3.371)

Then

w = [0 1 0]




.9 0
1 .9
0 1



{[

1.991 .9
.9 1.991

]
−
[

0
1

]
[0 1]

}−1

(3.372)

= [1 .9]
[

1.991 .9
.9 0.991

]−1

(3.373)

= [.1556 .7668] (3.374)
b = wP J∆ (3.375)

= [.1556 .7668]
[

.9 1 0
0 .9 1

]


0
0
1


 (3.376)

= .7668 . (3.377)
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Figure 3.41: FIR MMSE-DFE Example.

Then

σ2
MMSE−DFE =

(
1 − [.16 .76]

[
1
.9

])
= .157 . (3.378)

The SNR is computed to be

SNRMMSE−DFE,U =
1 − .157

.157
= 5.4 (7.3dB) , (3.379)

which is 2.7 dB below MFB performance, but 2.8 dB better than the infinite-lengthMMSE-
LE for this channel! The loss with respect to the infinite-length MMSE-DFE is 1.1 dB. A
picture of the FIR MMSE-DFE is shown in Figure 3.41. With sufficiently large number of
taps for this channel, the infinite-length performance level can be attained. This performance
is plotted versus the number of feed-forward taps (only one feedback tap is necessary for
infinite-length performance) in Figure 3.42. In this case, 7 feed-forward and 1 feedback
taps are necessary for infinite-length performance. Thus, the finite-length DFE not only
outperforms the finite or infinite-length LE, it uses less taps (less complexity) also. For the
QAM example l = 1, Nf = 2, Nb = 2, and ν = 2, we also choose ∆ = 1. Actually this
channel will need more taps to do well with the DFE structure, but we can still choose these
values and proceed. Then

P =
[

−.5 1 + /4 −/2 0
0 −.5 1 + /4 −/2

]
, (3.380)

J∆ =




0 0
0 0
1 0
0 1


 , (3.381)

1∆ =




0
1
0
0


 , (3.382)

and

RY Y =
[

1.7188 −0.6250− 0.6250
−0.6250− 0.6250 1.7188

]
. (3.383)
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Then

w = [0 1 0 0]




−.5 0
1 − /4 −.5

/2 1 − /4
0 /2


 · (3.384)

{[
1.7188 −0.6250− 0.6250

−0.6250− 0.6250 1.7188

]
−
[

1/4 −1/8 − /2
−1/8 + /2 1.3125

]}−1

= [1 − /2 − .5]
[

1.2277 1.5103 + .3776
1.5103− .3776 4.4366

]
(3.385)

= [.4720− .1180 − .6136] (3.386)
b = wP J∆ (3.387)

= [.4720− .1180 .6136]
[

−.5 1 + /4 −/2 0
0 −.5 1 + /4 −/2

]



0 0
0 0
1 0
0 1


 (3.388)

= [−.6726− .3894 .3608] . (3.389)

Then
σ2

MMSE−DFE = .1917 . (3.390)

The SNR is computed to be

SNRMMSE−DFE,U =
1 − .1917

.1917
= 6.23dB , (3.391)

which is 3.77 dB below MFB performance, and not very good on this channel! The reader
may evaluate various filter lengths and delays to find a best use of 3, 4, 5, and 6 parameters
on this channel.

FIR ZF-DFE One obtains the FIR ZF-DFE by letting the SNR→∞ in the FIR MMSE-DFE, which
alters R ˜Y ˜Y

to

R ˜Y ˜Y
=
[

ĒxP̃ P̃
∗

ĒxPJ∆

ĒxJ∗
∆P ∗ Ēx · INb

]
(3.392)

and then w̃ remains as
w̃ = R

x
˜Y

R−1
˜Y ˜Y

. (3.393)

Because the FIR equalizer may not be sufficiently long to cancel all ISI, the FIR ZF-DFE may still have
nonzero residual ISI. This ISI power is given by

σ2
MMSE−DFE = Ēx − w̃R ˜Y x

. (3.394)

However, (3.394) still ignores the enhanced noise at the w̃k filter output. The power of this noise is
easily found to be

FIR ZFDFE noise variance =
N0

2
· l · ‖w‖2 , (3.395)

making the SNR at the FIR ZF-DFE output

SNRZF−DFE =
Ēx

Ēx − w̃R ˜Y x
+ Ēx

SNR l‖w‖2
. (3.396)

The filter is w in (3.395) and (3.396), not w̃ because only the feed-forward section filters noise. The loss
is:

γZF-DFE =
SNRMFB

SNRZF−DFE
. (3.397)
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Figure 3.42: FIR MMSE-DFE performance for 1 + .9D−1 versus number of feed-forward equalizer taps.

3.7.5 An Alternative Approach to the DFE

While the above approach directly computes the settings for the FIR DFE, it yields less insight into
the internal structure of the DFE than did the infinite-length structures investigated in Section 3.6,
particularly the spectral (canonical) factorization into causal and anti-causal ISI components is not
explicit. This subsection provides such an alternative caused by the finite-length filters. This is because
finite-length filters inherently correspond to non-stationary processing.14

The vector of inputs at time k to the feed-forward filter is again Y k, and the corresponding vector
of filter coefficients is w, so the feed-forward filter output is zk = wY k. Continuing in the same fashion,
the DFE error signal is then described by

ek = bXk(∆) − wY k , (3.398)

where x∗
k:k−Nb

=
[
x∗

k ... x∗
k−Nb

]
, and b is now slightly altered to be monic and causal

b
∆= [1 b1 b2 ... bNb ] . (3.399)

The mean-square of this error is to be minimized over b and w. Signals will again be presumed to
be complex, but all developments here simplify to the one-dimensional real case directly, although it is
important to remember to divide any complex signal’s variance by 2 to get the energy per real dimension.
The SNR equals Ēx/N0

2
= Ex/N0 in either case.

Optimizing the feed-forward and feedback filters For any fixed b in (3.398), the cross-correlation
between the error and the vector of channel outputs Y k should be zero to minimize MSE,

E [ekY ∗
k] = 0 . (3.400)

So,
wRY Y = bRXY (∆) , (3.401)

14A more perfect analogy between finite-lengthand infinite-lengthDFE’s occurs in Chapter 5, where the best finite-length
DFE’s are actually periodic over a packet period corresponding to the length of the feed-forward filter.
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and

RXY (∆) = E
{

Xk(∆)
[
x∗

k x∗
k−1 ... x∗

k−Nf−ν+1

]
P ∗
}

(3.402)

= ĒxJ̃∗
∆P ∗ , (3.403)

where the matrix J̃∗
∆ has the first ∆ columns all zeros, then an (up to) Nb × Nb identity matrix at

the top of the up to Nb columns, and zeros in any row entries below that identity, and possibly zeroed
columns following the identity if Nf + ν − 1 > Nb. The following matlab commands produce J̃∗

∆, using
for instance Nf = 8, Nb = 5, ∆ = 3, and ν = 5,

>> size=min(Delta,Nb);
>> Jdelta=[ zeros(size,size) eye(size) zeros(size, max(Nf+nu-2*size,0))
zeros(max(Nb-Delta,0),Nf+nu)]

Jdelta =

0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

or for Nf = 8, Nb = 2, ∆ = 3, and ν = 5,

>> >> size=min(Delta,Nb)
size = 2
>> Jdelta=[ zeros(size,size) eye(size) zeros(size, max(Nf+nu-2*size,0)),
zeros(max(Nb-Delta,0),Nf+nu)]

Jdelta =

0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0

The MSE for this fixed value of b then becomes

σ2
ε (∆) = b∗

(
ĒxI − RXY (∆)R−1

Y Y RY X (∆)
)

b (3.404)

= b∗R⊥
X/Y (∆)b (3.405)

= b∗
(
ĒxINb − J̃∗

∆P ∗
(

P P ∗ +
l

SNR
Rnn

)
−1P J̃∆(∆)

)
b (3.406)

= l · N0

2

{
b∗J̃∗

∆

(
P ∗R−1

nnP +
l

SNR
I

)
−1P J̃∆(∆)J̃∆b

}
, (3.407)

and R⊥
X/Y (∆) ∆= ĒxI − RXY (∆)R−1

Y Y RY X (∆), the autocorrelation matrix corresponding to the
MMSE vector in estimating X(∆) from Y k. This expression is the equivalent of (3.216). That is
R⊥

X/Y (∆) is the autocorrelation matrix for the error sequence of length N − b that is associated with a
“matrix” MMSE-LE. The solution then requires factorization of the inner matrix into canonical factors,
which is executed with Cholesky factorization for finite matrices.

By defining

Q̃(∆) =

{
J̃∗

∆

(
P ∗P +

l

SNR
I

)−1

J̃∆

}−1

, (3.408)

this matrix is equivalent to (3.217), except for the “annoying” J̃∆ matrices that become identities as Nf

and Nb become infinite, then leaving Q̃ as essentially the autocorrelation of the channel output. The
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J̃∆ factors, however, cannot be ignored in the finite-length case. Canonical factorization of Q̃ proceeds
according to

σ2
ε (∆) = bG−1

∆ S∆G−∗
∆ b∗ , (3.409)

which is minimized when
b = g(∆) , (3.410)

the top row of the upper-triangular matrix G∆. The MMSE is thus obtained by computing Cholesky
factorizations of Q̃ for all reasonable values of ∆ and then setting b = g(∆). Then

σ2
ε (∆) = So(∆) . (3.411)

From previous developments, as the lengths of filters go to infinity, any value of ∆ works and also
S0 → γ0

N0
2

/Ēx to ensure the infinite-length MMSE-DFE solution of Section 3.6.
The feed-forward filter then becomes

w = bRXY (∆)R−1

Y Y
(3.412)

= g(∆)J̃∆P ∗
(

P P ∗ +
l

SNR
I

)−1

(3.413)

= g(∆)J̃∆

(
P ∗P +

l

SNR
I

)−1

︸ ︷︷ ︸
feedforward filter

P ∗
︸︷︷︸

matched filter

, (3.414)

which can be interpreted as a matched filter followed by a feed-forward filter that becomes 1/G∗(D−∗)
as its length goes to infinity. However, the result that the feed-forward filter is an anti-causal factor of
the canonical factorization does not follow for finite length. Chapter 5 will find a situation that is an
exact match and for which the feed-forward filter is an inverse of a canonical factor, but this requires the
DFE filters to become periodic in a period equal to the number of taps of the feed-forward filter (plus
an excess bandwidth factor).

The SNR is as always

SNRMMSE−DFE,U =
Ēx

S0(∆)
− 1 . (3.415)

Bias can be removed by scaling the decision-element input by the ratio of SNRMMSE−DFE/SNRMMSE−DFE,U ,
thus increasing its variance by (SNRMMSE−DFE/SNRMMSE−DFE,U )2.

Finite-length Noise-Predictive DFE

Problem 3.8 introduces the “noise-predictive” form of the DFE, which is repeated here in Figure 3.43.
In this figure, the error sequence is feedback instead of decisions. The filter essentially tries to predict
the noise in the feedforward filter output and then cancel this noise, whence the name “noise-predictive”
DFE. Correct solution to the infinite-length MMSE filter problem 3.8 will produce that the filter B(D)
remains equal to the same G(D) found for the infinite-length MMSE-DFE. The filter U (D) becomes the
MMSE-LE so that Z(D) has no ISI, but a strongly correlated (and enhanced) noise. The preditor then
reduces the noise to a white error sequence. If W (D) = 1

γ0·‖p‖·G−∗(D−∗) of the normal MMSE-DFE, then
it can be shown also (see Problem 3.8) that

U (D) =
W (D)
G(D)

. (3.416)

The MMSE, all SNR’s, and biasing/unbiasing remain the same.
An analogous situation occurs for the finite-length case, and it will be convenient notationally to say

that the number of taps in the feedforward filter u is (Nf − ν)l. Clearly if ν is fixed as always, then any
number of taps (greater than ν can be investigated without loss of generality with this early notational
abuse. Clearly by abusing Nf (which is not the number of taps), ANY positive number of taps in u can
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Figure 3.43: Noise-Predictive DFE

be constructed without loss of generality for any value of ν ≥ 0. In this case, the error signal can be
written as

ek = bkXk(∆) − bZ (3.417)

where

Zk =




zk

...
zk−ν


 . (3.418)

Then,
Zk = UY k (3.419)

where

U =




u 0 ... 0
0 u ... 0
...

. . . . . .
...

0 ... 0 u


 (3.420)

and

Y k =




yk

...
yk−Nf +1


 . (3.421)

By defining the (Nf )l-tap filter
w

∆= bU , (3.422)

then the error becomes
ek = bkXk(∆) − wY , (3.423)

which is the same error as in the alternate viewpoint of the finite-length DFE earlier in this section.
Thus, solving for the b and w of the conventional finite-length MMSE-DFE can be followed by the step
of solving Equation (3.422) for U when b and w are known. However, it follows directly then from
Equation (3.401) that

u = RXY (∆)R−1

Y Y , (3.424)

so following the infinite-case form, u is the finite-length MMSE-LE with (Nf − ν)l taps. The only
difference from the infinite-length case is the change in length.
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3.7.6 The Stanford DFE Program

A matlab program has been created, used, and refined by the students of EE379A over a period of many
years. The program has the following call command:

function (SNR, wt) = dfe ( l,p,nff, nbb, delay, Ex, noise);
where the inputs and outputs are listed as

• l = oversampling factor

• p = pulse response, oversampled at l (size)

• nff = number of feed-forward taps

• nbb = number of feedback taps

• delay ≈ delay of system Nff + length of p - nbb ; if delay = -1, then choose the best
delay

• Ex = average energy of signals

• noise = autocorrelation vector (size l*nff) (NOTE: noise is assumed to be stationary).
For white noise, this vector is simply [σ2 0...0].

• SNR = equalizer SNR, unbiased and in dB

• wt = equalizer coefficients

The student may use this program to a substantial advantage in avoiding tedious matrix calculations.
The program has come to be used throughout the industry to compute/project equalizer performance
(setting nbb=0 also provides a linear equalizer). The reader is cautioned against the use of a number
of rules of thumb (like “DFE SNR is the SNR(f) at the middle of the band”) used by various who
call themselves experts and often over-estimate the DFE performance using such formulas. Difficult
transmission channels may require large numbers of taps and considerable experimentation to find the
best settings.

function [dfseSNR,w_t,opt_delay]=dfsecolorsnr(l,p,nff,nbb,delay,Ex,noise);
% --------------------------------------------------------------
% [dfseSNR,w_t] = dfecolor(l,p,nff,nbb,delay,Ex,noise);
% l = oversampling factor
% p = pulse response, oversampled at l (size)
% nff = number of feed-forward taps
% nbb = number of feedback taps
% delay = delay of system <= nff+length of p - 2 - nbb
% if delay = -1, then choose best delay
% Ex = average energy of signals
% noise = noise autocorrelation vector (size l*nff)
% NOTE: noise is assumed to be stationary
%
% outputs:
% dfseSNR = equalizer SNR, unbiased in dB
% w_t = equalizer coefficients [w -b]
% opt_delay = optimal delay found if delay =-1 option used.
% otherwise, returns delay value passed to function
% created 4/96;
% ---------------------------------------------------------------

size = length(p);
nu = ceil(size/l)-1;
p = [p zeros(1,(nu+1)*l-size)];
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% error check
if nff<=0

error(’number of feed-forward taps > 0’);
end
if delay > (nff+nu-1-nbb)

error(’delay must be <= (nff+(length of p)-2-nbb)’);
elseif delay < -1

error(’delay must be >= -1’);
elseif delay == -1

delay = 0:1:nff+nu-1-nbb;
end

%form ptmp = [p_0 p_1 ... p_nu] where p_i=[p(i*l) p(i*l-1)... p((i-1)*l+1)
ptmp(1:l,1) = [p(1); zeros(l-1,1)];
for i=1:nu

ptmp(1:l,i+1) = conj((p(i*l+1:-1:(i-1)*l+2))’);
end

%form matrix P, vector channel matrix
P = zeros(nff*l+nbb,nff+nu);
for i=1:nff,

P(((i-1)*l+1):(i*l),i:(i+nu)) = ptmp;
end

%precompute Rn matrix - constant for all delays
Rn = zeros(nff*l+nbb);
Rn(1:nff*l,1:nff*l) = toeplitz(noise);

dfseSNR = -100;
P_init = P;
%loop over all possible delays
for d = delay,

P = P_init;
P(nff*l+1:nff*l+nbb,d+2:d+1+nbb) = eye(nbb);
%P
temp= zeros(1,nff+nu);
temp(d+1)=1;
%construct matrices
Ry = Ex*P*P’ + Rn;
Rxy = Ex*temp*P’;
new_w_t = Rxy*inv(Ry);
sigma_dfse = Ex - real(new_w_t*Rxy’);
new_dfseSNR = 10*log10(Ex/sigma_dfse - 1);
%save setting of this delay if best performance so far
if new_dfseSNR >= dfseSNR

w_t = new_w_t;
dfseSNR = new_dfseSNR;
opt_delay = d;

end
end
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3.7.7 Error Propagation in the DFE

To this point, this chapter has ignored the effect of decision errors in the feedback section of the DFE. At
low error rates, say 10−5 or below, this is reasonable. There is, however, an accurate way to compute the
effect of decision feedback errors, although enormous amounts of computational power may be necessary
(much more than that required to simulate the DFE and measure error rate increase). At high error
rates of 10−3 and above, error propagation can lead to several dB of loss. In coded systems (see Chapters
7 and 8), the inner channel (DFE) may have an error rate that is unacceptably high that is later reduced
in a decoder for the applied code. Thus, it is common for low decision-error rates to occur in a coded
DFE system. The Precoders of Section 3.8 can be used to eliminate the error propagation problem, but
this requires that the channel be known in the transmitter – which is not always possible, especially in
transmission systems with significant channel variation, i.e, digital mobile telephony. An analysis for
the infinite-length equalizer has not yet been invented, thus the analysis here applies only to FIR DFE’s
with finite Nb.

By again denoting the equalized pulse response as vk (after removal of any bias), and assuming that
any error signal, ek, in the DFE output can is uncorrelated with the symbol of interest, xk, this error
signal can be decomposed into 4 constituent signals

1. precursor ISI - epr,k =
∑−1

i=−∞ vixk−i

2. postcursor ISI - epo,k =
∑∞

i=Nb+1 vixk−i

3. filtered noise - en,k =
∑∞

i=−∞ wink−i

4. feedback errors - ef,k =
∑Nb

i=1 vi (xk−i − x̂k−i)

The sum of the first 3 signals constitute the MMSE with power σ2
MMSE−DFE , which can be computed

according to previous results. The last signal is often written

ef,k =
Nb∑

i=1

vi · εk−i (3.425)

where εk
∆= xk − x̂k. This last distortion component has a discrete distribution with (2M −1)Nb possible

points.
The error event vector, εk, is

εk
∆= [εk−Nb+1 εk−Nb+2 ... εk] (3.426)

Given εk−1, there are only 2M − 1 possible values for εk. Equivalently, the evolution of an error event,
can be described by a finite-state machine with (2M − 1)Nb states, each corresponding to one of the
(2M − 1)Nb possible length-Nb error events. Such a finite state machine is shown in Figure 3.44. The
probability that εk takes on a specific value, or that the state transition diagram goes to the corresponding
state at time k, is (denoting the corresponding new entry in εk as εk)

Pεk/εk−1 = Q

[
dmin − |ef,k(εk−1)|

2σMMSE-DFE

]
. (3.427)

There are 2M −1 such values for each of the (2M −1)Nb states. Υ denotes a square (2M −1)Nb × (2M −
1)Nb matrix of transition probabilities where the i, jth element is the probability of entering state i, given
the DFE is in state j. The column sums are thus all unity. For a matrix of non-negative entries, there is
a famous “Peron-Frobenious” lemma from linear algebra that states that there is a unique eigenvector
ρ of all nonnegative entries that satisfies the equation

ρ = Υρ . (3.428)

The solution ρ is called the stationary state distribution or Markov distribution for the state
transition diagram. The ith entry, ρi, is the steady-state probability of being in state i. Of course,
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Figure 3.44: Finite State Machine for Nb = 2 and M = 2 in evaluating DFE Error Propagation

∑(2M−1)Nb

i=1 ρi = 1. By denoting the set of states for which εk 6= 0 as E , one determines the probability
of error as

Pe =
∑

i∈E

ρi . (3.429)

Thus, the DFE will have an accurate estimate of the error probability in the presence of error propagation.
A larger state-transition diagram, corresponding to the explicit consideration of residual ISI as a discrete
probability mass function, would yield a yet more accurate estimate of the error probability for the
equalized channel - however, the relatively large magnitude of the error propagation samples usually
makes their explicit consideration more important than the (usually) much smaller residual ISI.

The number of states can be very large for reasonable values of M and Nb, so that the calculation of
the stationary distribution ρ could exceed the computation required for a direct measurement of SNR
with a DFE simulation. There are a number of methods that can be used to reduce the number of states
in the finite-state machine, most of which will reduce the accuracy of the probability of error estimate.

