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Chapter 5

Generalized Decision Feedback
Equalization

Transmit-signal spectrum optimization can simplify the receiver of QAM/PAM transmission systems
while sometimes allowing performance to approach the fundamental limit of capacity. Perhaps not
suprisingly, the optimized transmit spectrum is the same as with multichannel transmission in Chapter
4. However, the construction of the transmit symbol sequence is different, as is its phase. The spectrum,
symbol rate, and carrier frequency for each disjoint band in water-filling must independently carry a
separate transmit-optimized QAM (or PAM if baseband) signal for the best performance to be achieved.

Section 5.1 studies mutual information and innovations and then introduces the so-called “CDEF”
result that suggests that a minimal number of MMSE-DFEs with appropriate input selection can also be
a canonical transmission structure. Section 5.2 investigates some details in the implementation of such
a canonical structure and cautions against misinterpreting the CDEF result. Sections 5.3 investigates a
general matrix-block or cyclostationary-channel model and the associated canonical channel construction,
discovering the Generalized DFE. Section 5.4 then shows how the usual finite-length MMSE-DFE must be
altered to attain canonical performance levels, essentially reducing to a periodic set of DFE coefficients
with period equal to the packet length when the channel is stationary. Such a packet of symbols is
analogous to the block-of-samples symbol of multichannel. There are an infinite number of such periodic
DFE structure’s that all have the same performance. A very special case of the periodic packet DFE
that re-uses the cyclic prefix of DMT leads to the Cyclic DFE of Section 5.4, from which the relationship
of GDFE transmission to multicarrier transmission becomes clear. Section 5.5 then shows that Chapter
4’s Vector Coding, and in particular the special case of VC known as DMT, is the simplest and most
canonical form of the GDFE. Section 5.6 shows that as block lengths tend to infinity, the CDFE tends to
a minimum-number-of-members set of the usual DFEs of Chapter 3 if the channel is stationary. Section
5.7 generalizes all equalization results to a block channel with block intersymbol interference where no
guard period is necessary and essentially unifies all the DFE theories into a very general format and
approach.
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5.1 Information Theoretic Approach to Decision Feedback

Chapter 3’s signal-to-noise ratio and filter settings for the MMSE-Decision Feedback Equalizer also
follow from some basic information-theoretic results for Gaussian sequences. Annex A contains some
definitions of information measures that this chapter uses to establish said information-theoretic approach
to DFEs. Section 5.1.1 uses a few basic information measures of entropy and mutual information
for Gaussian sequences, particularly that MMSE estimation is fundamentally related to conditional
entropy for jointly Gaussian stationary sequences. Entropy is a generalization of data rate, while mutual
information represents a reduced data rate associated with the transport of a symbol sequence over a
distorted channel. Combination of the MMSE results with the information measures then simply relate
the “CDEF” result of decision feedback equalization in Section 5.1.2, which suggests that good codes
in combination with an appropriate (set of) DFE(s) can reliably allow the highest possible transmission
rates, even though the receiver is not MAP/ML. Such a result is surprising as equalization methods as
originally conceived are decidely suboptimal, but with care of the input spectrum choice can be made
to perform at effectively optimum, or “canoncial” levels.

5.1.1 MMSE Estimation and Conditional Entropy

Given two complex jointly Gaussian random variables, x and y, the conditional probability density px/y

is also a Gaussian density and has mean E[x/y] equal to the MMSE estimate of x given y. (This result
is easily proved as an exercise by simply taking the ratio of px,y to py, which are both Gaussian with
the general N -complex-dimensional (2N real dimensions) form - see Problem 5.7) The Gaussian vector

distribution is 1/(πN |Rxx|)e−(x−ux)Rxx
−1(x∗−u∗

x), where Rxx is the covariance matrix and ux is the
mean.) The entropy (see Appendix A) of a complex Gaussian random variable is

Hx = log2(πeEx) , (5.1)

where Ex is the mean-square value of x. Thus, the conditional entropy of x given y is

Hx/y = log2(πeσ2
x/y) . (5.2)

Entropy can be normalized to the number of real dimensions and complex random variables have the
same variance in both real dimensions, which is 1/2 the value of the complex variance. Thus, H̄x =
1
2 · log2(2πeĒx) whether x is real or complex. These results generalize to jointly N̄ -complex-dimensional
Gaussian random vectors (so N = 2N̄ real dimensions) as

Hx = log2{(πe)N̄ |Rxx|} (5.3)

and
Hx/y = log2{(πe)N̄ |R⊥

x/y |} (5.4)

respectively, where R⊥
x/y = Rxx − RxyR−1

yyRyx is the autocorrelation matrix of the error associated

with the vector MMSE estimate of x from y. As always R̄xx = 1
N · Rxx. Again, per-dimensional

quanties are found by dividing by the number of real dimensions N = 2N̄ : H̄x = 1
2

log2{(πe)|Rxx|1/N̄}.
If x = x, i.e., a scalar, then Rxx = 2Ēx in the entropy formula with N̄ = 1 and all per-dimensional
results are consistent.1

1For the interested in alternative expressions (that provide the same entropy): If x is real, then Hx =
1
2

log2

[
(2πe)N |Rxx|

]
or

H̄x =
1

2N
log2

[
(2πe)N · |NR̄xx|

]
(5.5)

=
1

2
log2

[
(2Nπe) · |R̄xx|1/N

]
, (5.6)

which checks with one-dimensional formule. If x is complex, then Hx = log2

[
(πe)N̄ |Rxx|

]
or

H̄x =
1

2N̄
log2

[
(πe)N̄ · |2N̄ · R̄xx|

]
(5.7)
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For stationary Gaussian sequences, the chain rule of entropy allows computation of the entropy of
a Gaussian sequence. The chain rule for a Gaussian random vector x = [xk, xk−1, ..., x0] is

Hx = Hxk/[xk−1,...,x0] + Hxk−1/[xk−2,...,x0] + ... + Hx1/x0
+ Hx0

=

k∑

n=0

Hxn/[xn−1,...,x0] . (5.10)

(Hx0/−1
∆
= Hx0

.) The first k terms in the sum above are conditional entropies that each equal the
logarithm of πe times the MMSE associated with prediction of a component of x based on its past
values. The entropy of a stationary Gaussian sequence is defined by the limit of the entropy of the
vector [xk, ..., x0], normalized to the number of dimensions:

HX(D) = lim
k→∞

1

k + 1

k∑

n=0

Hxn/[xn−1,...,x0] bits/complex dimension. (5.11)

For an infinite-length stationary sequency, essentially all the terms in the sum above must be the same,
so

HX(D) = log2 [(πe)Sx] , (5.12)

where Sx is the MMSE associated with computing xk from its past, which MMSE linear prediction can
be recognized as monic causal V (D) = A(D) ·X(D) where A(D) = 1 + a1D + a2D

2 + ... so the product
corresponds to vk = xk + a1 · xk−1 + a2 · xk−2 + ..... Then, the mean-square prediction error is E[|vk|2],
which is the time-zero value of the autocorrelation function

Rvv(D) = A(D) · Rxx(D) · A∗(D−∗) . (5.13)

For Gaussian processes, the MMSE estimate is linear, and is best found by canonical factorization
(presuming the Paley-Wiener criterion is satisfied for the process) of its autocorrelation function:

Rx(D) = Sx ·Gx(D) ·G∗
x(D−∗) , (5.14)

as in Chapter 3, where Sx is a positive constant and Gx(D) is causal, monic, and minimum phase. The
time-zero value of Rvv(D) is then found as

E[|vk|2] = Sx · ‖A/Gx‖2 , (5.15)

which is minimized for monic causal choice of A when A(D) = 1/Gx(D). This MMSE linear prediction
filter is then shown in the lower filter in Figure 5.1. Sx is the MMSE. The output process V (D)
is generated by linear prediction, and is also Gaussian and called the innovations sequence. This
process carries the essential information for the process X(D), and X(D) can be generated causally
from V (D) by processing with Gx(D) to shape the power spectrum, alter the power/energy, but not
change the information content of the process, as in Figure 5.1. When X(D) is white, it equals its
innovations.

The mutual information between two random variables x and y is

I(x; y)
∆
= Hx −Hx/y (5.16)

= log2

(

Sx

σ2
x/y

)

= log2(1 + SNRmmse,u) (5.17)

= Hy −Hy/x (5.18)

= log2

(

Sy

σ2
y/x

)

, (5.19)

=
1

2N̄
log2

[
(πe)N̄ · (2N̄)N̄ · |R̄xx|

]
(5.8)

=
1

2
log2

[
(2N̄πe) · |R̄xx|1/N̄

]
(5.9)

which also checks with the one dimensional formulae. When a complex vector is modeled as a doubly-dimensional real
vector, one can see the two formulae for normalized entropy are the same as they should be.
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Figure 5.1: Ilustration of Linear Prediction and relation to entropy for stationary Gaussian process.

showing a symmetry between x and y in estimation, related through the common SNR that characterizes
MMSE estimation,

1 + SNRmmse,u =
Sx

σ2
x/y

=
Sy

σ2
y/x

. (5.20)

Equation 5.17 uses the unbiased SNR. For an AWGN, y = x + n, Sy = Ex + σ2 = Ex + σ2
y/x. Since

SNR
∆
= Ēx/σ2, then Equation 5.20 relates that

1 + SNRmmse,u = 1 + SNR , (5.21)

and thus
SNRmmse,u = SNR . (5.22)

Thus the unbiased SNRcharacterizing the forward direction of this AWGN channel is thus also equal to
the unbiased SNR (SNRmmse,u) in estimating the backward channel of x given y, a fact well established
in Chapter 3. The result will extend to random vectors where the variance quantities are replaced by
determinants of covariance matrices as in the next subsection.

5.1.2 The relationship of the MMSE-DFE to mutual information

In data transmission, the largest reliably transmitted data rate for a given input sequence covari-
ance/spectrum is the mutual information between the sequence and the channel output sequence (see
Chapter 8). This result presumes 1-shot maximum-likelihood detection after observing the entire output
sequence Y (D) for the entire input sequence X(D). For the ISI channel, this mutual information is

Ī(X(D); Y (D)) = H̄X(D) − H̄X(D)/Y (D) . (5.23)

The entropy of a stationary Gaussian sequence is determined by the innovations process, or equivalently
its MMSE estimate given its past, thus (5.23) becomes

Ī(X(D); Y (D)) = H̄xk/[xk−1,...] − H̄xk/Y (D),[xk−1,...] (5.24)

=
1

2
· log2(πeSx)− 1

2
· logx(πeσ2

MMSE-DFE) (5.25)

=
1

2
· log2(SNRmmse-dfe) (5.26)

=
1

2
· log2(1 + SNRmmse-dfe,u) . (5.27)
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Figure 5.2: MMSE estimation problem associated with I(X(D); Y (D)) – the same as the MMSE-DFE.

The main observation used in the last 3 steps above is that the conditional entropy of xk, given the entire
sequence Y (D) and the past of the sequence xk exactly depends upon the MMSE estimation problem
that the DFE solves. Thus the variance associated with the conditional entropy is then the MMSE of
the MMSE-DFE. This result was originally noted by four authors2 and is known as the CDEF result
(the CDEF result was actually proved by a more circuitous route than in this chapter, with the shorter
proof being first shown to the author by Dr. Charles Rohrs of Tellabs Research, Notre Dame, IN).

Lemma 5.1.1 (CDEF Result) The unbiased SNR of a MMSE-DFE is related to mutual
information for a linear ISI channel with additive white Gaussian noise in exactly the same
formula as the SNR of an ISI-free channel is related to the mutual information of that channel:

SNRmmse-dfe,u = 22Ī − 1 , (5.28)

where the mutual information I is computed assuming jointly Gaussian stationary X(D) and
Y (D), and only when the MMSE-DFE exists.
Proof: Follows development above in Equations (5.24)-(5.27).QED.

The CDEF result has stunning implications for transmission on the AWGN channel with linear ISI: It
essentially states that the suboptimum MMSE-DFE detector, when combined with the same good codes
that allow transmission at or near the highest data rates on the ISI-free channel (see Volume II, Chapter
8), will attain the highest possible data rates reliably. This result is the same as the infinite-dimensional
MT result of Chapter 4, so another equally good transmission system has apparently been found. In
all cases, the form of the mutual information used depends on Gaussian X(D). Since a Gaussian X(D)
never quite occurs in practice, all analysis is approximate to within the constraints of a finite non-zero

gap, Γ > 0 dB as always in this Chapter, and one could write b̄ = 1
2

log2

(

1 +
SNRmmse-dfe,u

Γ

)

≤ Ī

when the DFE exists. The equality holds when the gap is 0dB.
Figure 5.2 depicts the estimation problem associated with I(X(D); Y (D)). This particular inter-

pretation shows that the MMSE-DFE structure, when it exists, can be used to approach capacity with
Γ → 0 dB with the same codes that are used to approach capacity on the AWGN. This implies the
MMSE-DFE could then be canonical, especially if the water-filling energy distribution were used by the
transmitter to maximize Ī(X(D); Y (D)) to capacity.

2“MMSE DFE and Coding: Parts I and II,” IEEE Transactions on Communications, October 1995, pp. 2582-2604.
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Figure 5.3: CDEF canonical equivalent AWGN channel to MMSE-DFE where codes with gap Γ from
capacity on the AWGN channel can be re-used to have the same gap to capacity on the ISI channel.

Definition 5.1.1 (Canonical Performance) The performance of a transmission design is
said to be canonical if the signal-to-noise ratio of the equivalent AWGN characterizing the
system is 22Ī − 1 when the gap is Γ = 0 dB.

Clearly then, the MMSE-DFE is canonical when it exists. The mutual information of a set of independent
parallel channels is the sum of the mutual information of each of the channels (see the Appendix). Thus,
all multichannel systems are canonical if partitioned so that subchannels are independent and free of
intersymbol-interference.

Theorem 5.1.1 (Canonical DMT/VC) For any and all block lengths and any input dis-
tribution of energy among the independent subchannels of DMT or VC, DMT and VC are
both canonical transmission systems.
Proof:. Follows trivial from sum of mutual information of the subchannels equals the mutual
information of the entire channel. QED.

Clearly, then MT and MM are also canonical as the infinite block-length limits of DMT and VC respec-
tively.

However, there are restrictions on the above result that were not made explicit to simplify the
developments. In particular, the designer must optimize the transmit filter for the MMSE-DFE to get
the highest mutual information, as in Chapter 4. This process can, and almost always does, lead to
unrealizable filters. Happily, there are solutions, but the resulting structures are not the traditional
MMSE-DFE except in special cases. Sections 5.2 and 5.3 study the necessary modifications of the DFE
structure. Section 5.4 finds the exact mirror image(s) of DMT.

5.1.3 Canonical Channel Models

The symmetry of mutual information between X(D) and Y (D) suggest two interpretations of the re-
lationship between X(D) and Y (D), known as the canonical channel models of Figure 5.4. As in
Chapter 4, r(t) = p(t) ∗ p∗(−t) (where any minor transmit and receive analog filtering has been ab-
sorbed into the channel impulse/pulse response, while any innovations filtering remains separate), and
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Figure 5.4: Canonical Channel models for same mutual information.

R(D) =
∑

k r(kT ) ·Dk. Y (D) again corresponds to the overall channel shaping at the sampled matched-
filter output.

Definition 5.1.2 (Canonical Channel) A canonical channel is one in which the linear
function or matrix characterizing ISI ( or more generally cross-dimensional interference as
occurs from Sections 5.3 onward) is equal to the autocorrelation function (or matrix) of the
additive independent interference. Interference can be Gaussian noise, or some combination
of additive Gaussian noise and residual ISI.

Canonical channels can lead to canonical performance with the proper design of receiver. There are two
canonical channels of interest in this chapter:

The forward canonical model has

Y (D) = R(D) ·X(D) + N ′(D) , (5.29)

where N ′(D) is the Gaussian noise at the output of the matched filter with autocorrelation function
N0

2
R(D). Thus the noise power spectral density and the channel filtering have the same shape R(e−ωT ).

The first term on the right in (5.29) is the MMSE estimate of Y (D) given X(D) and N ′(D), the MMSE,
and X(D) are independent. The backward canonical model is

X(D) = W (D) · Y (D) + E(D) . (5.30)

where (modulo scaling by ‖p‖−1) W (D) is the MMSE-LE of Chapter 3 and E(D) is the MMSE error
sequence for the MMSE-LE. The first term on the right in (5.30) is the MMSE estimate of X(D) given
Y (D). The shape of the equalizer and the error-sequence’s power spectral density are both Ree(e

−ωT ),
since R̄ee(D) = N0

2 /{‖p‖2 · Q(D) + N0

2 /(Ex‖p‖2)} = N0

2 ·W (D). Canonical channels always exhibit a
response with the same shaping as the power spectral density of the additive Gaussian noise.

It is relatively simple to construct DFE’s from canonical models: For the forward model, the receiver
processes Y (D) by the inverse of the anticausal spectral factor of R(D) = (Sr · Gr(D) · G∗

r(D
−∗) to

obtain
Y (D)

Sr ·G∗
r(D

−∗)
= Gr(D) ·X(D) + N ′′(D) (5.31)

where N ′′(D) is white Gaussian noise with energy per dimension N0

2
/Sr . Since Gr(D) is monic, causal,

and minimum-phase, a DFE can be readily implemented. This DFE is the ZF-DFE of Chapter 3. A
forward canonical model will always produce a ZF-DFE. The receiver is not optimum in general mainly
because the DFE is not optimum – furthermore, the suboptimum DFE implied is not of highest SNR
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because the DFE is based on a model that is for the problem of estimating Y (D) from X(D). The DFE
from the backward model is the MMSE-DFE. Noting that

R(D) +
1

SNR
= ‖p‖2 ·

[

Q(D) +
1

SNRmfb

]

= γ0‖p‖2 ·G(D) ·G∗(D−∗) , (5.32)

with S0 = γ0 · ‖p‖2, then

Wff (D) =
1

S0 ·G∗(D−∗)
. (5.33)

Then also the action of the feedforward filter W (D) on the sampled matched-filter output Y (D) is

Y (D)

S0 ·G∗(D−∗)
= G(D) ·X(D) −G(D) ·E(D) = G(D) ·X(D) −E′(D) . (5.34)

where E′(D) is the MMSE sequence associated with the MMSE-DFE and is white (and Gaussian when
X(D) is Gaussian) and has energy per dimension N0

2
/S0. The extension of canonical models to the case

of finite-length packets allows a generalization of the DFE later in this chapter.
The forward and backward canonical channel models have the same mutual information between

input and output. In the backward model, Y (D) is considered the input, and X(D) is the corresponding
output, with E(D) as the noise. Both channels have the same maximum b̄ of Ī(X(D); Y (D)), and it
is the backward channel that describes the receiver’s action. The operation of decoding or slicing in
an actual receiver that uses previous decisions to remove the effort of the causal monic Gr(D) or G(D)
through decision feedback in (5.33) or (5.34) is information lossy in general, confirming that DFE’s are
not optimum ML detectors. However, for the backward channel only, the SNRmmse-dfe,u is equal to

22Ī(X(D);Y (D)) − 1, which is the maximum SNR value for the additive white noise/distortion channel
created by the MMSE-DFE. Thus, the information loss in the MMSE-DFE does not cause a reduction in
achievable data rate and indeed a code with a given gap to capacity on the AWGN channel would be just
as close to the corresponding capacity for a bandlimited channel, even when the suboptimum-detector
MMSE-DFE is used. This characteristic occurs only for backward canonical models.
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5.2 Construction of the Optimized DFE Input

The CDEF result shows a relationship between mutual information Ī(X(D); Y (D)) and SNRmmse-dfe,u
for an AWGN equivalent of the ISI-channel that is the same as the relationship between Ī(x; y) and SNR
for the (ISI-free) AWGN channel. Thus, those same good codes that bring performance to within gap Γ
of capacity on the AWGN channel can then be applied (ignoring error propagation) to a MMSE-DFE
system to achieve the same gap from the ISI-channel’s capacity.

However, the MMSE-DFE so far has used an i.i.d. input sequence xk, which does not usually
maximize Ī(X(D); Y (D)). Maximization of Ī(X(D); Y (D)) in Chapter 4 defines a best water-filling
(WF) spectrum. This WF power spectrum maximizes Ī(X(D); Y (D)). A designer might then assume
that construction of a transmit filter for the MMSE-DFE with the water-filling power-spectral density
would then maximize SNRmmse-dfe,u = 22Ī(X(D);Y (D))− 1. This is correct if the measure of the water-

filling band is equal to the Nyquist bandwidth, i.e. |Ω∗| = 1/T , or equivalently, all frequencies (except a
countable number of infinitessimally narrow notches) must be used by water-filling. This rarely occurs
by accident3, and so the designer must be careful in selecting the symbol rates and carrier frequencies
of a minimum-size set of QAM/MMSE-DFE channels that can be made almost equivalent4.

It is important for the reader to distinguish coding, which here is restricted to mean the use of codes
like trellis codes, block codes, turbo codes, etc. (see Chapters 10 and 11) on an AWGN channel from the
concept of spectrum design (sometimes often also called “coding” in the literature in a more broad use of
the term “coding”). This chapter focuses on spectrum or input design and presumes use of good known
codes for the AWGN channel in addition to the designed spectrum. The two effects are independent.
This chapter investigates the designed spectra or input to channels. Volume II investigates codes.

This section address optimization of the transmit signal, which involves optimization of the trans-
mit filter(s), symbol rate(s), and carrier frequency(ies). Subsection 5.2.1 begins with a review of the
discrete-time Paley-Wiener (PW) criterion, which is necessary for a canonical factorization to exist for a
random sequence’s power spectral density. With this PW criterion in mind, Subsection 5.2.2 maximizes
SNRmmse-dfe,u over the transmit filter to find a desired transmit power spectral density, which has a

water-fill shape when it exists. Subsections 5.2.3 then studies the choice of symbol rates, and possibly
carrier frequencies, for a continuous-time channel so that the PW criterion will always be satisfied. Such
optimization in these 3 subsections for different increasingly more general cases enables implementation
of a countable set realizable transmit filters in each disjoint continuous-time/frequency water-filling band
of nonzero measure. Subsection 5.2.5 culminates in the definition of the optimum MMSE-DFE.

5.2.1 The Discrete-Time Paley-Wiener Criterion and Filter Synthesis

Theorem 5.2.1 (Discrete-Time Paley Wiener) The canonical factorization Rxx(D) =
Sx ·Gx(D) ·G∗

x(D−∗) of the power spectral density of a stationary random sequence xk exists
if and only if

∫ π/T

−π/T

| lnRxx(e−ωT )|dω <∞ . (5.35)

sketch of proof: The integral condition is trivial true when Rxx(D) = Sx ·Gx(D) ·G∗
x(D−∗)

is inserted with D = e−ωT and the integral evaluated over one period to obtain ln(Sx) <∞.
Conversely, if the integral is finite, then the integrand can be repeated into a Fourier series
of period T that has the same value of ln |Rxx(eωT )| over all periods. The Fourier series
coefficients essentially then define Gx(D)’ coefficients. QED.

The factor Gx(D) is monic, causal, and minimum phase. There exists a white innovations process vk

with energy per sample Ev = Sx, and autocorrelation function Rvv(D) = Sx. The process X(D) can be

3Some designers of single-carrier QAM systems often err in assuming it does occur by accident only to find their system
does not perform as expected.

4”almost” because error propagation or precoder loss always reduces even the best-designed DFE systems to some small
amount of loss.
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constructed from V (D) according to

X(D) = V (D) ·Gx(D) . (5.36)

Any process so constructed can be inverted to get the innovations process by (even when Gx(D) has
zeros on the unit circle or equivalently the spectrum has a countable number of “notches”)

V (D) =
X(D)

Gx(D)
(5.37)

as shown in Figure 5.1. There is a causal and causually invertible relationship between X(D) and V (D)
that allows realizable synthesis or implementation of the filters relating the two random sequences.
Random sequences with power spectra that do not satisfy the PW criterion can not be so constructed
from a white innovations sequence. As shown in Subsection 5.1.1, the innovations sequence determines
the information content of the sequence. In data transmission, the innovations sequence is the message
sequence to be transmitted.

For the MMSE-DFE in Chapter 3, the sequence X(D) was white, and so equals its innovations,
X(D) = V (D).

EXAMPLE 5.2.1 (White Sequence) A real random sequence with Rxx(D) = Ex satis-
fies the Paley Wiener Criterion trivially and has innovations equal to itself X(D) = V (D),
Gx(D) = 1. This entropy is H̄x = .5 log2(2π · e · Ēx) bits/dimension, and Hx = log2(π · e · Ex)
bits per symbol if this random sequence is complex. The spectrum is shown in Figure 5.5(a).

EXAMPLE 5.2.2 (AMI Sequence) A sequence with Rxx(D) = −1D−1 + 2−D clearly
factors into Rxx(D) = 1 · (1−D)(1−D−1) and thus must satisfy the Paley Wiener Criterion.
The innovations sequence is V (D) = X(D)/(1 − D) and has unit energy per sample.5 The
energy per sample of X(D) is rxx,0 = 2. The energy per dimension is Ēx = 1. The entropy
is H̄x = .5 log2(2π · e · Ēx) bits/dimension – the same as Example 5.2.1, even though the
spectrum in Figure 5.5(b) is different.

The last example illustrates what is obvious or thought about linear prediction: the innovations never
has energy/sample greater than the sequence from which it is derived.

EXAMPLE 5.2.3 (Ideal Lowpass Process) A sequence with (ζ < 1 is a positive con-
stant)

Rxx(e−ωT ) =

{
1 |ω| < ζ π

T
0 |ω| ≥ ζ π

T

(5.38)

does NOT satisfy the PW criterion and has power-spectral density shown in Figure 5.5(c).
This process cannot be realized by passing a white information sequence through a “brickwall
lowpass filter” because that filter is always noncausal even with aribtrarily large delay in
implementation. An approximatation of such a filter with a causal filter, which would lead
to a slightly different power spectral density, could satisfy the PW criterion. The designer
might better consider a new sampling rate of ζ/T , and the resulting new sampled random
sequence would then satisfy the PW criterion trivially as in Example 5.2.1, rather than incur
the complexity of such a filter.

When optimizing a transmit complex transmit filter, an adjustment to the real basis function of
Chapter 2 needs to occur. The reader may recall that the QAM basis functions from Chapter 2 were of
the form:

ϕ1(t) =

√

2

T
· ϕ(t) · cos(ωct) (5.39)

ϕ2(t) = −
√

2

T
· ϕ(t) · sin(ωct) , (5.40)

5This filter is marginally stable in that a pole is on the unit circle - however, the input to it has zero energy at this
location (DC).
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Figure 5.5: Illustration of two spectra that satisfy discrete PW in (a) and (b) while (c) does not satisfy
the PW criterion.

where ϕ(t) was real. When optimizing in later sections of this chapter, a complex basis function with
orthogonal real and imaginary parts may result. QAM transmission may be generalized to complex basis
functions, when needed, by instead generalizing the two basis functions in (5.40) to:

ϕ1(t) =

√

2

T
· φ1(t) · cos(ωct) (5.41)

ϕ2(t) = −
√

2

T
· φ2(t) · sin(ωct) , (5.42)

which correspond to a complex baseband transmit filter with

ϕ(t) = φ1(t) + φ2(t) , (5.43)

where φ2
1(t) + φ2

2(t) = 1 and have all energy below the frequency ωc.

5.2.2 Waterfilling and the Paley-Wiener Citerion

The mutual information Ī(X(D); Y (D)) is a function only of the power spectral densities of the processes
X(D) and Y (D) if they are Gaussian. It is thus perhaps too easy to maximize Ī(X(D); Y (D)) over the
power spectral density of X(D), thus producing a water-fill spectrum for the transmit filter, which
presumably processes a white (and “near-Gaussian”) message sequence.

Figure 5.6 shows the implementation of a transmitter that includes a digital filter φk (with transform
Φ(D)). This filter preceeds the modulator that converts the symbols at its output xk into the modulated
waveform x(t), typically QAM or PAM. The discrete-time filter input is vk, which now becomes the

message sequence. Recalling that q(t)
∆
= p(t) ∗ p∗(−t)/‖p‖2, the mutual information or maximum data
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Figure 5.6: MMSE-DFE system with digital transmit filter.

rate from Section 4.4.3 is

Ī(X(D); Y (D)) =
T

2π

∫ π/T

−π/T

log2

(

‖p‖2 · Ēv
N0

2

· |Φ(e−ωT )|2 ·Q(e−ωT ) + 1

)

dω . (5.44)

The transmit energy constraint is the Γ = 0dB-sum of data rates on an infinite number of infinitessimally
small tones:

T

2π

∫ π/T

−π/T

Ēv · |Φ(e−ωT )|2dω = Ēx . (5.45)

The maximization of Ī(X(D); Y (D)) is then achieved by classic water fill solution in

|Φ(e−ωT )|2 +
N0

2

Ēv · ‖p‖2 ·Q(e−ωT )
= K . (5.46)

As always, energy at any frequency ω must be nonnegative, so

|Φ(e−ωT )|2 ≥ 0 . (5.47)

There is a set of frequencies Ω∗ for which transmit energy is nonzero and for which the discrete-time
transmit filter output energy satisfies water-filling. The corresponding capacity is then

C̄ = max
‖Φ(e−ωT )‖2=1

Ī(X(D); Y (D)) . (5.48)

The measure of Ω∗ is again

|Ω∗| = T

2π

∫

Ω∗

dω . (5.49)

If |Ω∗| = 1, then a realizable transmit filter exists by the PW criterion. In this case, SNRmmse-dfe,u =

22C̄ − 1 and the MMSE-DFE transmission system with water-fill transmit power spectral density can
achieve, with powerful known AWGN-channel codes, the highest possible rates, so the MMSE-DFE in
this case only is effectively optimal or “canonical.” If the water-fill band does not have unit
measure, the transmitter is not realizable, and the MMSE-DFE is not optimal. The non-
unit-measure case is very likely to occur unless the sampling rate has been judiciously chosen. This
is the single most commonly encountered mistake of QAM/PAM designers who attempt to match the
performance of DMT systems in Chapter 5 - only in the rare case of |Ω∗| = 1 can this design work.

