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Chapter 4

Multi-channel Modulation

Multi-channel modulation methods are generally the best for data transmission channels with moderate
or severe intersymbol interference. The modulation and equalization methods studied in Chapter 3
have only mildly considered the channel pulse response - that is, the modulator basis functions were
fixed. Chapter 3 studied equalization for mitigation of distortion (ISI) that might not have been of
concern in data transmission with carefully designed channel-dependent basis functions. In practice, a
particular modem may have to work with acceptable performance over a range of variation in specific
transmission channels. For instance, there are nearly a billion telephone lines worldwide that exhibit
significant variation in channel response and noise power spectral density. Also, cable-television coaxial
links can also exhibit significant variation from customer to customer. Large performance improvement
can be attained in these applications when the modulator basis functions can be designed as a function of
measured channel characteristics. Multi-channel modulation methods allow such modulator adaptation
to channel.

Figure 4.1: Basic concept of adaptive multi-channel (“multitone”) transmission.

Figure 4.1 illustrates the basic operation of DSL circuits, which use multitone transmission. The
basis functions can be viewed as a set of non-overlapping narrow QAM signals (i.e., “tones”). In the
upper portion of Figure 4.1, the channel response is shown to remove low-frequencies (DC notching of
transformer coupling to the telephone line) and also attenuates high-frequencies. The noise is presumed
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AWGN. The energy and/or amount of information carried on each QAM channel roughly follows the
channel transfer function. Multitone designs thus avoid need for equalization on any “tone” by making
each sufficiently narrow that the associated channel response in that band appears “flat,” so it satisfies
the Nyquist criterion. The same DSL modem used on a different telephone line might see the same DC
notch and attenuation with increasing frequency, but perhaps also a notch caused by a “bridged tap”
(open-circuit unterminated extension-phone line that branches from the main line), AM radio noise (RF
noise), and possibly crosstalk noise (which increases with frequency) from other DSLs sharing the same
telephone cable. The transmit basis function are the same, but clearly carry a very different allocation
of energy and information for this second example. Again though, equalization (which would have been
very complex in this second case) is avoided. This chapter will develop a theory to analyze and ultimately
find optimum the strategy basically outlined in Figure 4.1 on any stationary linear channel with additive
Gaussian noise.

The origins of multi-channel modulation date to antiquity. Shannon’s 1948 information-theory pa-
per constructs capacity bounds for transmission on a AWGN channel with linear ISI, effectively using
multitone modulation. The first uses of multi-channel modulation appear to be in the 1950’s with many
claiming invention. The 1958 Collins Kineplex modem, the very first voiceband data modem, used a
rudimentary form of multitone modulation. This modem operated at data rates of about 3000 bps, more
than 10 times faster than other modems in existence for the subsequent decade – an early testimonial to
the potential of multitone modulation. Holsinger’s 1964 MIT dissertation describes experiments on an-
other modem with optimized transmit distributions that approximated Shannon’s famous “water-filling”
best adaptive spectrum, which was also more completely developed within that same dissertation. Gal-
lager of MIT later added detailed mathematical rigor and popularized the term “water-filling” for the
shape of the optimized transmit spectrum as a function of the channel and noise characteristics. An
early problem was the stable implementation of multiple modulators in hardware, stifling wide use of
the method for nearly 20 years.

A number of increasingly successful attempts at the use of multichannel modulation occurred over a
30-year period, including attempts by Chang and Saltzberg of Bell Labs (1967), Weinstein and Eber of
Bell Labs (1973), Peled and Ruiz of IBM (1980), Keasler of U of Illinois (1970’s, licensed by Gandolf),
Baran of Telebit (1990’s), Mallory and Chaffee of IMC (1990’s), and Hirosaki of NEC (1987). Some of
the early implementers mentioned became frustrated in their analog-signal-processing implementations
and never recovered to later benefit from nor understand the merits of the approach in digital-signal-
processing implementation. While the various wired-line1 multichannel modems did often work better
than other single-channel modems, a variety of practical problems had earned “multitone” a reputation
slandered with cynicism and disdain by the early 1990’s.

A final thrust at popularizing multitone transmission, this time addressing many of the practical
problems inherent in the technique with digitally implementable solutions under the name “Discrete
Multitone” (DMT) emanated from Stanford University2. With anti-multitone hostilities at extreme
and ugly levels, the “academic” Stanford group was grudgingly allowed to compete with traditional
equalized systems designed by three independent sets of recognized experts from some of the world’s most
reknown telecommunications companies in what has come to be known as the “Bellcore Transmission
Olympics” in 1993 for DSL. The remaining world’s transmission experts anticipated the final downfall
of the multitone technique. In dramatic reversal of fortune, with measured 10-30 dB improvements
over the best of the equalized systems on actual phone lines, the gold-medalist DMT system ressurected
multitone transmission at 4:10 pm on March 10, 19933, when a US (and now world-wide) standard
was set for transmitting data over nearly a billion phone lines using multichannel modulation – this is
DSL4. At time of writing, over 200 million DMT components have been sold for DSL. Such credibility

1Wireless uses of multitone transmission are somewhat different and more recent and do not adapt the transmitter to
the channel, instead using various codes that are pertinent to channels that vary so quickly that the transmitter cannot
be adapted as suggested here in Chapter 4. Wireless multitone systems will be mentioned more in Section 4.5.

2Special thanks to former Stanford students and Amati employees Jim Aslanis, John Bingham, Jacky Chow, Peter
Chow, Toni Gooch, Ron Hunt, Kim Maxwell, Van Whitis and even an MIT, Mark Flowers, and a Utah, Mark Mallory.

3An interesting and unexpected coincidence is that this formal decision time and the very first demonstration of an
operating telephone (”Watson, Come here I need you,” said A.G. Bell) are coincident to the minute 117 years apart, with
Bell’s famous demonstration occuring on March 10, 1876, also at 4:10 pm.

4It should be noted that a second Bellcore Olympics was held in 2003 for higher speed DSLs as the remnants of the old
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established, it is now possible to develop the descriptions in this Chapter to the potential successful use
by the reader.

At about the same time that wireline uses were succeeding, wireless use of multiple carriers became
popular for digital audio and digital video broadcast systems. Clearly, these wireless transmission systems
had no feedback path for an adaptive transmitter, that would of course be common to all users anyway
and could not be adapted. Even if feedback were possible,time-variation of wireless channels is sufficiently
rapid to overwhelm or at least significantly complicated any adaptive transmitters. Nonetheless, the
concept of no equalizers (which otherwise would have to adapt rapidly and usually cannot do so in
many time-varying wireless situations) had appeal. Codes (see chapters 10 and 11 for full treatment
of coding) could be used however with equal information on all subchannels/tones of a multichannel
system. The codes span the subchannels, allowing with their redundancy the recovery of any subchannels
with poor probability of bit error – such systems are known as coded-OFDM. With the right code,
such systems again can significantly outperform equalized systems simply because the equalizers cannot
adapt quickly enough. The very first successful test of a digital broadcast audio system in late 1993
was actually performed with a specially retrofitted DSL modem with equal information and energy on
all channels. The performance gain over a single wide-band equalized system in the tests sponsored by
the United States Electronics Industry Association (EIA) in Ohio again repeated the enormous gains
of multi-carrier over the single-carrier system. Digital broadcast audio and video systems throughout
the world subsequently proceeded to use various multi-carrier designs that parallel the early DSL-based
prototype’s designs. Additionally, a wireless local-area-network (WLAN) development called “Hyperlan”
subsequently used some of the digital broadcast concepts to specify a wireless multicarrier at carrier
frequencies of roughly 5 GHz (so above the digital audio and video bands). Again, there was good success
and this system’s 54 Mbps transmission came to be standardized by the IEEE as IEEE 802.11(a) and then
at a lower 2.4 GHz carrier frequency as the popular IEEE 802.11(g), and by comparison a single-carrier
“equalized” system known as IEEE 802.11(b) was limited to 11 Mbps (both use the same bandwidth).
These wireless successes, directly traced back to the Olympic prototype above, also then enabled the non-
adaptive (but coded) OFDM systems to flourish also, quieting the single-carrier equalization supporters
perhaps permanently.

Section 4.1 illustrates the basic multitone concept generically and then specifically through the use
of the same 1+ .9D−1 channel that has been used throughout this text. Multichannel modulation forms
a set of parallel independent transmission channels that are used in aggregate to carry a data bit stream.
The generic parallel-channel situation is investigated in Section 4.2. The investigations include a review
of the “SNR gap” of earlier chapters as well as an elaboration of Chapter 6’s water-filling concepts in
a design (rather than capacity theory) context. The water-fill concept is easily described mathemat-
ically and pictorially, but can require large complexity in implementation. Loading algorithms that
optimize the transmit bit and energy distribution for the parallel channels are introduced in Section 4.3.
Channel partitioning, the construction of parallel independent channels from a channel with intersymbol
interference, is studied in Section 4.4. With isolated transmit symbols, achieved by waiting for trailing
intersymbol interference to decay to zero, the optimum “vector coding” and suboptimum DMT meth-
ods are described and analyzed. These methods are found to converge to the same performance as the
number of channels increases. The identification of the channel is very important to vector coding and
DMT methods and specific channel identification methods are studied in Section 4.7. A more complete
discussion of channel identification occurs in Chapter 13. The isolation of transmit symbols can be un-
desirable and was one of the problems poorly addressed in early multichannel efforts (leading to some of
the cynicism). An improvement, but not the last improvement in the author’s opinion, called a “TEQ”
or “time-domain equalizer” is discussed in Section 4.8. Some other methods for practical isolation are
suggested in Section 4.9, while some straightforward decoding and code-concatenation implementation
issues are addressed in Section 4.10.

single-carrier component suppliers attempted to overturn the earlier results. The results were again the same, dramatic
huge gains measured by a neutral lab of the DMT technique, and thus high speed DSLs known as VDSL are again
DMT-based

292



Figure 4.2: Basic multitone transmission.

4.1 Basic Multitone

Multitone transmission uses two or more coordinated passband (QAM or QAM-like) signals to carry a
single bit stream over a communication channel. The passband signals are independently demodulated in
the receiver and then re-multiplexed into the original bit stream. The heuristic motivation for multitone
modulation is that if the bandwidth of each of the “tones” is sufficiently narrow, then no ISI occurs on any
subchannel. The individual passband signals may carry data equally or unequally. Usually, the passband
signal(s) with largest channel output signal-to-noise ratio carry a proportionately larger fraction of the

digital information, consistent with Section 1.6’s “gap approximation” that5 b̄n = 1
2 log2

(

1 + SNRn

Γ

)

.

Figure 4.2 shows the simplest multitone system to understand. N̄ QAM-like modulators, along with
possibly one DC/baseband PAM modulator, transmit N̄+1 sub-symbol components Xn, n = 0, 1, ..., N̄.6

(N̄
∆
= N/2, and N is assumed to be even in this chapter.) This system is essentially the same as

the general modulator of Chapter 1. X0 and XN̄ are real one-dimensional sub-symbols while Xn,
n = 1, ..., N̄ − 1 can be two-dimensional (“complex”) sub-symbols. Each sub-symbol represents one of
2bn messages that can be transmitted on subchannel n. The carrier frequencies for the corresponding
subchannels are fn = n/T , where T is again the symbol period. The baseband-equivalent basis functions
are ϕn(t) = 1√

T
· sinc

(
t
T

)
∀ n.7 The entire transmitted signal can be viewed as N̄ + 1 independent

transmission subchannels as indicated by the frequency bands of Figure 4.3.
The multitone modulated signal is transmitted over an ISI/AWGN channel with the correspond-

ing demodulator structure also shown in Figure 4.2. Each subchannel is separately demodulated by
first quadrature decoupling with a phase splitter and then baseband demodulating with a matched-

5Of importance here in the “gap approximation” is that the quantity Γ, that is the “gap,” measures the proximity of
data rates to a highest theoretically achievable data rate known as the channel capacity (see Chapter 8). When Γ = 1 (0
dB), the data rate is highest (and this is the lowest possible gap). Various coding methods in Chapters 10 and 11 have
constant gaps across a wide range of possible numbers of bits per symbol. Thus the gap of 8.8 dB or 9.5 dB can be much
smaller in complete designs using coding. Whatever the gap of a family of codes, if constant, it can be assumed then
independent of bn on any channel of a multi-channel design.

6Capital letters are used for symbol component elements rather than the usual lower case letters because these elements
are frequency-domain elements, and frequency-domain quantities in this book are capitalized.

7The passband basis functions are actually the real and imaginary parts of
√

2/Tsinc( t
T

) · e2πfnt with receiver scaling

tacitly moved to the transmitter as in Chapter 2.
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Figure 4.3: Illustration of frequency bands for multitone transmission system.
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filter/sampler combination. With this particular ideal choice of basis functions, the channel output
basis functions ϕp,n(t) are an orthogonal set. There is thus no interference between the subchannels.
Each subchannel may have ISI, but as N → ∞, this ISI vanishes. Thus, (sub)symbol-by-(sub)symbol
detection independently applied to each subchannel implements an overall ML detector. No equalizer
is then necessary (large N) to implement the maximum-likelihood detector. Thus, maximum-likelihood
detection is thus more easily achieved with multitone modulation on an ISI channel than it is on a single
QAM or PAM signal. Again, equalization is unnecessary if the bandwidth of each tone is sufficiently
narrow to make the ISI on that subchannel negligible. Thus a high-speed modulator and equalizer are
replaced by N̄ + 1 low-speed modulators and demodulators in parallel.

Multitone modulation typically uses a value for N̄ that ensures that the pulse response of the ISI

channel appears almost constant at H(n/T )
∆
= Hn = H(f) for |f − n/T | < 1/2T . In practice, this

means that the symbol period T greatly exceeds the length of the channel pulse response. The (scaled)
matched filters then simply become the bandpass filters ϕp,n(t) = ϕn(t) = 1/

√
T · sinc(t/T ) · e−(2π/T )nt

and the sampled outputs become
Yn ≈ Hn ·Xn + Nn . (4.1)

The accuracy of this approximation becomes increasingly exact as N → ∞. Figure 4.3 illustrates the
scaling of Hn at the channel output on each of the subchannels. Each subchannel scales the input Xn

by the pulse-response gain Hn. Each subchannel has an AWGN with power-spectral density σ2
n. Thus,

each subchannel has SNRn = Ēn·|Hn|2
σ2

n
.

Each subchannel in the multitone system carries bn bits per symbol or b̄n bits per dimension (note
both n = 0 and n = N̄ are by definition one-dimensional subchannels with subchannel N̄ viewed as
single-side-band modulation)8. The total number of bits carried by the multitone system is then

b =

N̄∑

n=0

bn (4.2)

and the corresponding data rate is then

R =
b

T
=

N̄∑

n=0

Rn , (4.3)

where Rn
∆
= bn/T . Thus the aggregate data rate R is divided, possibly unequally, among the “subchan-

nels.”
With sufficiently large N , an optimum maximum-likelihood detector is easily implemented as N̄ + 1

simple symbol-by-symbol detectors. This detector need not search all combinations of M = 2b possible
transmit symbols. Each subchannel is optimally symbol-by-symbol detected. The reason this maximum-
likelihood detector is so easily constructed is because of the choice of the basis functions: multitone
basis functions are generically well-suited to transmission over ISI channels. Broader bandwidth basis
functions, as might be found in a wider bandwidth single-carrier (for instance QAM) system, are simply
not well suited to transmission on this channel, thus inevitably requiring suboptimum detectors for
reasons of complexity. Chapter 5 investigates the concept of canonical transmission and finds a means
for generalizing QAM transmission so that it is effectively just as good using a device known as the
Generalized Decision Feedback Equalizer or GDFE, which can in some trivial cases look like the usual
DFE of Chapter 3, but in most cases significantly differs in its generalized implementation, both at
transmitter and receiver.

This chapter later trivially shows that multitone modulation, when combined with a code of gap Γ
on each AWGN subchannel, comes as close to its theoretical capacity as that same code would come to
capacity on an AWGN. That is, for sufficiently large N , multitone basis functions are indeed optimum
for transmission on an ISI channel.

EXAMPLE 4.1.1 (1 + .9D−1) This book has repeatedly used the example of a channel
with (sampled) pulse response 1 + .9D−1 to compare performance of various ISI-mitigation

8Typically, subchannel 0 and subchannel N̄ are not used in actual systems
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1 + .9D−1 Gains and SNR’s
n En Hn SNRn bn arg Q-func (dB)
0 8/7 1.9 22.8 (13.6 dB) 1.6 9.2

1 16/7 1 + .9eπ/4 = 1.76 6 21.3o 19.5 (12.9 dB) 2× 1.5 9.2

2 16/7 1 + .9eπ/2 = 1.35 6 42.0o 11.4 (10.6 dB) 2× 1.2 9.1

3 16/7 1 + .9e3π/4 = .733 6 60.25o 3.4 (5.3 dB) 2× .5 10

Table 4.1: Subchannel SNR’s for the 1 + .9D channel with gap at 4.4 dB.

structures. Multitone modulation on this example, as well as on any linear ISI channel,
achieves the highest performance. In order to have a continuous channel for multitone, we
will write that H(f) = 1+ .9e2πf (T = N). This channel increasingly attenuates with higher
frequencies, so multitone modulation will be used with subchannel n = 4 silenced (X4 = 0).
N = 8 is not sufficiently large for the approximation in (4.1) to hold, but larger N would
make this example intractable for the reader. So, we assume N = 8 is sufficiently large for
easy illustration of concept.

Table 4.1 summarizes the subchannel gains and SNR’s for each of the subchannels in this ex-
ample: For multitone, the phase choice of the channel is irrelevant to achievable performance,
and the example would be the same for 1 + .9D−1 as for 1 + .9D.

The SNR’s in the above table are computed based on the assumption that N0

2
= .181 – that

is, SNRMFB= 10 dB if binary modulation is used (as in previous studies with this example).
Of course, SNRMFB is a function of the modulated signals and in this example has meaning
only in the context of performance comparisons against previous invocations of this example.
The energy per subchannel has been allocated so that equal energy per dimension is used on
the 7 available dimensions. With T = N = 8, this means that the transmit power of 1 for
previous invocations of this example (that is one unit of energy per dimension and symbol
period 1) is maintained here because the transmit power is

∑

n En/T = 8/8 = 1. For this
simple example, 4 symbol-by-symbol detectors operating in parallel exceeded the performance
of a MMSE-DFE, coming very close to the MFB for binary PAM transmission. The data rate
remains constant at b̄ = 1, and the power also is constant at Ēx = 1, so comparison against
the DFE of Chapter 3 on this example is fair. The above table’s Q-function arguments

are found by using the QAM formula dmin/2σ =
√

3
M−1SNR for n = 1, 2, 3 and the PAM

formula dmin/2σ =
√

3
M2−1SNR with M = 2bn – this approximation can be made very

accurate by careful design of the signal sets for each subchannel.

For this example, N = 8 is not sufficiently high for all approximations to hold and a more
detailed analysis of each subchannel’s exact SNR might lead to slightly less optimistic per-
formance projection. On the other hand, the energy per subchannel and the bit distribution
in this example are not optimized, but rather simply guessed by the author. One finds for a
large number of subchannels that performance will come down to 8.8 dB when the tones are
sufficiently narrow for all approximations to hold accurately. An infinite-length MMSE-DFE,
at best, achieves 8.4 dB in Chapter 3 – with Tomlinson precoding, the actual performance at
the same data rate of b̄ = 1 was 1.3 dB lower or 7.1 dB. Thus a MMSE-DFE would perform
about 1.7 dB worse than multitone on this channel. (The GDFE of Chapter 5 allows most
of this 1.7 dB to be recovered, but also uses several subchannels.)

This example illustrates that there is something to be gained from multitone. An interesting aspect
is also the parallelism inherent in the multitone receiver and transmitter, allowing for the potential of
a very high-speed implementation on a number of parallel processing devices. The 1 + .9D−1 channel
has mild ISI (but is easy to work with mathematically without computers) – the gain of 1.7 dB can be
much larger on channels with severe ISI.
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4.2 Parallel Channels

The multitone transmission system of Section 4.1 inherently exhibits N̄ + 1 independent subchannels.
Generally, multichannel systems can be construed as having N subchannels (where in the previous
multitone system, several pairs of these subchannels have identical gains and can be considered as
two-dimensional subchannels). This section studies the general case of a communication channel that
has been decomposed into an equivalent set of N real parallel subchannels. Of particular importance
is performance analysis and optimization of performance for the entire set of subchannels, which this
section presents.

The concept of the SNR gap for a single channel is crucial to some of the analysis, so Subsection
4.2.1 reviews a single channel and then Subsections 4.2.2 and 4.2.3 use these single-channel results to
establish results for parallel channels.

4.2.1 The single-channel gap analysis

The so-called “gap” analysis of Chapter 1 is reviewed here briefly in preparation for the study of parallel
channels and loading algorithms.

On an AWGN channel, with gain Pn and noise power spectral density σ2
n, the SNRn is

E·|Pn|2
σ2

n
. This

channel has maximum data rate or capacity9 of

c̄n =
1

2
log2(1 + SNRn) (4.4)

bits/dimension. More generally,

b̄n =
1

2
log2(1 +

SNRn

Γ
) . (4.5)

Any reliable and implementable system must transmit at a data rate below capacity. The gap
is a convenient mechanism for analyzing systems that transmit with b̄ < c̄. Most practical signal
constellations in use (PAM, QAM) have a constant gap for all b̄ ≥ .5. For b̄n < .5, one can construct
systems of codes to be used that exhibit the same constant gap as for b̄ ≥ .5.10 For any given coding
scheme and a given target probability of symbol error Pe, an SNR gap is defined according to

Γ
∆
=

22c̄ − 1

22b̄ − 1
=

SNR

22b̄ − 1
. (4.6)

To illustrate such a constant gap, Table 4.2.1 lists achievable b̄ for uncoded QAM schemes using square
constellations. For b̄ < 1, maintenance of this constant gap concept allows mild additional coding (see
Chapters 10 and 11) in the “uncoded” system to obtain small additional coding gain when b = .5.

For uncoded QAM or PAM and Pe = 10−6, the SNR gap Γ is constant at 8.8 dB. With uncoded
QAM or PAM and Pe = 10−7, the gap would be fixed instead at about 9.5 dB. The use of codes, say
trellis or turbo coding and/or forward error correction (see Chapters 10 and 11) reduces the gap. A
very well-coded system may may have a gap as low as .5 dB at Pe ≤ 10−6. Figure 4.4 plots b̄ versus
SNR for various gaps. Smaller gap indicates stronger coding. The curve for Γ = 9 dB approximates
uncoded PAM or QAM transmission at probability of symbol error Pe ≈ 10−6. A gap of 0 dB means
the theoretical maximum bit rate has been achieved, which requires infinite complexity and delay - see
Chapter 8.) For the remainder of this chapter and the next, the same constant gap is assumed for the
coding of each and every subchannel.

For a given coding scheme, practical transmission designs often mandate a specific value for b, or
equivalently a fixed data rate. In this case, the design is not for b̄max = 1

2
log2(1 + SNR/Γ), but rather

for b. The margin measures the excess SNR for that given bit rate.

9Capacity in Volume I is simply defined as the data rate with a code achieving a gap of Γ = 1 (0 dB). This is the lowest
possible gap theoretically and can be approached by sophisticated codes, as in Volume II. Codes exist for which P̄e → 0 if
b̄ ≤ c̄.

10Some of the algorithms in Section 4.3 do not require the gap be constant on each tone, and instead require only tabular
knowledge of the exact bn versus required En relationship for each subchannel.
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b̄ .5 1 2 3 4 5

SNR for Pe = 10−6 (dB) 8.8 13.5 20.5 26.8 32.9 38.9

22b̄ − 1 (dB) 0 4.7 11.7 18.0 24.1 30.1

Γ (dB) 8.8 8.8 8.8 8.8 8.8 8.8

Table 4.2: Table of SNR Gaps for P̄e = 10−6.
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Figure 4.4: Illustration of bit rates versus SNR for various gaps.
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(repeated from Section 1.5)

Definition 4.2.1 The margin, γm, for transmission on an AWGN (sub)channel with a
given SNR, a given number of bits per dimension b̄, and a given coding-scheme/target-P̄e

with gap Γ is the amount by which the SNR can be reduced (increased for negative margin in
dB) and still maintain a probability of error at or below the target Pe.

Margin is accurately approximated through the use of the gap formula by

γm =
22b̄max − 1

22b̄ − 1
=

SNR/Γ

22b̄ − 1
. (4.7)

The margin is the amount by which the SNR on the channel may be lowered before performance degrades
to a probability of error greater than the target Pe used in defining the gap. A negative margin in dB
means that the SNR must improve by the magnitude of the margin before the Pe is achieved. The
margin relation can also be written as

b̄ = .5 log2

(

1 +
SNR

Γ · γm

)

. (4.8)

EXAMPLE 4.2.1 (AWGN with SNR = 20.5 dB) An AWGN has SNR of 20.5 dB. The
capacity of this channel is then

c̄ = .5 log2 (1 + SNR) = 3.5 bits/dim . (4.9)

With a Pe = 10−6 and 2B1Q,

b̄ = .5 log2

(

1 +
SNR

10.88

)

= 2 bits/dim . (4.10)

With concatenated trellis and forward error correction (or with “turbo codes” – see Chapters
10 and 11), a coding gain of 7 dB at Pe = 10−6, then the achievable data rate leads to

b̄ = .5 log2

(

1 +
SNR

10.18

)

= 3 bits/dim . (4.11)

Suppose a transmission application requires b̄ = 2.5 bits/dimension, then the margin for the
coded system is

γm =
22·3 − 1

22·2.5 − 1
=

63

31
≈ 3 dB . (4.12)

This means the noise power would have to be increased (or the transmit power reduced) by
more than 3 dB before the target probability of error of 10−6 is no longer met. Alternatively,
suppose a design transmits 4-QAM over this channel and no code is used, then the margin is

γm =
22·2 − 1

22·1 − 1
=

15

3
≈ 7 dB . (4.13)

4.2.2 A single performance measure for parallel channels - geometric SNR

In a multi-channel transmission system, it is usually desirable to have all subchannels with the same Pe.
Otherwise, if one subchannel had significantly higher Pe than others, then it would dominate bit error
rate. Constant Pe can occur when all subchannels use the same class of codes with constant gap Γ. In
this case, a single performance measure characterizes a multi-channel transmission system. This measure
is a geometric SNR that can be compared to the detection SNR of equalized transmission systems or to
the SNRMFB .
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For a set of N (one-dimensional real) parallel channels, the aggregate number of bits per dimension
is

b̄ = (1/N) ·
N∑

n=1

b̄n = (1/N)

N∑

n=1

1

2
log2

(

1 +
SNRn

Γ

)

(4.14)

=
1

2N
log2

(
N∏

n=1

[

1 +
SNRn

Γ

])

(4.15)

∆
=

1

2
log2

(

1 +
SNRm,u

Γ

)

. (4.16)

Definition 4.2.2 (Multi-channel SNR) The multi-channel SNR for a set of parallel
channels is defined by

SNRm,u
∆
=





(
N∏

n=1

[

1 +
SNRn

Γ

])1/N

− 1



 · Γ . (4.17)

The multi-channel SNR is a single SNR measure that characterizes the set of subchannels by an
equivalent single AWGN that achieves the same data rate, as in Figure 4.5. The multichannel SNR in
(4.17) can be directly compared with the detection SNR of an equalized single channel system. The bit
rate is given in (4.16) as if the aggregate set of parallel channels were a single AWGN with SNRm,u.

When the terms involving +1 can be ignored, the multichannel SNR is approximately the geometric
mean of the SNR’s on each of the subchannels

SNRm,u ≈ SNRgeo =

(
∏

n

SNRn

)1/N

. (4.18)

Returning to Example 4.1.1, the multi-channel SNR (with gap 0 dB ) is

SNRm,u =
[
(22.8 + 1)(19.5 + 1)2(11.4 + 1)2(3.4 + 1)2

].125− 1 = 8.8(dB) . (4.19)

This multichannel SNR with Γ = 0 is very close to the argument that was used for all the Q-functions.
This value is actually the best that can be achieved.11 SNRm,u = 9.7 dB for Γ = 8.8 dB, very close to the
value in the sample design of Example 4.1.1. This value is artifically high only because the approximation
accruing to using too small a value of N for illustration purposes - if N were large, SNRm,u would be
close to 8.8 dB even with Γ > 1, and also the gap approximation loses accuracy when b̄ < 1.

4.2.3 The Water-Filling Optimization

To maximize the data rate, R = b/T , for a set of parallel subchannels when the symbol rate 1/T is fixed
requires maximization of the achievable b =

∑

n bn over bn and En. The largest number of bits that can
be transmitted over a parallel set of subchannels must maximize the sum

b =
1

2

N∑

n=1

log2(1 +
En · gn

Γ
) , (4.20)

where gn represents the subchannel signal-to-noise ratio when the transmitter applies unit energy to
that subchannel. (For multitone, gn = |Hn|2/(σ2

n).) gn is a fixed function of the channel, but En can be
varied to maximize b, subject to an energy constraint that

N∑

n=1

En = N Ēx . (4.21)

11Somewhat by coincidence because the continuous optimum bandwidth from Chapter 8 is .88π. This example for-
tuitously can approximate .88π very accurately only using 7/8 subchannels to get .875π. In other cases, a much larger
number of subchannels may need to be used to approximate the optimum bandwidth.
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Figure 4.5: Equivalent single channel characterized by Multi-channel SNR.
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Using Lagrange multipliers, the cost function to maximize (4.20) subject to the constraint in (4.21)
becomes

1

2 ln(2)

∑

n

ln

(

1 +
En · gn

Γ

)

+ λ

(
∑

n

En −N Ēx
)

. (4.22)

Differentiating with respect to En produces

1

2 ln(2)

1
Γ
gn

+ En
= −λ . (4.23)

Thus, (4.20) is maximized, subject to (4.21), when

En +
Γ

gn
= constant . (4.24)

When Γ = 1 (0 dB), the maximum data rate or capacity of the parallel set of channels is achieved.
The solution is called the “water-filling” solution because one can construe the solution graphically by
thinking of the curve of inverted channel signal-to-noise ratios as being filled with energy (water) to a
constant line as in Figure 4.6. (Figure 4.6 illustrates the discrete equivalent of water-filling for a set of
6 subchannels, which will be subsequently described further.) When Γ 6= 1, the form of the water-fill
optimization remains the same (as long as Γ is constant over all subchannels). The scaling by Γ makes
the inverse channel SNR curve, Γ/gn vs n, appear more steep with n, thus leading to a more narrow
(fewer used subchannels) optimized transmit band than when capacity (Γ = 1) is achieved. The number
of bits on each subchannel is then

bn = .5 · log2

(

1 +
En · gn

Γ

)

(4.25)

For the example of multi-tone, the optimum water-filling transmit energies then satisfy

En + Γ · σ2
n

|Hn|2
= constant . (4.26)

Figure 4.6 depicts water-filling for a transmission system with 6 subchannels with gn = |Hn|2
σ2

n
. Equation

(4.26) is solved for the constant when
∑

n En = N Ēx and Ēx ≥ 0. Four of the six subchannels in Figure
4.6 have positive energies, while 2 were eliminated for having negative energy, or equivalently having a
noise power that exceeded the constant “water” line of water filling. The 4 used subchannels have energy
that makes the sum of normalized noise and transmit energy constant. For methods of computing the
water-fill solution, see the next section. The term “water-filling” arises from the analog of the curve of
Γ/gn being a bowl into which water (energy) is poured, filling the bowl until there is no more energy
to use. The water will rise to a constant flat level in the bowl. The amount of water/energy in any
subchannel is the depth of the water at the corresponding point in the bowl.

The water-filling solution is unique because the function being minimized is convex, so there is
a unique optimum energy distribution (and corresponding set of subchannel data rates) for each ISI
channel with multi-channel modulation.

4.2.4 Margin Maximization (or Power Minimization)

For many transmission systems, variable data rate is not desirable. In this case, the best design will
maximize the performance margin at a given fixed data rate. To maximize fixed-rate margin, the designer
equivalently minimizes the total energy (which is also called fixed-margin loading)

N∑

n=1

En (4.27)
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Figure 4.6: Illustration of discrete water-filling for 6 subchannels.

subject to the data rate and margin being fixed according to

N∑

n=1

1

2
log2

(

1 +
En · gn

Γ

)

= b . (4.28)

The best margin will then be

γm =
N Ēx

∑N
n=1 En

. (4.29)

The solution to the energy minimization problem after correct differentiation is again the water-filling
solution given by

En +
Γ

gn
= constant . (4.30)

However, in this case water/energy is poured only until the number of bits per symbol (which is com-
puted at each subchannel according to (4.25) and then summed over all subchannels) is equal to the
given fixed rate in (4.28). Then the margin is computed according to (4.29). Each subchannel has its
energy increased uniformly with respect to that which minimized the sum of energies by a factor of
the maximum margin. Sometimes in multi-user channels, see Chapter 12, the solution with minimum
energy for a given data rate and given margin is of interest in what is called “iterative water-filling.”
This energy-minimizing form of the loading problem is known in mathematics as “the dual form” of the
rate-maximizing formulation.

Energy minimization is equivalent to margin maximization because any other bit distribution would
have required more energy to reach the same given data rate. That greater energy would then clearly
leave less energy to be distributed (uniformly) among the remaining subchannels if the new distribution
used the same or a larger number of subchannels. If the new distribution used less subchannels than
the water-fill, the amount by which the new energy distribution’s total energy increased still exceeds the
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improvement caused by extra energy being distributed over the smaller number of subchannels – for if
this were not the case, then b̄ could have been achieved more efficiently with the new distribution (a
contradiction).
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4.3 Loading Algorithms

Loading algorithms compute values for the bits bn and energy En for each and every subchannel in a
parallel set of subchannels. One example of a loading algorithm is the optimum water-filling algorithm
of Section 4.2 that solves a set of linear equations with boundary constraints, as described further
in this section. The solution of these water-filling equations for large N may produce bn that have
fractional parts or that are very small. Such small or fractional bn can complicate encoder and decoder
implementation. Alternative suboptimal loading algorithms approximate the water-fill solution, but
constrain bn to integer values, as also described later in this section.

There are two types of loading algorithms – those that try to maximize data rate and those that try
to maximize performance at a given fixed data rate. Both are studied in this section.

Definition 4.3.1 (Rate-Adaptive (RA) loading criterion) A rate-adaptive loading pro-
cedure maximizes (or approximately maximizes) the number of bits per symbol subject to a
fixed energy constraint:

max
En

b =

N∑

n=1

1

2
log2

(

1 +
En · gn

Γ

)

(4.31)

subject to: N Ēx =

N∑

n=1

En (4.32)

Definition 4.3.2 (Margin-Adaptive (MA) loading criterion) A margin-adaptive load-
ing procedure minimizes (or approximately minimizes) the energy subject to a fixed bits/symbol
constraint:

min
En

Ex =

N∑

n=1

En (4.33)

subject to: b =

N∑

n=1

1

2
log2

(

1 +
En · gn

Γ

)

(4.34)

The consequent maximum margin is then

γmax =
N Ēx
E . (4.35)

When Ēx is left at its minimized value (and the gap includes any margin and coding gain by
definition) in the solution of Equations (4.31) and (4.32) and energy is then minimized for
the given data rate b, the loading is called Fixed Margin (FM).

FM loading is useful in transmission designs for which power savings is important.

4.3.1 Computing Water Filling for RA loading

The set of linear equations that has the water-fill distribution as its solution is

E1 + Γ/g1 = K (4.36)

E2 + Γ/g2 = K (4.37)

... =
... (4.38)

EN + Γ/gN = K (4.39)

E1 + ... + EN = N Ēx . (4.40)

There are a maximum of N + 1 equations in N + 1 unknowns The unknowns are the energies En, n =
1, ..., N and the constant K. The solution can produce negative energies. If it does, the equation with
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the smallest gn should be eliminated, and the corresponding En should be zeroed. The remaining sets
of equations are solved recursively by eliminating the smallest gn and zeroing En, until the first solution
with no negative energies occurs.

In matrix form, the equations become








1 0 0 0 ... −1
0 1 0 0 ... −1
...

...
. . .

. . .
. . . −1

1 1 1 ... 1 0

















E1
E2
...
EN
K










=










−Γ/g1

−Γ/g2

...
−Γ/gN

N Ēx










, (4.41)

which are readily solved by matrix inversion. Matrix inversions of size N + 1 down to 1 may have to be
performed iteratively until nonnegative energies are found for all subchannels.