In the usual case, the constellation for xk is symmetric with respect to the origin, and there is
essentially no difference between εk and −εk, so that the analysis may merge the two corresponding
states and only consider one of the error vectors. This can be done for almost half15 the states in
the state transition diagram, leading to a new state transition diagram with MNb states. Further
analysis then proceeds as above, finding the stationary distribution and adding over states in E . There
is essentially no difference in this Pe estimate with respect to the one estimated using all (2M − 1)Nb

states; however, the number of states can remain unacceptably large.
At a loss in Pe accuracy, we may ignore error magnitudes and signs, and compute error statistics for

binary error event vectors, which we now denote ε = [ε1 , ..., εNb ], of the type (for Nb = 3)

[ 0 0 0 ] , [ 0 1 0 ] , [ 1 0 0 ] , [ 1 0 1 ] . (3.430)

This reduces the number of states to 2Nb , but unfortunately the state transition probabilities no longer
depend only on the previous state. Thus, we must try to find an upper bound on these probabilities that
depends only on the previous states. In so doing, the sum of the stationary probabilities corresponding

15There is no reduction for zero entries.
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to states in E will also upper bound the probability of error. E corresponds to those states with a nonzero
entry in the first position (the “odd” states, ε1 = 1). To get an upperbound on each of the transition
probabilities we write

Pε1,k=1/εk−1 =
∑

{i | ε1,k(i)is allowed transition from εk−1

Pε1,k=1/εk−1,ε1,k(i)Pε1,k(i)} (3.431)

≤
∑

i | ε1,k(i)is allowed transition from εk−1

max
ε1,k(i)

Pε1,k=1/εk−1,ε1,k(i)Pε1,k(i) (3.432)

= max
ε1,k(i)

Pε1,k=1/εk−1,ε1,k(i) . (3.433)

Explicit computation of the maximum probability in (3.433) occurs by noting that this error probability
corresponds to a worst-case signal offset of

δmax(ε) = (M − 1)d
Nb∑

i=1

|vi|ε1,k−i , (3.434)

which the reader will note is analogous to peak distortion (the distortion is understood to be the worst
of the two QAM dimensions, which are assumed to be rotated so that dmin lies along either or both
of the dimensions ). As long as this quantity is less than the minimum distance between constellation
points, the corresponding error probability is then upper bounded as

Pek/εk−1 ≤ Q




dmin
2

− δmax(ε)√
σ2

MMSE−DFE


 . (3.435)

Now, with the desired state-dependent (only) transition probabilities, the upper bound for Pe with error
propagation is

Pe ≤
∑

ε
Q




dmin
2 − δmax(ε)√
σ2

MMSE−DFE


Pε . (3.436)

Even in this case, the number of states 2Nb can be too large.
A further reduction to Nb + 1 states is possible, by grouping the 2Nb states into groups that are

classified only by the number of leading in εk−1; thus, state i = 1 corresponds to any state of the form
[0 ε], while state i = 2 corresponds to [0 0 ε ...], etc. The upperbound on probability of error for
transitions into any state, i, then uses a δmax(i) given by

δmax(i) = (M − 1)d
Nb∑

i=i+1

|vi| , (3.437)

and δmax(Nb) = 0.
Finally, a trivial bound that corresponds to noting that after an error is made, we have MNb − 1

possible following error event vectors that can correspond to error propagation (only the all zeros error
event vector corresponds to no additional errors within the time-span of the feedback path). The
probability of occurrence of these error event vectors is each no greater than the initial error probability,
so they can all be considered as nearest neighbors. Thus adding these to the original probability of the
first error,

Pe(errorprop) ≤ MNbPe(first) . (3.438)

It should be obvious that this bound gives useful results only if Nb is small (that is a probability of error
bound of .5 for i.i.d. input data may be lower than this bound even for reasonable values of M and Nb).
That is suppose, the first probability of error is 10−5, and M = 8 and Nb = 8, then this last (easily
computed) bound gives Pe ≤ 100 !
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Figure 3.45: Look-Ahead mitigation of error propagation in DFEs.

3.7.8 Look-Ahead

Figure 3.45 illustrates a “look-ahead” mechanism for reducing error propagation. Instead of using the
decision, Mν possible decision vectors are retained. The vector is of dimension ν and can be viewed as
an address Ak−∆−1 to the memory. The possible output for each of the Mν is computed and subtracted
from zU,k−∆. Mν decisions of the symbol-by-symbol detector can then be computed and compared
in terms of the distance from a potential symbol value, namely smallest |EU,k−∆|. The smallest such
distance is used to select the decision for x̂k−∆. This method is called “look-ahead” decoding basically
because all possible previous decisions’ ISI are precomputed and stored, in some sense looking ahead in
the calculation. If Mν calculations (or memory locations) is too complex, then the largest ν′ < ν taps can
be used (or typically the most recent ν′ and the rest subtracted in typical DFE fashion for whatever the
decisions previous to the ν′ tap interval in a linear filter. Look-ahead leads to the Maximum Likelihood
Sequence detection (MLSD) methods of Chapter 9 that are no longer symbol-by-symbol based. Look-
ahead methods can never exceed SNRMMSE−DFE,U in terms of performance, but can come very close
since error propagation can be very small. (MLSD methods can exceed SNRMMSE−DFE,U .)
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Figure 3.46: The Tomlinson Precoder.

3.8 Precoding

This section discusses solutions to the error-propagation problem of DFE’s. The first is precoding, which
essentially moves the feedback section of the DFE to the transmitter with a minimal (but nonzero)
transmit-power-increase penalty, but with no reduction in DFE SNR. The second approach or partial
response channels (which have trivial precoders) has no transmit power penalty, but may have an SNR
loss in the DFE because the feedback section is fixed to a desirable preset value for B(D) rather than
optimized value. This preset value (usually with all integer coefficients) leads to simplification of the
ZF-DFE structure.

3.8.1 The Tomlinson Precoder

Error propagation in the DFE can be a major concern in practical application of this receiver structure,
especially if constellation-expanding codes, or convolutional codes (see Chapter 10), are used in concate-
nation with the DFE (because the error rate on the inner DFE is lower (worse) prior to the decoder).
Error propagation is the result of an incorrect decision in the feedback section of the DFE that produces
additional errors that would not have occurred if that first decision had been correct.

The Tomlinson Precoder (TPC), more recently known as a Tomlinson-Harashima Precoder, is
a device used to eliminate error propagation and is shown in Figure 3.46. Figure 3.46(a) illustrates
the case for real one-dimensional signals, while Figure 3.46(b) illustrates a generalization for complex
signals. In the second complex case, the two real sums and two one-dimensional modulo operators can
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Figure 3.47: Illustration of modulo arithmetic operator.

be generalized to a two-dimensional modulo where arithmetic is modulo a two-dimensional region that
tesselates two-dimensional space (for example, a hexagon, or a square).

The Tomlinson precoder appears in the transmitter as a preprocessor to the modulator. The Tom-
linson Precoder maps the data symbol xk into another data symbol x′

k, which is in turn applied to
the modulator (not shown in Figure 3.46). The basic idea is to move the DFE feedback section to the
transmitter where decision errors are impossible. However, straightforward moving of the filter 1/B(D)
to the transmitter could result in significant transmit-power increase. To prevent most of this power
increase, modulo arithmetic is employed to bound the value of x′

k:

Definition 3.8.1 (Modulo Operator) The modulo operator ΓM (x) is a nonlinear func-
tion, defined on an M -ary (PAM or QAM square) input constellation with uniform spacing
d, such that

ΓM (x) = x − Mdb
x + Md

2

Md
c (3.439)

where byc means the largest integer that is less than or equal to y. ΓM (x) need not be an
integer. This text denotes modulo M addition and subtraction by ⊕M and 	M respectively.
That is

x ⊕M y
∆= ΓM [x + y] (3.440)

and
x 	M y

∆= ΓM [x − y] . (3.441)

For complex QAM, each dimension is treated modulo
√

M independently.

Figure 3.47 illustrates modulo arithmetic for M = 4 PAM signals with d = 2. The following lemma
notes that the modulo operation distributes over addition:

Lemma 3.8.1 (Distribution of ΓM (x) over addition) The modulo operator can be dis-
tributed over a sum in the following manner:

ΓM [x + y] = ΓM (x) ⊕M ΓM(y) (3.442)
ΓM [x− y] = ΓM (x) 	M ΓM(y) . (3.443)
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The proof is trivial.
The Tomlinson Precoder generates an internal signal

x̃k = xk −
∞∑

i=1

bix
′
k−i (3.444)

where

x′
k = ΓM [x̃k] = ΓM

[
xk −

∞∑

i=1

bix
′
k−i

]
. (3.445)

The scaled-by-SNRMMSE−DFE/SNRMMSE−DFE,U output of the MS-WMF in the receiver is an optimal
unbiased MMSE approximation to X(D) ·GU (D). That is

E

[
SNRMMSE−DFE

SNRMMSE−DFE,U
zk/[xk xk−1 , ..., ]

]
=

∞∑

i=0

gU,ixk−i . (3.446)

Thus, B(D) = GU(D). From Equation (3.249) with x′(D) as the new input, the scaled feedforward
filter output with the Tomlinson precoder is

zU,k =

(
x′

k +
∞∑

i=1

gU,ix
′
k−i

)
+ eU,k . (3.447)

ΓM [zU,k] is determined as

ΓM [zU,k] = ΓM [ΓM(xk −
∞∑

i=1

gU,ix
′
k−i) +

∞∑

i=1

gU,ix
′
k−i + eU,k] (3.448)

= ΓM [xk −
∞∑

i=1

gU,ix
′
k−i +

∞∑

i=1

gU,ix
′
k−i + eU,k] (3.449)

= ΓM [xk + eU,k] (3.450)
= xk ⊕M ΓM [eU,k] (3.451)
= xk + e′U,k . (3.452)

Since the probability that the error eU,k being larger than Md/2 in magnitude is small in a well-designed
system, one can assume that the error sequence is of the same distribution and correlation properties after
the modulo operation. Thus, the Tomlinson Precoder has allowed reproduction of the input sequence
at the (scaled) MS-WMF output, without ISI. The original Tomlinson work was done for the ZF-DFE,
which is a special case of the theory here, with GU(D) = Pc(D). The receiver corresponding to Tomlinson
precoding is shown in Figure 3.48.

The noise power at the feed-forward output is thus almost exactly the same as that of the cor-
responding MMSE-DFE and with no error progagation because there is no longer any need for the
feedback section of the DFE. As stated here without proof, there is only a small price to pay in increased
transmitter power when the TPC is used.

Theorem 3.8.1 (Tomlinson Precoder Output) The Tomlinson Precoder output, when
the input is an i.i.d. sequence, is also approximately i.i.d., and futhermore the output sequence
is approximately uniform in distribution over the interval [−Md/2, Md/2).

There is no explicit proof of this theorem for finite M , although it can be proved exactly as M → ∞.
This proof notes that the unbiased and biased receivers are identical as M → ∞, because the SNR must
also be infinite. Then, the modulo element is not really necessary, and the sequence x′

k can be shown to
be equivalent to a prediction-error or “innovations” sequence, which is known in the estimation literature
to be i.i.d. The i.i.d. part of the theorem appears to be valid for almost any M . The distribution and
autocorrelation properties of the TPC, in closed form, remain an unsolved problem at present.
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Figure 3.48: Receiver for Tomlinson precoded MMSE-DFE implementation.

Using the uniform distribution assumption, the increase in transmit power for the TPC is from the
nominal value of (M2−1)d2

12
to the value for a continuous uniform random variable over the output interval

[−Md/2, Md/2), which is M2d2

12 , leading to an input power increase of

M2

M2 − 1
(3.453)

for PAM and correspondingly
M

M − 1
(3.454)

for QAM. When the input is not a square constellation, the Tomlinson Precoder Power loss is usually
larger, but never more than a few dB. The number of nearest neighbors also increases to N̄e = 2 for all
constellations. These losses can be eliminated (and actually a gain is possible) using techniques called
Trellis Precoding and/or shell mapping (See Section 10.6).

Laroia or Flexible Precoder

Figure 3.49 shows the Laroia precoder, which is a variation on Tomlinson precoding introduced by
Rajiv Laroia, mainly to reduce the transmit-power loss of the Tomlinson precoder. The Laroia precoder
largely preserves the shape of the transmitted constellation. The equivalent circuit is also shown in
Figure 3.49 where the input is considered to be the difference between the actual input symbol value xk

and the “decision” output λk. The decision device finds the closest point in the infinite extension of the
constellation16. The extension of the constellation is the set of points that continue to be spaced by dmin
from the points on the edges of the original constellation and along the same dimensions as the original
constellation. mk is therefore a small error signal that is uniform in distribution over (−d/2, d/2), thus
having variance d2/12 << Ex.

Because of the combination of channel and feedforward equalizer filters, the feedforward filter output
is

ZU (D) = [X(D) + M (D)] · GU (D) + EU (D) = X(D) − λ(D) + EU(D) . (3.455)

Processing ZU (D) by a decision operation leaves X(D)−λ(D), which essentially is the decision. However,
to recover the input sequence X(D), the receiver forms

Z′(D) =
X(D) − λ(D)

GU (D)
= X(D) + M (D) . (3.456)

Since M (D) is uniform and has magnitude always less than d/2, then M (D) is removed by a second
truncation (which is not really a decision, but operates using essentially the same logic as the first
decision).

16The maximum range of such an infinite extension is actually the sum
∑ν

i=1
|< or =gU,i | · |R̄ee(D) or =xmax|.

231



Figure 3.49: Flexible Precoding.
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Figure 3.50: Flexible Precoding Example.

Example and error propagation in flexible precoding

EXAMPLE 3.8.1 (1 + .9D−1 system with flexible precoding) The flexible precoder and
corresponding receiver for the 1 + .9D−1 example appear in Figure 3.50. The bias removal
factor has been absorbed into all filters (7.85/6.85 multiples .633 to get .725 in feedback
section, and multiplies .9469 to get 1.085 in feedforward section). The decision device is
binary in this case since binary antipodal transmission is used. Note the IIR filter in the
receiver. If an error is made in the first SBS in the receiver, then the magnitude of the error
is 2 = |+ 1− (−1)| = |− 1− (+1)|. Such an error is like an impulse of magnitude 2 added to
the input of the IIR filter, which has impulse response (−.725)k ·uk, producing a contribution
to the correct sequence of 2 · (−.725)k ·uk. This produces an additional 1 error half the time
and an additional 2 errors 1/4 the time. Longer strings of errors will not occur. Thus, the
bit and symbol error rate in this case increase by a factor of 1.5. (less than .1 dB loss).

A minor point is that the first decision in the receiver has an increased nearest neighbor
coefficient of Ne = 1.5.

Generally speaking, when an error is made in the receiver for the flexible precoder,

(xk − λk) − decision(xk − λk) = ε · δk (3.457)

where ε could be complex for QAM. Then the designer needs to compute for each type of such error, its
probability of occurence and then investigate the string (with (1/b)k being the impulse response of the
post-first-decision filter in the receiver)

|ε · (1/b)k| << dmin/2 . (3.458)

For some k, this relation will hold and that is the maximum burst length possible for the particular type
of error. Given the filter b is monic and minimum phase, this string should not be too long as long as the
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roots are not too close to the unit circle. The single error may cause additional errors, but none of these
additional errors in turn cause yet more errors (unlike a DFE where second and subsequent errors can
lead to some small probability of infinite-length bursts), thus the probaility of an infinitely long burst
is zero for the flexible precoder situation (or indeed any burst longer than the k that solves the above
equation.

3.8.2 Partial Response Channel Models

Partial-response methods are a special case of precoding design where the ISI is forced to some known
well-defined pattern. Receiver detectors are then designed for such partial-response channels directly,
exploiting the known nature of the ISI rather than attempting to eliminate this ISI.

Classic uses of partial response abound in data transmission, some of which found very early use.
For instance, the earliest use of telephone wires for data transmission inevitably found large intersymbol
interference because of a transformer that was used to isolate DC currents at one end of a phone line
from those at the other (see Prob 3.35). The transformer did not pass low frequencies (i.e., DC), thus
inevitably leading to non-Nyquist17 pulse shapes even if the phone line otherwise introduced no signficant
intersymbol interference. Equalization may be too complex or otherwise undesirable as a solution, so
a receiver can use a detector design that instead presumes the presence of a known fixed ISI. Another
example is magnetic recording (see Problem 3.36) where only flux changes on a recording surface can be
sensed by a read-head, and thus D.C. will not pass through the “read channel,” again inevitably leading
to ISI. Straightforward equalization is often too expensive at the very high speeds of magnetic-disk
recording systems.

Partial-Response (PR) channels have non-Nyquist pulse responses – that is, PR channels allow in-
tersymbol interference – over a few (and finite number of) sampling periods. A unit-valued sample of
the response occurs at time zero and the remaining non-zero response samples at subsequent sampling
times, thus the name “partial response.” The study of PR channels is facilitated by mathematically
presuming the tacit existence of a whitened matched filter, as will be described shortly. Then, a number
of common PR channels can be easily addressed.

Figure 3.51(a) illustrates the whitened-matched-filter. The minimum-phase equivalent of Figure
3.51(b) exists if Q(D) = η0 ·H(D) ·H∗(D−∗) is factorizable.18 This chapter focuses on the discrete-time
channel and presumes the WMF’s presence without explicitly showing or considering it. The signal
output of the discrete-time channel is

yk =
∞∑

m=−∞
hm · xk−m + nk , (3.459)

or
Y (D) = H(D) · X(D) + N (D) , (3.460)

where nk is sampled Gaussian noise with autocorrelation r̄nn,k = ‖p‖−2 · η−1
0 · N0

2 · δk or R̄nn(D) =
‖p‖−2 ·η−1

0 · N0
2 when the whitened-matched filter is used, and just denoted σ2

pr otherwise. In both cases,
this noise is exactly AWGN with mean-square sample value σ2

pr, which is conveniently abbreviated σ2

for the duration of this chapter.

Definition 3.8.2 (Partial-Response Channel) A partial-response (PR) channel is any
discrete-time channel with input/output relation described in (3.459) or (3.460) that also sat-
isfies the following properties:

1. hk is finite-length and causal; hk = 0 ∀ k < 0 or k > ν, where ν < ∞ and is often
called the constraint length of the partial-response channel,

2. hk is monic; h0 = 1,

3. hk is minimum phase; H(D) has all ν roots on or outside the unit circle,

17That is, they do not satisfy Nyquist’s condition for nonzero ISI - See Chapter 3, Section 3.
18H(D) = Pc(D) in Section 3.6.3 on ZF-DFE.
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Figure 3.51: Minimum Phase Equivalent Channel.
;’

4. hk has all integer coefficients; hk ∈ Z ∀ k 6= 0 (where Z denotes the set of integers).

More generally, a discrete finite-length channel satisfying all properties above except the last
restriction to all integer coefficients is known as a controlled intersymbol-interference
channel.

Controlled ISI and PR channels are a special subcase of all ISI channels, for which hk = 0 ∀ k > ν. ν is
the constraint length of the controlled ISI channel. Thus, effectively, the channel can be modeled as
an FIR filter, and hk is the minimum-phase equivalent of the sampled pulse response of that FIR filter.
The constraint length defines the span in time νT of the non-zero samples of this FIR channel model.

The controlled ISI polynomial (D-transform)19 for the channel simplifies to

H(D) ∆=
ν∑

m=0

hmDm , (3.461)

where H(D) is always monic, causal, minimum-phase, and an all-zero (FIR) polynomial. If the receiver
processes the channel output of an ISI-channel with the same whitened-matched filter that occurs in
the ZF-DFE of Section 3.6, and if Pc(D) (the resulting discrete-time minimum-phase equivalent channel
polynomial when it exists) is of finite degree ν, then the channel is a controlled intersymbol interference
channel with H(D) = Pc(D) and σ2 = N0

2 · ‖p‖−2 ·η−1
0 . Any controlled intersymbol-interference channel

is in the form that the Tomlinson Precoder of Section 3.8.1 could be used to implement symbol-by-
symbol detection on the channel output. As noted in Section 3.8.1, a (usually small) transmit symbol
energy increase occurs when the Tomlinson Precoder is used. Section 3.8.4 shows that this loss can be
avoided for the special class of polynomials H(D) that are partial-response channels.

19The D-Transform of FIR channels (ν < ∞) is often called the “channel polynomial,” rather than its “D-Transform”
in partial-response theory. This text uses these two terms interchangeably.
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Figure 3.52: Simple DFE for some partial-response channels.

Equalizers for the Partial-response channel.