The continuous-time capacity in bits per second for a transmission channel where the symbol rate
has not yet been selected from Chapter 4 (Subsection 4.4.2) is (in bits/second)

C =
1

2π

∫

Ω∗

1

2
log2 (1 + Sx(ω) · g(ω)) dω , (5.50)
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Figure 5.7: Illustration of water-filling and transmit optimization for real baseband lowpass channel.

where Sx(ω) is the transmit power spectral density with total power constraint

Px =
1

2π

∫

Ω∗

Sx(ω)dω (5.51)

and g(ω) (in the continuous-time case) includes the effects of any continuous-time transmit filtering.
The continuous water-filling solution is

Sx(ω) = λ′ − 1

g(ω)
, (5.52)

where λ′ is determined from the power constraint in (5.51). Clearly this continuous capacity in bits per
second determines an upper attainable bound on the capacity of any discrete time approximation with
symbol rate 1/T . The next 3 subsections investigate the determination of best symbol rate(s) and best
corresponding carrier frequencies.

5.2.3 The baseband lowpass channel with a single contiguous water-fill band

The baseband lowpass channel has the transfer characteristic of Figure 5.7. The continuous-time waterfill
band Ω∗ is also shown. Clearly sampling of this channel at any rate exceeding 1/T ∗ = |Ω∗| should produce
a discrete-time channel with capacity

C̄(T < T ∗) = C · T , (5.53)

where the explicit dependency of C̄ in bits/dimension on T is shown in the argument C̄(T ). When the
channel is complex, then the relation is C̄(T < T ∗) = C · T/2. The capacity in bits/second remains
constant while the capacity in bits per symbol decreases with increasing symbol rate to maintain the
constant value C = ¯C(T )/T . At symbol rates below 1/T < 1/T ∗ = |Ω∗|, capacity C may not (and
usually is not) be achieved so

C̄(T > T ∗) ≤ C · T . (5.54)

To achieve the highest data rates on this lowpass channel with good codes, the designer would like to
choose 1/T ≥ 1/T ∗. However, the transmit filter is not realizable unless 1/T = 1/T ∗, so there is an
optimum symbol rate 1/T ∗ for which

SNRmmse-dfe,u(T ∗) = 22CT∗ − 1 . (5.55)
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Figure 5.8: Block diagram of optimized DFE system for the 1 + .9D−1 channel.

At this symbol rate only can the MMSE-DFE can achieve the best possible performance and indeed
match the MT (or DMT/VC) performance levels of Chapter 4. This example correctly suggests that
an ideal symbol rate exists for each channel with “PAM/QAM-like” transmission and a MMSE-DFE
receiver. For DMT/VC, any sampling rate 1/T ′ ≥ 1/T ∗ is feasible for implementation, but only 1/T ∗

is feasible for the MMSE-DFE approach.
For rates below capacity where a code with gap Γ > 1 is used, the continuous-time water-filling

can be solved with the transmit power Px reduced by Γ. This would produce a slightly lower optimum
symbol rate 1/T ∗

Γ ≤ 1/T ∗. This slightly lower symbol rate should then be used for transmission with
gap Γ, and the bit rate of the MMSE-DFE system would be

R =
b̄

T ∗
Γ

=
1

2T ∗
Γ

log2

(

1 +
SNRmmse-dfe,u(T ∗

Γ)

Γ

)

. (5.56)

Two examples are provided to illustrate the effects and terminology of symbol-rate optimization:

EXAMPLE 5.2.4 (1 + .9D−1 channel) The 1 + .9D−1 ISI-channel has been revisited of-
ten, and is again revisted here again with Ēx‖p‖2/N0

2 =10 dB. This channel corresponds
to the real baseband lowpass channel discussed above. The capacity in bits per real sam-
ple/dimension has been previously found in Example 4.4.1 to be C(T = 1) = 1.55 bits/dimension,
so that C = 1.55 bits/second with T = 1. This capacity corresponds to an overall MM SNR
of 8.8 dB, but could not be directly realized with a MMSE-DFE, which instead had an
SNRmmse-dfe,u = 8.4 dB with the symbol rate of of 1/T = 1. The optimum water-fill band

has width |Ω∗| = .88π (positive frequencies). Then

1/T ∗ = .88 . (5.57)

Thus, the capacity in bits/dimension for the system with optimum symbol rate is

C̄(T ∗) =
1.55

.88
= 1.76 bits/dimension . (5.58)

The resultant SNR is then

SNRmmse-dfe,u(T ∗) = SNR∗
mmse-dfe,u = 10.2 dB . (5.59)

This optimum MMSE-DFE at this new symbol rate is the only MMSE-DFE that can match
the MT system of Chapter 4 in performance (if there is no loss from error propagation or
precoding). The SNRmfb of 10 dB in previous invocations of this example is no longer
a bound unless the symbol rate is 1/T = 1 since that bound was derived for T = 1 and
needs rederivation if another symbol rate is used. For verfication, the capacity in bits/second
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Figure 5.9: Example channel.

is consistently at both sampling rates, but 1/T ∗ = .88 can be realized. The capacity in
bits/second remains

C =
.88

2
log2(1 + 101.02) =

1

2
log2(1 + 10.88) = 1.55 bits/second . (5.60)

EXAMPLE 5.2.5 (The “half-band” ideal lowpass channel) A brickwall lowpass chan-
nel has cut-off frequency .25 Hz as shown in Figure 5.9. Clearly the water-filling bandwidth
is Ω∗ = 2π(−.25, .25). The capacity is given as C = 2 bits per second for this channel. Thus,
at T ∗ = 2, then C̄(T ∗) = 4 bits/dimension and by the CDEF result, a MMSE-DFE with this
symbol rate will have performance given by SNRmmse-dfe,u(T ∗ = 2) = 22·4 − 1 ≈ 24 dB.

The MMSE-DFE in this case is clearly trivial and the equalized channel is equivalent to the
original ISI-free channel at this symbol rate.

Suppose instead, a designer not knowing (or not being able to know for instance in broadcast
or one-directional transmission) the channel’s Fourier transform or shape instead used T = 1
for a DFE with flat transmit energy. While clearly this is a poor choice, one could easily
envision situations that approximate this situation on variable channels. An immediate loss
that is obvious is the 3 dB loss in received energy that is outside the passband of the channel,
which in PAM/QAM is equivalent to roughly to .5 bit/dimension loss. This represents an
upper bound SNR for the MMSE-DFE performance.6 The mutual information (which is now
less than capacity) is approximately then

Ī(T = 1) ≈ Ī(T ∗ = 2)− .5

2
=

3.5

2
= 1.75 bits/dimension . (5.61)

The .5 bit/dimension loss in the numerator Ī(T ∗ = 2)− .5 = 1
2

log2(1 + SNR
2

) = 3.5 approx-
imates the 3 dB loss of channel-output energy caused by the channel response. More exactly

Ī(T = 1) = 1
4 log2

(

1 +
SNRmmse-dfe,u(T∗=2)

2

)

=1.746. Clearly, the channel has severe ISI

when T = 1, but the CDEF result easily allows the computation of the MMSE-DFE SNR
according to

SNRmmse-dfe,u(T = 1) = 22·1.75− 1 = 10.1 dB . (5.62)

6In fact, this upper bound can be very closely achieved for very long filters in MMSE-DFE design, which could be
verified by DFE design for instance according to the DFE program in Chapter 3.
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Figure 5.10: Margin difference (improvement) for optimized transmission over unoptimized MMSE-DFE
on a “half-band” channel.

439



The equalized system with T = 1 is equivalent to an AWGN with SNR=10.1 dB, although
not so trivially and with long equalization filters in this T = 1 case because ISI will be severe
and filter lengths will be very long.

The system with T = 1 then attempts to transmit some b̄(T = 1) with an SNR of 10.1 dB,
while the optimized system transmits b̄(T ∗ = 2) = 2b̄(T = 1) with SNR of 24 dB. The margin
for T = 1 is then for instance

γm(T = 1) = 10 · log10

(
22·1.75− 1

22b̄(T=1) − 1

)

= 10.1 dB− 10 · log10

[

22b̄(T=1) − 1
]

. (5.63)

For T ∗ = 2, the margin is

γm(T ∗ = 2) = 10 · log10

(
22·2 − 1

22b̄(T∗=2) − 1

)

= 24 dB− 10 · log10

[

24b̄(T=1) − 1
]

. (5.64)

The ratio of the margins for T = 1 and T ∗ = 2 is then plotted in Figure 5.10 as a function of
the number of bits per dimension. The difference decreases as the systems approach capacity,
meaning codes with smaller gap are used, but is always nonzero in this case because the
system with T = 1 essentially wastes 3 dB of bandwidth. Indeed, it is not possible for the
T = 1 system to transmit beyond 1.75 bits/second and is thus at best 3 dB worse than the
T ∗ = 2 system because half the energy is wasted on a channel band that cannot pass signal
energy. One could infer that at fixed Pe, the gap decreases with increasing b̄(T = 1) on the
horizontal access until the Γ = 0 dB limit is reached at 1.75 bps.

Some designers might attempt transmission with an approximation to the correct transmit
filter, thus regaining some of the minimum 3 dB energy loss when Γ = 0 dB. As the transmit
filter becomes more tight, it becomes difficult to implement - in the limit, such a filter is not
realizable because it does not meet the PW criterion. However, leaving T = 1, no matter
how complex the transmit filter, forces ISI and makes both transmitter and receiver very
complex with respect to using the correct T ∗ = 2. As the gap increases, the performance
difference is magnified between T = 1 and T ∗ = 2, so even a very good brickwall transmit
filter at T = 1 loses performance when Γ > 0. The transmit filter is simple flat passband
at T ∗ = 2. Also as the capacity/SNR increases, the curve in Figure 5.10 will show larger
difference at reasonable data rates, but more rapidly fall to again 3dB at the point where
T = 1 system achieves capacity with Γ = 0 dB. It is thus, very inadvisable design to use the
incorrect symbol rate from the perspectives of performance or complexity.

5.2.4 The single-band bandpass case

The channels of the previous subsection (5.2.3) were baseband (i.e., real one-dimensional) lowpass chan-
nels. A complex lowpass channel tacitly includes the effect of a carrier frequency. Figure 5.11 illustrates
the passband channel and the choice of best carrier (or “center”) frequency fc and then consequently
the best symbol rate 1/T ∗. Clearly, to select the optimum symbol rate, the QAM carrier frequency
must be in the center of the water-filling band. Any other choice of carrier frequency results in an asym-
metric use of water-filling band frequencies around DC, which means that the PW criterion will not be
satisfied.7 Thus, for the MMSE-DFE on a passband channel, the carrier frequency must be centered in
the water-filling band and the symbol rate is chosen to be the measure of the resulting (postive-frequency
for passband case) continuous-time water-filling band. Again, a gap Γ > 0 dB causes a slight decrease
in the water-fill band’s measure and will also alter the carrier/center frequency slightly (unless the band
is conjugate symmetric with respect to the choice of carrier/center frequency).

EXAMPLE 5.2.6 (V.34 Voiceband Modems) The International Telecommunications
Standardized v.34 modem, better known as the “28.8 kbps” modem uses optimized deci-
sion feedback equalization. This modem initially trains by using multitone transmission

7Note Carrierless AMPM (CAP) systems of Chapter 1 do not use a carrier, but have a “center” frequency. This center
frequency is optimized in exactly the same way as the carrier frequency in this subsection.
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Figure 5.11: Illustration of water-filling and transmit optimization for (“complex”) passband channel.
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Figure 5.12: Illustration of water-filling and transmit optimization for a general channel with more than
one passband.

technology, specifically 25 equally spaced tones are sent with fixed amplitude and phase at
the frequencies n(150Hz) where n = 1...25. The frequencies 900, 1200, 1800, and 2400 are
silenced, leaving 21 active tones for which the SNR’s are measured (and interpolated for
900, 1200, 1800, and 2400) Water-filling or other RA loading-like procedures determine an
optimum bandwidth, which is reduced to a choice of symbol rate and carrier frequency for
QAM. The choices for symbol rate and carrier must be from the attached table:
1/T ∗ fc1 fc2

2400 1600 1800
2743 1646 1829
2800 1680 1867
3000 1800 2000
3200 1829 1920
3429 1959 1959

Only the symbol rates in the table may be selected and after one is selected, only two carrier
frequencies are then allowed as denoted in the same row. there is never more than one disjoint
WF band, and examination of the choices with respect to optimum has revealed a loss of less
than 1 dB. Voiceband modems rarely have M > 1, so the issue of multiple band MMSE-DFE
is not addressed in v.34. This special case of a single band being sufficient does not extend
to DSL for instance, see Example 5.2.5.

5.2.5 The general multiple band case and the Optimum MMSE-DFE

Examples 5.7 and 5.11 were overly simple in that a single band of transmission was presumed. On ISI
channels that exhibit notches (i.e., multipath fading or bridged-taps, multiple antennae, etc.) and/or
band-selective noise (crosstalk, RF noise, etc.), Ω∗ may consist of many bands. This subsection addresses
these more practical cases to find a minimal set of MMSE-DFEs that can be analyzed as a single system.

Practical ISI-channels often have water-filling solutions that consist of a countable number of band-
pass (and perhaps one lowpass) water-fill regions, which have nonzero transmit energy over a continuous
set of frequencies within each region. To satisfy the PW criterion, the MMSE-DFE then must become
multiple MMSE-DFE’s, each with its own independent water-filling solution. This situation appears
in Figure 5.12 for 3 disjoint water-fill regions. Correspondingly, there would be 3 MMSE-DFE’s each
operating at an SNRmmse-dfe,u for its band and at a data rate Ri for each band.

An overall SNR can be computed in this case of multiple bands. An overall symbol rate, presuming
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carriers centered in each band, is defined

1

T ∗ =

M∑

i=1

1

T̄ ∗
i

, (5.65)

where T̄ ∗
i = (1 or 2) · T ∗

i for complex passband and real baseband respectively. The SNR in each band
is SNRi(T

∗
i ). Each band has data rate

Ri =
1

T̄ ∗
i

· log2

(

1 +
SNRi(T

∗
i )

Γ

)

. (5.66)

Then, the overall data rate is in bits per second is

R =

M∑

i=1

Ri (5.67)

=

M∑

i=1

Ri =

M∑

i=1

1

T̄ ∗
i

· log2

(

1 +
SNRi(T

∗
i )

Γ

)

(5.68)

=
T ∗

T ∗ log2

M∏

i=1

(

1 +
SNRi(T

∗
i )

Γ

)1/T̄∗
i

(5.69)

=
1

T ∗ log2

M∏

i=1

(

1 +
SNRi(T

∗
i )

Γ

)T∗/T̄∗
i

(5.70)

=
1

T ∗ log2

(

1 +
SNR∗

mmse-dfe,u(T ∗)

Γ

)

(5.71)

=
b∗

T ∗ , (5.72)

where

SNR∗
mmse-dfe,u

∆
= Γ ·

{[
M∏

i=1

(

1 +
SNRi(T

∗
i )

Γ

)T∗/T̄∗
i

]

− 1

}

(5.73)

and

b̄∗
∆
=

1

2
· log2

(

1 +
SNR∗

mmse-dfe,u

Γ

)

bits/dimension . (5.74)

When all symbol rates and carrier frequencies are optimized, clearly this SNR is the same as MM
and MT systems of Chapter 4 because the rates/capacities for each water-filling band are the same.
However, the MMSE-DFE now is often many MMSE-DFE’s, and each has a distinct variable carrier
frequency and symbol rate. The reader is cautioned against the statements often encountered by as-yet-
uninformed engineers who misinterpret the CDEF result to mean that a “single-carrier system performs
the same as a multicarrier system” – misquoting the CDEF result. Such a statement is only true in the
simplest cases where a single water-fill band is optimum, and the symbol rate and carrier frequencies
have been precisely chosen as a function of the specific channel’s water-filling solution and coding gap.
Otherwise, multicarrier will outperform single carrier – and further, single carrier can never outperform
multicarrier.

Lemma 5.2.1 (The Optimum MMSE-DFE) The optimum MMSE-DFE is a set of M
independent DFE’s with M equal to the number of disjoint water-filling bands. Each of the
MMSE-DFE’s must have a symbol rate equal to the measure of a continuous water-fill band
1/T ∗

m = |Ω∗
m| and a carrier frequency where appropriate set exactly in the middle of this band

(fc,m = fmax,m +fmin,m/2 ∀ m = 1, ..., M). The number of bits per dimension for each such
MMSE-DFE is

b̄m =
1

2
· log2

(

1 +
SNRm(T ∗

m)

Γ

)

. (5.75)

The overall SNR is provided in (5.73) and the (5.74)
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A final simplified VDSL example provided to illustrate both proper design and a performance loss
that might be incurred when designers try “to simplify” by only using one fixed band.

EXAMPLE 5.2.7 (Simple VDSL and lost “dead” bands) Figure 5.13 illustrates equiv-
alent transmitters based on a multitone design of 8 equal bandwidth modulators. All tones
are presumed passband uncoded QAM with gap Γ = 8.8dB. This system choses symbol rates
to approximate what might happen on a short telephone line of 1 km in length, and is sim-
plified with respect to what actually happens in practice (where more than 2 bands might
occur in water-filling). The transmit filter for each band is denoted by Hn(f) in set A and
Gn(f) in set B. The gn’s for these example subchannels are given in the table below.

Application of water-filling with 11 units of energy produces channel SNR’s appear in the
following table for a Gap of Γ = 8.8dB and a water-filling constant of λ′ = 2:

n gn En bn

1 15.2 1.50 2
2 30.3 1.75 3
3 121.4 1.9375 5
4 242.7 1.97 6

5 2 0 0
6 60.7 1.875 4
7 242.7 1.97 6
8 2 0 0

Channel characteristics are such in this system that the optimum bandwidth use is only 6
of the 8 subchannels. 4 of the used bands (set A) are adjacent and another 2 of the bands
(set B) are also adjacent. Sets A and B, however, are separated by an unused band. That
unused band might be for example caused by a radio interference or perhaps notching from
a bridged-tap, and its position is likely to vary depending on the line. The corresponding
receiver is shown in Figure 5.14.

First Multitone Design:
The tones in Set A can carry (2b̄n =) 2, 3, 5, and 6 bits respectively corresponding to
increasing signal-to-noise ratios in the corresponding channel, while the two bands in Set B
can carry 4 and 6 bits respectively. The unused bands carry 0 bits. The average number
of bits per tone in Set A is 4 while the average number in Set B is 5. If the symbol rate
for each subchannel is 1 MHz, then the data rate is (2+3+5+6+4+6) bits transmitted one
million times per second for a total data rate of 26 Mbps. Equivalently, from Equation
5.65, the overall symbol rate is 1/T ∗ = 6 MHz, and there are thus b̄(1/T ∗ = 6MHz) =
26 Mbps
2(1/T∗)

= 26/[2(6)] = 2.16 bits/dim or 4.33 bits per equivalent tone. For an uncoded-

Γ = 8.8dB multitone system b̄(1/T ′ = 8MHz) = 26/16 = 1.625. This rate is equivalent to
b̄(1/T ∗) = 6MHz) = 2.16 since both correspond to the same overall data rate of 26 Mbps.
The SNR at a symbol rate of 1/T = 8 MHz is

SNRmt(1/T ′ = 8MHz) = 10 · log10 Γ ·
(
23.25− 1

)
= 18.1dB . (5.76)

The SNR at a symbol rate of 1/T ∗ = 6 MHz is

SNR∗
mmse-dfe,u(1/T∗ = 6MHz) = 10 · log10 Γ ·

(
24.33− 1

)
= 21.6dB (5.77)

The two multitone SNRs are equivalent in that both correspond to a Pe = 10−6 at the data
rate of 26 Mbps.

2nd Design: Equalivalent Two-tone QAM Design:
The corresponding best QAM receiver uses the same bands and is actually 2 QAM systems
in this example. The first system has a symbol rate of 1/T ∗

1 = 4 MHz and carries 4 bits per
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Figure 5.13: Simplified VDSL example multitone and equivalent 2-channel transmitters.
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Figure 5.14: Simplified VDSL example multitone and equivalent 2-channel receivers.

QAM symbol (16 QAM) for a data rate of 16 Mbps. By the CDEF result, the MMSE-DFE
receiver has an SNR of SNRdfe,1(1/T ∗

1 = 4MHz) = Γ · (24 − 1)=20.6 dB. The second system
has symbol rate 1/T ∗

2 = 2 MHz, and 5 bits per QAM symbol, which corresponds to 10 Mbps
and SNRdfe,2(1/T ∗

2 = 2MHz) = Γ · (25 − 1)=23.7 dB. The total data rate of 26 Mbps is
the same in both systems. The two systems carry the same data rate of 26 Mbps with a
probability of symbol error of 10−6.

Correct design thus finds a 2-band equivalent of the original 8-tone MT system, but absolutely
depends on the use of the 2 separate QAM signals in the lower portions of Figures 5.13 and
5.14.

3rd Design - single-tone QAM designer:
Some designers might instead desire to see the loss of the single-band DFE system. The single-
band (with 1/T = 8 MHz) QAM system with MMSE-DFE then uses 2Ēx = 11/8 = 1.375 at
all frequencies and thus has

SNRdfe,flat = Γ ·







[
8∏

n=1

(

1 +
1.375 · gn

Γ

)]1/8

− 1






(5.78)
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= 17dB (5.79)

which is about 1.1 dB below the multitone result. If Tomlinson Precoding was used at the
b̄ = 1.625, the loss is another .4 dB, so this is about 1.5 dB below the multitone result in
practice. This 1/T = 8 MHz single-tone QAM does then perform below MT because the two
QAM tones are required to match MT performance.

As a continued example, this same transmission system is now applied to a longer line
for which the upper frequencies are more greatly attenuated and g6 = g7 ≤ 2, essentially
zeroing the water-fill energy in band B. The multitone system might attempt 16 Mbps data
rate. Such a system could reload the 1.875+1.97 units of energy on tones 6 and 7 to the
lower-frequency tones, and the new SNRmt will be 14.7 dB, which is a margin of 1.2 dB
with respect to 16 Mbps (2b̄ = 2 requires 13.5 dB). A new computation of the single-tone
(1/T = 8 MHz) SNR according to (5.78), which now has only 4 terms in the product provides
SNRDFE(1/T = 8MHz) = 12.8 dB that corresponds for the same data rate of 16 Mbps to

a margin of -.7 dB (γ = SNRDF E

Γ·22−1
). The MT system (even without perfect loading here,

because the margin-adaptive scheme was not used and the design instead approximated by
boosting all the remaining tones equally) is 1.9 dB better. Furthermore, precoder loss would
be 1.3 dB for a Tomlinson or Laroia precoder, leading to a 3.2 dB difference. Thus there is
always a loss when the single-band system is used, and the amount of loss increases with the
inaccuracy of the symbol-rate with respect to best symbol rate.

Since the margin of the QAM system is negative on the long line, the practice in industry
is to “design for the worst case” long line, which means a better symbol rate choice would
be 4 MHz. In this case, on the long line, both MT and QAM at 16 Mbps would have the
SNR of the A band, 20.6 dB, increased by (11/(11-1.97-1.875) = 1.86 dB) to 22.5 dB and a
margin of 1.86 dB at 10−6 probability of error with Γ = 8.8 dB. However, if the short line
with bands A AND ALSO B is now again encountered, the 4 MHz-worst-case-designed QAM
system will remain at 1.86 dB margin at 16 Mbps. The MT system margin at 16 Mbps now
improves to (Equation 4.7 in Chapter 4)

γmt =
22 ¯bmax − 1

22b̄ − 1
=

23.25− 1

22 − 1
= 4.5dB (5.80)

or a 2.6 dB improvement in margin over the 1.9 dB margin of the QAM system.

As the used-bandwidth error grows, the loss of a single-band DFE increases, but is hard to
illustrate with small numbers of tones. In DSL, used bandwidth ratios can easily vary by a
factor of 10 on different lines, increasing the deviation (but not easily depicted with a few
tones) between MT systems and DFE systems that use a fixed bandwidth (or single tone). For
instance, if only tone 4 were able to carry data that the best rate-adaptive solution is about
8.5 Mbps, while the full-band single-QAM DFE would attain only 420 kbps, and performs
approximately 7 dB worse (be careful to avoid gap approximation margin calculations when
number of bits per dimension is less than 1).

For real channels, independent test laboratories hosted a “VDSL” Olympics in 2003 for
comparing DMT systems with variable-symbol-rate QAM systems. The test laboratories
were neutral and wanted to ascertain whether a single-carrier system (so only one contiguous
band that could be optimized and placed anywhere) really could “get the same performance
as DMT” – an abuse of the CDEF result promulgated by single-carrier propopents). The
results and channels appear in Figures 5.15 and 5.16 respectively. Clearly these fixed-margin
(6 dB) tests for length of copper twisted pair at the data rate shown indicate that over a wider
range of difficult channels as in DSL, the differences between DMT and single-carrier can be
quite large. Generally speaking, the more difficult the channel, the greater the difference.

This section has shown that proper optimization of the MMSE-DFE may lead to several MMSE-
DFEs on channels with severe ISI, but that with such a minimum-size set and properly optimized symbol
rate and carrier frequency for the corresponding transmitter for each such MMSE-DFE determines a
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Figure 5.15: Illustration of 2003 VDSL Olympics results.
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Figure 5.16: Channel types and speeds for 2003 VDSL Olympics.
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canonical transmission system, then matching the DMT/VC like systems of chapter 4. One then begins
to question which might be best used if both are canonical. That question requires investigation of
finite-length (finite N) designs and focuses on complexity. Sections 5.3 and beyond investigate this area
as well as generalize the MMSE-DFE and DMT/VC into a very general type of interference channel.
The reader will see that the DMT system is not only canonical, but also optimal, and indeed has the
least complexity (using FFTs) of any of the systems if all properly designed at the same performance
level.

5.2.6 Relations Zero-Forcing and MMSE DFE receivers

In some special situations, the ZF-DFE and the MMSE-DFE can induce the same equivalent channel,
although the performance will not be the same. Some caution needs to be exercised here as they are not
always the same, and some authors 8 have made some serious errors in interpretting results like CDEF.

Theorem 5.2.2 (CDEF Derivative) Over any of the continuous bands of water-
filling, if the water-fill spectra are used, then the ZF-DFE and MMSE-DFE result in the
same channel shaping before bias removal.

proof: This proof uses continuous bands, presuming the condition for choice of optimum sam-
pling rate(s) and carrier frequencies have already been made so that all frequencies are used
with non-zero energy (except possibly for countable set of infinitessimally narrow notches) –
that is the PW criterion is satisfied. The power spectrum for an ISI channel for which the
symbol/sampling rate has been altered for exact match to one (any) water-filling band 1/T ∗

that must satisfy

Ēx|Φ(ω)|2 +
σ2

|H̃(ω)|2
= K (5.81)

for all frequencies ω in the band (zeros are only allowed at infinitesimally narrow notch points,
so resampling is necessarily to avoid singularity). H̃ represents the equivalent-white-noise
channel H̃ = H√

S̄n

. The MMSE-DFE fundamentally is determined by canonical factorization,

which in the frequency domain has magnitudes related by

Ēx|Φ(ω)|2 · |H(ω)|2 + σ2 =
γ0

‖p‖2 · |G(ω)|2 . (5.82)

Insertion of (5.81) into (5.82) yields

K · |H(ω)|2 =
γ0

‖p‖2 · |G(ω)|2 , (5.83)

illustrating a very unusual event that the overall equivalent channel has the same shape as the
channel itself. This happens when the input is water-filling. Thus, since the shape of H and
G are the same, they differ only by an all-pass (phase-only) filter. Equivalently, the receiver’s
MS-WMF is essentially Φ∗ times an all-pass filter. Such an all-pass can be implemented at

the transmitter without increasing the transmit energy, leaving only the filter S̄
−1/2
n · Φ∗ in

the receiver. Such an all-pass phase shift never changes the performance of the DFE (or
any infinite-length equalizer). The receiver’s remaining noise whitening filter and matched
filter to transmit water-fill filter constitute the entire MS-WMF, perhaps resulting in an
opportunity to reduce receiver complexity. The MMSE-DFE has slightly non-unity gain

through the feed-forward filter and the overall channel gain is
SNRmmse-dfe,u

SNRmmse-dfe,u+1
, which is

8One somewhat incorrectly derived result is due to Price of MIT in early 70’s where he tacitly assumed zero noise,
and then water-filling of course always uses the entire band of transmission. Thus Price accidentally considered only one
transmission band that was this entire band. Of course, trivially, ZF and MMSE are the same when there is no noise –
this is hardly surprisingly and he erroneously arrived at a result resembling CDFE that is correct only when there is zero
noise. This is sometimes referred to as “Price’s result,” but it is clearly Price did not understand many of the fundamental
issues and concepts at the time of his conclusion.
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removed by anti-bias scaling. However, ignoring the bias removal and consequent effect on
signal and error sequence, water-filling creates an equivalent overall channel that has the
same shaping of signal as the original channel would have had. That is the signal (ignoring
bias in error) has the same minimum-phase equivalent ISI as the original channel would have,
or equivalently as a ZF-DFE would have generated. QED.

The MMSE-DFE however does have a lower MMSE and better SNR, even after bias removal. The
difference in SNR is solely a function of the error signal and scaling. The ZF-DFE has white noise and
no bias. The MMSE-DFE with water-filling has the same minimum-phase shaping, that is achieved by
filtering the signal, reducing noise power, but then ensuring that the components of the error (including
bias) add in a way that the original channel reappears as a result of all the filtering.

The minimum-phase equivalent of the channel alone H is equal to G via 5.83. However Pc(D), the
canonical equivalent of the pulse response Φ · H (which includes the water-filling shaping) is not the
same unless water-filling shape is the special case of being flat. The precoder settings or equivalently
unbiased feedback-section settings are not necessarily determined by G, but by Gu. Gu differs from the
minimum-phase channel equivalent.

Thus, the MMSE-DFE results in same equivalent channel as ZF-DFE under water-filling, but still
performs slightly better unless water-filling is flat (essentially meaning the channel is flat). Often water-
filling is very close to flat in practical situations or there is very little loss. Thus, it may be convenient
to implement directly a ZF-DFE once the exact water-filling band of frequencies is known.