An alternative solution sums the first N equations to obtain:

K =
1

N

[

N Ēx + Γ ·
N∑

n=1

1

gn

]

, (4.42)

and
En = K − Γ/gn ∀ n = 1, ..., N . (4.43)

If one or more of En < 0, then the most negative is eliminated, and (4.42) and (4.43) are solved again
with N → N − 1 and the corresponding gn term eliminated. The equations preferably are preordered
in terms of signal-to-noise ratio with n = 1 corresponding to the largest-SNR subchannel g1 = maxn gn

and n = N corresponding to the smallest-SNR subchannel gN = minn gn. Equation (4.42) then becomes
at the ith step of the iteration (i = 0, ..., N)

K =
1

N − i

[

Ex + Γ ·
N−i∑

n=1

1

gn

]

, (4.44)

which culminates with N∗ = N − i for the first value of i that does not cause a negative energy on Ei,
then leaving the energies as

En = K − Γ/gn ∀ n = 1, ..., N∗ = N − i . (4.45)

The water-filling algorithm is illustrated by the flow chart of Figure 4.7.
The sum in the expression for K in (4.42) is always over the used subchannels. The following

simplified formulae, apparently first observed by Aslanis, then determine the number of bits and number
of bits per dimension as

bn =
1

2
log2

(
K · gn

Γ

)

=
1

2
log2

(

1 +
En · gn

Γ

)

. (4.46)

and

b̄ =
1

2
log2

(

KN∗/N · (∏N∗

n=1 gn)1/N

ΓN∗/N

)

=
1

N

N∗

∑

n=1

bn (4.47)

=
1

2
log2

(

1 +
SNRm,u

Γ

)

, (4.48)

respectively. The SNR for the set of parallel channels is therefore

SNRm,u = Γ

{(
K

Γ

)N∗/N
(

N∗

∏

n=1

g1/N
n

)

− 1

}

. (4.49)
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Figure 4.7: Flow chart of Rate-Adaptive water-filling algorithm.
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The water-filling constant K becomes the ratio

K = Γ ·
(

22b

∏N∗

n=1 gn

)1/N∗

. (4.50)

EXAMPLE 4.3.1 (1 + .9D−1 again) The water-fill solution (for Γ = 1) can be found on
the 1 + .9D−1 example to compute capacity. First, the subchannels are characterized by

g0 =
1.92

.181
= 19.94 (4.51)

g1 =
1.75582

.181
= 17.03 (4.52)

g2 =
1.34542

.181
= 10.00 (4.53)

g3 =
.73292

.181
= 2.968 (4.54)

g4 =
.12

.181
= .0552 (4.55)

Using (4.42) with all subchannels (N = 8 or actually 5 subchannels since 3 are complex with
identical g’s on real and imaginary dimensions), one computes

K =
1

8

[

8 + 1 · ( 1

19.94
+

2

17.03
+

2

10.0
+

2

2.968
+

1

.0552
)

]

= 3.3947 , (4.56)

and thus E4 = 3.3947− 1/.05525 = −14.7 < 0. So the last subchannel should be eliminated
and the equations propagated again. For N = 7,

K =
1

7

[

8 + 1 · ( 1

20
+

2

17
+

2

9.8
+

2

3
)

]

= 1.292 , (4.57)

The corresponding subchannel energies, Ēn, on the subchannels are 1.24, 1.23, 1.19, and
.96, which are all positive, meaning the solution with positive energy on all subchannels
has been found. The corresponding number of bits per each subchannel is computed as
b̄n = .5 log2(Kgn), which has values b̄=2.3, 2.2, 1.83, and .98 respectively. The sum is very
close to 1.54 bits/dimension, almost exactly the known capacity of this channel12. Figure 4.8
illustrates the water-fill energy distribution for this channel.

The capacity (when Γ = 1 or 0 dB) exceeds 1 bit/dimension, implying that codes exist that
allow arbitrarily small probability of error for the selected transmission rate in earlier uses
of this example of 1 bit/dimension.

The accuracy of this computation of capacity can be increased somewhat by further in-
creasing N – the eventual large-N -asymptotic value is approximately 1.55 bits/dimension.
Then, SNRm,u = 22(1.54) − 1 = 8.8 dB. This is the highest detection-point SNR that any
receiver can achieve. This is better than the MMSE-DFE by .4 dB (or by 1.7 dB with error
propagation/precoding effects included). On more severe-ISI channels (1 + .9D−1 is easy
for computation by hand but is not really a very difficult transmission channel), the differ-
ence between multitone and the MMSE-DFE can be very large. Chapter 5 shows how to
correct the MMSE-DFE’s transmit filter and symbol rate in some situations to improve the
MMSE-DFE’s detection SNR to the level of multitone, but this is not always possible.
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Figure 4.8: Water-filling energy distribution for 1 + .9D−1 channel with N = 8.

4.3.2 Computing Water-Filling for MA loading

MA water-filling will have a constant Kma that satisfies

En = Kma −
Γ

gn
(4.58)

for each used subchannel. The bit-rate constraint then becomes

b =
1

2

N∗

∑

n=1

log2

(

1 +
En · gn

Γ

)

(4.59)

=
1

2

N∗

∑

n=1

log2

(
Kma · gn

Γ

)

(4.60)

=
1

2
log2

(
N∗

∏

n=1

Kma · gn

Γ

)

(4.61)

22b =

(
Kma

Γ

)N∗

·
N∗

∏

n=1

gn (4.62)

Thus, the constant for MA loading is

Kma = Γ

(

22b

∏N∗

n=1 gn

)1/N∗

. (4.63)

MA water-fill algorithm

1. Order gn largest to smallest, n = 1,..., N , and set i = N .

12This channel is later shown to have a capacity of 1.55 bits/dimension, so not yet “known” to the reader upon initial
reading.
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Figure 4.9: Flow chart of margin-adaptive water filling.
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2. Compute Kma = Γ

(

22b

∏
i

n=1
gn

)1/i

(this step requires only one multiply for i ≤ N − 1).

3. Test subchannel energy Ei = Kma− Γ
gi

< 0? If yes, then i← i−1, go to step 2, otherwise continue

4. Compute solution with n = 1, ..., N∗ = i

En = Kma −
Γ

gn
(4.64)

bn =
1

2
log2

(
Kma · gn

Γ

)

(4.65)

5. Compute margin γmax =
N Ēx∑
N∗

n=1
En

.

Figure 4.9 illustrates margin-adaptive water-filling. Figure 4.9 recognizes that the numerator and denom-
inator terms in Equation (4.63) could be quite large while the quotient remains reasonable, so logarithms
are used to reduce the precisional requirements inside the loop.

EXAMPLE 4.3.2 Returning to the 1 + .9D−1 example, the MA water-fill iterations for a
gap of Γ = 8.8 dB for a Pe = 10−6 are:

1. iteration i = 5 subchannels

Kma = 10.88 ·
(

216

19.945 · 17.0322 · 102 · 2.9682 · .05525

).125

= 6.3228 (4.66)

E4 = 6.3228− 10.88/.0552 = −131 < 0 i← i→ 4 (4.67)

2. step i = 4 subchannels

Kma = 10.88 ·
(

216

19.845 · 17.0322 · 102 · 2.9682

)1/7

= 4.0727 (4.68)

Ē3 = 4.0727− 10.88/2.968 = 1.5169 > 0 E3 = 3.0337 (4.69)

E2 = 6.6283, E1 = 7.2547 , E0 = 3.6827.

γmax =
8

3.0337 + 6.6283 + 7.2547 + 3.6827
= (1/2.57) = −4.1 dB (4.70)

The negative margin indicates what we already knew, this channel needs coding or more
energy (at least 4.1 dB more) to achieve a Pe = 10−6, even with multitone. However,
gap/capacity arguments assume that a code with nearly 9 dB exists, so it is possible with
codes of gain greater than 4.1 dB, or equivalently gaps less than 4.7 dB, to have acceptable
performance on this channel. The amount of additional coding necessary is a minimum with
multi-tone (when N →∞).

4.3.3 Loading with Discrete Information Units

Water-filling algorithms have bit distributions where bn can be any real number. Realization of bit dis-
tributions with non-integer values can be difficult. Alternative loading algorithms allow the computation
of bit distributions that are more amenable to implementation with a finite granularity:

Definition 4.3.3 (Information Granularity) The granularity of a multichannel trans-
mission system is the smallest incremental unit of information that can be transmitted, β.
The number of bits on any subchannel is then given by

bn = Bn · β , (4.71)

where Bn ≥ 0 is an integer.
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Typically, β, takes values such as .25, .5, .75, 1, or 2 bit(s) with fractional bit constellations being
discussed in both Chapters 10 and 11.

There are two approaches to finite granularity. The first computes a bit distribution by rounding of
approximate water-fill results, and is called Chow’s algorithm. The second is based on greedy methods
in mathematics and first suggested by Hughes-Hartog; however, considerable significant improvements,
a complete and mathematically verifiable framework, as well as an approach that circumvents many
drawbacks in the original Hughes-Hartog methods was developed independently by Jorge Campello
de Souza13 and Howard Levin and are now known as Levin-Campello (LC) Algorithms. These
algorithms solve the finite-β loading problem directly, which is not a water-filling solution. This section
first describes Chow’s algorithm, and then proceeds to the LC methods.

Chow’s Algorithm

Peter Chow studied a number of transmission media with severe intersymbol interference, in particular
telephone line digital transmission known generally as Digital Subscriber Line (DSL), in his 1993 Stanford
Dissertation. Chow was able to verify that an “on/off” energy distribution, as long as it used the same
or nearly the same transmission band as water-filling, exhibits negligible loss with respect to the exact
water-filling shape. The reader is cautioned not to misinterpret this result as saying that flat energy
distribution is as good as water-filling, but rather “on/off”; where “on” means flat energy distribution in
the same used bands as water filling and “off” means zero energy distribution where water-filling would
be zero.

Chow’s algorithms take as much or more computation than water-fill methods, rasing the issue of
their utility even if close to optimum. The reason for the use of “on/off” energy distributions is that
practical systems usually have a constraint on the maximum power spectral density along with a total
energy/power constraint. Such power-spectral-density constraints are typically flat over the region of
bandwidth considered for transmission. Such “on/off’ energy distribution comforts those concerned with
the effect of emissions from a transmission channel on other transmission systems or electronic devices.

Using this observation, Chow was able to devise algorithms that approximate water-filling with finite
granularity in the bit loading bn and equal energy En = N

N∗
Ēx. Both the RA and MA problems can be

solved with Chow’s algorithms, which in both cases begin with Chow’s Primer below:

Chow’s “on/off” Loading Primer:

1. Re-order the gn so that g1 is the largest

2. Set btemp(N + 1) = 0, i = N . (btemp(i) and i are the tentative total bits and number of used
subchannels, respectively.)

3. Set equal energy on used tones as En = N Ēx/i for n = 1, ..., i, and then SNRn = gnEn. (When
power-spectral density limits would be exceeded - the energy level is instead set at the power-
spectal-density limits and the number of used subchannels i is reset to i + 1, making one last pass
through steps 4 and 5).

4. Compute btemp(i) =
∑i

n=1
1
2 log2(1 + SNRn/Γ).

5. If btemp(i) < btemp(i + 1), then keep the bit distribution corresponding to btemp(i + 1) - otherwise
i← i− 1 and go to step 3.

The bit distribution produced by Chow’s Primer will likely contain many subchannels with non-
integer numbers of bits.

EXAMPLE 4.3.3 (1 + .9D−1) The algorithm above can be executed for the (1 + .9D−1)
example with Γ = 0 dB. The 3 passes necessary for solution are:

13379C students take heart, it was his course project!
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Pass i=4 Ēn = 1, n = 0, 1, 2, 3, 4.

SNR0 =
1.92

.181
= 19.9448 (4.72)

SNR1 =
1.75582

.181
= 17.032 (4.73)

SNR2 =
1.34542

.181
= 10.000 (4.74)

SNR3 =
.73922

.181
= 2.968 (4.75)

SNR4 =
.12

.181
= .0552 (4.76)

btemp(4) = .5·log2(1+19.9448)+log2(1+17.032)+log2(1+10)+log2(1+2.968)+.5∗log2(1.0552) = 11.8533 .
(4.77)

Pass i=3 Ēn = 8/7, n = 0, 1, 2, 3.

SNR0 =
8 · 1.92

7 · .181
= 22.794 (4.78)

SNR1 =
8 · 1.75582

7 · .181
= 19.4651 (4.79)

SNR2 =
8 · 1.34542

7 · .181
= 11.4286 (4.80)

SNR3 =
8 · .73922

7 · .181
= 3.3920 (4.81)

btemp(3) = .5 · log2(23.794)+ log2(20.4651)+ log2(12.42865)+ log2(4.3920) = 12.4118 .
(4.82)

Pass i=2 Ēn = 8/5, n = 0, 1, 2.

SNR0 =
8 · 1.92

5 · .181
= 31.9116 (4.83)

SNR1 =
8 · 1.75582

5 · .181
= 27.2512 (4.84)

SNR2 =
8 · 1.34542

5 · .181
= 16.000 (4.85)

btemp(2) = .5 · log2(32.9116) + log2(28.2512)+ log2(17) = 11.428 < 12.4118 . (4.86)

STOP and use i = 3 result.

The algorithm has terminated with the computation of b = 12.4118 or b̄ = 1.54 bits/dimension,
the known capacity of this channel for Γ = 0 to almost 3 digit accuracy, confirming on this
example that on/off energy is essentially as good as water-filling energy shaping. The key
in both Chow and Water-filling methods is that the tone at Nyquist is not used - it’s use
corresponds to about a 10% loss in data rate on this example.

To illustrate that one could reorder the tones from smallest to largest in terms of channel
SNR, the 5 passes necessary for solution follow:

Pass 1 SNR = 160
btemp(1) = .5 log2 (1 + 160/1) = 3.7
b̄temp = btemp/8 = .46

Pass 2 SNR0 = 53.2
SNR1 = 45.5
btemp(2) = 2.9 + 2(2.75) = 8.4
b̄temp = btemp/8 = 1.1
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Figure 4.10: Illustration of sawtooth energy distribution characteristic of Chow’s Algorithm.

Pass 3 SNR0 = 31.9
SNR1 = 27.3
SNR2 = 16.0
btemp(3) = 2.5 + 2(2.4) + 2(2.0) = 11.3
b̄temp = btemp/8 = 1.42

Pass 4 SNR0 = 22.8
SNR1 = 19.5
SNR2 = 11.4
SNR3 = 3.4
btemp(4) = 2.3 + 2(2.1) + 2(1.8) + 2(1.05) = 12.4
b̄ = btemp/8 = 1.55

Pass 5 SNR0 = 20.0
SNR1 = 17.1
SNR2 = 10.0
SNR3 = 3.0
SNR4 = .055
B = 2.2 + 2(2.1) + 2(1.7) + 2(1) = 11.8
b̄temp = btemp/8 = 1.48

Again, the correct solution was obtained with a larger number of steps. Designers sometimes
run the algorithm backwards if they expect less than half the subchannels to be used. Then,
computation is saved.

Chow’s RA Algorithm To solve the RA problem, the following 3 steps adjust the result of the
Chow’s Primer (with steps 6 and 7 being executed for all used subchannels):
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6. If bn

β − b bn

β c < .5β, then round bn to the largest integer multiple of β contained in bn,

Bn = bbn/βc. Reduce energy on this subchannel so that the performance is the same

as on all other subchannels – that is scale energy by 22βB̄n−1

22b̄old,n−1
so that the new integer

value then satisfies bn = 1
2 log2(1 + SNRn/Γ).

7. If bn

β − b bn

β c > .5β, then round to the next largest integer, Bn = dbn/βe. Increase energy,

En, by the factor 22βB̄n−1

22b̄old,n−1
so that performance is the same as other subchannels and

then bn = 1
2 log2(1 + SNRn/Γ).

8. Compute total energy E =
∑

n En and then scale all subchannels by the factor N Ēx/E .

This procedure produces a characteristic “sawtooth” energy distribution that may deviate from a flat
distribution by as much as ±6·β

Ñ
dB, where Ñ is the dimensionality of the subchannel. Figure 4.10

illustrates the sawtooth energy produced by Chow’s algorithm for the SNR(f) curve simultaneously
displayed. The discontinuities are points at which the number of bits on a subchannel changes by the
smallest information unit β. An increase in bn by β means more energy is necessary, while a decrease
in bn by β means less energy is necessary. The curve however, on rough average, approximates a flat
straight line where energy is “on.”

EXAMPLE 4.3.4 Returning to the earlier 1+.9D−1 example, rounding the bit distribution
with β = 1 bit leads to

2 ← 2.28 = b0 = .5 · log2(23.794) (4.87)

4 ← 4.355 = b1 = log2(20.4651) (4.88)

4 ← 3.6356 = b2 = log2(12.4286) (4.89)

2 ← 2.13 = b3 = log2(4.3920) (4.90)

The maximum data rate is then 12 bits per symbol or 1.5 bits/dimension. The new energy
distribution is

.7520 ← E0 =
8

7
· 22·2 − 1

22·2.28− 1
(4.91)

1.7614 ← E1 =
16

7
· 24 − 1

24.355− 1
(4.92)

3.000 ← E2 =
16

7
· 24 − 1

23.6356− 1
(4.93)

2.0215 ← E3 =
16

7
· 22 − 1

22.1349− 1
(4.94)

The total energy is then Ex = 7.5349, which means that the distribution of energies may all
be increased by the factor 8/7.5349 so that the total energy budget is maintained. The loss
in performance caused by quantization in this example is

10 · log10

[
(23 − 1)/(23.1 − 1

]

︸ ︷︷ ︸

loss-in-data-rate term

− 10 · log10(8/7.5349)
︸ ︷︷ ︸

energy-gain term

(4.95)

or -.08 dB, pretty small!

The example’s use of β = 1 for the complex subchannels was essentially equivalent to a number of
bits/dimension granularity of 1/2 bit. The granularity thus need not be the same on all subchannels as
long as each subchannel is handled consistently within the constraints of the granularity of its specific
encoding scheme.

EXAMPLE 4.3.5 (DSL rate adaption) A number of international DSL standards (ITU
G.992.1 or ADSL1), ITU G.992.5 or ADSL2+ , and G.993.2 or VDSL2) use a form of mul-
titone described more fully in Section 4.5. These allow high-speed digital transmission on
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phone lines with one modem in the telephone company central office and the other at the
customer. These all have a mode of operation for internet access where rate-adaptive loading
is used. The symbol rate is effectively 4000 Hz in these methods, meaning the tone width
is effectively 4000 Hz. The granularity in the standards is β = 1 bit per two-dimensional
subchannel. The ADSL1 standard uses 256 tones in one direction of transmission known as
“downstream” and 32 tones upstream, the asymmetry being a match to usually asymmetric
file transfers and acknowledgment packet-length ratios in IP traffic for internet use. ADSL2+
double the number of tones in both directions, while VDSL2 can use up to 4096 tones in
either direction (and allows doubling of tone width to 8 kHz).

Thus the data rate can be any multiple of 4kbps with RA loading. Usually in these systems,
the gap is intentionally increased by 6 dB - this is equivalent to forcing 6 dB of margin when
RA loading completes. With nominally 100-250 tones being used and average numbers of
bits per tone of 2-9 bits, data rates from 1 to 8 Mbps are possible in ADSL1 (and up to 150
Mbps in VDSL2).

Chow’s MA Loading algorithm Chow’s MA algorithm first computes a margin, from the data rate
given by the Chow Primer, with respect to the desired fixed rate. It then recomputes the bit distribution
including that margin, which will make the number of bits exactly equal to the desired number. However,
the number of bits will still not be integer multiples of β in general. The resultant bit distribution is
then rounded as in the RA algorithm, but the sum of the number of bits is monitored and rounding is
adjusted to make the sum exactly equal to the desired number of bits per symbol.

The steps that follow the Chow Primer to complete the MA solution are:

6. Compute

SNRm,u = Γ ·







(
i∏

n=1

[

1 +
SNRn

Γ

])1/i

− 1






= 22b̄max − 1 , (4.96)

7. Compute the tentative margin

γtemp,m =
SNRm,u

Γ

22b̄ − 1
n = 1, ..., N∗ , (4.97)

8. Compute the updated bit distribution

Btemp,n =
1

2β
· log2

(

1 +
SNRn

Γ · γtemp,n

)

n = 1, ..., N∗ , (4.98)

9. Round Btemp,n to the nearest integer (if more than one beta is being used for different subchannels,
then use the correct value for each subchannel) and recompute energy as

Etemp,n =
Γ ·
(
2Bn·β − 1

)

gn
n = 1, ..., i , (4.99)

10. Compute

Btemp =

N∗

∑

n=1

Btemp,n ; btemp = Btemp · β (4.100)

and check to see if btemp = b, the desired fixed number of bits per symbol. If not, then select
subchannels that were rounded (perhaps by choosing those close to one-half information granularity
unit) and round the other way until the data rate is correct, recomputing energies as in step 9.

11. Compute the energy scaling factor

fe =
N Ēx

∑N∗

n=1 En
(4.101)
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and scale all subchannel energies to
En → fe · En , (4.102)

and the maximum margin becomes

γmax = γtemp,max · fe . (4.103)

EXAMPLE 4.3.6 (MA loading for 1 + .9D−1 channel with Γ =0 dB) The first step
in Chow’s MA procedure finds SNRm,u=8.8 dB and the margin with respect to transmission
at b̄ = 1 is then 10.88/(22 − 1) = 4.0 dB. The updated bit distribution computed from step
8 of Chow’s MA loading is

b0 =
1

2
log2

(

1 +
(8/7) · 19.948

10.4

)

= 1.7 (4.104)

b1 = log2

(

1 +
(8/7) · 17.032

10.4

)

= 3.1 (4.105)

b2 = log2

(

1 +
(8/7) · 10

10.4

)

= 2.47 (4.106)

b3 = log2

(

1 +
(8/7) · 2.968

10.4

)

= 1.2 . (4.107)

For β = 1, this bit distribution rounds to b0 = 2, b1 = 3, b2 = 2, and b3 = 1. The number of
bits sums to 8 exactly, and so the procedure concludes. The energy distribution then changes
to

E0 ← 1.7939 =
8

7
· 24 − 1

21.7 − 1
(4.108)

E1 ← 2.1124 =
16

7
· 23 − 1

23.1 − 1
(4.109)

E2 ← 1.5102 =
16

7
· 22 − 1

22.4 − 1
(4.110)

E3 ← 1.7618 =
16

7
· 21 − 1

21.2 − 1
(4.111)

Total energy is then 7.1783 and all subchannels have an additional margin of of 8/7.1783
leading to an additional margin of about .5 dB, so that the total is then 4.5 dB, when
a system with powerful code (say gap is 0 dB at Pe = 10−6) is used to transmit on the
1 + .9D−1 channel at b̄ = 1 and the same Pe as the gap used in loading.

Had β = .5 for these subchannels, then the bit distribution would have been b0 = 1.5, b1 = 3,
b2 = 2.5, and b3 = 1, which still adds to 8.

Optimum Discrete Loading Algorithms

Optimum discrete loading algorithms recognize the discrete loading problem as an instance of what is
known as “greedy optimization” in mathematics. The basic concept is that each increment of additional
information to be transported by a multi-channel transmission system is placed on the subchannel that
would require the least incremental energy for such transport. Such algorithms are optimum for loading
when the information granularity β is the same for all subchannels, which is usually the case.14

Several definitions are necessary to formalize discrete loading.

14The 1+ .9D−1 channel example has a PAM subchannel at DC for which this chapter has previously used a granularity
of β=1 bit per dimension while the other subchannels were QAM and used granularity of 1 bit per two dimensions, or
equivalently β = 1/2 bit per dimension – this anomaly rarely occurs in practice because DC is almost never passed in
transmission channels and complex-baseband channels use a two-dimensional QAM subchannel at the baseband-equivalent
of DC. Thus, for practical systems β is constant on all subchannels.
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Definition 4.3.4 (Bit distribution vector) The bit distribution vector for a set of
parallel subchannels that in aggregate carry b total bits of information is given by

b = [b1 b2 ... bN ] . (4.112)

The sum of the elements in b is clearly equal to the total number of bits transmitted, b.
Discrete loading algorithms can use any monotonically increasing relation between transmit symbol

energy and the number of bits transmitted on any subchannel that is not a function of other subchannel’s
energies15. This function can be different for each subchannel, and there need not be a constant gap
used. In general, the concept of incremental energy is important to discrete loading:

Definition 4.3.5 (Incremental Energy and Symbol Energy) The symbol energy En for
an integer number of information units bn = Bn · β on each subchannel can be notationally
generalized to the energy function

En → En(bn) , (4.113)

where the symbol energy’s dependence on the number of information units transmitted, bn, is
explicitly shown. The incremental energy to transmit bn information units on a subchannel
is the amount of additional energy required to send the Bth

n information unit with respect to
the (Bn − 1)th information unit (that is, one more unit of β). The incremental energy is
then

en(bn)
∆
= En(bn)− En(bn − β) . (4.114)

EXAMPLE 4.3.7 (Incremental Energies) As an example, uncoded SQ QAM with β =
1 bit-per-two-dimensions, and minimum input distance between points on subchannel n being
dn, has energy function

E(bn) =

{
2bn−1

6 d2
n bn even

2bn+1−1
12 d2

n bn odd
. (4.115)

The incremental energy is then

en(bn) =

{
2bn−1

12 d2
n bn even

2bn+1
12 d2

n bn odd
. (4.116)

For large numbers of bits, the incremental energy for SQ QAM is approximately twice the
amount of energy needed for the previous constellation, or 3 dB per bit as is well known to
the reader of Chapter 1. A coded system with β 6= 1 might have a more complicated exact
expression that perhaps is most easily represented by tabulation in general. For instance,
the table for the uncoded SQ QAM is

bn 0 1 2 3 4 5 6 7 8

En(bn) 0
d2

n

4
d2

n

2
5d2

n

4
5d2

n

2
21d2

n

4
21d2

n

2
85d2

n

4
85d2

n

2

en(bn) 0
d2

n

4
d2

n

4
3d2

n

4
5d2

n

2
11d2

n

4
21d2

n

4
43d2

n

4
85d2

n

4

The distance d in this table is selected for a given desired probability of error (and the gap
approximation is thus avoided) since it is an approximation.16

Alternatively, an energy function for QAM with β = 1 could also be defined via the gap approximation
as

En(bn) = 2 · Γ

gn

(
2bn − 1

)
. (4.117)

15Such systems can occur in multi-user systems that have essentially suchannels per user as well as frequency. Chapters
13-15 address loading for multi-user channels.

16The SNRm.u in this case of no gap is obtained by calculated the usual formula in (4.17) with Γ = 1.
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The incremental energy with β = 1 is then

en(bn) =
Γ

gn

(
2 · 2bn − 2bn

)
(4.118)

=
Γ

gn
· 2bn(2− 1) (4.119)

=
Γ

gn
2bn (4.120)

= 2 · en(bn − 1) , (4.121)

which is exactly 3 dB per incremental bit. If β = .25, then the gap-based incremental QAM energy
formula would be

en(bn) =
Γ

gn
2bn+1

(
2.25 − 1

)
, (4.122)

and in general for gap-based QAM

en(bn) =
Γ

gn
2bn+1

(
2β − 1

)
. (4.123)

Once an encoding system has been selected for the given fixed β and for each of the subchannels in
a multichannel transmission system, then the incremental energy for each subchannel can be tabulated
for use in loading algorithms.

Clearly, there are many possible bit distributions that all sum to the same total b. A highly desirable
property of a distribution is efficiency:

Definition 4.3.6 (Efficiency of a Bit Distribution) A bit distribution vector b is said
to be efficient for a given granularity β if

max
n

[en(bn)] ≤ min
m

[em(bm + β)] . (4.124)

Efficiency means that there is no movement of a bit from one subchannel to another that reduces the
symbol energy. An efficient bit distribution clearly solves the MA loading problem for the given total
number of bits b. An efficient bit distribution also solves the RA loading problem for the energy total
that is the sum of the energies En(bn).

Levin and Campello have independently formalized an iterative algorithm that will translate any bit
distribution into an efficient bit distribution:

Levin-Campello (LC) “Efficientizing” (EF) Algorithm

1. m← arg {min1≤i≤N [ei(bi + β)]} ;

2. n← arg {max1≤j≤N [ej(bj)]} ;

3. While em(bm + β) < en(bn) do

(a) bm ← bm + β

(b) bn ← bn − β

(c) m← arg {min1≤i≤N [ei(bi + β)]} ;

(d) n← arg {max1≤j≤N [ej(bj)]} ;

By always replacing a bit distribution with another distribution that is closer to efficient, and ex-
haustively searching all single-information-unit changes at each step, the EF algorithm will produce an
efficient bit distribution if the energy function is monotonically increasing with information (as always the
case in practical systems). Truncation of a water-filling distribution produces an efficient distribution.
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EXAMPLE 4.3.8 (Return to 1 + .9D−1 for EF algorithm) By using the using the un-
coded gap approximation at Pe = 10−6, the PAM and SSB subchannels’ energy is given by

En(bn) =
10.88

gn

(
22bn − 1

)
(4.125)

and the QAM subchannels’ energies are given by

En(bn) = 2 · 10.88

gn

(
2bn − 1

)
. (4.126)

The incremental energies en(bn) then are:
n 0 1 2 3 4

en(1) 1.14 .891 1.50 5.112 412.3
en(2) 4.56 1.78 3.03 10.2 –

en(3) 18.3 3.56 6.07 20.4 –
en(4) – 7.13 12.1 – –

en(5) – 14.2 24.3 – –

If the initial condition were b = [0 5 0 2 1], the sequence of steps would be:
1. b = [0 5 0 2 1]
2. b = [1 5 0 2 0]
3. b = [1 4 1 2 0]
4. b = [1 4 2 1 0]
5. b = [2 3 2 1 0].
The EF algorithm retains the total number of bits at 8 and converges to the best solution
for that number of bits from any initial condition.

The Levin-Campello RA and MA loading algorithms both begin with the EF algorithm.

Levin-Campello RA Solution An additional concept of E-tightness is necessary for solution of
the RA problem:

Definition 4.3.7 (E-tightness) A bit distribution with granularity β is said to be E-tight
if

0 ≤ N Ēx −
N∑

n=1

En(bn) ≤ min
1≤i≤N

[ei(bi + β)] . (4.127)

E-tightness implies that no additional unit of information can be carried without violation of the total
energy constraint.

To make a bit distribution E-tight, one uses the Levin-Campello E-tightening (ET) algorithm below:

1. Set S =
∑N

n=1 En(bn);

2. WHILE
(
N Ēx − S < 0

)
or
(
N Ēx − S ≥ min1≤i≤N [ei(bi + β)]

)

IF
(
N Ēx − S < 0

)
THEN

(a) n← arg {max1≤i≤N [ei(bi)]} ;

(b) S ← S − en(bn)

(c) bn ← bn − β

ELSE

(a) m→ arg {min1≤i≤N [ei(bi + β)]} ;

(b) S ← S + em(bm + β)

(c) bm ← bm + β
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The ET algorithm reduces the number of bits when the energy exceeds the limit. The ET algorithm
adds additional bits in the least energy-consumptive places when energy is sufficiently below the limit.

EXAMPLE 4.3.9 (ET algorithm on EF output in example above) If the initial bit
distribution vector for the above example were the EF solution b = [2 3 2 1 0], the sequence
of ET steps lead to:
1. b = [2 3 2 0 0] with E → 16.49
2. b = [1 3 2 0 0] with E → 11.92
3. b = [1 2 2 0 0] with E → 8.36
4. b = [1 2 1 0 0] with E → 5.32
Thus, the data rate is halved in this example for E-tightness and the resultant margin is
8/5.32 = 1.8dB.

If the ET algorithm is applied to an efficient distribution, the RA problem is solved:

The Levin-Campello RA Algorithm

1. Choose any b

2. Make b efficient with the EF algorithm.

3. E-tighten the resultant b with the ET algorithm.

A program called LC.m for RA LC is available at the EE379C web site and listed here:

function [gn,En,bn,b_bar]=LC(P,SNRmfb,Ex_bar,Ntot,gap)

% Levin Campello’s Method

%

% P is the pulse response

% SNRmfb is the SNRmfb in dB

% Ex_bar is the normalized energy

% Ntot is the total number of real/complex subchannels, Ntot>2

% gap is the gap in dB

%

% gn is channel gain

% En is the energy in the nth subchannel (PAM or QAM)

% bn is the bit in the nth subchannel (PAM or QAM)

% Nstar is the number of subchannel used

% b_bar is the bit rate

%

% The first bin and the last bin is PAM, the rest of them are QAM.

% dB into normal scale

Noise_var=Ex_bar*(norm(P)^2)/(10^(SNRmfb/10));

gap=10^(gap/10);

% initialization

En=zeros(1,Ntot/2+1);

bn=zeros(1,Ntot/2+1);

gn=zeros(1,Ntot/2+1);

Hn = zeros(1,Ntot/2+1);

decision_table=zeros(1,Ntot/2+1);

% subchannel center frequencies

f=0:1/Ntot:1/2;
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% find Hn vector

for i=1:length(P)

Hn=Hn+P(i)*exp(j*2*pi*f*(i-1));

% This value will be different depending if P represents

% P(1) + P(2)*D^-1 + .... or P(1) + P(2)*D^+1....,

% but we’ll get same gn, thus same waterfilling result.

% (Note that both have the same magnitude response!)

end

% find gn vector

gn=abs(Hn).^2/Noise_var;

%debugging purpose

%plot(gn)

%%%%%%%%%%%%%%%%%%%%%%%

% Now do LC %

%%%%%%%%%%%%%%%%%%%%%%%

%initialization

%used energy so far

E_so_far=0;

%decision table - QAM and PAM

decision_table(2:Ntot/2)=2*gap./gn(2:Ntot/2);

if gn(1) ~= 0

decision_table(1)=3*gap/gn(1);

else

decision_table(1)=inf;

end

if gn(Ntot/2+1) ~=0

decision_table(Ntot/2+1)=3*gap/gn(Ntot/2+1);

else

decision_table(Ntot/2+1)=inf;

end

%decision_table: debugging purpose

while(1)

[y,index]=min(decision_table);

E_so_far=E_so_far+y;

if E_so_far > Ex_bar*Ntot

break;

else

En(index)=En(index)+y;

bn(index)=bn(index)+1;

if (index ==1 | index == Ntot/2+1)

decision_table(index)=4*decision_table(index);

else

decision_table(index)=2*decision_table(index);

end

end
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end

% calculate b_bar

b_bar=1/Ntot*(sum(bn));

%>> [gn,En,bn,b_bar]=LC([1 0.9],10,1,8,0)

%

%gn = 19.9448 17.0320 10.0000 2.9680 0.0552

%

%En = 0.7521 1.7614 3.0000 2.0216 0

%

%bn = 2 4 4 2 0

%

%b_bar = 1.5000

The Levin-Campello MA Solution The dual of E-tightness for MA loading is B-tightness:

Definition 4.3.8 (B-tightness) A bit distribution b with granularity β and total bits per
symbol b is said to be B-tight if

b =

N∑

n=1

bn . (4.128)

B-tightness simply states the correct number of bits is being transmitted.
A B-tightening (BT) algorithm is

1. Set b̃ =
∑N

n=1 bn

2. WHILE b̃ 6= b
IF b̃ > b

(a) n← arg {max1≤i≤N [ei(bi)]} ;

(b) b̃← b̃ − β

(c) bn ← bn − β

ELSE

(a) m← arg {min1≤i≤N [ei(bi + β)]} ;

(b) b̃← b̃ + β

(c) bm ← bm + β

EXAMPLE 4.3.10 (Bit tightening on 1 + .9D−1 channel) Starting from a distribution
of b = [0 0 0 0 0], the BT algorithm steps produce:
1. b = [0 0 0 0 0]
2. b = [0 1 0 0 0]
3. b = [1 1 0 0 0]
4. b = [1 1 1 0 0]
5. b = [1 2 1 0 0]
6. b = [1 2 2 0 0]
7. b = [1 3 2 0 0]
8. b = [2 3 2 0 0]
9. b = [2 3 2 1 0]
The margin for this distribution has previously been found as -4.3 dB because it is the same
distribution produced in the Chow method. The total energy is 21.6.