This small subsection serves to simplify and review equalization structure on the partial-response channel.
The combination of integer coefficients and minimum-phase constraints of partial-response channels

allows a very simple implementation of the ZF-DFE as in Figure 3.52. Since the PR channel is already
discrete time, no sampling is necessary and the minimum-phase characteristic of H(D) causes the WMF
of the ZF-DFE to simplify to a combined transfer function of 1 (that is, there is no feedforward sec-
tion because the channel is already minimum phase). The ZF-DFE is then just the feedback section
shown, which easily consists of the feedback coefficients −hm for the delayed decisions corresponding to
x̂k−m, m = 1, ..., ν. The loss with respect to the matched filter bound is trivially 1/‖H‖2, which is easily
computed as 3 dB for H(D) = 1±Dν (any finite ν) with simple ZF-DFE operation zk = yk − x̂k−ν and
6 dB for H(D) = 1 + D − D2 − D3 with simple ZF-DFE operation zk = yk − x̂k−1 + x̂k−2 + x̂k−3.

The ZF-LE does not exist if the channel has a zero on the unit circle, which all partial-response
channels do. A MMSE-LE could be expected to have signficant noise enhancement while existing.
The MMSE-DFE will perform slightly better than the ZF-DFE, but is not so easy to compute as the
simple DFE. Tomlinson or Flexible precoding could be applied to eliminate error propagation for a small
increase in transmit power ( M2

M2−1).

3.8.3 Classes of Partial Response

A particularly important and widely used class of partial response channels are those with H(D) given
by

H(D) = (1 + D)l (1 − D)n , (3.462)

where l and n are nonnegative integers.
For illustration, Let l = 1 and n = 0 in (3.462), then

H(D) = 1 + D , (3.463)

236



Figure 3.53: Transfer Characteristic for Duobinary signaling.

which is sometimes called a “duobinary” channel (introduced by Lender in 1960). The Fourier transform
of the duobinary channel is

H(e−ωT ) = H(D)|D=e−ωT = 1 + e−ωT = 2e−ωT/2 · cos
(

ωT

2

)
. (3.464)

The transfer function in (3.464) has a notch at the Nyquist Frequency and is generally “lowpass” in
shape, as is shown in Figure 3.53. A discrete-time ZFE operating on this channel would produce infinite
noise enhancement. If SNRMFB = 16 dB for this channel, then

Q(e−ωT ) +
1

SNRMFB
= (1 + 1/40) + cos ωT . (3.465)

The MMSE-LE will have performance (observe that N0
2 = .05)

σ2
MMSE−LE =

N0

2
T

2π

∫ π
T

− π
T

1
‖p‖2(1.025 + cos ωT )

dω =
N0

2
1/2√

1.0252 − 12
= 2.22

N0

2
, (3.466)

The SNRMMSE−LE,U is easily computed to be 8 (9dB), so the equalizer loss is 7 dB in this case. For
the MMSE-DFE, Q(D) + 1

SNRMFB
= 1.025

1.64
(1 + .8D)(1 + .8D−1), so that γ0 = 1.025/1.64 = .625, and

thus γMMSE-DFE = 2.2dB. For the ZF-DFE, η0 = 1
2 , and thus γZF-DFE = 3dB.

It is possible to achieve MFB performance on this channel with complexity far less than any equalizer
studied earlier in this chapter, as will be shown in Chapter 9. It is also possible to use a precoder with
no transmit power increase to eliminate the error-propagation-prone feedback section of the ZF-DFE.

There are several specific channels that are used in practice for partial-response detection:

EXAMPLE 3.8.2 (Duobinary 1 + D) The duobinary channel (as we have already seen)
has

H(D) = 1 + D . (3.467)
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The frequency response was already plotted in Figure 3.53. This response goes to zero at the
Nyquist Frequency, thus modeling a lowpass-like channel. For a binary input of xk = ±1,
the channel output (with zero noise) takes on values ±2 with probability 1/4 each and 0 with
probability 1/2. In general, for M -level inputs (±1 ± 3 ± 5 ... ± (M − 1)), there are 2M − 1
possible output levels, −2M + 2, ..., 0, ..., 2M − 2. These output values are all possible
sums of pairs of input symbols.

EXAMPLE 3.8.3 (DC Notch 1 − D) The DC Notch channel has

H(D) = 1 − D , (3.468)

so that l = 0 and n = 1 in (3.462). The frequency response is

H(e−ωT ) = 1 − e−ωT = 2e−ω T
2 · sin ωT

2
. (3.469)

The response goes to zero at the DC (ω = 0), thus modeling a highpass-like channel. For
a binary input of xk = ±1, the channel output (with zero noise) takes on values ±2 with
probability 1/4 each and 0 with probability 1/2. In general for M -level inputs (±1 ± 3 ±
5 ... ± (M − 1)), there are 2M − 1 possible output levels, −2M + 2, ..., 0, ..., 2M − 2.

When the 1 − D shaping is imposed in the modulator itself, rather than by a channel, the
corresponding modulation is known as AMI (Alternate Mark Inversion) if a differential
encoder is also used as shown later in this section. AMI modulation prevents “charge” (DC)
from accumulating and is sometimes also called “bipolar coding,” although the use of the
latter term is often confusing because bipolar transmission may have other meanings for some
communications engineers. AMI coding, and closely related methods are used in multiplexed
T1 (1.544 Mbps DS1 or “ANSI T1.403”) and E1 (2.048 Mbps or “ITU-T G.703”) speed
digital data transmission on twisted pairs or coaxial links. These signals were once prevalent
in telephone-company non-fiber central-office transmission of data between switch elements.

EXAMPLE 3.8.4 (Modified Duobinary 1 − D2) The modified duobinary channel has

H(D) = 1 − D2 = (1 + D)(1 − D) , (3.470)

so l = n = 1 in (3.462). Modified Duobinary is sometimes also called “Partial Response
Class IV” or PR4 or PRIV in the literature. The frequency response is

H(e−ωT ) = 1 − e−ω2T = 2e−ωT · sin(ωT ) . (3.471)

The response goes to zero at the DC (ω = 0) and at the Nyquist frequency (ω = π/T ),
thus modeling a bandpass-like channel. For a binary input of xk = ±1, the channel output
(with zero noise) takes on values ±2 with probability 1/4 each and 0 with probability 1/2.
In general, for M -level inputs (±1 ± 3 ± 5 ... ± (M − 1)), there are 2M − 1 possible
output levels. Modified duobinary is equivalent to two interleaved 1 − D channels, each
independently acting on the inputs corresponding to even (odd) time samples, respectively.
Many commercial disk drives use PR4.

EXAMPLE 3.8.5 (Extended Partial Response 4 and 6 (1 + D)l(1 − D)n) The EPR4
channel has l = 2 and n = 1 or

H(D) = (1 + D)2(1 − D) = 1 + D − D2 − D3 . (3.472)

This channel is called EPR4 because it has 4 non-zero samples (Thapar). The frequency
response is

H(e−ωT ) = (1 + e−ωT )2(1 − e−ωT ) . (3.473)
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Figure 3.54: Transfer Characteristic for EPR4 and EPR6

The EPR6 channel has l = 4 and n = 1 (6 nonzero samples)

H(D) = (1 + D)4(1 − D) = 1 + 3D + 2D2 − 2D3 − 3D4 − D5 . (3.474)

The frequency response is

H(e−ωT ) = (1 + e−ωT )4(1 − e−ωT ) . (3.475)

These 2 channels, along with PR4, are often used to model disk storage channels in magnetic
disk or tape recording. The response goes to zero at DC (ω = 0) and at the Nyquist frequency
in both EPR4 and EPR6, thus modeling bandpass-like channels. The magnitude of these two
frequency characteristics are shown in Figure 3.54. These are increasingly used in commercial
disk storage read detectors.

The higher the l, the more “lowpass” in nature that the EPR channel becomes, and the more appropriate
as bit density increases on any given disk.

For partial-response channels, the use of Tomlinson Precoding permits symbol-by-symbol detection,
but also incurs an M2/(M2 − 1) signal energy loss for PAM (and M/(M − 1) for QAM). A simpler
method for PR channels, that also has no transmit energy penalty, is known simply as a “precoder.”

3.8.4 Simple Precoding

The simplest form of precoding for the duobinary, DC-notch, and modified duobinary partial-response
channels is the so-called “differential encoder.” The message at time k, mk, is assumed to take on
values m = 0, 1, ..., M − 1. The differential encoder for the case of M = 2 is most simply described as
the device that observes the input bit stream, and changes its output if the input is 1 and repeats the
last output if the input is 0. Thus, the differential encoder input, mk, represents the difference (or sum)
between adjacent differential encoder output (m̄k and m̄k−1) messages20:

20This operation is also very useful even on channels without ISI, as an unknown inversion in the channel (for instance,
an odd number of amplifiers) will cause all bits to be in error if (differential) precoding is not used.
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Figure 3.55: Precoded Partial Response Channel.

Definition 3.8.3 (Differential Encoder) Differential encoders for PAM or QAM mod-
ulation obey one of the two following relationships:

m̄k = mk 	 m̄k−1 (3.476)
m̄k = mk ⊕ m̄k−1 , (3.477)

where 	 represents subtraction modulo M (and ⊕ represents addition modulo M). For SQ
QAM, the modulo addition and subtraction are performed independently on each of the two
dimensions, with

√
M replacing M . (A differential phase encoder is also often used for QAM

and is discussed later in this section.)

A differential encoder is shown on the left side of Figure 3.55. As an example if M = 4 the corresponding
inputs and outputs are given in the following table:
mk - 3 1 0 2 1 0 3
m̄k 0 3 2 2 0 1 3 0
k -1 0 1 2 3 4 5 6
With either PAM or QAM constellations, the dimensions of the encoder output m̄k are converted

into channel input symbols (±d
2 , ±3d

2 ...) according to

xk = [2m̄k − (M − 1)]
d

2
. (3.478)

Figure 3.55 illustrates the duobinary channel H(D) = 1 + D, augmented by the precoding operation
of differential encoding as defined in (3.476). The noiseless minimum-phase-equivalent channel output
ỹk is

ỹk = xk + xk−1 = 2(m̄k + m̄k−1)
d

2
− 2(M − 1)

d

2
(3.479)

so21

ỹk

d
+ (M − 1) = m̄k + m̄k−1 (3.480)

21(•)M means the quantity is computed in M -level arithmetic, for instance, (5)4 = 1. Also note that ΓM(x) 6= (x)M ,
and therefore ⊕ is different from the ⊕M of Section 3.5. The functions (x)M and ⊕ have strictly integer inputs and have
possible outputs 0, ...,M − 1 only.
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([
ỹk

d
+ (M − 1)

])

M

= m̄k ⊕ m̄k−1 (3.481)
([

ỹk

d
+ (M − 1)

])

M

= mk (3.482)

where the last relation (3.482) follows from the definition in (3.476). All operations are integer mod-M .
Equation (3.482) shows that a decision on ỹk about mk can be made without concern for preceding or
succeeding ỹk, because of the action of the precoder. The decision boundaries are simply the obvious
regions symmetrically placed around each point for a memoryless ML detector of inputs and the decoding
rules for M = 2 and M = 4 are shown in Figure 3.55. In practice, the decoder observes yk, not ỹk, so
that yk must first be quantized to the closest noise-free level of yk. That is, the decoder first quantizes
ỹk to one of the values of (−2M + 2)(d/2), ..., (2M − 2)(d/2). Then, the minimum distance between

outputs is dmin = d, so that
dmin
2σpr

= d
2σpr

, which is 3 dB below the
√

MFB =
√

2
σpr

(d/2) for the 1 + D

channel because ‖p‖2 = 2. (Again, σ2
pr = ‖p‖−2 · η−1

0 · N0
2 with a WMF and otherwise is just σ2

pr.) This
loss is identical to the loss in the ZF-DFE for this channel. One may consider the feedback section of the
ZF-DFE as having been pushed through the linear channel back to the transmitter, where it becomes
the precoder. With some algebra, one can show that the TPC, while also effective, would produce a
4-level output with 1.3 dB higher average transmit symbol energy for binary inputs. The output levels
are assumed equally likely in determining the decision boundaries (half way between the levels) even
though these levels are not equally likely.

The precoded partial-response system eliminates error propagation, and thus has lower Pe than the
ZF-DFE. This elimination of error propagation can be understood by investigating the nearest neighbor
coefficient for the precoded situation in general. For the 1 + D channel, the (noiseless) channel output
levels are −(2M − 2) − (2M − 4)... 0 ... (2M − 4) (2M − 2) with probabilities of occurrence 1

M2
2

M2 ...
M
M2 ... 2

M2
1

M2 , assuming a uniform channel-input distribution. Only the two outer-most levels have one
nearest neighbor, all the rest have 2 nearest neighbors. Thus,

N̄e =
2

M2
(1) +

M2 − 2
M2

(2) = 2
(

1 − 1
M2

)
. (3.483)

For the ZF-DFE, the input to the decision device z̃k as

z̃k = xk + xk−1 + nk − x̂k−1 , (3.484)

which can be rewritten
z̃k = xk + (xk−1 − x̂k−1) + nk . (3.485)

Equation 3.485 becomes z̃k = xk + nk if the previous decision was correct on the previous symbol.
However, if the previous decision was incorrect, say +1 was decided (binary case) instead of the correct
−1, then

z̃k = xk − 2 + nk , (3.486)

which will lead to a next-symbol error immediately following the first almost surely if xk = 1 (and no
error almost surely if xk = −1). The possibility of z̃k = xk + 2 + nk is just as likely to occur and follows
an identical analysis with signs reversed. For either case, the probability of a second error propagating
is 1/2. The other half of the time, only 1 error occurs. Half the times that 2 errors occur, a third error
also occurs, and so on, effectively increasing the error coefficient from Ne = 1 to

Ne = 2 = 1(
1
2
) + 2(

1
4
) + 3(

1
8
) + 4(

1
16

) + ... =
∞∑

k=1

k · (.5)k =
.5

(1 − .5)2
. (3.487)

(In general, the formula
∑∞

k=1 k · rk = r
(1−r)2 , r < 1 may be useful in error propagation analysis.) The

error propagation can be worse in multilevel PAM transmission, when the probability of a second error
is (M − 1)/M , leading to

Ne(error prop)
Ne(no error prop)

= 1 · 1
M

+ 2 · M − 1
M

· 1
M

+ 3 ·
(

M − 1
M

)2

· 1
M

+ ... (3.488)
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=
∞∑

k=1

k ·
(

M − 1
M

)k−1

· 1
M

(3.489)

= M . (3.490)

Precoding eliminates this type of error propagation, although N̄e increases by a factor22 of (1 + 1/M )
with respect to the case where no error propagation occurred.

For the ZF-DFE system, P̄e = 2(M − 1)Q( d
2σpr

), while for the precoded partial-response system,
P̄e = 2

(
1 − 1

M2

)
Q( d

2σpr
). For M ≥ 2, the precoded system always has the same or fewer nearest

neighbors, and the advantage becomes particularly pronounced for large M . Using a rule-of-thumb
that a factor of 2 increase in nearest neighbors is equivalent to an SNR loss of .2 dB (which holds at
reasonable error rates in the 10−5 to 10−6 range), the advantage of precoding is almost .2 dB for M = 4.
For M = 8, the advantage is about .6 dB, and for M = 64, almost 1.2 dB. Precoding can be simpler
to implement than a ZF-DFE because the integer partial-response channel coefficients translate readily
into easily realized finite-field operations in the precoder, while they represent full-precision add (and
shift) operations in feedback section of the ZF-DFE.

Precoding the DC Notch or Modified Duobinary Channels

The m̄k = mk 	 m̄k−1 differential encoder works for the 1 + D channel. For the 1 − D channel, the
equivalent precoder is

m̄k = mk ⊕ m̄k−1 , (3.491)

which is sometimes also called NRZI (non-return-to-zero inverted) precoding, especially by storage-
channel engineers. In the 1 − D case, the channel output is

ỹk = xk − xk−1 = 2(m̄k − m̄k−1)
d

2
(3.492)

ỹk

d
= m̄k − m̄k−1 (3.493)

(
ỹk

d

)

M

= m̄k 	 m̄k−1 (3.494)
(

ỹk

d

)

M

= mk . (3.495)

The minimum distance and number of nearest neighbors are otherwise identical to the 1 + D case just
studied, as is the improvement over the ZF-DFE. The 1−D2 case is identical to the 1−D case, on two
interleaved 1 − D channels at half the rate. The overall precoder for this situation is

m̄k = mk ⊕ m̄k−2 , (3.496)

and the decision rule is (
ỹk

d

)

M

= mk . (3.497)

The combination of precoding with the 1 − D channel is often called “alternate mark inversion (AMI)”
because each successive transmitted “1” bit value causes a nonzero channel output amplitude of polarity
oppositie to the last nonzero channel output amplitude, while a “0” bit always produces a 0 level at the
channel output.

Precoding EPR4

An example of precoding for the extended Partial Response class is EPR4, which has l = 2 and n = 1
in (3.472), or EPR4. Then,

ỹk = xk + xk−1 − xk−2 − xk−3 (3.498)
22The ratio of 2(1− 1/M2) with precoding to 2(1− 1/M) for M-ary PAM with no error propagation effects included
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ỹk = d(m̄k + m̄k−1 − m̄k−2 − m̄k−3) (3.499)
ỹk

d
= m̄k + m̄k−1 − m̄k−2 − m̄k−3 (3.500)

(
ỹk

d

)

M

= m̄k ⊕ m̄k−1 	 m̄k−2 	 m̄k−3 (3.501)
(

ỹk

d

)

M

= mk (3.502)

where the precoder, from (3.502) and (3.501), is

m̄k = mk 	 m̄k−1 ⊕ m̄k−2 ⊕ m̄k−3 . (3.503)

The minimum distance at the channel output is still d in this case, so Pe ≤ Ne · Q(d/2σpr), but the
MFB = ( d

σpr
)2, which is 6dB higher. The same 6dB loss that would occur with an error-propagation-free

ZF-DFE on this channel.
For the 1 + D − D2 − D3 channel, the (noiseless) channel output levels are −(4M − 4) − (4M −

6)... 0 ... (4M −6) (4M −4). Only the two outer-most levels have one nearest neighbor, all the rest have
2 nearest neighbors. Thus,

N̄e =
2

M4
(1) +

M4 − 2
M4

(2) = 2
(

1 − 1
M4

)
. (3.504)

Thus the probability of error for the precoded system is P̄e = 2
(
1 − 1

M4

)
Q( 1

σpr
). The number of nearest

neighbors for the ZF-DFE, due to error propagation, is difficult to compute, but clearly will be worse.

3.8.5 General Precoding

The general partial response precoder can be extrapolated from previous results:

Definition 3.8.4 (The Partial-Response Precoder) The partial-response precoder
for a channel with partial-response polynomial H(D) is defined by

m̄k = mk

ν⊕

i=1

(−hi) · m̄k−i . (3.505)

The notation
⊕

means a mod-M summation, and the multiplication can be performed without
ambiguity because the hi and m̄k−i are always integers.

The corresponding memoryless decision at the channel output is

m̂k =

(
ŷk

d
+

ν∑

i=0

hi

(
M − 1

2

))

M

. (3.506)

The reader should be aware that while the relationship in (3.505) is general for partial-response channels,
the relationship can often simplify in specific instances, for instance the precoder for “EPR5,” H(D) =
(1 + D)3(1 − D) simplifies to m̄k = mk ⊕ m̄k−4 when M = 2.

In a slight abuse of notation, engineers often simplify the representation of the precoder by simply
writing it as

P(D) =
1

H(D)
(3.507)

where P(D) is a polynomial in D that is used to describe the “modulo-M” filtering in (3.505). Of course,
this notation is symbolic. Furthermore, one should recognize that the D means unit delay in a finite
field, and is therefore a delay operator only – one cannot compute the Fourier transform by inserting
D = e−ωT into P(D); Nevertheless, engineers commonly to refer to the NRZI precoder as a 1/(1 ⊕ D)
precoder.
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Lemma 3.8.2 (Memoryless Decisions for the Partial-Response Precoder) The partial-
response precoder, often abbreviated by P(D) = 1/H(D), enables symbol-by-symbol decoding
on the partial-response channel H(D). An upper bound on the performance of such symbol-
by-symbol decoding is

P̄e ≤ 2
(

1 − 1
Mν+1

)
Q

[
d

2σpr

]
, (3.508)

where d is the minimum distance of the constellation that is output to the channel.

Proof: The proof follows by simply inserting (3.505) into the expression for ỹk and simpli-
fying to cancel all terms with hi, i > 0. The nearest-neighbor coefficient and d/2σpr follow
trivially from inspection of the output. Adjacent levels can be no closer than d on a partial-
response channel, and if all such adjacent levels are assumed to occur for an upper bound on
probability of error, then the P̄e bound in (3.508) holds. QED.