Theorem 5.2.3 (Worst-Case Noise Equivalence) Over any of the continuousbands
for which the PW Criterion holds, if the noise power spectral density is the worst pos-
sible choice that minimizes mutual information for the channel, then ZF and MMSE are the
same even if the noise is not zero.

proof: The minimization of the mutual information

I =
1

2π

∫

Ω

log2

(

1 +
Sx(ω) · |H(ω)|2

Sn(ω)

)

dω (5.84)

with noise power constrained at

σ2 =
1

2π

∫

Ω

Sn(ω)dω (5.85)

leads easily by differentiation with LaGrange constraint to the equation/solution

1

Sx(ω) · |H(ω)|2 + Sn(ω)
− 1

Sn(ω)
= K ∀ ω ∈ Ω . (5.86)

The magnitude of the MS-WMF with noise whitening included is

|FF |2 =
|H(ω)|2 · Sx(ω)

Ēx
S2

n(ω) · γ2
0 · ‖p‖2|G(ω)|2 (5.87)

=
|H(ω)|2 · Sx(ω)

(Sx(ω) · |H(ω)|2 + Sn(ω)) · Sn(ω)
(5.88)

=
1

Sn(ω)
− 1

Sx(ω) · |H(ω)|2 + Sn(ω)
= −K (5.89)

Thus, the MS-WMF section is exactly an all pass filter, meaning then ZF and MMSE-DFEs
(the latter with bias-removal scaling) are the same. QED.

The above result holds for any input spectrum Sx(ω) (and clearly the worst-case noise may vary with
this input spectrum choice). In particular, this result does hold for the water-filling spectrum also. The
latter result has broad implications in multi-user optimization of systems as in Chapter 14. It suggests
that if the noise is chosen to be the worst possible spectrum (for a given power), receiver processing
is unnecessary (as the all-pass could be implemented at the transmitter without loss and a precoder
could also be used). Worst-case noise (unlike water-filling transmit spectra) is not good – it means that
receiver filtering is essentially useless.
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5.3 Generalized Channel Partitioning: The GDFE

Sections 5.1 and 5.2 suggest that both a set of MMSE-DFE’s and a MT transmission design can achieve
the same data rate of Ī(X(D); Y (D)), which is the maximum data rate for the given spectrum of
X(D) and for a gap of zero dB. The MT system partitions the channel into a infinite number of
AWGN subchannels that each carry a different amount of information, while by contrast eaqch of the
set of MMSE-DFE systems (with correct decisions) partitions the channel into an infinite set of AWGN
subchannels that each carry the same amount of information. However, the sum of the data rate of the
DMT subchannels is then equal to the sum of the data rates of each of the equal-information/dimesion
DFE systems. The observation of two canonical-performance partitions suggests that more general
partitioning of an ISI channel exists.

This section investigates partitioning for the finite-length packet channel characterized by the rela-
tionship

y = Px + n (5.90)

with nominal output dimensionality N and input dimensionality N + ν (as in Chapter 4), although all
developments will hold for more general P of any dimensionality and any structure (so one could think
of ν as possibly zero or negative in any of the ensuing developments (as well as the usual case of ν ≥ 0).
In fact, the general P allows modelling of wireless systems where the inputs and outputs may correspond
to different antennas, and not just successive time samples as in Chapters 3 and 4. Further the Toeplitz
structure of P need not be maintained. One general choice of P models time-varying convolutions where
the successive rows of P are indented as with convolution, but each row varies with respect to previous
row proceeding down through the matrix. Such time-varying models may be useful in wireless mobile
transmission systems. Other models of P could model crosstalk between different antennas in multiple-
input-mulitple-output wireless transmission. Yet other models would be used for crosstalk between wires
sharing a common physical space (like a binder of telephone wires or an ethernet cable). In short, the
GDFE development allows any P and finds the corresponding canonical-performance partitions, opening
new vistas to the concept of “equalization” extending to all kinds of linear interference and canonically
providing designs for them. Vector coding of Chapter 4 also did not restrict P to have any structure
(although DMT forced a cyclic structure), and thus could also be immediately generalized to any P with
no change to its Chapter-4 development.

For vector coding on such a channel, the product of the subchannel SNR’s can be computed (for
Γ = 0dB) as

SNRvc,u + 1 =

[
N∗

∏

n=1

(

1 +
En · λn

N0

2

)] 1

N+ν

=
|Ryy |
|Rnn|

= 22 ¯I(x;y) . (5.91)

Since VC has the optimum finite-length partitioning for any energy distribution on the subchannels, or
equivalently attains the highest rate, then clearly Ī(x; y) is this highest rate. Any one to one transforma-
tion of either x or y to another random vector is reversible and cannot change the mutual information.
This observation leads allows discovery of other structures and sets of parallel channels that perform at
the same highest rate for the given input energy distribution (or given input autocorrelation function
Rxx).

Figure 5.17 overviews the concept of generalized partitioning. There are an infinite number of parti-
tionings that all can achieve the same aggregate data rate b = I(x; y) over a set of parallel independent
AWGN channels. The partitionings can be described and summarized through the concept of General-
ized Decision Feedback Equalization, or the GDFE for short. VC (and its special case DMT with cyclic
prefixes) are the simplest and most natural of the partitionings, but many exist. A particularly interest-
ing partitioning is Circulant Decision Feedback, or the CDFE. It is this latter structure, which under an
assumption of stationarity of the channel over all sampling periods, will converge (with various care about
the PW criterion) to a set of MMSE-DFEs. VC, under the same stationarity assumption, converges to
MT. Some of the more general decompositions for the GDFE can be of interest in situations where
the channel will never be stationary over all dimensions; for instance multi-dimensional communication
systems that may have antenna arrays, two-dimensional scans of surfaces or “image-like” information,
or channels that vary with time – these are sometimes called multiple-input, multiple-output (MIMO)
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Figure 5.17: Generalized partitioning.

transmission systems, or even a set of crosstalking telephone lines bundled together. These types of
matrix channels will possibly lead to P matrices that are not “Toeplitz” or convolution matrices and for
which the size and rank are arbitrary.

Subsection 5.3.1 begins this section with decomposition of the channel input according to a combi-
nation of a channel-dependent deterministic vector space and a random (Hilbert) space corresponding
to the transmitted signal’s autocorrelation matrix. The decomposition extracts the essence of the input
for which a finite-length canonical replacement channel can be found that is nonsingular and has the
same mutual information as the original channel in Subsection 5.3.2. Having established an equivalent
canonical channel, the GDFE then easily follows through canonical/Cholesky factorization of the input
essence in Subsection 5.3.3. Subsection 5.3.4 investigates the proper input construction to get maximum
GDFE performance, while Subsection 5.3.5 updates the precoders of Section 3.8 for the GDFE. Subsec-
tions 5.3.6 and 5.3.7 provide some interesting one-sided results for special channel structures that can
often be imposed in practice.

5.3.1 Decomposition of the packet channel input

Figure 5.18 illustrates the division of the (N + ν)-dimensional input space of vectors9 into two mutually
orthogonal subspaces: a pass space P containing input vectors that will pass through the channel so
that Px 6= 0 if x ∈ P and a null space N containing input vectors that will be nulled by the channel
so that Px = 0 if x ∈ N . The component of any vector x̃ ∈ P in the null space is zero. The null space
and pass space are mutually orthogonal. In general, an input vector can have nonzero components in
both the pass and the null space, but those components in the null space clearly waste transmit energy
because none will appear at the channel output. Thus, only components in the pass space will carry
information through the channel. A vector that has no component in the null space will be denoted by

9There are 2(N + ν) dimensions when the input vector is complex and we thus mean (N + ν) complex vectors in the
general case.
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Figure 5.18: Decomposition of x into passed and nulled components.

x̃.
A transmit vector can be written as

x =

N+ν∑

n=1

un · cn = Cu , (5.92)

a generalization of modulation, where the vectors cn n = 1, ..., N + ν need only be linearly independent
(not necessarily an orthonormal set), and where the random-message components multiplying these
vectors, un, need not be independent.10 The set of vectors {cn}n=1...N+ν may be projected into the
rank-Ñ pass space of the channel to obtain a new set of Ñ ≤ N linearly independent vectors {c̃n}n=1...Ñ ,
that characterize x̃ by

x̃ =

Ñ∑

n=1

ũnc̃n = C̃ · ũ . (5.93)

The values for x̃ span only an Ñ subspace of the (N + ν)-dimensional complex vectors and are then, by
construction, in one-to-one correspondence with values of the vector ũ (because of the linear indepen-
dence of the vectors {c̃n}N=1,...,ñ). A method for computing both ũ and C̃ from the channel matrix P
and an arbitrary u and C appear in Example 5.3.1 below. The vector x̃ is the finite-length discrete-time
equivalent of an input signal x(t) having no component in the dead-zones of the channel, i.e., those
frequency ranges for which H(f) = 0.

In general, the input may have had components in the null space and so

Rxx 6= Rx̃x̃ , (5.94)

but any components of the message sequence not included in x̃ are not of consequence to the transmission
problem. The input has entropy

Hx = Hx∈N + Hx̃ ≥ Hx̃ . (5.95)

(The above equation is easily proved by thinking of entropy as the sum of scalar terms based on the
eigenvalues of Rxx, which may be nonzero in the null-space of the channel.) However, basic MMSE

10A special case is when the input components un = Xn are uncorrelated and the vectors cn = mn are the channel-
dependent, SVD-derived orthonormal basis of vector coding, but this need not be the case in general.
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Figure 5.19: Projection illustration using singular vectors.

estimation relationships with entropy (Gaussian case) then also lead to11

Hx/y = Hx∈N + Hx̃/y ≥ Hx̃/y , (5.96)

and thus

I(x; y) = Hx −Hx/y (5.97)

= Hx∈N + Hx̃ −Hx∈N −H ˜x/y (5.98)

= Hx̃ −Hx̃/y (5.99)

= I(x̃; y) (5.100)

so that mutual information remains the same, an intuitively gratifying result – coding into the null
space of the channel does not increase the achievable data rate. Example 5.3.1 illustrates one method
for determining the null space and pass space of a channel and then finding the information-equivalent
vector x̃. Further, since ũ is in one-to-one correspondence with x̃, then

I(ũ, y) = I(x̃; y) = I(x; y) . (5.101)

Construction of C̃ via channel singular vectors

Figure 5.20 illustrates an algorithm developed in this section for elimination of components in x that
are in the null space. The reader can refer to Figure 5.20 in reading the following.

The channel matrix P has a singular value decomposition P = FΛM∗, which can be written

P =

Ñ∑

n=1

λn · fnm∗
n (step 1 in Fig. 5.20), (5.102)

where Ñ ≤ N is the rank of the channel and corresponds to the number of nonzero singular values. The
singular values are presumed here to be positive real and arranged in decreasing order λ1 ≥ λ2 ≥ ... ≥
λÑ ≥ λÑ+1 = 0 without loss of generality. The pass space P is then spanned by the orthonormal set of

vectors in the columns of the (N + ν)× Ñ matrix

M̃ = [m1 m2 ... mÑ ] (step 1 in Fig. 5.20). (5.103)

11Recall the null space does not pass to y so Hx∈N/y = Hx∈N .
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Figure 5.20: Algorithm for elimination of x components in channel null space.
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Then,
x̃ = PM̃x (5.104)

where

PM̃ = M̃
(

M̃∗M̃
)−1

M̃∗ = M̃M̃∗ (step 2 in Fig. 5.20). (5.105)

The null space N is similarly spanned by the remaining columns of M . The projection in the pass
space of each of the vectors c̃n may be determined by the projection operation

c̃n = PM̃cn , (5.106)

which may be compactly rewritten (possibly for easy matlab construction)

C̃temp = PM̃C (step 3 in Fig. 5.20), (5.107)

where the Hermitian matrix PM̃ is known as a “projection matrix” in mathematics. Also, one may write

Rx̃x̃ = PM̃RxxPM̃ . (5.108)

The matrix C is a matrix of no more than N + ν , (N + ν)-dimensional column vectors that correspond
to the original modulator for x, and the matrix C̃temp is a rank-Ñ matrix of (N +ν)-dimensional column

vectors. This C̃temp matrix thus contains Ñ linearly independent columns, which can be reindexed (the
designer must keep track of the indexing in practice) so that

C̃temp = [C̃ | C̃2] (step 3 in Fig. 5.20), (5.109)

where the (N + ν) × Ñ matrix C̃ corresponds to the linearly independent vectors/columns of C̃temp,

and the remaining dependent vectors12 are in C̃2. Then, similarly reindexing the u components into the
Ñ × 1 vector u1 and the remaining components in vector u2,

x̃ = PM̃x (5.110)

= PM̃Cu (5.111)

= C̃tempu (5.112)

= [C̃ | C̃2]

[
u1

u2

]

(5.113)

= C̃u1 + C̃2u2 . (5.114)

The input autocorrelation matrix then can be partitioned according to the same labeling

Ruu = E

{[
u1

u2

]

[u∗
1 u∗

2]

}

=

[
R11 R12

R21 R22

]

, (5.115)

The vectors/columns of the remaining matrix C̃2 are linearly dependent on C̃ and can be represented in
terms of their projections on C̃ by the matrix operation

C̃2 = C̃
[

C̃∗C̃
]−1

C̃∗C̃2 , (5.116)

which defines a mtrix Õ by

C̃2 = C̃

{[

C̃∗C̃
]−1

C̃∗C̃2

}

= C̃ · Õ (step 4 in Fig. 5.20), (5.117)

12This separation is often obvious, but a general procedure follows the use of the command “qr” in matlab. By executing
the command “[Q,R,J]=qr(P̃M * C),” then Ñ is obtained by the command “rank( P̃M * C),” and then C̃ is the first Ñ

colums of the matrix formed by Q*R*J in matlab and the last N − Ñ columns are then C̃2. The rearrangement of inputs
by J needs to be noted and used by the designer also.
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essentially a matrix post multiply by Õ to get C̃2 from C̃ in Equation 5.109. Then, Step 5 in Figure
5.20 shows explicitly the decomposition of u into the Ñ components u1 that multiply C̃ and the N − Ñ
components u2 that multiply C̃2. These two components can be combined into a single component ũ

according to

x̃ = C̃ ·u1 + C̃ · Õ ·u2 = C̃
(

u1 + Õ ·u2

)

︸ ︷︷ ︸

Step 6

= C̃ · ũ
︸ ︷︷ ︸

Step 7

. (5.118)

So, ũ is defined by

ũ
∆
= u1 + Õu2 . (5.119)

Then, since C̃2 has been eliminated, the designer simply discards C̃temp and uses instead C̃. The new
input autocorrelation matrix is

Rũũ = R11 + ÕR21 + R12Õ
∗ + ÕR22Õ

∗ (Step 8 in Fig. 5.20). (5.120)

The command “orth” in matlab essentially performs the reduction of the set of c̃ to a linearly independent
set of minimal rank, while the more general command “qr” in matlab does QR-factorization, which also
provides both the new set of vectors and the linear combinations necessary to compute ũ with less
computation than Equation (5.117). This “qr” matlab command can also optionally reorder the indices
of the vectors to ensure nonsingularity in the first Ñ positions.

Figure 5.21 illustrates the original channel (at the top) and the equivalent channel with singularity
removed. The outputs are exactly the same in both cases. The lower equivalent channel captures all
necessary information about the original channel while eliminating any useless channel singularity.

EXAMPLE 5.3.1 (1 + D Channel) An example 2× 3 matrix

P =

[
1 1 0
0 1 1

]

(5.121)

corresponds to the 1 + D channel with N = 2 and ν = 1. Singular value decomposition of
this channel produces

P = F

[ √
3 0 0

0 1 0

]






− 1√
6
− 1√

2
1√
3

−
√

2√
3

0 − 1√
3

− 1√
6

1√
2

1√
3






∗

(5.122)

and

M̃ =






1√
6

1√
2√

2√
3

0
1√
6
− 1√

2




 . (5.123)

Then

PM̃ =





2
3

1
3
−1

3
1
3

2
3

1
3

−1
3

1
3

2
3



 (5.124)

Then with a white PAM input then, x = u or equivalently C = I so that

x̃ = PM̃x (5.125)

and then

PM̃ = PM̃C =





2
3

1
3 −1

3
1
3

2
3

1
3

−1
3

1
3

2
3



 (5.126)

where

C̃ =





2
3

1
3

1
3

2
3

−1
3

1
3



 and C̃2 =





−1
3

1
3
2
3



 . (5.127)
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Figure 5.21: The original channel and its equivalent with singularity removed.
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The matrix Õ is then

Õ =

[
−1
1

]

. (5.128)

The new input ũ is then

ũ = u1 + Õu2 =

[
u1

u2

]

+

[
−1
1

]

u3 =

[
u1 − u3

u2 + u3

]

. (5.129)

The channel output

y = PPM̃Cu + n = P x̃ + n (5.130)

= P C̃ũ + n (5.131)

=

[
1 1
0 1

] [
ũ1

ũ2

]

+ n (5.132)

and thus the final model is in terms of just those components of x , ũ1 = u1 − u3 = x1 − x3

and ũ2 = u2 + u3 = x2 + x3, that “pass” through P . Furthermore, it is clear that any
component of the input that lays on the vector

m3 =






1√
3

− 1√
3

1√
3




 (5.133)

for instance the PAM input




1
−1
1



 (5.134)

will not pass. Thus, the two codewords +,-,+ and -,+,- that nominally look quite separated
and good for coding with a minimum distance of 2

√
3 could not be distinguished at the

channel output. Any codewords containing nonzero differences of this type are simply wasting
energy as far as passage through the channel is concerned.

For this channel, better input design than PAM would let only Eũ1
and Eũ2

be nonzero while
avoiding any oscillating components (i.e, +,-,+ or -,+,-).

The reduction of modulator vectors to the pass space so far has been based on the fixed deterministic
vectors in C and on the deterministic channel, in particular through M̃ . The pass space and the null
space depend only upon the channel matrix P . However, the input vectors are random, constructed
through modulation of a random component un on each of the fixed deterministic transmit modulator
vectors un · cn. Thus, the reduction so far to x̃ depends only on the fixed part of the input, namely
c̃. The projected vectors x̃ themselves span a random vector space that is determined (Gaussian case)
by Rx̃x̃. This random vector space rarely occurs by accident, or usually occurs by design when Rxx
(or Rx̃x̃) is optimized, may have lesser rank or dimensionality than Ñ . The discrete equivalent of the
PW criterion for realization of channel inputs is that Rx̃x̃ and also Rxx be nonsingular, which can be
written in the form ln |Rxx| <∞, remniscent of the integral form of the continuous PW criterion. With
ν > 0, the PW is never satisfied for white inputs like PAM – that is, PAM is never a good design on a
channel with ISI and finite-length packets.

Elimination of Input Singularity

A second step in singularity elimination is that of any singularities in the input autocorrelation. These
singularities can be unrelated to the channel null space, and may be introduced intentionally by design or
by accident by the uniformed designer. Figure 5.22 illustrates the process that is subsequently described
in this subsection.
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Figure 5.22: Algorithm for elimination of x components in the input autocorrelation Rxx.
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The input covariance matrix Rx̃x̃ has a eigendecomposition (step 1 in Fig 5.22)

Rx̃x̃ =

N∗

∑

n=1

Ẽx,n · q̃nq̃∗
n = [q̃1 q̃2 ... q̃Ñ ]











Ẽx,1 ... 0 0 ... 0

0
. . . 0 0

... 0

0 ... Ẽx,N∗ 0 ... 0

0 ... 0
. . . ... 0

0 ... 0 ... ... 0
















q̃∗
1
...

q̃Ñ




 , (5.135)

where Ẽx,n is the nth eigenvalue, and q̃n is the corresponding eigenvector. Those input vectors for

which Ẽx,n = 0 can be omitted from the construction of x̃ (or x) because x̃ has no information-bearing

component on these dimensions. Define Q̃
∆
= [q̃1...q̃N∗ ] and PQ̃

∆
= Q̃Q̃∗ (step 2 in Fig. 5.22).

Figure 5.18 further suggests a second projection, now of x̃ to x′, into a subset of the pass space
P ′ ⊆ P that depends only on the nonzero components/eigenmodes of the input autocorrelation matrix:

x′ = PQ̃x̃ (5.136)

= PQ̃C̃ũ (5.137)

= Au′ , (5.138)

where A and u′ remain to be determined:
Without loss of generality, one can assume that the indexing of the eigenvalues is such that Ex,n = 0

for n > N∗. This projection is achieved by creating a set of N∗ ≤ Ñ new vectors as the columns of
the (N + ν)×N∗ matrix Atemp by first computing (with A a set of N∗ linearly independent columns of
Atemp)

Atemp = PQ̃C̃ = [A | A2] (step 3 in Fig. 5.22), (5.139)

and note13

A2 = AOA (5.140)

where OA = (A∗A)−1A∗A2 (step 4 in Fig. 5.22). Then

ũ =

[
ũ1

ũ2

]

(step 5 in Fig. 5.22), (5.141)

and
u′ = ũ1 + OAũ2 (step 6 in Fig. 5.22). (5.142)

When N∗ = Ñ , then the matrix Q̃ is a square Hermetian matrix (Q̃Q̃∗ = Q̃∗Q̃ = I) and then A = C̃.
The entropy of x′ remains the same as x̃, Hx′ = Hx̃, because removing zeroed eigenvalues from the

Gaussian autocorrelation matrix does not change the entropy nor the matrix itself. Thus, the mutual
information remains identical to that of the original channel between the essence of the input x′ and the
channel output y,

I(x′; y) = I(x̃; y) = I(x; y) . (5.143)

The final desired decomposition of the input into its nonsingular essence is then

x′ = PQ̃PMx = Au′ (step 7 in Fig. 5.22). (5.144)

The new input autocorrelation matrix satisfies

Rx′x′ = ARu′u′A∗ = A (R11 + OAR21 + R12O
∗
A + OAR22O

∗
A)A∗ (step 8 in Fig. 5.22), (5.145)

13This separation is often obvious, but a general procedure follows the use of the command “qr” in matlab. By executing
the command “[Q,R,J]=qr(P̃Q̃ * C̃),” then N∗ is obtained by the command “rank( P̃Q̃ * C̃),” and then A is the first N∗

colums of the matrix formed by Q*R*J in matlab and the last Ñ − N∗ columns are then A2. he rearrangement of inputs
by J needs to be noted and used by the designer also.
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where Ru′u′ is necessarily nonsingular and of rank N∗ and of course the matrix entries R11, R12, R21

and R22 were obtained from the original ũ, and hence then also from u, from which the essence of the
input was extracted (and then redefined after definition of these submatrices). For every value that
the random vector x′ is allowed to take with nonzero probability, there is a unique value of u′ that
corresponds to it, so these two are in one-to-one correspondence, and thus

I(u′; y) = I(x′; y) = I(x; y) . (5.146)

Essentially, u′ generates x′ for the transmission problem of interest.
The decomposition of the input to its essence, u, is the finite-length equivalent to finding only

that transmit band over which there is nonzero energy (or which satisfies the PW criterion) and focusing
attention on this band only for the infinite-length MMSE-DFE. Since the mutual information is the same
as the original system, and indeed also the same as the known optimum VC, a nonsingular equivalent
system has been derived.

EXAMPLE 5.3.2 (reducing a singular input for the 1 + D packet channel) This ex-
ample returns to the 1 + D packet channel, except with the input autocorrelation matrix

Rxx =





2/3 1/3 2/3
1/3 5/3 1/3
2/3 1/3 2/3



 , (5.147)

which is presumably generated from some u according to x = Cu, where the input u has 3×3
autocorrelation matrix Ruu = I. The following sequence of matlab commands eliminates
the energy on the channel null space

>> rxx

rxx = 0.6667 0.3333 0.6667

0.3333 1.6667 0.3333

0.6667 0.3333 0.6667

>> [F,L,M]=svd([1 1 0

0 1 1])

F =-0.7071 -0.7071 L= 1.7321 0 0 M = -0.4082 -0.7071 0.5774

-0.7071 0.7071 0 1.0000 0 -0.8165 0.0000 -0.5774

-0.4082 0.7071 0.5774

>> Mt=M(1:3,1:2)

Mt = -0.4082 -0.7071

-0.8165 0.0000

-0.4082 0.7071

>> Pm=Mt*Mt’

Pm = 0.6667 0.3333 -0.3333

0.3333 0.6667 0.3333

-0.3333 0.3333 0.6667

>> rxxtt = Pm*rxx*Pm

rxxtt = 0.3333 0.6667 0.3333

0.6667 1.3333 0.6667

0.3333 0.6667 0.3333

>> Ctemp=Pm*eye(3)

Ctemp = 0.6667 0.3333 -0.3333

0.3333 0.6667 0.3333

-0.3333 0.3333 0.6667

>> Ct=Ctemp(1:3,1:2)

Ct = 0.6667 0.3333

0.3333 0.6667

-0.3333 0.3333
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>> Ot=inv(Ct’*Ct)*Ct’*Ctemp(1:3,3)

Ot = -1.0000

1.0000

This means that that ũ is

ũ =

[
u1 − u3

u2 + u3

]

(5.148)

which can be viewed as an input and renamed to u if desired. The input autocorrelation
matrix Rx̃x̃ is singular and N∗ = 1 in this case, so additional reduction is necessary, as
achieved by the additional matlab commands:

rxxtt = 0.3333 0.6667 0.3333

0.6667 1.3333 0.6667

0.3333 0.6667 0.3333

>> [v,d]=eig(rxxtt)

v = -0.0918 -0.9082 0.4082 d= 0 0 0

-0.4082 0.4082 0.8165 0 0 0

0.9082 0.0918 0.4082 0 0 2

>> q=v(:,3)

q = 0.4082

0.8165

0.4082

>> 2*q*q’ (check on autocorrelation matrix)

ans =

0.3333 0.6667 0.3333

0.6667 1.3333 0.6667

0.3333 0.6667 0.3333

>> Atemp =.5*rxxtt*Ct1

Atemp = 0.1667 0.3333

0.3333 0.6667

0.1667 0.3333

>> A=Atemp(:,1)

A = 0.1667

0.3333

0.1667

>> Oa=inv(A’*A)*A’*Atemp(:,2)

Oa = 2.0000

Thus the final u′ is a scalar and is equal to u′ = ũ1 + 2ũ2 = (u1 − u3) + 2(u2 + u3) =
u1 +2u2 +u3) where u1, u2, and u3 are independent and identically distributed unit-variance
random processes. There is only one dimension of the input that makes it to the channel
output

y = PAu′ + n =





1/6
1/3
1/6



 (u1 + 2u2 + u3) + n . (5.149)

The rest of the input components are lost and do not carry information to the channel output.

An alternative input that was white only over the pass space of this channel and zero else-
where by design might be of interest. Such an input could have have autocorrelation matrix
constructed by

Rxx = 1.5 · M̃ · M̃∗ =





2/3 1/3 −1/3
1/3 2/3 1/3
−1/3 1/3 2/3



 , (5.150)
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which could correspond to an input constructed according to (the factor of 1.5 corresponds
to increasing the total energy to 3 units for the 3 dimensions, which is the trace of the
autocorrelation matrix)

x = X1m1 + X2m2 = X1 ·






− 1√
6

−
√

2√
3

− 1√
6




+ X2 ·





− 1√
2

0
− 1√

2



 (5.151)

with X1 and X2 independent random variables each of variance 1.5. In this case, clearly
x̃ = x = x′. The construction of an input autocorrelation matrix is not unique.

The construction of an input x =
√

2
3 (X1m1 + X2m2 + X3m3) would not be wise, but

would have Rxx = I, and would lose 1/3 the energy to the null space. Other constructions
of such white inputs might not have independent components nor even orthogonal vectors.
In all cases, the white input injects 1/3 of its power into the null space of the channel.

5.3.2 Finite-Length Canonical Channels

Given an input u′ after the entire process of singularity elimination in Subsection 5.3.1, this subsection
and all ensuing chapters and sections will rename this input simply to u to avoid the use of primes
and tildes. The primes and tildes are necessary in singularity elimination for notational bookkeeping
purposes, but need not be carried further. The input then to the non-singular channel thus necessarily
constructed for the finite packet is heretofore u.

The GDFE development generalizes to Gaussian noise vectors n that do not necessarily have a
diagonal autocorrelation matrix

Rnn = R
1/2
nn ·R

∗/2
nn , (5.152)

where R
1/2
nn is any (non-unique) square root of Rnn. The equivalent “white-noise” channel is formed

by whitening the noise or

ỹ = R
−1/2
nn y = R−1/2

n (P Ãu + n) = P̃u + ñ , (5.153)

where P̃ = R
−1/2
nn PA and ñ is white noise with unit variance per complex dimension. This noise

whitening was tacitly illustrated at the top of Figure 5.20 earlier, and can undergo singularity removal
according to the same procedure. The filtered noise ñ remains independent of the input u. By the
sufficiency of matched filtering14, the receiver may process the received signal by a set of matched filters
(the rows of P̃ ) without loss of information to obtain the canonical forward channel model:

z = P̃ ∗P̃u + P̃ ∗ñ = Rfu + n′ , (5.154)

where Rf is the canonical forward-channel matrix Rf = P̃ ∗P̃ and Rn′n′ = Rf . This forward channel
is canonical because the channel shaping Rf is the same as the noise-autocorrelation or shaping, also
Rf . Because the noise vector n is uncorrelated with the input vector u, a right triangle can be drawn
to illustrate Equation (5.154) as in Figure 5.23 (on the left). This triangle satisfies a “pythagorean
theorem”

Rzz = RfRuuRf + Rn′n′ = RfRuuRf + Rf , (5.155)

observing that R∗
f = Rf . Also, because canonical channel noise n′ is uncorrelated with the channel

input u, then
ẑ = Rfu , (5.156)

is the MMSE vector estimate of z given u. Thus, another expression for Rf by the orthogonality
principle is

Rf = RzuR−1
uu . (5.157)

14This matrix matched filter is a one-to-one mapping on the signal components of x
′

u and the noise after filtering is
white and so any components on non-signal vectors are irrelevent.
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The MMSE matrix for this forward-channel estimation problem is then clearly Rn′n′ = Rf .
A corresponding MMSE estimate of u given z is found through the canonical backward channel

model:
u = Rbz + e , (5.158)

where Rb is the MMSE matrix estimator (equalizer)

Rb = RuzR−1
zz . (5.159)

The vector e is the MMSE error vector for the MMSE estimation of u given z. This backward problem
is a matrix linear equalizer. Cleary, the dual Pythagorean relationship shown on the right in Figure 5.23
is

Ree = Ruu −RuzR−1
zzRzu = Ruu − RbRzzRb . (5.160)

A very useful alternatively expression for Rb is (recalling that Ruz is square nonsingular because of the
earlier singularity removal.