The BT algorithm reduces bit rate when it is too high in the place of most energy reduction per unit
of information and increases bit rate when it is too low in the place of least energy increase per unit of
information. If the BT algorithm is applied to an efficient distribution, the MA problem is solved.
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The Levin-Campello MA Algorithm

1. Choose any b

2. Make b efficient with the EF algorithm.

3. B-tighten the resultant b with the BT algorithm.

Some transmission systems may use coding, which means that there could be redundant bits. Ide-
ally, one could compute the incremental energy table with the effect of redundancy included in the
incremental-energy entries. This can be quite difficult to compute. Generally more redundant bits
means higher gain but also allocation to increasingly more difficult subchannel positions, which at some
number of redundant bits becomes a coding loss.

A program for MA LC is called MALC.m and at the EE379C website:

function [gn,En,bn,b_bar_check,margin]=MALC(P,SNRmfb,Ex_bar,b_bar,Ntot,gap)

%

% Levin Campello’s Method

%

% P is the pulse response

% SNRmfb is the SNRmfb in dB

% Ex_bar is the normalized energy

% Ntot is the total number of real/complex subchannels, Ntot>2

% gap is the gap in dB

% b_bar is the bit rate

% gn is channel gain

% En is the energy in the nth subchannel (PAM or QAM)

% bn is the bit in the nth subchannel (PAM or QAM)

% b_bar_check is the bit rate for checking - this should be equal to b_bar

% margin is the margin

% The first bin and the last bin is PAM, the rest of them are QAM.

% dB into normal scale

Noise_var=Ex_bar*(norm(P)^2)/(10^(SNRmfb/10));

gap=10^(gap/10);

% initialization

En=zeros(1,Ntot/2+1);

bn=zeros(1,Ntot/2+1);

gn=zeros(1,Ntot/2+1);

Hn = zeros(1,Ntot/2+1);

decision_table=zeros(1,Ntot/2+1);

% subchannel center frequencies

f=0:1/Ntot:1/2;

% find Hn vector

for i=1:length(P)

Hn=Hn+P(i)*exp(j*2*pi*f*(i-1));

% This value will be different depending if P represents

% P(1) + P(2)*D^-1 + .... or P(1) + P(2)*D^+1....,

% but we’ll get same gn, thus same waterfilling result.

% (Note that both have the same magnitude response!)
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end

% find gn vector

gn=abs(Hn).^2/Noise_var;

%debugging purpose

%plot(gn)

%%%%%%%%%%%%%%%%%%%%%%%

% Now do LC %

%%%%%%%%%%%%%%%%%%%%%%%

%initialization

%used energy so far

E_so_far=0;

%decision table - QAM and PAM

decision_table(2:Ntot/2)=2*gap./gn(2:Ntot/2);

if gn(1) ~= 0

decision_table(1)=3*gap/gn(1);

else

decision_table(1)=inf;

end

if gn(Ntot/2+1) ~=0

decision_table(Ntot/2+1)=3*gap/gn(Ntot/2+1);

else

decision_table(Ntot/2+1)=inf;

end

%decision_table: debugging purpose

while(1)

[y,index]=min(decision_table);

E_so_far=E_so_far+y;

if sum(bn) >= Ntot*b_bar

break;

else

En(index)=En(index)+y;

bn(index)=bn(index)+1;

if (index ==1 | index == Ntot/2+1)

decision_table(index)=4*decision_table(index);

else

decision_table(index)=2*decision_table(index);

end

end

end

% calculate b_bar

b_bar_check=1/Ntot*(sum(bn));

% check margin

margin=10*log10(Ntot*Ex_bar/sum(En));
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4.3.4 Sorting and Run-time Issues

Campello in pursuit of the optimized discrete loading algorithm, studied further the issue of computa-
tional complexity in loading algorithms. Mathematically, a sort of the vector g (the vector [g1 , ..., gN ])
can be denoted

gsort = Jg (4.129)

where J is a matrix with one and only one nonzero unit value in each and every row and column. For
instance, the N = 3 matrix

J =





0 0 1
1 0 0
0 1 0



 (4.130)

takes b3 and moves it to the first position 3→ 1, moves the first position to the second position 1→ 2
and finally places the second position last 2→ 3. To unsort,

g = J∗gsort (4.131)

since J−1 = J∗ is also a sorting matrix.
Water-filling and Chow’s methods begin with a sort of the channel SNR quantities gn. Finding a

maximum in a set of N numbers takes N − 1 comparisons and then subsequently finding the minimum
takes N − 2 comparisons to order the gn. Continuing in such fashion would require N2/2 comparisons.
Binary sort algorithms instead select an element at random from the set to be ordered and then partition
this set into two subsets containing elements greater than and smaller than the first selected element. The
process is then repeated recursively on each of the subsets with a minimum computation of approximately
Nlog2(N) and a maximum still at N2/2. The average over a uniform distribution of all possible starting
orders of the vector g has computation proportional to Nlog2(N).

Campello noted that for water-filling and Chow’s algorithms, absolute ordering is not essential. The
important quantity is the position of the transition from “on” to “off’ in energy. Rather than sort
the SNR’s initially, a random guess at the transition point can be made instead. Then, with N − 1
additional comparisons, the quantities gn can be sorted into two subsets greater than or less than or
equal to the transition point. Then water-filling or Chow’s algorithm can compute the constant K and
test the transition point subchannel for negative energy. If negative, the set of larger gn’s again has
contains the correct transition point. If positive, then the point is the transition point or it is in the set
of lesser gn’s. The amount of computation is proportional to NlogN comparisons.

The Levin-Campello EF algorithm routinely must also know the “position” bit (information unit)
presently absorbing the most energy and the position of an additional bit that would require the least
energy. At each step, the incremental energies would at least have to look at the two new incremental
energies and place them accordingly (requiring perhaps up to 2N cmparisons). This number of compar-
isons could be quite high for each successive bit loaded. Campello further studied sets of tones, which
he notes is an instance of the computer-scientists’ concept of “heaps” in data bases. Essentially, there
are two heaps that are indexed by two randomly selected incremental energies. The first heap contains
incremental energies that are larger than that of its index. The second contains only incremental energies
less than its index (which has index’ energy less than the first heap). Bits are assigned to all the places
in the second heap. If total energy (RA) or rate (MA) are exceeded, then the second group is recursively
divided into two sub-heaps. If the limits are not exceeded, then the first heap is recursively divided into
two heaps. Campello was able to show that the average complexity is proportional to N (that is less
than Chow’s NlogN on average). An unfavorable selection could, however, have very high computation
but with low probability.

Generally, the sort is not an enormous complexity for initializing the multi-channel modem as it
may be much less computation than other early signal-processing procedures. However, if the channel
changes, an optimized design might need to repeat the procedure. This is the topic of the next subsection.

4.3.5 Dynamic Loading

In some applications, the subchannel SNR’s, gn, may change with time. Then, the bit and energy
distribution may need corresponding change. Such variation in the bit and energy distribution is known
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as dynamic loading, or more specifically dynamic rate adaption (DRA) or dynamic margin
adaption (DMA), the later which was once more colloquially called “bit-swapping,” by this author
and others – that later name is in much wider use than “DMA”.

It is conceivable that an entire loading algorithm could be run every time there is a change in the
bit and/or energy distribution for a channel. However, if the channel variation has been small, then
“reloading” might produce a bit distribution with only minor variation from the original. Generally, it
is more efficient to update loading dynamically than to reload. Usually, dynamic loading occurs through
the transmission of bit/energy-distribution-change information over a reverse-direction reliable low-bit-
rate channel. The entire bit distribution need not be re-communicated, rather compressed incremental
variation information is desirable to minimize the relative data rate of the reverse channel. Dynamic
loading is not possible without a reverse channel, and so could thus not be used in broadcast TV or
radio – it is also difficult to use on rapidly varying channels like mobile wireless channels (because the
feedback channel is usually not faster than the rate of variation of the channel).

The LC algorithms lend themselves most readily to incremental variation. Specifically, for continuous
solution of the MA problem, the previous bit distribution b can be input to the EF algorithm as an
initial condition for the new table of incremental energies, en(bn), which is simply scaled by gn,old/gn,new

for any reasonable constellation. Steps 3(a) and 3(b) of the EF algorithm execute a “swap” whenever
it is more efficient energy-wise to move a bit from one subchannel to another. As long as a sufficient
number of swaps can occur before further variation in the channel, then the EF algorithm will continue
to converge to the optimum finite-granularity solution. The incremental information is the location of
the two subchannels for the “swap” and which is to be decremented. Such information has very low bit
rate, even for large numbers of subchannels. The energy gain/loss on each of the two subchannels must
also be transferred (from which the new incremental energy added/deleted from swapping subchannels
can be computed) with use of the EF algorithm.

Both the transmitter and the receiver need not compute (use at transmitter) the same energy. Any
deviation between the two effectively causes the channel to appear different. For example a transmitter
using 3dB less energy that the receiver presumed would result in the receiver thining the channel had
higher attenuation by that same factor. Loading algorithms may have a small error in this case relative
to optimum. Of course, if the two have agreed on the exact transmit power level by standard or inital
hand-shaking, then the loading is optimum. To avoid confusion between transmitter and receiver on
absolute levels used, most bit-swapping procedures send relative gain (scale factors) from receiver back
to the transmitter to increase/decrease transmitted energy on the corresponding subchannel (whatever
that might have been initially) by the corresponding factor.

Bit-swapping systems in practice could also allow the addition of a bit or the deletion of a bit without
a corresponding action on a second tone, allowing DRA. However, such a system would have continuously
varying data rate. The instance of continuous bit-rate variation to correspond to channel change is thus
rare (usually some higher-level communications authority prefers to arbitrate when bit rate changes are
allowed to occur, rather than leave it to the channel). These systems allow such rate adaption between
some finite rate range specified by a minimum and maximum data rate (to prevent buffer overflow
or underflow in outer sytems, or equivalently to limit maximum delay), and this is sometimes called
“seamless rate adaption.” However, the consequent delay increase to accommodate such variation is
often undesirable.

However, such true DRA can occur through the execution of the ET algorithm theoretically. That
algorithm will change the number of bits total over the subchannels to conform to the best use of limited
transmit energy. The efficiency of the resultant bit distribution will be maintained by the execution of
the ET algorithm. The incremental information passed through the reliable reverse channel would be
the index of the currently to-be-altered subchannel and whether a bit is to be added or deleted.

More practical is actually a dynamic fixed-margin adaption where the data rate is maintained, but
power is reduced to the minimum necessary for a given fixed maximum margin. This saves power
whenever channel conditions have less than the maximum noise (minimum SNR) present.
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Figure 4.11: A multichannel normalizer for one subchannel, n.

Synchronization of dynamic loading

For maintenance of the channel, both transmitter and receiver need to know on which symbol a bit/energy
distribution change has occurred. Thus two synchronized symbol counters must be maintained, one in the
transmitter and one in the receiver. These counters can be circular with the same period, which is longer
than the worst-case time that it takes for a bit-swap, bit-add, or bit-delete to occur. Upon receipt of a
request for a change, a transmitter then acknowledges the change and returns a counter symbol number
on which it intends to execute the change. Then both transmitter and receiver execute the change
simultaneously on the symbol corresponding to the agreed counter value. Often extra redundancy is
used on commands executing bit-swaps to ensure a higher reliability of the swap’s correct synchronized
implementation. However, a good receiver design (exploiting outer hard error-correcting codes, see
Chapter 11) can determine rapidly without acknowledgement if a swap has been implemented, which
allows a more rapid execution of multiple successive swaps (because the acknowledgements take time).

The multichannel normalizer and computing the new subchannel SNR’s

Figure 4.11 illustrates a multi-channel normalizer for one subchannel. There is a normalizer for each
and every subchannel. The multi-channel normalizer has no direct impact on performance because both
signal and noise are scaled by the same value Wn. When multitone transmission is used, Wn is complex
and often called a Frequency EQualizer (FEQ). Nominally, the multi-channel normalizer allows a
single decision device to be time-shared for decoding all the subchannel outputs. Such normalization of
distance satisfies:

d = |Wn ·Hn · dn| , (4.132)

where dn is the minimum distance between points on the nth subchannel constellation on the transmitter
side. The normalizer forces all subchannels to have output distance d, independent of the number of
bits carried or signal to noise ratio. Clearly,

Wn =
d

Hn · dn
. (4.133)

However, since the subchannel may change its gain or SNR, the value for Wn is adaptively computed
periodically (as often as every symbol is possible). The error, Ũn between the input and output of
decision device shown in the enlarged normalizer box estimates the normalized noise (as long as the
decision is correct). The updated value for Wn can be computed in a number of ways that average
several successive normalized errors, of which the two most popular are the zero-forcing algorithm

Wn,k+1 = Wn,k + µŨnX∗
n , (4.134)
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which produces an unbiased estimate of the signal at the normalizer output and converges17 when

0 ≤ µ <
Ex
2

, (4.135)

equivalently E[Ũn/Xn] contains only noise; or the more common MMSE algorithm

Wn,k+1 = Wn,k + µŨnY ∗
n , (4.136)

which instead produces a biased estimate and an optimistic SNR estimate of (Chapter 3 reader will
recall SNRn + 1). The ZF algorithm is preferred because there is no issue with noise enhancement
with per-subchannel normalization. The factor µ is a positive gain constant for the adaptive algorithm
selected to balance time-variation versus noise averaging.

The channel gain is estimated by

Ĥn =
d

dn ·Wn
. (4.137)

The mean square noise, assuming “ergodicity” at least over a reasonable time period, is estimated by
time-averaging the quantity |Ũn|2,

σ̃2
n,k+1 = (1− µ′)σ̃2

n,k + µ′|Ũn|2 , (4.138)

where µ′ is another averaging constant and

0 ≤ µ′ < 2 . (4.139)

Since this noise was scaled by Wn also, then the estimate of gn is then

ĝn =
|Hn|2

σ̃n
2

|Wn|2
=

d2

d2
n

· 1

σ̃n
2 . (4.140)

Since the factor d2/d2
n is constant and the loading algorithm need only know the relative change in

incremental energy, that is the incremental energy table is scaled by

ĝn,old

ĝn,new
=

σ̃2
n,new

σ̃2
n,old

. (4.141)

Thus the new incremental-energy entries can be estimated by simply scaling up or down the old values
by the relative increase in the normalizer noise. Often the old value is an initial value stored at first
initialization of the the transmission system. This reference to initial value then avoids a cascade of
“finite-precision” errors.

4.3.6 (“bit-swapping”)

If the loading algorithm moves or “swaps” a bit (or more generally information unit) from one tone to
another, then the multi-channel transmitter and receiver should implement this “bit-swap” on the same
symbol, as in the last subsection. A bit-swap is usually implemented by the receiver sending a pair of
tone indices n (tone where bit is deleted) and m (tone where bit is added) through some reverse channel
to the transmitter, as in Figure 4.12. There is often also an associated change in transmitted energy on
each tone:

Gi =
Ei(new)

Ei(old)
for i = m, n . (4.142)

17A convergence proof notes that with stationarity E [Wn] = E [Wn] + µE
[(

Xn − Wn,kYn,k

)
· X∗

n

]
=

(
1 − µHnE\

)
E [Wn] + µEn, A simple first-order recursion in average FEQ value. This will converge to E [Wn] = 1/Hn

when the geometric ratio is less than 1.
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Figure 4.12: Illustration of reverse channel in bit-swapping.

The energy for the bit-swap tones i = m or i = n can be recomputed by summing the new increments
in the table,

Ei(new) =
ĝi,old

ĝi,new

bi∑

j=1

ei,old(j) . (4.143)

Typically this factor is near unit value and usually less than a 3 dB change for 2-dimensional subchannels
like those of MT (and less than 6 dB change for one-dimensional subchannels). The near-unity-value

occurs because tone n’s factor of decrease/increase in channel SNR
ĝn,old

ĝn,new
is typically about 2 in order

to cause the swap to be attractive, and this factor of 2 is then nearly the reciprocal of the constellation-
distance increase/decrease when halving the constellation size on that tone n. However, it could be that
the gain is not a factor of 2. Thus, a gain factor Gi should also be conveyed through the reverse channel
to the transmitter. Some implementations thus ignore this factor if it is always close to one. This gain
is typically relative to the initial value used by the transmitter during training (and not relative to the
last value used, because such relative gain could lead to a chain of cascading finite-precision errors.

For RA or MA operation, the two gain factors should be selected to produce a total energy of the
transmitter that is exactly equal to the allowed energy limit. Also, all the multi-channel normalizer
coefficients need to be reduced by the inverse square-root of this factor, as follows: Equation (4.137) can
be rewritten as

Wn =
d

dn · Ĥn

. (4.144)

The distance d is constant in the receiver, but dn has possibly chanbed. (Ĥn may have changed, but that
change was already incorporated in the adaption of Wn that lead to a swap, so it is effectively viewed as
constant.) The change in distance should be roughly a factor of 2, but is exactly known to the loading
algorithm control as say

∆dn =
dn,new

dn,old
, (4.145)

as is the gain factor Gn. When a swap is executed, the values for Wm and Wn and the corresponding
noise estimates need scaling by an additional factor: The new values for Wn and σ̃2

n are

Wn(new)→Wn(old) · 1

∆dn ·
√

Gn

, σ̃2
n(new)→ σ̃2

n(old) · 1

(∆dn)2 ·Gn
, (4.146)

and similarly for tone index m. One channel change may produce several bit swaps.
The accuracy of channel estimation is important and discussed in Section 4.5. This section assumed

all normalizer quantities have no error.

4.3.7 Gain Swapping

In addition to any energy changes associated with a bit-swap, gain may be changed in the absence of bit
movement and is known as “gain swapping.” While MA bit-swapping will continue to move bits from
channels of higher energy cost to those of lower energy cost, there is still a barrier to moving a bit that
is the difference between the cost to add a bit in the lowest cost position of the incremental-energy table
relative to the savings of deleting that same bit on the highest-cost position in that same table. In the
worst case, this cost can be equal to the cost of a unit of information. On a two-dimensional subchannel
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with β = 1, this cost could be 3 dB of energy for a particular subchannel. This means that a probability
of error of 10−6 on a particular subchannel could degrade by as much as roughly 3 orders of magnitude
before the swap occurred. A particularly problematic situation would be a loss of for instance 2.9 dB
that never grew larger and the swap never occurred. With a number of subchannels greater than 1000,
the effect would be negligible, but as N decreases, the performance of a single subchannel can more
dramatically effect the overall probability of error.

There are two solutions to this potential problem. The first is to reduce β, but this may be difficult.
The second is alter the transmit energy to increase transmit energy on one subchannel and place it on
another subchannel. Furthermore, the presence of a dramatically increased or increase noise (for instance
a noise caused by another system turning on or off) might lead to a completely different distribution of
energy when loading. Thus, the energy transmitted on a subchannel (or equivalently the relative factor
applied to such a subchannel) may need to change significantly. Gain swapping (sending of the factor
of increase/decrease of energy on a subchannel is thus commonly used. Usually by convention, a value
of bn = 0 on a subchannel means either no energy is to be transmitted or a very small value instead of
the nominal level. If a gain-swap occurs, then the two columns of the incremental energy table needed
to be scaled by the respective factors – and indeed a bit-swap may subsequently occur because of this
change. One channel change may produce many gain swaps.
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4.4 Channel Partitioning

Channel Partitioning methods divide a transmission channel into a set of parallel, and ideally in-
dependent, subchannels to which the loading algorithms of Section 4.3 can be applied. Multi-tone
transmission (MT) is an example of channel partitioning where each subchannel has a frequency index
and all subchannels are independent, as in Section 4.1 and Figure 4.2. The MT basis functions {ϕn(t)}
form an orthonormal basis while also exhibiting the desirable property that the set of channel-output
functions {h(t)∗ϕn(t)} remains orthogonal for any h(t). Reference to Chapter 8 finds that the MT basis
functions, when combined with continuous-time water-filling, and N →∞ are optimum. For a finite N ,
the MT basis functions are not quite optimum basically because the channel shaping induced by h(t)
in each MT frequency band is not quite flat in general, and some equalization loss occurs on each tone.
Furthermore, the MT basis functions exist over an infinite time interval, whereas practical implementa-
tion suggests restriction of attention to a finite observation interval. Thus, MT makes a useful example
for the introduction of multi-channel modulation, but is not practical for channel partitioning.

This section introduces optimum basis functions for modulation based on a finite time interval of T of
channel inputs and outputs. Subsections 4.4.1 and 4.4.2 show that the optimum basis functions become
channel-dependent and are the eigenfunctions of a certain channel covariance function. There are two
ways to accommodate intersymbol interference caused by a channel impulse response. Theoretically,
Subsection 4.4.2 investigates a conceptual method for computing best possibilities. Subsection 4.4.4
instead investigates the elimination of the interference between subchannels with the often-encountered
use of “guard periods”.

4.4.1 Eigenfunction Transmission

A one-shot multi-channel modulated signal x(t) satisfies

x(t) =
N∑

n=1

xn · ϕn(t) , (4.147)

while a succession of such transmissions satisfies

x(t) =
∑

k

N∑

n=1

xn,k · ϕn(t − kT ) . (4.148)

The convolution of a channel response h(t) with x(t) produces

h(t) ∗ x(t) =
∑

k

N∑

n=1

xn,k · ϕn(t− kT ) ∗ h(t) =
∑

k

N∑

n=1

xn,k · pn(t − kT ) , (4.149)

which is characterized by N pulse responses pn(t) , n = 1, ..., N . Following a development in Section 3.1,
the set of sampled outputs of the N matched filters p∗(−t) at all symbol instants kT forms a sufficient
statistic or complete representation of the transmitted signal as shown in Figure 4.13. There are N2

channel-ISI-describing functions

qn,m(t)
∆
=

pm(t) ∗ p∗n(−t)

‖pm‖ · ‖pn‖
(4.150)

that characterize the N ×N square matrix Q(t). The quantity qn,m(t) is the matched-filtered channel
from subchannel m input (column index) to subchannel n output (row index). The system is now
a multiple-input/multiple-output transmission system, sometimes called a MIMO, with sampled-time
representation

Qk = Q(kT ) . (4.151)
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Generalization of the Nyquist Criterion

Theorem 4.4.1 (Generalized Nyquist Criterion (GNC)) A generalization of the Nyquist
Criterion of Chapter 3 for no ISI nor intra-symbol interference (now both are called ISI to-
gether) is

Qk = Iδk , (4.152)

that is the sampled MIMO channel matrix is the identity matrix.

proof: Since Qk = Iδk = 0 if k 6= 0, there is no interference from other symbols, and since
qn,m(t) = δn,m = 0 if n 6= m there is also no interference between subchannels. The unit
value follows from the normalization of each basis function, qn,n(0) = 1. QED

The earlier Nyquist Theorem of Chapter 3 is a special case that occurs when Qk = qk = δk. Thus,
to avoid ISI, the designer could choose basis functions so that (4.152) holds. In general, there are many
choices for such functions. For a sub-optimum set of basis functions that do not satisfy the Generalized
Nyquist Criterion, vector equalization may be used as discussed in Section 5.7. This section and Chapter
deal only with those that do satisfy the GNC or the GNC’s discrete-time equivalents.

4.4.2 Choice of transmit basis

The channel impulse response forms a channel autocorrelation function according to

r(t) = h(t) ∗ h∗(−t) , (4.153)

which is presumed to be nonzero only over a finite interval (−TH/2, TH/2). This channel autocorrelation
function defines a possibly countably infinite-size set of orthonormal eigenfunctions, {ϕn(t)}, nonzero
only over the time interval [−(T − TH)/2, (T − TH)/2), that satisfy the relation18

ρn · ϕn(t) =

∫ T/2

−T/2

r(t− τ ) · ϕn(τ )dτ n = 1, ...,∞ , ∀t ∈ [−(T − TH)/2, (T − TH)/2) , (4.154)

that is a function ϕn(t) that when convolved with the matched-filtered channel over the interval [−T/2, T/2)
reproduces itself, scaled by a constant ρn, called the eigenvalue. The set of eigenvalues is unique to
the channel autocorrelation r(t), while the eigenfunctions are not necessarily unique. 19 Each eigenfunc-
tion represents a “mode” of the channel through which data may be transmitted independently of the
other modes with gain ρn. The restriction of the time interval to be equal to the symbol period allows
intersymbol interference to be zero without further consideration. The restriction is not absolutely nec-
essary, but then requires the additional constraint that successive translations of the basis functions at
the symbol rate lead to a Qk that satisfies the generalized Nyquist criterion. The eigenvalue problem is
very difficult to solve when r(kT ) 6= δk. A number of mathematicians have addressed the problem when
r(kT ) = δk, and the theory is known as “wavelets,” “filter banks,” “polyphase filters,” or “reconstruction
filters.” However, this abstract theory is difficult to apply when there is ISI. Subsection 4.4.5 briefly
discusses this concept, but a simpler concept known as a cyclic extension will be shown to circumvent
the difficulty with neglible loss. Section 5.7 solves the problem with inter-block-symbol overlap directly
with multidimensional block equalizers.

There may be a countably infinite number of eigenvalues and corresponding eigenfunctions, so the N
largest are selected. There may be other sets of functions that could be used for transmit basis functions,
but none could pass more information. To see this, one could suppose the existence of another distinct
set of functions φn(t)forn = 1, 2, ...N . These functions would have a linear orthonormal representation
(think Gram Schmidt) on the N largest eigenfunctions and a component on the remaining eigenfunctions

18Most developments of eigenfunctions define the functions over the causal time interval [0, T − TH) - we instead
noncausaly center this interval about the origin at [−(T − TH)/2, (T − TH)/2) in this theoretically abstract case so that
taking the limit as T → ∞ produces a true two-sided convolution integral, which will then have eigenvalues as the Fourier
transform.

19The eigenfunctions are generally difficult to compute (unless the symbol period is infinite) and used here for theoretical
purposes. An approximation method for their computation is listed at the end of this subsection.
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Figure 4.13: Modal Modulation: optimum channel partitioning.

(since the eigenfunctions are complete). Any energy on the remaining eigenfunctions necessarily would
carry less energy at the channel output. Thus, when processed with a receiver matched filter h∗(−t)
that is known to be sufficient, the alternative distinct set would lose information, unless they have zero
component on the smaller eigenfunctions. Thus, the largest set of N , or any set in 1-to-1 correspondence
with them, are the best to use for transmission.

Modal Modulation (MM) in Figure 4.13 uses the channel-dependent orthonormal set of eigen-
functions (the N with largest eigenvalues) as a basis for modulation,

x(t) =

N∑

n=1

xn · ϕn(t) . (4.155)

The receiver signal y(t) in Figure 4.13 is then

y(t) =

N∑

n=1

xn · [r(t) ∗ ϕn(t)] + ñ(t) (4.156)

where ñ(t) is the matched-filtered noise with autocorrelation function N0

2 · r(t). There is no information
loss in this signal because it is the output of the matched filters for each of the transmit bases. Through
Equation (4.154), this signal y(t) is rewritten

y(t) =
N∑

n=1

(ρnxn) · ϕn(t) , (4.157)
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which is a sum of weighted channel input samples, ρn · xn, times the orthonormal basis functions. This
summation has the same form as the modulated waveforms studied in Chapter 1. Each symbol element
xn is replaced by ρnxn.

The MAP/ML receiver is thus also the same as in Chapter 1 and recovers ρnxn by processing each
filter output by a matched-filter/sampler for each of the basis functions, as shown in Figure 4.152. The
noise samples at the output of these matched filters are independent for different n because the basis
functions are orthogonal, or equivalently,

E[ñiñ
∗
j ] =

N0

2

∫ T/2

−T/2

∫ T/2

−T/2

r(t − s)ϕi(t)ϕ
∗
j (s)dtds (4.158)

=
N0

2

∫ T/2

−T/2

ρiϕi(t)ϕ
∗
j (t)dt (4.159)

= ρi
N0

2
δij . (4.160)

Thus, the joint-probability density function py/x factors into N independent component distributions,

and an ML/MAP detector is equivalent to an independent detector on each sample output. Thus, the
MM transmission system generates a set of parallel channels to which the results of Sections 4.2 and 4.3
can then be applied. The SNR’s are SNRn = (ρ2

n · En)/(ρn · N0

2
) = ρn · En/N0

2
.

The functions pn(t) defined by modal modulation clearly satisfy the generalized Nyquist criterion
because of the independence of the subchannels created and because they are zero outside the interval
[−T/2, T/2), thus averting intersymbol interference.

Theorem 4.4.2 (Optimality of Modal Modulation) Given a linear additive Gaussian
noise channel with ISI, modal modulation produces the largest SNRm,u of any N -dimensional
set of orthogonal basis functions exist only on the interval t ∈ [−(T − TH)/2, (T − TH)/2).

Proof: The MM transmission system of Figure 4.152 can be optimally detected by observing
each of the independent subchannel outputs individually. Its performance thus can not be
improved. Any set of functions nonzero over the interval [−(T − TH)/2, (T − TH)/2) that
satisfies the generalized Nyquist criterion are necessarily the eigenfunctions. The N largest
eigenvalues are unique and MM selects teh eigenfunctions corresponding to the N largest. A
well-known property of the eigenvalues is that no other set of N has a larger product. Then,

N∏

n=1

gn (4.161)

is a maximum. For any given set of energies {En}, the product

N∏

n=1

(

1 +
En · gn

Γ

)

(4.162)

is also a maximum because the function 1 + En·gn

Γ is linear (convex) in gn. Then since this
function is maximized for any set of energies, it is certainly the maximum for the water-filling
set of energies that are known to maximize for any set of {gn}. Thus, the equivalent-channel
SNR is the highest for any gap, and modal modulation achieves the highest possible SNR of
any partitioning scheme on the interval [−(T − TH)/2, (T − TH)/2). As T → ∞ for fixed
TH , then the length of the autocorrelation function for any practical and thus finite-length
channel becomes negligible, then modal modulation is also optimum over the entire time axis
without restriction on the time interval to be shorter than the symbol period. QED.

The above theorem essentially states that MM is optimum given observation of a finite time interval
[−(T − TH)/2, (T − TH)/2). It is then natural to expect the following lemma that states that MM
converges to MT modulation in performance as both allow the number of dimensions N to go to infinity
while also allowing the time interval to span (−∞,∞):
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Figure 4.14: Parallel Subchannels of Modal Modulation.
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Theorem 4.4.3 (Convergence of MT to Optimum) Multitone Modulation converges to
Modal Modulation as both N →∞ and [−T/2, T/2)→ (−∞,∞).

Proof: The set of eigenvalues of any autocorrelation function is unique. The set of eigen-
values essentially determine the performance of MM through the SNRm,u for that channel.

By simple substitution of ϕn(t) = e− 2πn
T

t into the defining equation of eigenvalues shows
that these exponential functions are a valid choice of eigenfunctions as the symbol period
becomes infinite, [−T/2, T/2)→ (−∞,∞), and the corresponding eigenvalues are the values
of R(ω) at frequencies of the exponentials. Thus, the eigenvalues are the values of the R(ω)
at each frequency. As N →∞, these frequencies become infinitely dense, and equal to those
of the MT system, which then has no ISI on any tone. The corresponding MT receiver is
optimum (ML/MAP). Thus, both systems have the same SNRm,u and both have optimum
receivers, and by Theorem 4.4.2. The multitone system is thus optimum for infinite-length
symbol period and an infinite number of tones. QED.

The implication of the above lemma is that for sufficiently large N and T , the designer can use either
the MM method or the MT method and rest assured the design is as good as can be achieved on the
linear ISI channel with Gaussian noise.

4.4.3 Limiting Results

The spectrum used by the basis functions of modal modulation thus converges also to the set of used
tones in the infinite-dimensional MT system. The interval may be a set of continuous frequencies or
several such sets and is denoted by Ω. The measure of Ω is the total bandwidth used

|Ω| =
∫

Ω

dω . (4.163)

An optimum bandwidth Ω∗ will then be that corresponding to the subchannels used in water-filling as
N →∞. If N∗ such subchannels are used in MT, then

lim
N→∞

N∗

N
· 2π = |Ω∗| . (4.164)

The data rate is

lim
T→∞

b

T
. (4.165)

Continuous frequency can then replace the frequency index n according to

ω = 2π · lim
N→∞

n

NT ′ , n = −N/2, ...., N/2 , (4.166)

and the width of a tone becomes

dω = lim
N→∞

2π

NT ′ (4.167)

If 1/T ′ is sufficiently large to be at least twice the highest frequency that could be conceived of for use
on any given band-limited channel, then Ω∗ becomes the true optimum band for use on the continuous
channel. The two-sided power spectral density at frequency ω corresponding to n

NT
then is

Sx(ω) = lim
N→∞

Ēn . (4.168)

For infinite time and frequency as used here, there is no need for complex baseband equivalents and thus
all dimensions are considered real. The power then becomes

Px = lim
N→∞

1

N · T ′ ·
N/2
∑

n=−N/2

Ēn =
1

2π
·
∫

Ω

Sx(ω)dω . (4.169)
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Figure 4.15: Capacity frequency interval for 1 + .9D−1 channel.

The water-filling equation then has continuous equivalent

Ēn +
Γ

gn
→ Sx(ω) +

Γ

g(ω)
= λ a constant (4.170)

subject to the total power constraint in (4.169) , which has corresponding solution for Sx(ω > 0 for all
ω ∈ Ω∗ and Sx(ω) = 0 at all other frequencies. The data rate then becomes

R =
1

2π

∫

Ω∗

1

2
log2

(

1 +
Sx(ω) · g(ω)

Γ

)

dω (4.171)

=
1

2π

∫

Ω∗

1

2
log2

(
λ · g(ω)

Γ

)

dω (4.172)

EXAMPLE 4.4.1 (1 + .9D channel) The channel with impulse response h(t) = sinc(t)+
.9sinc(t − 1) has the same performance as the 1 + .9D−1 channel studied throughout this
book, if the transmit filter is 1√

T
sinc(t/T ). An system with optimized MT basis functions of

infinite length would have an optimum bandwidth Ω∗ = [−W, W ] for some W ≤ π/T as in
Figure 4.15 Then, continuous water-filling with Γ = 1 produces

Px =

∫ W

−W

(

λ′ − .181

1.81 + 1.8 cos(ω)

)
dω

2π
(4.173)

where W is implicitly in radians/second for this example. If Px = 1 with N0

2
= .181, the

integral in (4.173) simplifies to

π =

∫ W

0

(

λ′ − .181

1.81 + 1.8 cos(ω)

)

dω (4.174)

= λ′W − .181

{

2√
1.812 − 1.82

arctan

[√
1.812 − 1.82

1.81 + 1.8
tan

(
W

2

)]}

(4.175)

At the bandedge W ,

λ′ =
.181

1.81 + 1.8 cos(W )
. (4.176)

leaving the following transcendental equation to solve by trial and error:

π =
.181W

1.81 + 1.8 cos(W )
− 1.9053 arctan(.0526 tan(W/2)) (4.177)

W = .88π approximately solves (4.177), and the corresponding value of λ is λ = 1.33.
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The highest data rate with 1/T = 1 is then

C =
2

2π

∫ .88π

0

1

2
log2

(
1.33

.181
(1.81 + 1.8 cosω)

)

dω (4.178)

=
1

2π

∫ .88π

0

log2 7.35dω +
1

2π

∫ .88π

0

log2 (1.81 + 1.8 cosω) dω (4.179)

= 1.266 + .284 (4.180)

≈ 1.55bits/second . (4.181)

This exceeds the 1 bit/T transmitted on this channel in the examples of Chapter 3. Later
sections of this chapter show that the SNRm,u for this channel becomes 8.8 dB for large
N , .4 dB better than the best MMSE-DFE, and actually 1.7 dB better than the precoded
MMSE-DFE. The MT system has no error propagation, and is also an ML detector.

In computing data rates as in water-filling with Γ > 0 dB, the designer needs to remember that the
gap concept is only accurate when b̄ ≥ 1. Often water-filling may include regions of bandwidth for which
b̄ in at least those bands is less than 1. The gap approximation becomes increasingly accurate as the
gap gets smaller, and indeed is accurate at all b̄ when the gap is 0 dB, meaning capacity results are all
exact.

Periodic Channels

A channel with periodic r(t) = r(t + T ) will always have eigenfunctions ϕn(t) = e 2π
T

nt for the interval
[−T/2, T/2). Periodic channels do not exist in practice, but designers often use extra bandwidth in the
design of a transmission problem to make the finite-duration channel appear as if it were periodic. In
this case, MT and MM would again be the same.

Computing the Eigenfunctions

The eigenfunctions can be difficult to compute in closed form for most channels. At a sampling rate
1/T ′ sufficiently high to capture any significant channel frequencies, the eigenfunction equation can be
sampled over the time interval −(T − TH)/2 = −LT ′ to (T − TH)/2 = LT ′ to yield

ρn ·








ϕn(−LT ′)
ϕn(−LT ′ + T ′)

...
ϕn(LT ′)








= T ′ ·








r(0) ... r(−2LT ′)
r(T ′) ... r(−2LT ′ + T ′)

...
. . .