3.8.6 Quadrature PR

Differential encoding of the type specified earlier is not often used with QAM systems, because QAM
constellations usually exhibit 90o symmetry. Thus a 90o offset in carrier recovery would make the
constellation appear exactly as the original constellation. To eliminate the ambiguity, the bit assignment
for QAM constellations usually uses a precoder that uses the four possibilities of the most-significant bits
that represent each symbol to specify a phase rotation of 0o, 90o, 180o, or 270o with respect to the last
symbol transmitted. For instance, the sequence 01, 11, 10, 00 would produce (assuming an initial phase
of 0o, the sequence of subsequent phases 90o, 0o, 180o, and 180o. By comparing adjacent decisions and
their phase difference, these two bits can be resolved without ambiguity even in the presence of unknown
phase shifts of multiples of 90o. This type of encoding is known as differential phase encoding and
the remaining bits are assigned to points in large M QAM constellations so that they are the same for
points that are just 90o rotations of one another. (Similar methods could easily be derived using 3 or
more bits for constellations with even greater symmetry, like 8PSK.)

Thus the simple precoder for the 1 + D and 1 − D (or 1 − D2) given earlier really only is practical
for PAM systems. The following type of precoder is more practical for these channels:

A Quadrature Partial Response (QPR) situation is specifically illustrated in Figure 3.56 for M = 4
or b̄ = 1 bit per dimension. The previous differential encoder could be applied individually to both
dimensions of this channel, and it could be decoded without error. All previous analysis is correct,
individually, for each dimension. There is, however, one practical problem with this approach: If the
channel were to somehow rotate the phase by ±90o (that is, the carrier recovery system locked on the
wrong phase because of the symmetry in the output), then there would be an ambiguity as to which part
was real and which was imaginary. Figure 3.56 illustrates the ambiguity: the two messages (0, 1) = 1
and (1, 0) = 2 commute if the channel has an unknown phase shift of ±90o. No ambiguity exists for
either the message (0, 0) = 0 or the message (1, 1) = 3. To eliminate the ambiguity,the precoder encodes
the 1 and 2 signals into a difference between the last 1 (or 2) that was transmitted. This precoder thus
specifies that an input of 1 (or 2) maps to no change with respect to the last input of 1 (or 2), while an
input of 2 maps to a change with respect to the last input of 1 or 2.

A precoding rule that will eliminate the ambiguity is then

Rule 3.8.1 (Complex Precoding for the 1+D Channel) if mk = (mi,k, mq,k) = (0, 0) or (1, 1)
then

m̄i,k = mi,k ⊕ m̄i,k−1 (3.509)
m̄q,k = mq,k ⊕ m̄q,k−1 (3.510)

else if mk = (mi,k, mq,k) = (0, 1) or (1, 0), check the last m̄ = (0, 1) or (1, 0) transmitted,
call it m̄90, (that is, was m̄90 = 1 or 2 ?). If m̄90 = 1, the precoder leaves mk unchanged
prior to differential encoding according to (3.509) and (3.510). The operations ⊕ and 	 are
the same in binary arithmetic.
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Figure 3.56: Quadrature Partial Response Example with 1 + D.
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If m̄90 = 2, then the precoder changes mk from 1 to 2 (or from 2 to 1) prior to encoding
according to (3.509) and (3.510).

The corresponding decoding rule is (keeping a similar state ŷ90 = 1, 2 at the decoder)

m̂k =





(0, 0) ŷk = [ ±2 ± 2 ]
(1, 1) ŷk = [ 0 0 ]
(0, 1) (ŷk = [ 0 ± 2 ] or ŷk = [ ±2 0 ]) and 6 ŷk − 6 ŷ90 = 0
(1, 0) (ŷk = [ 0 ± 2 ] or ŷk = [ ±2 0 ]) and 6 ŷk − 6 ŷ90 6= 0

. (3.511)

The probability of error and minimum distance are the same as was demonstrated earlier for this type
of precoder, which only resolves the 90o ambiguity, but is otherwise equivalent to a differential encoder.
There will however be limited error propagation in that one detection error on the 1 or 2 message points
leads to two decoded symbol errors on the decoder output.
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Figure 3.57: Basic diversity channel model.

3.9 Diversity Equalization

Diversity in transmission is the use of multiple channels from a single message source to several receivers,
as illustrated in Figure 3.57. Optimally, the principles of Chapter 1 apply directly where the conditional
probability distribution py/x of the channel has a larger dimensionality on the channel output y than on
the input, x, Ny > Nx. Often, this diversity leads to a lower probability of error for the same message,
mainly because a greater channel-output minimum distance between possible (noiseless) output data
symbols can be achieved with a larger number of channel output dimensions. However, intersymbol
interference between successive transmissions, along with interference between the diversity dimensions,
again can lead to a potentially complex optimum receiver and detector. Thus, equalization again allows
productive use of suboptimal SBS detectors. The equalizers in the case of diversity become matrix
equivalents of those studied in Sections 3.5 - 3.7.

3.9.1 Multiple Received Signals and the RAKE

Figure 3.57 illustrates the basic diversity channel. Channel outputs caused by the same channel input
have labels yl(t), l = 0, ..., L− 1. These channel outputs can be created intentionally by retransmission
of the same data symbols at different times and/or (center) frequencies. Spatial diversity often occurs in
wireless transmission where L spatially separated antennas may all receive the same transmitted signal,
but possibly with different filtering and with noises that are at least partially independent.

With each channel output following the model

yp,l(t) =
∑

k

xkpl(t − kT ) + nl(t) , (3.512)
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a corresponding L × 1 vector channel description is

yp(t) =
∑

k

xkp(t − kT ) + np(t) , (3.513)

where

yp(t) ∆=




y0(t)
y1(t)

...
yL−1(t)


 p(t) ∆=




p0(t)
p1(t)

...
pL−1(t)


 and np(t) ∆=




n0(t)
n1(t)

...
nL−1(t)


 . (3.514)

The generalization of an inner product is readily seen to be

< x(t), y(t) >=
∑

i

∫ ∞

−∞
xi(t)y∗i (t)dt . (3.515)

Without loss of generality, the noise can be considered to be white on each of the L diversity channels,
independent of the other diversity channels, and with equal power spectral densities N0

2
.23

A single transmission of x0 corresponds to a vector signal

yp(t) = x0 · p(t) + n(t) = x0 · ‖p‖ · ϕp(t) + n(t) . (3.516)

This situation generalizes slightly that considered in Chapter 1, where matched-filter demodulators
there combined all time instants through integration, a generalization of the inner product’s usual sum
of products. A matched filter in general simply combines the signal components from all dimensions
that have independent noise. Here, that generalization of combination simply needs to include also the
components corresponding to each of the diversity channels so that all signal contributions are summed
to create maximum signal-to-noise ratio. The relative weighting of the different diversity channels is thus
maintained through L unnormalized parallel matched filters each corresponding to one of the diversity
channels. When several copies are combined across several diversity channels or new dimensions (whether
created in frequency, long delays in time, or space), the combination is known as the RAKE matched
filter of Figure 3.58:

Definition 3.9.1 (RAKE matched filter) A RAKE matched filter is a set of parallel
matched filters each operating on one of the diversity channels in a diversity transmission
system that is followed by a summing device as shown in Figure 3.58. Mathematically, the
operation is denoted by

yp(t) =
L−1∑

l=0

p∗l (−t) ∗ yl(t) . (3.517)

The RAKE was originally so named by Green and Price in 1958 because of the analogy of the various
matched filters being the “fingers” of a garden rake and the sum corresponding to the collection of the
fingers at the rake’s pole handle, nomenclature thus often being left to the discretion of the inventor,
however unfortunate for posterity. The RAKE is sometimes also called a diversity combiner, although
the latter term also applies to other lower-performance suboptimal combining methods that do not
maximize overall signal to noise strength through matched filter. One structure, often called maximal
combining, applies a matched filter only to the strongest of the L diversity paths to save complexity.
The equivalent channel for this situation is then the channel corresponding to this maximum-strength
individual path. The original RAKE concept was conceived in connection with a spread-spectrum
transmission method that achieves diversity essentially in frequency (but more precisely in a code-
division dimension to be discussed in the appendix of Chapter 5), but the matched filtering implied is

23In practice, the noises may be correlated with each other on different subchannels and not white with covariance matrix

Rn(t) and power spectral density matrix Rn(f) = N0
2

· R1/2
n (f)R

∗/2
n (f). By prefiltering the vector channel output by the

matrix filter R
−1/2
n (f), the noise will be whitened and the noise equivalentmatrix channel becomes P (f) → R

−1/2
n (f)P (f).

Anaylsis with the equivalent channel can then proceed as if the noise where white, independent on the diversity channels,
and of the same variance N0

2
on all.
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Figure 3.58: The basic RAKE matched filter combiner.

easily generalized. Some of those who later studied diversity combining were not aware of the connection
to the RAKE and thus the multiple names for the same structure, although diversity combining is a
more accurate name for the method.

This text also defines rl (t) = pl(t) ∗ p∗l (−t) and

r(t) =
L−1∑

l=0

rl(t) (3.518)

for an equivalent RAKE-output equivalent channel and the norm

‖p‖2 =
L−1∑

l=0

‖pl‖2 . (3.519)

Then, the normalized equivalent channel q(t) is defined through

r(t) = ‖p‖2 · q(t) . (3.520)

The sampled RAKE output has D-transform

Y (D) = X(D) · ‖p‖2 · Q(D) + N (D) , (3.521)

which is essentially the same as the early channel models used without diversity except for the additional
scale factor of ‖p‖2, which also occurs in the noise autcorrelation, which is

R̄nn(D) =
N0

2
· ‖p‖2 · Q(D) . (3.522)

An SNRMFB = Ēx‖p‖2

N0
2

and all other detector and receiver principles previously developed in this

text now apply directly.

3.9.2 Infinite-length MMSE Equalization Structures

The sampled RAKE output can be scaled by the factor ‖p‖−1 to obtain a model identical to that found
earlier in Section 3.1 in Equation (3.26) with Q(D) and ‖p‖ as defined in Subsection 3.9.1. Thus, the
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MMSE-DFE, MMSE-LE, and ZF-LE/DFE all follow exactly as in Sections 3.5 -3.7. The matched-filter
bound SNR and each of the equalization structures tend to work better with diversity because ‖p‖2 is
typically larger on the equivalent channel created by the RAKE. Indeed the RAKE will work better
than any of the individual channels, or any subset of the diversity channels, with each of the equalizer
structures.

Often while one diversity channel has severe characteristics, like an inband notch or poor transmission
characteristic, a second channel is better. Thus, diversity systems tend to be more robust.

EXAMPLE 3.9.1 (Two ISI channels in parallel) Figure 3.59 illustrates two diversity
channels with the same input and different intersymbol interference. The first upper channel
has a sampled time equivalent of 1 + .9D−1 with noise variance per sample of .181 (and
thus could be the channel consistently examined throughout this Chapter so Ēx = 1). This
channel is in effect anti-causal (or in reality, the .9 comes first). A second channel has causal
response 1 + .8D with noise variance .164 per sample and is independent of the noise in
the first channel. The ISI effectively spans 3 symbol periods among the two channels at a
common receiver that will decide whether xk = ±1 has been transmitted.

The SNRMFB for this channel remains SNRMFB = Ēx·‖p‖2

N0
2

, but it remains to compute

this quantity correctly. First the noise needs to be whitened. While the two noises are
independent, they do not have the same variance per sample, so a pre-whitening matrix is

[
1 0

0
√

.181

.164

]
(3.523)

and so then the energy quantified by ‖p‖2 is

‖p‖2 = ‖p1‖2 + ‖p̃2‖2 = 1.81 +
(

.181

.164

)
1.64 = 2(1.81) . (3.524)

Then
SNRMFB =

1 · 2(1.81)
.181

= 13 dB . (3.525)

Because of diversity, this channel has a higher potential performance than the single channel
alone. Clearly having a second look at the input through another channel can’t hurt (even
if there is more ISI now). The ISI is characterized as always by Q(D), which in this case is

Q(D) =
1

2(1.81)

[
(1 + .9D−1)(1 + .9D) +

.181

.164
(1 + .8D)(1 + .8D−1)

]
(3.526)

= .492D + 1 + .492D−1 (3.527)
= .7082 · (1 + .835D) · (1 + .835D−1) (3.528)

Q̃(D) = .492D + (1 + 1/20) + .492D−1 (3.529)
= .587 · (1 + .839D) · (1 + .839D−1) (3.530)

Thus, the SNR of a MMSE-DFE would be

SNRMMSE−DFE,U = .7082(20)− 1 = 13.16 (11.15 dB) . (3.531)

The improvement of diversity with respect to a single channel is about 2.8 dB in this case.
The receiver is a MMSE-DFE essentially designed for the 1+.839D ISI channel after adding
the matched-filter outputs. The loss with respect to the MFB is about 1.8 dB.
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Figure 3.59: Two channel example.

3.9.3 Finite-length Multidimensional Equalizers

The case of finite-length diversity equalization becomes more complex because the matched filters are
implemented within the (possibly fractionally spaced) equalizers associated with each of the diversity
subchannels. There may be thus many coefficients in such a diversity equalizer.24

In the case of finite-length equalizers shown in figure 3.60, each of the matched filters of the RAKE
is replaced by a lowpass filter of wider bandwidth (usually l times wider as in Section 3.7), a sampling
device at rate l/T , and a fractionally spaced equalizer prior to the summing device. With vectors pk in
Equation (3.288) now becoming l ·L-tuples,

pk = p(kT ) , (3.532)

as do the channel output vectors yk and the noise vector nk, the channel input/output relationship (in
Eq (3.290)) again becomes

Y k
∆=




yk

yk−1
...

yk−Nf+1


 (3.533)

=




p0 p1 ... pν 0 0 ... 0
0 p0 p1 ... ... pν ... 0
...

...
. . . . . . . . . . . .

...
0 ... 0 0 p0 p1 ... pν







xk

xk−1

...

...
xk−Nf−ν+1




+




nk

nk−1

...
nk−Nf +1


 . (3.534)

The rest of Section 3.7 then directly applies with the matrix P changing to include the larger l ·L-tuples
corresponding to L diversity channels, and the corresponding equalizer W having its 1 × L coefficients
corresponding to w0 ... wNf . Each coefficient thus contains l values for each of the L equalizers.

The astute reader will note that the diversity equalizer is the same in principle as a fractionally
spaced equalizer except that the oversampling that creates diversity in the FSE generalizes to simply
any type of additional dimensions per symbol in the diversity equalizer. The dfecolor program can be
used where the oversampling factor is simply l ·L and the vector of the impulse response is appropriately
organized to have l · L phases per entry. Often, l = 1, so there are just L antennas or lines of samples
per symbol period entry in that input vector.

24Maximal combiners that select only one (the best) of the diversity channels for equalization are popular because they
reduce the equalization complexity by at least a factor of L – and perhaps more when the best subchannel needs less
equalization.
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Figure 3.60: Fractionally spaced RAKE MMSE-DFE.

3.9.4 DFE RAKE Program

A DFE RAKE program similar to the DFERAKE matlab program has again been written by the
students (and instructor debugging!) over the past several years. It is listed here and is somewhat
self-explanatory if the reader is already using the DFECOLOR program.

%DFE design program for RAKE receiver
%Prepared by: Debarag Banerjee, edited by Olutsin OLATUNBOSUN
% and Yun-Hsuan Sung to add colored and spatially correlated noise
%Significant Corrections by J. Cioffi and above to get correct results --
%March 2005
%
function [dfseSNR,W,b]=dfsecolorsnr(l,p,nff,nbb,delay,Ex,noise);
% ------------------------------
%**** only computes SNR ****
% l = oversampling factor
% L = No. of fingers in RAKE
% p = pulse response matrix, oversampled at l (size), each row corresponding to a diversity path
% nff = number of feedforward taps for each RAKE finger
% nbb = number of feedback taps
% delay = delay of system <= nff+length of p - 2 - nbb
% if delay = -1, then choose best delay
% Ex = average energy of signals
% noise = noise autocorrelation vector (size L x l*nff)
% NOTE: noise is assumed to be stationary, but may be spatially correlated
% outputs:
% dfseSNR = equalizer SNR, unbiased in dB
% ------------------------------

siz = size(p,2);
L=size(p,1);
nu = ceil(siz/l)-1;
p = [p zeros(L,(nu+1)*l-siz)];

% error check
if nff<=0
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error(’number of feedforward taps must be > 0’);
end
if delay > (nff+nu-1-nbb)

error(’delay must be <= (nff+(length of p)-2-nbb)’);
end
if delay < -1

error(’delay must be >= 0’);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%if length(noise) ~= L*l*nff
% error(’Length of noise autocorrelation vector must be L*l*nff’);
%end
if size(noise,2) ~= l*nff | size(noise,1) ~= L

error(’Size of noise autocorrelation matrix must be L x l*nff’);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%form ptmp = [p_0 p_1 ... p_nu] where p_i=[p(i*l) p(i*l-1)... p((i-1)*l+1)
for m=1:L

ptmp((m-1)*l+1:m*l,1) = [p(m,1); zeros((l-1),1)];
end
for k=1:nu

for m=1:L
ptmp((m-1)*l+1:m*l,k+1) = conj((p(m,k*l+1:-1:(k-1)*l+2))’);

end
end
ptmp;

% form matrix P, vector channel matrix
P = zeros(nff*l*L+nbb,nff+nu);

%First construct the P matrix as in MMSE-LE
for k=1:nff,

P(((k-1)*l*L+1):(k*l*L),k:(k+nu)) = ptmp;
end

%Add in part needed for the feedback
P(nff*l*L+1:nff*l*L+nbb,delay+2:delay+1+nbb) = eye(nbb);
temp= zeros(1,nff+nu);
temp(delay+1)=1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Rn = zeros(nff*l*L+nbb);

for i = 1:L
n_t = toeplitz(noise(i,:));

for j = 1:l:l*nff
for k = 1:l:l*nff

Rn((i-1)*l+(j-1)*L+1:i*l+(j-1)*L, (i-1)*l+(k-1)*L+1:i*l+(k-1)*L) = n_t(j:j+l-1,k:k+l-1);
end

end
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end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Ex*P*P’;
Ry = Ex*P*P’ + Rn;
Rxy = Ex*temp*P’;
IRy=inv(Ry);
w_t = Rxy*IRy;
%Reshape the w_t matrix into the RAKE filter bank and feedback matrices
ww=reshape(w_t(1:nff*l*L),l*L,nff);
for m=1:L

W(m,:)=reshape(ww((m-1)*l+1:m*l,1:nff),1,l*nff);
end
b=-w_t(nff*l*L+1:nff*l*L+nbb);
sigma_dfse = Ex - w_t*Rxy’;
dfseSNR = 10*log10(Ex/sigma_dfse - 1);

For the previous example, some command strings that work are (with whitened-noise equivalent
channel first):

>> p
p = 0.9000 1.0000 0

0 1.0500 0.8400
>> [snr,W,b] = dfeRAKE(1,p,6,1,5,1,[.181 zeros(1,5) ; .181 zeros(1,5)])

snr = 11.1465
W = 0.0213 -0.0439 0.0668 -0.0984 0.1430 0.3546

-0.0027 0.0124 -0.0237 0.0382 0.4137 -0.0000
b = 0.7022

or with colored noise directly inserted

>> p1
p1 = 0.9000 1.0000 0

0 1.0000 0.8000

>> [snr,W,b] = dfeRAKE(1,p1,6,1,5,1,[.181 zeros(1,5) ; .164 zeros(1,5)])

snr = 11.1486

W = 0.0213 -0.0439 0.0667 -0.0984 0.1430 0.3545
-0.0028 0.0130 -0.0249 0.0401 0.4347 0.0000

b = 0.7022

Two outputs are not quite the same because of the finite number of taps.

3.9.5 Multichannel Transmission

Multichannel transmission in Chapters 4 and 5 is the logical extension of diversity when many inputs
may share a transmission channel. In the multichannel case, each of many inputs may affect each of many
outputs, logically extending the concept of intersymbol interference to other types of overlap than simple
ISI. Interference from other transmissions is more generally called crosstalk. Different inputs may for
instance occupy different frequency bands that may or may not overlap, or they may be transmitted
from different antennas in a wireless system and so thus have different channels to some common receiver
or set of receivers. Code division systems (See Chapter 5 Appendix) use different codes for the different

254



sources. A diversity equalizer can be designed for some set of channel outputs for each and every of
the input sequences, leading to multichannel transmission. In effect the set of equalizers attempts
to “diagonalize” the channels so that no input symbol from any source interferes with any other source
at the output of each of the equalizers. From an equalizer perspective, the situation is simply multiple
instances of the diversity equalizer already discussed in this section. However, when the transmit signals
can be optimized also, there can be considerable improvement in the performance of the set of equalizers.
Chapters 4 and 5 (EE379C) develop these concepts.