Rb = RuzR−1
zz (5.161)

R−1
b = RzzR−∗

zu (5.162)

R−1
b Ruu = RzzR−∗

zuRuu (5.163)

= RzzR−1
f (5.164)

= (RfRuuRf + Rf)R−1
f (5.165)

= RfRuu + I (5.166)

R−1
b = Rf + R−1

uu (5.167)

which allows computation of Rb from the easily computed Rf = PP ∗ and Ruu the given transmit
autocorrelation matrix. Equivalently,

I = RbRf + RbR
−1
uu = RfRb + R−1

uuRb since I is symmetric . (5.168)

Using this convenient result (5.168) in Equation 5.160

Ree = Ruu −RuzR1−
zzRzu (5.169)

= Ruu
(
I − R−1

uuRuzR−1
zzRzu

)
(5.170)

= Ruu (I − RbRf) (5.171)

= Ruu (I − RfRb) (5.172)

= RuuR−1
uuRb (5.173)

= Rb , (5.174)

so the backward channel is thus also canonical (the autocorrelation of the error vector equals the channel
shaping = Rb). So just as Rnn = Rf , Ree = Rb. Use of the two triangles allows derivation of any
backward relation from any forward relation by swapping Rf and Rb as well as replacing Ree by Rn′n′

(essentially then z ↔ u, n′ → e). The following relations use this duality of the forward and backward
channels depicted in Figure 5.23 (see Homework 6, Prob 1.):

R−1
b = Rf + R−1

uu (5.175)

R−1
f = Rb + R−1

zz (5.176)

Ree = Rb (5.177)

Rn′n′ = Rf (5.178)

Rzz = RfRuuRf + Rf = RfRuuR−1
b (5.179)

Ruu = RbRzzRb + Rb = RbRzzR−1
f (5.180)

Rzu = RfRuu (5.181)

Ruz = RbRzz . (5.182)
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Figure 5.23: Canonical triangles.

Because the signal part of z is in one-to-one correspondence with u as a result of the careful elimi-
nation of unnecessary dimensionality through the matrix A,

I(u; z) = I(u; y) = I(x; y) , (5.183)

so that the new channels between u and z carry all the pertinent information between channel input
and output. The backward and forward canoncial channels both have the same mutual information.
Transmission from u to z has the same performance as z to u, and as from x to y.

5.3.3 Generalized Decision Feedback Development

The GDFE exploits the structure in the canonical channel models in the same way that this structure
was exploited for infinite-length in Section 5.1.3.

The backward canonical model is
u = Rbz + e , (5.184)

where Rb is nonsingular because of the earlier elimination of singular dimensions to get u → z. The
inverse MMSE “spectrum” R−1

b has an lower-diagonal-upper Cholesky factorization

R−1
b = G∗S0G , (5.185)

where G is upper triangular and monic (ones along the diagnonal), and S0 is a diagonal matrix of
positive Cholesky factors. Then

Rb = G−1S−1
0 G−∗ . (5.186)

Premultiplication of u in (5.184) by G produces

u′ = Gu = S
−1
0 G−∗z + e′ = z′ + e′ , (5.187)

where e′ = Ge has an autocorrelation matrix S0, and z′ is the output of a matrix feedforward filter
S

−1
0 G−∗ acting on the matched filter output z. Again, mutual information is maintained because the

triangular matrix G is one-to-one, so
I(u; z′) = I(x; y) . (5.188)

The channel input vector u can be recovered from

z′ = Gu− e′ (5.189)
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by a process known as back substitution: A detailed matrix description of (5.189) is








z′N∗−1

z′N∗−2
...
z′0








=








1 gN∗−1,N∗−2 ... gN∗−1,0

0 1 ... gN∗−2,0

...
...

. . .
...

0 ... 0 1















uN∗−1

uN∗−2

...
u0







−








e′N∗−1

e′N∗−2
...
e′0








, (5.190)

where the convention of writing the first time sample in each block at the bottom of a vector has been
maintained even though the process of elimination of the null space of P and Rxx earlier may have
effectively “reordered the sample index” within the symbol. When Ruu is diagonal, by starting at
the bottom of (5.190) and ascending, back-substitution solution of (5.190) obtains the decision-feedback
equations:

û0 = sbs0(z
′
0) (5.191)

û1 = sbs1(z
′
1 − g1,0û0) (5.192)

û2 = sbs2(z
′
2 − g2,1û1 − g2,0û0) (5.193)

... =
... (5.194)

ûN∗−1 = sbsN∗−1(z
′
N∗−1 −

N∗−2∑

i=0

gN∗−1,iûi) (5.195)

The “sbsi” operation is just symbol-by-symbol detection for whatever constellation is used on the ith

transmitted subsymbol ui, i = 0, ..., N∗−1. Because of this symbol-by-symbol slicing, decision feedback
is suboptimal (that is not a maximum likelihood detector for the whole sytmbol), but recursively and
simply implemented. The feedback “filters” are a function of the sample-time index and represent a
periodically time-varying15 feedback section of the DFE. The period is the symbol period. Similarly, the
feedforward section is also periodically time-varying because it is a triangular matrix multiply for which
the rows are not simple shifts of each other. This receiver is called the “Generalized DFE” or GDFE,
and a GDFE block diagram appears in Figure 5.3.3. The nth tone’s MSE is

E[|e′n|2] = S0−1
0,n =

1

S0,n
. (5.196)

When u is not white, then it can be related to a white signal that carries the information, leading to
various interesting special cases as in the next subsection and also the next full section.

The GDFE is a set of parallel subchannels with (biased) SNR’s equal to

SNRbias,n = 1 + SNRu,n =
E[|un|2]
E[|e′n|2]

= Eu,n · S0,n (5.197)

where this expression is similar to the expression SNRmmse-dfe = γ0 · Ēx·‖p‖2

N0
2

with S0,n replacing

γ0 · ‖p‖2

N0
2

for the infinite-length DFE. Equation (5.197) uses a subscript u on Eu,n that stands for the

input vector u - care should be exercised to avoid confusing this with the “u” for unbiased or for the “u”
user index of Chapters 12-14 for readers referring back to GDFE material from those chapters. S0,n has
a role similar to the (scaled) γ0 of the infinite-length equivalent of Cholesky factorization, which is the
canonical factorization in Chapter 3 when the channel, noise, and input processes are stationary. The
product of these biased SNR’s is then

SNRgdfe =

(
N∗

∏

n=1

SNRbias,n

) 1
N+ν

≤ |Ruu|1/(N+ν)

|Re′e′ |1/(N+ν)
= 22Ī(u,z′) = 22Ī(x,y) , (5.198)

15Or more generally, periodically “index-varying.” The period is the symbol period.
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Figure 5.24: Generalized DFE.
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with less than (and not just equal) because of the information-lossy action of slicing in the feedback
operation. Equality occurs when Ruu = diag{Eu,N∗−1, ..., Eu,0}. With such a diagonal (white) input,
this is a finite-length CDEF result. A suboptimal detector, namely the GDFE, is exhibiting an SNR on
an equivalent set of independent AWGN channels that is equal to the best achievable for such a set. This
surprising result occurs only for the backward canonical model of a channel. For this symbol-length, the
same good codes that are used on the ISI-free channel can be applied to a succession of symbols in the
GDFE system to acheive the same gap Γ with respect to the mutual information rate. If Rx′x′ is the
same as that generated by water-filling on the N +ν discrete subchannels of P that vector coding would
use, then transmission capacity can be approached by this GDFE structure, just as closely as with the
VC system of Chapter 4, even though the slicing (symbol-by-symbol detector) is suboptimum. A white
input (diagonal Ruu is required to attained this canonical level of performance.

Some interpretation is helpful: The GDFE replaces the linear filters of the usual DFE by matrix
multiplies, indeed triangular matrix multiplies (I −G) and S0 ·G−∗ corresponding to a causal feedback
section and a non-causal feed-forward section, respectively when P is Toeplitz (stationary channel). The

matched filter is the multiply (R
−1/2
nn PA)∗. These matrix multiplies can be interpreted as periodcially

time-varying filters - a different set of coefficients for each index n = 1, ..., N∗ within the packet. The
GDFE filters are thus then fundamentally different from the fixed finite-length filters that were derived
in Chapter 3, and in some very special cases, converge to the same thing as N →∞. In the majority of
cases, the GDFE filters do not converge to the same filters as in Chapter 3.

The matrix SNR for this channel is

SNRgdfe
∆
= RuuR−1

ee = SNRgdfe,u + I , (5.199)

and its determinant is SNRgdfe = |SNRgdfe|. Thus

|SNRgdfe| = |SNRgdfe,u + I| =
N∗−1∏

i=0

(1 + SNRu,i) . (5.200)

A task remaining is to make sure that u corresponds to a white input, for which there are several
methods discussed in Sections 5.4 and 5.5. If Ruu is not diagonal, then SNRgdfe < 22Ī(x;y) in (5.198)

(that is, the inequality is strict).

Bias

The GDFE is biased like all MMSE detectors. Each subchannel is a MMSE estimate and thus has the
relation SNRi = SNRu,i + 1. The matrix snr SNRgdfe corresponds to a biased estimate. That is

E[ûn/un] = (1 − 1

SNRbias,n
)un 6= un . (5.201)

Bias can be removed individually after feedback on the subchannels or by scaling each output of the

feedforward matrix by
SNRbias,n

SNRbias,n−1
.

5.3.4 The GDFE with diagonal input

For a general desired or given Rxx, the “input-essence” vector u may not have diagonal Ruu. However,
the vector u can be related to a “white input” (diagonal autocorrelation matrix so that all inputs are
uncorrelated) v in general via some N∗ ×N∗ square matrix transformation:

u = Φv , (5.202)

where Rvv is diagonal. Then, the matrix Ã is replaced by

Ã← ÃΦ (5.203)
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and all the development of this section for the GDFE follows with the simple replacements

P̃ ← R
−1/2
nn P ÃΦ (5.204)

u ← v . (5.205)

Figure 5.3.3 replaces Figure 5.25 with such substitution. After v has been correctly estimated, then u

and in turn x′ can be reconstructed. Any part of x not contained in x′ is of course lost in transmission,
but when x = x′, the arbitary input is determined (as long as the GDFE symbol-by-symbol detectors
function without error in estimation). In practice of course x and consequently v is never quite Gaussian
and instead is a discrete distribution corresponding to messages, even though with good codes that
distribution may be close to Gaussian. In this case then, it is desirable to consider v as the message
sequence itself and x′ as derived from this message sequence in modulation. Thus AΦ is a matrix
transmit filter. The GDFE then directly functions to estimate the message sequence. In this case, thet
simple QAM/PAM modulation needs modification according to loading of information on to the set of
parallel channels, to obtain maximum data rate. Thus, fixed-constellation QAM/PAM with an arbitary
number of bits or even a number of bits per symbol equal to the packet mutual information Ī(x; y) are
not canonical in general for the finite-length packet channel.

The next section investigates two specific structures for the matrix Φ and finds that a triangular
factorization will lead to a finite-length equivalent of the MMSE-DFE. The other structure, an eigen-
decomposition, leads to VC. Both are special cases of the GDFE.

There can be many such transformations and each will correspond to a different GDFE, but all will
attain the same performance. The following example illustrates one such case.

EXAMPLE 5.3.3 (GDFE for 1 + .9D−1 Channel) This book has investigated numer-
ous times the 1 + .9D−1 channel with input energy Ēx = 1 and σ2 = .181. This current
instance will investigate a form of the GDFE for this channel with N = 2 and ν = 1 to keep

computation to a minimum. The matrix R
−1/2
nn P describing this channel is

1

σ
· P =

1√
.181

·
[

.9 1 0
0 .9 1

]

=

[
2.1155 2.3505 0

0 2.1155 2.3505

]

, (5.206)

with singular value decomposition:

1√
2
·
[

1 1
1 −1

] [
3.8694 0 0

0 2.2422 0

]




.3866 .6671 .6368

.8161 .0741 −.5731

.4295 −.7412 .5158





∗

. (5.207)

The first two columns of M span the pass space of the channel. The original PAM modulator
corresponds to C = I, so

C̃ = PM̃ · I =





.5945 .3649 −.3285

.3649 .6715 .2956
−.3285 .2956 .7340



 , (5.208)

which in this special case of white PAM modulation corresponds to a rank-2

Rx̃x̃ = PM̃ · IPM̃ = C̃ . (5.209)

Since Rx̃x̃ has rank 2, then N∗ = Ñ and no further elimination of singularity is necessary.
However, Ruu is not white. By using the steps in Figure 5.20,

Ruu =

[
2.5242 −1.3717
−1.3717 2.2346

]

, (5.210)

and

u1 = x1 − 1.235x3 (5.211)

u2 = x2 + 1.111x3 (5.212)
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Figure 5.25: The Generalized DFE with white input v
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A GDFE based on estimating u1 and u2 will therefore not have canonical peformance.

Instead, the designer might at least attempt to find an equivalent white input Rvv that
results in the same Rx̃x̃ as u as per the following matlab commands:

>> rxxtt=Pm

rxxtt = 0.5945 0.3649 -0.3285

0.3649 0.6715 0.2956

-0.3285 0.2956 0.7340

>> [V,D]=eig(rxxtt)

V = 0.6368 0.3545 -0.6847 D = 0 0 0

-0.5731 0.8117 -0.1128 0 1 0

0.5158 0.4642 0.7200 0 0 1

>> Pq=V(1:3,2:3)*V(1:3,2:3)’ = 0.5945 0.3649 -0.3285

0.3649 0.6715 0.2956

-0.3285 0.2956 0.7340

>> Phi=V(1:3,2:3)= 0.3545 -0.6847

0.8117 -0.1128

0.4642 0.7200

>> Phi*eye(2)*Phi’ = 0.5945 0.3649 -0.3285 = rxtt (checks)

0.3649 0.6715 0.2956

-0.3285 0.2956 0.7340

>> P*Phi

2.6578 -1.7136

2.8083 1.4538

>> P*Pm*Phi

2.6578 -1.7136

2.8083 1.4538

>> Pt=P*Phi = 2.6578 -1.7136

2.8083 1.4538

A GDFE based on the 2-dimensional white input Rvv = I achieves canoncial performance,
which is found by the following sequence of matlab commands:

>> Rf=Pt’*Pt = 14.9500 -0.4715

-0.4715 5.0500

>> Rbinv=Rf+inv(eye(2)) = 15.9500 -0.4715

-0.4715 6.0500

>> Gbar=chol(Rbinv) = 3.9937 -0.1181

0 2.4568

>> G=inv(diag(diag(Gbar)))*Gbar = 1.0000 -0.0296

0 1.0000

>> S0=diag(diag(Gbar))*diag(diag(Gbar))

S0 = 15.9500 0

0 6.0361

>> snr=10*log10((det(S0))^(1/3)-1) =
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5.5427 dB

The canonical performance is thus SNRgdfe,u = 5.5 dB. The one unit of energy into the
null space is wasted, pulling down performance if the white PAM-like autocorrelation matrix
Rxx = I is used, even if the input is recoded so simple decisions on v1 and v2 can be made.
The performance loss is caused by a poor choice in input autocorrelation matrix (which is
nevertheless, that of the widely used PAM in this case). Assuming the matched filter matrix
and the feedforward matrix are combined into a single 2× 2 matrix, the complexity of this
GDFE is 5 operations per 3 samples or 1.667/sample.

It is possible to attempt to recover some of the loss by reshaping the input so that no energy
is placed into the null space and 1.5 units each are used on each of the components of the
white v. This provides the autocorrelation matrix

Rxx =





0.8918 0.5474 −0.4927
0.5474 1.0073 0.4434
−0.4927 0.4434 1.1009



 . (5.213)

but
Rvv = 1.5I . (5.214)

and
rxx = ΦRvvΦ∗ (5.215)

The corresponding GDFE now is computed according to these matlab commands:

>> Rbinv=Rf+inv(1.5*eye(2)) = 15.6166 -0.4715

-0.4715 5.7167

>> Gbar=chol(Rbinv)

Gbar = 3.9518 -0.1193

0 2.3880

>> G=inv(diag(diag(Gbar)))*Gbar = 1.0000 -0.0302

0 1.0000

>> S0=diag(diag(Gbar))*diag(diag(Gbar)) = 15.6166 0

0 5.7025

>> snr=10*log10((2.25*det(S0))^(1/3)-1) =

6.8589 dB

>> W=inv(S0)*inv(G’)= 0.0627 0

0.0049 0.1657

>> W*Pt’ (MS-WMF combination)

0.1666 0.1761

-0.2709 0.2546

The SNR increases to 6.9 dB and the feedforward filter and the combination of feedforward-
matched filter are illustrated. The transmit energy is 3 units per symbol. The complexity
remains at 1.667/sample. From Chapter 3, the finite-length MMSE-DFE required Nf = 2
and Nb = 1 to get this same performance, leading to a complexity of 3, almost twice that of
the GDFE with altered input. Such is often the benefit of transmit optimization – not only
does it work better, the receiver gets easier, because this E1 = E2 = 1.5 choice of inputs is
close to water-filling. For N = 3 in the GDFE, one gets 8.0 dB and as N becomes large, the
ultimate SNR is 8.4 dB for an i.i.d. input. Unfortunately, as N grows, the complexity of this
choice of GDFE will grow as N2 and unnecessarily be well above the complexity of DMT
(which gets 8.8 dB when N = 16 and complexity is 3.8/sample). If a water-fill input is used
and the water-filling input is used, then this ultimate SNR can be as high as 8.8 dB.
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When Ruu, or equivalently by design Rvv, are diagonal, the GDFE creates a set of parallel channels
that have the same maximum data rate possible as VC. This set of parallel channels is different than
those of vector coding for the same Rxx and have a different set of SNRn. However, the total data rate
and overall SNR are the same. Loading needs to be excuted for this set of nonequal SNRn in order to
get the maximum performance level. The standard loading algorithms of Chapter 4 can be applied to
the set of parallel independent subchannels created by the GDFE.

Chain rule relationships

The chain rule of mutual information

I(x y) = I(x0; y) + I(x1 y/x0) + ... + I(xn y/[x1...xn−1]) + ... + I(xN−1 y/[x1...xN−2]) (5.216)

has a very special relationship to all GDFE’s. Essentially each term in equation 5.216 corresponds
to a MMSE-DFE designed for xn given the entire channel symbol output y and the previous values
of x1, ... xn. A little reflection reveals this is exactly what the GDFE is – a series of independently
designed MMSE-DFEs given the channel output and past decisions – when the input sequence has
diagonal autocorrelation, i.e., is “white”.

Any invertible transformation on the input from a possibly “non-white” x to a “white” v produces
the same mutual information I(v y) = I(x y)and a new chain rule for the components of v. There
are an infinite number of such possible transformations, leading to an infinite number of GDFEs, as
previous sections have illustrated. This same chain-rule applied to the infinite-length MMSE-GDFE in
Subsection 5.1.2. This same result applies also to the GDFE, as in the subsequent subsection.

Zero-Forcing GDFE’s

The zero-forcing version of any MMSE design, like the GDFE, is obtained by assuming there is no noise
in the MMSE solution. Because there may be a multitude of equivalent MMSE structures that all have
the same MMSE performance, caution needs to be exercised in assuming all ZF-GDFEs have the same
performance with noise.

For any given GDFE, the ZF-equivalent uses the forward channel model to derive a ZF-GDFE. The
forward channel output z is again with lower-diagonal-upper Cholesky factorization of Rf = P ∗

f SfPf

z = P ∗
f SfPfu + n′ . (5.217)

The receiver can process z with S−1
f P−∗

f to obtain

z′ = S−1
f P−∗

f z = Pfu + n′′ . (5.218)

Ignoring the noise n′′ as if it were zero produces a triangular set of equations (since Pf is upper triangular)

û0 = sbs0(z
′
0) (5.219)

û1 = sbs1(z
′
1 − pf,1,0û0) (5.220)

û2 = sbs2(z
′
2 − pf,2,1û1 − pf,2,0û0) (5.221)

... =
... (5.222)

ûN∗−1 = sbsN∗−1(z
′
N∗−1 −

N∗−2∑

i=0

pf,N∗−1,iûi) . (5.223)

The set of equations provides an estimate of the transmitted sequence, but the overall SNR (which is
unbiased) is less than or equal to 22Ī(x;y) − 1. This SNR can be computed as (with 0 dB gap)

SNRzf−gdfe =

[
N∏

n=1

(1 + Eu,n · Sf,n)

]1/N

− 1 . (5.224)

Equality holds under various conditions like the matrix Rf is diagonal (that is Pf = I and there is
no feedback matrix) or certain types of noise (worst-case), as will be seen later in Section 5.5. Often, the
ZF-GDFE, can have performance very close to the MMSE-GDFE cis anonical and highest SNR level.
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5.3.5 Precoding for the GDFE

Precoding in the conventional DFE averts error propagation by essentially moving the feedback section
to the transmitter. Section 3.8 introduced several types of precoders, with the Tomlinson and/or Laroia
precoders (or more advanced lossless precoders of Chapter 14) of general utility. Precoders can increase
the transmit power slightly. Some straightforward modification is necessary for the GDFE. However, the
finite-length symbols in the GDFE prevent error bursts that exceed the length of one symbol in length.
Thus, there may be less need for the precoder in the GDFE because any error-propagation will hault
with probability one at the symbol boundary, unlike the conventional DFE that can have infinite error
bursts (and very long error bursts with increasingly small probability). Thus, for reasons of performance
and error propagation, the GDFE may be preferable in implementation.

Nonetheless, the transmission design may use precoding to eliminate even error propagation within
a symbol. The rows of the feedback section now vary with subchannel index n and

gn
∆
= [1 gn,n−1 gn,n−2 ... gn,0] ∀n = 0, ..., N∗− 1 . (5.225)

The Tomlinson precoder again requires an unbiased feedback section, which is obtained by

gU,n =

[

1
SNRn + 1

SNRn
· gn,n−1 ...

SNRn + 1

SNRn
· gn,0

]

. (5.226)

Each used dimension n = 0, ..., N∗− 1 has an associated bn = 1
2

log2

(
1 + En·Sn

Γ

)
and constellation, for

which a modulato operator is defined as in Section 3.8, Γ22b̄n (•). The Tomlinson precoder then becomes
period in the symbol period with operation

u′
n = Γ22b̄n

(

un −
n−1∑

i=0

gU,n,i · u′
i

)

. (5.227)

Each dimension has a loss in SNRn of 22b̄n

22b̄n−1
, which can then be incorporated into the overall SNR

for the GDFE through the same formula (5.73). Each of the N∗ dimensions of the feedforward matrix
output should have a modulo operator Γ22b̄n (•) prior to the decision element.

The Laroia precoder then also easily follows with the periodic gU,n vectors being used in the usual
manner for each corresponding dimension – however, the Laroia precoder cannot be used if receiver
coordination is necessary because it requires a second wave of corresponding decoder processing as in
Section 3.8 after a first decision element (and this additional processing requires coordination among the
dimensions in the receiver, see Chapter 14 on broadcast channels for more on the absence of receiver
coordination).

5.3.6 Single-sided GDFE’s for distributed channel inputs

When the matrix P has rank equal to the number of channel input dimensions, a special one-sided
GDFE can occur. Such a P does not occur in the simple convolution case often encountered previously.
However, examples of P that have such rank are:

• the cyclic matrix P corresponding to use of a cyclic prefix

• a matrix that corresponds to N dimensions independently exciting a common channel (for instance
a wireless transmission system with N independent transmit antennae and N or more receive
antennae)

The Vector OFDM systems of Section 5.5 also decompose into a number of smaller systems, each with
such a nonsingular square P matrix.

In these situations only, the GDFE performance can be attained without coordination or co-generation
of the input dimensions. The absence of an ability to transform the input dimensions with an A or C
matrix might correspond to physically distinct locations in which the transmitted signals entering the
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Figure 5.26: The distributed input GDFE.

Figure 5.27: The distributed-output GDFE.

channel are generated, or distributed inputs. If the P matrix has rank greater than or equal to the
number of inputs, A = C = I, and thus no dimensional reduction is necessary.

Figure 5.26 illustrates the GDFE in the case of distributed input dimensions, and it is clear that all
processing of the GDFE occurs in the receiver (which must be able to co-process the various channel
output dimensions). While seemingly trivial as written here – this particular situation of receiver-
side-coordination-only can occur in a number of multiple-input-multiple-output channel situations (see
Chapter 13).

5.3.7 Single-sided GDFE-Precoder for distributed channel outputs

The dual of the situation in Subsection 5.3.6 is one in which the channel output dimensions occur in
physically separated locations, and thus matrix processing is not physically possible. However, the input
dimensions to the channel are co-generated in a common place. The ZF-GDFE performance is possible
only if the matrix P is square and nonsingular16.

Figure 5.27 illustrates this situation. In this case, the matrix P is QR-factored into P = S
1/2
f PfM∗

16More channel outputs than input dimensions is not of practical interest if the outputs cannot be coordinated in
processing.
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where Sf is the diagonal matrix from the ZF-GDFE, Pf is the monic upper triangular matrix and M
is a Hermetian matrix. Then the transmit signal is x = Mu and the receive signal is processed by

z′ = S
−1/2
f z, leaving

z′ = Pfu (5.228)

A precoder is then used to create the set of parallel independent subchannels of the ZF-GDFE. This
choice leads to the overall SNR being

SNRzf−gdfe =

N−1∏

n=0

Eu,n · Sf,n . (5.229)

If the noise is not white, then P should be replaced by PR
−1/2
nn in all the above equations, and there

may be additional performance loss with respect to GDFE levels.
Precoding in the MMSE sense can be done if P is singular and/or the input is singular in the usual

sense with a GDFE. More general precoders are considered in Chapter 14. This means the matrix
A is found and the input processing determined accordingly. The feedback section is implemented
at the transmitter for G of the GDFE. However, the combination of the matched-filter feedforward
filter S−1

0 G−∗P̃ would nominally require co-location of the recievers, which is not physically possible.
However, there are many choices of the GDFE input processing that all provide the same performance,
but different feedforward filters and feedback sections. A question is “Is there a choice of partitionings
and white inputs v that produces a diagonal W = S−1

0 G−∗P̃ ?”
There are basically two “yes” answers when the system is square nonsingular:

1. If the noise is white and water-filling spectra (see Section 5.5.5) are also used, then the MS-WMF
matrix can be diagonal with no performance loss.

2. If the noise is worst-case noise (see Subsection 5.5.5).
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5.4 Special Cases of the GDFE: VC and The Packet DFE

A generalized DFE for a linear-ISI-with-AWGN channel (P, Rnn) has the same performance for all
Gaussian inputs with covariance Ruu. The design of a realistic GDFE system should consider the mes-
sage sequence to be the diagonal-autocorrelation input vector v of Figure 5.25 since only decisions made
on vn n = 0, ..., N∗− 1 achieve the cannonical performance maximum of SNR = 22Ī(x;y). This input
choice of diagonal v then generates any useful part Rx′x′ of the desired input autocorrelation/power-
spectrum corresponding to Rxx = Rx′x′ .

The GDFE with white input has canonical performance, just as did the infinite-length GDFE (when
inputs were properly constructed according to symbol-rate choice) and thus allows the following CDEF
Lemma:

Lemma 5.4.1 (Finite-Length CDEF Equivalent) The finite-length equivalent of the ear-
lier CDEF result is that for a diagonal input v and any corresponding GDFE of Section 5.3:

SNRGDFE,u = 22Ī(x;y) − 1 . (5.230)

That is a code with gap Γ on the AWGN can also be used (with appropriate loading) on all
the subchannels of the GDFE for any input autocorrelation Rxx to obtain the same gap to
best data rate for that Rxx on matrix channel P .

Proof: the development in Section 5.3. QED.

Some interpretation is necessary: In the GDFE, a set of parallel subchannels that do not all carry the
same information is generated (unlike the CDEF result for the infinite-length case where all subchannels
carry the same information or b̄). The data rate on each of these subchannels will be determined by the
given diagonal entries in Rvv and are

b̄n =
1

2
log2

(

1 +
Ev,n · S0,n

Γ

)

. (5.231)

When these subchannels have been loaded according to to a water-filling criterion for an Rxx that
maximizes I(x; y), then the highest possible data rate of capacity is obtained for Γ = 0 dB. This section
will find ways of constructing such an input. Furthermore, codes applied to a GDFE system may span
several successive symbols in order to ensure that the gap is correct – that is codes with gaps less
than 8.8 dB (for Pe = 10−6) may correspond to more than one symbol of the GDFE system, but are
considered external to that GDFE system and simply achieve the gap – this prsumption of infinite
codeword length is not an issue in the theoretical infinite-length systems, but clearly should be at least
noted in finite-length implementation.

There may be more than one diagonal-autocorrelation v that achieves the canonical level, corre-
sponding to different feedback sections (and feedforward sections), but the same SNRgdfe,u. This section
investigates two specific forms:

1. Vector Coding - which corresponds to the matrix Φ resulting from eigendecomposition of Ruu
to obtain Hermetian Φ

2. triangular GDFE - which corresponds to Cholesky factorization of Ruu to obtain triangular
(causal) Φ, and includes the important special case of cyclic GDFE or the CDFE when P is cyclic,
only the latter of which corresponds to the original DFE’s of Chapter 3.