...
r(2LT ′) ... r(0)















ϕn(−LT ′)
ϕn(−LT ′ + T ′)

...
ϕn(LT ′)







(4.182)

ρn · ϕn = Rϕn . (4.183)

This equation is equivalent to finding the eigenvectors and eigenvalues of the matrix R. The largest N
eigenvalue magnitudes |ρn| select the corresponding eigenvectors as the sampled basis functions. These
basis functions may be interpolated to create eigenfunction approximations. Clearly, the smaller the T ′,
the more accurate the approximation.

In implementation, Section 4.5 illustrates a yet better way to approximate eigenfunctions in discrete
time, which is known as vector coding.

4.4.4 Time-Domain Packets and Partitioning

Overlap, Excess Bandwidth, and the Guard Period

A realistic transmission channel has most or all its nonzero impulse response confined to a finite time
interval TH . Thus, convolution of the (necessarily causal) channel impulse response with nonzero input
basis functions existing over [0, T ) produces an output with duration longer than the symbol period
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Figure 4.16: Illustration of guard period.

Figure 4.17: Filters with multitone.

T 20 as in Figure 4.16. The first TH seconds of any symbol are thus possibly corrupted by intersymbol
interference from the last symbol if that previous symbol had nonzero transmit energy over (T −TH , T ).
Thus, the receiver then usually ignores the first TH seconds of any symbol. If TH << T , then this
overhead penalty, or “excess bandwidth” penalty, is small and no equalization need be used. For a fixed
channel and thus fixed TH , as T → ∞, this excess bandwidth becomes negligible. This time period
where the receiver ignores channel outputs is often called a guard period in multichannel modulation.
For finite symbol period, the multichannel system then has an excess bandwidth given by the factor
α = TH/(T − TH).

4.4.5 Filters with Multitone

Multitone partitioning almost satisfies the Generalized Nyquist criterion with any impulse response h(t),
but requires an infinite-length basis function ϕ(t) = 1√

T
sinc

(
t
T

)
and is not physically realizable even

when N is finite. The orthogonality of subchannels is ensured because the Fourier transforms of the basis
function translates by f = n

T
do not overlap and thus are trivially orthogonal at the linear time-invariant

channel output. ISI is nearly averted by the narrow bands that are nearly flat even at channel output.
Thus, many designers have investigated the possibility of approximating the multitone functions with
physically realizable basis functions, as generally depicted in Figure 4.17. There is no guard band in the
time domain, but instead an excess bandwidth in the frequency domain.

The basic idea is to avoid the use of a TH -second guard period in the time domain by instead
having very sharp basis functions that approximate ϕ(t) = 1√

T
sinc

(
t
T

)
. One method might be to simply

truncate this basis function to say ± 100 symbol periods, thus introducing a delay of approximately
101T in realization (and introducing a high complexity), and of course necessarily another 101T in the
receiver. Contrast this with a delay of just T with the use of the guard period and one sees the method

20This section will now begin to pursue realizable transmission systems and not theoretical abstractions, thus the basis
functions will necessarily have to be causal in the remainder of this section.
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is not attractive. However, shorter length approximations may suffice. One method is to introduce
again the raised cosine functions of Chapter 3 with excess bandwidth of 10 to 20%. Sometimes this level
of excess bandwidth can be less for certain types of channels (or noise-equivalent channels) that have
sharp band-edges, notches, or narrow-band noises, all of which result in long impulse responses and thus
large Th in the guard band of Section 4.4.4. Other functions may also achieve the same time of “low
side bands” for the Fourier transform of the basis function. Of course, any such realization requires in
reality some type of over-sampled digital signal processing. Section 4.6, Subsection 4.6.8 studies discrete
realizations of a few methods that have been proposed to date.
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Figure 4.18: Digital realization of channel partitioning.

4.5 Discrete-time channel partitioning

While MM restricts attention to a finite time interval for construction of the transmit basis functions,
these functions remain continuous in time and a function of the channel. Such functions would be
difficult to implement exactly in practice. Discrete-time channel partitioning partitions a discrete-
time description of the channel. This description is a linear matrix relationship between a finite number
of output samples (presumably sampled at a rate 1/T ′ exceeding twice the highest frequency to be
transmitted) and a corresponding finite set of channel input samples at the same rate that constitute
the transmitted symbol. Such a description can never be exact in practice, but with a sufficient number
of input and output samples included, this description can be very close to the exact action of the ISI
channel. Figure 4.18 illustrates general N -dimensional discrete-time channel partitioning. Discrete-time
basis vectors, mn replace the continuous basis functions of MM or MT. These basis vectors have a
finite length of N + ν samples over a duration of time T . The sampled pulse response, p(kT ′), of the
channel is assumed to span a time interval of less than ν + 1 sample periods, where (ν + 1)T ′ = TH .
Each basis vector, mn, multiplies a sub-symbol element Xn before being summed to form the transmit
symbol vector x.21 Then, x is output through a digital-to-analog converter. Some transmit filtering
of the output DAC occurs (typically analog lowpass anti-aliasing) before the signals pass through the
ISI channel. The combined post-DAC filtering, channel impulse response, and pre-ADC filtering in the
receiver form a pulse response p(t). The sampling rate 1/T ′ = (N +ν)/T is higher than twice the highest
frequency that the designer hopes to use for the transmitted signals. The modulator attempts to use
basis vectors, mn, that will remain orthogonal after undergoing the dispersive effect of the ISI channel,
just as orthogonality was maintained with MM.

The receiver low-pass filters with gain 1/
√

T ′ (that is also included in the pulse response) to maintain
noise per dimension at N0

2 ), and then samples at rate 1/T ′ the received modulated signal. The matched
filters are discrete-time and also finite length. The matched filters are only complex if the entire set of
modulated signals had been passband modulated by an external passband modulator that is not shown
in Figure 4.18, and would in this case correspond to a complex baseband-equivalent channel. There are
N + ν input samples that lead to N matched-filter output samples, with ν samples lost to the guard
period to avoid intersymbol interference. The samples can be real or complex, which in the latter case

21Xn (upper case) is used to avoid confusion with xk, a transmitted sample that is the direct input to the discrete-time
channel.
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tacitly will imply a doubling of the number of real dimensions.

4.5.1 Optimal Partitioning Vectors - Vector Coding

The last N ADC channel-output symbol samples in Figure 4.18 have vector representation, with time
indexed within a symbol from k = −ν to N − 1,








yN−1

yN−2

...
y0








=









p0 p1 ... pν 0 ... 0

0 p0
. . . pν−1 pν

. . . 0

0
. . .

. . .
. . .

. . .
. . . 0

0 ... 0 p0 p1 ... pν





















xN−1

...
x0

x−1

...
x−ν













+








nN−1

nN−1

...
n0








, (4.184)

or more compactly,
y = Px + n . (4.185)

The N × (N + ν) matrix P has a singular value decomposition

P = F

[

Λ
... 0N,ν

]

M∗ , (4.186)

where F is a N × N unitary (FF ∗ = F ∗F = I) matrix, M is a (N + ν) × (N + ν) unitary (MM∗ =
M∗M = I)matrix, and 0N,ν is an N × ν matrix of zeros. Λ is an N ×N diagonal matrix with singular
values λn, n = 1, ..., N along the diagonal. The vector x is a data symbol vector. The notational use
of P for the channel matrix suggests that any anti-alias analog filters at transmitter and receiver have
been convolved with the channel impulse response h(t) and included in the discrete-time response of the
matrix channel.

Vector Coding creates a set of N parallel independent channels by using the transmit basis vectors,
m, that are the first N columns of M - in other words, the transmit vector x is obtained from the N
vector components Xn, n = 1, ..., N according to

x = M








X

0
...
0








= [mN−1 mN−2 ... m1m0 ... m−ν ]















XN−1

XN−2

...
X0

0
...
0















=

N−1∑

n=0

Xnmn . (4.187)

4.5.2 Creating the set of Parallel Channels for Vector Coding

The last ν columns of M that do not affect P because they are multiplied by zero in (4.187), these ν
columns cannot contribute to the channel output and can be ignored in implementation. The corre-
sponding vector-coding receiver uses discrete “matched filters” as the rows of F ∗, forming

Y = F ∗y =





f∗
N−1y

...
f∗
0 y



 . (4.188)

The mathematical description of the resultant N parallel channels is

Y = ΛX + N , (4.189)

or, for each independent channel or entry in Y ,

Yn = λn ·Xn + Nn . (4.190)
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Since F is unitary, the noise vector N is also additive white Gaussian with variance per real dimension
identical to that of n, or N0

2 .

Theorem 4.5.1 (Optimality of Vector Coding) Vector Coding has the maximum SNRm,u

for any discrete channel partitioning.

Proof: The proof of this theorem is deferred to Chapter 5 (Lemma 5.4.1) where some not-
yet-introduced concepts will make it trivial.

The optimality of VC is only strictly true when capacity-achieving codes with “Gaussian” distribu-
tions are used on each of the subchannels. The restriction to independent symbols, requiring the receiver
to ignore the first ν samples of any symbol causes suboptimality. If this restriction were relaxed or omit-
ted, then it is possible that a better design exists. For N >> ν , such a potentially better method would
offer only small improvement, so only the case of ν > .1N would be of interest in further investigation
of this restriction (see Section 5.7).

Comment on correlated noise:

In the discrete-time transmission system of Figure 4.18, the noise is unlikely to be white. Section 1.7
previously indicated how to convert any channel into an equivalent white-noise channel, which involved
receiver preprocessing by a canonical noise-whitening filter and the equivalent channel frequency response
becoming the ratio of the channel transfer function to the square-root of the power-spectral density of
the noise. Since this filter may be difficult to realize in practice, then the discrete-time processing also
described in Section 1.7 of factoring the noise covariance to

E [nn∗] = Rnnσ2 = R1/2
nn R−1/2

nn σ2 , (4.191)

can be used. Then a discrete white-noise equivalent channel becomes

y ← R−1/2
nn y =

(

R−1/2
nn P

)

x + ñ . (4.192)

The extra matrix multiply is absorbed into the receiver processing as F ∗y → F ∗R−1/2
nn y. The preceding

development the continues with P replaced by the matrix R
−1/2
nn P , the later of which then undergoes

SVD. The matrix P will not be Toeplitz any longer, but will be very close to Toeplitz if the duration
of the noise whitening filter is much less than the symbol period. In any case, vector coding does not
require P to be Toeplitz.

4.5.3 An SNR for vector coding.

The number of bits/symbol for vector coding is achieved on the channel using a coding method with
constant gap Γ (regardless of bn) on all subchannels. This b is

b = (1/k)
N∑

n=1

log2

(

1 +
SNRn

Γ

)

, (4.193)

where k = 2 for real subchannels and k = 1 for complex subchannels. When Γ = 1, the data rate on
each subchannel is as high as possible with the given energy En and is sometimes called the “mutual
information.” (See Chapter 5 for more on mutual information). If the water-fill energy distribution is
also used, then b is the capacity b = c or highest possible number of bits per channel that can be reliably
transmitted on the discrete-time channel. The best energy distribution for vector coding and Γ > 1 is a
water-fill with SNRn → SNRn/Γ, as in Section 4.3:

En +
N0

2
· Γ

λ2
n

= K (4.194)

N∗

∑

n=1

En = (N + ν)Ēx (4.195)
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The SNR for vector coding is then

SNRvc = Γ ·
[

N∗

∏

n=1

(

1 +
SNRn

Γ

)]1/(N+ν)

− Γ . (4.196)

The quantity (N + ν)Ēx is now the total energy. The exponent depending on N + ν is used because
vector coding uses N + ν channel input samples22. When Γ = 1, for complex passband systems,

b̄ =
b

2(N + ν)
= .5 log2

(

1 +
SNRvc

Γ

)

, (4.197)

and

b̄ =
b

(N + ν)
= .5 log2

(

1 +
SNRvc

Γ

)

(4.198)

for real (PAM) baseband systems. Thus, the geometric SNR of vector coding can be compared against
the detection SNR of an AWGN, a MMSE-LE, or a MMSE-DFE because SNRvc has the same relation
to achievable data rate with the same class of modulation codes of constant gap Γ. Further, we have the
interesting result

SNRvc = 22Ī − 1 , (4.199)

and
SNRvc = 22C̄ − 1 (4.200)

when water-filling is used with Γ = 1. Thus the SNR is maximum when the data rate is maximized
at capacity using water-filling. This SNRvc could then replace SNRMFB as the highest possibleon an
ISI channel. However it needs to be viewed with respect to the used bandwidth – equivalently the
SNRMFB is usally a function of a different transmit-filter choice than VC. Also, SNRvc is highest when
capacity-achieving codes are used and is a function of the gap, unlike SNRMFB.

EXAMPLE 4.5.1 (Vector Coding for 1 + .9D−1 Channel) For this channel, a guard
period of one sample ν = 1 is sufficient to prevent overlap between symbol transmissions
at the channel output. A choice of N = 8 is consistent with previous invocations of this
channel. The total energy is then E = (8 + 1) · 1 = 9. This energy may be distributed over a
maximum of 8 subchannels. The channel-description matrix is

p =










.9 1 0 0 0 0 0 0 0
0 .9 1 0 0 0 0 0 0
0 0 .9 1 0 0 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 0 0 0 .9 1










. (4.201)

Singular value decomposition (implemented by the “svd” command in Matlab) produces the
following 8 nonzero singular values

[1.87 1.78 1.64 1.45 1.22 .95 .66 .34] , (4.202)

and corresponding subchannel SNR’s

gn =
λ2

n

σ2
= [19.3 17.6 15.0 11.7 8.3 5.0 2.4 .66] . (4.203)

Execution of water-filling with Γ = 0 dB on the subchannels finds that only 7 can be used
and that

K =
1

7

(

9 +

6∑

n=0

1

gn

)

= 1.43 . (4.204)

22The number of samples is N + ν dimensions for real channels, but 2N + 2ν dimensions for complex channels. In the
complex case, each SNR factor would be squared and then (4.196) holds in either the complex or real case without further
modification
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The corresponding subchannel energies are:

[1.38 1.37 1.36 1.34 1.30 1.23 1.01 0] , (4.205)

and the SNR’s are
[26.6 24.2 20.4 15.8 10.8 6.2 2.4 0] , (4.206)

resulting in an SNR of

SNRV C =

[
6∏

n=0

SNRn + 1

]1/9

− 1 = 6.46 = 8.1 dB . (4.207)

The capacity for N = 8 and ν = 1 is then

c̄ =
1

9

6∑

n=0

1

2
log2(1 + SNRn) = 1.45bits/dim. (4.208)

The capacity is close to the true capacity of 1.55 bits/dimension, which would be determined
by executing this example as N →∞. These subchannels are exactly independent, and the
SNR and capacity are exact - no approximations of no-ISI on a subchannel were made. The
SNR is then 8.8 dB and exceeds the previous best equalized SNR on this channel, achieved
by the MMSE-DFE. And, there is no error propagation. The overhead of ν = 1 becomes
zero as N increases.
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4.6 Discrete Multitone (DMT) and OFDM Partitioning

Discrete MultiTone (DMT) and Orthogonal Frequency Division Multiplexing (OFDM) are
two very common forms of Vector Coding that add a restriction to reduce complexity of implementation.
Both DMT and OFDM have the same channel partitioning – they differ in the loading algorithm: OFDM
puts equal bits on all subchannels, rather than optimizing bn and En, as in DMT. OFDM is used on
broadcast (i.e., one-way channels) for which the receiver cannot tell the transmitter the bits and energies
that are best. DMT is used on slowly time-varying two-way channels, like telephone lines. OFDM is
used in wireless time-varying channels with codes that allow recovery of lost subchannels caused by
time-varying notches in multipath intersymbol interference.

The DMT/OFDM channel partitioning forces the transmit symbol to have x−k = xN−k for k = 1, ...ν.
Such repeating of the last ν samples at the beginning of the symbol is called a cyclic prefix. Tremendous
processing simplification occurs with the cyclic prefix.

With cyclic prefix, the matrix description of the channel has a square N ×N circulant P matrix:








yN−1

yN−1

...
y0








=
















p0 p1 ... pν 0 ... 0

0 p0
. . . pν−1 pν

. . . 0

0
. . .

. . .
. . .

. . .
. . . 0

0 ... 0 p0 p1 ... pν

pν 0 ... 0 p0 ... pν−1

...
. . .

. . .
. . .

. . .
. . .

...
p1 ... pν 0 ... 0 p0





















xN−1

...
x0




+








nN−1

nN−1

...
n0








(4.209)

y = P̃x + n . (4.210)

Singular value decomposition produces unique singular values if those values are restricted to be
nonnegative real values (even when P is complex). For transmission, this restriction is superfluous and
a variant of SVD will be simpler to compute. For the case of the cyclic prefix, the SVD may be replaced
by the eigendecomposition or “spectral factorization” of the circulant matrix P ,

P = MΛM∗ (4.211)

where MM∗ = M∗M = I and Λ is a square diagonal matrix with eigenvalues on the diagonal λn. The
magnitude of eigenvalues are equal to the singular values. Further, effectively, M and F become the same
matrix for this special case. The product SNR for this alternative factorization in (4.211) is the same as
for SVD-factorization because the magnitude of each eigenvalue equals a corresponding singular value.23

This type of transmission could be called Eigenvector Coding, analogous to modal modulation’s use
of eigenfunctions. While the subchannel SNRs are the same, there are many choices for the “transform”
matrices M and F in partitioning. Since all have the same performance, this subsection investigates a
very heavily used choice that has two advantages – (1) the matrices M and F are not a function of the
channel, and (2) they are efficiently implemented.

4.6.1 The Discrete Fourier Transform

A review of the DFT is helpful for DMT channel partitioning.

Definition 4.6.1 (Discrete Fourier Transform) The Discrete Fourier Transform (DFT)
of a N -dimensional input symbol x is

X
∆
=








XN−1

XN−2

...
X0








(4.212)

23A caution to the reader using Matlab for eigenvalue/vector computation – the eigenvalues are not ususally ordered as
they are in singular-value decomposition.
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where

Xn =
1√
N

N−1∑

k=0

xke− 2π
N

kn ∀ n ∈ [0, N − 1] , (4.213)

and

x =








xN−1

xN−2

...
x0








. (4.214)

The corresponding Inverse Discrete Transform (IDFT) is computed by

xk =
1√
N

N−1∑

n=0

Xne 2π
N

kn ∀ k ∈ [0, N − 1] . (4.215)

In matrix form, the DFT and IDFT are

X = Qx (4.216)

x = Q∗X , (4.217)

where Q is the orthonormal matrix given by

Q =
1√
N










e− 2π
N

(N−1)(N−1) ... e− 2π
N

2(N−1) e− 2π
N

(N−1) 1

e− 2π
N

(N−1)·(N−2) ... e− 2π
N

2(N−2) e− 2π
N

(N−2) 1
...

. . .
...

...
...

e− 2π
N

(N−1) ... e− 2π
N

2 e− 2π
N 1

1 ... 1 1 1










. (4.218)

Both x and X can be presumed to be one period of a periodic sequence to generate DFT/IDFT
values for indices k and/or n outside the interval (0, N−1). The matrix Q∗ appears the same
as Q in (4.218) except that the exponents all have a plus sign where the minus now occurs.
A further definition is of some vectors qn according to

Q∗ = [qN−1 , ..., q0] , (4.219)

which are useful in the following theorem’s proof.

The IDFT, Xn, and DFT, xk, values can be complex. For real time-domain signals, the restriction
XN−n = X∗

n for n = 1, ..., N − 1 holds. This restriction implies that there are N̄ = N/2 complex
dimensions when N is even24. The IDFT generally corresponds to N input samples whether complex
or real, while this textbook has previously used N to be the number of real dimensions and N̄ to be the
number of tones. Thus, there is a slight inconsistency in notation. This inconsistency is resolved simply
by considering N in the IDFT and DFT definitions to be the number of tones used if complex, and twice
the number of tones with the congjugate symmetry on the IDFT input enforced (or real time-domain
signals). The FFT size should then be equal to the number of real dimensions only in the latter case
of real baseband signals. When complex baseband signals are used, the number of real dimensions is
twice the FFT size. With this understanding, Matlab can be used to easily generate the Q matrix here
exactly according to the commands

J=hankel([ zeros(1,N-1) 1]’)

Q=(1/sqrt(N))*J*fft(J)

24Actually, there are N̄ − 1 complex dimensions and two real dimensions corresponding to n = 0 and n = N̄ . The extra
two real dimensions are often grouped together and considered to be one “complex” dimension, with possibly unequal
variances in the 2 dimensions. Usually, practical systems use neither of the real dimensions, leaving N̄ − 1 subchannels
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Lemma 4.6.1 (DFT is M for circularly prefixed VC) The circulant matrix P = MΛM∗

has a eigendecomposition with M = Q∗ - that is the eigenvectors are the columns of the IDFT
matrix and not dependent on the channel. Furthermore, the diagonal values of Λ are λn = Pn

- that is, the eigenvalues of this circulant matrix are found through the DFT.

Proof: The eigenvalues and corresponding eigenvectors of a matrix are found according to

λnqn = Pqn (4.220)

=









p0 p1 ... pν 0 ... 0

0 p0
. . . pν−1 pν

. . . 0
...

. . .
. . .

. . .
. . .

. . .
...

p1 ... pν 0 ... 0 p0









1√
N
·








1

e− 2π
N

n

...

e− 2π
N

n








, (4.221)

which has matrix equivalent Q∗Λ = PQ∗. By investigating the top row on right,

1√
N
·
(

p0 + p1 · e− 2π
N

n + ... + pN−1 · e−
2π(N−1)

N
n
)

= Pn , (4.222)

so λn = Pn. The next row up is then

1√
N
·
(

p0 · e 2π
N

n + p1 + ... + pN−1 · e−
2π(N−2)

N
n
)

= Pn ·
e+ 2π

N
n

√
N

. (4.223)

Clearly, repeating this procedure leads to

Pqn = Pnqn , (4.224)

making qn an eigenvector of P . Thus, a choice of the eigenvectors is simply the columns of
the IDFT matrix Q∗. For this choice, the eigenvalues must exactly be the DFT values of the
rows of P . QED.

4.6.2 DMT

Discrete Multi-tone (DMT) transmission uses the cyclic prefix and M = FQ∗ in vector coding for
the constructed cyclic channel. These matrices are not a function of the channel because of the use of the
cyclic prefix. Orthogonal Frequency Division Multiplexing (OFDM) also uses these same vectors
(but does not use optimum loading, and instead sends equal energy and information on all subchannels).

Thus, the equivalent of the F and M matrices for VC with a cyclic prefix become the well-known
DFT operation. The DFT can be implemented with N · log2(N) operations, which is less than the full
matrix multiplies of vector coding that would require N2 equivalent operations. For large N , this is a
very large computational reduction. Clearly, since an additional restriction of cyclic prefix is applied
only to the case of DMT/OFDM channel partitioning, then DMT/OFDM can only perform as well as
or worse than VC without this restriction. When N >> ν , the difference will be small simply because
the difference in P is small. The designer should take care to note that the energy constraint for DMT
when executing loading algorithms is lower by the factor N/(N + ν) because of the “wasted energy” in
the cyclic prefix, the price for the computational simplification.

Figure 4.19 illustrates the basic structure of the DMT transmission-system partitioning. Determina-
tion of the subsymbol values Xn, energy En and number of bits bn occurs with a loading algorithm. The
partitioning then uses the computationally efficient FFT algorithms for implementation of the DFT and
IDFT.

For the case of N →∞, the cyclic prefix becomes negligible and vector coding performs the same as
DMT, and all the individual subchannels of DMT also have the same SNRn as VC as N →∞. This is
consistent with the earlier finding that eigenvector coding in the limit of large symbol size and infinite
number of subchannels becomes MT. VC is a discrete form of eigenvector coding while DMT is a discrete
form of MT. In the limit, with sufficiently high sampling rate, DMT, MT, VC and eigenvector coding all
perform the same. Only DMT is easily implemented. No other channel partitioning can perform better
as long as N is sufficiently large.

The following list may help summarize two SNR’s of interest, SNRMFB and SNRDMT,U:
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Figure 4.19: DMT and OFDM partitioning block diagram.

• SNRDMT,U is not a bound and is attainable, and SNRDMT,U ≤ SNRMFB.

• outside of the cyclic-prefix loss, which tends to zero for infinite block length, SNRDMT,U is the

highest possible SNR that can be achieved, so it is a better bound than SNRMFB was in Chapter
3,

• If Γ = 0 dB, then there is no better system than DMT as the block length becomes large.

• An apparent quandry might be that in Chapter 9, MLSD attains the matched filter bound SNR for
various finite-length impulse-response channels, but those situations have Gamma > 0 dB always
and the sequence detector is in fact taking advantage of a code. If a code with zero gap had been
used, MLSD for intersymbol interference will not exceed the performance of SNRDMT,U with zero

dB gap.

• Thus, as will be discussed in Chapters 10 and beyond, the designer should not confuse a coding
gain with a gain caused by partitioning of the channel ISI, for which there is no better method
than DMT as N →∞.

EXAMPLE 4.6.1 (DMT for 1 + .9D−1 Channel) Continuing the example for the 1 +
.9D−1 channel for DMT, the circulant channel matrix for N = 8 and ν = 1 becomes

P =










.9 1 0 0 0 0 0 0
0 .9 1 0 0 0 0 0
0 0 .9 1 0 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
1 0 0 0 0 0 0 .9










. (4.225)

Table 4.6.1 summarizes the results of waterfilling with 8 units of energy (not 9, because 1
unit is wasted in the cyclic prefix on average). Only 7 of the 8 subchannels were used - note
that 6 of the subchannels are effectively two-dimensional QAM subchannels.
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n λn = |Pn| gn = |Pn|2
.181 En SNRn bn

0 1.90 20 1.24 24.8 .969

1 1.76 17 1.23 20.9 2.34
2 1.76 17 1.23 20.9 2.34

3 1.35 9.8 1.19 11.7 2.23
4 1.35 9.8 1.19 11.7 2.23

5 .733 3 .96 2.9 1.85
6 .733 3 .96 2.9 1.85

7 .100 .05525 0 0 0

Table 4.3: Table of parameters for 1 + .9D−1 channel example with DMT with Γ = 0 dB.

The SNR is

SNRDMT =

[
6∏

n=0

(1 + SNRn)

]1/9

− 1 = 7.6 dB < 9.2 dB from Example 4.1.1. (4.226)

The DMT SNR is less than that found earlier for MT, but is exact and not approximated.
It is also slightly worse than the SNR of vector coding for the same number of dimensions.
However, DMT can increase the number of dimensions significantly before the complexity of
FFT’s exceed that of the orthogonal matrix multiplies. One finds that for N = 16, this SNR
increases to its maximum value of 8.8 dB.

This exampleprogresses to compare the complexity of this DMT system with its exact SNR
now correctly computed with that of the DFE studied earlier and also against the VC sys-
tem. To get 7.6 dB, the MMSE-DFE required 3 feedforward taps and 1 feedback tap for a
complexity of 4 multiply-accummulates per sample. VC requires 7(8) multiply-accumulates
in the receiver to get the slightly higher SNR of 8.1 dB, or a complexity 6.2/sample (6.2 =
7(8)/9). DMT requires a size-8 FFT, which nearly exactly requires 8 log2(8) multiply accu-
mulates when the real-output constraint is exploited. DMT then gets 7.6 dB also, but with
2.7 multiplies/sample. A factor of 2-3 improvement in complexity for a given level of per-
formance with respect to the DFE and VC is common. For the size 16 DMT with SNR=8.8
dB, the complexity is still only 3.8/sample while for instance a DFE requires 10 feedforward
taps and 1 feedback to get only 8.4 dB, then requiring 11/sample. Further, the DFE incurs
a precoding loss of 1.2 dB.

Matlab programs

The following matlab functions have been written with credits to former students W. Rhee and A.
Salvekar, and are useful for computing DMT performance and parameters quickly. See class web site for
complete programs.

--------- rate-adaptive water-fill DMT ------------------------------------

function [gn,en_bar,bn_bar,Nstar,b_bar,SNRdmt]=DMTra(P,SNRrcvr,Ex_bar,N,gap)

% Updated J. Cioffi , Spring 2008 - credits to A. Salvekar and W. Rhee

%

% function [gn,en_bar,bn_bar,Nstar,b_bar]=dmtra(P,SNRrcvr,Ex_bar,N,gap)

%

% INPUTS

% P is the pulse response (and v is set equal to length(P)-1)

% Ex_bar is the normalized energy
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% SNRrcvr is the receiver SNR (dB) if input were i.i.d. Ex_bar all

% dimensions, so what would be called an SNRmfb for that "white" input

% N is the (maximum) number of DMT tones, N>2, centered at 1/N

% the sampling rate is presumed to be (N+v)/T where 1/T is DMT symbol

% rate

% gap is the gap in dB

%

% OUTPUTS

% gn is vector of channel gains

% en_bar is the vector of energy/dim for all subchannel

% bn_bar is the vector of bit/dim for all subchannels

% Nstar is the number of used subchannel

% b_bar is the bit rate

% SNRdmt is the equivalet DMT SNR

% dB into normal scale

Noise_var=Ex_bar*(norm(P)^2)/(10^(SNRrcvr/10));

gap=10^(gap/10);

nu=size(P);

nu=max(nu(1),nu(2))-1;

% initialization

en=zeros(1,N);

bn=zeros(1,N);

gn=zeros(1,N);

Hn = zeros(1,N);

% subchannel center frequencies

f=-1/2+1/N:1/N:1/2;

% find Hn vector

for i=1:length(P)

Hn=Hn+P(i)*exp(j*2*pi*f*(i-1));

end

% find gn vector

gn=abs(Hn).^2/Noise_var;

%%%%%%%%%%%%%%%%%%%%%%%

% Waterfilling for DMT %

%%%%%%%%%%%%%%%%%%%%%%%

%sort

[gn_sorted, Index]=sort(gn); % sort gain, and get Index

gn_sorted = fliplr(gn_sorted);% flip left/right to get the largest

% gain in leftside

Index = fliplr(Index); % also flip index

num_zero_gn = length(find(gn_sorted == 0)); %number of zero-gain subchannels

Nstar=N - num_zero_gn;

% Number of used channels,

% start from N - (number of zero gain subchannels)

352



while(1)

K=1/Nstar*(N*Ex_bar+gap*sum(1./gn_sorted(1:Nstar)));

En_min=K-gap/gn_sorted(Nstar); % En_min occurs in the worst channel

if (En_min<0)

Nstar=Nstar-1; % If negative En, continue with less channels

else

break; % If all En positive, done.

end

end

En=K-gap./gn_sorted(1:Nstar); % Calculate En

Bn=.5*log2(K*gn_sorted(1:Nstar)/gap); % Calculate bn

bn(Index(1:Nstar))=Bn; % return values in original index

en(Index(1:Nstar))=En; % return values in original index

middle = N/2; % Since channel is even, need to display

% only half of result

en_bar=en(middle:N);

bn_bar=bn(middle:N);

% calculate b_bar

b_bar=1/(N+nu)*(sum(bn));

SNRdmt=10*log10(2^(2*b_bar)-1);

-------------------------------------------------------------------------------

--------- margin-adaptive water-fill DMT ------------------------------------

function [gn,en_bar,bn_bar,Nstar,b_bar_check,margin]=DMTma(P,SNRrcvr,Ex_bar,b_bar,N,gap)

% EE379C 2008 Spring,

% J. Cioffi - credits to Seong Taek Chung

%

% P is the pulse response where v=length(P) -1

% SNRrcvr is the SNR (in dB) at te receiver input if the input is i.i.d

% b_bar is the target normalized bit rate

% Ex_bar is the normalized energy

% N is the total number of real/complex subchannels, N>2

% gap is the gap in dB

%

% gn is the vector of channel gains

% en_bar is the vector of energy/dim for all subchannels

% bn_bar is the vector of bit/dim for all subchannels

% Nstar is the number of used subchannel

% dB into normal scale

Noise_var=Ex_bar*(norm(P)^2)/(10^(SNRrcvr/10));

gap=10^(gap/10);

nu=length(P)-1;

% initialization

en=zeros(1,N);

bn=zeros(1,N);
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gn=zeros(1,N);

Hn = zeros(1,N);

% subchannel center frequencies

f=-1/2+1/N:1/N:1/2;

% find Hn vector

for i=1:length(P)

Hn=Hn+P(i)*exp(j*2*pi*f*(i-1));

end

% find gn vector

gn=abs(Hn).^2/Noise_var;

%%%%%%%%%%%%%%%%%%%%%%%

% MA waterfilling %

%%%%%%%%%%%%%%%%%%%%%%%

%sort

[gn_sorted, Index]=sort(gn); % sort gain, and get Index

gn_sorted = fliplr(gn_sorted);% flip left/right to get the largest

% gain in leftside

Index = fliplr(Index); % also flip index

num_zero_gn = length(find(gn_sorted == 0)); %number of zero gain subchannels

Nstar=N - num_zero_gn;

% Number of used channels,

% start from N - (number of zero gain subchannels)

b=(N+nu)*b_bar;

Klog2tilde=2*b-(1/log(2))*sum(log(gn_sorted));

while(1)

Klog2=(1/Nstar)*Klog2tilde + log(gap)/log(2);

En_min=2^(Klog2)-gap/gn_sorted(Nstar); % En_min occurs in the worst channel

if (En_min<0)

Klog2tilde=Klog2tilde+(1/log(2))*log(gn_sorted(Nstar));

Nstar=Nstar-1; % If negative En, continue with less channels

else

break; % If all En positive, done.

end

end

K=2^(Klog2);

En=K-gap./gn_sorted(1:Nstar); % Calculate En

Bn=.5*log2(K*gn_sorted(1:Nstar)/gap); % Calculate bn

bn(Index(1:Nstar))=Bn; % return values in original index

en(Index(1:Nstar))=En; % return values in original index

en_bar=en;

bn_bar=bn;

% calculate b_bar
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b_bar_check=1/(N+nu)*(sum(bn));

%calculate margin

margin=10*log10(N*Ex_bar/sum(en));

-------------------------------------------------------------------------------------------------

--------- rate-adaptive Levin-Campello DMT ------------------------------------

function [gn,En,bn,b_bar]=LC(P,SNRmfb,Ex_bar,Ntot,gap)

function [gn,En,bn,b_bar,SNRdmt]=DMTLCra(P,SNRrcvr,Ex_bar,N,gap)

%

% EE379C 2008 Spring

%

% Levin Campello’s Method with DMT

%

% Inputs

% P is the pulse response(an nu is set to length(p) - 1

% SNRrcvr is the channel output SNR for an i.i.d. input

% Ex_bar is the normalized energy

% N is the total number of real/complex subchannels, N>2

% gap is the gap in dB

%

% Outputs

% gn is the vector of channel gains

% En is the vector energy distribution (PAM or QAM)

% bn is the vector bit distribution (PAM or QAM)

% b_bar is the number of bits per dimension in the DMT symbol

%

% The first and last bins are PAM; the rest are QAM.