However, the reader may note that a system that divides the transmission band into several different
frequency bands may indeed benefit from a reduced need for equalization within each band. Ideally,
if each band is sufficiently narrow to be viewed as a “flat” channel, no equalizer is necessary. The
SNR of each of these “sub-channels” relates (via the “gap” approximation) how many bits can be
transferred with QAM on each. By allocating energy intelligently, such a system can be simpler (avoiding
equalization complexity) and actually perform better than equalized wider-band QAM systems. While
this chapter has developed in depth the concept of equalization because there are many wide-band
QAM and PAM systems that are in use and thus benefit from equalization, an intuition that for the
longest time transmission engineers might have been better off never needing the equalizer and simply
transmitting in separate disjoint bands is well-founded. Chapters 4 and 5 support this intuition. Progress
of understanding in the field of transmission should ultimately make equalization methods obsolete. As
in many technical fields, this has become a line of confrontation between those resisting change and
those with vision who see a better way.
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Exercises - Chapter 3

3.1 Quadrature Modulation.
Consider the quadrature modulator shown below,

Figure 3.61: Quadrature modulator.

a. What conditions must be imposed on H1(f) and H2(f) if the output signal s(t) is to have no
spectral components between −fc and fc? Assume that fc is larger than the bandwidth of H1(f)
and H2(f). (2 pts.)

b. Let the input signal be of the form,

x(t) =
∞∑

n=−∞
anφ(t − nT )

What conditions must be imposed on H1(f) and H2(f) if the real part of the demodulated signal
is to have no ISI. (3 pts.)

c. Find the impulse responses h1(t) and h2(t) corresponding to the minimum bandwidth H1(f) and
H2(f) which simultaneously satisfy (a) and (b). You can express your answer in terms of φ(t). (3
pts.)

3.2 Sampling time and Eye Patterns.
The received signal for a binary transmission system is,

y(t) =
∞∑

n=−∞
anq(t − nT ) + n(t)

where an ∈ {−1, +1} and Q(f) is a triangular, i.e. q(t) = sinc2( t
T ). The received signal is sampled at

t = kT + t0, where k is an integer and t0 is the sampling phase, |t0| < 1
2T .

a. Neglecting the noise for the moment, find the peak distortion as a function of t0. Hint: use
Parseval’s relation. (3 pts.)

b. Consider the following four binary sequences {un}∞−∞, {vn}∞−∞, {wn}∞−∞, {xn}∞−∞:

un = −1 ∀n

vn = +1 ∀n
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wn =
{

+1, for n = 0
−1, otherwise

xn =
{
−1, for n = 0
+1, otherwise

Using the result of (a), find expressions for the 4 outlines of the binary eye pattern. Sketch the
eye pattern for these four sequences over two symbol periods −T ≤ t ≤ T . (2 pts.)

c. Find the width (horizontal) of the eye pattern at its widest opening. (2 pts.)

d. If the noise variance is σ2, find a worst case bound (using peak distortion) on the probability of
error as a function of t0. (2 pts.)

3.3 The 379 channel model.
Consider the ISI-model shown in Figure 3.2 with PAM and symbol period T. Let ϕ(t) = 1√

T
sinc( t

T )
and h(t) = δ(t) − 1

2δ(t − T ).

a. Determine p(t), the pulse response. (1 pt)

b. Find ||p|| and ϕp(t). (2 pts.)

c. (2 pts.) Find q(t), the function that characterizes how one symbol interferes with other symbols.
Confirm that q(0) = 1 and that q(t) is hermitian (conjugate symmetric). You may find it useful
to note that

sinc
(

t + mT

T

)
∗ sinc

(
t + nT

T

)
= T sinc

(
t + (m + n)T

T

)
.

d. Use Matlab to plot q(t). For this plot you may assume that T = 10 and plot q(t) for integer values
of t. Assuming that we sample y(t) at the perfect instants (i.e. when t = kT for some integer k),
how many symbols are distorted by a given symbol? Assume that the given symbol was positive,
how will the distorted symbols be affected? Specifically, will they be increased or decreased? (2
pts.)

e. For the rest of the problem consider 8 PAM with d=1. Determine the peak distortion, Dp. (2 pts.)

f. Determine the MSE distortion, Dmse. Compare with the peak distortion. (2 pts.)

g. Find an approximation to the probability of error (using the MSE distortion). You may express
your answer in terms of σ.(1 pt.)

3.4 Bias and SNR.
Continuing the setup of the previous problem with 8 PAM and d = 1, let

1
2
N0 = σ2 = 0.1.

Assume that a detector first scales the sampled output yk by α and chooses the closest x to yk · α as
illustrated in Figure 3.13. Please express your SNR’s below both as a ratio of powers and in
dB.

a. For which value of α is the receiver unbiased? (1 pt.)

b. For the value of α found in (a), find the receiver signal-to-noise ratio, SNRR. (2 pts.)

c. Find the value of α that maximizes SNRR and the corresponding SNRR. (2 pts.)

d. Show that the receiver found in the previous part is biased. (1 pt.)

e. Find the matched filter bound on signal-to-noise ratio, SNRMFB . (1 pt.)
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f. Discuss the ordering of the three SNR’s you have found in this problem. Which inequalities will
always be true? (1 pt.)

3.5 Raised cosine pulses with Matlab.
For this problem you will need to get all the .m files from /usr/class/ee379a/hw5/ on leland. If you

are logon to leland, you could do a cd and copy the files to your directory. Alternatively, you could do
an anonymous ftp to ftp.stanford.edu, and cd to class/ee379a/hw5 and copy the files.

a. Consider the formula for the raised cosine pulse (Eq. 3.79 of chapter 3):

q(t) = sinc

(
t

T

)
·

[
cos
(

απt
T

)

1 −
(

2αt
T

)2

]

There are three values of t that would cause a program, such as Matlab, difficulty because of a
division by zero. Identify these trouble spots and evaluate what q(t) should be for these values. (2
pts)

b. Once you have identified those three trouble spots, a function to generate raised cosine pulses is a
straightforward implementation of Eq. 3.75. We have implemented this for you in mk rcpulse.m.
Executing q = mk rcpulse(a)will generate a raised cosine pulse with α = a. The pulses generated
by mk rcpulse assume T = 10 and are truncated to 751 points. (2 pts)

Use mk rcpulse to generate raised cosine pulses with 0%, 50%, and 100% excess bandwith and
plot them with plt pls lin. The syntax is plt pls lin(q 50, ’title’) where q 50 is the vector of
pulse samples generated by mk rcpulse(0.5) (50% excess bandwidth). Turn in your three plots
and discuss any deviations from the ideal expected frequency domain behavior.

c. Use plt pls dB(q, ’title’) to plot the same three raised cosine pulses as in part (b). Turn in your
plots. Which of these three pulses would you choose if you wanted the one which had the smallest
band of frequencies with energy above -40dB? Explain this unexpected result. (3 pts)

d. The function plt qk (q, ’title’) plots q(k) for sampling at the optimal time and for sampling
that is off by 4 samples (i.e., q(kT ) and q(kT + 4) where T = 10). Use plt qk to plot q k for
0%, 50%, and 100% excess bandwidth raised cosine pulses. Discuss how excess bandwidth affects
sensitivity of ISI performance to sampling at the correct instant. (3 pts)

3.6 Noise enhancement: MMSE-LE vs ZFE.
Consider the channel with

‖p‖2 = 1 + aa∗

Q(D) = a∗D−1+‖p‖2+aD
‖p‖2

0 ≤ |a| < 1.

a. (2 pts) Find the zero forcing and minimum mean square error linear equalizers WZFE(D) and
WMMSE−LE(D). Use the variable b = ‖p‖2

(
1 + 1

SNRMF B

)
in your expression for WMMSE−LE(D).

b. (6 pts) By substituting e−jwT = D (with T = 1) and taking SNRMFB = 10‖p‖2, use Matlab to
plot (lots of samples of) W (ejw) for both ZFE and MMSE-LE for a = .5 and a = .9. Discuss the
differences between the plots.

c. (3 pts) Find the roots r1, r2 of the polynomial

aD2 + bD + a∗.

Show that b2 − 4aa∗ is always a real positive number (for |a| 6= 1). Hint: Consider the case where
1

SNRMF B
= 0. Let r2 be the root for which |r2| < |r1|. Show that r1r

∗
2 = 1.
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d. (2 pts) Use the previous results to show that for the MMSE-LE

W (D) =
‖p‖
a

D

(D − r1)(D − r2)
=

‖p‖
a(r1 − r2)

(
r1

D − r1
− r2

D − r2

)
. (3.535)

e. (2 pts) Show that for the MMSE-LE, w0 = ‖p‖√
b2−4aa∗ . By taking 1

SNRMF B
= 0, show that for the

ZFE w0 = ‖p‖
1−aa∗ .

f. (4 pts) For Ēx = 1 and σ2 = 0.1 find expressions for σ2
ZFE , σ2

MMSE−LE, γZFE , and γMMSE−LE.

g. (4 pts) Find γZFE and γMMSE−LE in terms of the paramter a and calculate for a = 0, 0.5, 1.
Sketch γZFE and γMMSE−LE for 0 ≤ a < 1.

3.7 DFE is even better.

a. (2 pts) For the channel of problem 3.6, show that the canonical factorization is

Q(D) +
1

SNRMFB
= γ0(1 − r2D

−1)(1 − r∗2D).

What is γ0 in terms of a and b? Please don’t do this from scratch. You have done much of the
work for this in problem 3.6.

b. (2 pts) Find B(D) and W (D) for the MMSE DFE.

c. (4 pts) Give an expression for γMMSE−DFE . Compute its values for a = 0, .5, 1 for the Ēx and
σ2 of problem 3.6. Sketch γMMSE−DFE as in problem 3.6. Compare with your sketches from
Problem 3.6.

3.8 Noise predictive DFE.

Figure 3.62: Noise-Predictive DFE

Consider the equalizer shown above with B(D) restricted to be causal and monic. Assume all decisions
are correct. We use a MMSE criterion to choose U (D) and B(D) to minimize E[|xk − z

′

k|2]. (xk is the
channel input.)

a. (5 pts) Show this equalizer is equivalent to a MMSE-DFE and find U (D) and B(D) in terms of
G(D), Q(D), ‖p‖, Ēx, SNRMFB and γ0.
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b. (2 pts) Relate UNPDFE(D) to WMMSE-LE(D) and to WMMSE-DFE(D).

c. (1 pt) If we remove feedback (B(D) = 1), what does this equalizer become?

d. (1 pt) Interpret the name “noise-predictive” DFE by explaining what the feedback section is doing.

e. (2 pts) Is the NPDFE biased? If so, show how to remove the bias.

3.9 Receiver SNR relationships.

a. (3 pts) Recall that:

Q(D) +
1

SNRMFB
= γ0G(D)G∗(D−∗)

Show that:

1 +
1

SNRMFB
= γ0‖g‖2

b. (3 pts) Show that:

‖g‖ ≥ 1

with equality if and only if Q(D) = 1 ( i.e. if the channel is flat) and therefore:

γ0 ≤ 1 +
1

SNRMFB

c. (3 pts) Let x0 denote the time-zero value of the sequence X. Show that:

 1

Q(D) + 1
SNRMFB




0

≥
1
γ0

and therefore:
SNRMMSE-LE,U ≤ SNRMMSE-DFE,U

(with equality if and only if Q(D) = 1, that is Q(ω) has vestigial symmetry.)

d. (2 pts) Use the results of parts b) and c) to show:

SNRMMSE-LE,U ≤ SNRDFE,U ≤ SNRMFB

3.10 Bias and probability of error.
We have used the fact that the best unbiased receiver has a lower Pe than the (biased) MMSE

receiver. Here is a simple illustration of this fact.

Figure 3.63: A three point PAM constellation.

Consider the constellation above with additive white noise nk having

N0

2
= σ2 = 0.1.

Assume that the inputs are independent and identically distributed uniformly over the three possible
values. Assume also that nk is zero mean and independent of xk.
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a. (1 pt) Find the mean square error between yk = xk + nk and xk. (easy)

b. (1 pt) Find Pe exactly for the ML detector on the unbiased values yk.

c. (2 pts) Find the scale factor α that will minimize the mean square error

E[e2
k] = E[(xk − αyk)2].

Prove that your α does in fact provide a minimum by taking the appropriate second derivative.

d. (2 pts) Find E[e2
k] and Pe for the scaled output αyk. When you compute Pe, use the decision

regions for the unbiased ML detector you found in (b). You should find that the biased receiver
of part c has a Pe which is higher than the (unbiased) ML detector of part b, even though it has
a smaller squared error.

e. (1 pt) Where are the optimal decision boundaries for detecting xk from αyk (for the MMSE α) in
part c? What is the probability of error for these decision boundaries?

3.11 Bias and the DFE.
Consider the DFE you designed in Problem 3.7. Recall that you (hopefully) found

γ0 =
b +

√
b2 − 4aa∗

2(1 + aa∗)
.

a. (2 pts) Find Gu in terms of a, b, and r2. Assume the same SNRMFB as in Prob 3.7.

b. (1 pt) Give a block diagram of the DFE with scaling after the feedback summation.

c. (1 pt) Give a block diagram of the DFE with scaling before the feedback summation.

3.12 Zero forcing DFE.
Consider once again the general channel model of Problems 3.6 and 3.7 with Ēx = 1 and σ2 = 0.1.

a. (2 pts) Find η0 and Pc(D) so that

Q(D) = η0Pc(D)P ∗
c (D−∗).

b. (2 pts) Find B(D) and W (D) for the ZF-DFE.

c. (1 pt) Find σ2
ZF−DFE

d. (2 pts) Find the loss with respect to SNRMFB for a = 0, .5, 1. Sketch the loss for 0 ≤ a < 1.

3.13 Complex baseband channel.
The pulse response of a channel is band-limited to π

T and has

p0 =
1√
T

(1 + 1.1j)

p1 =
1√
T

(0.95 + 0.5j)

pk = 0 for k 6= 0, 1

where pk = p(kT ) and SNRMFB = 15 dB.

a. (2 pts) Find ‖p‖2 and find a so that

Q(D) =
a∗D−1 + ‖p‖2 + aD

‖p‖2
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b. (2 pts) Find SNRMMSE−LE,U and SNRMMSE−DFE,U for this channel. Use the results of Prob-
lems 3.6 and 3.7 wherever appropriate. Note ‖p‖2 6= 1 + aa∗ so some care should be exercised in
using the results of Problems 3.6 and 3.7.

c. (2 pts) Use the SNR’s from (b) to compute the NNUB on Pe for 4-QAM with the MMSE-LE and
the MMSE-DFE.

3.14 Tomlinson Precoding.
We will be working with the 1 + 0.9D channel (i.e. the 1 + aD channel that we have been exploring

at length with a = 0.9). For this problem, we will assume that σ2 = 0. Furthermore, assume a 4-PAM
constellation with xk ∈ {−3,−1, 1, 3}.

a. (5 pts) Design a Tomlinson precoder and its associated receiver for this system. Your system will
be fairly simple. How would your design change if noise were present in the system?

b. (5 points) Implement the precoder and its associated receiver using any computer method you
would like (or you can do the following computations by hand if you prefer). Turn in a hard copy
of whatever code you write, and assume no noise.

For the following input sequence compute the output of the precoder, the output of the channel,
and the output of your receiver. Assume that the symbol x′ = −3 was sent just prior to the input
sequence below.

{3,−3, 1,−1, 3,−3,−1}

c. (3 pts) Now, again with zero noise, remove the modulo operations from your precoder and your
receiver. For this modified system, compute the output of the precoder, the output of the channel,
and the output of your receiver for the same inputs as in the previous part. Turn in hard copies
of whatever code you write.

Did the system still work? What changed? What purpose do the modulo operators serve?

3.15 Flexible Precoding.
This problem considers the 1 + 0.9D channel (i.e. the 1 + aD channel that we have been exploring

at length with a = 0.9). For this problem, we will assume that σ2 = 0. Furthermore, assume a 4-PAM
constellation with xk ∈ {−3,−1, 1, 3}.

a. (5 pts) Design a Flexible precoder and its associated receiver for this system. Your system will be
fairly simple. How would your design change if noise were present in the system?

b. (5 points) Implement the precoder and its associated receiver using any computer method you
would like (or you can do the following computations by hand if you prefer). Turn in a hard copy
of whatever code you write, and assume no noise.

For the following input sequence compute the output of the precoder, the output of the channel,
and the output of your receiver. Assume that the symbol x′ = −3 was sent just prior to the input
sequence below.

{3,−3, 1,−1, 3,−3,−1}

c. (3 pts) Now, again with zero noise, remove the modulo operations from your precoder and your
receiver. For this modified system, compute the output of the precoder, the output of the channel,
and the output of your receiver for the same inputs as in the previous part. Turn in hard copies
of whatever code you write.

Did the system still work? What changed? What purpose do the modulo operators serve?

262



3.16 Finite length equalization and matched filtering.
We design the optimal FIR MMSE-LE without assuming a matched filter. However, it turns out that

we get a “matched filter” anyway. Consider a system whose pulse response is band limited to |w| < π
T

that is sampled at the symbol rate T after pass through an anti-alias filter with gain
√

T .

a. (3 pts)

Show that

w = RxY R−1
Y Y = (0, . . . , 0, 1, 0, . . . , 0)Φp

∗
(
‖p‖

(
Q̂ + l

1
SNRMFB

I
))−1

.

where
Q̂ =

PP ∗

‖p‖2

b. (2 pts) Which terms correspond to the matched filter? Which terms correspond to the infinite
length WMMSE−LE?

3.17 Finite Length equalization and MATLAB.
Consider the 1 + 0.25D channel with σ2 = .1 and Ēx = 1.

a. (1 pt) Find SNRMMSE−LE,U for the infinite length filter.

b. (2 pts) In this problem we will use the MATLAB program mmsele. This program is interactive,
so just type mmsele and answer the questions. When it asks for the pulse response, you can type
[1 0.25] or p if you have defined p = [1 0.25].

Use mmsele to find the best ∆ and the associated SNRMMSE−LE,U for a 5 tap linear equalizer
. Compare with your value from part (a). How sensitive is performance to ∆ for this system?

c. (2 pts) Plot |P (e(jwT )| and |P (e(jwT )W (e(jwT )| for w ∈ [0, π
T

]. Discuss the plots briefly.

3.18 Computing finite-length equalizers.
Consider the following system description.

Ēx = 1
N0

2
=

1
8

φ(t) =
1√
T

sinc(
t

T
) h(t) = δ(t) − 0.5δ(t − T ) l = 1

Feel free to use matlab for any matrix manipulations as you complete the parts below. You may wish to
check your answers with dfecolor.m. However, for this problem, you should go through the calculations
yourself. (You may use matlab for matrix inversion.)

a. (2 pts) We assume perfect anti-alias filtering with gain
√

T . Find p̃(t) = (φ(t) ∗ h(t)) and ‖p̃‖2,
corresponding to the discrete-time channel

yk = xk − .5 · xk−1 + nk . (3.536)

Also, find ‖P̃ (D)‖2 =
∑

k |p̃k|2.

b. (1 pt) Compute SNRMFB for this channel.

c. (2 pts) Design a 3 tap FIR MMSE-LE for ∆ = 0.

d. (1 pt) Find the σ2
MMSE−LE for the equalizer of the previous part.

e. (2 pts) Design a 3 tap FIR ZF-LE for ∆ = 0.

f. (1 pt) Find the associated σ2
ZF−LE .

g. (2 pts) Design an MMSE-DFE which has 2 feedforward taps and 1 feedback tap. Again, assume
that ∆ = 0.
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Figure 3.64: Channel for Problem 3.19.

h. (2 pts) Compute the unbiased SNR’s for the MMSE-LE and MMSE-DFE. Compare these two
SNR’s with each other and the SNRMFB .

3.19 Equalizer Design - Final 1996
An AWGN channel has pulse response p(t) = 1√

T

[
sinc

(
t
T

)
− sinc

(
t−4T

T

)]
. The receiver anti-alias

filter has gain
√

T over the entire Nyquist frequency band, −1/2T < f < 1/2T , and zero outside this
band. The filter is followed by a 1/T rate sampler so that the sampled output has D-Transform

y(D) = (1 − D4)x(D) + n(D) . (3.537)

x(D) is the D-Transform of the sequence of M -ary PAM input symbols, and n(D) is the D-Transform
of the Gaussian noise sample sequence. The noise autocorrelation function is Rnn(D) = N0

2 . Further
equalization of y(D) is in discrete time where (in this case) the matched filter and equalizer discrete
responses (i.e., D-Transforms) can be combined into a single discrete-time response. The target Pe is
10−3.