As N → ∞ for stationary (Toeplitz) Ruu, the CDFE converges to the MMSE-DFE, while other
forms of the GDFE do not. The CDFE will at each symbol length N + ν and cyclic prefix length ν
exactly match the SNR of DMT, if the spectra of the CDFE input is the same as the spectra of the DMT
input. Vector coding, again, converges to multitone as N → ∞ for stationary (Toeplitz) Ruu. Thus,
the GDFE and all its white-input special cases of CDFE, DMT, and VC all asymptotically approach
the same performance level if the Rxx is the same (and each method for uses codes with the same
gap), even if that Rxx is not a water-fill solution. If the water-fill Rxx is used in all, then all attain
the highest performance level for the given gap. Section 5.5 considers the construction of the optimum
water-filling or any other desired Rxx for the CDFE and GDFE to avoid violation of the PW criterion
(which will result in a minimum number of parallel CDFE’s).
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5.4.1 Vector-Coding as a special case of the GDFE

The partitioning of vector coding is a special case of the GDFE. In this case, the operation of noise-

whitening is best considered first so that the designer replaces P by R
−1/2
nn P and then derives the singular

value decomposition

R
−1/2
nn P = FΛM∗ . (5.232)

The input vectors of vector coding are again chosen to be the right-singular-vectors of the channel
spanned by M ,

x =

N+ν∑

n=1

Xnmn = MX . (5.233)

Only Ruu of the form Ruu = MRXXM∗ constitute vector-coding systems – any other Ruu is
not vector coding. The projection into the pass space corresponds trivially to removal of the vectors
mn n > N from the sum so

x̃ =

N∑

n=1

Xnmn = M̃X̃ . (5.234)

In vector coding, when water-filling is used, some parts of the pass space are so poor that they are not
used – a classic example of the situation where Rx̃x̃ is singular. The projection, in any case where Rx̃x̃
is singular for VC, is then

x′ =

N∗

∑

n=1

Xnmn = M ′X ′ . (5.235)

and finally then
vn = Xn n = 1, ..., N∗ . (5.236)

In the receiver, the matrix Rf becomes the diagonal

Rf = P̃ ∗P̃ = diag
{
λ2

1, λ
2
2, ..., λ

2
N∗

}
, (5.237)

and thus R−1
b = Rf +R−1

vv is also diagonal, meaning that G = I. The feedback section thus degenerates
to no feedback at all (and the concern with suboptimal detection is eliminated), and the feedforward
section simply becomes S−1

0 = Rb – an independent scaling of each subchannel.

Lemma 5.4.2 (Vector Coding as the Optimum and Canonical Transmission System)
Vector coding is both canonical and optimum as a transmission method.

Proof: Since SNRdgfe = 22Ī(x;y) is maintained by the GDFE with diagonal inputs Rvv,
VC is canonical. Since there is no feedback section in the GDFE, the concern for suboptimal
detection is removed and an independent ML decoder on each subchannel (which is a simple
slicer for uncoded transmission) is optimum. QED.

The joint optimality and canonical nature of the VC-based GDFE is unique to a structure based on
modulating vectors that coincide with a set of singular vectors for the channel. No other structure
produces a diagonal channel with the consequence of G = I. Any other G 6= I may have canonical SNR
(22Ī(x;y)) but assumes correct decisions and thus is not ML nor optimum as a detector. Thus, VC is
truly the best structure for transmission on the channel (P, Rnn).

5.4.2 The non-VC triangular DFE as a special case of the GDFE

The GDFE can also use Cholesky factorization to relate a nonsingular input matrix Ruu to a diagonal
matrix Rvv:

Ruu = GφRvvG∗
φ , (5.238)
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Figure 5.28: Triangular DFE with white input v.

where Gφ is monic upper-triangular17 and Rvv is a diagonal matrix. Furthermore,

u = Gφv . (5.239)

The data input for transmission will be considered to be the N∗ components of v, and

x′ = Au = (AGφ)v . (5.240)

The corresponding GDFE has

P̃ = R
−1/2
nn PAGφ (5.241)

and otherwise follows exactly as in Section 5.3 with input vn, n = 0, ..., N∗− 1 as data input and also
as input to the feedback section in the GDFE. This structure appears in Figure 5.28.

The GDFE’s feedforward filter and feedback filter remain triangular (and not necessarily diagonal)
and nonzero in general, leading to a higher complexity of implementation and a loss of optimum detection
performance – however, because the input is diagonal by construction, this GDFE is still canonical, the
SNRgdfe performance still approaches capacity just as closely as the VC system (with higher complexity).
This GDFE’s most interesting quality is the triangular transmission filter, which is suggestive of a
causally implemented filter when the input Rxx can be made nonsingular as N → ∞. Causal filters
satisfy the PW criterion. Upper-triangular filters can be implemented essentially without delay in this
special case. In general, however, because of the projection matrix A, AGφ is not triangular and there
is no special delay property exhibitted.

The sequence v is the vector innovations of x′ or equivalently of u. This relationship interestingly
follows from the monic-triangular nature of Gφ so that

|Ruu| = |Gφ| · |Rvv | · |Gφ| = |Rvv| . (5.242)

In this case, the product of the innovations input energies is thus equal to the product of the eigenvalues
of Ruu. Even though the innovations are not the same as the modal inputs of VC and the decision-
based detector is not optimum, they carry the same information with the same SNR in the absence of
any decision errors. The set of parallel subchannels is also different, even though the overall equivalent
AWGN has the same SNR. The diagram in Figure 5.29 illustrates the equivalent of the linear prediction
relationships for the MMSE-DFE. Figure 5.29 is intended to be similar to Figure 5.1. Gφ replaces Gx(D)
in the finite-length symbol case. Only a GDFE with diagonal-autocorrelation input has the canonical
SNR performance.

17Note the upper triangular matrix correct appears first here, unlike the factorization of R−1
b where the upper trian-

gular matrix appeared last. In Matlab, use chol(JRuuJ) command where J has all ones down the antidiagonal and
zeros elsewhere, and pre- and post-multiply the resultant matrix by J, and then take congugate transpose to ob-
tain Gxbar, or in matlab Gxbar=(J*chol(J*rxx*J)*J)’, and then finally remove diagonal terms by post multiplying as
Gx=Gxbar*inv(diag(diag(Gxbar))), to obtain Gx. Rvv is diag(diag(Gxbar))*diag(diag(Gxbar).
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Figure 5.29: Innovations and input.

5.4.3 The Circulant DFE (CDFE)

The N × (N + ν) convolution matrix P can never have rank greater than N . Also, the square N ×N
matrix P that arises from the use of a cyclic prefix (the same cyclic prefix used for DMT) always
has rank Ñ ≤ N . The case N∗ = Ñ = N would occur when the input autocorrelation matrix Rxx
had been selected to correspond to a sampling rate where all subchannels are used in loading. The
situation of Ñ < N occurs when the channel has notches (zero gain) at the exact frequencies that would
be considered “carrier” frequencies in DMT. Instead of eliminating these singularities, the wise input
design would always zero energy on any such notch frequencies, which will lead to multiple discontiguous
bands as is further discussed in Section 5.5.

In the simpler case of a non-singular input,

Ruu = Rxx . (5.243)

The input factorization then trivially becomes Cholesky factorization and

x = Gxv (5.244)

with Gx a upper-triangular N×N matrix. This situation corresponds to the circulant DFE or CDFE.
In this case, for a stationary channel, namely a circulant Toeplitz P and finite fixed ν as N → ∞, the
CDFE will converge to a MMSE-DFE as in Section 5.7. For the more complex case of input singularity
corresponding to input design zeroing certain frequencies for any reason (channel notches or choice of
loading algorithm, or both), then the situation essentially leads to multiple CDFEs each converging to
its own corresponding MMSE-DFE.18

The transmit filter will correspond to any of the middle rows of Gx while the feedback section is any
of the middle rows of G.19 The matched filter matrix clearly converges to a matched filter, and any of
the middle rows of this feedforward matrix converges to the anti-causal feedback section. The CDFE as
described here exists only when Rxx is nonsingular, which may not occur especially if water-filling is
used. The next section (5.5) deals with an adjustment that needs to be made when there are multiple
disjoint bands, which is called “generalized Cholesky factorization.” Under the cyclic-channel-matrix
restriction, DMT is clearly an optimum transmission method with best SNR and ML detection achieved
because G = I and there is no error propagation. The CDFE when its input exists and matches DMT,
obtains the same SNR, but is only canonical because it does not have an ML detector.

18One can think of applying everything in this section to each CDFE individually in this case of multiple discontiguous
band use.

19All these middle rows will have the nonzero coefficient values tending to the same fixed filter when the block symbol
length is long enough.
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EXAMPLE 5.4.1 (1 + .9D−1 CDFE with PAM input) Returing the familiar 1+.9D−1

example often used in this text, the AWGN noise variance is N0

2 = .181 and Ēx = 1. This
example will use flat energy transmission with cyclic prefix of length ν = 1 on a block size
of N = 8. Thus, Rvv = Ruu = I. For this case, C = I for a circulant matrix and A = I
also because the input is white. Rather than repeat the analysis of previous developments
mathematically here, we simply insert some descriptive matlab text with results:

>> P=toeplitz([.9 zeros(1,7)]’,[.9 1 zeros(1,6)]);

>> P(8,1)=1

P = 0.9000 1.0000 0 0 0 0 0 0

0 0.9000 1.0000 0 0 0 0 0

0 0 0.9000 1.0000 0 0 0 0

0 0 0 0.9000 1.0000 0 0 0

0 0 0 0 0.9000 1.0000 0 0

0 0 0 0 0 0.9000 1.0000 0

0 0 0 0 0 0 0.9000 1.0000

1.0000 0 0 0 0 0 0 0.9000

>> Rf=(1/.181)*P’*P

Rf = 10.0000 4.9724 0 0 0 0 0 4.9724

4.9724 10.0000 4.9724 0 0 0 0 0

0 4.9724 10.0000 4.9724 0 0 0 0

0 0 4.9724 10.0000 4.9724 0 0 0

0 0 0 4.9724 10.0000 4.9724 0 0

0 0 0 0 4.9724 10.0000 4.9724 0

0 0 0 0 0 4.9724 10.0000 4.9724

4.9724 0 0 0 0 0 4.9724 10.0000

>> Rbinv= Rf + eye(8)

Rbinv = 11.0000 4.9724 0 0 0 0 0 4.9724

4.9724 11.0000 4.9724 0 0 0 0 0

0 4.9724 11.0000 4.9724 0 0 0 0

0 0 4.9724 11.0000 4.9724 0 0 0

0 0 0 4.9724 11.0000 4.9724 0 0

0 0 0 0 4.9724 11.0000 4.9724 0

0 0 0 0 0 4.9724 11.0000 4.9724

4.9724 0 0 0 0 0 4.9724 11.0000

>> Gbar = chol(Rbinv)

Gbar = 3.3166 1.4992 0 0 0 0 0 1.4992

0 2.9584 1.6807 0 0 0 0 -0.7598

0 0 2.8592 1.7391 0 0 0 0.4466

0 0 0 2.8241 1.7607 0 0 -0.2750

0 0 0 0 2.8107 1.7691 0 0.1723

0 0 0 0 0 2.8054 1.7724 -0.1086

0 0 0 0 0 0 2.8033 1.8424

0 0 0 0 0 0 0 2.1128

>> G=inv(diag(diag(Gbar)))*Gbar

G = 1.0000 0.4520 0 0 0 0 0 0.4520

0 1.0000 0.5681 0 0 0 0 -0.2568

0 0 1.0000 0.6082 0 0 0 0.1562

0 0 0 1.0000 0.6234 0 0 -0.0974

0 0 0 0 1.0000 0.6294 0 0.0613

0 0 0 0 0 1.0000 0.6318 -0.0387

0 0 0 0 0 0 1.0000 0.6572

0 0 0 0 0 0 0 1.0000

>> S0=diag(diag(Gbar))*diag(diag(Gbar))
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S0 = 11.0000 0 0 0 0 0 0 0

0 8.7523 0 0 0 0 0 0

0 0 8.1751 0 0 0 0 0

0 0 0 7.9756 0 0 0 0

0 0 0 0 7.9000 0 0 0

0 0 0 0 0 7.8703 0 0

0 0 0 0 0 0 7.8585 0

0 0 0 0 0 0 0 4.4639

>> 10*log10(det(S0)^(1/9)-1) = 7.1666 dB

>>W=(1/.181)*inv(S0)*inv(G’)*P’

W = 0.4520 0 0 0 0 0 0 0.5023

0.3744 0.5681 0 0 0 0 0 -0.2853

-0.2277 0.3303 0.6082 0 0 0 0 0.1736

0.1420 -0.2059 0.3135 0.6234 0 0 0 -0.1082

-0.0894 0.1296 -0.1973 0.3069 0.6294 0 0 0.0681

0.0565 -0.0819 0.1247 -0.1939 0.3043 0.6318 0 -0.0430

-0.0357 0.0518 -0.0789 0.1227 -0.1926 0.3033 0.6327 0.0272

-0.1702 0.0762 0.0017 -0.0800 0.1753 -0.3078 0.5056 0.3005

The important G matrix clearly is converging to what is known (from Chapter 3) to be the
MMSE-DFE feedback section of 1 + .633D in the middle rows of G. This behavior would
happen for any sufficiently large N on this example and illustrates that the MMSE-DFE
is simply the limit of the CDFE as N becomes large. That is, no blocking is necessary if
the transmitted symbol sequence is just considered long enough. However, at the beginning
of transmission, especially on this maximum phase channel, the filter is different during a
transient. An MMSE-DFE designed according to Chapter 3 for finite or infinite-length filters
would actually only achieve its 8.4 dB SNR asymptotically, because the assumptions made
in that derivation were stationarity for all time, when in fact the more realistic situation
illustrated in this example is that transmission begins at one point in time and continues. In
that latter more realistic case, the first few samples are better handled by the CDFE than by
the usual MMSE-DFE design. Indeed the 7.16 dB SNR here increases to 7.75 dB at N = 16,
8.26 dB at N = 100 and 8.3 dB at N = 200 illustrated the fastest or best convergence to the
eventual 8.4 dB. Thus, one notes that use of a stationary-designed MMSE-DFE over finite
block lengths (as often occurs in wireless transmission, for instance GSM (Group Special
Mobile or widely used cell-phone transmission method) where block lengths are only about
150 symbols long with essentially QPSK and a MMSE-DFE equalizer) will not achieve the
performance computed for the asymmptotic convergence. Some GSM designers are aware of
the effect and actually use time-varying DFE’s within the packet of samples.

The feedforward filter is converging also, but clearly has significant terms for all samples at
least for N = 8. Note the “end” sample here is related to ν = 1 and eventually just implies
an implementation with ∆ > 0 to handle the maximum-phase channel.

It is interesting to compare the CDFE with a conventional GDFE as in the design of Example
5.3.3 execept that N is increased from 2 there to 8 here to produce the results with now energy
9/8 fed into each of the dimensions recognizing the channel singularity on one dimension and
not inserting energy there:

>> P=(1/sqrt(.181))*toeplitz([.9 zeros(1,7)]’,[.9 1 zeros(1,7)])

P = 2.1155 2.3505 0 0 0 0 0 0 0

0 2.1155 2.3505 0 0 0 0 0 0

0 0 2.1155 2.3505 0 0 0 0 0

0 0 0 2.1155 2.3505 0 0 0 0

0 0 0 0 2.1155 2.3505 0 0 0
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0 0 0 0 0 2.1155 2.3505 0 0

0 0 0 0 0 0 2.1155 2.3505 0

0 0 0 0 0 0 0 2.1155 2.3505

>> M

M =

0.0775 -0.1527 0.2232 0.2868 -0.3414 0.3852 -0.4153 -0.4214 0.4728

0.2319 -0.4037 0.4712 0.4182 -0.2608 0.0428 0.1748 0.3238 -0.4255

0.3583 -0.4657 0.2480 -0.1415 0.4320 -0.4280 0.1475 -0.1871 0.3830

0.4415 -0.3099 -0.2232 -0.4674 0.1108 0.3852 -0.4008 0.0278 -0.3447

0.4714 -0.0090 -0.4712 -0.0208 -0.4705 0.0428 0.4666 0.1348 0.3102

0.4445 0.2960 -0.2480 0.4602 0.0526 -0.4280 -0.3140 -0.2812 -0.2792

0.3639 0.4626 0.2232 0.1806 0.4522 0.3852 0.0146 0.3936 0.2513

0.2395 0.4127 0.4712 -0.3975 -0.2097 0.0428 0.2917 -0.4586 -0.2261

0.0862 0.1697 0.2480 -0.3187 -0.3794 -0.4280 -0.4615 0.4683 0.2035

>> Mt

Mt =

0.0775 -0.1527 0.2232 0.2868 -0.3414 0.3852 -0.4153 -0.4214

0.2319 -0.4037 0.4712 0.4182 -0.2608 0.0428 0.1748 0.3238

0.3583 -0.4657 0.2480 -0.1415 0.4320 -0.4280 0.1475 -0.1871

0.4415 -0.3099 -0.2232 -0.4674 0.1108 0.3852 -0.4008 0.0278

0.4714 -0.0090 -0.4712 -0.0208 -0.4705 0.0428 0.4666 0.1348

0.4445 0.2960 -0.2480 0.4602 0.0526 -0.4280 -0.3140 -0.2812

0.3639 0.4626 0.2232 0.1806 0.4522 0.3852 0.0146 0.3936

0.2395 0.4127 0.4712 -0.3975 -0.2097 0.0428 0.2917 -0.4586

0.0862 0.1697 0.2480 -0.3187 -0.3794 -0.4280 -0.4615 0.4683

>> Pm=Mt*Mt’

Pm =

0.7764 0.2012 -0.1811 0.1630 -0.1467 0.1320 -0.1188 0.1069 -0.0962

0.2012 0.8189 0.1630 -0.1467 0.1320 -0.1188 0.1069 -0.0962 0.0866

-0.1811 0.1630 0.8533 0.1320 -0.1188 0.1069 -0.0962 0.0866 -0.0779

0.1630 -0.1467 0.1320 0.8812 0.1069 -0.0962 0.0866 -0.0779 0.0702

-0.1467 0.1320 -0.1188 0.1069 0.9038 0.0866 -0.0779 0.0702 -0.0631

0.1320 -0.1188 0.1069 -0.0962 0.0866 0.9221 0.0702 -0.0631 0.0568

-0.1188 0.1069 -0.0962 0.0866 -0.0779 0.0702 0.9369 0.0568 -0.0511

0.1069 -0.0962 0.0866 -0.0779 0.0702 -0.0631 0.0568 0.9489 0.0460

-0.0962 0.0866 -0.0779 0.0702 -0.0631 0.0568 -0.0511 0.0460 0.9586

>> rxx=(9/8)*Pm

rxx =

0.8735 0.2263 -0.2037 0.1833 -0.1650 0.1485 -0.1337 0.1203 -0.1083

0.2263 0.9213 0.1833 -0.1650 0.1485 -0.1337 0.1203 -0.1083 0.0974

-0.2037 0.1833 0.9600 0.1485 -0.1337 0.1203 -0.1083 0.0974 -0.0877

0.1833 -0.1650 0.1485 0.9913 0.1203 -0.1083 0.0974 -0.0877 0.0789

-0.1650 0.1485 -0.1337 0.1203 1.0167 0.0974 -0.0877 0.0789 -0.0710

0.1485 -0.1337 0.1203 -0.1083 0.0974 1.0373 0.0789 -0.0710 0.0639

-0.1337 0.1203 -0.1083 0.0974 -0.0877 0.0789 1.0540 0.0639 -0.0575

0.1203 -0.1083 0.0974 -0.0877 0.0789 -0.0710 0.0639 1.0675 0.0518

-0.1083 0.0974 -0.0877 0.0789 -0.0710 0.0639 -0.0575 0.0518 1.0784

>> A*ruu*A’ (checks)

ans =

0.8736 0.2264 -0.2037 0.1833 -0.1650 0.1485 -0.1336 0.1203 -0.1083

0.2264 0.9212 0.1833 -0.1650 0.1485 -0.1336 0.1203 -0.1082 0.0974

-0.2037 0.1833 0.9601 0.1485 -0.1337 0.1203 -0.1083 0.0975 -0.0877

0.1833 -0.1650 0.1485 0.9913 0.1203 -0.1083 0.0974 -0.0876 0.0790
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-0.1650 0.1485 -0.1337 0.1203 1.0167 0.0974 -0.0877 0.0790 -0.0710

0.1485 -0.1336 0.1203 -0.1083 0.0974 1.0373 0.0790 -0.0711 0.0639

-0.1336 0.1203 -0.1083 0.0974 -0.0877 0.0790 1.0540 0.0639 -0.0574

0.1203 -0.1082 0.0975 -0.0876 0.0790 -0.0711 0.0639 1.0674 0.0517

-0.1083 0.0974 -0.0877 0.0790 -0.0710 0.0639 -0.0574 0.0517 1.0783

>> A (caution: different Matlab versions produce different eigenvectors)

A =

-0.3794 0.0519 -0.5466 0.2553 -0.3330 -0.0143 -0.3291 -0.2157

0.2803 -0.0590 -0.2591 0.7194 0.1414 -0.0333 0.1254 -0.3396

-0.0047 -0.0481 -0.0369 0.0147 -0.1217 -0.3389 0.8394 -0.1235

-0.0285 -0.0068 -0.4208 -0.5844 -0.0748 0.2734 0.1743 -0.5010

0.1331 0.0490 0.5621 0.0263 0.0256 0.1161 -0.1697 -0.7239

-0.7324 0.0778 0.1464 0.0011 0.3665 -0.4337 -0.0155 -0.1883

-0.1253 0.4857 -0.1207 0.1086 0.5678 0.5325 0.2147 0.0829

-0.4401 -0.1120 0.3135 0.2511 -0.4834 0.5255 0.2567 0.0741

-0.1141 -0.8570 -0.0738 0 0.3972 0.2187 0 0

>> ruu

ruu =

1.1250 0 0 0 0 0 0 0

0 1.1250 0 0 0 0 0 0

0 0 1.1250 0 0 0 0 0

0 0 0 1.1250 0 0 0 0

0 0 0 0 1.1250 0 0 0

0 0 0 0 0 1.1250 0 0

0 0 0 0 0 0 1.1250 0

0 0 0 0 0 0 0 1.1250

>> Pt=P*A

Pt =

-0.1438 -0.0289 -1.7653 2.2310 -0.3721 -0.1085 -0.4014 -1.2545

0.5819 -0.2379 -0.6348 1.5564 0.0131 -0.8670 2.2383 -1.0087

-0.0769 -0.1177 -1.0672 -1.3425 -0.4333 -0.0743 2.1854 -1.4389

0.2526 0.1008 0.4310 -1.1745 -0.0981 0.8513 -0.0302 -2.7614

-1.4399 0.2865 1.5332 0.0582 0.9156 -0.7738 -0.3954 -1.9740

-1.8439 1.3062 0.0260 0.2576 2.1099 0.3342 0.4719 -0.2035

-1.2995 0.7642 0.4815 0.8199 0.0649 2.3617 1.0576 0.3495

-1.1992 -2.2513 0.4897 0.5312 -0.0890 1.6257 0.5430 0.1568

>> Rf=Pt’*Pt

Rf =

9.0291 -1.2142 -3.3934 -1.8697 -5.1169 -4.7888 -1.1417 1.5820

-1.2142 7.5222 0.1098 -0.6111 3.3171 -1.3365 -0.6924 -0.7499

-3.3934 0.1098 7.6671 -3.2492 2.5150 1.9439 -2.8762 0.4135

-1.8697 -0.6111 -3.2492 11.6059 0.4898 0.3495 0.9436 1.0085

-5.1169 3.3171 2.5150 0.4898 5.6382 -0.0170 -0.1114 -0.8802

-4.7888 -1.3365 1.9439 0.3495 -0.0170 10.4246 1.7590 1.3068

-1.1417 -0.6924 -2.8762 0.9436 -0.1114 1.7590 11.7403 -3.6760

1.5820 -0.7499 0.4135 1.0085 -0.8802 1.3068 -3.6760 16.3715

>> Rbinv=Rf+inv(ruu)

Rbinv =

9.9180 -1.2142 -3.3934 -1.8697 -5.1169 -4.7888 -1.1417 1.5820

-1.2142 8.4111 0.1098 -0.6111 3.3171 -1.3365 -0.6924 -0.7499

-3.3934 0.1098 8.5560 -3.2492 2.5150 1.9439 -2.8762 0.4135

-1.8697 -0.6111 -3.2492 12.4947 0.4898 0.3495 0.9436 1.0085

-5.1169 3.3171 2.5150 0.4898 6.5271 -0.0170 -0.1114 -0.8802

-4.7888 -1.3365 1.9439 0.3495 -0.0170 11.3135 1.7590 1.3068
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-1.1417 -0.6924 -2.8762 0.9436 -0.1114 1.7590 12.6292 -3.6760

1.5820 -0.7499 0.4135 1.0085 -0.8802 1.3068 -3.6760 17.2604

>> Gbar=chol(Rbinv)

Gbar =

3.1493 -0.3855 -1.0775 -0.5937 -1.6248 -1.5206 -0.3625 0.5023

0 2.8744 -0.1063 -0.2922 0.9361 -0.6689 -0.2895 -0.1935

0 0 2.7173 -1.4426 0.3179 0.0862 -1.2136 0.3438

0 0 0 3.1584 0.0815 -0.1977 -0.3505 0.5529

0 0 0 0 1.7039 -1.0991 -0.0089 -0.0218

0 0 0 0 0 2.7017 0.3848 0.7391

0 0 0 0 0 0 3.2665 -0.9868

0 0 0 0 0 0 0 3.8764

>> G=inv(diag(diag(Gbar)))*Gbar

G =

1.0000 -0.1224 -0.3421 -0.1885 -0.5159 -0.4828 -0.1151 0.1595

0 1.0000 -0.0370 -0.1017 0.3257 -0.2327 -0.1007 -0.0673

0 0 1.0000 -0.5309 0.1170 0.0317 -0.4466 0.1265

0 0 0 1.0000 0.0258 -0.0626 -0.1110 0.1750

0 0 0 0 1.0000 -0.6450 -0.0052 -0.0128

0 0 0 0 0 1.0000 0.1424 0.2736

0 0 0 0 0 0 1.0000 -0.3021

0 0 0 0 0 0 0 1.0000

>> S0=diag(diag(Gbar))*diag(diag(Gbar))

S0 =

9.9180 0 0 0 0 0 0 0

0 8.2624 0 0 0 0 0 0

0 0 7.3837 0 0 0 0 0

0 0 0 9.9758 0 0 0 0

0 0 0 0 2.9033 0 0 0

0 0 0 0 0 7.2993 0 0

0 0 0 0 0 0 10.6702 0

0 0 0 0 0 0 0 15.0262

>> snr=10*log10(det(ruu*S0)^(1/9)-1)

snr = 7.9306

The filters are non-stationary in this case and will not converge, but the performance is
better (because no energy is wasted in a cyclic prefix or in a null space to the channel)
and the SNR is 8 dB. Vector Coding with flat-energy transmission would achieve this same
performance level. This nonstationary triangular GDFE will more rapidly converge with
increasing N to a point intermediate to the 8.4 dB of the MMSE-DFE (which effectively is
the CDFE and inserts energy into a useless dimension) and the 8.8 dB maximum that occurs
with water-filling.

8.4 dB < lim
N→∞

SNRN+ν/N,GDFE,u < 8.8 dB . (5.245)

5.4.4 Vector-Side DMT (VS-DMT) as a special case of the GDFE

Vector-Side DMT is an interesting and increasingly practical transmission method often used when
several transmission channels can be coordinated at a receiving side, but the transmitters corresponding
to the different symbol dimensions are physically separated. Such a situation can arise in both wireless
(when several physically separate portable devices transmit to a base-station antenna or array of such
base-station antennae) and wireline (when several phone lines at different remote sites all converge on
a common “central office” point and all transmit up to that point through a binder of wires that may
have considerable crosstalk between the lines).
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The channel output can be written as

ysmall = P1x1 + P2x2 + ... + PLxL + nsmall (5.246)

= [P1 P2 ... PL]








x1

x2

...
xL








+ nsmall (5.247)

= Px + nsmall . (5.248)

Each of the matrices Pi, i = 1, ..., L is cyclic because a DMT system with a cyclic prefix and the same
clock is used in all systems (for instance with Zippering of Section 4.6). Thus a single DFT in the
receiver then diagonalizes each of the individual contributions. A GDFE can be directly applied in this
case, but an ML detector will need to be substituted for the “sbs” device and a joint decision on the L
components added together from the different input locations would need to be made. Of more practical
interest is the case where the receiver also has L independent observations (i.e., L lines or L receiver
antennae, each with channel matrix P (i) ) and thus

y =








y1

y2
...

yL
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P1,1 P1,2 ... P1,L

P2,1 P2,2 ... P2,L

...
...

. . .
...

PL,1 PL,2 ... PL,L















x1

x2

...
xL








+ n . (5.249)

After a receiver DFT on each output yi to generate Y i, there will be a sum of contributions of all the
inputs X i into each and every Y i. These contributions, because of the DMT structure however will be
independent for each tone, meaning

Yn,i =
L∑

j=1

Pn,i,jXn,i + Nn,i , (5.250)

where Pn,i,j is the nth-tone DFT value for the channel response from input j to output i (that is the
DFT of the cyclic matrix Pi,j’s first row. By creating a new matrix channel for each tone n,

Y n =








Yn,1

Yn,2

...
Yn,L








=








Pn,1,1 Pn,2 ... Pn,L

Pn, 2, 1 Pn,2,2 ... Pn,2,L

...
...

. . .
...