% dB into normal scale

Noise_var=Ex_bar*(norm(P)^2)/(10^(SNRrcvr/10));

gap=10^(gap/10);

nu=length(P)-1;

% initialization

En=zeros(1,N/2+1);

bn=zeros(1,N/2+1);

gn=zeros(1,N/2+1);

Hn = zeros(1,N/2+1);

decision_table=zeros(1,N/2+1);

% subchannel center frequencies

f=0:1/N:1/2;

% find Hn vector

for i=1:length(P)

Hn=Hn+P(i)*exp(j*2*pi*f*(i-1));

end

% find gn vector

gn=abs(Hn).^2/Noise_var;
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%debugging purpose

%plot(gn)

%%%%%%%%%%%%%%%%%%%%%%%

% Levin Campello Loading %

%%%%%%%%%%%%%%%%%%%%%%%

%initialization

%used energy so far

E_so_far=0;

%decision table - QAM and PAM

decision_table(2:N/2)=2*gap./gn(2:N/2);

% Gap formula incremental energies.

if gn(1) ~= 0

decision_table(1)=3*gap/gn(1);

else

decision_table(1)=inf;

end

if gn(N/2+1) ~=0

decision_table(N/2+1)=3*gap/gn(N/2+1);

else

decision_table(N/2+1)=inf;

end

%decision_table: debugging purpose

while(1)

[y,index]=min(decision_table);

E_so_far=E_so_far+y;

if E_so_far > Ex_bar*N

break;

else

En(index)=En(index)+y;

bn(index)=bn(index)+1;

if (index ==1 | index == N/2+1)

decision_table(index)=4*decision_table(index);

else

decision_table(index)=2*decision_table(index);

end

end

end

% calculate b_bar

b_bar=1/(N+nu)*(sum(bn));
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SNRdmt=10*log10(gap*(2^(2*b_bar)-1));

---------------------------------------------------------------------------------

--------- margin-adaptive Levin-Campello DMT ------------------------------------

function [gn,en_bar,bn_bar,Nstar,b_bar_check,margin]=DMTma(P,SNRrcvr,Ex_bar,b_bar,N,gap)

% EE379C 2008 Spring,

% J. Cioffi - thanks to Seong Taek Chung

%

% P is the pulse response where v=length(P) -1

% SNRrcvr is the SNR (in dB) at te receiver input if the input is i.i.d

% b_bar is the target normalized bit rate

% Ex_bar is the normalized energy

% N is the total number of real/complex subchannels, N>2

% gap is the gap in dB

%

% gn is the vector of channel gains

% en_bar is the vector of energy/dim for all subchannels

% bn_bar is the vector of bit/dim for all subchannels

% Nstar is the number of used subchannel

% dB into normal scale

Noise_var=Ex_bar*(norm(P)^2)/(10^(SNRrcvr/10));

gap=10^(gap/10);

nu=length(P)-1;

% initialization

en=zeros(1,N);

bn=zeros(1,N);

gn=zeros(1,N);

Hn = zeros(1,N);

% subchannel center frequencies

f=-1/2+1/N:1/N:1/2;

% find Hn vector

for i=1:length(P)

Hn=Hn+P(i)*exp(j*2*pi*f*(i-1));

end

% find gn vector

gn=abs(Hn).^2/Noise_var;

%%%%%%%%%%%%%%%%%%%%%%%

% MA waterfilling %

%%%%%%%%%%%%%%%%%%%%%%%

%sort

[gn_sorted, Index]=sort(gn); % sort gain, and get Index

gn_sorted = fliplr(gn_sorted);% flip left/right to get the largest

% gain in leftside
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Index = fliplr(Index); % also flip index

num_zero_gn = length(find(gn_sorted == 0)); %number of zero gain subchannels

Nstar=N - num_zero_gn;

% Number of used channels,

% start from N - (number of zero gain subchannels)

b=(N+nu)*b_bar;

Klog2tilde=2*b-(1/log(2))*sum(log(gn_sorted));

while(1)

Klog2=(1/Nstar)*Klog2tilde + log(gap)/log(2);

En_min=2^(Klog2)-gap/gn_sorted(Nstar); % En_min occurs in the worst channel

if (En_min<0)

Klog2tilde=Klog2tilde+(1/log(2))*log(gn_sorted(Nstar));

Nstar=Nstar-1; % If negative En, continue with less channels

else

break; % If all En positive, done.

end

end

K=2^(Klog2);

En=K-gap./gn_sorted(1:Nstar); % Calculate En

Bn=.5*log2(K*gn_sorted(1:Nstar)/gap); % Calculate bn

bn(Index(1:Nstar))=Bn; % return values in original index

en(Index(1:Nstar))=En; % return values in original index

en_bar=en;

bn_bar=bn;

% calculate b_bar

b_bar_check=1/(N+nu)*(sum(bn));

%calculate margin

margin=10*log10(N*Ex_bar/sum(en));

---------------------------------------------------------------------------------

EXAMPLE 4.6.2 (ADSL) By far the most heavily used broadband internet delivery
method in the world is asymmetric digital subscriber lines (ADSL) in Figure 4.20, allow-
ing nominally 1.5 Mbps (range is 500 kbps to 8 Mbps) to customers on telephone lines
downstream and roughly about 1/3 to 1/10 that rate from the customer to the telephone
company upstream (where it is sent to the internet service provider). ADSL2+ extends to
512 tones while VDSL2 extends to a maximum of 4096 tones (with a possible double-spacing
option of a symbol rate of 8 kHz).

ADSL is described ITU Standard G.992.1 and uses DMT. The symbol rate is T = 250µs.
The downstream modulation uses 256 4.3125 kHz wide subchannels and a sampling rate of
1/T ′=2.208 MHz. The cyclic prefix is then necessarily 40 samples. Each time-domain symbol
contains then 512+40 or 552 samples. Hermetian symmetry is used to create a real signal
for transmission over the band from 0 to 1.104 MHz. Typically, the first 2-3 tones near DC
and DC are not used to prevent interference into voiceband telephony (POTS = plain old
telephone service), which shares the same telephone line as ADSL. Upstream transmission
uses instead 32 tones to frequency 138 kHz. Tone 256 is also not used. Tone 64 (276 kHz) is
reserved for pilot signal (known point in 4 QAM sent continuously) that is used to recover
the symbol and sampling rates. The sampling rate upstream is 276 kHz and the cyclic prefix
is 5 samples for a block size of 69 samples. Upstream is then exactly 1/8 downstream.
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Figure 4.20: ADSL use example.

Downstream tones may or may not share the upstream band (when they do share, a device
called an echo canceller is used to separate the two directions of transmission). Usually,
the upstream and downstream bands are placed for further adaptive refinement by loading
as shown in Figure 4.21. Some typical ADSL channels (taken from the American National
Standards Institute) appear in Figure 4.22. The lines have significant variation with length,
and also with impairments like bridged-taps (open circuited extension phones) that cause
the ripple in the characteristics in the second graph in Figure 4.22. Also noises are highly
frequency selective and could be nearby radio stations captured by the phone-line or other
DSLs with varying bandwidths that are sufficiently close to crosstalk into the ADSL line. All
this channel variation among possible lines for deployment of ADSL creates a huge need for
adaptive loading, which will optimize the DMT performance for each situation.

A maximum power of 20.5 dBm is permitted in ADSL downstream and 14.5 dBm upstream.
The maximum number of bits permitted to be loaded on to any single tone is bn ≤ 15.
While antognists once said ADSL would fail as being too complex to implement, components
that implement a complete modem (analog and digital) now sell for a few dollars. While
the design may be conceptually complex, most customers simply call the phone company,
procure a modem, plug and play in less than 15 minutes – a testimonial to the engineer –
a conceptually complex design is acceptable if it keeps the customer use very simple (the
opposite is almost never true).

Wireless transmission often uses OFDM transmission because no optimization at the transmitter of
bn is possible if the channel varies too rapidly with time. Instead, over a wide bandwidth in wireless
transmission, multipath ISI typically results in notches in the transmission band. Part of the signal (some
tones) is lost. Thus, with coding methods not discussed until later chapters of this book, it is possible to
recover the information of several lost tones as long as the code is sufficiently powerful, no matter where
those lost tones are located (that is, no matter which tone indices {n} are affected). Also, in broadcast
wireless transmission, there may be several different “channels” to each customer of a service, and no
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Figure 4.21: ADSL spectrum use - further adaption by loading within each band.

Figure 4.22: ADSL example lines.
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R (Mbps) constellation code rate bn b̄n b

6 BPSK 1/2 1/2 1/4 24
9 BPSK 3/4 3/4 3/8 36

12 4QAM 1/2 1 1/2 48
18 4QAM 3/4 3/2 3/4 72
24 16QAM 1/2 2 1 96

36 16QAM 3/4 3/2 3/4 144
48 64QAM 1/2 3 3/2 192

54 64QAM 3/4 9/2 9/4 216

Table 4.4: Table of IEEE802.11(a) data rates and associated parameters.

“feedback channel,” so then the bn can not be optimized as a function of the identified channel (which
necessary must occur at the receiver, which is the only place the channel can be known practically and
estimated). The use of OFDM in wireless transmission with codes is often called COFDM. COFDM is
the most powerful method for handling the time-varying channel, even though OFDM might have been
greatly inferior to DMT if the channel could have been known at the transmitter. COFDM’s greatest
asset is simply the practical advantage that the transmitter is basically fixed (an IFFT operation with
fixed bit loading and energy on all tones) – actually the gain and phase of each subchannel is estimated
and used, but only at the receiver. Rapid determination of a full DFE-like equalizer is difficult and
loses performance greatly in wireless transmission, leaving multicarrier a superior method coincidentally
for wireless transmission as well as wireline. However, the key is the additional code, as nominally an
“un-loaded” or uncoded OFDM signal will not be very effective. This heuristic explanation then leads
to the next couple of examples of OFDM partitioning use.

EXAMPLE 4.6.3 (802.11a Wireless LAN - WiFi) The IEEE has standardized a wire-
less local-area-network known as IEEE 802.11(a). This method transmits up to 54 Mbps
symmetrically between wireless users in relative close proximity (nominally, within a build-
ing or complex), nominally of 100 meters or less with one of 3 transmit power levels (assuming
6 dB antenna gain) of 16, 23, or 29 dBm. The system is complex baseband (unlike ADSL,
which is real baseband) with N̄ = 64 (so up to 128 real dimensions). The carrier frequencies
are in the 5 GHz range and are exactly (in MHz) 5180 + i(20) (16 dBm) , 5260 + i(20) (23
dBm), or 5745 + i(20) (29 dBm) where i = 0, 1, 2, 3.

At baseband, the IEEE 802.11(a) system numbers the tones from -31 to +31 (the 64th
carrier at the band edge is not used). The sampling frequency is exactly 20 MHz (complex,
so two 20 MHz real converters conceptually) and the carrier spacing is then 20MHz/64=312.5
kHz. The cyclic prefix has 16 complex samples, and thus the symbol consists of 64+16=80
samples. The symbol rate is then 250 kHz (or T = 4µs, while T ′ = 50ns). The guard period
(or maximum length of ISI for zero inter-tone distortion) is 0.8µs.

Of the 63 possible carriers cited, the carrier in the middle of the band carries a fixed phase
(not data) for carrier recovery. Also, tones -31 to -27 and 27 to 31 at the band edges are not
used to allow analog-filter separation of adjacent carrier bands of different 802.11(a) signals.
Furthermore, carriers, -21, -7, 7, and 21 are pilots for symbol-timing recovery. This leaves 48
tones for carrying data. The total bandwidth used is 15.5625 MHz. Data rates with integer
numbers of bits per tone will thus be multiples of

R = k(1 bit /2 dimensions) · (48 tones) · 250kHz or 6 · kMbps. (4.227)

Table 4.4 summarizes the options for transmission. The coding rate is a fraction of the actual
bits that carry information while the remaining bits are redundant and used for overhead as
described in Chapters 10 and 11 (the extra bits help reduce the gap).

Table 4.4 also shows that while all (used) tones carry the same bn = b/48, no tone carries
the full number of messages possible in the QAM constellation because of the coding used
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Figure 4.23: Single Frequency Network example for television-broadcast channel partitioning.

– without this coding, OFDM would not be a wise transmission method for wireless. The
spectrum mask of the composite analog signal uses flat power spectral density (power divided
by 16 MHz) over the used band, and must be 20 dB attenuated at frequencies further than
±11 MHz from carrier, 28dB attenuated at ±20 MHz from carrier, and 40dB attenuated at
± 30 MHz from carrier.

Two new IEEE standards IEEE 802.11(g) and IEEE802.11(n) have extended 802.11(a) to
allow carrier frequencies near 2.4 GHz and to allow use of multiple input and output an-
tennas respectively. 802.11(n) speeds can range to a few 100 Mbps. The potential multiple
antenna use being suggested by this instructor/author in a 1994 version of this class (then
called EE479) and then successfully pursued by several former students. Chapter 5 illus-
trates a general theory of how to generate the spatial or extra channels in various multiple-
input/multiple-output channels.

There is very little adaptive spectra in any of the IEEE 802.11 standards, other than a
selection of data rate. The future may see uplink power control used to at least set the power
levels of signals to the base station so that sidebands of a nearby signal do not unduly disrupt
the main spectrum of a distant signal.

EXAMPLE 4.6.4 (Digital Video Broadcast) Digital terrestrial television broadcast has
been very successful in most of the world. This successful system is known generally as Digital
Video Broadcast (DVB). A reason for the success elsewhere is the use of a COFDM system
with something called SFN (single frequency network), as illustrated in Figure 4.23. SFN
basically uses multiple broadcast sites to deliver exactly the same signal to customers so that
buildings, structures, and hills blocking one path to customer likely do not block another
path. However, when more than one signal reaches the customer, likely with different delays,
the effect is equivalent to intersymbol interference or multipath distortion. This delay can
be quite large (10’s of µs) if transmitters are say 10’s of km apart. Over the 6-7.6 MHz
wide bands of Television, such delay would overwhelm even the best of Decision Feedback
Equalizers as there could be 100’s of deep notches in the transmission band, leading to huge
length filters and numerical/training problems. However, for COFDM, codes are used to
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mitigate any loss of tones at frequencies disabled by such notches. The SFN basically solves
one problem (blocking of signal), but forces the use of multicarrier or OFDM.

The DVB system is also complex-baseband and uses conventional TV carrier frequencies
(basically above 50 MHz and 7.61 MHz spacing outside US). The DVB system uses either
N̄=2048 or 8192 tones, of which either 1705 or 6817 are used. The number of pilots used for
recovery of symbol rate is 45 or 177, leaving 1650 or 6650 tones available for carrying infor-
mation. The exact parameters depend on the cyclic prefix length, which itself is programmed
by the broadcaster in DVB to be one of 1/4, 1/8, 1/16, or 1/32 of the symbol length. The
tone width is fixed at approximately 1.116 kHz (896µs) for 8192 tones and 4464 kHz (224µs)
for 2048 tones. The symbol period T thus varies with cyclic prefix and can be any of 1120µs,
1008µs, 952µs, or 924µs for 8192 tones and any of 280µs, 252µs, 238µs, or 231µs for 2048
tones. The sampling rate is fixed at 1/T ′ ≈ 9.142 MHz (T ′ = 10.9375 ns) for each of two
real sampling devices.

Basically, used tones have 4QAM, 16QAM, or 64QAM transmission with various code rates
of first code rate (172/204)× second code rate 1/2, 2/3, 3/4, 5/6, and 7/8, and produces
data rates between approximately 4.98 Mbps and 31.67 Mbps (selected by broadcaster, along
with number of TV channels carried from 2 to 8. This system at least doubles the number
of channels of analog TV, and often increases by a factor of 8, enabling greater choice by
consumer and higher revenue by broadcaster. DVB is not used in the USA, which standard-
ized earlier than other countries unfortunately on an inferior VSB-based single-carrier system
with lower range.

4.6.3 An alternative view of DMT

If the input sequence is periodic with period N samples, then the corresponding output sequence from
an FIR channel is also periodic. The output of the channel may be computed by taking the IDFT of the
sequence Yn = Pn · Xn (where Pn are the samples of the DFT of the channel pulse response samples).
When the cyclic prefix is used, however, the input appears periodic as far as the last N samples of any
symbol, which are all the receiver processes. DMT thus can also be viewed a circular convolution “trick,”
although this obscures the optimality and connections to VC.

4.6.4 Noise-Equivalent Channel Interpretation for DMT

The equivalence of an additive (“colored”) Gaussian noise channel to an AWGN was established in
Section 1.7 and used in Chapters 3 and 4. The colored Gaussian noise generally has power spectral
density N0

2
Rn(f). The channel pulse response of the equivalent AWGN is the pulse response of the

original channel adjusted by the inverse square-root autocorrelation of the Gaussian noise:

P (f)→ P (f)
√

Sn(f)
. (4.228)

The receiver uses a “noise-whitening” filtering 1/
√

Sn(f) as a preprocessor to the matched-filter and
sampling device. The noise-equivalent viewpoint construes this whitening filter as part of the channel,
thus altering the channel pulse response according to (4.228).

For DMT/OFDM, the noise equivalent view discussed earlier leads to a set of subchannels with signal

gains Ēx |P(n/T )|2
Sn(n/T )

and AWGN variance N0

2
, as long as Rnn is also circulant. In practice, Sn(n/T ) does

not correspond to a circulant matrix. As N → ∞, a stationary noise deviates from a circulant noise
by a vanishingly small amount if the autocorrelation coefficients of the noise have finite length, which
will occur for reasonable noises. Indeed, the autocorrelation matrix can be close to circulant, even for
moderate values of N . A more common view, which avoids the use of the whitening filter, is that each
of the subchannels has gain Ēx|P (n/T )|2 and noise N0

2 Sn(n/T ). The set of SNR’s remains the same
in either case, but the need for the whitening filter is eliminated in the second viewpoint. The second
viewpoint has the minor flaw that the noise variances per subchannel are not completely correct unless
the noise n(t) is cyclostationary with period T or NT ′ is large with respect to the duration of the noise
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autocorrelation function. In practice, the values used for N are almost always more than sufficiently
large that implementations corresponding to the second viewpoint are ubiquitously found. If a noise
truly is very narrow band (and thus has a long autocorrelation function, the small set of frequencies over
which it is substantial in energy is typically not used in loading, making its deviation from a more flat
noise in effect irrelevent.) Noise power is measured as in Section 4.7.

4.6.5 Toeplitz Distribution

The rigorous mathematical justification for convergence of vector coding to DMT derives from Toeplitz
Distribution arguments:

Theorem 4.6.1 (Toeplitz Distribution) Given a square Toeplitz matrix R with first row
[r0 r1 ... rN−1], which extends to N = ∞ by allowing both ends of the first row to grow as
[... r−2 r−1 r0 r1 r2 ...] while maintaining Toeplitz structure, the Fourier Transform is defined
by

R(f) =

∞∑

k=−∞
rke−2πfk . (4.229)

Any N -dimensional Toeplitz submatrix of R along its diagonal has eigenvalues λ
(N)
k . Then

for any continuous function g[·]

lim
N→∞

1

N

N∑

k=1

g[λ
(n)
k ] =

∫ .5

−.5

g[R(f)]df . (4.230)

No proof given:

Thus, for the square toeplitz matrix PRxxP ∗ that has eigenvalues En|λn|2, and as N → ∞, then

b̄ =
1

N

N∑

n=1

.5 log2

(

1 +
En|λn|2

N0

2

)

→
∫ .5

−.5

.5 log2

(

Rx(f)|P (f)|2
N0

2

)

.df (4.231)

This expression is the mutual information for the discrete-time channel with sampling rate 1/T ′, as
derived in Chapter 8. This integral for data rate in bits per dimension maximizes to capacity, b̄ = c̄,
when a water-fill distribution is used for Rx(f),

Rx(f) + |P (f)|2/N0

2
= constant . (4.232)

So, Toeplitz distribution also relates that vector-coding converges (in performance) to MT and to the
optimum transmission system when water-fill is used. A caution to note is that the sampling rate 1/T ′

needs to be selected sufficiently high for this discrete-time system to converge to the true optimum of
capacity over all sampling rates. When equivalent noise channels are used,

|P (f)|2 → |P (f)|2
N0

2
Rn(f)

(4.233)

in the above integral.

4.6.6 Gain Normalizer Implementation - The FEQ

For DMT and/or VC, the multichannel normalizer is often called an FEQ (Frequency Domain Equalizer),
which is shown in Figure 4.24.

A ZFE is applied to each complex DMT/OFDM subchannel with target Xn for each subchannel.
From Section 3.7, with the matched filter absorbed into the equalizer setting Wn, the filter is a single
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Figure 4.24: The FEQ - frequency-domain equalizer.

complex multiply that adjusts the gain and phase of each subchannel independently to zero the noise-free
error between Wn · Yn and Xn. The FEQ setting for the nth subchannel of DMT is

Wn =
1

Pn
. (4.234)

The algorithm that converges to this setting as a function of time was provided earlier in Section 4.3 in
Equation (4.134).

Because it is a single tap and cannot change (unbiased) SNR, the FEQ simply scales the DFT outputs
so that the DMT/OFDM receiver outputs estimate Xn, and on each subchannel

SNRZFE,n = SNRn . (4.235)

With a common code class, C, and constant gap Γ, a common decoder can be reused to decode all
subchannels.

4.6.7 Isaksson’s Zipper

Often DMT partitioning is used on a bi-directional system. That means both directions of transmission
share a common channel. The signals may be separated by echo cancellation (a method of synthesizing
from the known transmitted signal a replica of any reflected transmit energy at the opposite-direction
signal’s co-located receiver and subtracting. The signals may also be separated by assignment of indepen-
dent tone sets for each direction of transmission, known as frequency-division multiplexing. Both echo
cancellation and frequency-division multiplexing have enormous simplification of their signal processing
if the DMT signals in the two directions have common sampling rates and symbol rates. Alignment of
the symbol boundary at one end is simple because the choice of the transmitted symbol boundary can
be made to align exactly with the received DMT signals symbol boundary. However, it would appear
that alignment at the other end is then impossible with any realistic channel having delay.

This basic problem is illustrated in Figure 4.25 for DMT systems with N = 10, ν = 2, and ∆ = 3
(the delay of the channel). LT and NT represent different ends of a transmission line at which each such
end has both a transmitter and a receiver. The ds and us appearing in Figure 4.25 refer to downstream
(LT to NT) and upstream (NT to LT) transmission. Alignment at the LT leads to misalignment at the
NT. Figure 4.26 shows a solution that adds a 6 sample cyclic suffix after the DMT signal, repeating the
beginning of the symbol (that is the beginning after the cycli prefix). There are now 6 valid positions
for which a receiver FFT to process the recieved signal without interference among tones. One of those
6 positions at the NT downstream is the same position as one of the 6 positions upstream, allowing
alignment at the NT and LT simultaneously for the price of an additional 6 wasted samples. The value 6
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Figure 4.25: Illustration of alignment problem in DMT with only cyclic prefix.
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Figure 4.26: Use of cyclic suffix to align DMT symbols at both ends of transmission.
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Figure 4.27: Use of both cyclic suffix and timing advance to align DMT signals at both ends of trans-
mission.

is clearly in general 2 ·∆. As N →∞, the cyclic suffix overhead penalty can be made negligible. Figure
4.27 shows a method to reduce the smallest cyclic suffix length to ∆ by advancing the LT downstream
signal by ∆ samples, allowing one of 3 valid downstream positions at the LT to corresponding to one of
3 valid upstream positions, and correspondingly one overlap also at the NT. This is the minimum cyclic
suffix length necessary for alignment at both ends simultaneously. This method was introduced in 1997
by Michael Isaksson, then of Telia Research in Sweden and is standardized for use in what is known as
VDSL2.

EXAMPLE 4.6.5 (VDSL) VDSL is a recent offspring of ADSL that uses the cyclic suffix
and timing advance of Zipper. VDSL, like ADSL, is baseband real, except up to 16 times
wider bandwidth than ADSL and intended for use on shorter phone lines where speeds as
high as 150 Mbps (more typically 10 Mbps) symmetric can be achieved with VDSL. In
VDSL, both upstream and downstream transmission may use up to 4092 tones, so N = 8192
with congugate symmetry. The symbol period remains 4000 Hz and the tone spacing is
4.3125 kHz (or optionally 8.625 kHz). The cyclic prefix is now 16× 40 = 640 samples long.
The sampling rate is 35.328 MHz. The cyclic prefix period is actually shared with cyclic
suffix of minimum-length, determined on a per-line basis adaptively, and DMT symbols
are aligned at both ends. The upstream and downstream tones are allocated currently via
frequency-division mulitiplexing (above 138 kHz, and can be both directions below that) with
frequencies determined as best needed as a function of line, channel, and service-provider
desires. The Zipper duplexing leaves no need for concern with complicated analog filters
to separate up and down transmissions – this is entirely achieved through digital signal
processing and is sometimes also known as “digital duplexing.”
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4.6.8 Filtered Multitone (FMT)

Filtered Multi-Tone (FMT) approaches use excess bandwidth in the frequency domain (rather than or in
addition to excess dimensions in a time-domain guard period) to reduce or eliminate intersymbol inter-
ference. There have been many approaches to this “FMT” area under the names of “wavelets (DWMT
, W=wavelet)”, “filter banks” , “orthogonal filters”, “polyphase” by various authors. This subsection
pursues a recent approach, specifically given the name FMT, pioneered by Cherubini, Eleftheriou, and
Olcer of IBM. This latter FMT approach squarely addresses the issue of the channel impulse response’s
(h(t)’s) usual destruction of orthogonality that was basically ignored in all the other approaches. The
basic idea in all approaches though is to find a discrete-time realizable implementation of a filter that
basically approximates the GNC-satisfying “brick-wall” frequency-tone characteristic of the sinc(t) func-
tion of ideal multi-tone. Essentially, realizable basis functions with very low frequency content outside
a main “lobe” of the fourier transform (i.e., the main lobe is centered at the carrier frequency of the
tone and there are second, third, fourth, etc. lobes that decay in any realizable approximation to the
ideal band-pass filter characteristic of a modualted sinc function). Very low frequency content means
the functions after passing through any channel should be almost orthogonal at the output. This “al-
most” orthogonal unfortunately is the catch in most approaches, which ultimately fail on one channel or
another. The FMT approach essentially provides a way of quantifying the amount of miss and working
to keep it small on any given channel. There will be a trade-off similar to the trade-off of ν versus N
in terms of dimensionality lost in exchange for ensuring realizable and orthogonal basis functions, which
will be characterized by essentially the excess bandwidth need in FMT.

The original modulated continuous-time waveform is again

x(t) =

∞∑

j=−∞

N−1∑

n=0

Xn,j · ϕn(t− jT ) , (4.236)

where j is a symbol index. This waveform in discrete construction is sampled at some sampling period T ′

where T = (N +ν)T ′, but there is no cyclic prefix or time-domain guard period. In the FMT approach, ν
is sometimes set to zero (unlike DMT). The discrete-time FMT modulator implementation is illustrated
in Figure 4.28. The up-arrow device in Figure 4.28 is an interpolator that simply inserts (N + ν − 1)
zeros between successive possibly nonzero values. The down-arrow devices selects every (N +ν)th sample
from its input and ignores all others. The down-arrow devices are presumably each offset successively
by T ′ sample periods from one another. In FMT approaches, each of the discrete-time basis functions
is a modulated version of a single low-pass function

ϕn(t) = ϕ(t) · e 2π
T

·N+ν
N

·nt . (4.237)

Each FMT tone when ν > 0 has excess bandwidth in that the tone spacing is (1 + ν
N ) 1

T like DMT but
without cyclic prefix. Said excess bandwidth can be used to obtain a realizable approximation to an
ideal bandpass filter for all tones (subchannels).

A sampling time index is defined according to

m = k · (N + ν) + i i = 0, ..., N + ν − 1 , (4.238)

where i is an index of the sample offset within a symbol period and k measures as usual symbol instants.
The samples xm = x(mT ′) of the continuous time waveform are then (with ϕn(mT ′) = ϕn,m)

xm =

∞∑

j=−∞

N−1∑

n=0

Xn,j · ϕn,m−j·(N+ν) (4.239)

=

∞∑

j=−∞

N−1∑

n=0

Xn,j · ϕn,k·(N+ν)+i−j·(N+ν) ∀i = 0, ..., N + ν − 1 (4.240)

Each of the N + ν basis filters is also indexed by the sample offset i and essentially decomposes into

ϕn,k·(N+ν)+i−j·(N+ν) = ϕ
(i)
n,k−j, each of which can be then implemented at the symbol rate (rather than
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Figure 4.28: FMT partitioning block diagram.

the original single filter at the sampling rate). Further substitution of the expression in (4.237) finds

ϕ
(i)
n,k−j = ϕ

(i)
k−j · e 2π

N
n·[(k−j)·(N+ν)+i] (4.241)

= ϕ
(i)
k−j · e 2π

N
n·[(k−j)·(N+ν)] · e 2π

N
n·[i] . (4.242)

Substitution of (4.242) into 4.240 provides for all i = 0, ..., N + ν − 1

xk·(N+ν)+i =

∞∑

j=−∞

N−1∑

n=0

Xn,j · ϕ(i)
k−j · e 2π

N
n·[(k−j)·(N+ν)] · e 2π

N
n·[i] (4.243)

=

∞∑

j=−∞
ϕ

(i)
k−j ·

N−1∑

n=0

Xn,j · e 2π
N

n·[(k−j)·(N+ν)] · e 2π
N

n·[i] . (4.244)

=

∞∑

j=−∞
ϕ

(i)
k−j · xi,j ([k− j]ν) (4.245)

where xi,j ([k− j]ν) is the N -point inverse discrete Fourier transform of Xn,j · e 2π
N

n·(k−j)·ν in the ith

sampling offset.25 Nominally, this IDFT would need to be recomputed for every (k − j) - however one

notes that the term e 2π
N

n·(k−j)·ν that depends on (k − j) is simply a circular shift of the time-domain
output by (k− j)ν samples. Figure 4.29 illustrates the use of the IDFT (or IFFT for fast computation)
and shows that the filter inputs may be circularly shifted versions of previous symbols IDFT outputs

when ν 6= 0. If the FIR filter ϕ
(i)
k has length 2L + 1, say indexed from time 0 in the middle to ±L,

then previous (and future - implement with delay) would use IDFT output time-domain samples that
correspond to (circular) shifts of increasing multiples of ν samples as the deviate from center. When
ν = 0, no such shifting of the inputs from preceeding and succeeding symbols is necessary. This shifting
is simply a mechanization of interpolation to the sampling rate associated with the excess bandwidth
that is (1 + ν/N) times faster than with no excess bandwidth.

Clearly if ν = 0 and ϕk = δk, then FMT and DMT are the same (assuming same 1/T = 1/(NT ′)).
However, the two systems differ in how excess bandwidth is realized (DMT in time-domain cyclic prefix,

25Since i = 0, ...,N + ν − 1, the samples of xi,j ([k − j]ν) will be interpretted as periodic in i with period N .
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Figure 4.29: FMT partitioning using DFT’s and symbol-rate filters.

parameter DMT FMT

∆f
1+ ν

N

T

1+ ν
N

T

symbol length N + ν samples N + ν samples

cyc. pre. length ν 0
lost freq dimensions 0 ν

excess bandwidth α ν
N

ν
N

ϕk δk lowpass filter

delay N + ν integer ·(N + ν)
implementation N -point FFT N -point FFT plus symbol-rate filter

performance likes small-ν channels likes sharp bandpass channels

Table 4.5: Comparison of DMT and FMT

FMT in essentially wider tones than would otherwise be necessary without cyclic prefixes by same ratio
ν/N). FMT also allows a shaping filter to be used to try to approximately synthesize ideal-multitone
bandpass subchannels. DMT and FMT are compared in Table 4.5.

Any FMT system will have at least some residual intersymbol interference and interchannel inter-
ference that is hopefully minimized by good choice of ϕk. However, equalizers may be necessary on
each subchannel and possibly between a few adjacent subchannels as shown in Figure 4.30. Usually, the
functions have such low out-of-band energy that only intersymbol interference on each subchannel are
of concern, so the receiver reduces to the FFT followed by a bank of symbol-rate DFE’s as shown in
Figure 4.30.

Filter Selection for FMT

There are an enormous number of possible choices for the function ϕ(t) in FMT. Some authors like to
choose wavelet functions that have very low sidelobes but these often introduce intersymbol interference
while eliminating crosstalk. While wavelets may apply nicely in other areas of signal processing, they
are largely ineffective in data transmission because they ignore the channel. Thus, pursuit of a large
number of wavelet functions is probably futile and a digression from this text.

Instead, IBM has suggested a couple of functions for DSL applications that appear promising and
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Figure 4.30: FMT receiver block diagram assuming negligible or no inter-channel interference.

were designed with cognizance of the class of channels that are seen in those applications:

EXAMPLE 4.6.6 (Cherubini’s Coaster) Cherubini’s coaster functions use no excess
bandwidth and have ν = 0. The coaster is actually a set of functions parameterized by
0 < ρ < 1 and the first-order IIR lowpass filter

Φ(D) =

√

1 + ρ

2
· 1 + D

1 + ρ ·D . (4.246)

As ρ→ 1, the functions become very sharp and the impulse response ϕk is very long. Figure
4.31 illustrates these functions for a ρ = .1. The securves exhibit rapid decay with frequency,
basically ensuring in practice that the basis functions remain orthogonal at the channel
output. Also, there will be intersymbol interference, but as ρ → 1, this ISI becomes smaller
and smaller and the functions approach the ideal multitone functions (except this IIR filter
is stable and realizable). A DFE is typically used in the receiver with Cherubini’s coaster.
The hope is that there is very little intersymbol or inter-channel interference and that N
can be reduced (because the issue of ν/N excess bandwidth being small is inpertinent when
ν = 0). The discrete-time response is given by

ϕk =

√

1 + ρ

2
·
[
δk + (1− ρ)(−ρ)k−1 · uk−1

]
. (4.247)

In this figure, zero-order-hold (flat interpolation) is used between T ′-spaced samples to pro-
vide a full Fourier transform of a continuous signal (such zero-order hold being characteristic
of the behavior of a DAC). This effect causes the frequency rippling in the adjacent bands
that is shown, but is quite low with respect to what would occur if ϕk = δk where this rip-
pling would follow a T · sinc(fT ) shaping with first “side lobe” down only 13.5 dB from the
peak as in Figure 4.39 of Section 4.8 instead of the 55 dB shown with Cherubini’s Coaster.
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Figure 4.31: Cherubini’s Coaster basis functions in frequency domain with ρ = .1.

The second example uses excess bandwidth and raised-cosine shaping.

EXAMPLE 4.6.7 (Raised-Cosine with ν > 0) Raised cosine functions with excess band-

wisth (ν/N) can also be used. In this case the function ϕ
(i+ν)
k can be simplified from the

square-root raised cosine in Section 3.2 to

ϕ
(i)
k =

4
√

1 + N
ν

π
√

νT ′ ·
cos
(
π
[
k + i

N

])
+

1+ N
ν

4·[k+ i
N ]
· sin

(

π
[
k + i

N

]
· N−ν

N+ν

)

1− 16 ·
[
k + i

N

]2 . (4.248)

This function with sufficiently large number of taps in FIR approximation (for given excess
bandwidth, smaller ν/N means longer FIR filter in approximation) can be made to have
sufficiently low out-of-band energy and clearly avoids intersymbol interference if the tones
are sufficiently narrow.
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4.7 Multichannel Channel Identification

Generally, channel identification methods measure the channel pulse response and noise power spectral
density, or their equivalents (that is direct measurement of SNR’s without measuring pulse response and
noise separately). Multi-channel channel identification directly estimates signal and noise parameters for
each of the subchannels. Many channel identification methods exist, but only a DMT-specific method for
channel identification appears in this section. Other methods are discussed in Chapter 7. The method of
this section separately identifies first the pulse-response DFT values at the subchannel center frequencies
used by a DMT system and then second the noise-sample variances at these same frequencies. Channel
identification then finishes by computing the SNR’s from the results of gain and noise estimation. The
measurement of the pulse-response DFT values is called gain estimation26, while the measurement
of the noise variances is called noise estimation. This section’s particular method is in common use
because it reuses the same hardware/software as steady-state transmission with DMT; however, it is
neither optimum nor necessarily a good choice in terms of performance for limited data observation. It
is easy to implement. Fortunately, a lengthy training interval is often permitted for DMT-transmission
applications, and this method will become very accurate with sufficient observation. The presented
method is usually not appropriate for wireless OFDM systems.

The channel noise is an undesired disturbance in gain estimation, and this noise needs to be averaged
in determining subchannel gains as in Subsection 4.3.5. When gain estimation is complete, the estimated
(noiseless) channel output can be subtracted from the actual channel output to form an estimate of the
channel noise. The spectrum of this channel noise can then be estimated as in Section 4.7.2. In gain
estimation, care is taken to ensure that any residual gain-estimation error is sufficiently small that it
does not significantly corrupt the noise-spectral-estimation process. Such small error can require large
dynamic range in estimating the subchannel gains.

Equation (4.140) shows that the channel SNR gn can be computed from the known subchannel input
distance, dn, the known multichannel normalized output distance d, and the noise estimate σ̃2

n. During
training, it is possible to send the same constellation on all subchannels, thus essentially allowing dn = d,
and thus making

gn =
1

σ̃2
n

. (4.249)

Two questions were not addressed, however, by Subsection ??, which are invidually the gain constants µ
and µ′ for the updating loops for the multichannel normalizer Wn in (4.134) and for the noise-variance
estimation in (4.138), respectively. These values will be provided shortly, but a more direct consideration
of computation of gn will be considered for the special case of training first. The choice of µ is an example
of the general problem of gain estimation in Subsection 4.7.1, which is the estimation of the subchannel
signal gain. The choice of the second gain constant µ′ is an example of the general problem of noise
estimation in Subsection 4.7.2, which is the estimation of the unscaled subchannel noise.