Let N0
2

= -100 dBm/Hz (0 dBm = 1 milliwatt = .001 Watt) and let 1/T = 2 MHz.

a. Sketch |P (e−ωT )|2. (2 pts)

b. In your engineering judgement, what kind of equalizer should be used on this channel?

c. For a ZF-DFE, find the transmit symbol mean-square value (i.e., the transmit energy) necessary
to achieve a data rate of 6 Mbps using PAM and assuming a probability of symbol error equal to
10−3. (4 pts)

d. For your transmit energy in part c, how would a MMSE-DFE perform on this channel? (2pts)

3.20 FIR Equalizer Design - Final 1996
A symbol-spaced FIR equalizer (l = 1) is applied to a stationary sequence yk at the sampled output

of an anti-alias filter, which produces a discrete-time IIR channel with response given by

yk = a · yk−1 + b · xk + nk , (3.538)

where nk is white Gaussian noise.
The SNR (ratio of mean square x to mean square n) is Ēx

N0
2

= 20 dB. |a| < 1 and both a and b are

real. For all parts of this question, choose the best ∆ where appropriate.

a. Design a 2-tap FIR ZFE. (3 pts)

b. Compute the SNRzfe for part a. (2 pts)

c. Compute your answer in part b with that of the infinite-length ZFE. (1 pt)

d. Let a = .9 and b = 1. Find the 2-tap FIR MMSE-LE. (4 pts)
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e. Find the SNRmmse−le,u for part d.

f. Find the SNRzf−dfe for an infinite-length ZF-DFE. How does the SNR compare to the matched-
filter bound if we assume there is no information loss incurred in the symbol-spaced anti-alias
filter? Use a = .9 and b = 1. (2 pts)

3.21 ISI quantification - Midterm 1996
For the channel P (ω) =

√
T (1 + .9eωT ) ∀|ω| < π/T studied repeatedly in this chapter, use binary

PAM with Ēx = 1 and SNRMFB = 10 dB. Remember that q0 = 1.

a. Find the peak distortion, Dp. (1 pt)

b. Find the peak-distortion bound on Pe. (2 pts)

c. Find the mean-square distortion, DMS . (1 pt)

d. Approximate Pe using the DMS of part c. (2 pts)

e. ZFE: Compare Pe in part d with the Pe for the ZFE. Compute SNR difference in dB between the
SNR based on mean-square distortion implied in parts c and d and SNRZFE . (hint, see example
in this chapter for SNRZFE ) (2 pts)

3.22 Precoding - Final 1995
For an ISI channel with

Q(D) +
1

SNRMFB
= .82

[ 

2
D−1 + 1.25− 

2
D
]

(3.539)

a. Find SNRMFB and SNRMMSE−DFE . (2 pts)

b. Find G(D) and GU (D) for the MMSE-DFE. (1 pt)

c. Design (show/draw) a Tomlinson-Harashimaprecoder, showing from xk through the decision device
in the receiver in your diagram (any M ). ( 2 pts)

d. Let M = 4 for your precoder in part c. Find Pe.

e. Design (show/draw) a Flexible precoder, showing from xk through the decision device in the
receiver in your diagram (any M ). ( 2 pts)

f. Let M = 4 for your precoder in part e. Find Pe.

3.23 Finite-delay tree search
A channel with multipath fading has one reflecting path with gain (voltage) 90% of the main path.

The relative delay on this path is approximately T seconds, but the carrier sees a phase-shift of −60o

that is constant on the second path. Assume binary transmission throught this problem.
Use the model

P (ω) =
{ √

T
(
1 + ae−ωT

)
|ω| < π/T

0 elsewhere

to approximate this channel. N0
2

= .0181 and Ēx = 1.

a. Find a. (1 pt)

b. Find SNRMFB . (1 pt)

c. Find W (D) and SNRU for the MMSE-LE. (3 pts)

d. Find W (D), B(D), and SNRU for the MMSE-DFE. (3 pts)

e. Show a simple method and compute SNRzf−dfe.
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Figure 3.65: Finite-delay tree search.

f. A finite-delay tree search detector at time k decides x̂k−1 by choosing that x̂k−1 value that mini-
mizes

min
x̂k,x̂k−1

|zk − x̂k − ax̂k−1|2 + |zk−1 − x̂k−1 − ax̂k−2|2 ,

where x̂k−2 = xk−2 by assumption. How does this compare with the ZF-DFE (better or worse)?
(1 pt)

g. Find an SNRfdts for this channel. (bonus)

h. Could you generalize SNR in part g for FIR channels with ν taps? (bonus)

3.24 Peak Distortion -(5 pts)
Peak Distortion can be generalized to channels without reciever matched filtering (that is ϕp(−t) is

a lowpass anti-alias filter). Let us suppose

y(D) = x(D) · (1 − .5D) + N (D) (3.540)

after sampling on such a channel, where N (D) is discrete AWGN. P (D) = 1 − .5D.

a. write yk in terms of xk, xk−1 and nk. (hint, this is easy. 1 pt)

b. We define peak distortion for such a channel as Dp
∆= |xmax|

∑
m 6=0 |pm|. Find this new Dp for this

channel if |xmax| = 1. (2 pts)

c. Suppose N0
2

, the mean-square of the sample noise, is .05 and Ēx = 1. What is Pe for symbol-by-
symbol detection with PAM and M = 2. (2 pts)

3.25 More Equalization - Final 1994
Given an ISI channel with p(t) = 1/

√
T [sinc(t/T ) − sinc[(t − T )/T ]], Ēx = 1, and N0

2 = .05. for
each equalizer, find the filter transforms W (D) (and B(D)), the unbiased detection SNR, and the loss
with respect to the MFB.

a. What is SNRMFB?

b. Find the ZFE.

c. Find the MMSE-LE.

d. Find the ZF-DFE.

e. Find the MMSE-DFE.

f. Draw a diagram illustrating the MMSE-DFE implementation with Tomlinson precoding.
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g. For Pe < 10−6 and using square or cross QAM, choose a design and find the largest data rate you
can transmit using one of the equalizers above.

3.26 Raised Cosine pulses
Show through inverse Fourier transforming that the raised cosine and square-root raised cosine time-

domain responses given in Section 3.3 are correct.

3.27 Expert Understanding - Final 1998

Figure 3.66: Channel for Problem 3.27.

A channel baseband transfer function for PAM transmission is shown in Figure 3.66. PAM transmis-
sion with sinc basis function is used on this channel with a transmit power level of 10 mW =Ex/T . The
one-sided AWGN psd is -100 dBm/Hz.

a. Let the symbol rate be 20 MHz - find SNRMFB .(1 pt)

b. For the same symbol rate as part a, what is SNRMMSE−LE? (1 pt)

c. For the equalizer in part b, what is the data rate for PAM if Pe ≤ 10−6? (1 pt)

d. Let the symbol rate be 40 MHz - find the new SNRMFB .(2 pts)

e. Draw a the combined shape of the matched-filter and feedforward filter for a ZF-DFE corresponding
to the new symbol rate of part d. (1 pt)

f. Estimate SNRMMSE−DFE,U for the new symbol rate, assuming a MMSE-DFE receiver is used. (
2 pts) (Hint: you may note the relationship of this transfer function to the channel often used as
an example in EE379A).

g. What is the new data rate for this system at the same probability of error as part c - compare
with the data rate of part c. (1 pt)

h. What can you conclude about incurring ISI if the transmitter is allowed to vary its bandwidth?

3.28 Infinite-Length EQ - 10 pts, Final 1998
An ISI channel with PAM transmission has channel correlation function given by

Q(D) =
.19

(1 + .9D)(1 + .9D−1)
, (3.541)

with SNRMFB =10 dB, Ex = 1, and ‖p‖2 = 1
.19 .
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a. (3 pts) Find WZFE(D), σ2
ZFE , and SNRZFE .

b. (1 pt) Find WMMSE−LE(D)

c. (3 pts) Find WZF−DFE (D), BZF−DFE (D), and SNRZF−DFE .

d. (3 pts) Find WMMSE−DFE(D), BMMSE−DFE (D), and SNRMMSE−DFE,U .

3.29 Finite-Length EQ - 9 pts, Final 1998
A baseband channel is given by

P (f) =
{ √

T ·
(
1 − .7e2πfT

)
|f | < .5

T
0 |f | ≥ .5

T

(3.542)

and finite-length equalization is used with anti-alias perfect LPR with gain
√

T followed by symbol-rate
sampling. After the sampling, a maximum complexity of 3 taps TOTAL over a feedforward filter and a
feedback filter can be tolerated. Ex = 2 and N0

2 = .01 for a symbol rate of 1/T = 100kHz is used with
PAM transmission. Given the complexity constraint, find the highest data rate achievable with PAM
transmission when the corresponding probability of symbol error must be less than 10−5.

3.30 Equalizers - Miterm 2000 - 10 pts
PAM transmission on a filtered AWGN channel uses basic function ϕ(t) = 1√

T
· sinc

(
t
T

)
with T = 1

and undergoes channel impulse response with Fourier transform (|a| < 1)

H(ω) =
{

1
1+a·eω |ω| ≤ π

0 |ω| > π
(3.543)

and SNR = Ēx
σ2 = 15 dB.

a. Find the Fourier Transform of the pulse response, P (ω)? (1 pt)

b. Find ‖p‖2. (2 pts)

c. Find Q(D), the function characterizing ISI. (3 pts)

d. Find the W (D) for the zero-forcing and MMSE linear equalizers on this channel. (3 pts)

e. If a = 0, what data rate is achievable on this channel according to the gap approximation at
Pe = 10−6? (1 pt)

3.31 Diversity Channel - Final 2000 - 6 pts
We would like to evaluate the channel studied throughout this course and in the text with the same

input energy and noise PSD versus almost the same channel except that two receivers independently
receive:

• an undistorted delayed-by-T signal (that is P (D) = D), and

• a signal that is not delayed, but reduced to 90% of its amplitude (that is P (D) = .9).

a. Find Q(D), ‖p‖, and SNRMFB for the later diversity channel. (3 pts)

b. Find the performance of the MMSE-LE, MMSE-DFE for the later diversity channel and compare
to that on the original one-receiver channel and with respect to the matched filter bound. (2 pts)

c. Find the probability of bit error on the diversity channel for the case of 1 bit/dimension transmis-
sion. (1 pt)

3.32 Do we understand basic detection - Final 2000 - 9 pts
A filtered AWGN channel with T = 1 has pulse response p(t) = sinc(t)+sinc(t−1) with SNRMFB =

14.2 dB.
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a. Find the probability of error for a ZF-DFE if a binary symbol is transmitted (2 pts).

b. The Tomlinson precoder in this special case of a monic pulse response with all unity coefficients
can be replaced by a simpler precoder whose output is

x′
k =

{
x′

k−1 if xk = 1
−x′

k−1 if xk = −1 (3.544)

Find the possible channel outputs and determine an SBS decoder rule. What is the performance
(probability of error) for this decoder? (2 pts)

c. Suppose this channel is used one time for the transmission of one of the 8 4-dimensional messages
that are defined by [+ ± ± ±], which produce 8 possible 5-dimensional outputs. ML detection
is now used for this multidimensional 1-shot channel. What are the new minimum distance and
number of nearest neighbors and how do they relate to those for the system in part a? What is
the new number of bits per output dimension? (3 pts)

d. Does the probability of error change significantly if the input is extended to arbitrarily long block
length N with only the first sample fixed at +, and all other inputs being equally likely + or −?
What happens to the number of bits per output dimension in this case? (2 pts).

3.33 Equalization - Final 2000 - 10 pts
PAM transmission is used on a filtered AWGN channel with N0

2 = .01, T = 1, and pulse repsonse
p(t) = sinc(t) + 1.8sinc(t − 1) + .81sinc(t − 1). The desired probability of symbol error is 10−6.

a. Find ‖p‖2, SNRMFB, AND Q(D) for this channel. (2 pts)

b. Find the MMSE-LE and corresponding unbiased SNR for this channel. (2 pts)

c. Find the ZF-DFE detection SNR and loss with respect to SNRMFB . (1 pt)

d. Find the MMSE-DFE. Also compute the MMSE-DFE SNR and maximum data rate in bits/dimension
using the gap approximation. (3 pts)

e. Draw the flexible (Laroia) precoder for the MMSE-DFE and draw the system from transmit symbol
to detector in the receiver using this precoder. Implement this precoder for the largest number of
integer bits that can be transmitted according to your answer in part (d). (2 pts)

3.34 Finite-Length Equalizer Design - Final 2000 - 15 pts
A filtered AWGN channel has impulse response h(t) = 1

T · 1

1+
(

107t
3

)2 and is used in the transmission

system of Figure 3.67. QAM transmission with 1/T = 1 MHz and carrier frequency fc = 600kHz are
used on this channel. The AWGN psd is N0

2 = −86.5 dBm/Hz. The transmit power is Ex
T =1 mW. The

oversampling factor for the equalizer design is chosen as l = 2. Square-root raised cosine filtering with
10% excess bandwidth is applied as a transmit filter, and an ideal filter is used for anti-alias filtering at
the receiver. A matlab subroutine at the course web site may be useful in computing responses in the
frequency domain.

a. Find ν so that an FIR pulse response approximates this pulse response so that less than 5% error
in ‖p‖2.

b. Calculate SNRMFB . Determine a reasonable set of parameters and settings for an FIR MMSE-LE
and the corresponding data rate at Pe = 10−7. Calculate the data rate using both an integer and
a possibly non-integer number of bits/symbol. (4 pts)

c. Repeat part b for an FIR MMSE-DFE design and draw receiver. Calculate the data rate using
both an integer and a possibly non-integer number of bits/symbol. (3 pts)
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Figure 3.67: Transmission system for Problem 3.34.

d. Can you find a way to improve the data rate on this channel by changing the symbol rate and or
carrier frequency? (2 pts)

3.35 Telephone-Line Transmission with “T1”
Digital transmission on telephone lines necessarily must pass through two “isolation transformers” as

illustrated in Figure 3.68. These transformers prevent large D.C. voltages accidentally placed on the line
from unintentionally harming the telephone line or equipment attached to it, and they provide immunity
to earth currents, noises, and ground loops. These transformers also introduce ISI.

Figure 3.68: Illustration of a telephone-line data transmission for Problem 3.35.

a. The “derivative taking” combined characteristic of the transformers can be approximately modeled
at a sampling rate of 1/T = 1.544 MHz as successive differences between channel input symbols.
For sufficiently short transmission lines, the rest of the line can be modeled as distortionless. What
is a reasonable partial-response model for the channel H(D)? Sketch the channel transfer function.
Is there ISI?

b. How would a zero-forcing decision-feedback equalizer generally perform on this channel with respect
to the case where channel output energy was the same but there are no transformers?

c. What are some of the drawbacks of a ZF-DFE on this channel?

d. Suppose a Tomlinson precoder were used on the channel with M = 2, how much is transmit
energy increased generally? Can you reduce this increase by good choice of initial condition for
the Tomlinson Precoder?
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e. Show how a binary precoder and corresponding decoder can significantly simplify the implemen-
tation of a detector. What is the loss with respect to optimum MFB performance on this channel
with your precoder and detector?

f. Suppose the channel were not exactly a PR channel as in part a, but were relatively close. Char-
acterize the loss in performance that you would expect to see for your detector.

3.36 Magnetic Recording Channel
Digital magnetic information storage (i.e., disks) and retrieval makes use of the storage of magnetic

fluexes on a magnetic disk. The disk spins under a “read head” and by Maxwell’s laws the read-head
wire senses flus changes in the moving magnetic field, thus generating a read current that is translated
into a voltage through amplifiers succeeding the read head. Change in flux is often encoded to mean a
“1” was stored and no change means a “0” was stored. The read head has finite band limitations also.

a. Pick a partial-resonse channel with ν = 2 that models the read-back channel. Sketch the magnitude
characteristic (versus frequency) for your channel and justify its use.

b. How would a zero-forcing decision-feedback equalizer generally perform on this channel with respect
to the best case where all read-head channel output energy convenyed either a positive or negative
polarity for each pulse?

c. What are some of the drawbacks of a ZF-DFE on this channel?

d. Suppose a Tomlinson precoder were used on the channel with M = 2, how much is transmit
energy increased generally? Can you reduce this increase by good choice of initial condition for
the Tomlinson Precoder?

e. Show how a binary precoder and corresponding decoder can significantly simplify the implemen-
tation of a detector. What is the loss with respect to optimum MFB performance on this channel
with your precoder and detector?

f. Suppose the channel were not exactly a PR channel as in part a, but were relatively close. Char-
acterize the loss in performance that you would expect to see for your detector.

g. Suppose the density (bits per linear inch) of a disk is to be increased so one can store more files
on it. What new partial response might apply with the same read-channel electronics, but with a
correspondingly faster symbol rate?

3.37 Tomlinson preocoding and simple precoding
In Section 3.8, the simple precoder for H(D) = 1 + D is derived.

a. Design the Tomlinson precoder corresponding to a ZF-DFE for this channel with the possible
binary inputs to the precoder being ±1. (4 pts)

b. How many distinct outputs are produced by the Tomlinson Precoder assuming an initial state
(feedback D element contents) of zero for the precoder. (1 pt)

c. Compute the average energy of the Tomlinson precoder output. (1 pt)

d. How many possible outputs are produced by the simple precoder with binary inputs? (1 pt)

e. Compute the average energy of the channel input for the simple precoder with the input constel-
lation of part (a). (1 pt)

3.38 Flexible precoding and simple precoding
In Section 3.8, the simple precoder for H(D) = 1 + D is derived.

a. Design the Flexible precoder corresponding to a ZF-DFE for this channel with the possible binary
inputs to the precoder being ±1. (4 pts)
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b. How many distinct outputs are produced by the Flexible Precoder assuming an initial state (feed-
back D element contents) of zero for the precoder. (1 pt)

c. Compute the average energy of the Flexible precoder output. (1 pt)

d. How many possible outputs are produced by the simple precoder with binary inputs? (1 pt)

e. Compute the average energy of the channel input for the simple precoder with the input constel-
lation of part (a). (1 pt)

3.39 Partial Response Precoding and the ZF-DFE
Consider an AWGN with H(D) = (1 − D)2 with noise variance σ2 and one-dimensional real input

xk = ±1.

a. Determine a partial-response (PR) precoder for the channel, as well as the decoding rule for the
noiseless channel output. (2 pts)

b. What are the possible noiseless outputs and their probabilities? From these, determine the Pe for
the precoded channel. (4 pts)

c. If the partial-response precoder is used with symbol-by-symbol detection, what is the loss with
respect to the MFB? Ignore nearest neighbor terms for this calculation since the MFB concerns
only the argument of the Q-function. (1 pt)

d. If a ZF-DFE is used instead of a precoder for this channel, so that Pc(D) = 1− 2D + D2, what is
η0? Determine also the SNR loss with respect to the SNRMFB (2 pts)

e. Compare this with the performance of the precoder, ignoring nearest neighbor calculations. (1 pt)

3.40 Error propagation and nearest neighbors
Consider the H(D) = 1 − D2 channel with AWGN noise variance σ2 and d = 2 and 4-level PAM

transmission.

a. State the precoding rule and the noiseless decoding rule. (1 pts)

b. Find the possible noiseless outputs and their probabilities. Find also Ne and Pe with the use of
precoding. (4 pts)

c. Suppose a ZF-DFE is used on this system and that at time k = 0 an incorrect decision x0− x̂0 = 2
occurs. This incorrect decision affects zk at time k = 2. Find the Ne (taking the error at k = 0
into account) for the ZF-DFE. From this, determine the Pe with the effect of error propagation
included. (4 pts)

d. Compare the Pe in part (c) with that of the use of the precoder in part (a). (1 pt)

3.41 Forcing Partial Response
Consider a H(D) = 1 + .9D channel with AWGN noise variance σ2. We would like to convert this

to a 1 + D channel

a. Design an equalizer that will convert the channel to a 1 + D channel. (2 pts)

b. The received signal is yk = xk + .9xk−1 + nk where nk is the AWGN. Find the autocorrelation of
the noise after going through the receiver designed in part (a). Evaluate r0, r±1, and r±2. Is the
noise white? (3 pts)

c. Do you think that the noise terms would be more or less correlated if we were to convert a 1+ .1D
channel to a 1 + D channel? You need only discuss briefly. (1 pt)
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3.42 Final 2001 - Equalizers - 11 pts
PAM transmission on a filtered AWGN channel uses basis function ϕ(t) = 1√

T
sinc

(
t
T

)
with T = 1

and undergoes channel impulse response with Fourier transform (|α| < 1)

H(ω) =
{

1
1+a·eω |ω| ≤ π

0 |ω| > π
(3.545)

and SNR = Ēx
σ2 = 28 dB.

a. Find the Fourier Transform of the pulse response,P (ω) =? (1 pt)

b. Find ‖p‖2 . (1 pt)

c. Find Q(D), the function characterizing ISI. (2 pts)

d. Find the filters and sketch the block diagram of receiver for the MMSE-DFE on this channel for
a = .9. (3 pts)

e. Estimate the data rate for uncoded PAM transmission and Pe < 10−6 that is achievable with your
answer in part d. (2 pts)

f. Draw a diagram of the better precoder’s (Tomlinson or Laroia), xmit and rcvr, implementations
with d = 2 in the transmitted constellation. (2 pts)

3.43 Final 2001 - Finite-Length Equalizer Design - 16 pts
Transmission lines can sometimes have their transfer function described by the function

H(f) = k · e−α·|f| (3.546)

where α and k are some positive real constants, here assigned the values α = 6π · 10−7 and k = 3π/10.
Our task in this problem is to design a transmission system for such a transmission line. Initially we
begin with 1/T = 800 kHz and carrier frequency fc = 600 kHz on this channel. The AWGN psd is
N0
2

= −92 dBm/Hz. The transmit power is Ex/T = 1 mW. The oversampling factor for the equalizer
design is chosen as l = 2. Square-root raised cosine filtering with 10% excess bandwidth is applied as a
transmit filter and an ideal lowpass filter is used for anti-alias filtering at the receiver.

a. Find ν so that an FIR pulse response approximates this pulse response so that less than .25 dB
error in ‖p‖2 (that is, the norm square of the difference between the actual p(t) and the truncated
pk is less than (10.025 − 1) · ‖p‖2. (4 pts)

b. Determine a reasonable set of parameters and settings for an FIR MMSE-LE and the corresponding
data rate at Pe ≤ 10−7. Please print w filter coefficients. (2 pts)

c. Repeat part b for an FIR MMSE-DFE design and print coefficients. (2 pts)

d. Can you find a way to improve the data rate on this channel by changing the symbol rate and or
carrier frequency? Try to maximize the data rate with QAM transmission by a suitable choice of
carrier frequency and symbol rate, and provide that data rate - you may maintain the assumption
of oversampling by a factor of 2 and 10% excess bandwidth. (6 pts)

e. Suppose a narrowband Gaussian noise with PSD -62 dBm/Hz were injected over a bandwith of
1 kHz - hereustically, would you expect this to change the performance much? What would you
expect to happen in the filters of the DFE? ( 2 pts).