Pn,L,1 Pn,L,2 ... Pn,L,L















Xn,1

Xn,2

...
Xn,L








+ Nn . (5.251)

or the L × L matrix channel
Y n = PnXn + Nn , (5.252)

where Pn is used instead of the usual P to prevent confusion with the original time-domain cyclic
matrices Pi. Pn is not in general cyclic, nor nonsingular, but the general GDFE theory can be applied to
it, independently for each n. Singularity can often be avoided by design (don’t include input antennae
or lines in output model that don’t get to that output). Thus, Vector-Side DMT is a set of up to N
independent GDFE’s, one for each tone of the common-clock DMT transmission systems. The complexity
of each tone’s GDFE will be L2 generally, while the FFT’s used are Nlog2(N) for each user. Thus total
complexity per line or user is the order of

(
N ·L2 + L ·N log2(N)

)
/L = N · L + N log2(N), which

remains low for up to say log2(N) users or less.
Of course, for each tone, the designer has the choice of using either G = I (vector coding) or G 6= I

triangular GDFE. The latter is preferred because vector coding requires coordination (i.e., the vector
matrix Mn) on the transmit side, which may not be physically possible. In the GDFE with the square
Pn, a similar problem that might be encountered with the matrix An. This problem can be avoided
by judiciously exciting all N input dimensions on at least one of the L transmitters, insuring effectively
that An = I and can be ingored in implementation (eliminating then transmitter side coordination).
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The orginal Vector-Side DMT with vector-coding was first introduced in a 1994 version of this class and
caught some attention of students who later called it Vector DMT or when inputs are equally loaded
the more common “Vector OFDM” in wireless, and pushed it into the IEEE802.16 standard for wireless
transmission. However, Vector-Side DMT with a triangular GDFE is more practical and preferred
because it performs the same, has same complexity, and does not require any physical co-location of
the transmitters, and places all complexity of the GDFE at the base-station side where more power is
usually available. This latter approach is preferred in both future wireless efforts (perhaps 802.11wng
project) and vectored-DSLAM-DSL efforts.

Ginis Precoder

The dual situation to the physically separated transmitters is the opposite direction of transmission in
any of the above examples. Then, receiver coordination is not possible. The ZF-GDFE as in Section 5.3.7
with precoding is of interest. In this case, the Vector-Side-DMT analysis above is used and the channel
model has identical structure and can be reduced to a set of independent tone-indexed subchannels
with Vector-Side DMT. In this case, the ZF-GDFE with transmit precoder can be used. George Ginis,
a former student and TA of this class, noted that for wireline DSL applications there is essentially
zero performance loss between the ZF-GDFE and the GDFE generally (because of certain transmission
characteristics of crosstalk and telephone lines). Thus the precoder of Section 5.3.7 can be applied
directly to each and every tone-indexed L×L subchannel in Vector-Side DMT without performance loss
(other than precoding loss, which Ginis and Yu also found a way to make much smaller by exploiting the
L-dimensional space over which precoding could be implemented). This is known as a Ginis Precoder.
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5.5 Transmit Optimization for the GDFE

The GDFE depends upon an input covariance Rxx, which can be any autocorrelation matrix. There is
one Rxx that maximizes the SNRgdfe and is thus considered to be optimum for packet transmission.

This section revisits determination of this Rxx through finite-length symbol partitioning and subsequent
water-fill loading. Subsection 5.5.1 returns to vector coding to compute the best Rxx while also revisiting
briefly the set of parallel channels thus derived. Subsection 5.5.2 then visits the construction of this best
Rxx using the triangular white input of the GDFE, requiring a generalization of Cholesky factorization.
Subsection 5.5.3 then specificially investigates loading for the GDFE and the inherent interpolation in
the transmit signal construction.

The Circulant DFE of Subsection 5.4.3 has the same performance as DMT when both have the
same P , Rnn, and Rxx. The CDFE can also converge to a set of the MMSE-DFEs in Chapter 3.
Section 5.5.4 studies the CDFE and uses a DMT system to optimize the performance of a CDFE by two
methods – digital interpolation of sampling rate and analog interpolation of sampling rate, finding both
in best cases more complex than the original DMT system, but with the same performance at any block
size N and guard-period ν . The optimization of symbol rate and carrier frequency is equivalent to the
interpolation in the generalized-Cholesky and CDFE of Subsection 5.5.3.

5.5.1 The channel-dependent optimized input

Section 5.4.1 showed that VC is a special case of the GDFE where the set of N∗ parallel channels
correspond to a zeroed feedback section, i.e., G = I. The forward and backward canonical channels
always have the same mutual information, but since there is no feedback, both zero-forcing (forward)
and MMSE (backward) have the same optimal performance on each of the scalar AWGNs generated. The
forward canonical channel in the VC case is characterized by Rf = P̃ ∗P̃ = M∗MΛ∗FF ∗ΛM∗M = |Λ|2.
The forward canonical channel model becomes

z = Rfu + n′ = |Λ|2u + n′ = diag(|λn|2 · un + n′
n) , (5.253)

where n′ has autocorrelation matrix Rn′n′ = |Λ|2. The SNR of each subchannel is SNRn = En|λn|2.20

The backward channel has

R−1
b = S0 = Rf + S−1

uu = diag(|λn|2 + E−1
n ) , (5.254)

or

Rb = Ree = diag(
En

1 + SNRn
) . (5.255)

Equation (5.255) validates the relation concerning the (biased) SNR on each channel of the GDFE

SNRgdfe,n = 1 + SNRn . (5.256)

Bias removal on each subchannel then provides an unbiased SNR for the GDFE and backward-canonical
channel (MMSE case) of

SNRgdfe,u,n = SNRgdfe,n − 1 = SNRn . (5.257)

The unbiased SNR on each of the forward subchannels in (5.253) is also SNRn meaning that the forward
and backward channels, in the special case of Vector Coding (A = M ′, N∗ columns of M) are essentially
the same. The best structure of VC thus exhibits a unique property within the set of all GDFE-like
systems: ZF and MMSE are the same in this very special case. Recall in Chapter 3 that this occurred
with nonzero noise only when there is no ISI (Q(D) = 1), while in VC it is occurring with ISI overall,
but because there is no ISI on any of the independent subchannels in this special case.

The VC receiver, which does not have a feedback section, essentially just multiplies by Λ−1F ∗,
which is equivalent to the combination of matched filtering by P̃ ∗, feedforward filtering by S−1

0 M∗, and

20Recalling that λn includes the effect of the noise normalization in (5.232), the gn of Chapter 4’s loading discussion is
gn = |λn|2 here.
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removing bias on each subchannel:

diag

(
SNRn + 1

SNRn

)

S−1
0 M∗P̃ ∗ (5.258)

= diag

( |λn|2 + E−1
n

|λn|2
)

· diag

(
1

|λn|2 + E−1
n

)

· Λ∗F ∗ (5.259)

= diag

(
1

|λn|2
)

· diag(λ∗
n)F ∗ (5.260)

= diag

(
1

λn

)

F ∗ (5.261)

= Λ−1F ∗ . (5.262)

This unbiased feedforward section then simply completes the parallelization into subchannels and scales
each subchannel by |λn|2. The subchannels created can and usually do carry different amounts of
information: For any {En} → {SNRn} distribution,

b̄n =
1

2
log2

(

1 +
SNRn

Γ

)

(5.263)

and b̄n = Īn when Γ = 0 dB. Exceptionally important is that in the DMT/VC case, the (unbiased) error
on each subchannel contains no component of the signal in this special GDFE, as the Subsection 5.5.1
elaborates:

Non-zero Gap Inputs

The optimum input for any GDFE will have Γ = 0 dB. However, VC/DMT systems have an optimum
decoder for any code of any gap Γ > 0 dB because each subchannel is still exactly an AWGN. When
G 6= I, as in any other GDFE, then the error of the GDFE contains a (non-Gaussian) error component.
In this case, the choice of GDFE will lead to different SNR’s even though all are MMSE-based for the
same input autocorrelation matrix Rxx and the same channel and noise. The SNR for any gap is

SNRgdfe = Γ ·







[
N∗∏

i=1

(

1 +
SNRn

Γ

)]
1

N+ν

− 1






. (5.264)

Since different choices of the input realization lead to different SNRn sets, a non-zero gap causes SNRgdfe

to vary with the particular set of SNRn’s. All GDFE’s will have the same SNRgdfe,u = 22Ī(x y)−1 only
when Γ = 0 dB.

Theorem 5.5.1 (VC/DMT Optimality at non-zero Gap) Vector coding (which has a
special case DMT when cyclic prefixes are used) has the highest SNR amoung all GDFE’s
for the same channel and input when the gap is non-zero, Γ > 0 dB.

proof: Because there is no component of the error due to the signal when VC is used,
division by the gap on each subchannel is a true measure of performance of that subchannel.
The overall gap works just as well as does the gap formula on each of the subchannels for
VC/DMT. However, with an SNR that has a MMSE component depending on the signal,
then multiplication of this “distortion” or MSE by Γ > 0 increases the signal component
of the MSE also (but that signal component did not increase since the transmit power was
not increased. Thus, the overall SNR computed according to (5.264 will be too low on
each subchannel, and indeed then the product of such terms is also lower than the exact
SNRgdfe,u = Γ · (22Ī(x y) − 1) of the VC/DMT system. QED.

The computed SNR of other GDFE’s may thus actually under-estimate the performance of the
GDFE system when Γ > 0 dB, and after all, the gap was an approximation anyway. However, because
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the VC/DMT detector is maximum likelihood, and since the SNR accurately represents exactly what
is happening on each subchannel, then no other detector could have better performance. Since the
SNRgdfe is directly related (via the gap) to a constant probability of symbol error associated with the
gap for the number of bits transmitted on each subchannel, the overall probability of symbol error for
the VC/DMT system is that same value. However, for other GDFE’s, the error is not Gaussian for
non-zero gaps, and thus the detector is thus no longer exactly ML, and its performance is worse than a
VC/DMT detector unequivocally (even if the SNR calculation is somewhat in error and the SNR-based
approximation underestimates performance for non-VC/DMT GDFE’s, that performance cannot be as
good as the VC/DMT anyway). Further, a larger gap means a larger deviation in computed SNR.

As an example, the 1 + .9D−1 channel DMT example of Section 4.6 provided for N = 8 produced
for Γ = 0 dB an SNRDMT = 7.6 dB exactly equal to the CDFE SNR for that same channel and input
in Section 5.4. However, if those examples are reworked (which the student can do as an exercise) with
Γ = 8.8 dB, the two SNR’s are then

SNRdmt(Γ = 8.8) = 9.5db > SNRcdfe,u(Γ = 8.8) = 8.6db , (5.265)

a difference of almost 1 dB. These SNR’s are higher than the true SNR of 7.6 dB but do not represent
higher performance because a gap of 8.8 dB essentially means performance is as if the noise were 8.8 dB
larger than at capacity-achieving codes (so performance of the non-zero DMT system would be 9.5-8.8
or 0.7 dB, compared with 7.6 dB when the gap is 0 dB).

5.5.2 Maximization over Rxx of GDFE SNR

This subsection continues study of the special case of Vector Coding A = M ′. Optimization of the
GDFE is equivalent to maximization of SNRgdfe = SNRgdfe,u. As always with the GDFE

SNRgdfe,u = 22I(x;y) − 1 . (5.266)

The problem of maximization of a set of parallel channels with mutual information I(x; y), which is
what the GDFE has created, is solved by water-filling. The solution is then

En +
1

|λi|2
= K (5.267)

where K is a constant determined either the data rate (MA problem) or energy constraint (RA) problem.
In the RA case,

SNRgdfe,u = 22C̄ − 1 , (5.268)

where C̄ is the capacity or maximum value for I(x; y) The number of bits on each subchannel is

b̄n = c̄n =
1

2
log2(1 + SNRn) . (5.269)

The water-filling procedure determines N∗, the number of used input dimensions. Those dimensions
with zero energy are eliminated from the GDFE in the input-singularity-elimination step of generation
of the canonical forward and backward channels.

The optimum covariance is then

Rxx(opt) = Rx′x′ (opt) =
N∗

∑

n=1

En ·mnm∗
n , (5.270)

assuming a reordering of inputs so that used dimensions are n = 1, ..., N∗.
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5.5.3 Using the optimized Rxx in the Triangular GDFE

To optimize the triangular GDFE, the designer first constructs M by SVD of the channel matrix R
−1/2
nn P ,

and then computes the water-filling subchannel energies, before finally computing the optimum Rxx as
in (5.270). Other input energy distributions can also be used, and the procedure in this Section applies to
any Rxx that may be singular by whatever construction used to design that Rxx. The implementation
of a non-VC triangular GDFE can admit recursive causal implementation of the transmit packet, i.e.
from v to best Rxx. Such an implementation may be of interest for several reasons, some of which are
related to the desire for a single-sided GDFE’s implementation as in Sections 5.3.6 and 5.3.7.

The objective is a relationship
x = Av (5.271)

where Rvv is diagonal and A is generalized triangular as defined next:

Definition 5.5.1 (Generalized Triangular) An (N + ν) × N∗ matrix A is generalized
triangular if the lower N∗ rows are upper triangular. The remaining rows can be arbitrary.

A generalized triangular matrix essentially interpolates in a step-by-step causal-like manner from a set
of N∗ white-input samples vn to a larger set of N + ν modulator-output samples.

Reordering samples for a singular covariance

The input samples can be reordered so that the first N∗ indices correspond to the nonsingular information-
bearing inputs v. The permutation matrix Ji,j differs from an indentity matrix only in that the 1’s that
would have been in the ith row and ith column and in the jth row and jth column appear instead in the
ith row and jth column, and in the jth row and ith column, respectively. The product Ji,jx switches the
position of the ith and jth elements of the vector x. For example, with a 4-dimensional input

J2,3 =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1







(5.272)

and J2,3[1234]∗ = [1324]∗. Ji,j is symmetric, unitary, and Ji,jJ
∗
i,j = I. Therefore, or trivially, |Ji,j| = 1.

If x′ = Ji,jx, then Rx′x′ = Ji,jRxxJi,j.
The submatrix Rxx(i) , i = 1, ..., N + ν − 1 is found in the (i + 1)× (i + 1) lower-right-hand-corner

of Rxx. The following algorithm reorders the input sample index of x so that its first N∗ dimensions
hare non-singular, that is |Rxx(i)| > 0 for i = 0, ..., N∗− 1.

1. initialize i = 0, δ = 1, JA = IN+ν .

2. while |Rxx(i)| > 0

(a) i← i + 1

(b) xi ← xi

3. If i = N∗, exit this algorithm

4. x← Ji,N+ν−δx , Rx′x′ = Ji,N+ν−δRxxJi,N+ν−δ, JA = Ji,N+ν−δJA

5. δ ← δ + 1

6. Go to step 2

Upon completion, the input indices will have been reordered so that the first N∗ correspond to the
informative part of the input and the rest simply are interpolated samples used to obtain the desired
covariance for the channel. That set of last N + ν −N∗ samples is linearly dependent on the first N∗

samples. The first N∗ components are denoted xv and the rest are xv̄. The transmitter will need to
redo the order of the samples in x = Av after any processing to generate the correct Rxx for input to
the channel, that is – the resulting order matrix JA is absorbed into A for all further GDFE calculations,
that is

A← J∗
AA . (5.273)
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Figure 5.30: Illustration of inherent interpolation of Generalized Cholesky transmitter realization.

Generalized Cholesky Algorithm

The Generalized Cholesky Algorithm is now simple. Traditional Cholesky acts upon computed on the
nonsingular reordered autocorrelation matrix

Rxx(N∗ − 1) = GxRvvG∗
x , (5.274)

which can be computed by conventional means.21 The rightmost N∗ positions in the upper N + ν−N∗

rows of Rxx are called Rxv̄xv
, which is the (N + ν − N∗) × N∗ cross-correlation matrix between xv

and xv̄. then

A =

[
Rxv̄xvG−∗

x R−1
vv

Gx

]

=

[

G̃x

Gx

]

(5.275)

is generalized triangular, and x = Av and also

Rxx = ARvvA∗ . (5.276)

The input can then be generated in a causal manner with the last N + ν −N∗ samples being generated
from only previous inputs (so strictly causal) as shown in Figure 5.5.1. Equivalently, one could extend
v by an upper N + ν −N∗ zeros and then extend A by zeros everywhere, except ones on the diagonal,
to a square upper triangular monic (N + ν)× (N + ν) matrix A.

The following example illustrates the basic procedure.

EXAMPLE 5.5.1 (Generalized Cholesky and GDFE for 1 + .9D−1 Channel.) The
singular Rx′x′ for the pass space of the channel with white input was previously found to
be (Example 5.4.1)

Rx′x′ =





.5945 .3649 −.3285

.3649 .6715 .2956
−.3285 .2956 .7340



 . (5.277)

This matrix will be considered now to have been provided as a desired input autocorrelation
(perhaps the designer wanted transmit energy 2/3 per dimension, or a total of 2 for the
symbol). Then Generalized Cholesky proceeds as follows with the Matlab instructions simply
inserted for the reader convenience and understanding:

21The correct upper triangular matrix is not directly computed in Matlab. The Matlab command to compute this
desired upper form is chol(JRuuJ), where J has all ones down the anti-diagonal and zeros elsewhere. Pre- and post-

multiplication of the resultant matrix by J, and then taking congugate transpose produces intermediate upper triangular
matrix Gxbar. Finally, removal of diagonal terms by post multiplication generates Gx=Gxbar*inv(diag(diag(Gxbar))) or
thus obtains the Gx used in this text. Rvv is diag(diag(Gxbar))*diag(diag(Gxbar). For matlab command examples, see
Examples 5.5.1, 5.5.2, and 5.5.3.
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>> P=(1/sqrt(.181))*[.9 1 0

0 .9 1] = 2.1155 2.3505 0

0 2.1155 2.3505

>> [F,L,M]=svd(P)

F= -0.7071 -0.7071 L= 3.8694 0 0 M= -0.3866 -0.6671 0.6368

-0.7071 0.7071 0 2.2422 0 -0.8161 -0.0741 -0.5731

-0.4295 0.7412 0.5158

>> Mt=M(1:3,1:2) = -0.3866 -0.6671

-0.8161 -0.0741

-0.4295 0.7412

>> rxx=Mt*Mt’ =

0.5945 0.3649 -0.3285

0.3649 0.6715 0.2956

-0.3285 0.2956 0.7340

>> Gxbar=(J*chol(J*rxx(2:3,2:3)*J)*J)’ = 0.7433 0.3451

0 0.8567

>> Gx=Gxbar*inv(diag(diag(Gxbar))) = 1.0000 0.4028

0 1.0000

>> rvv=(diag(diag(Gxbar)))*(diag(diag(Gxbar))) =

0.5525 0

0 0.7340

>> Gx*rvv*Gx’ (check) = 0.6715 0.2956

0.2956 0.7340

>> A=[rxx(1,2:3)*inv(Gx’)*inv(rvv) % tildeGx

Gx] =

0.9000 -0.4475

1.0000 0.4028

0 1.0000

>> A*rvv*A’ (another check) 0.5945 0.3649 -0.3285

0.3649 0.6715 0.2956

-0.3285 0.2956 0.7340

>> Pt=P*A = 4.2544 0.0000

2.1155 3.2025

>> Rf=Pt’*Pt =

22.5751 6.7748

6.7748 10.2562

>> Rbinv=Rf+inv(rvv) =

24.3851 6.7748

6.7748 11.6187

>> Gbar=chol(Rbinv) = 4.9381 1.3719

0 3.1203

>> G=inv(diag(diag(Gbar)))*Gbar = 1.0000 0.2778

0 1.0000

>> S0=diag(diag(Gbar))*diag(diag(Gbar))=

24.3851 0

0 9.7365

>> 10*log10(det(S0*rvv)^(1/3)-1) = 5.5427 dB

This is exactly the same value as obtained previously. The input matrix A is generalized
triangular. By chance, the earlier Example 5.3.3 using this channel without generalized
Cholesky happened to have a zero in the M matrix in just the right place that the resultant
A then was also generalized triangular. This does not occur in general, and is just a result
of the particular values in that case. Nonetheless, this example illustrates the Generalized
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Cholesky procedure always ensures a generalized triangular “causal” input by construction
for the GDFE.

5.5.4 CDFE with Causal Triangular input

The optimum spectrum with a CDFE can be constructed from water-filling in a DMT system with
transmit IDFT matrix Q∗ and energy distribution En on each of the tones. When the sampling rate
has been adjusted so that all tones are used, then this input will be nonsingular. The designer may
then proceed with direct application of the triangular GDFE of Section 5.5.4 with such a nonsingular
input. Example 5.5.3 later in this section takes this approach. The resampling would of course have
to be executed independently for each discontiguous band of frequency – a design and implementation
nightmare. Another approach is to use a digital-interpolation technique that separates the A-matrix
“modulation” into a carrier-frequency-and-interpolation part (which is never non-causal) and a “causal”
part. This method finds the independent bands of the CDEF by essentially extracting those same bands
from a DMT design of the same block-length. That second digital-interpolation approach appears first
here in this subsection.

A good N ×N Rxx is constructed for a cyclic channel P from a DMT system,22

Rxx = Q∗
N̄RXXQN̄ , (5.278)

where RXX is an N×N diagonal matrix containing the DMT or OFDM input energies on the diagonal.
The matrixQN̄ is an N̄×N̄ FFT matrix. In the case of real-baseband DMT, then (5.278) has N̄ replaced
by N = 2N̄ but the diagonal matrix RXX is such that RXX(i, i) = RXX(N − i, N − i) to ensure
real time-domain outputs. These vectors X and x will be respectively ordered in frequency or time from

smallest index 0 at the bottom to highest index N̄ = ˜̄N at the top. Because of the DMT system used in
design and ordering of the frequency index, it will be clear there are M ≥ 1 bands where there are ALL
nonzero entries within each band for RXX . In fact, each of these bands has N̄i i = 1, ..., M nonzero
input energies and23

N̄∗ =
M∑

i=1

N̄i . (5.279)

The information-bearing part of the input contains non-zero tone inputs X̃ , which are interpolated from
N∗ used tones to N̄ total tones according to

X = JgX̃ . (5.280)

For complex baseband x, Jg is an N̄ × N̄∗ matrix with no more than one nonzero unit-value entry
in each row (and all zeros in N̄ − N̄∗ of the rows) with structure

Jg =














0N̄z,M+1×N̄M
0N̄z,M+1×N̄M−1

... 0N̄z,M+1×N̄1

IN̄M×N̄M
0N̄M×N̄M−1

... 0N̄M×N̄1

0N̄z,M×N̄M
0N̄z,M×N̄M−1

... 0N̄z,M×N̄1

0N̄z,M−1×N̄M
IN̄M−1×N̄M−1

... 0N̄z,M−1×N̄1

...
...

. . .
...

0N̄z,1×N̄M
0N̄z,1×N̄M−1

... IN̄1×N̄1

0N̄z,1×N̄M
0N̄z,1×N̄M−1

... 0N̄z,1×N̄1














, (5.281)

22This procedure works for any DMT energy distribution, not just limited to, but of course including, water-filling.
23the total number of real dimensions is, as always consistently, Ni = 2N̄i, twice the number of complex tones.
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For the real baseband case, Jg is an N ×N∗ matrix given by24

Jg =
































0N̄z,1/2×N̄M/2 0N̄z,1/2×N̄M−1/2 ... 0N̄z,1/2×N̄1/2

0N̄z,1/2×N̄M/2 0N̄z,1/2×N̄M−1/2 ... IN̄1/2×N̄1/2

...
... ..

...
0N̄z,M−1/2×N̄M /2 IN̄M−1/2×N̄M−1/2 ... 0N̄z,M−1/2×N̄1/2

0N̄z,M/2×N̄M
/2 0N̄z,M /2×N̄M−1/2 ... 0N̄z,M /2×N̄1/2

IN̄M /2×N̄M/2 0N̄M /2×N̄M−1/2 ... 0N̄M /2×N̄1/2

0N̄z,M+1/2×N̄M /2 0N̄z,M+1/2×N̄M−1/2 ... 0N̄z,M+1/2×N̄1/2

− −−− −− −− − −− −− − − −− −−
0N̄z,M+1/2×N̄M /2 0N̄z,M+1/2×N̄M−1/2 ... 0N̄z,M+1/2×N̄1/2

IN̄M /2×N̄M/2 0N̄M /2×N̄M−1/2 ... 0N̄M /2×N̄1/2

0N̄z,M/2×N̄M
/2 0N̄z,M /2×N̄M−1/2 ... 0N̄z,M /2×N̄1/2

0N̄z,M−1/2×N̄M /2 IN̄M−1/2×N̄M−1/2 ... 0N̄z,M−1/2×N̄1/2

...
...

. . .
...

0N̄z,1/2×N̄M/2 0N̄z,1/2×N̄M−1/2 ... IN̄1/2×N̄1/2

0N̄z,1/2×N̄M/2 0N̄z,1/2×N̄M−1/2 ... 0N̄z,1/2×N̄1/2
































. (5.282)

Since the zero-energy tones between the bands carry no information, a nonsingular input u can be
associated with only the information-carrying (non-zero input) tones as:

• complex case M size-N̄i IFFT’s Q∗
N̄i

or

• real case M size-Ni conjugate-symmetric IFFT’s.

A block FFT matrix operates on each of the non-singular input components individually: For the
complex case, the entire set of non-singular-part X components can be represented by

X̃ =








XM

XM−1

...
X1








=








QN̄M
0 ... 0

0 QN̄M−1
... 0

...
...

. . .
...

0 0 ... QN̄1,n1















uM

uM−1

...
u1








= Q̃u . (5.283)

For the real baseband-DMT case, the additional subdivision of an FFT matrix is necessary as

QNi =

[ Q−
Ni

Q+
Ni

]

(5.284)

to form

X̃ =

















X
−
1

X−
2
...

X−
M

X
+
M
...

X+
2

X+
1

















=


















0 0 ... Q−
N1

...
... ..

...
0 Q−

NM−1
... 0

Q−
NM

0 ... 0

Q+
NM

0 ... 0

0 Q+
NM−1

... 0
...

...
. . .

...
0 0 ... Q+

N1

























uM

uM−1

...
u1








= Q̃u . (5.285)

Also, then for both real and complex cases, understanding that Q̃ is defined differently in these cases,

X = JgX̃ = JgQ̃u . (5.286)

24When N̄M/2 is an odd number, then the identity matrices for positive and negative frequencies will be slightly different

in the equation below – see later examples in this Section.
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which leads a computation of a time-domain u autocorrelation matrix of

Ruu = Q̃∗R ˜X ˜X
Q̃ (5.287)

for the complex case. In the real case, there is some regrouping of positive and negative frequencies
together for each of the bands in forming Ruu terms. In either the real or complex cases, if u is
considered to be a stacked vector of Ni-dimensional baseband-equivalent and decimated time-domain
contributions of the different bands. Those contributions are ui i = 1, ..., M , and

Ruu =








Ruu(M) 0 ... 0
0 Ruu(M − 1) ... 0
...

...
. . .

...
0 ... 0 Ruu(1)








. (5.288)

In the real case, it is easier from a notational standpoint to simply compute the Ruu(i) for the ith band
according to

Ruu = Q̃∗
N̄i

[
R−

˜X ˜X
(i) 0

0 R+
˜X ˜X

]

Q̃N̄i
(5.289)

The relationship between the modulated channel input x and u is

x = Q∗X = Q∗JgQ̃u . (5.290)

The M corresponding summed components of x could be called xi, each corresponding to ui. Then

x =

M∑

i=1

xi , (5.291)

where xi is formed with all other components of uj 6=i = 0. Each of these bands could appear stationary

if considered by itself. The multiplication by the matrix Q∗JgQ̃ essentially performs carrier modulation
and interpolation. The minimal number of bands is M , but it is possible to subdivide a band into
adjacent subbands and execute the same procedure. In the limit, if each band is subdivided into its
constituent DMT frequencies used in water-filling, the entire modulation reduces to DMT.

The non-white inputs ui can be related to white inputs vi by the usual Cholesky factorization

Ruu = GuRvvG∗
u , (5.292)

or
Ruu(i) = Gu(i)Rvv(i)G∗

u(i) (5.293)

breaking the Cholesky factorization into M such factorizations. Gu is block diagonal with each block
upper triangular. The blocks are of different sizes when the Ni are different. The matrix A for CDFE
construction is then

A = Q∗JgQ̃
︸ ︷︷ ︸

fc,i mods

· Gu
︸︷︷︸

causal filter

. (5.294)

The Gu will converge to stationary filters in the middle rows of the Cholesky factors of each block
as the individual block lengths Ni → ∞. These are the baseband-equivalent transmit filters of the
corresponding M MMSE-DFE’s, each effectively operating at a sampling rate equal to the optimized
symbol rate for that subchannel of the MMSE-DFE system.

In fact, any nonsingular input with transmit matrix Q and En 6= 0 ∀ n = 1, ..., N can be used
to construct an acceptable (PW satsifying) input for a CDFE. Such an input necessarily will have a
circulant Rxx = Q∗diag{En}Q (the IDFT in this form always produces a circulant matrix). Thus, the
CDFE channel input Rxx is circulant, and the resultant x represents a sum of contributions from the
different bands. As N →∞, the diagonal terms of En will become constant, and the rows of Gu → G(D)
for each DFE as in Section 5.6.

498



Figure 5.31: Comparison of interpolated CDFE transmitter structure for multiple bands with the infinite-
length multi-MMSE DFE transmitter.

Then for complex systems, the actual carrier frequencies of each band are (where ∆i is the first
nonzero tone index of the ith band)

fc,i = fc +
2π

NT ′

(
N̄i

2
+ ∆i

)

, (5.295)

The symbol rate for each band is
1

T ∗
i

=
N̄i

N̄T ′ . (5.296)

Figures 5.31 and 5.32 compare the CDFE transmitter and receiver respectively with the corresponding
limiting structures of the multi-band MMSE-DFE.