4.7.1 Gain Estimation

Figure 4.32 illustrates gain estimation. The known training sequence, xk, is periodic with period N
equal to or greater than the number of coefficients in the unknown channel pulse response pk (“periodic”
can mean use of the cyclic prefix of Section 4.4). The channel output sequence is

yk = xk ∗ pk + uk (4.250)

where uk is an additive noise signal assumed to be uncorrelated with xk. The channel distortion sequence
is denoted by uk, instead of nk, to avoid confusion of the frequency index n with the noise sequence and
because practical multichannel implementations may have some residual signal elements in the distortion
sequence uk (even though independence from xk is assumed for simplification of mathematics).

Gain estimation constructs an estimate of the channel pulse response, p̂k, by minimizing the mean
square of the error

ek = yk − p̂k ∗ xk . (4.251)

26This gain is usually a complex gain meaning that both subchannel gain and phase information are estimated.
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Figure 4.32: Channel-identification basics and terminology.

Ideally, p̂k = pk.
The Discrete Fourier Transform, DFT, of xk is

Xn =
1√
N

N−1∑

k=0

xk · e− 2π
N

kn . (4.252)

When xk is periodic27 with period N samples, the DFT samples Xn are also periodic with period N
and constitute a complete representation for the periodic time sequence xk over all time. The N -point
DFT’s of yk, uk, p̂k, pk, and ek are Yn, Un, P̂n, Pn, and En, respectively.

Since xk is periodic, then
Yn = Pn ·Xn + Un . (4.253)

The corresponding frequency-domain error is then

En = Yn − P̂n ·Xn n = 0, ..., N . (4.254)

(Recall that subchannels 0 and N are one-dimensional in this development.) A vector of samples will
contain one period of samples of any of the periodic sequences in question, for instance

x =








xN−1

...
x1

x0








. (4.255)

Then the relations
X = Q∗x x = QX (4.256)

27The periodicity can also be emulated by a cyclic prefix of length ν samples at the beginning of each transmitted block.
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follow easily, where Q∗ is the matrix describing the DFT (qN−1−i,N−1−k = e− 2π
N

ki) and QQ∗ = Q∗Q =

I. Similarly, y, Y , e, E, p, P , p̂, P̂ , u and U as corresponding time- and frequency-domain vectors.
For the case of the non periodic sequences uk and thus yk and ek, a block time index l differentiates
between different channel-output blocks (symbols) of N samples, i.e. yl.

The MSE for any estimate p is then

MSE = E
{
|ek|2

}
(4.257)

=
1

N
E
{
‖e‖2

}
=

1

N

N−1∑

k=0

E
{
|ek|2

}
(4.258)

=
1

N
E
{
‖E‖2

}
=

1

N

N∑

n=0

E
{
|En|2

}
. (4.259)

The tap error is δk
∆
= pk − p̂k in the time domain and ∆n

∆
= Pn − P̂n in the frequency domain. The

autocorrelation sequence for any discrete-time sequence xk is defined by

rxx,k = E
{
xmx∗

m−k

}
(4.260)

with corresponding discrete power spectrum

Rxx,n = Q rxx,k . (4.261)

The norm tap error (NTE) is defined as

NTE
∆
= E

{
‖p− p̂‖2

}
= E

{
‖δ‖2

}
(4.262)

= E
{

‖P − P̂‖2
}

= E
{
‖∆‖2

}
(4.263)

=
N∑

n=0

|Pn − P̂n|2 . (4.264)

When the estimate p̂ equals the channel pulse response p, then

ek = uk (4.265)

and
ree,k

∆
= E

[
eme∗m−k

]
= ruu,k ∀ k = 0, ..., N − 1 , (4.266)

where ree,k is the autocorrelation function of ek, and ruu,k is the autocorrelation function of uk. The
MSE is then, ideally,

MSE = ree,0 = σ2
u , (4.267)

the mean-square value of the channel noise samples. σ2
u = N0

2
for the AWGN channel. In practice,

p̂k 6= pk and the excess MSE is

EMSE
∆
= MSE − σ2

u . (4.268)

The overall channel SNR is

SNR =
rxx,0‖p‖2

ruu,0
(4.269)

and the SNR of the nth channel is

SNRn =
Rxx,n|Pn|2

Ruu,n
. (4.270)

The gain-estimation SNR is a measure of the true channel-output signal power on any subchannel to
the excess MSE in that same channel (which is caused by p̂ 6= p), and is

γn
∆
=

Rxx,n|Pn|2
Ree,n − Ruu,n

. (4.271)
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EXAMPLE 4.7.1 (Accuracy) γn should be 30-60 dB for good gain estimation. To un-
derstand this requirement on γn, consider the case on a subchannel in DMT with SNRn =
Rxx,n|Pn|2

Ruu,n
= 44 dB, permitting 2048 QAM to be transmitted on this subchannel. The noise

is then 44 dB below the signal on this subchannel.

To estimate this noise power to within .1 dB of its true value, any residual gain estimation
error on this subchannel, Ree,n − Ruu,n, should be well below this mean-square noise level.
That is

Ree,n < 10.1/10 · Ruu,n ≈ (1 + 1/40) · Ruu,n (4.272)

Then,

γn =
Rxx,n|Pn|2

Ree,n − Ruu,n
=

SNRn

(1/40)
= 40 · SNR (4.273)

is then 60 dB (= 44+16 dB). Similarly, on a comparatively weak subchannel for which we
have SNRi=14 dB for 4-point QAM, one would need γn of at least 30 dB (= 14+16).

In general, for x dB accuracy

γn ≥
(

10x/10 − 1
)−1

· SNRn . (4.274)

An Accurate Gain Estimation method

A particularly accurate method for gain estimation uses a cyclically prefixed training sequence xk with
period, N , equal to or slightly longer than ν , the length of the equalized channel pulse response. Typi-
cally, N is the same as in the DMT transmission system. The receiver measures (and possibly averages
over the last L of L + 1 cycles) the corresponding channel output, and then divides the DFT of the
channel output by the DFT of the known training sequence.

The channel estimate in the frequency domain is

P̂n =
1

L

L∑

l=1

Yl,n

Xl,n
. (4.275)

Performance Analysis The output of the nth subchannel on the lth symbol produced by the receiver
DFT is Yl,n = PnXl,n + Ul,n . The estimated value for P̂n is

P̂n = Pn +

L∑

l=1

Ul,n

L ·Xl,n
, (4.276)

so

∆n = −
L∑

l=1

Ul,n

L ·Xl,n
. (4.277)

By selecting the training sequence, Xl,n , with constant magnitude, the training sequence becomes Xn =
|X|eθl,n .

The error signal on this subchannel after P̂n has been computed is

En = Yn − P̂nXn = ∆nXn + Un (4.278)

= Un +
1

L

L∑

l=1

Ul,ne(θn−θl,n) . (4.279)

The phase term on the noise will not contribute to its mean-square value. Un corresponds to a block
that is not used in training, so that Un and each of Ul,n are independent, and

E
{
|En|2

}
= Ree,n = Ruu,n +

1

L
Ruu,n = (1 +

1

L
)Ruu,n . (4.280)
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The excess MSE on the ith subchannel then has variance (1/ ·L)Ruu,n that is reduced by a factor equal
to the the number of symbol lengths that fit into the entire training interval length, with respect to the
mean-square noise in that subchannel. Thus the gain-estimation SNR is

γn = L · Rxx,n|Pn|2
Ruu,n

= L · SNRn , (4.281)

which means that the performance of the recommended gain estimation method improves linearly with
L on all subchannels. Thus, while noise may be relatively higher (low SNRn) on some subchannels than
on others, the extra noise caused by misestimation is a constant factor below the relative signal power
on that same subchannel. In general then for x dB of accuracy

L ≥
(

10x/10 − 1
)−1

. (4.282)

For an improvement in gamma 16 dB, as determined earlier in an example provides .1 dB error or
less no matter what the subchannel SNRn, gain estimation requires L = 40 symbols of training.

For instance, the previous ADSL and VDSL examples of Section 4.3 used symbol periods of 250µs.
Thus, gain estimation to within .1 dB accuracy is possible (on average) within 10ms using this simple
method.

Windowing When the FFT size is much larger than the number of significant channel taps, as is
usually the case, it is possible to significantly shorten the training period. This is accomplished by
transforming (DFT) the final channel estimate to the time domain, windowing to ν+1 samples and then
returning to the frequency domain. Essentially, all the noise on sample times ν + 2...N is thus removed
without disturbing the channel estimate. The noise on all estimates, or equivalently the residual error
in the SNR, improves by the factor N/ν with windowing. For the ADSL/VDSL example again, if the
channel were limited to 32 nonzero successive samples in duration, then windowing would provide a
factor of (32/512) reduction or 12 dB of improvement, possibly allowing just a few DMT symbols to
have an (on average) accuracy of .1 dB, and accurate gain estimation in a few ms.

Suggested Training Sequence

One training sequence for the gain estimation phase is a random or white sequence28 L blocks are used
to create P̂n, which is computed recursively for each of the subchannels, one symbol at a time, by
accumulation, and then divided by L. The L blocks can be periodic repeats or cyclic prefix can be used
to make the training sequence appear periodic. For reasons of small unidentified channel aberrations,
like small nonlinearities caused by drivers, converters, amplifiers, it is better to use a cyclic prefix because
any such aberrations will appear in the noise estimation to be subsequently described.

In complex baseband channels a “chirp” training sequence sometimes appears convenient

xk = e 2π
N

k2

. (4.283)

This chirp has a the theoretical minimum peak-to-average (one-dimensional) power ratio of 2 and is a
“white sequence,” with rxx,k = δk, with δk being the Kronecker delta (not the norm tap error). While
“white” is good for identifying an unknown channel, a chirp’s low PAR can leave certain small nonlinear
“noise” distortion unidentified, which ultimately would cause the identified SNRn’s to be too optimistic.

The value for µ in the FEQ The EMSE for the first-order zero-forcing update algorithm in Equation
(4.134) can be found with some algebra to be

EMSE =
µ · En

2− µ · En
Ruu,n . (4.284)

28Say the PRBS of Chapter 10 with polynomial 1 + D + D16) with bn = 2 on channels n = 1, ...,N − 1 and bn = 1 on
the DC and Nyquist subchannels. One needs to ensure that the seed for the PRBS is such that no peaks occur that would
exceed the dynamic range of channel elements during gain estimation. Such peaks are usually compensated by a variety
of other mechanisms when they occur in normal transmission (rarely) and would cause unnecessarily conservative loading
if their effects were allowed to dominate measured SNRs.

378



Thus, for the multichannel normalizer to maintain the same accuracy as the initial gain estimation in
Equation (4.280)

1

L
=

µ · En
2− µ · En

(4.285)

or

µ =
2

(L + 1) · En
, (4.286)

so for L = 40 and En = 1, the value would be µ = 1/42.

4.7.2 Noise Spectral Estimation

It is also necessary to estimate the discrete noise power spectrum29 , or equivalently the mean-square noise
at each of the demodulator DFT outputs, computation of the SNR’s necessary for the bit-distribution.
Noise estimation computes a spectral estimate of the error sequence, En, that remains after the channel
response has been removed. The training sequence used for gain estimation is usually continued for noise
estimation.

Analysis of Variance

The variance of L samples of noise on the nth subchannel is:

σ̂2
n =

1

L

L∑

l=1

|El,n|2 . (4.287)

For stationary noise on any tone, the mean of this expression is the variance of the (zero-mean) noise.
The “variance of this variance estimate” is computed as

var
(

σ̂2
n

)

=
1

L2

(
3 · L · σ4

n − L · (σ2
n)2
)

=
2

L
σ4

n (4.288)

for Gaussian noise. Thus the excess noise in the estimate of the noise is therefore
√

2/L · σ2
n and the

estimate noise decreases with the square-root of the number of averaged noise terms. To make this
extra noise .1 dB or less, we need L = 3200. Recalling that the actual computed value for the noise
estimate will have a standard deviation on average that leads to less than .1 dB error, there is still
a 10% chance that the statistics of the noise will lead to deviation greater than 1 standard deviation
(assuming Gaussian distribution, or approximating the more exact Chi-square with a Gaussian). Thus,
sometimes a yet larger value of L is used. 98% confidence occurs at L = 12, 800 and 99.9% confidence
at L = 28, 800. If the equivalent noise response is short, windowing could again be used to reduce this
training time.

EXAMPLE 4.7.2 (ADSL) The ADSL example with symbol rate of 4000 Hz has been
discussed previously. The training segment for SNR estimation in G.992.1 initially is called
Medly and consists of 16000 symbols (with QPSK on all subchannels) for 4 seconds of train-
ing. This exceeds the amount given as a guideline above - this extra time is provided with
the cognizance that the standard deviation of the measured noise and channel should lead to
no more than .1 dB error with a smaller training interval, but that there are still statistical
deviations with real channels. Essentially, with this increased value, about 99% of the time
the computed value will deviate by this amount of .1 dB or less. The gain estimation error
clearly can be driven to a negligible value by picking L to a few hundred without significantly
affecting training time. (The long training interval also provides time for SNR computation
and loading algorithms after gains and noises are estimated.) Windowing may not be helpful
in DSL noise estimation because the equivalent noise response can be long and noise can vary
significantly with frequency.

29Clearly the noise can not have been whitened if it is unknown and so this step precedes any noise whitening that might
occur with later data transmission.
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The value for µ′ in the FEQ The standard deviation for the first-order noise update in the FEQ
can be found to be

std(˜̂σ
2

n) =

√

µ′

2− µ′ σ̃
2
n . (4.289)

Thus, to maintain a constant noise accuracy, the step size should satisfy

2

L
=

µ′

2− µ′ (4.290)

or

µ′ =
4

L + 2
(4.291)

so when L = 6400, then µ′ ≈ 6.25× 10−4. In reality, the designer might want high confidence (not just
an average confidence) that the accuracy is .1 dB, in which case a µ of perhaps 10−4 would suggest the
chance of missing would be the same as noise occuring with 4 times the standard deviation (pretty small
in Gaussian and Xi-square distributions).

From Section 4.3.5, gain normalizers in general and thus the FEQ update the noise using the pro-
portionality

1

gn
∝ σ̃2

n . (4.292)

Effectively, the normalizer then tracks the ratio

gain =
σ̃2

n,current

σ̃2
init,n

. (4.293)

While it may take a long averaging time to introduce .1 dB accuracy, clearly an abrupt change in noise
of several dB or more on any (or many) single tones can be detected rapidly.

A simple mechanism would be to introduce a second noise loop that follows Equation (4.134) with
a µ′′ replacing µ′ where µ′′ >> µ′. This faster update the noise variance estimate would be much less
accurate. However, to discern whether the noise has changed rapidly, it provides an early indication.
Basically, this faster swapping exploits the fact that the bit distribution is near converged in steady-state
operation just before a large noise change on some tones might occur. Thus, the bit-swap controller is
looking only for a gross change to initiate more rapid swapping. The following example illustrates.

EXAMPLE 4.7.3 (ADSL swap tracking speed) As an example, suppose 1 dB error
(so a factor of 1+1/10) of accuracy is sufficient to detect whether a noise change of several
dB has occurred. In this case

2√
L

<
1

10
(4.294)

which means an interval of 200 symbols would be sufficient. With ADSL’s symbol rate of
4000 Hz, this corresponds to 50ms. This would correspond to 20 bits swapped per second if
a large noise event were detected, much faster than the usual situation of perhaps a bit per
second or less. As long as FEQ gains and bit tables are maintained (scaled as discussed in
Subsection 4.3.5), th e higher accuracy loop corresponding to .1 dB and thus using µ′ then
replaces the faster loop as long as no more large noise increases are observed.

Figure 4.33 illustrates the basic concept of faster swapping.

4.7.3 SNR Computation

The signal to noise ratio is then estimated for each subchannel independently as

SNRn = En
|P̂n|2
σ̂2

n

. (4.295)
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Figure 4.33: Flow chart for fast-swap augmentation of noise calculation.

Equivalently, using the FEQ, the SNR is given by (4.249). Loading can be executed in the receiver
(or after passing SNR values, in the transmitter) and then the resulting bn and En (or relatively in-
crease/decrease in En with respect to what was used last) are sent to the transmitter via the reverse link
always necessary in DMT. This step is often called “the exchange” in DMT modems and occurs as a
last step prior to live transmission of data, often called “showtime!”
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4.8 Stationary Equalization for Finite-length Partitioning

A potential problem in the implementation of DMT/OFDM and VC channel-partitioning methods is the
use of the cyclic prefix or guard period of an extra ν samples, where ν+1 is the length in sampling periods
of the channel pulse response. The required excess-bandwidth is then ν/N . On many practical channels,
ν can be large - values of several hundred can occur in both wireless and wired transmission problems,
especially when channels with narrowband noise are considered. To minimize the excess bandwidth, N
needs to be very large, potentially 10,000 samples or more. Complexity is still minimal with DMT/OFDM
methods with large N , when measured in terms of operation per unit time interval. However, large
N implies large memory requirement (to store the bit tables, energy tables, FEQ coefficients, and
intermediate FFT/IFFT results), often dominating the implementation. Further, large N implies longer
latency (delay from transmitter input to receiver output) in processing. Long latency complicates
synchronization and can disrupt certain higher-level data protocols used and/or with certain types of
carried applications signals (like voice signals).

One solution to the latency problem, invented and first studied by J. Chow (not to be confused
with the P. Chow of Loading Algorithms), is to use a combination of short-length fixed (i.e. stationary)
equalization and DMT/OFDM (or VC) to reduce ν , and thereby the required N , to reach the highest
performance levels with less memory and less latency. The equalizer used is known as a time equal-
izer (TEQ), and is studied in this section. Chow’s basic MMSE approach is shown here to result in
an eigenvector-solution problem that can also be cast in many other “generalized eigenvector” forms.
Various authors have studied the TEQ since J. Chow, and to produce some improvements at least in per-
spective: Al-Dhahir and Evans have developed yet better theories for the TEQ, but the solution will not
be easily obtained in closed form and requires advanced numerical optimization methods for non-convex
optimization – Chow’s TEQ often performs very close to those methods. Essentially these methods
attempt to maximize the overall SNRdmt by optimizing equalizer settings and energy/bit distributions
jointly. A simpler approach using “cyclic reconstruction” appears later in this chapter.

Subsection 4.8.1 studies the general data-aided equalization problem with infinite-length equalizers.
The TEQ is there seen to be a generalization of the feedforward section of a DFE. Subsection 4.8.2 then
reviews performance calculation of the finite-length TEQ for a target ν that is potentially less than the
channel pulse-response length. Subsection 4.8.3 illustrates the zero-forcing white-input specialization
of Chow’s TEQ. Most reasonable TEQ approaches perform about the same, usually allowing infinite-
length block-symbol performance with reasonable finite block lengths. A TEQ example introduced in
Subsection 4.8.2 and revisited in Subsection 4.8.3 illustrates such TEQ improvement for short block
length. Subsection 4.8.5 investigates the joint loading/equalizer design problem and then suggests a
solution that could be implemented.

The very stationarity of the TEQ renders it suboptimum because the DMT/OFDM or VC system is
inherently cyclostationary with period N + ν samples. There are 3 “simplifications” in the development
of the TEQ that are disturbing:

1. The equalizer is stationary and should instead be periodic with period N + ν .

2. The input sequence xk will be assumed to be “white” or i.i.d. in the analysis ignoring any loading
that might have changed its autocorrelation.

3. A scalar mean-square error is minimized rather than the multichannel signal-to-noise quantity
SNRm,u.

Nonetheless, TEQs are heavily used and often very effective in bringing performance very close to
the infinite-length multitone/modal-modulation optimum. An optimum equalizer is cyclostationary or
periodic and found in Chapter 5, but necessarily more complex. When such an cyclic-equalizer is used,
then problems 2 and 3 are eliminated. If the stationary fixed equalizer is used, Al-Dhahir and Evans
have considered solutions to problems 2 and 3, and generally follow a solution posed in Subsection 4.8.5.
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Figure 4.34: The Maximum Likelihood Infinite-Length Equalization problem.

4.8.1 The infinite-length TEQ

The general baseband complex decision-aided, or in our study input-aided, equalization problem ap-
peared in Figure 4.34. The channel output yp(t) is

yp(t) =
∑

k

xk · p(t− kT ) + np(t) . (4.296)

The channel output signal yp(t) is convolved with a matched (or anti-alias) filter ϕ∗
p(−t) (where a su-

perscript of ∗ denotes conjugate), sampled at rate 1/T , and then filtered by a linear equalizer. The
matched-filter output is information lossless. When the equalizer is invertible, its output is also in-
formation lossless with respect to the channel input. Thus, a maximum-likelihood detector applied to
the signal at the output of the equalizer wk in Figure 4.34 is equivalent in performance to the overall
maximum-likelihood detector for the channel.

Heuristically, the function of the linear equalizer is to make the equalizer output appear like the
output of the second filter, which is the convolution of the desired channel shaping function bk and the
known channel input xk. The target bk has a length ν + 1 samples that is usually much less than the
length of the channel pulse response. The minimum mean-square error between the equalizer output
and the desired channel shaping is a good measure of equalizer performance. However, the implication
that forcing the channel’s response to fall mainly in ν + 1 sample periods only loosely suggests that
the geometric-SNR for the set of parallel subchannels will be maximized. Also, an imposition of a
fixed intersymbol interference pattern, rather than one that varies throughout a symbol period is also
questionable. Nonetheless, this method will be effective in a large number of practical situations. Further
development requires some review and definition of mathematical concepts related to the channel.

Minimum Mean-Square Error Equalization

The error sequence in Figure 4.34 is

ek = bk ∗ xk −wk ∗ yk (4.297)

where ∗ denotes convolution. The signal is defined as the sequence bk ∗ xk, which has signal energy

Es = ‖b‖2Ex. The D-Transform of a sequence xk remains X(D)
∆
=
∑

k xkDk. The notation x∗(D−∗) =
∑

k x∗
−kD−k represents the time-reversed conjugate of the sequence. Thus,

E(D) = B(D)X(D) −W (D)Y (D) . (4.298)

The minimum mean-square error is

σ2
MMSE = min

wk , bk

E
[
|ek|2

]
. (4.299)
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A trivial solution is W (D) = B(D) = 0 with σ2
MMSE = 0. Aversion of the trivial solution requires

positive signal power so that Es > 0 or, equivalently, ‖b‖2 = constant = ‖p‖2 > 0. For flat “white”
excitation (i.e., Sx(D) = Ēx) of the channel defined by B(D),

SNR′
MFB =

Es
σ2
MMSE

. (4.300)

Maximizing SNR′
MFB is then equivalent to minimizing σ2

MMSE since ‖b‖2 is constant. While this
problem formulation is the same as the formulation of decision feedback equalization, the TEQ does not
restrict B(D) to be causal nor monic.

The orthogonality principle of MMSE estimation states that the error sequence values ek should be
orthogonal to the inputs of estimation, some of which are the samples yk. Thus, E [eky∗l ] = 0 ∀ k, l,
which is compactly written

Rey(D) = 0 (4.301)

= E
[
E(D) · Y ∗(D−∗)

]
(4.302)

= B(D) · R̄xy(D) −W (D) · R̄yy(D) . (4.303)

then,

W (D) = B(D) · Rxy(D)

Ryy(D)
. (4.304)

Then,
Y (D) = ‖p‖Q(D)X(D) + n(D) , (4.305)

where Q(D)
∆
= 1

2π‖p‖2

∫ π

−π

∑

n |P
(

ω−2πn
T

)
|2dω. Then,

R̄xy(D) = Ēx · ‖p‖ ·Q(D) (4.306)

R̄yy(D) = Ēx · ‖p‖2 ·Q(D) ·
(

Q(D) +
1

SNRMFB

)

. (4.307)

Recalling the canonical factorization from Chapter 3 DFE design,

Q(D) +
1

SNRMFB
= γ0 ·G(D) ·G∗(D−∗) . (4.308)

This factorization is sometimes called the “key equation.”
The error autocorrelation sequence is

Ree(D) = B(D)

(

Rxx(D) − Rxy(D)

Ryy(D)
Ryx(D)

)

B∗(D−∗) , (4.309)

where the reader may recognize the autocorrelation function of the MMSE linear equalizer error in the
center of the above expression. We simplify this expression further using the key equation to obtain

Ree(D) =

( Ēx
γ0 · SNRMFB

)

· B(D) · B∗(D−∗)

G(D) ·G∗(D−∗)
. (4.310)

Defining the (squared) norm of a sequence as

‖x‖2 ∆
=

∞∑

k=−∞
|xk|2 , (4.311)

the mean square error from (4.310) is

MSE =

( Ēx
γ0 · SNRMFB

)

‖ b

g
‖2 . (4.312)
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From the Cauchy-Schwarz lemma, we know

‖b‖2 = ‖ b

g
· g‖2 < ‖ b

g
‖2‖g‖2 (4.313)

or

‖ b

g
‖2 >

‖b‖2
‖g‖2 . (4.314)

Thus, the MMSE is

σ2
MMSE =

( Ēx
γ0 · SNRMFB

)

, (4.315)

which can be achieved by a multitude of B(D) if the degree of G(D) is less than or equal to ν30, only
one of which is causal and monic.

The MMSE solution has any B(D) that satisfies

B(D) · B∗(D−∗) = G(D) ·G∗(D−∗) . (4.316)

From (4.304) to (4.308), one finds W (D) from B(D) as

W (D) =
1

γ0 · ‖p‖
B(D)

G(D) ·G∗(D−∗)
, (4.317)

which is always invertible when N0

2
> 0. The various solutions differ in phase only. Such a solution is

biased and the equalized channel is not exactly B(D) = b−i ·D−i + ... + b−i+ν ·D−i+ν and in fact will
be reduced by by the scale factor wi/b−i ≤ 1. Such a bias can be removed by the inverse of this factor
without changing performance and the channel will then be exactly B(D) with an exactly compensating
increase in error variance.

Solutions

As mentioned earlier, there are many choices for B(D), each providing then a corresponding TEQ W (D)
given by Equation (4.317).

The MMSE-DFE The Minimum-Mean-Square Error Decision Feedback Equalizer (MMSE-DFE)
chooses causal monic B(D) as

B(D) = G(D) so W (D) =
1

γ0 · ‖p‖ ·G∗(D−∗)
, (4.318)

is anti-causal.
In ML detection – that is DMT or VC detection – with the MMSE-DFE choice of TEQ filter W (D),

the feedback filter B(D) is never implemented avoiding any issue of error propagation or need for
precoders and their correspodning loss. That ML detector is easily implemented in the case of DMT
or VC (but requires exponentially growing complexity, see the Viterbi MLSD method of Chapter 9, if
PAM/QAM is used).

The MMSE-AR Equalizer The MMSE Auto Regressive Equalizer (MMSE-ARE) corresponds to
the anti-causal monic B(D) choice

B(D) = G∗(D−∗) so W (D) =
1

γ0 · ‖p‖ ·G(D)
, (4.319)

is causal. This is another possible solution and the MMSE level and the SNRMFB are the same as all the
other optimum solutions, including the MMSE-DFE. One would not make the choice in (4.319) if sample-
by-sample decisions are of interest because neither future decisions are available in the receiver nor can
a Tomlinson precoder be implemented (properly) with a noncausal B(D). However, such causality is
not an issue with the TEQ and ML detection via either DMT or VC.

30If the degree is greater than ν, then the methods of Section 4.8.2 must instead be used directly.
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Comparison of MMSE-DFE and MMSE-ARE

Both of the MMSE-DFE and the MMSE-ARE equalizer have the same performance (when ML detection
is used). Essentially the causality/noncausality conditions of the feedforward filters and feedback filters
have been interchanged. Because B(D) is never used in the receiver (only for our analysis), either
structure could be used in a practical situation. A multicarrier modulation method used with W (D)
equalization would also perform the same for either choice of W (D) (or any other optimum choice).

Thus, it would appear that since all structures are equivalent. The designer might as well continue
with the use of the MMSE-DFE, since it is a well-known receiver structure. However, when finite-length
filters are used, this can be a very poor choice in attempting to maximize performance for a given
complexity of implementation. As a trivial example, consider a channel that is maximum phase, the
feedforward filter for a MMSE-DFE, in combination with the matched filter, will try to convert the
channel to minimum-phase (at the output of W (D), leading to a long feedforward section when (as
in practice) the matched-filter and feedforward filter are implemented in combination in a fractionally
spaced equalizer. On the other hand, the MMSE-ARE equalizer feedforward section (combined with
matched filter) is essentially (modulo an anti-alias filter before sampling) one nonzero tap that adjusts
gain. The opposite would be true for a minimum-phase channel.

In data transmission, especially on cables or over wireless transmission paths, the channel character-
istic is almost guaranteed to be of mixed-phase if any reflections (multipath, bridge-taps, gauge-changes,
slight imbalance of terminating impedances) exist. It is then natural (and correct) to infer that the best
input-aided equalization problem is one that chooses B(D) and W (D) to be both mixed-phase also. The
problem then becomes for a finite-length feedforward section (W (D)) of M + 1 taps and a finite-length
channel model of ν + 1 taps (B(D)), to find the best B(D) and W (D) for an ML detector designed for
B(D), the signal constellation, and additive white Gaussian noise (even if the noise is not quite Gaussian
or white). This is the problem addressed in Section 4.8.2 and the solution is often neither MMSE-DFE
nor MMSE-ARE filtering.

4.8.2 The finite-length TEQ

Like the DFE of Section 3.6, the finite-length MMSE-TEQ problem is characterized by the error

ek(∆) = b∗xk−∆ −w∗yk (4.320)

where

xk−∆
∆
=








xk−∆

xk−∆−1

...
xk−∆−ν








; (4.321)

b∗ ∆
= [b∗0 b∗1 ... b∗ν ] is not necessarily causual, monic nor minimum-phase; and w∗ ∆

= [w∗
0 w∗

1 ... w∗
L−1],

L is the number of equalizer coefficients and may be at another sampling rate as in Section 3.6 for the
fractionally spaced case31; and

yk
∆
=








yk

yk−1

...
yk−L+1








. (4.322)

The length ν is typically less than the length of the channel pulse response and equal to the value
anticipated for use in a multichannel modulation system like DMT/OFDM or VC.

The input/output relationship of the channel is

yk = Pxk + nk . (4.323)

31The equalizer output should be decimated to some integer multiple of the channel-input sampling rate. Usually that
integer multiple is just unity in DMT and vector coding designs because that sampling rate is already greater than twice
the highest frequency likely to be used. However, as Pal has noted, with very short equalizers, sometimes an oversampling
factor greater than 1 can improve performance for fixed complexity, depending on channel details.
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P need not be a convolution matrix and can reflect whatever guard bands or other constraints have been
placed upon the transmit signal.

The MSE is minimized with a constraint of ‖b‖2 = c a constant, with c usually chosen as c = ‖p‖2
to force the flat-input SNRMFB of the channel to be the flat-input SNRMFB of the TEQ problem.
However, this non-zero constant produces the same TEQ shape and does not change performance but
simply avoids the trivial all-zeros solution for w. Minimization first over w forces

E[e(∆)y∗
k] = 0 . (4.324)

The solution forces
w∗ = b∗Rxy(∆)Ryy

−1 (4.325)

for any b. Then, e(∆) becomes

e(∆) = b∗(xk−∆ −Rxy(∆)Ryy

−1y) . (4.326)

(4.326) has a vector of the minimized MSE finite-length LE errors within the parentheses. This MMSE-
LE error vector has an autocorrelation matrix that can be computed as

RLE(∆) = ExI −Rxy(∆)Ryy

−1Ryx(∆) . (4.327)

Tacit in (4.327) is the assumption that Ryy is a fixed L × L matrix, which is equivalent to assuming
that the input to the channel is stationary as is the noise. In the case of transmission methods like
DMT and VC, this stationarity is not true and the input is instead cyclostationary over a symbol
period. Furthermore, the initial solution of the TEQ is often computed before transmit optimization
has occurred so that Rxx is often assumed to be white or a diagonal matrix as will also be the case in
this development. With these restrictions/assumptions, the overall MMSE is then the minimum of

MMSE = min
b,∆

b∗RLE(∆)b . (4.328)

with the constraint that ‖b‖2 = c. The solution of this problem is easily shown to be the eigenvector of
Ree that corresponds to the minimum eigenvalue. Thus

b =
√

c · qmin(∆) . (4.329)

The issue of bias can return in MMSE design and is somewhat more involved than in Chapter 3. To
calculate the correct unbiased distortion energy in general

E∆(D) = B(D) ·X(D) ·D∆ −W (D) · Y (D) (4.330)

= B(D) ·X(D) ·D∆ −W (D) · P (D) ·X(D) + W (D) ·N(D) (4.331)

By noting that the equalizer output component W (D) · P (D) · X(D + W (D) · N(D) will in general
be scaled by α from the desired B(D) · D∆ · X(D) so that W (D) · P (D) · X(D + W (D) · N(D) =
α · B(D) ·X(D) ·D∆ + EU (D), then

E∆(D) = B(D) ·X(D) ·D∆ − α ·B(D) ·D∆ ·X(D) + EU(D) (4.332)

= (1− α) ·X(D) · B(D) ·D∆ + EU(D) . (4.333)

Bias removal then would occur by multiplying the equalizer output by 1/α, which would more than
likely be absorbed into the TEQ. The bias factor itself is obtained by first forming the convolution
C(D) = W (D) · P (D), which is the noise-free equalized output. The bias will then be the ratio

α = c∆/b0 . (4.334)

To compute the ru,E (4.333) leads to

MMSE = (1− α)2 · Ēx · ‖b‖2 + ru,E (4.335)

= (1− α)2 · Ēx · ‖p‖2 + ru,E (4.336)

= λmin‖p‖2 . (4.337)
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Thus,
ru,E = ‖p‖2

[
λmin − (1 − α)2 · Ēx

]
(4.338)

provides the value for ru,E . The unbiased SNRTEQ,U for the equalized channel is then

SNRTEQ,U =
α2 · Ēx · ‖p‖2

ru,E
=

α2 · Ēx
λmin − (1− α)2 · Ēx

. (4.339)

However, such bias removal is not necessary in the DMT systems because of the ensuing FEQ that
will remove it automatically in any case. The TEQ setting is determined by computing Ree(∆) for all
reasonable values of ∆ and finding the MMSE (∆) with the smallest value. The eigenvector corresponding
to this ∆ is the correct setting for b (with scaling by

√
c) and w, the TEQ, is determined through Equation

(4.325 ).
An alternative for ∆ determination notes that equation (4.327 can also be written

RLE(∆) = ExI − Ē2
x [010]P ∗Ryy

−1P [010] , (4.340)

where the position of the “1” determines ∆. Then, the best delta corresponds to the maximum eigenvalue
of the matrix P ∗Ryy

−1P .
The L × L matrix Ryy need only be inverted once, but the eigenvectors must be computed several

times corresponding to all reasonable values of ∆. This computation can be intensive. For FIR channels,
the matrix Ryy is given by

Ryy = PRxxP ∗ + Rnn general non-white input case (4.341)

= ĒxPP ∗ + Rnn usual white-input case. (4.342)

Any stationary Rxx can be assumed. If a cyclostationary (perhaps an Rxx representing some known
input optimization and cyclostationarity) Rxx is used, then Ryy becomes cyclostationary also and a
function of both position within a symbol. The cross correlation matrix is

Rxy(∆) = E [xk−∆yk] = E [xk−∆x∗
k]P ∗ . (4.343)

The cross-correlation matrix will have zeros in many positions determined by ∆ unless again an optimized
input is being used and then again this matrix would also become a function of both ∆ and the position
within a symbol. Because it is hard to know which position within a symbol to optimize or to know in
advance the optimized spectrum used on the channel (which usually is affected by the TEQ), the TEQ
is set first prior to channel identification, partitioning, and loading. It could be periodically updated.

EXAMPLE 4.8.1 (IIR Channel 1/1− .9D) A discrete-time channel might have an IIR
response so that no finite ν is ever completely sufficient. An example is the single-pole IIR
digital channel

P (D) =
1

1− .9D
, (4.344)

with time-domain response easily found to be

pk = .9k ∀ k ≥ 0 . (4.345)

The gain of the channel is ‖p‖2 = 1
1−.92 = 5.2632. Let the AWGN variance per real dimension

be σ2 = .1 and the input energy is Ēx = 1. If PAM were used on this channel, then
SNRMFB = 17.2 dB. It is interesting to investigate the amount of energy with guard period
of ν samples as ν varies. The total energy outside of a guard period of length ν is then

‖p‖2 −
ν∑

k=0

1− (.81)ν+1

1− .81
. (4.346)

This lost energy, which becomes distortion for the DMT or VC system is in Table 4.6
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ν 0 1 2 3 4 ... ∞
Elost 4.26 3.45 2.99 2.26 1.83 ... 0

dB loss = 5.26−Elost

5.26 -7.2 -4.6 -3.6 -2.4 -1.9 ... 0

Table 4.6: Table of energy loss by truncation (rectangular windowing) of pk = .9k · uk.