3.44 Final 2001 - Diversity Concept - 7 pts
An additive white Gaussian noise channel supports QAM transmission with a symbol rate of 1/T =

100 kHz (with 0 % excess bandwidth) anywhere in a total baseband-equivalent bandwidth of 10 MHz
transmission. Each 100 kHz wide QAM signal can be nominally received with an SNR of 14.5 dB without
equalization. However, this 10 MHz wide channel has a 100 kHz wide band that is attenuated by 20
dB with respect to the rest of the band, but the location of the frequency of this notch is not known in
advance to the designer. The transmitters are collocated.
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a. What is the data rate sustainable at probability of bit error P̄b ≤ 10−7 in the nominal condition?
(1 pt)

b. What is the maximum number of simultaneous QAM users can share this channel at the perfor-
mance level of part a if the notch does not exist? (1 pt)

c. What is the worst-case probability of error for the number of users in part b if the notch does
exist? (1 pt)

d. Suppose now (unlike part b) that the notch does exist, and the designer decides to send each
QAM signal in two distinct frequency bands. What is the worst-case probability of error for a
diversity-equalization system applied to this channel? (1 pt)

e. For the same system as part c, what is the best SNR that a diversity equalizer system can achieve?
(1 pt)

f. For the system of part c, how many users can now share the band all with probability of bit error
less than 10−7? Can you think of a way to improve this number closer to the level of the part b?
(2 pts)

3.45 Final 2002 - Diversity Viewpoint - 12 pts
A time-varying wireless channel is used to send long packets of information that are decoded by a

receiver that uses a symbol-by-symbol decision device. The channel has pulse response in the familiar
form:

P (ω) =
{ √

T ·
(
1 + ai · e−ωT

)
|ω| ≤ π

T
0 |ω| > π

T

(3.547)

where ai may vary from packet to packet (but not within a packet). There is also AWGN with constant
power spectral density N0

2 = .1. QPSK (4QAM) is sent on this channel with symbol energy 2.

a. Find the best DFE SNR and corresponding probability of symbol error for the two cases when
a1 = .9 and a2 = .5. (2 pts)

Now, suppose the transmitter can resend the same packet of symbols to the receiver, which can
delay the channel output packet from the first transmission until the symbols from the new packet
arrive. However, the same symbol-by-symbol detector is still to be used by the receiver.

b. Explain why this is a diversity situation. (1 pt)

c. Find a new SNRMFB for this situation. (1 pt)

d. Find the new function Q(D) for this diversity situation. (2 pts)

e. Determine the performance of the best DFE this time (SNR and Pe). ( 2 pts)

f. Compare the Pe of part e with the product of the two Pe’s found in part a. Comment. (2 pts)

g. Draw the receiver with RAKE illustrated as well as DFE, unbiasing, and decision device. (phase
splitter can be ignored in diagram and all quantities can be assumed complex.) (2 pts).

3.46 Precoder Diversity - Final 2003 - 7 pts
A system with 4PAM transmits over two discrete-time channels shown with the two independent

AWGN shown. (Ēx = 1)

a. Find the RAKE matched filter(s) for this system ? (1 pt)

b. Find the single feedforward filter for a ZF-DFE? (1 pt)

c. Show the best precoder for the system created in part b. (1 pt)
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Figure 3.69: Transmission system for Problem 3.47.

d. Find the SNR at the detector for this precoded system? (1 pt)

e. Find the loss in SNR with respect to the of either single channel. (1 pt)

f. Find the Pe for this precoded diversity system. (1 pt)

g. Find the probability that a packet of 1540 bytes contains one or more errors. (1 pt)

3.47 Equalizer Performance and Means
Recall that arithmetic mean, geometric mean, and harmonic mean are of the form 1

n

∑n
i=1 xi,

(
∏n

i=1 xi)
1
n ,
(

1
n

∑n
i=1

1
xi

)−1

, respectively. Furthermore, they satisfy the following inequalities:

1
n

n∑

i=1

xi ≥

(
n∏

i=1

xi

) 1
n

≥

(
1
n

n∑

i=1

1
xi

)−1

,

with equality when x1 = x2 = · · · = xn

a. (4 pts) Express SNRZFE , SNRZF−DFE , SNRMFB in terms of SNRMFB and frequency response
of the autocorrelation function qk. Prove that SNRZFE ≤ SNRZF−DFE ≤ SNRMFB using above
inequalities. When does equality hold? hint : use

∫ b

a x(t)dt = limn→∞
∑n

k=1 x( b−a
n k + a) · b−a

n

b. (4 pts) Similarly, prove that SNRMMSE−LE,U ≤ SNRMMSE−DFE,U ≤ SNRMFB using above
inequalities. When does equality hold?

c. (4 pts) Compare SNRZF−DFE and SNRMMSE−LE. Can you say which scheme has better
performance?

3.48 Unequal Channels (Moshe Malkin- instructor, Midterm 2007)
Please assume the gap approximation works in all SNR ranges for this problem.
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a. A sequence of 16-QAM symbols with in-phase component ak and quadrature component bk at time
k is transmitted on a passband channel by the modulated signal

x(t) =
√

2

{[∑

k

ak · φ(t − kT )

]
· cos(ωct) −

[∑

k

bk · φ(t − kT )

]
· sin(ωct)

}
, (3.548)

where T = 40 ns, fc = 2.4 GHz, and the transmit power is 700 µW.

The waveform φ(t) is given by

φ(t) =
1√
T

sinc
(

t
T

)
(3.549)

and the channel response is given by H(f) = e−j5πfT and so the received signal is given by

y(t) = h(t) ∗ x(t) + n(t) (3.550)

where n(t) is an additive white Gaussian noise random process with two-sided PSD of -100 dBm/Hz.

(i) (1 pts) What is the data rate for this system?

(ii) (2 pts) What are Ex, Ēx and dmin for this constellation?

(iii) (1.5 pts) What is x̃bb(t)?

(iv) (1.5 pts) What is the ISI characterizing function q(t)? what is qk?

(v) (2 pts) What are Pe and P̄e for an optimal ML detector?

(vi) (2 pts) Draw a block diagram of the receiver and label major components.

Unfortunately, the implementation of the baseband demodulator is faulty and the additive
Gaussian noise power in the quadrature component is α = 4 times what it should be. That
is, the noise variance of the quadrature component is αN0

2 = 2N0 while the noise variance in
the in-phase dimension is N0

2
. Answer the following questions for this situation.

(vii) (2.5 pts) What is the receiver SNR?

(viii) (3 pts) What are Pe and P̄e?

(ix) (1.5 pts) Instead of using QAM modulation as above, two independent 4-PAM constellations
(with half the total energy allocated for each constellation) are now transmitted on the in-
phase and quadrature channels, respectively. What is Pe averaged over both of the PAM
constellations?

(x) (3 pts) The transmitter realizes that if he allocates different energies for the in-phase and
quadrature channels (BUT still using QAM modulation with an equal number of
bits for the in-phase and quadrature channels and original power constraint of 700
µW ) he could improve the P̄e performance from (aviii). What is the optimal energy
allocation between the in-phase and quadrature channels? Given that we need P̄e = 10−6,
what is b̄ and the achievable data rate?

(xi) (2.5 pts) Using the results from part (ax) find the minimal increase in transmit power needed
to guarantee P̄e = 10−6 for 16-QAM transmission?

The transmitter now decides to reduce losses. Given this increased noise in the quadra-
ture dimension, the transmitter decides to use only the in-phase dimension for transmission
(but subject to the original transmit power constraint of 700 µW ).

(xii) (1.5 pts) What data rate can be then supported that gives P̄e = 10−6?

(xiii) (3 pts) Using a fair comparison, compare the QAM transmission system from part (ax) to
the single-dimensional scheme (N = 1) from part (axii). Which scheme is better?
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(xiv) (3 pts) Can you derive a new transmission scheme that uses both the in-phase and quadrature
channels to get a higher data rate than part (ax)? (subject to the same P̄e = 10−6 , and
original symbol rate and power constraint of 700 µW )

3.49 Equalizer Design (9 pts, Moshe Malkin- instructor, Final 2007)
A transmission system uses the basis function φ(t) = sinc(t) with 1

T
= 1 Hz. The Fourier transform

of the channel impulse response is:

H(f) =
{ 1

1−0.5j·e−j2πf , for|f | ≤ 1
2

0, for|f | > 1
2 .

(3.551)

and SNR = ε̄x

σ2 = 10dB.

a. (1 pt) Find ||p||2 and Q(D).

b. (1 pt) Find WZFE (D) and WMMSE−LE(D).

c. (1 pt) Find W (D) and B(D) for ZF-DFE.

d. (2 pts) Find W (D) and B(D) for MMSE-DFE (Hint: the roots of the numerator of Q(D) +
1/SNRMFB are 22.4555j and 0.0445j).

e. (0.5 pts) What is SNRZF−DFE?

f. (1.5 pts) Design a Tomlinson-Harashima precoder based on the ZF-DFE. Show both the precoder
and the corresponding receiver (For any M).

g. (2 pts) Design a Laroia precoder based on the ZF-DFE. Assume you are using 4-QAM modulation.
Show both the precoder and the corresponding receiver. Make sure to mention which kind of
constellation is used at each SBS detector in your drawing.

3.50 Diversity (7 pts Moshe Malkin- instructor, Final 2007)
A receiver has access to an infinite number of diversity channels where the output of channel i at

time k is

yk,i = xk + 0.9 · xk+1 + nk,i, i = 0, 1, 2, . . .

where nk,i is a Gaussian noise process independent across time and across all the channels, and with
variance σ2

i = 1.2i · 0.181. Also, Ēx = 1.

a. (1 pts) Find SNRMFB,i, the SNRMFB for channel i.

b. (2 pts) What is the matched filter for each diversity channel?

c. (1.5 pts) What is the resulting Q(D) for this diversity system?

d. (2.5 pts) What is the detector SNR for this system for a ZF-DFE receiver?

3.51 DFE with Finite Length Feedback Filter (9 pts Moshe Malkin- instructor, Final 2007)
A symbol-rate sampled MMSE-DFE structure, where the received signal is filtered by a continuous

time matched filter, uses an infinite length feedforward filter. However, the MMSE-DFE feedback filter
to be of finite length Nb.

a. (2 pts) Formulate the optimization problem you would have to solve to find the optimal feedfor-
ward and feedback coefficients to minimize the mean squared error (Hint: Don’t approach this as
a finite-length equalization problem as in section 3.7).

Assume that N0
2 = .181, Ex = 1, and P (D) = 1 + .9 · D−1. (and SNRMFB = 10 dB).
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b. (2 pts) Using only 1 feedback tap (Nb = 1), determine the optimal feedforward and feedback filters
(Hint: This is easy - you have already seen the solution before).

c. (2 pts) Now consider the ZF-DFE version of this problem. State the optimization problem for this
situation (analogous to part a).

Now, assume that we have P (D) = 1
1+0.9D−1 (and ‖p‖2 = 1

1−0.92 = 1
0.19

).

d. (3 pts) Determine the optimal feedforward and feedback filters for the ZF-DFE formulation using
only 1 feedback tap (Nb = 1).

3.52 Packet Processing (10 pts Moshe Malkin- instructor, Final 2007)
Suppose that in a packet-based transmission system, a receiver makes a decision from the set of

transmit symbols x1, x2, x3 based on the channel outputs y1, y2, y3, where



y3

y2

y1


 =




p11 p12 p13

0 p22 p23

0 0 p33






x3

x2

x1


+




n3

n2

n1


 =




0.6 1.9 −3.86
0 1.8 3.3
0 0 1.2






x3

x2

x1


+




n3

n2

n1


 (3.552)

and where the noise autocorrelation matrix is given by

Rn = E






n3

n2

n1


 [ n∗

3 n∗
2 n∗

1

]

 =




0.3 0 0
0 0.5 0
0 0 0.1


 . (3.553)

The inverse of the channel matrix is given by




0.6 1.9 −3.86
0 1.8 3.3
0 0 1.2



−1

=




1.67 −1.76 10.19
0 0.56 −1.52
0 0 0.83


 . (3.554)

The transmit symbols are i.i.d with E§∞ = E§∈ = E§3 = ∈′.

a. (1.5 pts) What is the 3-tap zero-forcing equalizer for x1 based on the observation y1, y2, y3? Repeat
for x2 and x3.

b. (1 pts) What is the matrix ZFE for detecting x1, x2, and x3? (Hint: This is easy - all the work
occurred in the previous part)

c. (1.5 pts) What is the detection SNR for x1 using a ZFE? Answer the same for x2 and x3.

d. (1 pts) An engineer now realizes that the performance could be improved through use previous
decisions when detecting the current symbol. If the receiver starts by detecting x1, then x2, and
finally x3, describe how this modified ZF detector would work?

e. (1.5 pts) Assuming previous decisions are correct, what is now the detection SNR for each symbol?

f. (1 pts) The approach above does not necessarily minimize the MMSE. How would a packet MMSE-
DFE work? How would you describe the feedback structure? (Don’t solve for the optimal matrices
- just describe the signal processing that would take place).

g. (1 pts) Can the THP also be implemented for this packet based system? Describe how this would
be done (again, don’t solve - just describe how this would work).
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Appendix A

Useful Results in Linear Minimum
Mean-Square Estimation

This appendix derives and/or lists some key results from linear Minimum Mean-Square-Error estimation.
A linear MMSE estimate of some random variable x, given observations of some other random

sequences {yk}, chooses a set of parameters wk (with the index k having one distinct value for each
observation of yk that is used) to minimize

E
[
|e|2
]

(A.1)

where

e
∆= x −

N−1∑

k=0

wk · yk . (A.2)

One can let N → ∞ without difficulty. The term linear MMSE estimate is derived from the linear
combination of the random variables yk in (A.2). More generally, it can be shown that the MMSE
estimate is E [x/{yk}], the conditional expectation of x, given y0, ..., yN−1. which will be linear for
jointly Gaussian x and {yk}. This text is interested only in linear MMSE estimates. In this text’s
developments, yi will usually be successive samples of some channel output sequence, and x will be the
current channel-input symbol that the receiver attempts to estimate.

A.1 The Orthogonality Principle

While (A.1) can be minimized directly by differentiation in each case or problem of interest, it is often
far more convenient to use a well-known principle of linear MMSE estimates - that is that the error
signal e must always be uncorrelated with all the observed random variables in order for the MSE to be
minimized.

Theorem A.1.1 (Orthogonality Principle) The MSE is minimized if and only if the
following condition is met

E [e · y∗k] = 0 ∀ k = 0, ..., N − 1 (A.3)

Proof: By writing |e|2 = [<(e)]2 + [=(e)]2, we may differentiate the MSE with respect to
both the real and imaginary parts of wk for each k of interest. The pertinent parts of the real
and imaginary errors are (realizing that all other wi, i 6= k, will drop from the corresponding
derivatives)

er = xr − wr,k · yr,k + wi,k · yi,k (A.4)
ei = xi − wi,k · yr,k − wr,k · yi,k , (A.5)
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where subscripts of r and i denote real and imaginary part in the obvious manner. Then, to
optimize over wr,k and wi,k,

∂|e|2

∂wr,k
= 2er

∂er

∂wr,k
+ 2ei

∂ei

∂wr,k
= −2 (eryr,k + eiyi,k) = 0 (A.6)

∂|e|2

∂wi,k
= 2er

∂er

∂wi,k
+ 2ei

∂ei

∂wi,k
= 2 (eryi,k − eiyr,k) = 0 . (A.7)

The desired result is found by taking expectations and rewriting the series of results above
in vector form. Since the MSE is positive-semi-definite quadratic in the parameters wr,k and
wi,k, this setting must be a global minimum. If the MSE is strictly positive-definite, then
this minimum is unique. QED.

A.2 Spectral Factorization

This section uses D-transform notation for sequences:

Definition A.2.1 (D- Transforms) A sequence {xk} has D-Transform X(D) =
∑

k xkDk.

In this chapter, all sequences can be complex. The sequence {x∗
−k} has a D-Transform X∗(D−∗) ∆=∑

k x∗
kD−k.

Definition A.2.2 (Autocorrelation and Power Spectrum) If {xk} is any stationary
complex sequence, its autocorrelation function is defined as the sequence Rxx(D) whose
terms are rxx,j = E[xkx

∗
k−j]; symbolically1

Rxx(D) ∆= E
[
X(D) · X∗(D−∗)

]
. (A.8)

By stationarity, rxx,j = r∗xx,−j and Rxx(D) = R∗
xx(D−∗). The power spectrum of a

stationary sequence is the Fourier transform of its autocorrelation function, which is written
as

Rxx(e−ωT ) = Rxx(D)|D=e−ωT , − π

T
< ω ≤ π

T
, (A.9)

which is real and nonnegative for all ω. Conversely, we say that any complex sequence R(D)
for which R(D) = R∗(D−∗) is an autocorrelation function, and any function R(e−ωT ) that
is real and nonnegative over the interval {− π

T
< ω ≤ π

T
} is a power spectrum.

The quantity E
[
|xk|2

]
is Ex, or Ēx per dimension, and is determined by either the autocorrelation

function or the power spectrum as follows:

Ex = E
[
|xk|2

]
= rxx,0 =

T

2π

∫ π
T

− π
T

R(e−ωT )dω . (A.10)

The spectral factorization of an autocorrelation function is:

Definition A.2.3 (Factorizability) An autocorrelation function R(D) will be called fac-
torizable if it can be written in the form

R(D) = S0 · F (D) · F ∗(D−∗), (A.11)

where S0 is a positive real number and F (D) is a canonical filter response. A filter response
F (D) is called canonical if it is causal (fk = 0 for k < 0), monic (f0 = 1), and minimum-
phase (all of its poles are outside the unit circle, and all of its zeroes are on or outside the
unit circle). If F (D) is canonical, then F ∗(D−∗) is anticanonical; i.e., anticausal, monic,
and maximum-phase.

1The expression Rxx(D)
∆
= E

[
X(D)X∗(D−1)

]
is used in a symbolic sense, since the terms of X(D)X∗(D−1) are of

the form
∑

k
xkx∗

k−j , implying the additional operation limN→∞[1/(2N + 1)]
∑

−N≤k≤N
on the sum in such terms.
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If F (D) is a canonical response, then ‖f‖2 ∆=
∑

j |fj|2 ≥ 1, with equality if and only if F (D) = 1,
since F (D) is monic. This simple inequality has many uses, see Exercises for Chapter 3.

The following lemma from discrete-time spectral factorization theory describes when an autocorre-
lation function is factorizable, and also gives the value of S0.