EXAMPLE 5.5.2 (Real baseband optimized CDFE for 3dB Gap) The 1 + .9D−1

example 4.6.1 is revisted here with a gap of 0 dB and the CDFE. The following matlab
commands illustrate the sequence of computations

>> [gn,en_bar,bn_bar,Nstar,b_bar]=DMTra([.9 1],10,1,8,0)

gn = 2.9680 10.0000 17.0320 19.9448 17.0320 10.0000 2.9680 0.0552

en_bar = 1.2415 1.2329 1.1916 0.9547 0
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Figure 5.32: Comparison of interpolated CDFE receiver structure for multiple bands with infinite-length
multi-MMSE DFE receiver.
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bn_bar = 2.3436 2.2297 1.8456 0.9693 0

Nstar = 7

b_bar = 1.3814

>> 10*log10(2^(2*b_bar) -1) = 7.6247 dB

>> rXX=diag([en_bar(2) en_bar(3) en_bar(4) 0 en_bar(4) en_bar(3) en_bar(2) en_bar(1)]) =

1.2329 0 0 0 0 0 0 0

0 1.1916 0 0 0 0 0 0

0 0 0.9547 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0.9547 0 0 0

0 0 0 0 0 1.1916 0 0

0 0 0 0 0 0 1.2329 0

0 0 0 0 0 0 0 1.2415

>> rXXbar=diag([en_bar(2) en_bar(3) en_bar(4) en_bar(4) en_bar(3) en_bar(2) en_bar(1)]) =

1.2329 0 0 0 0 0 0

0 1.1916 0 0 0 0 0

0 0 0.9547 0 0 0 0

0 0 0 0.9547 0 0 0

0 0 0 0 1.1916 0 0

0 0 0 0 0 1.2329 0

0 0 0 0 0 0 1.2415

>> J=hankel([zeros(1,7),1]);

>> Q=(1/sqrt(8))*J*fft(J);

>> J7=hankel([zeros(1,6),1]);

>> Qtilde=(1/sqrt(7))*J7*fft(J7);

>> ruu=real(Qtilde’*rXXbar*Qtilde) =

1.1429 0.0755 -0.0377 0.0116 0.0116 -0.0377 0.0755

0.0755 1.1429 0.0755 -0.0377 0.0116 0.0116 -0.0377

-0.0377 0.0755 1.1429 0.0755 -0.0377 0.0116 0.0116

0.0116 -0.0377 0.0755 1.1429 0.0755 -0.0377 0.0116

0.0116 0.0116 -0.0377 0.0755 1.1429 0.0755 -0.0377

-0.0377 0.0116 0.0116 -0.0377 0.0755 1.1429 0.0755

0.0755 -0.0377 0.0116 0.0116 -0.0377 0.0755 1.1429

>> Gubar=(J7*chol(J7*ruu*J7)*J7)’ =

1.0625 0.0763 -0.0357 0.0077 0.0159 -0.0400 0.0706

0 1.0652 0.0738 -0.0352 0.0088 0.0132 -0.0353

0 0 1.0658 0.0735 -0.0357 0.0101 0.0108

0 0 0 1.0658 0.0736 -0.0361 0.0108

0 0 0 0 1.0660 0.0731 -0.0353

0 0 0 0 0 1.0667 0.0706

0 0 0 0 0 0 1.0690

>> Gu=Gubar*inv(diag(diag(Gubar))) =

1.0000 0.0716 -0.0335 0.0072 0.0149 -0.0375 0.0660

0 1.0000 0.0692 -0.0330 0.0082 0.0123 -0.0330

0 0 1.0000 0.0690 -0.0335 0.0095 0.0101
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0 0 0 1.0000 0.0691 -0.0338 0.0101

0 0 0 0 1.0000 0.0685 -0.0330

0 0 0 0 0 1.0000 0.0660

0 0 0 0 0 0 1.0000

>> rvv=(diag(diag(Gubar)))*(diag(diag(Gubar))) =

1.1289 0 0 0 0 0 0

0 1.1347 0 0 0 0 0

0 0 1.1360 0 0 0 0

0 0 0 1.1360 0 0 0

0 0 0 0 1.1363 0 0

0 0 0 0 0 1.1379 0

0 0 0 0 0 0 1.1429

>> Jg = [

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1 ];

>> A=real(Q’*Jg*Qtilde*Gu) =

0.9120 -0.0404 0.0248 -0.0375 0.0603 -0.0981 0.1912

0.2861 0.8644 -0.1288 0.0736 -0.0702 0.0878 -0.1335

-0.1853 0.4327 0.7741 -0.1786 0.1025 -0.0873 0.0992

0.1483 -0.2037 0.5807 0.6501 -0.1925 0.1108 -0.0878

-0.1237 0.1322 -0.1994 0.7168 0.5033 -0.1753 0.0992

0.1001 -0.0879 0.1017 -0.1660 0.8286 0.3460 -0.1335

-0.0686 0.0483 -0.0459 0.0569 -0.1002 0.9054 0.1912

-0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.9354

>> C=[.9

zeros(6,1)

1];

>> R=[.9 1 0 0 0 0 0 0];

>> P=toeplitz(C,R) =

0.9000 1.0000 0 0 0 0 0 0

0 0.9000 1.0000 0 0 0 0 0

0 0 0.9000 1.0000 0 0 0 0

0 0 0 0.9000 1.0000 0 0 0

0 0 0 0 0.9000 1.0000 0 0

0 0 0 0 0 0.9000 1.0000 0

0 0 0 0 0 0 0.9000 1.0000

1.0000 0 0 0 0 0 0 0.9000

>> Pt=(1/sqrt(.181))*P*A =
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2.6018 1.9463 -0.2502 0.0936 -0.0375 -0.0011 0.0906

0.1697 2.8457 1.5471 -0.2641 0.0925 -0.0195 -0.0493

-0.0433 0.4365 3.0026 1.1503 -0.2356 0.0757 0.0035

0.0231 -0.1202 0.7597 3.0600 0.7758 -0.1776 0.0474

-0.0263 0.0730 -0.1830 1.1260 3.0125 0.4426 -0.1040

0.0506 -0.0724 0.1072 -0.2176 1.5174 2.8602 0.1669

-0.1451 0.1022 -0.0971 0.1203 -0.2120 1.9154 2.6031

2.1437 -0.0950 0.0584 -0.0881 0.1417 -0.2306 2.4282

>> Rf=Pt’*Pt =

11.4207 5.3013 -0.3515 -0.0274 0.2784 -0.6529 5.0672

5.3013 12.1213 5.0985 -0.3165 0.0690 0.0395 0.0474

-0.3515 5.0985 12.1067 5.1003 -0.3252 0.0889 -0.1265

-0.0274 -0.3165 5.1003 12.1029 5.0991 -0.3244 0.1165

0.2784 0.0690 -0.3252 5.0991 12.1100 5.0770 -0.2400

-0.6529 0.0395 0.0889 -0.3244 5.0770 12.1361 4.8500

5.0672 0.0474 -0.1265 0.1165 -0.2400 4.8500 12.7237

>> Rbinv=Rf+inv(rvv) =

12.3065 5.3013 -0.3515 -0.0274 0.2784 -0.6529 5.0672

5.3013 13.0026 5.0985 -0.3165 0.0690 0.0395 0.0474

-0.3515 5.0985 12.9870 5.1003 -0.3252 0.0889 -0.1265

-0.0274 -0.3165 5.1003 12.9831 5.0991 -0.3244 0.1165

0.2784 0.0690 -0.3252 5.0991 12.9901 5.0770 -0.2400

-0.6529 0.0395 0.0889 -0.3244 5.0770 13.0150 4.8500

5.0672 0.0474 -0.1265 0.1165 -0.2400 4.8500 13.5987

>> Gbar=chol(Rbinv) =

3.5081 1.5112 -0.1002 -0.0078 0.0794 -0.1861 1.4444

0 3.2740 1.6035 -0.0931 -0.0156 0.0980 -0.6522

0 0 3.2258 1.6271 -0.0906 -0.0269 0.3299

0 0 0 3.2135 1.6324 -0.0849 -0.1462

0 0 0 0 3.2110 1.6286 -0.0300

0 0 0 0 0 3.2110 1.6282

0 0 0 0 0 0 2.8818

>> G=inv(diag(diag(Gbar)))*Gbar =

1.0000 0.4308 -0.0286 -0.0022 0.0226 -0.0531 0.4117

0 1.0000 0.4898 -0.0284 -0.0048 0.0299 -0.1992

0 0 1.0000 0.5044 -0.0281 -0.0083 0.1023

0 0 0 1.0000 0.5080 -0.0264 -0.0455

0 0 0 0 1.0000 0.5072 -0.0093

0 0 0 0 0 1.0000 0.5071

0 0 0 0 0 0 1.0000

>> S0=diag(diag(Gbar))*diag(diag(Gbar)) =

12.3065 0 0 0 0 0 0

0 10.7190 0 0 0 0 0

0 0 10.4057 0 0 0 0
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0 0 0 10.3269 0 0 0

0 0 0 0 10.3107 0 0

0 0 0 0 0 10.3104 0

0 0 0 0 0 0 8.3049

>> 10*log10(det(rvv*S0)^(1/9) -1) =

7.6247 dB

>> W=inv(S0)*inv(G’) =

0.0813 0 0 0 0 0 0

-0.0402 0.0933 0 0 0 0 0

0.0230 -0.0471 0.0961 0 0 0 0

-0.0127 0.0267 -0.0488 0.0968 0 0 0

0.0047 -0.0144 0.0276 -0.0493 0.0970 0 0

0.0039 0.0047 -0.0145 0.0276 -0.0492 0.0970 0

-0.0660 0.0284 -0.0056 -0.0124 0.0321 -0.0611 0.1204

The limiting transmit filter appears to be Gx → 1+ .146D− .07D2 + .02D3, G→ 1+ .50D−
.03D2, and W → .97 − .049D−1 + .028D−2 − .0145D−3 on interior rows, but that A does
not approach any nice stationary form. As N → ∞, the energy of the components of v

become constant. The modulation and interpolation process is not causal, and will require
N2 operations in the transmitter. Similarly P ∗ in the receiver, because of its dependence on
A, also requires N2 operations. The complexity of this interpolating system is N2 no matter
how Gu(D), G(D), and W (D) may converge. Example 5.5.3 will avoid the non-causality and
A altogether through analog resampling.

The following example provides an illustration an implementation that resamples for the same 1 +
.9D−1 channel to the nearly optimum non-singular input for the CDFE on the previously well-known
1 + .9D−1 channel.

EXAMPLE 5.5.3 (CDFE for 1 + .9D−1 channel) Water-fill loading for DMT modula-
tion on the 1+ .9D−1 channel appeared as an example in Section 4.6. There and here, N = 8
and ν = 1 with energies

n 0 1 2 3 4 5 6 7
En 1.24 1.23 1.19 .96 .96 1.19 1.23 0

Or, equivalently from matlab

>> [gn,en_bar,bn_bar,Nstar,b_bar]=waterfill([.9 1],10,1,8,0)

gn =

2.9680 10.0000 17.0320 19.9448 17.0320 10.0000 2.9680 0.0552

en_bar = 1.2415 1.2329 1.1916 0.9547 0

bn_bar = 2.3436 2.2297 1.8456 0.9693

Nstar = 7

b_bar = 1.5541

Figure 5.33 helps illustrate the resampling at a lower rate 7/8 instead of the original rate 1.

The channel is sampled at rate 1/T ∗ = 7/8 or equivalently T ∗ = 8/7 and all tones will now
be used. The symbol period is now 64/7, corresponding to 8 samples at spacing T ∗ = 8/7.
The DFT size will be N = 7 in this case, allowing for one sample of cylic prefix. A TEQ
might be necessary to restore intersymbol interference to one sample, but since ISI is less
than the original invocation of this example over a wider band, we assume any TEQ loss to
be negligible. To maintain the same power, Ex = 64/7, but because 1/8 of this energy is lost
in the cyclic prefix, the energy available for DMT loading is 8 units.
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Figure 5.33: Resampled 1 + .9D−1 channel.
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The following sequence of matlab commands shows the resampling interpolation:

>> D=exp(j*[0:100]*(7/8)*.01*pi);

>> P7=sqrt(9/8)*ones(1,101)+.9*D;

>> P7=[P7,conj(P7(101:-1:2))];

>> p7=real(ifft(P7));

>> p=[p7(200:201),p7(1:5)]

p = -0.0946 0.8786 1.1812 -0.0564 0.0368 -0.0273 0.0217

>> P=toeplitz([p(1),p(7:-1:2)]’,p)

P =

-0.0946 0.8786 1.1812 -0.0564 0.0368 -0.0273 0.0217

0.0217 -0.0946 0.8786 1.1812 -0.0564 0.0368 -0.0273

-0.0273 0.0217 -0.0946 0.8786 1.1812 -0.0564 0.0368

0.0368 -0.0273 0.0217 -0.0946 0.8786 1.1812 -0.0564

-0.0564 0.0368 -0.0273 0.0217 -0.0946 0.8786 1.1812

1.1812 -0.0564 0.0368 -0.0273 0.0217 -0.0946 0.8786

0.8786 1.1812 -0.0564 0.0368 -0.0273 0.0217 -0.0946

>> P=sqrt(1/.181)*P

P =

-0.2223 2.0652 2.7764 -0.1326 0.0865 -0.0643 0.0511

0.0511 -0.2223 2.0652 2.7764 -0.1326 0.0865 -0.0643

-0.0643 0.0511 -0.2223 2.0652 2.7764 -0.1326 0.0865

0.0865 -0.0643 0.0511 -0.2223 2.0652 2.7764 -0.1326

-0.1326 0.0865 -0.0643 0.0511 -0.2223 2.0652 2.7764

2.7764 -0.1326 0.0865 -0.0643 0.0511 -0.2223 2.0652

2.0652 2.7764 -0.1326 0.0865 -0.0643 0.0511 -0.2223

This channel will now have the water-fill input energies allocated to it, as executed by the
following matlab commands:

>> J7=hankel([zeros(1,6),1]’)

J7 =

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0

>> Q7=(1/sqrt(7))*J7*fft(J7);

>> rXX=diag([1.23,1.19,.96,.96,1.19,1.23,1.24])

rXX =

1.2300 0 0 0 0 0 0

0 1.1900 0 0 0 0 0

0 0 0.9600 0 0 0 0

0 0 0 0.9600 0 0 0

0 0 0 0 1.1900 0 0

0 0 0 0 0 1.2300 0

0 0 0 0 0 0 1.2400

>> rxx=real(Q7’*rXX*Q7)

rxx =

1.1429 0.0735 -0.0364 0.0115 0.0115 -0.0364 0.0735

0.0735 1.1429 0.0735 -0.0364 0.0115 0.0115 -0.0364
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-0.0364 0.0735 1.1429 0.0735 -0.0364 0.0115 0.0115

0.0115 -0.0364 0.0735 1.1429 0.0735 -0.0364 0.0115

0.0115 0.0115 -0.0364 0.0735 1.1429 0.0735 -0.0364

-0.0364 0.0115 0.0115 -0.0364 0.0735 1.1429 0.0735

0.0735 -0.0364 0.0115 0.0115 -0.0364 0.0735 1.1429

The designer then relates this input to a diagonal input over the new interpolated band easily
because it is nonsingular, via Cholesky factorization.

>> Gxbar=(J7*chol(J7*rxx*J7)*J7)’

Gxbar =

1.0629 0.0741 -0.0345 0.0078 0.0155 -0.0385 0.0687

0 1.0654 0.0717 -0.0339 0.0088 0.0129 -0.0340

0 0 1.0660 0.0715 -0.0344 0.0101 0.0107

0 0 0 1.0660 0.0716 -0.0348 0.0107

0 0 0 0 1.0661 0.0711 -0.0340

0 0 0 0 0 1.0668 0.0687

0 0 0 0 0 0 1.0690

>> Gx=Gxbar*inv(diag(diag(Gxbar)))

Gx =

1.0000 0.0695 -0.0323 0.0073 0.0146 -0.0361 0.0643

0 1.0000 0.0673 -0.0318 0.0083 0.0121 -0.0318

0 0 1.0000 0.0670 -0.0323 0.0094 0.0100

0 0 0 1.0000 0.0671 -0.0326 0.0100

0 0 0 0 1.0000 0.0666 -0.0318

0 0 0 0 0 1.0000 0.0643

0 0 0 0 0 0 1.0000

>> rvv=diag(diag(Gxbar))*diag(diag(Gxbar))

rvv =

1.1297 0 0 0 0 0 0

0 1.1352 0 0 0 0 0

0 0 1.1363 0 0 0 0

0 0 0 1.1364 0 0 0

0 0 0 0 1.1366 0 0

0 0 0 0 0 1.1381 0

0 0 0 0 0 0 1.1429

The proximity of the input with resampling to a white input in that Gx is close to a diagonal
matrix, converging to Gx(D) = 1 + .07D. The CDFE then follows in the usual manner:

>> Pt=P*Gx

Pt =

-0.2223 2.0497 2.9225 -0.0138 0.0018 0.0051 -0.0093

0.0511 -0.2188 2.0486 2.9223 -0.0140 0.0021 0.0045

-0.0643 0.0466 -0.2168 2.0482 2.9217 -0.0141 0.0024

0.0865 -0.0582 0.0440 -0.2162 2.0493 2.9178 -0.0139

-0.1326 0.0773 -0.0541 0.0431 -0.2180 2.0539 2.9048

2.7764 0.0604 -0.0121 -0.0340 0.0833 -0.3179 2.2322

2.0652 2.9199 -0.0126 0.0043 -0.0012 0.0019 -0.1730

>> Rf=Pt’*Pt

Rf =

12.0545 5.7128 -0.5798 -0.0891 0.2463 -0.8985 5.4559

5.7128 12.7905 5.4878 -0.5457 0.0084 -0.0155 -0.1648
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-0.5798 5.4878 12.7898 5.4905 -0.5559 0.0432 -0.2013

-0.0891 -0.5457 5.4905 12.7846 5.4880 -0.5544 0.0696

0.2463 0.0084 -0.5559 5.4880 12.7908 5.4639 -0.4687

-0.8985 -0.0155 0.0432 -0.5544 5.4639 12.8333 5.2158

5.4559 -0.1648 -0.2013 0.0696 -0.4687 5.2158 13.4509

>> Rbinv=Rf+inv(rvv)

Rbinv =

12.9397 5.7128 -0.5798 -0.0891 0.2463 -0.8985 5.4559

5.7128 13.6714 5.4878 -0.5457 0.0084 -0.0155 -0.1648

-0.5798 5.4878 13.6698 5.4905 -0.5559 0.0432 -0.2013

-0.0891 -0.5457 5.4905 13.6646 5.4880 -0.5544 0.0696

0.2463 0.0084 -0.5559 5.4880 13.6705 5.4639 -0.4687

-0.8985 -0.0155 0.0432 -0.5544 5.4639 13.7119 5.2158

5.4559 -0.1648 -0.2013 0.0696 -0.4687 5.2158 14.3259

>> Gbar=chol(Rbinv)

Gbar =

3.5972 1.5881 -0.1612 -0.0248 0.0685 -0.2498 1.5167

0 3.3390 1.7202 -0.1516 -0.0301 0.1141 -0.7707

0 0 3.2687 1.7583 -0.1509 -0.0592 0.4188

0 0 0 3.2480 1.7704 -0.1352 -0.2297

0 0 0 0 3.2416 1.7630 -0.0388

0 0 0 0 0 3.2414 1.7723

0 0 0 0 0 0 2.8391

>> G=inv(diag(diag(Gbar)))*Gbar

G =

1.0000 0.4415 -0.0448 -0.0069 0.0190 -0.0694 0.4216

0 1.0000 0.5152 -0.0454 -0.0090 0.0342 -0.2308

0 0 1.0000 0.5379 -0.0462 -0.0181 0.1281

0 0 0 1.0000 0.5451 -0.0416 -0.0707

0 0 0 0 1.0000 0.5439 -0.0120

0 0 0 0 0 1.0000 0.5468

0 0 0 0 0 0 1.0000

>> S0=diag(diag(Gbar))*diag(diag(Gbar))

S0 =

12.9397 0 0 0 0 0 0

0 11.1492 0 0 0 0 0

0 0 10.6847 0 0 0 0

0 0 0 10.5495 0 0 0

0 0 0 0 10.5077 0 0

0 0 0 0 0 10.5065 0

0 0 0 0 0 0 8.0605

>> snr=10*log10(det(rvv*S0)^(1/8)-1)

snr = 8.9118

>> ibar=.5*log(det(rvv*S0)^(1/8))/log(2)

ibar = 1.5674

Thus, the higher SNR must be interpreted in terms of a larger number of bits per dimension
to obtain the same data rate, or reducing the SNR by the factor of 10 log10(8/7) = 1.3
dB produces 7.6 dB again. In this case, the good DFE performance is obtained by analog
resampling rather than the digital interpolation. Analog resampling appears simpler here,
but such a variable sampling device would have to cover the range of channel bandwidths in
practice, often a much more difficult analog design than using the FFT-based interpolation
in digital-signal processing.

The upper rows again converge to a nearly constant feedback filter. As N → ∞, these upper
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rows would converge to the G(D) of the MMSE-DFE for this new sampling rate on this
channel of 1/T = 7/8, which looks close to 1 + .55D− .04D2. The combination of matched
filter and feedforward matrix is

>> W=inv(S0)*inv(G’)*Pt’

W =

-0.0172 0.0039 -0.0050 0.0067 -0.0102 0.2146 0.1596

0.1926 -0.0216 0.0067 -0.0087 0.0122 -0.1045 0.1801

0.1690 0.2036 -0.0242 0.0091 -0.0122 0.0667 -0.0893

-0.0843 0.1651 0.2076 -0.0258 0.0112 -0.0428 0.0591

0.0565 -0.0824 0.1635 0.2094 -0.0271 0.0284 -0.0387

-0.0391 0.0568 -0.0827 0.1638 0.2092 -0.0241 0.0291

0.0642 -0.0701 0.0906 -0.1264 0.2248 0.1007 -0.0727

which appears to be W (D) ≈ .16 + .2D−1 plus other smaller terms. A larger N is necessary
to see the types of 10-tap feedforward filters for this example that were found to be necessary
in Chapter 3.

As Γ → 0, the CDFE and DMT perform the same when the resampling/interpolation have been
executed for the CDFE, both have nonsingular and the same Rxx. DMT would clearly be preferred,
because it has no feedback section and can be implemented with Nlog2(N) operations as compared to
N2 for the CDFE. Also, DMT has a higher SNR for any non-zero gap, and thus would be better in
any practical system where gaps must be greater than 0 dB. The CDFE may see more internal values
of the matrix G and the feedforward filter becoming zero or negligible, thus allowing a highly channel
dependent reduction in some of the computation. In Example 5.5.3, with 6 feedforward taps and 3
feedback taps, the receiver complexity per 8-sample symbol is 48+24 or 72 operations/symbol. The
DMT system of same block size has 8 log2(8) = 24 operations/symbol, 3 times less complex as usual. In
Example 5.5.2, the CDFE receiver complexity is1.5N2 + N per symbol, or 104 operations per sample
(but does avoid the resampling, which was not included in the complexity calculation for Example 5.5.3.)
In general, any MMSE-DFE that requires more than log2(N) taps in both feedback and feedforward
filters together to approximate the same performance as a DMT system of symbol length N would be
more complex to implement. For example, when N = 16 even at the higher sampling rate of 1/T = 1,
DMT achieves the maximum of 8.8 dB on the 1 + .9D−1 channel. However, a CDFE or MMSE-DFE
clearly requires more than log2(N = 16) = 4 taps to achieve such a high SNR on this channel for this
channel (the feedforward filter of the CDFE in the example already has more than 4 taps that cannot
be ignored at N = 7).

In practice, no matter how severe the channel ISI, DMT requires log2(N) operations per sample,
while the CDFE would need to have the capability to perform up to N operations per sample. The
CDFE is nearly always more complex than DMT, no matter what the channel for any specific choice of
N . If some of the coefficients of CDFE filters are “zero at the end,” then in those situations complexity
and delay are less than N . In order for this complexity to reduce below the log2(N), it is likely the
channel has very mild intersymbol interference, for which analog resampling was used to reduce the ISI,
but then DMT can use a smaller N also, and still likely get the same performance. No known examples
of lower CDFE complexity are known to the author. Thus, on severe ISI channels, the complexity
advantage is likely to be large for DMT while as the ISI severity decreases, the complexity advantage
diminishes to the case of the AWGN channel with no ISI, in which case both have the same complexity
and performance (Γ = 0 dB, N = 1, and ν = 0). The sole possible reason for using a MMSE-DFE might
be that with continuous transmission, the length of the equalizer filters might lead to a delay of less
than N as Example 5.5.3 shows a bit, thus leading with very long block lengths to a shorter delay to get
essentially the same SNR – equivalently, there is no “resetting” of the packet to length N necessary in a
very long N CDFE as the transmitter and receiver simply ignore block boundaries and use MMSE-DFE
continuously. However, Γ = 0 dB implies infinite coding and decoding delay, so a better delay would
then be mitigated.

Thus, claims that the reader may encournter that a MMSE-DFE with QAM performs the same,
but is less complex are unfounded in transmission funamentals – instead in reality, a very special effort
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has to be made to make the performance the same, and in which case the MMSE-DFE is always more
complex. For some reason, this misunderstanding abounds today without foundation despite efforts by
the author and others to correct the misinformed. The sole benefit of the CDFE, or equivalently the
MMSE-DFE, is the possibility of a shorter delay if the filter settings converge to a constant setting with
many zeros in the trailing positions. Furthermore, systems with large margin, like the 6 dB used in DSL,
then necessarily have effectively larger gaps that cannot go to zero dB even with good codes. Thus, it
is not possible for the CDFE to match the performance of DMT with non zero margins.

5.5.5 Relationships ZF and MMSE GDFE’s

This subsection parallels Subsection 5.2.6, finding an interesting relationship between ZF and MMSE
GDFEs under water-filling and finding their equivalence under worst-case noise situations with any input.
All relations here occur on a nonsingular square channel, which of course is the result of water-filling for
the GDFE.

This result is conveniently expressed in terms of a square non-singular equivalent channel H so
that after any channel singular elimination and input singularity elimination, the white-noise equivalent
channel is

z = Hu + n (5.297)

where Rnn = I. Singular value decomposition, as well as QR factorization, are possible on the non-
singular H :

H = D ·G ·Q∗ = FΛM∗ , (5.298)

where D is nonsingular diagonal, G is monic lower triangular, and Q is an orthogonal matrix.25 F , Λ, and
M are the nonsingular square matrices that arise from singular value decomposition of the nonsingular
square H .

The best water-filling input covariance is determined by vector coding as

Ruu = M
[
K · I − Λ−2

]
M∗ . (5.299)

Cholesky Decomposition of Q∗RuuQ produces

Q∗RuuQ = GxSxG∗
x , (5.300)

(where Gx is monic lower triangular and Sx is diagonal) from which emerges the relation

Ruu = M
[
K · I − Λ−2

]
M∗ = Q ·Gx · Sx ·G∗

x ·Q∗ . (5.301)

Figure 5.34 illustrates the transmitter and simplified receiver. The overall channel is determined by
monic upper triangular

Gtot = G ·Gx , (5.302)

and the “white” input v has Rvv = Sx. A ZF-GDFE then uses a feedback section of G and the
corresponding SNRs are

SNRn = Sx,n ·D2
n (5.303)

on each of the subchannels. Basic matrix multiplication produces

H∗H = M · Λ2 ·M∗ = Q ·G∗ ·D2 ·G ·Q∗ (5.304)

with corresponding inverse

[H∗H ]
−1

= H−1H−∗ = M · Λ−2 ·M∗ = Q ·G−1 ·D−2 ·G−∗ ·Q∗ . (5.305)

Substitution of (5.305) into (5.301) yields

K · I = Q ·Gx · Sx ·G∗
x ·Q∗ + Q ·G−1 ·D−2 ·G−∗ ·Q∗ (5.306)

K ·G ·G∗ = Gtot · Sx ·G∗
tot + D−2 (5.307)

25The Matlab command [Q,R]=qr(A) produces A=Q*R where R is upper triangular. By executing [Q,R] = qr(A’), one
obtains A=R’*Q’ where R’ is lower triangular.
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Figure 5.34: Relationship diagram for the ZF-GDFE and GDFE with water-filling input choice.

Equation 5.307 relates that the G of QR factorization essentially determines the shape of the channel plus
noise under water-filling after equalization by the lossless transformations as in Figure 5.34. Effectively
the MMSE-GDFE is determined by this same G, since this structure has maximum mutual information.
Despite the common shape, the ZF-GDFE will perform worse than the MMSE-GDFE unless Gx = I.
However, QR factorization and Cholesky factorization are much easier to execute in a real system than
is singular-value decomposition or eigenvector decomposition. So if a nonsingular square H can be found
easily, Equation (5.307) implements a direct computation of necessary quantities and input energies

K ·G∗G−D−2 = G∗
tot · Sx ·Gtot . (5.308)

The left side of (5.308) uses the quantities G and D of QR factorization, and K, which for water-filling
is easily determined as

K = Ēx −
1

N∗

N∗

∑

n=1

1

λ2
n

= Ēx −
1

N∗ trace
{

[H∗H ]−1
}

. (5.309)

Direct Cholesky factorization of the quantity computed on the left in (5.308) produces Gtot and Gx =
Gtot ·G−1. No singular value decomposition is then necessary. Either a ZF or a MMSE-GDFE can then
be implemented. The reader is reminded that N∗ = N for this simplification to be of use. This result
can be useful only when the water-filling input uses all dimensions of the channel.

worst-case noise

Worst-case noise autocorrelation can be found easily from optimization theory with the constraint that
the diagonal elements of the noise autocorrelation matrix Rnn are fixed – that is fixed power of the
noise on each dimension (or fixed covariance elements/matrices among sets of dimensions along a block
diagonal of a matrix). Such worst case noise has a correspondence with the broadcast channel of Chapter
14 where no receiver inter-dimensional coordination is allowed (since the dimensions are different users
who may be in physically separated locations).

Correlation between noises of different users cannot be mitigated by an allowable receiver if no
receiver-side coordination is permitted, for instance as might occur if user receivers were in different
locations. This subsection first simply derives an expression for the worst-case noise that is well-known,
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but very difficult to work with as a designer. Instead, the GDFE is subsequently used to provide a
different interpretation of worst-case noise, as in the previous subsection. The latter, when combined
with water-filling, will avoid the difficult in computation for the designer altogether.