To have only .1 dB loss, then ν > 16, meaning N > 500 for small loss in energy and
bandwidth. Alternatively, a TEQ can reshape the channel so that most of the energy is in
the first ν coefficients. Because of the special nature of a single-pole IIR channel, it is pretty
clear that a 3-tap equalizer with characteristic close to 1 − .9D will reduce ν substantially
while altering the noise. Thus, it is fairly clear that an equalizer with L = 3 taps and delay
∆ = 0 should work fairly well. This example also uses ν = 1. For these values, some algebra
leads to

Rxy(0) =

[
1 0 0
.9 1 0

]

(4.347)

and

Ryy =





5.3636 .9(5.2636) .81(5.2636)
.9(5.2636) 5.3636 .9(5.2636)
.81(5.2636) .9(5.2636) 5.3636



 . (4.348)

The error autocorrelation matrix is

Ree =

[
.1483 −.0650
−.0650 .1472

]

, (4.349)

with eigenvalues .2128 and .0828 and corresponding eigenvectors [.7101 −.7041] and [.7041 .7101]
respectively. Then Ree has smallest eigenvalue .0828 with corresponding MMSE=.4358,
much less than the σ2 +3.45 = .1 +3.45 = 3.55 (3.45 is the entry for energy loss in Table 4.6
above when ν = 1) for no equalization. Clearly the equalizer reduces distortion significantly
with respect to no use of equalizer. The corresponding setting for b from Equation (4.329) is

B(D) = ‖p‖ · [.7041 .7101] =
√

5.2632 · [.7041 .7101] = 1.6151 · [1 + 1.0084D] . (4.350)

B(D) is not minimum phase in this example, illustrated that the TEQ is not simply a
“DFE solution.” The corresponding value for w from Equation (4.325) leads to W (D) =
1.4803 · (1 + .1084D− .8907D2) and a new equalized channel

z(D) = 1.4803 ·
(
1 + .1084D− .8907D2

)
· X(D)

1− .9D
+ W (D) ·N(D) (4.351)

= 1.4803

[

1 + (.1084 + .9)D + (.81 + .9 · .1084− .8907) · D2

1− .9D

]

·X(D) + W ·N

= 1.4803 [1 + (.1084 + .9)D]
︸ ︷︷ ︸

w0
b0

B(D)

+1.4803(.01686) · X(D) ·D2

1− .9D
+ W (D) ·N(D)

︸ ︷︷ ︸
w0
b0

E(D)

.

The bias in estimating B(D) is w0/b0 = 1.4808
1.6151

= .9168 and can be removed by multiplying
the entire received signal by the constant b0/w0 without altering performance – this step is
usually not necessary in DMT systems because the multichannel normalizer automatically
includes any such adjustment. The PSD of the distortion can be determined as

REE(D) ·
(

w0

b0

)2

= 1.48032 · (.01686)2
1

1− .92
+ ·.1 ·W (D) ·W ∗(D−∗) (4.352)

= 1.48032 ·
[
(.001496)+ .1 ·

(
1 + .10842 + .89072

)]
(4.353)

rEE(0) ·
(

w0

b0

)2

= .3988 = .4538 ·
(

w0

b0

)2

. (4.354)

389



Figure 4.35: Equalized response for 3-tap TEQ with 1/(1− .9D) channel.

The ratio of signal energy in the first two terms to distortion is then 1.48032·(1+1.00842)/.3988
or 10.4 dB. Equivalently, the calculation from Equation (4.339) is

SNRTEQ,U =
1 · .91682

.0828− (1− .9168)2 · 1 = 10.4 dB. (4.355)

This signal to noise ratio cannot be significantly improved with longer equalizers, which can
be verfied by trial of larger lengths, nor is ν > 1 necessary as one can determine by comparing
with an infinite-length MT result for this channel.

This new channel plus distortion can be compared against the old for any value of N in VC or
DMT. The equalized channel is shown in Figure 4.35 where it is clear the first two positions
contain virtually all the energy. Figure 4.36 shows the power spectrum of the error, which
in this case is almost flat (see the vertical scale) so a designer could apply loading directly to
the subchannels as if the noise were “white” and of variance .3988 without significant error.
Without this “TEQ,” the loss in performance is much higher at -4.6 dB from Table 4.6 versus
5.26−.3988

5.26 = -0.3 dB with the TEQ.

The TEQ performance increase over no equalizer can indeed be much greater than 4.3 dB on channels
with more severe responses. (See for instance “Salvekar’s Marathon” in Problem 4.25.) The TEQ is not
a DFE and does not maintain white noise nor channel magnitude in the finite-length case.

The following second example shows a near equivalence of a DFE and an equalized DMT system
when both use exactly the same bandwidth, a concept explored and explained further in Chapter 5.

EXAMPLE 4.8.2 (Full-band TEQ) A 7-tap FIR channel [.729 .81 − .9 2 .9 .81 .729] is
shortened to ν = 3 (4 taps) with an 11-tap equalizer in this example and then DMT applied.
The channel is such that all 128 tones of the DMT system are used. This is compared against
a MMSE-DFE with 20 total taps (14 feedforward, 6 feedback using Chapter 3’s Matlab DFE
program). The matlab commands are inserted here and the reader can then follow the design
directly:

>> [snr,w]=dfecolor(1,p,14,6,13,1,[.1 zeros(1,13)])
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Figure 4.36: Distortion Spectrum for 3-tap TEQ on 1/(1− .9D) channel with white noise at σ2 = .1.

snr = 16.8387

w = -0.0046 0.0056 0.0153 -0.0117 -0.0232 0.0431 0.0654 -0.0500 -0.0447

0.2263 0.2748 -0.0648 0.1642 -0.1479

feedback is -0.0008 -0.7908 0.0001 0.0473 0.0001 0.1078

------------------------------------------------------------------------------------------------

>> p=[-.729 .81 -.9 2 .9 .81 .729 ];

>> np=norm(p)^2

np = 7.9951

>> P=toeplitz([p(1) , zeros(1,10)]’,[p, zeros(1,10)]);

some entries in P are:

P = Columns 1 through 8

-0.7290 0.8100 -0.9000 2.0000 0.9000 0.8100 0.7290 0

0 -0.7290 0.8100 -0.9000 2.0000 0.9000 0.8100 0.7290

0 0 -0.7290 0.8100 -0.9000 2.0000 0.9000 0.8100

0 0 0 -0.7290 0.8100 -0.9000 2.0000 0.9000

0 0 0 0 -0.7290 0.8100 -0.9000 2.0000

0 0 0 0 0 -0.7290 0.8100 -0.9000

>> ryy=P*P’+.1*eye(11);

The delay ∆ after some experimentation was found to be ∆ = 10 for an 11-tap TEQ on this
particular channel. This example continues then in Matlab according to:

>> rxy=[ zeros(4,10) eye(4) zeros(4,3)]*P’

rxy = Columns 1 through 8

0 0 0 0 0.7290 0.8100 0.9000 2.0000
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0 0 0 0 0 0.7290 0.8100 0.9000

0 0 0 0 0 0 0.7290 0.8100

0 0 0 0 0 0 0 0.7290

Columns 9 through 11

-0.9000 0.8100 -0.7290

2.0000 -0.9000 0.8100

0.9000 2.0000 -0.9000

0.8100 0.9000 2.0000

>> rle=eye(4)-rxy*inv(ryy)*rxy’

rle=0.0881 0.0068 -0.0786 -0.0694

0.0068 0.1000 -0.0045 -0.1353

-0.0786 -0.0045 0.1101 0.0464

-0.0694 -0.1353 0.0464 0.3666

>> [v,d]=eig(rle)

v =-0.2186 -0.5939 -0.7658 -0.1144

-0.3545 0.2811 -0.2449 0.8575

0.1787 0.7319 -0.5695 -0.3287

0.8914 -0.1806 -0.1710 0.3789

d = 0.4467 0 0 0

0 0.1607 0 0

0 0 0.0164 0

0 0 0 0.0410

>> b=sqrt(np)*v(:,3)’

b = -2.1653 -0.6925 -1.6103 -0.4834

>> w=b*rxy*inv(ryy)

w = 0.0101 0.0356 -0.0771 -0.1636 0.0718 0.1477 -0.4777 -0.7924 -0.0078 -0.2237 0.1549

The α is .89836 and the SNRMFB = 17.7868 dB corresponding to a biased error energy
of .1288 and unbiased at .1331. A TEQ program written by 2005 student Ryoulhee Kwak
executes this procedure and appears in Subsection 4.8.4 and at the web page. By running
the program a few times, one can find that by using ν = 3 and 14 taps in the equalizer with
delay 9, the SNRMFB increases to 18.9 dB. By then running water-filling, one finds an SNR
in the range of 15 to 16 dB for various TEQ’s of different length on this channel.

Instead, if no TEQ is used with FFT size 1024, then all tones are used and

>> [gn,en_bar,bn_bar,Nstar,b_bar]=waterfill(b,19.2,1,1024,0);

>> Nstar = 1024

>> b_bar = 2.8004

>> 10*log10(2^(2*b_bar) -1)

ans = 16.8

The performance is the same as the DFE system earlier. Thus, this second example illustrates
that sometimes the TEQ is best not used and perhaps a larger symbol size is better. The
no-TEQ DMT receiver has total complexity log2(1024) = 10 per sample in each of the
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transmitter and receiver, while the DFE has complexity 20. Both get the same performance
for about the same total complexity (transmitter and receiver) in the case that entire set of
tones is used (a curious result developed more in Chapter 5).

4.8.3 Zero-forcing Approximations of the TEQ

There are several alternative approaches to design of the TEQ, one of which is the ZF TEQ. The ZF TEQ
method does not consider MMSE and instead looks at the energy of an equalized response W (D) ·P (D)
within a “window” of ν + 1 samples and the energy outside that window in the other N − 1 samples,
which are called the “wall.” The heurestic rationale is that energy in the equalizer response in the wall
should at a minimum relative to the energy within the “window.” First, this “window/wall” approach
tacitly assumes that the channel input power spectral density is white Sx(D) = Ēx (or else this criterion
makes no sense). Furthermore, noise is clearly ignored in the approach. For finite-length TEQ (or
any equalizer) design, zero-forcing solutions cannot exactly force a specific b. The MMSE approach
to equalizer design becomes zero forcing for all lengths when the SNR parameter is set to an infinite
value. In this case, the mean-square energy of the “wall” is then necessarily minimized relative to the
total energy of Ēx · c = ·‖p‖2 in the MMSE-TEQ when the channel input is white. As Ishai astutely
noted, the problem of maximizing window to wall energy is the same as maximizing total equalized pulse
energy to wall energy. Thus, all these approaches (which eventually result in a generalized eigenvalue
problem that must be solved) are the same as the MMSE-TEQ when the designer assumes white input
spectrum Sx(D) = Ēx and sets N0

2 = 0. The MMSE-TEQ considers this solution a spossible among
those considered for optimization, and thus is always the same or better.

EXAMPLE 4.8.3 (Return to 1/(1− .9D) channel example of Section 4.8.2) A de-
signer might decide to use one of the various zero-forcing TEQ designs instead on the 1

1−.9D

channel. Clearly if noise is ignored, then a best equalizer is w(D) =
√

5.2636·(1−.9D), which
flattens the channel so that even ν = 0 is sufficient. In fact all zero-forcing equalizers for ν = 1
are given by the class W (D) = (a+b·D)·(1−.9D) where a2+b2 = ‖p‖2. The first zero-forcing
equalizer has smallest enhanced noise given by .9527 relative to ‖p‖2 = 5.2636 for a ratio of 7.4
dB, about 3 dB worse than including the effect of the white noise. A better choice of ZF-TEQ
(since there are many in this special case) would be W (D) = (1.65− 1.59 ·D) · (1− .9D).32,
and has ratio instead of 10 dB, which is still less than 10.4 dB. In fact, no higher ratio
than 10 dB can be found for the ZF case. Thus, all ZF-TEQ’s would all have worse SNR.
However, the astute reader might observe loading should be executed with the correct noise
power spectral density (which is not close to white in this example). This observation that
it is really SNRdmt that is important then leads to the next subsection.

4.8.4 Kwak TEQ Program

Former student Ryoulhee Kwak has provided the TEQ program at the web site that works for both FIR
and (all pole) FIR channel inputs. The program is

function [P,ryy,rxy,rle,v,d,w,b,mmse,SNRmfb_in_dB,c]=teq(p,L,mu,delta,sigma,Ex_bar,filtertype)

% programmed by Ryoulhee Kwak

%

% filtertype 1=FIR , 2= IIR(just for one pole filter)

% p=channel impulse response

% in case of FIR, p= 1+0.5D+2.3D^2->p=[1 0.5 2.3]

% in case of IIR, p=1/(2.4-0.5D)-> p=[2.4 -0.5]

% sigma =>noise power in linear scale

% delta =>delay

% L => number of taps

32The author found this by minimizing output noise power over choices for a and b, which results in a quadratic equation
for b with solutions b = −1.59 or −.626 (a = 2.21).

393



% c=> w*p

% v=>eigen vectors

% d=>eigent values

%mu => for b

if filtertype==1% FIR

norm_p=norm(p);

[temp size_p]=size(p);

P=toeplitz([p(1), zeros(1,L-1)]’,[p,zeros(1,L-1)]);

ryy=Ex_bar*P*P’+sigma*eye(L,L);

rxy=[zeros(mu+1,delta) eye(mu+1) zeros(mu+1,L+size_p-2-mu-delta)]*P’*Ex_bar;

rle=eye(mu+1)*Ex_bar-rxy*inv(ryy)*rxy’;

[v d]=eig(rle);

d_temp=diag(d)’;

[m,n ]= min(d_temp);

b=norm_p*v(:,n)’;

w=b*rxy*inv(ryy);

conv(w,p);

mmse=b*rle*b’;

%by using easy way to get error energy

c=conv(w,p)

alpa=c(delta+1)./b(1)

biased_error_energy=norm_p^2*(m-Ex_bar*(1-alpa)^2)

unbiased_error_energy=norm_p^2*(m-Ex_bar*(1-alpa)^2)/alpa^2

SNRmfb=norm_p^2*Ex_bar/unbiased_error_energy;

SNRmfb_in_dB=10*log10(SNRmfb)

else %IIR

%in case of IIR filter P matrix is infinite dimesion but there is a trick to get exact rxy, ryy

norm_p=sqrt(1/(p(1)^2*(1-(p(2)/p(1))^2 )));

[temp size_p]=size(p);

ptemp=[(-p(2)/p(1)).^(0:1:L-1)]/p(1); %-1 factor!

P=toeplitz([ptemp(1) zeros(1,L-1)]’,ptemp);

Ptemp=toeplitz(ptemp’,ptemp);

ryy=Ex_bar*Ptemp*norm_p^2+sigma*eye(L,L);

rxy=[zeros(mu+1,delta) eye(mu+1) zeros(mu+1,L-1-mu-delta)]*P’*Ex_bar;

rle=eye(mu+1)*Ex_bar-rxy*inv(ryy)*rxy’;

[v d]=eig(rle);

d_temp=diag(d)’;

[m,n ]= min(d_temp);

b=norm_p*v(:,n)’;

w=b*rxy*inv(ryy);

c=conv(w,p);

sum(conv(w,p).^2)-norm(b)^2*(w(1)/b(1))^2;

mmse=b*rle*b’;

%by using easy way to get error energy

alpa=c(delta+1)./b(1)

biased_error_energy=norm_p^2*(m-Ex_bar*(1-alpa)^2)

unbiased_error_energy=norm_p^2*(m-Ex_bar*(1-alpa)^2)/alpa^2

394



SNRmfb=norm_p^2*Ex_bar/unbiased_error_energy;

SNRmfb_in_dB=10*log10(SNRmfb);

end

This program can be used to design MMSE-TEQ’s.

4.8.5 Joint Loading-TEQ Design

Usually TEQ’s are designed (or trained) before loading in DMT or VC systems, and an assumption of
initially flat input spectrum Sx(D) = Ēx is then made. For OFDM, this assumption is always true, but
when loading is used in DMT, then it will likely not be true once loading is later computed. In fact, an
optimum design would maximize SNRdmt over the TEQ settings as well as the En for each subchannel.
Al-Dhahir was the first to approach this problem and attempt solution. A better solution emanated
from Evans (see December 2001 IEEE transactions on DSP). While Evans beautifully poses the problem,
he notes at the end that it requires very difficult and advanced optimization procedures to be exactly
solved. He further notes that such solution is not feasible in actual implementation. Evans then reverts
to the MMSE solution and shows it is often close to the MAX-SNRdmt solution. Some later work by
Evans and Johnson finds simpler algorithms, but often the MMSE-TEQ is sufficient.

Thus for a non-white (non-diagonal) Rxx, this subsection poses the following solution:

1. Initially design MMSE-TEQ for flat or white input.

2. Execute loading (water-filling or LC) and compute SNR.

3. Redesign the MMSE-TEQ using the new Rxx.

4. Re-loading the channel and see if SNRdmt has significantly improved.

(a) If improved, return to step 3 with the latest Rxx from loading.

(b) If not, use the TEQ with best SNRdmt so far determined.

Clearly with dynamic loading, the movement of energy could cause the TEQ to be somewhat deffi-
cient. This would be particularly true if narrow-band noise occurred after initial training. The above
procedure can then be repeated. The TEQ change would need to occur on the same symbol that synchro-
nizes the change of energy and bit tables in the corresponding modems, so thus should be synchronized
to bit swapping.

4.8.6 Block Decision Feedback

The overhead of the extra ν dimensions of vector coding and and DMT/OFDM is negligible for large N .
When large N leads to unacceptable delay in the transmission path, smaller N may have to be used. In
this case, the extra ν samples between symbols (blocks of samples) may be eliminated by what is known
as Kasturia’s Block Decision Feedback Equalizer.

Block Decision Feedback uses the decisions from the last block of samples to reconstruct and cancel
the interference from previous symbols. The pulse response is known in the receiver so that the effect of
the last ν columns of P can be subtracted as in Figure 4.37. Assuming previous decisions are correct,
the resultant vector channel description is

y = P̃x + n , (4.356)

where P̃ is the N × N matrix containing the left-most N columns of P . P must be converted to
a minimum-phase (MMSE sense) channel by a conventional MMSE-DFE feedforward filter for best
performance. Vector coding is applied to this matrix channel with SVD performed on the matrix P̃ .
While simple in concept, the subtraction of previous symbols in practice can be complex to implement.
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Figure 4.37: Kasturia’s Block DFE.

4.8.7 Cheong’s Cyclic Reconstruction and Per-tone Equalizers

K. W. Cheong in his 2000 dissertation and earlier results used the concept of cyclic reconstruction (first
introduced for echo cancellers by Ho and Cioffi) to simplify the concept of a full N ×N block equalizer
that would be equivalent to a separate TEQ for each tone.33 Van Acker and Mooenen (and van de
Wiel and Pollet) later renamed this matrix equalization a “per-tone equalizer” and used the equivalent
of cyclic reconstruction to simplify the amount of computation (apparently unaware of Cheong’s earlier
work and the equivalence to cyclic reconstruction). The method requires a slightly higher complexity
than a TEQ in real-time, but does not require eigen-vector computation. This method actually then
leads to an easy adaptive implementation that maximizes product SNR.

The key observation in cyclic reconstruction is that the cyclic prefix could be faked to look longer if
at each sampling instant that is not already part of the cyclic prefix the value from the previous symbol
were somehow replaced by the sample from the current symbol. Essentially, the cyclic prefix becomes
infinite.

If the receiver saves the last symbol of time-domain samples, and they were basedon correct decisions,
then the ISI from the last sample could be subtracted. Also, an ISI equivalent to the repeated samples
could be added. Cheong used this in a basic Block DFE structure to allow simplification and retain use
of the FFT’s (unlike Kasturia’s earlier block DFE). At some further increase in complexity, it is possible
that Cheong’s equalizer can be implemented also in the time domain using instead the channel outputs.
A truly cyclic channel would have outputs that are also cyclic. Any deviations from such cyclic behavior
would be completely represented by the differences between points separated by N samples.

Thus a set of differences can be computed by the receiver or
The basic observation is the nominal FFT has N values

(yN+i−1 − yi−1) i = 1, ..., N . (4.357)

Any deviation from perfect cyclic channels must be a linear combination of these differences on a
linear channel. Thus, one implementation is shown in Figure 4.38 The coefficients are adapted according
to the same algorithm as in (4.134) using the same error signal Ũn but with each FEQ coefficient
augmented by a set of N taps that have the time-domain differences. This remains the complexity of

33Clearly having a separate equalizer for each tone allows the individual SNRs to be maximized and then also the
product SNR to be maximized given a certain input energy distribution, essentially decoupling the loading problem from
the equalization problem.
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Figure 4.38: Cheong’s Cyclic Reconstruction (sometimes called a “per-tone” equalizer).
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N × N . However, differences far away from the cyclic prefix will have negligible contribution. If the
(FIR) TEQ for any (or all) tones were L taps long, then clearly it has only L degrees of freedom and
could be affected by at most 2L differences.

Thus the complexity is essentially double that of an L-tap TEQ but also has the advantage of
essentially being a different equalizer for each tone output. Moonen and Acker developed what they call
a “per-tone” equalizer well after the Kasturia and Cheong work, but did not realize the equivalent use
of cyclic reconstruction, thus the apparent different name. However, the concept is clearly equivalent
when viewed from the perspective of cyclic reconstruction. These 2L samples are the same for all tones
but do depend on the delay δ chosen. In a system with no delay, they would be the 2L samples closest
to the previous symbol. With a delay delta, the 2L− δ samples closest to the previous symbol and the
δ samples at the end of the symbol would be used. Such a system requires collection of the next symbol
to compute the differences (or at least δ output samples from the next symbol) and so has between δ
samples and one symbol of additional delay required for implementation.

An adaptive implementation would use the ZF algorithm used for the FEQ on each tone with the
single complex coefficient now being replaced by 1 + 2L difference terms.
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4.9 Windowing Methods for DMT

While cyclostationary34 DMT/OFDM signals are not deterministically periodic over all time simply
because the transmitted input message is not the same in each symbol period. Deterministically for any
tone, the corresponding output signal for a given symbol period is

xn(t) = Xn · e 2π
N

·N+ν

T
·nt ·wT (t) , (4.358)

where wT (t) is a window function. In the DMT/OFDM partitioning of Section 4.6, the rectangular
window function was always

wT (t) =

{
1 t ∈ [0, T )
0 t 6∈ [0, T )

. (4.359)

Letting

f̄
∆
=
(

1 +
ν

N

)

· 1

T
= · 1

NT ′ , (4.360)

the product in (4.358) corresponds to convolution in the frequency domain of the impulse Xn · δ(f − f̄)
with WT (f). The fourier transform of the rectangular window in (4.359) is

WT (f) = sinc

(
f

f̄

)

· e−πfT , (4.361)

which has the magnitude illustrated in Figure 4.39. While there is no interference between tones of DMT
because of the zeros in this function, at intermediate frequencies (f 6= n · f̄), there is non-zero energy.
Thus the DMT spectrum is not a “brick-wall” bandpass system of tones, but decays rather slowly with
frequency from any tone. Such slow decay may be of concern if emissions from the present channel
into other transmission systems35 are of concern. Even other DMT transmissions systems that might
sense crosstalk from the current DMT system would need exact synchronization of sampling rate 1/T ′

to avert such crosstalk. A slight difference in DMT sampling clocks, or just another modulation method,
on the other transmission system might lead to high interference. For this reason, some DMT/OFDM
modulators use a non-rectangular window to reduce the “sidelobes” with respect to those in Figure 4.39.

Non-rectangular windowing of the transmit signal in DMT could re-introduce interference among
the tones, so must be carefully introduced. Figure 4.40 illustrates two methods for introducing windows
without reintroduction of intra-symbol interference through the use of extra cyclic prefix and suffix. The
cyclic suffix used for Zippered duplexing in Section 4.6 is also useful in windowing. Extra prefix samples
beyond those needed for ISI (that is larger than the minimum ν required) and extra suffix samples
(beyond either 0 with no Zippering, or larger than the minimum ∆ required with Zippering) are used
for the shaped portion of the window. The minimum N + ν + ∆ samples within the symbol remain
unwindowed (or multiplied by 1, implying no change) so that DMT or OFDM partitioning works as
designed when the receiver FFT processes only N of these samples. The remaining samples are shaped
in a way that hopefully reduces the sidelobes of the window function, and thus makes the frequency
response of the modulated signal fall more sharply. This sharper fall is achieved by having as many
continuous derivatives as is possible in the window function. The windows from the extra prefix of the
current symbol and the extra suffix of the last symbol can overlap without change in performance if the
sum of the two windows in the overlapping region equals 1. Such overlap of course reduces the increase
in excess bandwidth introduced by the window.

The most common choice of window in practice is a raised-cosine window of 2L + 1 samples of extra
cyclic extension (extra prefix plus extra suffix). This function is given in the time domain by

wT,rcr(t) =
1

2
·
{

1 + cos

(

π

[
t

LT ′

])}

∀t ∈ (−LT ′, LT ′) (4.362)

where time t = 0 is in the middle of the extra extension. The actual implementation occurs with samples
wk = wT,rcr(kT ′) for k = −L, ..., 0, ..., L. Letting

ᾱ =
L

N + ν + ∆
, (4.363)

34DMT/OFDM signals are stationary at symbol intervals, but cyclic over a symbol period.
35That may share the same channel or unfortunately sense radiation from it.
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Figure 4.39: Rectangular window fourier transform versus f−f̄
f̄

.

Figure 4.40: Illustration of extra prefix and suffix and non-overlapped and overlapped windows.
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the fourier transform of this window becomes

WT,rcr(f) =
L

ᾱ
· sinc

(
πf

f̄

)

·
cos ᾱ·f

f̄

1−
(

2ᾱπf
f̄

)2 . (4.364)

Figure 4.41 illustrates the sidelobes of the raised cosine function for 5% (blue) and 25% (red) along with
those of WT (f) from Figure 4.39 (this time in decibels). Emissions into other systems can be significantly
reduced for between 5% and 25% excess bandwidth. The FMT systems of Section 4.6 offer even greater
reduction (or can be combined) if required.

4.9.1 Receiver Windowing

Also of interest are any non-white noises that may have autocorrelation of length greater than νT ′.
Extremely narrow band interference noise, sometimes called “RF interference” is an example of such
a noise. DMT block length N may not be selected sufficiently large and the TEQ of section 4.8 may
not adapt quickly enough to “notch” or reduce such noise, or the TEQ may not be sufficiently long
to reduce the noise level. The same extra prefix and suffix interval in the receiver can again be used
to apply a window (perhaps the same as used in the transmitter). Windowing at the receiver again
corresponds to frequency-domain convolution with the transform of the window function. Low sidelobes
can reduce any narrow-band noise and improve all the gn (and particularly those close to the narrowband
noise). Whether used for transmitter, receiver, or both, Figure 4.41 shows that the first few sidelobes
are about the same no matter how much excess bandwidth (extra cyclic extension) is used. However, for
somewhere between 5% and 25% excess bandwidth, 20 dB and more rejection of noise energy coupling
through sidelobes is possible, which may be of considerable benefit in certain applications. Of course,
this extra bandwidth is the same as any excess bandwidth used by the transmitter (so excess bandwidth
does not increase twice for transmitter and receiver windowing).

401



Figure 4.41: Illustration of transforms of rectangular window (green) and raised-cosine with 5% (blue)
and 25% (red) excess bandwidth versus (f − f̄)/f̄ .
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4.10 Peak-to-Average Ratio reduction

The peak-to-average ratio of an N-dimensional constellation was defined in Chapter 1 as the ratio
of a maxium magnitude constellation point to the energy per dimension. That definition is useful for
N = 1 and N = 2 dimensional constellations. For the higher dimensionality of DMT and OFDM signals
(or vector coding or any other partitioning), the maximum time-domain value is of practical interest:

xmax = max
k , k=0,...N+ν−1

|xk| . (4.365)

This value determines the range of conversion devices (DACs and ADCs) used at the interfaces to the
analog channel. The number of bits needed in the conversion device often determines its cost and also
its power consumption. Thus, smaller is usually better (especially at high speeds). A higher ratio
xmax/Ēx leads to more bits in such a device. Also, subsequent analog circuits (amplifiers, filters, or
transformers) may exhibit increased nonlinearity as xmax increases. Finally, the power consumption of
linear amplifiers depends on the peak power, not the average power. In the analog portion of the channel
between conversion devices, actually xmax should be redefined to be

x(max) = max
t∈[0,T )

|x(t)| , (4.366)

which can exceed the discrete-time xmax. High-performance transmission systems necessarily increase
the peak voltages in theory, so the PAR for the transmitted signal x(t) (and/or xk) can become important
to designers.

This section investigates this peak value and shows that additional digital signal processing can
reduce the large peak.

Subsection 4.10.1 begins with some fundamentals on the probability of peaks and their relationship to
data rate, showing that indeed very little data rate need be lost to eliminate large peaks in transmission.
Subsection 4.10.2 then progresses to describe the most widely used and simplest PAR-reduction method
known as “tone reservation” (developed independently by former 379 students and their colleagues!)
where a few tones are used to carry “peak annihilating” signals instead of data. This method essentially
requires no coordination between transmitter and receiver and thus is often preferred. The loss of
“tones” is somewhat objectionable, so for more complexity and some receiver-transmitter understanding,
the equally effective “tone-injection” method appears in Subsection 4.10.3. This method causes no
data rate loss and instead cleverly inserts signals invisible to the data connection, but that annhilate
peaks. Subsection 4.10.4 discusses the most complicated nonlinear-equalization methods that take the
perspective of allowing clipping of signals to occur and then essentially remove the distortion caused by
the clips at the receiver through an ML detector. All the approaches presented in this section reduce
the probability of nonlinear distortion to a level that can be ignored in practice.36

A series of coded approaches have also been studied by various authors, where points in the N -
dimensional constellation that would lead to time-domain large xmax are prohibitted from occuring by
design. Unfortunately, these approaches while elegant mathematically are impractical in that they lose
far too much data rate for effective performance, well above theoretical minimums. This book will not
consider them further.

4.10.1 PAR fundamentals

This book chooses to focus on real signals xk so that X∗
N−i = Xi for each symbol. For complex signals,

the theory developed needs to be independently applied to the real dimension and to the complex
dimension.37

36That is a level at which outer forward error-correction codes, see Chapters 10 and 11, will remove any residual errors
that occur at extremely infrequent intervals.

37In which case, the signal processing is independently applied to the even part of X, Xe,i
∆
= .5 · (Xi + X∗

N−i
) that

generates the real part of xk and then again to the odd part of X, Xo,i
∆
= −.5 · (Xi− j ·X∗

i−i) that generates the imaginary

part of xk.
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First, this subsection considers the discrete-time signal xk and generalizes to over-sampled versions
that approximate x(t). The time-domain signal xk is again

xk =

N−1∑

n=0

Xn · e− 2π
N

nk , (4.367)

which is a sum of a large number of random variables. Losely speaking with the basic Central Limit
Theorem or probability, such a sum is Gaussian in distribution and so has very small probability of very
large values. For the Gaussian distribution, a value with 14.2 dB of peak-to-average ration (Q(14.2dB))
has a probability of occurrence of 10−7 and a PAR of 12.5 dB has occurrence 10−5. When such a peak
occurs, with high-probability large “clip” noise occurs if the conversion devices or other analog circuits
cannot handle such a large value. So, with probabilities on the order of the probability of bit-error,
entire DMT/OFDM symbols may have many bit errors internally unless the PAR in the design of such
circuits accommodates very high PAR. Typically, designers who use no compensation set the PAR at 17
dB to make the occurrence of a peak clip less likely than the life-time of the system (or so small that it
is below other error-inducing effects).

One might correctly note that the same high-peak problem occurs in any system that uses long
digital filters (i.e., see the transmit-optimizing filters for QAM and PAM systems in Chapter 5) will have
each output sample of the filter equal to a sum of input random variables. For effective designs, the
filter is long and so the Gaussian nature of actual transmitted signal values is also present. Furthermore
aside from filters or summing effects, best coding methods (particularly those involving shaping) provide
transmit signal and constellation distributions that approximate Gaussian (see Chapter 8). Thus, one
can find any well-designed transmission system having the same high PAR problem. However, solutions
to this problem are presently known only for the DMT/OFDM systems (which with the solutions,
actually then have a lower PAR than other systems).

At first glance, it might seem prospects for high performance in practice are thus dim unless the
designer can afford the higher dyanmic range and power consumption of conversion and analog circuits.
However, let us assume a PAR of say 10 dB is acceptable (even sinusoids in practice require 3-4 dB
so this is say one bit of range38 more than a non-information-bearing signal would require. Such a
peak in a Gaussian distribution occurs with probability 10−3. Let us suppose that internal to the data
transmission stream, a small amount of overhead data rate was allocated to capturing the size of the clip
that occurs in analog circuits and sending a quantized version of that size to the receiver. No more than
20 bits per clip would be required to convey a very accurate description, and perhaps just a few bits if
designs were highly efficient. Those twenty bits would represent on average only 2% of the data rate.
Clearly not much is lost for imposing maximums on the transmitted range of quantities, at least from
this trivial fundamental perspective. Such an approach might have significant delay since the overhead
bit stream would be very low with respect to other clocks in the design. Nonetheless, it fundamentally
indicates that significant improvement is possible for a small loss in overall data rate.

This is exactly the observation used in the three following approaches of this section.

4.10.2 Tone Reservation

Tone reservation allows the addition of a peak annihilator c to the transmit signal x on each sym-
bol. Thus, x + c is cyclically extended and transmitted. The peak-annihilator attempts to add the
negative of any peak so that the signal is reduced in amplitude at the the sampling instant of the
peak. The peak-annihilation vector c is constructed by frequency-domain inputs on a few tones in set
I = {i1, i2, ..., ir, ..., N − ir , ..., N − i1}. Typically r << N/2. The determination of this set is deferred
to the end of this subsection.

Thus,
x + c = Q∗ [X + C] (4.368)

and

Cn =

{
0 n 6∈ I

selected n ∈ I . (4.369)

38Conversion devices basically provide 6 dB of dynamic range increase for each additional bit used to quantize quantities.
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Figure 4.42: Probability of peak above specified PAR level for N = 128 OFDM/DMT systems with
5% and 20% of tones reserved. The “extra FFT” curve represents a double-pass of the transmitter
IDFT where the phase of some signals has been selectively altered on the second pass to reduce PAR
for comparison.

Thus, Xn 6= 0 when n 6∈ I, leaving N − r tones available for data transmission and the others reserved
for selection and optimization of the peak annihilator.

The problem can be formulated as

min
C

maxk|x +Q∗C| (4.370)

with the constraints that Cn = 0, ∀n ∈ I and ‖x +Q∗C‖2 ≤ N Ēx. This problem can be recognized
with some work as equivalent to a linear-programming problem for which algorithms, although complex,
exist for solution. This subsection shows the performance of such exact solution to see potential benefit,
but rapidly progress to an easily implemented algorithm that approximates optimum and is used in
practice. Figure 4.43 illustrates the reduction in probability of a peak exceeding various PAR level. For
reservation of 5% of the tones, a 6 dB reduction (savings of one bit is possible). For 20% reservation
(perhaps an upper limit on acceptable bandwidth loss), a 10 dB reduction is possible. Indeed, the PAR
achieved for this OFDM/DMT system is well below those of systems that perform worse. However,
the complexity of the solution used would be burdensome. Thus, the alternative method of minimizing
squared clip noise is subsequently derived.