Lemma A.2.1 (Spectral Factorization) If R(e−ωT ) is any power spectrum such that
both R(e−ωT ) and logR(e−ωT ) are integrable over − π

T
< ω ≤ π

T
, and R(D) is the corre-

sponding autocorrelation function, then there is a canonical discrete-time response F (D) that
satisfies the equation

R(D) = S0 · F (D) · F ∗(D−∗), (A.12)

where the finite constant S0 is given by

logS0 =
1
2π

∫ π
T

− π
T

log R(e−ωT )dω (A.13)

(where the logarithms can have any common base). For S0 to be finite, R(e−ωT ) satisfies
the discrete-time Paley-Wiener criterion

1
2π

∫ π
T

− π
T

| logR(e−ωT )|dω < ∞ . (A.14)

Linear Prediction

The inverse of R(D) is also an autocorrelation function and can be factored when R(D) also satisfies
the PW criterion with finite γ0. In this case, as with the MMSE-DFE in Section 3.6, the inverse
autocorrelation factors as

R−1
xx (D) = γ0 · G(D) · G∗(D−∗) . (A.15)

If x(D) is a discrete-time sequence with factorizable inverse autocorrelation function R−1
xx (D) =

γ0G(D)G∗(D−∗), and A(D) is any causal and monic sequence, then 1−A(D) is a strictly causal sequence
that may be used as a prediction filter, and the prediction error sequence E(D) is given by

E(D) = X(D) − X(D)[1 − A(D)] = X(D)A(D) . (A.16)

The autocorrelation function of the prediction error sequence is

Ree(D) = Rxx(D) · A(D) · A∗(D−∗) =
A(D) ·A∗(D−∗)

γ0 · G(D) ·G∗(D−∗)
, (A.17)

so its average energy satisfies Ee = S0‖1/g ∗ a‖2 ≥ S0 (since A(D)/G(D) is monic), with equality if and
only if A(D) is chosen as the whitening filter A(D) = G(D). The process X(D) ·G(D) is often called
the innovations of the process X(D), which has mean square value S0 = 1/γ0. Thus, S0 of the direct
spectral factorization is the mean-square value of the innovations process or equivalent of the MMSE
in linear prediction. X(D) can be viewed as being generated by inputting a white innovations process
U (D) = G(D)X(D) with mean square value S0 into a filter F (D) so that X(D) = F (D)U (D).

The factorization of the inverse and resultant interpretation of the factor G(D) as a linear-prediction
filter helps develop an interest interpretation of the MMSE-DFE in Section 3.6.

A.2.1 Cholesky Factorization

Cholesky factorization is the finite-length equivalent of spectral factorization. In this finite-length case,
there are really two factorizations, both of which converge to the infinite-length spectral factorization.
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Cholesky Form 1 - Forward Prediction

Cholesky factorization of a positive semidefinite N × N matrix RN produces a unique upper triangular
monic (ones along the diagonal) matrix F N and a unique diagonal positive-semidefinite matrix SN such
that

RN = F N SNF ∗
N . (A.18)

It is convenient in transmission theory to think of the matrix RN as an autocorrelation matrix for N
samples of some random vector process xk with ordering

XN =




xN−1

...
x0


 . (A.19)

A corresponding order of F N and SN is then

F N =




fN−1

fN−2
...

f0


 and SN =




sN−1 0 ... 0
0 sN−2 ... 0

0
...

. . . 0
0 0 ... s0


 . (A.20)

Since F N is monic, it is convenient to write

f i =
[
1 f̃ i

]
. (A.21)

The determinant of RN is easily found as

γ2
0 = |RN | =

N−1∏

n=0

sn . (A.22)

(or lnγ2
0 = ln |RN | for readers taking limits as N → ∞). A convenient description of RN ’s components

is then

RN =
[

rN r∗
1

r1 RN−1

]
. (A.23)

The submatrix RN−1 has Cholesky Decomposition

RN−1 = F N−1SN−1F N−1 , (A.24)

which because of the 0 entries in the triangular and diagonal matrices shows the recursion inherent in
Cholesky decomposition (that is the F N−1 matrix is the lower right (N − 1) × (N − 1) submatrix of
F N , which is also upper triangular). The inverse of RN (pseudoinverse when singular) has a Cholesky
factorization

R−1
N = G∗

N S−1
N GN (A.25)

where F N = G−1
N is also upper triangular and monic with ordering

GN =




gN−1

gN−2
...

g0


 . (A.26)

Also,
gi = [1 g̃i] . (A.27)
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linear prediction A straightforward algorithm for computing Cholesky factorization derives from a
linear prediction interpretation. The innovations, UN , of the N samples of XN are defined by

XN = FUN (A.28)

where E [UN U∗
N ] = SN , and

UN =




uN−1

...
u0


 . (A.29)

Also, UN = GXN . The cross-correlation between XN and UN is

R̄ux = SN G∗
N , (A.30)

which is lower triangular. Thus,
E
[
ukx∗

k−i

]
= 0 ∀ i ≥ 1 . (A.31)

Since XN−1 = F N−1UN−1 shows a reversible mapping from UN−1 to XN−1, then (A.31) relates that
the sequence uk is a set of MMSE prediction errors for xk in terms of xk−1 ... x0 (i.e., (A.31) is the
orthogonality principle for linear prediction). Thus,

uN = xN − r∗
1R

−1
N−1XN−1 (A.32)

since r1 is the cross-correlation between xN and XN−1. Equation (A.32) rewrites as

xN = uN + r∗
1R

−1
N−1XN−1 (A.33)

= UN + r∗
1G

∗
N−1S

−1
N−1︸ ︷︷ ︸

˜fN

GN−1XN−1︸ ︷︷ ︸
UN−1

(A.34)

= fNUN , (A.35)

so
fN =

[
1 r∗

1G
∗
N−1S

−1
N−1

]
. (A.36)

Then, from (A.32) and (A.34),
gN =

[
1 − f̃NGN−1

]
. (A.37)

Finally,
sN = rN − f̃N SN−1f̃

∗
N . (A.38)

Forward Cholesky Algorithm Summary: For nonsingular RN :
Set f0 = F 0 = g0 = G0 = 1, S0 = s0 = E|x0|2
For n = 1 ... N :

a. f̃n = r∗
1G

∗
n−1S

−1
n−1.

b. F n =
[

1 f̃n

0 F n−1

]
.

c. Gn =
[

1 −f̃nGn−1

0 GN−1

]
.

d. sn = rn − f̃N SN−1f̃
∗
N−1 .
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A singular RN means that sn = 0 for at least one index n = i, which is equivalent to ui = 0, meaning
that xi can be exactly predicted from the samples xi−1 ... x0 or equivalently can be exactly constructed
from ui−1 ... u0. In this case, Cholesky factorization is not unique. One factorization is to save F i and Gi

and “restart” the algorithm for n > i realizing that xi is equivalent to knowing all lower-index samples.
The new F n>i and Gn>i created will have smaller dimension, but when the algorithm is complete, zeros
can be added to all the “right-most” positions of F and G, and maintaining the previous F i and Gi for
the lower rightmost positions.

That is,

F N =
[

F n>i 0
0 F i

]
and GN =

[
Gn>i 0

0 Gi

]
(A.39)

and

SN =




Sn>i 0 0
0 0 0
0 0 Si−1


 . (A.40)

The forward Cholesky factorization can also be written

RN = G−1
N SNG−∗

N , (A.41)

which is convenient for the alternative finite-length MMSE-DFE interpretations in Section 3.7.

Cholesky Form 2 - Backward Prediction

The backward Cholesky factorization is into a lower-diagonal-upper (instead of the upper-diagonal-lower
in forward prediction). This involves extension of RN on the lower right corner instead of at the upper-
left corner. Rather than repeat the development of forward prediction, this section notes that the reverse
backward prediction problem is inherent in the algorithm already given, except that this algorithm is
performed on the inverse (which, granted, might be harder to compute than just repeating the steps
above with the appropriate transpositions).

The inverse matrix QN = R−1
N = G∗

N S−1
N GN is also an autocorrelation matrix for some process

Y N with innovations V N where Y N = G∗
NV N such that E [V N V ∗

N ] = S−1
N . If Q is singular, then its

pseudoinverse is used by definition here. Thus,

V N = F ∗
NY , (A.42)

illustrating the backward prediction error v1−N = f̄
∗
NY N−1 where f̄

∗
N is the N th row of F ∗

N or equiva-
lently f̄N is the last column of F N .

This factorization of Q is lower-diagonal-upper and the filters f̄n are backward prediction filters for
y1−n in terms of y2−n ... y0. So to perform backward-prediction Cholesky, first invert the given Q
autocorrelation matrix to get R and then do forward Cholesky on the inverse (RN = F NSN F ∗

N =
G−1

N SG−∗
N . Then, the backward Cholesky factorization uses the G of forward Cholesky (for R = Q−1)

in
Q = G∗

NS−1
N GN . (A.43)

Infinite-length convergence

For infinite-length stationary sequences, one takes the limit as N → ∞ in either forward or backward
Cholesky factorization. In this case, the matrix R (and therefore Q) must be nonsingular to satsify
the Paley-Weiner Criterion. The equivalence to spectral factorization is evident from the two linear-
prediction interpretations for finite-length and infinite length series of samples from random processes.

For the stationary case, the concepts of forward and backward prediction are the same so that the
forward predictor is just the time reverse of the coefficents in the backward predictor.

Thus, the inverse autocorrelation function factors as

R−1(D) = γ0G(D)G∗(D−∗) , (A.44)
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where G(D) is the forward prediction polynomial (and its time reverse specified by G∗(D−∗) is the
backward prediction polynomial). The series of matrices {Rn}n=1:∞ formed from the coefficients of
R(D) creates a series of linear predictors {gn}n=1:∞ with D-transforms Gn(D). In the limit as N → ∞
for a stationary nonsingular series,

lim
n→∞

Gn(D) = G(D) . (A.45)

Similarly,
lim

n→∞
G∗

n(D) = G∗(D−∗) . (A.46)

As N → ∞, the prediction error varianc,es SN−1, should tend to a constant. Finally, defining the
geometric-average determinants as S0,n = |R|1/N and γ0,N = |R−1|1/N

lim
n→∞

S0,n = S0 = e

{
T
2π

∫ π/T

−π/T
ln(R(e−ωT ))dω

}
(A.47)

lim
n→∞

γ0,n(D) = γ0 = e
−
{

T
2π

∫ π/T

−π/T
ln(R(e−ωT ))dω

}
. (A.48)

The convergence to these limits implies that the series of filters converges or that the bottom row (last
column) of the Cholesky factors tends to a constant repeated row.

Interestingly, a Cholesky factorization of a singular process exists only for finite lengths. Using the
modifications to Cholesky factorization suggested above with “restarting,” it becomes obvious why such
a process cannot converge to a constant limit and so only nonsingular processes are considered in spectral
factorization. Factorization of a singular process at infinite-length involves separating that process into
a sum of subprocesses, each of which is resampled at a new sampling rate so that the PW criterion
(nonsingular needs PW) is satisfied over each of the subbands associated with these processes. This is
equivalent to the “restarting” of Cholesky at infinite length. For more, see Chapter 5.
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Appendix B

Equalization for Partial Response

Just as practical channels are often not free of intersymbol interference, such channels are rarely equal
to some desirable partial-response (or even controlled-ISI) polynomial. Thus, an equalizer may be used
to adjust the channel’s shape to that of the desired partial-response polynomial. This equalizer then
enables the use of a partial-response sequence detector or a symbol-by-symbol detector at its output
(with partial-response precoder). The performance of either of these types of detectors is particularly
sensitive to errors in estimating the channel, and so the equalizer can be crucial to achieving the highest
levels of performance in the partial-response communication channel. There are a variety of ways in
which equalization can be used in conjunction with either sequence detection and/or symbol-by-symbol
detection. This section introduces some equalization methods for partial-response signaling.

Chapter 9 studies sequence detection so terms related to it like MLSD (maximum likelihood sequence
detection) and Viterbi detectors/algorithm are pertinent to readers already familiar with Chapter 9
contents and can be ignored by other readers otherwise in this Appendix.

B.1 Controlled ISI with the DFE

Section 3.8.2 showed that a minimum-phase channel polynomial H(D) can be derived from the feedback
section of a DFE. This polynomial is often a good controlled intersymbol interference model of the
channel when H(D) has finite degree ν. When H(D) is of larger degree or infinite degree, the first ν
coefficients of H(D) form a controlled intersymbol interference channel. Thus, sequence detection on
the output of the feedforward filter of a DFE can be designed using the controlled ISI polynomial H(D)
or approximations to it.

B.1.1 ZF-DFE and the Optimum Sequence Detector

Section 3.1 showed that the sampled outputs, yk, of the receiver matched filter form a sufficient statistic
for the underlying symbol sequence. Thus a maximum likelihood (or MAP) detector can be designed
that uses the sequence yk to estimate the input symbol sequence xk without performance loss. The
feedforward filter 1/(η0‖p‖H∗(D−∗)) of the ZF-DFE is invertible when Q(D) is factorizable. The re-
versibility theorem of Chapter 1 then states that a maximum likelihood detector that observes the output
of this invertible ZF-DFE-feedforward filter to estimate xk also has no performance loss with respect to
optimum. The feedforward filter output has D-transform

Z(D) = X(D)H(D) + N ′(D) . (B.1)

The noise sequence n′
k is exactly white Gaussian for the ZF-DFE, so the ZF-DFE produces an equivalent

channel H(D). If H(D) is of finite degree ν, then a sequence detector can be designed based on the
controlled-ISI polynomial H(D) and this detector has minimum probability of error. Figure B.1 shows
such an optimum receiver. When H(D) has larger degree than some desired ν determined by complexity
constraints, then the first ν feedback taps of H(D) determine

H ′(D) = 1 + h1D
1 + ... + hνDν , (B.2)
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Figure B.1: The optimum maximum-likelihood detector, implemented with the assistance of the WMF,
the feedforward section of the ZF-DFE

Figure B.2: Limiting the number of states with ZF-DFE and MLSD.

a controlled-ISI channel. Figure B.2 illustrates the use of the ZF-DFE and a sequence detector. The
second feedback section contains all the channel coefficients that are not used by the sequence detector.
These coefficients have delay greater than ν. When this second feedback section has zero coefficients, then
the configuration shown in Figure B.2 is an optimum detector. When the additional feedback section
is not zero, then this structure is intermediate in performance between optimum and the ZF-DFE with
symbol-by-symbol detection. The inside feedback section is replaced by a modulo symbol-by-symbol
detector when precoding is used.

Increase of ν causes the minimum distance to increase, or at worst, remain the same (which is proved
simply by examining a trellis with more states and realizing that the smaller degree H ′(D) is a sub trellis
for which distance cannot be greater. Thus, the ZF-DFE with sequence detector in Figure B.2 defines
a series of increasingly complex receivers whose performance approach optimum as ν → ∞. A property
of a minimum-phase H(D) is that

ν′∑

i=0

|hi|2 = ‖h′‖2 (B.3)

is maximum for all ν′ ≥ 0. No other polynomial (that also preserves the AWGN at the feedforward filter
output) can have greater energy. Thus the SNR of the signal entering the Viterbi Detector in Figure
B.2, Ēx‖h′‖2

N0
2

, also increases (nondecreasing) with ν. This SNR must be less than or equal to SNRMFB.
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Figure B.3: Partial-response linear equalization.

B.1.2 MMSE-DFE and sequence detection

Symbol-by-symbol detection’s objective is to maximize SNR in an unbiased detector, and so SNR max-
imization was applied in Chapter 3 to the DFE to obtain the MMSE-DFE. A bias in symbol-by-symbol
detector was removed to minimize probability of error. The monic, causal, minimum-phase, and unbi-
ased feedback polynomial was denoted GU (D) in Section 3.6. A sequence detector can use the same
structures as shown in Figure B.1 and B.2 with H(D) replaced by Gu(D). For instance, Figure B.4 is
the same as Figure B.2, with an unbiased MMSE-DFE’s MS-WMF replacing the WMF of the ZF-DFE.
A truncated version of GU(D) corresponding to H ′(D) is denoted G′

U(D). The error sequence asso-
ciated with the unbiased MMSE-DFE is not quite white, nor is it Gaussian. So, a sequence detector
based on squared distance is not quite optimum, but it is nevertheless commonly used because the exact
optimum detector could be much more complex. As ν increases, the probability of error decreases from
the level of the unbiased MMSE-DFE, SNRMMSE−DFE,U when ν = 0, to that of the optimum detector
when ν → ∞. The matched filter bound, as always, remains unchanged and is not necessarily obtained.
However, minimum distance does increase with ν in the sequence detectors based on a increasing-degree
series of GU(D).

B.2 Equalization with Fixed Partial Response B(D)

The derivations of Section 3.6 on the MMSE-DFE included the case where B(D) 6= G′(D), which this
section reuses.

B.2.1 The Partial Response Linear Equalization Case

In the linear equalizer case, the equalization error sequence becomes

Epr(D) = B(D)X(D) − W (D)Y (D) . (B.4)

Section 3.6 minimized MSE for any B(D) over the coefficients in W (D). The solution was found by
setting E

[
Epr(D)y∗(D−1)

]
= 0, to obtain

W (D) = B(D)
R̄xy(D)
R̄yy(D)

=
B(D)

‖p‖ (Q(D) + 1/SNRMFB)
, (B.5)

which is just the MMSE-LE cascaded with B(D). Figure B.3, shows the MMSE-PREQ (MMSE -
“Partial Response Equalizer”). The designer need only realize the MMSE-LE of Section 3.4 and follow
it by a filter of the desired partial-response (or controlled-ISI) polynomial B(D).1 For this choice of
W (D), the error sequence is

Epr(D) = B(D)X(D) − B(D)Z(D) = B(D) [E(D)] (B.6)
1This also follows from the linearity of the MMSE estimator.
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where E(D) is the error sequence associated with the MMSE-LE. From (B.6),

R̄epr,epr (D) = B(D)R̄ee(D)B∗(D−1) =
B(D)N0

2 B∗(D−1)
‖p‖2 (Q(D) + 1/SNRMFB)

. (B.7)

Thus, the MMSE for the PREQ can be computed as

σ2
MMSE-PREQ =

T

2π

∫ π
T

− π
T

|B(e−ωT )|2N0
2

‖p‖2 (Q(e−ωT ) + 1/SNRMFB)
dω . (B.8)

The symbol-by-symbol detector is equivalent to subtracting (B(D) − 1)X(D) before detection based on
decision regions determined by xk. The SNRMMSE-PREQ becomes

SNRMMSE-PREQ =
Ēx

σ2
MMSE-PREQ

. (B.9)

This performance can be better or worse than the MMSE-LE, depending on the choice of B(D); the
designer usually selects B(D) so that SNRMMSE-PREQ > SNRMMSE−LE. This receiver also has a
bias, but it is usually ignored because of the integer coefficients in B(D) – any bias removal could cause
the coefficients to be noninteger.

While the MMSE-PREQ should be used for the case where symbol-by-symbol and precoding are
being used, the error sequence Epr = B(D)E(D) is not a white noise sequence (nor is E(D) for the
MMSE-LE), so that a Viterbi Detector designed for AWGN on the channel B(D) would not be the
optimum detector for our MMSE-PREQ (with scaling to remove bias). In this case, the ZF-PREQ,
obtained by setting SNRMFB → ∞ in the above formulae, would also not have a white error sequence.
Thus a linear equalizer for a partial response channel B(D) that is followed by a Viterbi Detector
designed for AWGN may not be very close to an optimum detection combination, unless the channel
pulse response were already very close to B(D), so that equalization was not initially necessary. While
this is a seemingly simple observation made here, there are a number of systems proposed for use in
disk-storage detection that overlook this basic observation, and do equalize to partial response, “color”
the noise spectrum, and then use a WGN Viterbi Detector. The means by which to correct this situation
is the PR-DFE of the next subsection.

B.2.2 The Partial-Response Decision Feedback Equalizer

If B(D) 6= G(D) and the design of the detector mandates a partial-response channel with polynomial
B(D), then the optimal MMSE-PRDFE is shown in Figure B.4.

Again, using our earlier result that for any feedback section GU (D) = B(D) + B̃(D). The error
sequence is the same as that for the MMSE-DFE, and is therefore a white sequence. The signal between
the the two feedback sections in Figure B.4 is input to the sequence or symbol-by-symbol detector. This
signal can be processed on a symbol-by-symbol basis if precoding is used (and also scaling is used to
remove the bias - the scaling is again the same scaling as used in the MMSE-DFE), and B̃U (D) =
GU(D) − BU (D), where

BU (D) =
SNRMMSE−DFE

SNRMMSE−DFE,U

[
B(D) − 1

SNRMMSE−DFE

]
. (B.10)

However, since the MMSE-PRDFE error sequence is white, and because the bias is usually small so that
the error sequence in the unbiased case is also almost white, the designer can reasonably use a Viterbi
Detector designed for B(D) with white noise.

If the bias is not negligible, then a ZF-PRDFE should be used, which is illustrated in Figure B.2,
and the filter settings are obtained by setting SNRMFB → ∞ in the above formula.
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Figure B.4: Partial-response DFE with B(D)
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Appendix C

The Matrix Inversion Lemma:

The matrix inversion lemma:

[A + BCD]−1 = A−1 − A−1B
[
C−1 + DA−1B

]−1
DA−1 . (C.1)
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