The alternative method makes use of the function

clipA(xk) =

{
xk |xk| < A

A · sgn(xk) |xk| ≥ A
, (4.371)

where A > 0, and xk and A are presumed real. The “clip noise” for a symbol vector x is then

δ2
x = ‖x− clipA(x)‖2 =

N−1∑

k=0

[xk − clipA(xk)]
2

. (4.372)
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With the peak-annihilation in use

δ2
x+c = ‖x− clipA(x = Q∗C)‖2 . (4.373)

The gradient of the “clip-noise” can be determined when a peak-annihilator is used:

∇cδ2
x+c = 2 ·

∑

k3|xk+ck|>A&i∈I
sgn(xk + ck) · [|xk + ck| − A]Q∗

I · q̄∗
k (4.374)

where Q∗
I is the N × 2r matrix of columns of Q∗ that correspond to the reserved tones, and q̄k is an

2r × 1 column vector that is the hermetian transpose of the kth row of Q∗
I . The N × 1 vectors

pk = Q∗
I q̄k (4.375)

can be precomputed as they are a function only of the IFFT matrix and and the indices of the reserved
tones.39 These vectors are circular shifts of a single vector. They will have a “peak” in the kth position
and thus changing the sign of this peak and adding it to the original x to be transmitted reduces the
PAR. Such an operation could occur for each and every k such that |xk + ck| > A. That is essentially
what the gradient above computes – a direction (and magnitude) for reducing the clip noise in those
dimensions where it occurs.

A steepest-descent gradient algorithm for estimating the best c then sums a (small) scaled sum of
gradients successively computed. Defining

εk = sgn(xk + ck) · [|xk + ck| − A] ∀k 3 |xk + ck| > A (4.376)

as a type of successive error signal, then the gradient algorithm becomes

cj+1 = cj − µ ·
∑

k3|xk+ck |>A

εk(j) · pk , (4.377)

where j is an algorithm index reflecting how many iterations or gradients have been evaluated. This
algorithm converges to close to the same result as the optimum linear-programming solution.

After approximately 10 iterations, the PAR has been reduced by 6 dB. After 40 iterations, the
algorithm is within .5 dB of best performance with 5% of tones used. These calculations were for
N = 128 and represent resulting from averaging over a variety of data vectors(and of course peaks only
occur for a small fraction of those random data vectors).

For most applications, the indices in I can be randomly chosen among those tones that have non-zero
energy allocated in loading (use vectors that have zero energy at the channel output usually leads to
a peak reproduced at the output of the channel even if the input had no such peak, which means the
ADC will saturate in the receiver). Tellado has studied methods for optimizing the set I but came to
the conclusion that simple random selection the indices of to get 5% of the used tones is sufficient. (And
if the resultant vector to be circularly shifted does not have a “peak” in it, a second random selection is
then made.)

This method, largely due to Tellado, but also studied at length by Gatherer and Polley, is the
predominant method used for PAR reduction in practice today. Its lack of need for coordination between
transmitter and receiver (the transmitter simply forces the receiver to off-load the tones it wants by
sending “garbage” data on those tones that forces swaps away from them). Thus, there is no need to
specify the method in a DMT standard. However, in OFDM standards the set of used tones may need
agreement before hand. Indeed since peaks do not occur often, the tones used for pilots in OFDM may
also carry the very infrequent peak-reduction signals without loss of performance of the (well-designed)
receiver PLLs.

In continuous time, peaks can occur at time instants other than those corresponding to the DMT
sampling rate. Searches for peaks then may interpolate the IFFT output samples in the transmitter
and the reduction waveform might also be interpolated when designed. All follows in a straightforward
manner at 2 to 4 times the DMT/OFDM sampling rate in digital signal processing, but the interpolation
can add complexity to this signal processing.

39These terms arise in the gradient vector because of the restriction to zero of the non-reserved tones and would be
deleted from the gradient altogether if there were no restrictions on C or c.
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Figure 4.43: Probability of peak above specified PAR level for successive iterations of the gradient
algorithm.

4.10.3 Tone Injection

A fraction of reverved tones that exceeds 5% is considerably in excess of the minimums theoretical
requirement of bandwidth loss to reduce PAR substantially. Tellado, and independently Kschichang,
Narula, and Eyuboglu of Motorla, found means of adding peak-annihilation signals to the existing data-
carrying tones.

In tone injection, no tones are reserved for only peak-reduction signals. Instead, signals are added
to the data symbols already present on some tones in a way that is transparent to the receiver decision
process. The basic concept is illustrated in Figure 4.44. There a selected constellation point called A
can be replaced by any one of 8 equivalent points if the 16QAM constellation shown were repeated in
all directions. Each of these 8 points has greater energy and increases the transmitted energy for that
particular tone if one of these is selected. The basic idea of tone injection is to search over points like
the 8 shown for several tones to find an added signal that will reduce the peak transmitted. Because
peaks do not occur often and because the extra energy only occurs on a few tones, the penalty of tone
injection is a very small increase in transmit power, typically .1 dB or less on average. A knowledgeable
receiver design would simply decode the original point or any of the 8 possible replacement points as the
same bit combination. The offset in either horizontal or vertical direction is d̄ units.

Thus, peaks in time domain are traded for peaks in the frequency domain where they have little affect
on the transmitted signal energy, and in particular a very large power-reducing effect on the consumed
power of the analog driver circuits that often depend on the peak signal transmitted.

More formally, the time domain DMT or OFDM signal (avoiding DC and Nyquist, which are simple

extensions if desired and letting Rn
∆
= <{Xn‖ and In

∆
= ={Xn‖) is

x(t) =
2√
N
·

N/2−1
∑

n=1

Rn · cos(
2π

NT ′nt) − In · sin(
2π

NT ′nt) (4.378)
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Figure 4.44: Illustration of constellation equivalent points for 16QAM and Tone Injection.
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Figure 4.45: Illustration of successive iterations of tone injection.

over one symbol period ingnoring the cyclic prefix. x(t) may be sampled at sampling period T ′ =
T/(N + ν) or any other higher sampling rate, which is denoted xk = x(kT ′′) here. Over a selected set
of tones n ∈ I, xk can be augmented by injecting the peak-annihilation signal

x̃k = xk ±
2 · d̄√

N
cos(

2π

NT ′ nkT ′′)± 2 · d̄√
N

sin(
2π

NT ′ nkT ′′) ∀n ∈ I . (4.379)

It is not necessary often to add both the cos and sin terms, as one is often sufficient to reduce the peak
dramatically. Algorithms for peak injection then try to find a small set of n indices at any particular
symbol for which an injected peak signal is opposite in sign and rougly equal in magnitude to the
largest peak found in the time-domain symbol. An exhaustive search would be prohibitively complex.
Instead, typical algorithms look for indices n that correspond to large points on the outer ranges of the
constellation used on tone n0 having been selected by the encoder and for which also the cos or sin is
near maximum at the given peak location k0. Then, roughly,

|x̃k0| = |xk0| − 2d̄/
√

N = |xk0| −
2√
N
·
√

6 · 22b̄n0

22b̄n0 − 1
. (4.380)

On each such iteration of the algorithm, a peak is reduced at location ki, i = 0, ... until no more reduction
is possible or a certain PAR level has been achieved. Figure 4.45 illustrates successive steps of such tone
reduction applied to an OFDM system with 16 QAM on each tone. About 6 dB of PAR reduction is
obtained if enough iterations are used. The transmit power increase was about .1 dB.
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4.10.4 Nonlinear Compensation of PAR

Tellado also studied the use of receivers that essentially store the knowledge of nonlinear mapping caused
by peaks that exceed the linear range of the channel in a look-up table. He then proceeded to implement
a maximum likelihood receiver that searches for most likely transmitted signal. This method is very
complex, but has the advantage of no bandwidth nor power loss, and is proprietary to recievers so need
not be standardized as would need to be the case for at least the silenced tones in tone reservation and
the modulo-reception-rules for tone injection.
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Exercises - Chapter 4

4.1 Short Questions

a. (1 pt) Why is the X0 subsymbol in Figure 4.2 chosen to be real?

b. (1 pt) Why is the XN̄ subsymbol in Figure 4.2 chosen to be one-dimensional?

c. (3 pts) Given ideal sinc transmit filters, φn = (1/
√

T ) sinc (t/T), why are the channel output basis
functions of multitone, φp,n, orthogonal for all possible impulse responses h(t)?

4.2 A simple example on Multitone

(3 pts) Redo Example 4.1 with H(f) = 1+0.5ej2πf (Suppose T = N). The rest of the specifications

are :
Ēx·‖h‖2

σ2 = 10dB, design target arg. of Q-function = 9dB, Ēx = 1, N = 2N̄ = 8. As in the
example, the last sub-channel is silenced. Also, attempt a design with N = 2N̄ = 16. The bit rate
of your new design will go down if correctly designed. Why?

4.3 GAP Analysis

a. (1 pt) While the SNR gap may be fixed for often-used constellations, this gap is a function of two
other parameters. What are these two parameters?

b. (2 pts) Based on your answer to part (a), how can the gap be reduced?

c. (2 pts) For an AWGN channel with SNR = 25dB and QAM transmission, P̄e = 10−6, and b = 4.
What is the margin for this transmission system?

d. (2 pts) Let b = 6 for part (c), how much coding gain is required to ensure P̄e = 10−6?

4.4 Geometric SNR

a. (1 pt) For the channel in Problem 4.2, calculate the SNRm,u using the exact formula and the
approximate one, SNRgeo (for a gap, use Γ = 8.8dB).

b. (1 pt) Are these two values closer than for the channel 1 + .9D−1? Explain why.

c. (3 pts) Compare the difference of the SNRMFB to the exact SNRm,u for the 1 + .5D−1 and
1 + .9D−1. Which one is closer? Why?

4.5 Water-Filling Optimization
Repeat Problem 4.2 using water-filling optimization. Given spec is H(f) = 1 + .5ej2πf , SNRMFB =

10dB, Γ = 1(0dB). (Note that all the subchannels may be used in this problem)

a. (2 pts) Calculate the optimal distribution of energy for the sub-channels and the maximum bit
rate assuming that the gap, Γ = 1(0dB).

b. (1 pt) Calculate the gap for PAM/QAM that produces an arg. of the Q-function equal to 9dB.
(The gap for b̄ ≥ 1 is the difference between the SNR derived from capacity and the argument of
the Q-function for a particular probability of error)

c. (2 pts) Calculate the optimal distribution of energy for the sub-channels and the maximum bit
rate using the gap found in (b).

4.6 Margin Maximization
For the channel with H(f) = 1+0.5ej2πf, as in Problem 4.2 maximize the margin using water-filling.

(All the subchannels may be used in this problem). Let N=8 for this problem.

a. (2 pts) Is transmission of uncoded QAM/PAM at Pe = 10−7 at data rate 1 possible? (i.e. is the
margin ≥ 0)? If so, what will the margin be?
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b. (1 pt) For data rate 1, what gap provides zero margin? For uncoded PAM/QAM, what P̄e corre-
sponds to zero margin?

c. (2 pts) What is the margin if Γ = 1(0dB)?

d. (1 pt) What is the margin if Γ = margin in part (c) (dB)?

4.7 Creating a DMT Water-filling Program
Attach the appropriate program for this problem. On plots versus N , you may elect to plot only for

even N values in this program. The sampling period is presumed to be T ′ = 1. If you use the already
provided programs in the text, then indicate in the margins of the print-out the various mathematical
formulas that correspond to the programming steps.

a. (4 pts) Write or use a program to do DMT-RA water-filling on an arbitrary FIR channel with the
pulse response given as a row vector (ex. h = [111− 1] for 1 + D + D2 −D3 or 1 + D−1 + D−2 −
D−3 channel). ν will be determined as the length of your FIR channel-input vector. The input
parameters should be N0

2 , Ēx, the number of subchannels and the gap, Γ. (Hint, try using the flow
charts in Figures (4.7) - (4.9)). What are b̄ and the energy distributions for RA loading on the
1 + .9D−1 channel? (N = 8, Γ = 1 (0dB), Ēx = 1 and N0

2 = .181)?

b. (2 pts) plot b̄ vs. N for the channel 1 + D −D2 −D3. (Γ = 1 (0dB), Ēx = 1 and N0

2
= .1)

c. (2 pts) Modify your program (i.e. write another program) to do MA water-filling on the same
FIR channel. What is the margin and the energy distribution for MA loading on the 1 + .9D−1

channel? (N = 8, Γ = 1 (0dB), b̄ = 1, Ēx = 1 and N0

2 = .181)?

d. (2 pts) plot margin vs. N for the channel 1 + D−D2 −D3 with b̄ = 1. (Γ = 1 (0dB), Ēx = 1 and
N0

2 = .1)

4.8 Levin-Campello Algorithms
Please show work. This problem executes the Levin-Campello loading algorithm for the 1 + 0.5D−1

channel with PAM/QAM, P̄ e = 10−6, SNRMFB = 10dB, N=8, and Ēx = 1. Use β = 1.)

a. (2 pts) Create a table of e(n) vs. channel. (You may truncate the table sufficient to answer part
(b) below).

b. (3 pts) Use the EF algorithm to make b̄=1.

c. (1 pt) Use the ET algorithm to find the largest b̄.

d. (1 pt) If the design were to reduce the b by 2 bits from part (c), use the EF and BT algorithms to
maximize the margin. What is this maximum margin?

4.9 Creating a DMT Levin-Campello Program
Attach the appropriate program for this problem. On plots versus N , you may elect to plot only for

even N values in this program. The sampling period is presumed to be T ′ = 1.

a. (4 pts) Examine, use, and/or understand the text’s programs to do RA LC (EF and ET) on
an arbitrary FIR channel with the pulse response given as a row vector (ex. h = [111 − 1] for
1 + D + D2 −D3 or 1 + D−1 + D−2 −D−3 channel). The input parameters should be N0

2
, Ēx, the

number of subchannels and the gap, Γ. If you use the ones from the text, write formulas in the
margin where appropriate that describe the associated mathematical actions in the text. What
are b̄ and the energy distributions for RA loading on the 1+ .9D−1 channel? (N = 8, Γ = 1 (0dB),
Ēx = 1 and N0

2
= .181)?

b. (2 pts) plot b̄ vs. N for the channel 1 + D −D2 −D3. (Γ = 1 (0dB), Ēx = 1 and N0

2 = .1)

c. (2 pts) Modify your program (i.e. write another program) to do MA LC (EF and BT) on the same
FIR channel. What is the margin and the energy distribution for MA loading on the 1 + .9D−1

channel? (N = 8, Γ = 1 (0dB), b̄ = 1, Ēx = 1 and N0

2 = .181)?
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d. (2 pts) plot margin vs. N for the channel 1 + D−D2 −D3 with b̄ = 1. (Γ = 1 (0dB), Ēx = 1 and
N0

2 = .1)

4.10 Sensitivity Analysis
This problem looks at the sensitivity of En and Pe,n (Pe for each sub-channel), to variations in the

values of gn for water-filling.

a. (1 pt) SEij
= δEi/Ei

δgj/gj
. Show that SEij

=
Γ(δij−1/N∗)

gjEi
, where N∗ is the number of sub-channels

being used and δij is the Kronecker delta. (Hint. Solve for the closed form expression for E given
that N∗ is known and then differentiate it.)

b. (2 pts) Calculate the worst case sensitivity for the 1 + 0.9D−1 and the 1 + 0.5D−1 for multitone
with N=16 and Γ = 3dB. Which one do you expect to be more sensitive? Why?

c. (2 pts) Now, calculate bounds for the sensitivity calculated in (a). Show that

Γ(δij−1/N∗)/gMAX

N∗Ē/N∗+Γ(1/gharm−1/gMAX)
≤ SEij

≤ Γ(δij−1/N∗)/gMIN

N∗Ē/N∗+Γ(1/gharm−1/gMIN)

where gharm is the harmonic mean of g’s.

(Hint: Replace Ei by its closed form expression and manipulate the expression.)

d. (1 pt) Show that δAn/δgn ≥ An/gn, where An is the argument of the Q-Function for the nth

sub-channel assuming that the bit-rate bn is held constant. Interpret the result.
(Hint. Work with closed form expression for gnEn instead.)

e. (2 pts) Find the sub-channel which has the worst sensitivity in terms of Pe,n for 1 + 0.9D−1 and
1 + 0.5D−1 channels. Use Γ = 3dB, N=16, SNRMFB=10dB for multitone.(Assume δAn/δgn =
An/(gn)).

4.11 Complexity of Loading
This problem uses 100 parallel channels(N=100) and evaluates different algorithm complexities:

To compute a water-filling energy/bit distribution, we must solve (??) with the additional constraint of
positive energies. An operation is defined as either an add, multiply, or logarithm. The word complexity
denotes the number of operations.

For parts (a) and (b), this problem is primarily interested in the complexity as an order of N and
N∗, (i.e. is it O(N2)?) Also, comparison of part (a) with part (b) provides an idea of how much less
complex Chow’s algorithm is, so detailed complexities are also of interests, although an exact number is
not necessary. Please use a set of reasonable assumptions (such as sorting takes O(N log N)). Chow’s
algorithm here refers to Chow’s on/off primer. For (c), assume that we start with b = [000...0], then
do E-tight. The complexity would depend on the total number of b’s, and β. So, you can express your
answer in terms of b and β. It is difficult to compare (c) with (a) or (b), as they really solve different
problems. Nevertheless, some reasonable estimates would be helpful.

a. (2 pts) Formulate an efficient algorithm that computes the water-filling energy/bit distribution.
Compute the number of operations for water filling. How does this complexity depend on N∗?

b. (2 pts) What is the complexity for Chow’s algorithm?

c. (2 pts) What is the complexity for LC algorithm?

d. (1 pt) Compare the different complexities calculated in (a),(b),(c).

4.12 Dynamic Loading
An ISI-channel with AWGN has a multitone transmission system that uses MA LC loading changes

from 1 + D − D2 − D3 to 1 + D − .1D2 − .1D3. The energy per dimension is Ēx = 2 and b̄ = 1 with
N0

2
= .1. Use β = 1 and a gap corresponding to uncoded PAM/QAM with Pe = 10−6.

413



a. (2 pts) Find the number of “bit-swaps” that occur because of this change when N = 8 and N = 12.
(You may assume infinite-length basis functions and that the SNR is approximated by using the
fourier transform value in the center of each band as in the examples in Sections 4.1-4.3.)

b. (4 pts) Find the information that is transmitted from the receiver to the transmitter for each of
the swaps in part a. Specifically, find the tone indices and the gain-factor changes associated with
the add and delete bit positions.

4.13 VC for the 1 + 0.5D−1

For the 1 + .5D−1 channel, N = 8, Ē = 1, N0

2 = .125, T ′ = 1, and Γ = 3dB

a. (2 pts) Solve for the VC subchannels, gn.

b. (2 pts) Find the optimal RA bit Water-filling distribution. What is the bit rate?

c. (2 pts) Find the optimal MA bit Water-filling distribution for b̄ = 1.25. What is the margin?

4.14 DMT for the 1 + 0.5D−1

For the 1 + .5D−1 channel, N = 8, Ē = 1, N0

2 = .125, T ′ = 1, and Γ = 3dB

a. (2 pts) Solve for the DMT gains, Pn, and the optimal water-filling RA bit distribution. What is
the bit rate?

b. (2 pts) Compare the gains Pn to the gains λn of vector coding for the same channel. Which one
is better in terms of the ratio of largest to smallest bit assigned? Why is that?

c. (3 pts) Plot the Fourier spectra (i.e. the fft with appropriate zero-padding) of the columns of M for
VC and for DMT in case of N=8,16,32. What is the change of pattern in spectra as N increases?

4.15 Loading - 15 pts - Midterm 2000
A DMT design is used on the channel with discrete-time response P (D) = 1−D2 with additive white

Gaussian noise that has psd (discrete-time variance) σ2 = .181 and the transmit energy per dimension is
Ēx = 1. Loading will be executed on this channel for N = 16 and ν = 2. (Hint think carefully if anything
about this channel looks familiar and might save you considerable time in executing the computations -
for instance, what do you know about even and odd sample times at the output?)

a. Sketch the magnitude of the Fourier Transform of the channel, |P (e−ωT )| and find the channel
SNR’s, gn, at all frequencies of interest to DMT loading. (3 pts)

b. Execute waterfill rate-adaptive loading for this channel with a 0 dB gap. (3 pts)

c. Round the distribution that you obtained in part b so that the granularity is β = 1 bit per two
dimensions on complex subchannels and one-bit per dimension on one-dimensional subchannels
and find the new data rate. (1 pt)

d. Now use the LC algorithm to compute a RA data rate for β = 1. Be sure to show your incremental
energy table. (4 pts)

e. Find a MA bit distribution with β = 1 for transmission with 8.8 dB gap at a data rate corresponding
to b̄ = 1, and the corresponding margin. (4 pts)

4.16 Generalized Nqyuist

a. (2 pts) For what N ≥ 1 does multitone transmission satisfy the generalized Nyquist criterion and
symbol rate 1/T on any linear ISI additive white Gaussian noise channel?

b. (2 pts) What could the receiver do to attempt to correct the situations (that is, the N values) for
which the GNC in part (a) is not satisfied.

c. (2 pts) How does the N necessary for a channel depend on the channel characteristics?
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4.17 Periodic Channels
The simplest possible case of finding eigenfunctions is for the periodic channel; for which this problem

seeks to prove various interesting facts. These facts will be useful for the investigation of Discrete
Multitone Transmission. r(t) is the channel autocorrelation function

a. (2 pts) Suppose r(t) = r(t + T ), show φn(t) = ej∗2π
T

nt are eigenfunctions of the channel autocor-
relation function. (Hint: express r(t) in a Fourier series.) By eigenfunction, this problem means
that if ϕ(t), t ∈ [0, T ), is used for a channel with periodic r(t), the output y(t), t ∈ [0, T ), will be
a scaled version of ϕ(t). The scaling factor is the eigenvalue. Note that here, both the input and
output signals are restricted to the interval [0, T ).

b. (1 pt) What are the associated eigenvalues?

c. (2 pts) If the channel were not periodic, but had finite length (ν), how could the designer create

a new set of functions φ̂n(t) from φn(t) such that part of the output signal looks periodic? (hint:
think of cyclic prefix in DMT.)

Parts (a) and (b) show the eigenfunctions are independent of the channel, which is a very desirable
property. However, this only happens with periodic channel. The question is, for r(t) non-periodic,
can the designer modify the input so that the output appears is as if the channel is periodic.
More precisely, let rr(t) denote the autocorrelation of a periodic channel, r(t) denote the non-
periodic version (i.e. r(t) = rr(t) for t ∈ [0, T ), r(t) = 0 and the ends of [0, T )). The relation
ϕ(t) ∗ rr(t) = kφ(t) is true, where k is the eigenvalue. Can the designer modify ϕ(t) so that
ϕ̂(t) ∗ r(t) = kφ(t), for t ∈ [0, T )? If so, the transmission system can then use the channel-
independent eigenfunction. By “part of output signal looks periodic”, we mean “the output signal
looks as if it were created by a periodic channel.” Hint: think guard period and extensions.

d. (1 pt) If the receiver only looks at the periodic part of the output signal, what would the associated
eigenvalues be?

e. If a transmission system uses the channel-independent eigenfunctions developed in this problem,
and thus provides the appearance of a periodic channel, how much more bandwidth does the design
have to use, or in other words, how much faster does the sampling rate have to be?

4.18 Vector Coding
This problem concerns channel partitioning and Vector Coding.

a. (2 pts) Consider the following vector channel :

The system uses a matrix transmit filter, M , and a matrix receiver filter, F ∗, such that FF ∗ =
MM∗ = I i.e. the matrix filter doesn’t change the energy.

Moreover, we want that Yn = Λn ·Xn + Nn

Given that the channel is 1 + 0.5D, calculate P, M, F ∗ and Λ′s. Assume N0

2 = .125, Ēx = 1, and
N = 8.
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b. (3 pts) Using the value of Λ’s, calculate the optimal energy and bit distribution using a loading
algorithm with Γ = 3dB.

c. (1 pt) What is the SNRvc for this vector-coded system?

4.19 Theoretical questions on Vector Coding

a. (1 pt) Show that N in vector coding is indeed white and Gaussian with variance N0/2.

b. (3 pts) Calculate Ryy and show that |Ryy | =
∏N

n=1(
N0

2
+ En|̇λn|2).

c. (2 pts) Verify 1 + SNRvc =
( |Ryy |
|Rnn|

)1/N+ν

assuming that the gap is 0 dB.

d. Prove that F ∗ =









1 + 1
SNR1

0 0

1 + 1
SNR2

0

. .
0 .
0 0 . . 1 + 1

SNRN









ΛRXyR−1
yy

4.20 Grasping Vector Coding → DMT
Assume the channel is 1 + aD−1. This problem varies a and N to determine their effects on F , Λ

and M .

a. (1 pt) For N=4 and a=0.9, compute F, Λ and M. Plot the modulus of the spectra of the eigenvectors
of M, that is, take the columns of M as time sequences and calculate their abs(fft). Use at least
32 points for the fft’s. Turn in this plot. What shape do these filters have?

b. (2 pts) Repeat part (a) for N = 4 and a = 0.1. Do you notice any differences in the resulting
filter’s ffts compared to (a)? What explains this behavior?
(Hint: Part (c) might be helpful)

c. (2 pts) Set a = 0.9 and N = 8. Calling λi the diagonal elements of the Λ matrix, calculate
λ0,(λ1 + λ2)/2, (λ3 + λ4)/2, (λ5 + λ6)/2 and compare to the values of Hn in Example 4.1.1.
Explain the similarity.

d. For all the examples tested, matrix F seems to have some special structure. Describe it. How can
you use this to reduce the number of operations in the receiver?

4.21 Partitioning - 2002 Midterm
A wireless transmission system is shown in Figure 4.46. Uncoded QAM with gap 8.8 dB at Pe = 10−6

is used on each of 3 transmit antennae with the same carrier frequency but independent input data
streams. Each has symbol rate 100 kHz and the energy per dimension at that rate is unity (Ex = 1).
There are also 3 receive antennae. All 9 paths shown are AWGN channels with independent noise of
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Figure 4.46: Wireless MIMO channel.

two-sided psd .01 on each. The gains are as shown. The ”other” signals may be considered as noise for
each of the 3 main signal paths from xmit antenna n to receive antenna n or all 3 signals may be jointly
transmitted and received. This problem investigates the difference in approaches.

a. (2 pts) If the other two signals are considered to be additive Gaussian noise, what is the possible
b̄ and b as well as data rate R, according to the gap formula ? (You may assume there is a single
receiver with background noise σ2.) (2 pts)

b. (3 pts) Consider the possibility of co-generation of all three xmit antennae signals and co-reception
of all 3 receive antennae signals. Show this can be described by a 3× 3 channel matrix P . This is
sometimes called a MIMO channel (multiple-input, multiple-output)

c. (1 pt) How many real dimensions are there in this MIMO channel? How many complex dimensions?

d. (5 pts) Use your answer in (b) to design a transmitter and a receiver that will provide 3 independent
parallel channels. Show the transmit and receiver processing and specifically provide the entries
in any matrix used. Also show subchannel gains gn.

e. (1 pt) What is the best water-filling energy and corresponding number of bits for each of your
channels in the answer to part d?

f. (3 pts) Determine b̄ and b as well as R for your system in parts (d) and (e) and compare to your
answer in part (a). What does this tell you about partitioning in space?

4.22 Channel ID
A DMT system uses the channel ID method of section 4.7. Slobhouse Designs Inc. has decided that

1dB accuracy in SNR measurement is sufficient.

a. (1 pt) Slobhouse decided to measure gain so as to induce less than 1dB error in SNR. How many
training symbols (L) does SDI need?

b. (1 pt) If Slobhouse uses the same number (L) of symbols as in part a to do noise estimation,
comment on SDI’s noise estimation.

c. (3 pts) If L1 is the number of measurements to estimate the gain, and L2 is the number of
measurements to estimate the noise, approximately estimate the minimum L1 + L2 such that the
overall SNR error is less than 1 dB. There may be several solutions that are close in answer for
this part.
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4.23 Channel ID - Midterm 2000
Channel identification of Section 4.7 estimates channel SNR’s for a system with symbol rate 4 Hz on

a linear bandlimited AWGN channel. A periodic training signal is used. This problem estimates training
time.

a. How many symbols of training are necessary for an average gain-estimation error of .25 dB (so
that the variance of the gain estimation error is less than .25 dB away from the correct answer)?
How long will this be? (2 pts)

b. Suppose the FFT size is N = 8192, but that the channel length is less than ν = 640 sample
periods. If the gain-estimation distortion is distributed evenly in the time domain over all 8192
time samples, but the result was windowed to 640 time-domain samples, what would be the new
training time in symbol periods and in absolute time? (2 pts)

c. Suppose .25 dB noise estimation error is tolerable on the average (so that the standard deviation
of the noise variance estimate is less than .25 dB away from the true noise). What is the step
size of the steady-state FEQ-error based noise estimator, µ′, with unit energy transmitted on the
corresponding subchannel? (1 pt)

4.24 Avoiding SVD in Vector Coding.
Vector coding is used on the AWGN channel.

The receiver uses W = RXyR−1
yy , a MMSE estimate for X given y. Then

X = Wy −U E{UU∗} = RUU

a. (5 pts) Find W in terms of εn, λn, σ2 and F . Look at your expression for W . What is the equalizer
W doing to each sucbchannel? Why is this the same as minimizing MSE on each subchannel
individually?

b. (1 pt) Show how the VC receiver W could be implemented adaptively, without explicit knowledge
of P or F ∗ (pictorially and in few words).

Now, the hard part, implementing the transmitter without explicit knowledge of P or M .

c. (2 pts) Pretend x is a channel output and Y is a channel input. Write a vector AWGN expression
for x in terms of Y and u.
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d. (2 pts) What is the MMSE matrix equalizer, call it H , for Y given x?

e. (2 pts) If the receiver could, during training, communicate Y and SNRn over a secure feedback
path to the transmitter, show how the vector coding transmit matrix could be determined adap-
tively. (pictorially and in few words)

f. (1 pt) Do we need to do SVD to implement VC (is there an adaptive way to do this perhaps)?

4.25 TEQ Analysis in a DMT system - Salvekar’s Marathon
A causal IIR channel has sampled-time response D-transform 1

1−.9D .

The transmission system is an ISI-free DMT system only if ν goes to infinity. The goal is to reduce
the ISI, while making sure that the noise is not enlarged greatly. In general, it may be difficult to derive
the Rxy and Ryy matrices for a general IIR channel. However, we may have a program which solves the
TEQ problem for arbitrary FIR channels. So, instead of simply doing all the calculations by hand, we
will use the aforementioned programs. If the decay in the IIR channel is fast enough, we just need to
take enough taps to ensure that our channel is ’OK’.

a. (3 pt) Check if the results of your program are the same as the results of the example (choose an
FIR equivalent of the IIR channel, i.e truncate IIR channel into FIR channel with enough large
number of taps such that FIR approximation is VERY close to IIR channel). Report the output
of your programs in the form of Rxy, Ryy, w,and b.

(b) ∼ (h) Convert your program to find the PSD of the distortion. Note, that while your old
program may not have computed which frequency bins were actually used, in this case, we need to
know which bin is used. This means that the program best uses the fft instead of eig subroutines of
matlab, since we are not sure which frequency bin corresponds to which eigenvalue. Furthermore,
taking the eigenvalue decomposition of large matrices is very time consuming, especially when we
know the eignevectors. For the following problems Γ = 0.

b. (1 pt) First, write an expression for the output of the channel after the teq. This should be in
terms of P (D), W (D), X(D) and N(D).

c. (2 pt) Now, suppose the first ν + 1 are the ones that the DMT system is synchronized with(i.e.
the rest of the taps are ISI). Write an expression for the ISI+noise. Call the first ν + 1 taps of
P (D) ·W (D) as H ′(D). The final form of the answer should be: Err(D) = I(D)X(D) + N ′(D),
where N ′(D) is the noise through the system, and I(D) is a function of H ′(D).

d. (2 pt) Prove that for a single pole P(D), P(D) = ( 1
1−aD ), the I(D) will eventually go as c ∗ an.

When does this behavior begin?

e. (2 pt) If your noise and ISI are uncorrelated, what is the PSD of the error (write it in terms of D
transforms)? What is this in the frequency domain, See(e

jw)?

f. (2 pt) In a DMT program, we need to specify the noise at each discrete frequency. We want to
approximate the noise power in each bin by the sampled PSD. Write a program that will do this in
matlab. The inputs into this program should be Ēx, σ2, I(D),and W (D). As a check, let Ēx = 1,
σ2 = .5, N=10, I(D) = .3D4 + .1D5, W (D) = 1+ .9D. Using fft can make this very simple. Please
present your values.

g. (3 pt) Now, change your DMT program so that it takes in the (sampled) error spectrum which we
can get from the program in (f) as an argument. The DMT program will now do waterfilling Find
b̄ for an Ēx = 1, N=10, P(D)=1+.5D, and See(e

jw)| 2∗pi∗k
N

= |P [k]|2, where See(e
jw) is the power

spectrum of the error sequence and P[k] is the fft of the pulse response(i.e, what is b̄ if the PSD of
error is the same as the PSD of pulse response (=P (ejw)| 2∗pi∗k

N

)? ).
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h. (2 pt) Putting (f) and (g) together:
For the following parameters, what is the b̄ in the DMT system? Choose the same setup as in
example 10.6.1. Now, with ∆ = 0, let L=4, ν = 3. Sweep N until we reach asymptotic behavior.
Plot b̄ vs. N. Also, do the same with the unequalized channel, remembering to include the error
(i.e, we do not have TEQ, but still have the same ν for cyclic prefix!).

i. (1 pt.) Do (h) with Ēx=1000. What does this tell you about the teq?

4.26 DMT Spectra
This problem concerns the spectrum of a DMT signal. The transmit signal will be assumed to be

periodic with period T .

a. (2 pts) Show that the frequency spectrum of this transmit DMT signal is a sum of impulses.

b. (3 pts) Show that multiplying the periodic transmit signal x(t) by a window function w(t) that has
the value 1 for 0 ≤ t ≤ T and is zero elsewhere generates the non-periodic DMT signal studied in
Section 4.4. Compute the spectrum of this new signal from the spectrum of the original periodic
signal and the spectrum of the window.

c. (1 pt) Compare the spectrum of part (b) for two situations where ν > 0 and ν = 0.

d. (2 pts) Suppose a duplex channel has signals traveling in opposite directions on the same media.
The designer wishes to separate the two directions by allocating different frequency bands to the
two DMT signals, and separating them by lowpass and highpass filtering. Can you see a problem
with such a duplexing approach? If yes, what is the problem?

4.27 Isaksson’s Zipper
For the EPR6 channel (1 + D)4(1−D),

a. (1 pt) Find the minimum length cyclic prefix to avoid inter-tone interference in DMT.

b. (2 pts) Find the minimal length of the cyclic suffix in terms of both channel length ν and channel
end-to-end delay δ in sampling periods to ensure that both ends have symbols aligned for both the
case of no timing advance and with timing advance.

c. (2 pts) Do the receiver or transmitter need any lowpass, bandpass, or highpass analog filters to
separate the two directions of transmission (assuming infinite precision conversion devices)? Why
or Why not?

d. (2 pts) Suppose two different systems with at least one side co-located (i.e., the transmitter and
receiver for one end of each of the channels are in the same box). The two signals are added together
because the channel wires “touch” at the co-located end. Could Zipper have an advantage in this
situation? If so, what?

4.28 Kasturia’s Block DFE
Subsection 4.6.7 describes the so-called Block DFE for channel partitioning. This problem investi-

gates the improvement for this guardband-less transmission method for the 1 + .9D−1 channel of the
notes. Use all parameter values as always for this channel, except that we will assume this channel is
causal and 1 + .9D.

a. (2 pts) Find the 8 × 8 matrix P̂ for N = 8 with the BDFE, and its associated SVD for vector
coding.

b. (2 pts) Using water-filling for loading, what is the SNR for this system of parallel channels?
Compare to VC and DMT.

c. (2 pt) Draw a picture of the receiver for the BDFE in this case and indicate where the extra
complexity enters.
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d. (2 pts) Kasturia found a way in 1988 to derive a Tomlinson-like precoder for this channel. Explain
essential features of such a precoder and why it might be difficult to implement. Can you state
why the BDFE might be undesirable for partitioning?

4.29 TEQ Design for the 1/(1 + 0.5D) Channel
For the 1/(1 + .5D) channel, with white input Ēx = 1, AWGN with N0

2 = .04, and T ′ = 1. Force
B(D) to have squared norm 4/3 with a 3-tap TEQ.

a. (4 pts) Find the best B(D) with MMSE design for ν = 1 and ν = 2.

b. (2 pts) Find the corresponding MMSEs in part a.

c. (2 pts) Find the corresponding TEQ’s (W (D)) for part a.

d. (2 pts) Compute the unbiased channel for each W (D) and corresponding distortion energy per
sample.

e. (4 pts) Using Γ = 3 dB, find SNRdmt for this equalized channel with N = 8. Repeat for large N
to find the limiting value of the SNRdmt for the ν = 1 case. Find also then the largest possible
margin for b̄ = 1.
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