Existence of Worst-Case Noise The mutual information for any vector channel I(x; y) is a function
of the noise, and

I(x; y) =
1

2
log2

|PRxxP ∗ + Rnn|
|Rnn|

, (5.310)

which is convex in Rnn. It is minimized of course by an infinite variance noise. If the noise variance on
each dimension is held fixed at the set diagonal values of Ro

nn, so essentially the constraint is that the
diagonal of Rnn is fixed, then the minimizing noise covariance can be founded from the Lagrangian

min
Rnn

1

2
log2 |PRxxP ∗ + Rnn| −

1

2
log2 |Rnn|+

N∑

n=1

λn (Rnn(n)− Ro
nn(n)) . (5.311)

Then careful setting26 of the gradient with respect to all the elements in Rnn to zero and organization
of the result into matrix form produces

[PRxxP ∗ + Rnn]
−1 − R−1

nn = −D . (5.312)

where D is a diagonal matrix with non-negative real entries

D = diag{λn} . (5.313)

Previous EE379C student Mehdi Mohseni has provided a software routine using “interior point”
methods that computes iteratively the worst-case noise. This program’s channel matrix has dimensions
(K ·N) ×m, which requires some explanation: The input is construed as coming from m independent
sources (lines or “antennas” as the comments of the program indicate). If intersymbol interference is
included, then the m sources may be the dimensions of a single input (such as the N + ν inputs of a
packet in time as often modeled in this chapter or combinations of many such packets of inputs).

The signals arising from these m sources produce KN output dimensions. This program’s N here is
not always the same N as packet length, but instead generalizes that concept and refers to N dimensions
for each of K groups of such dimensions (in multi-user use in Chapter 14, each group represents a different
“user.”) The N could represent the output dimensions for instance for each of K output positions/groups.
For the most common case in this chapter the program input H is set equal to P and N is set to the
number of rows of P while then m = N + ν .

Mohseni’s Worst-Case Noise Autocorrelation Matrix

% the channel matrix is K*N by m, m is the number of transmitter’s antennas,

% K is the number of output dimension groups and N is the number of receiver

% dimensions for each such group.

% Rx is the m by m input covariance matrix

% Rn is the K*N by K*N worst case noise minimizing

% 0.5 * log(det(HRx*H’+Rn)/det(Rn)), Rn has its N by N diganoal sub-blocks

% equal to identity matrix

function [Rn, sumRate] = wcnoise(Rx, H, N)

26Matrix derivatives become easier to understand and perform if a Taylor’s Series representation of log2(x) =
1

ln(2)

∑
∞

n=1

(−1)n+1

n
xn is thought of with x a symmetric non-negative-definite matrix x = QΛQ∗, where Λ is a diag-

onal matrix of non-negative eigenvalues. In such a form, the derivative is taken with respect to each eigenvalue like a scalar
since the Q is invariant to the power of xn, that is invariant to the value of n. Thus, the derivative of log2(R) is simply
R−1.
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[n,m] = size(H);

K = n / N;

A = zeros(n,n,n*(n+1)/2);

for i = 1:n

A(i,i,i) = 1;

end

count = n+1;

for i = 2:n

for j = 1:i - 1

A(i,j,count) = 1;

A(j,i,count) = 1;

count = count+1;

end

end

map = zeros(n,n);

for i = 1:K

map((i-1) * N + 1:i * N,(i-1) * N + 1:i * N) = ones(N,N);

end

NT_max_it = 1000; % Maximum number of Newton’s

% method iterations

dual_gap = 1e-5;

mu = 10; % step size for t

alpha = 0.001; % back tracking line search parameters

beta = 0.5;

count = 1;

nerr = 1e-4; % acceptable error for inner loop

% Newton’s method

v_0 = zeros(n*(n+1)/2,1); % Strictly feasible point;

v_0(1:n) = 0.5 * ones(n,1);

v = v_0;

t =1;

l_v = 1; % lambda(v) for newton’s method termination

while (1+n)/t > dual_gap

t = t * mu;

l_v = 1;

count = 1;

while l_v > nerr & count < NT_max_it

f_val = 0; % calculating function value

Rn = zeros(n,n);

Rnprime = zeros(n,n);

for i = 1:n*(n+1)/2 % computing Rn

Rn = Rn + v(i) * A(:,:,i);

end

for i = 1:K
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Rnprime((i-1) * N + 1:i * N,(i-1) * N + 1:i * N) =

Rn((i-1) * N + 1:i * N,(i-1) * N + 1:i * N);

end

f_val = t * log(det(H * Rx * H’ + Rn)) - (t + 1) * log(det(Rn))

- log(det(eye(n) - Rnprime));

S = inv(H * Rx * H’ + Rn);

Q = inv(eye(n) - Rnprime);

Rn_inv = inv(Rn);

g = zeros(n*(n+1)/2,1);

h = zeros(n*(n+1)/2,n*(n+1)/2);

for i = 1:n*(n+1)/2

g(i) = t * trace(A(:,:,i) * S) - (t + 1) * trace(A(:,:,i) * Rn_inv)...

+ (sum(sum(A(:,:,i) .* map)) ~= 0) * trace(A(:,:,i) * Q) ; % gradient

end

for i = 1:n*(n+1)/2

for j = 1:n*(n+1)/2

h(i,j) = -t * trace(A(:,:,i) * S * A(:,:,j) * S) + (t + 1) *

trace(A(:,:,i) * Rn_inv * A(:,:,j) * Rn_inv)...

+(sum(sum(A(:,:,i) .* map)) ~= 0) * (sum(sum(A(:,:,j) .* map)) ~= 0)

* trace(A(:,:,i) * Q * A(:,:,j) * Q); %hessian

end

end

dv = -h\g; % search direction

s = 1; % checking v = v+s*dx feasible

% and also back tracking algorithm

v_new = v + s * dv;

f_new = 0;

Rn_new = zeros(n,n);

for i = 1:n*(n+1)/2

Rn_new = Rn_new + v_new(i) * A(:,:,i);

end

for i = 1:K

Rnprime((i-1) * N + 1:i * N,(i-1) * N + 1:i * N) =

Rn_new((i-1) * N + 1:i * N,(i-1) * N + 1:i * N);

end

f_new = t * log(det(H * Rx * H’ + Rn_new)) -

(t + 1) * log(det(Rn_new)) - log(det(eye(n) - Rnprime));
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feas_check = 1;

if real(eig(Rn_new)) > zeros(n,1)

feas_check = 1;

else

feas_check = 0;

end

if real(eig(eye(n) - Rnprime)) > zeros(n,1)

feas_check = 1;

else

feas_check = 0;

end

feas_check = feas_check * (f_new < f_val + alpha * s * g’ * dv);

while feas_check ~= 1

s = s * beta

v_new = v + s * dv;

f_new = 0;

Rn_new = zeros(n,n);

for i = 1:n*(n+1)/2

Rn_new = Rn_new + v_new(i) * A(:,:,i);

end

for i = 1:K

Rnprime((i-1) * N + 1:i * N,(i-1) * N + 1:i * N) =

Rn_new((i-1) * N + 1:i * N,(i-1) * N + 1:i * N);

end

f_new = t * log(det(H * Rx * H’ + Rn_new)) -

(t + 1) * log(det(Rn_new)) - log(det(eye(n) - Rnprime));

feas_check = 1;

if real(eig(Rn_new)) > zeros(n,1)

feas_check = 1;

else

feas_check = 0;

end

if real(eig(eye(n) - Rnprime)) > zeros(n,1)

feas_check = 1;

else

feas_check = 0;

end

feas_check = feas_check * (f_new < f_val + alpha * s * g’ * dv);

end

v = v + s * dv; % update v

l_v = -g’*dv % lambda(v)^2 for Newton’s method
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count = count + 1; % number of Newtons method iterations

end

end

Rn = zeros(n,n);

for i = 1:n*(n+1)/2

Rn = Rn + v(i) * A(:,:,i);

end

for i = 1:K

Rn((i-1) * N + 1:i * N,(i-1) * N + 1:i * N) = eye(N);

end

sumRate = 0.5 * log(det(H * Rx * H’ + Rn)/det(Rn));

This program appears in usable form on the course web page. The convexity of the mutual information
in Rnn (and the program!) establishes the existence of the worst-case noise.

A couple of simple solutions are evident without resort to the program. At very high SNR with white
noise, then the noise effectively goes to zero (w.r.t. signal) so that R−1

nn =∞·I and the condition is met.
So, white noise is worst-case when the SNR is infinite and any large noise (0 dB SNR) is worst-case. (At
very low SNR with any correlation of noise, then the two terms in the subtraction are equal and so zero
is a diagonal matrix.)

Connection to the GDFE Worst-case noise diagonalizes the overall feedforward processing of a
GDFE for certain inputs. The construction of the input first observes the worst-case noise autocorrelation
can be rewritten27 for some input modulation matrix A as

[PRxxP ∗ + Rwcn]
−1 − R−1

wcn = −D (5.314)
[

R−1/2
wcn PAA∗P ∗R−∗/2

wcn + I
]−1

= −R∗/2
wcnDR1/2

wcn (5.315)

R−1/2
wcn PA [I + A∗P ∗PA]

−1
A∗P ∗R−∗/2

wcn = R∗/2
wcnDR1/2

wcn (5.316)

R−1
wcnPARbA

∗P ∗R−∗
wcn = D (5.317)

R−1
wcnPAG−1S−1

0 G−∗A∗P ∗R−∗
wcn = D (5.318)

By performing the QR factoriztion
R−1

wcnP = [0R]Q∗ (5.319)

where R is an upper triangular square matrix and Q = [q1 Q1] is an orthogonal matrix. In cases
with square nonsingular P , the zero element can be eliminated and only then Q1 = Q. This procedure
degenerates when the number of output dimensions exceeds the number of input dimensions, see Chapter
14 for how to handle this situation. Then, when R is nonsingular, the choice

A = Q1R
−1DAG (5.320)

(where DA is a diagonal matrix that satisfies DAS−1
0 DA = D, or equivalently each diagonal entry is

computed as DA(n) =
√

D(n) · S0(n)) satisfies the worst-case-noise equation, where G remains to be
determined. Determination of G occurs through the Cholesky factorization

Q∗
1RxxQ1 = UU∗ (5.321)

where U is an upper triangular matrix. Then,

R−1DAG = U (5.322)

or
G = D−1

A RU . (5.323)

27The matrix inversion lemma [A + BCD]−1 = A−1 − A−1B[C−1 + DA−1B]−1DA−1 is used.
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The GDFE is now determined, and the overall feedforward processing is

W = S−1
0 G−∗A∗P ∗R−1

wcn = S−1
0 DA = D−1

A D , (5.324)

which is thus clearly diagonal. The requirement that R be nonsingular is equivalent to the channel
having a rank that is equal to that of Rwcn, which is N (the number of channel output dimensions).
When the channel has a rank less than N , the input should be projected (as earlier in this chapter)
into a smaller number of input dimensions that is equal to the channel rank. A GDFE attempting to
estimate these dimensions will have diagonal total feedforward. It is not possible (in some sense trivially)
to diagonalize a feedforward section for a larger number of input dimensions than N . The worst-case
noise will certainly exist, but the corresponding input to diagonalize does not.

Theorem 5.5.2 (Worst-Case Noise and the GDFE) The worst-case noise covariance
subject to autocorrelation constraints on sets of dimensions allows at least one GDFE receiver
whose entire linear processing (ignoring feedback) is diagonal.

Proof: From the convexity of the mutual information in noise covariance matrix, a worst-
case noise always exists. Following the above development in (5.314) - (5.324), cleary W is
diagonal. QED.

Theorem 5.5.2 holds for any input Rxx to the channel (not just water-filling), and a corresponding
A can be found to synthesize Rxx as well as diagonalize the feedforward processing. An interesting
use is that with a precoder implementation of the feedback section at the transmitter that the receiver
essentially becomes a trivial scaling of each dimension. Thus, all complexity and also coordination of
signal processing among the dimensions occurs at the transmitter.

However, vector-coded inputs (with arbitrary energy assignments, but using the singular vectors M
for a transmit matrix) lead to a special case that simplifies the worst-case GDFE determination. First,
an exercise for the reader easily shows that any product of an orthogonal matrix and a diagonal matrix
can be set equal to the product of another diagonal and another orthogonal matrix,

QleftDright = DleftQright . (5.325)

Thus, when
Rxx = MSxM∗ (5.326)

the receiver-diagonalizing input matrix A for the corresponding worst-case-noise input is given by

A = Q1R
−1DAG = Q1U = MS1/2

x Qx (5.327)

where Qx is an unknown orthogonal matrix. Since Sx is diagonal, then the product S
1/2
x Qx = QleftDright

then forces the solution for U to be a diagonal. Essentially then, when monic, R and G are the same
triangular form or the GDFE is then determined by the “QR” factorization of RwcnP . The Rwcn can
then be determined without iterative descent methods as in Mohseni’s WCN program. A direct iterative
N -step algorithm for its calculation is left as an exercise for the interested reader.

The ZF and MMSE GDFEs are trivially the same when there is no receiver processing (after biases
are removed). Thus worst-case noise can be (with the correct input modulation choice corresponding to
A) an additional situation for which the ZF and MMSE GDFE receivers have the same performance.
The worst-case noise is a function of the input covariance Rxx. However, the best input covariance is
also a function of the noise Rnn. The combination best input covariance for a corresponding worst-case
noise that diagonalizes the GDFE can be found by an iterative loop that first finds a water-filling solution
for the diagonal noise covariance (there will be a corresponding data rate b0), then finds a worst-case
noise for that water-filling solution that will not increase the data rate (b1 ≤ b0). If equality holds, then
the solution has been found. If not, then the procedure repeats to find a new water-filling solution for
that worst-case noise and will not decrease data rate (b2 ≥ b1) and a subsequent new worst-case noise
with b3 ≤ b2.

With q ≥ 1 an integer. b2q+2 ≤ b2q and b2q+3 ≥ b2q+1. That is successive upper bounds from
water-filling steps are decreasing (because the intermediate worst-case noise step searches all covariances
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with the same noise diagonal) and successive lower bounds from worst-case noise steps are increasing
(because the water-filling step searches all input covariances with same energy constraint), thus forcing
convergence since both problems are convex. The solution is sometimes called a “saddle point.” This
saddle point is a very special one for what are called “broadcast” multi-user channels in Chapter 14.
This observation in GDFE theory lead to former EE379C students Wei Yu and Mehdi MOhseni being
the first to master the fundamental limits of the broadcast channel.

An additional simplification occurs when the input

Some Examples of WCN and GDFE

EXAMPLE 5.5.4 (Vector-coded input for WCN) This first example uses the 3 × 4
channel matrix well known in this text as the 1 + .9D−1 channel. An input with flat energy
on each of the 3 pass modes of this channel is constructed, consequent worst-case noise
determined, a GDFE designed, and the overall feedforward-processing determined to be
consequently diagonal.

>> P =

0.9000 1.0000 0 0

0 0.9000 1.0000 0

0 0 0.9000 1.0000

>> P=(1/sqrt(.181))*P =

2.1155 2.3505 0 0

0 2.1155 2.3505 0

0 0 2.1155 2.3505

>> C=eye(4) =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

>> [F,L,M]=svd(P)

F= -0.5000 0.7071 0.5000

-0.7071 -0.0000 -0.7071

-0.5000 -0.7071 0.5000

L= 4.1270 0 0 0

0 3.1623 0 0

0 0 1.7228 0

M= -0.2563 0.4730 0.6140 -0.5776

-0.6472 0.5256 -0.1861 0.5198

-0.6590 -0.4730 -0.3508 -0.4678

-0.2848 -0.5256 0.6822 0.4211

>> Pm=M(:,1:3)*M(:,1:3)’ =

0.6664 0.3002 -0.2702 0.2432

0.3002 0.7298 0.2432 -0.2189
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-0.2702 0.2432 0.7811 0.1970

0.2432 -0.2189 0.1970 0.8227

>> Ctemp=Pm*C =

0.6664 0.3002 -0.2702 0.2432

0.3002 0.7298 0.2432 -0.2189

-0.2702 0.2432 0.7811 0.1970

0.2432 -0.2189 0.1970 0.8227

>> Rxx=Pm*Pm’ =

0.6664 0.3002 -0.2702 0.2432

0.3002 0.7298 0.2432 -0.2189

-0.2702 0.2432 0.7811 0.1970

0.2432 -0.2189 0.1970 0.8227

>> [Rwcn,rate]=wcnoise(Rxx,P,1)

Rwcn =

1.0000 0.0694 -0.0282

0.0694 1.0000 0.0694

-0.0282 0.0694 1.0000

>> J3 = [

0 0 1

0 1 0

1 0 0 ];

>>J4 = [

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0 ];

>> Ptilde=inv(Rwcn)*P =

2.1281 2.2118 -0.0990 0.0785

-0.1527 1.9670 2.2214 -0.1697

0.0707 -0.0742 1.9584 2.3645

>> [Q,R]=qr(J4*Ptilde’*J3);

>> Q=J4*Q*J4 =

0.5776 -0.8133 0.0669 -0.0230

-0.5198 -0.4305 -0.7375 0.0241

0.4678 0.3067 -0.5297 -0.6375

-0.4211 -0.2433 0.4136 -0.7697

>> R=J4*R*J3;

>> R=R’ =

0 -2.7323 -1.4039 0.0071
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0 0 -2.7077 -1.2346

0 0 0 -3.0719

> R*Q’ =

2.1281 2.2118 -0.0990 0.0785

-0.1527 1.9670 2.2214 -0.1697

0.0707 -0.0742 1.9584 2.3645

>> Q1=Q(:,2:4) =

-0.8133 0.0669 -0.0230

-0.4305 -0.7375 0.0241

0.3067 -0.5297 -0.6375

-0.2433 0.4136 -0.7697

>> Rxxrot=Q1’*Rxx*Q1 =

1.0000 -0.0000 0.0000

-0.0000 1.0000 0.0000

0.0000 0.0000 1.0000

>> Ubar=J3*chol(J3*Rxxrot*J3)*J3 =

1.0000 0 0

-0.0000 1.0000 0

0.0000 0.0000 1.0000

>> Ubar=Ubar’;

>> Rup=R(:,2:4) =

-2.7323 -1.4039 0.0071

0 -2.7077 -1.2346

0 0 -3.0719

>> DA=diag(diag(Rup*Ubar)) =

-2.7323 0 0

0 -2.7077 0

0 0 -3.0719

>> G=inv(DA)*Rup*Ubar =

1.0000 0.5138 -0.0026

0 1.0000 0.4559

0 0 1.0000

>> A=Q1*inv(Rup)*DA*G =

-0.8133 0.0669 -0.0230

-0.4305 -0.7375 0.0241

0.3067 -0.5297 -0.6375

-0.2433 0.4136 -0.7697
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>> A*A’-Rxx = (check)

1.0e-015 *

0.4441 0.3331 -0.2776 -0.0833

0.3331 0.5551 -0.1110 -0.4718

-0.2776 -0.1110 0.2220 -0.0278

-0.0833 -0.4718 -0.0278 0.8882

>> D=inv(Rwcn) - inv(P*Rxx*P’ + Rwcn) =

0.8819 0.0000 -0.0000

0.0000 0.8529 0.0000

-0.0000 0.0000 0.8819

>> Rbinv=eye(3)+A’*P’*inv(Rwcn)*P*A

8.4657 4.3497 -0.0221

4.3497 10.8304 3.9077

-0.0221 3.9077 12.4876

>> Gbar=chol(Rbinv) =

2.9096 1.4949 -0.0076

0 2.9318 1.3367

0 0 3.2712

>> G=inv(diag(diag(Gbar)))*Gbar =

1.0000 0.5138 -0.0026

0 1.0000 0.4559

0 0 1.0000

(checks)

>> S0=diag(diag(Gbar))*diag(diag(Gbar)) =

8.4657 0 0

0 8.5956 0

0 0 10.7006

>> snr=10*log10(det(S0)^(1/4)-1) =

6.3169

>> W=1/sqrt(.181)* inv(S0)*inv(G’)*A’*Ptilde’ =

-0.7586 -0.0000 -0.0000

-0.0000 -0.7404 0.0000

0.0000 0.0000 -0.6748

This first example above clearly has a diagonal U because the input autocorrelation was
constructed with the M of the channel’s singular value decomposition. The next example

521



illustrates the more general case where the input covariance is more arbitrarily chosen, thus
the initial modulation matrix C is not a diagonal nor based on M , but the channel is the
same otherwise.

>> C =

1 1 1

-1 1 1

1 -1 -1

-1 -1 1

>> Ctemp=Pm*C =

-0.1472 0.9937 1.4801

0.0325 1.0057 0.5679

0.0707 -1.0051 -0.6111

-0.1636 -0.9954 0.6500

>> Ctilde=Ctemp(:,1:3) =

-0.1472 0.9937 1.4801

0.0325 1.0057 0.5679

0.0707 -1.0051 -0.6111

-0.1636 -0.9954 0.6500

>> Rin=C*C’ =

3 1 -1 -1

1 3 -3 1

-1 -3 3 -1

-1 1 -1 3

>> Rxx=Pm*Rin*Pm’=

3.1997 1.8351 -1.9137 -0.0029

1.8351 1.3350 -1.3556 -0.6372

-1.9137 -1.3556 1.3888 0.5917

-0.0029 -0.6372 0.5917 1.4401

>> [Rwcn,rate]=wcnoise(Rxx,P,1)

Rwcn =

1.0000 -0.0541 -0.0373

-0.0541 1.0000 -0.0044

-0.0373 -0.0044 1.0000

rate = 3.1377

>> Ptilde=inv(Rwcn)*P =

2.1247 2.4761 0.2079 0.0886

0.1154 2.2500 2.3712 0.0152

0.0797 0.1023 2.1337 2.3539

522



>> [Q,R]=qr(J4*Ptilde’*J3);

>> Q=J4*Q*J4 =

0.5776 -0.8155 -0.0261 -0.0251

-0.5198 -0.3421 -0.7821 -0.0322

0.4679 0.3662 -0.4435 -0.6711

-0.4211 -0.2894 0.4369 -0.7403

>> R=J4*R*J3;

>> R=R’ =

0 -2.5294 -2.0456 -0.3381

0 0 -2.8078 -1.6777

0 0 0 -3.1797

>> Q1=Q(:,2:4) =

-0.8155 -0.0261 -0.0251

-0.3421 -0.7821 -0.0322

0.3662 -0.4435 -0.6711

-0.2894 0.4369 -0.7403

>> Rxxrot=Q1’*Rxx*Q1 =

4.8448 0.8359 -1.4282

0.8359 0.6633 -1.1041

-1.4282 -1.1041 1.8554

>> Ubar=J3*chol(J3*Rxxrot*J3)*J3 =

1.9272 0 0

-0.1771 0.0792 0

-1.0485 -0.8106 1.3621

>> Rup=R(:,2:4) =

-2.5294 -2.0456 -0.3381

0 -2.8078 -1.6777

0 0 -3.1797

>> Ubar=Ubar’ =

1.9272 -0.1771 -1.0485

0 0.0792 -0.8106

0 0 1.3621

>> DA=diag(diag(Rup*Ubar)) =

-4.8746 0 0

0 -0.2224 0

0 0 -4.3311

>> G=inv(DA)*Rup*Ubar =
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1.0000 -0.0587 -0.7898

0 1.0000 0.0420

0 0 1.0000

>> A=Q1*inv(Rup)*DA*G =

-1.5717 0.1424 0.8421

-0.6593 -0.0013 0.9489

0.7057 -0.1000 -0.9385

-0.5578 0.0859 -1.0590

>> Rbinv=eye(3)+A’*P’*inv(Rwcn)*P*A =

24.7620 -1.4532 -19.5561

-1.4532 1.1382 1.1919

-19.5561 1.1919 35.8268

>> Gbar=chol(Rbinv) =

4.9761 -0.2920 -3.9300

0 1.0261 0.0430

0 0 4.5145

>> S0=diag(diag(Gbar))*diag(diag(Gbar)) =

24.7620 0 0

0 1.0529 0

0 0 20.3803

>> snr=10*log10(det(S0)^(1/4)-1) =

5.7991

>> W=1/sqrt(.181)* inv(S0)*inv(G’)*A’*Ptilde’ =

-0.4627 -0.0000 0.0000

0.0000 -0.4964 -0.0000

-0.0000 -0.0000 -0.4995

In this case, the input is not a vector-coding input, so U is not diagonal. However, there still
exists an input that diagonalizes the GDFE.

The examples emphasize that for the worst-case noise, no matter what is the input covariance, there
always exists a modulation of the input that diagonalizes the feedforward section of the GDFE. This is
independent of “water-filling” or “vector-coding” input selections.
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5.6 Asymptotic Stationary Convergence of certain GDFEs

Sections 5.4 and 5.5 observe that the CDFE with nonsingular, Toeplitz, circulant P and stationary
(circulant also) Rxx is very special, and appeared in all examples to converge to the MMSE-DFE of
Chapter 3 as N → ∞. This section investigates such convergence further. The results here are often
known in the statistical signal processing area as arising from “Toeplitz Distribution Theory.”

There are 3 GDFE-essential asymptotic results of interest:

1. Toeplitz and cyclic autocorrelation matrices - Subection 5.6.1

2. linear prediction and canonical factorization - Subsection 5.6.2

3. Use of 1 and 2 in the GDFE - Subsection 5.6.3.

5.6.1 Stationary Channels

Strictly speaking, for any finite N , random vectors like the x, y and n of the transmission channel
y = Px + n are never stationary28. When these vectors are considered in succession, if the same
autocorrelation matrix for each occurs in every successive block or packet, the vector process can be
construed as block stationary, which actually is an example of the sample random processes that
correspond to the time-indexed elements of these successive random vectors being cyclostationary
with period equal to N + ν , the dimension of the vectors. Furthermore, singular random processes with
less than full rank autocorrelation matrices should not be considered block or cyclo-stationary unless
the singularity has been removed as in Section 5.3. The GDFE attains an SNR that is canonical in all
cases for the block-stationary case, and the data rate of Ī can only be defined (and thus be achieved) if
the transmission system (Rxx, P, Rnn) is block stationary. Strictly speakin, the GDFE only becomes
stationary as N →∞.

However, for the ISI-specific situation investigated throughout Chapters 3 and 4 and often in Chapter
5, another additional type of stationarity is implied. The random processes xk, yk, and nk are presumed
stationary. In this case only, additional structure occurs within the GDFE that can lead (when all
singularity is removed) to (a set of) stationary DFE(s). In this case, Toeplitz autocorrelation matrices
for all processes can occur at each and every block length N (or N + ν), and convergence to fixed
structures as N →∞. This requires care in structuring the successive processing of symbols (or blocks)
even when the underlying channel and its input are stationary.

For instance, the FIR channel P (D) with stationary AWGN noise and a stationary input with thus
an autocorrelation function Rx(D) may not lead to Toeplitz matrices in partitioning. A easy example
is the 1 + .9D−1 channel with ν = 1 that has been often investigated in these notes. For this channel
and the usual guard period used in VC or the GDFE with a Toeplitz N × (N + ν) convolution P matrix
does not produce a Toeplitz Ryy . For instance with N = 2 and Ēx = 1,

Rf =





.81 .9 0
.9 1.81 .9
0 .9 1



+ σ2I , (5.328)

which is not Toeplitz (the diagonal is not constant). As N →∞, this matrix will approach Toeplitz, but
it is not Toeplitz for each N along the way. The repeated insertion of the guard period thus essentially
destroys the stationarity that is otherwise naturally present.

However, with the use of the cyclic prefix, the corresponding Ryy becomes

Ryy =

[
1.81 .9
.9 1.81

]

+ σ2I , (5.329)

which is Toeplitz. Indeed, a cyclic prefix of length ν samples when the channel (or TEQ equalized
channel) has length of ν or less will always produce a stationary Ryy = P ∗RxxP + Rnn as long as

28The term “stationary” in this chapter means “wide-sense stationarity,” and so only means, covariancesneed be invariant
to time
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Rnn is Toeplitz, and Rxx is not only Toeplitz, but cyclic also. 29 Clearly, the cyclic prefix insures
the Toeplitz nature of the signal part in Ryy .30 Thus, the cyclic prefix has an additional benefit in
asymptotic analysis in that Toeplitz matrices will appear nearly throughout the GDFE problem for all
N , leading to various Cholesky factorizations appearing to converge for smaller N than would otherwise
be necessary. This was clearly evident in early examples in that the CDFE appeared well-behaved as
N → ∞ while a more general GDFE appeared to have no easy convergence evident (at the N values
used in previous examples).

With multiple transmission bands (M > 1), the matrix P̃ = PA of Section 5.5 leads to a P̃ ∗P̃ that
is block diagonal. Each block along the diagonal is Toeplitz in this matrix. Thus, the remarks in
this section apply individually to each of these blocks, and of course cannot apply to the entire
matrix, which is not Toeplitz in the multiband case.

5.6.2 Canonical Factorization for finite- and infinite-length stationary se-
quences

While Cholesky factorization of a matrix and canonical factorization of an autocorrelation function (or
in both cases those that satisfy the Paley Wiener criterion) are clearly related, this chapter now attempts
to formalize this relation. This formalization can occur through investigation of linear prediction. From
Section 5.1, Figure 5.1 for sequences with stationary autocorrelation Rxx(D) that thus satisfy the PW
criterion,

x(D) = Gx(D) · v(D) (5.330)

where
Rxx(D) = Gx(D) · Sx ·G∗

x(D−∗) (5.331)

and Sx = E|vk|2 is the MMSE associated with linear prediction of xk from its past xk−1, ..., x−∞.
Gx(D) is causal, monic, and minimum-phase. The linear prediction filter is 1/Gx(D), and is also
minimum phase, causal, monic, and realizable. The input vk carries the information of xk as a white
sequence. Canonical factorization for a vector x with Toeplitz autocorrelation matrix Rxx is

Rxx = GxRvvG∗
x , (5.332)

where Gx is upper triangular (causal), monic , and nonsingular (i.e., invertible to upper-triangular-causal
inverse).31

Cholesky factorization of a stationary sequence is also intimately related to linear prediction. In the
finite-length case, the sequence vk is the MMSE sequence corresponding to estimating xk from its past
samples xk−1 ,..., x0, which follows directly from forming the mth-order linear-prediction error

vk = xk − g1xk−1 − ...− gk−1x0 , (5.333)

and from noting via the orthogonality criterion

E
[
vkx∗

k−i

]
= 0 ∀ i = 1, ..., k− 1 , (5.334)

when the gi’s are the entries from the corresponding row of Cholesky factorization with subscript indices
that are changed to make the appearance more like a stationary convolutional filter.32 Clearly then
through the linear-prediction problem

lim
N→∞

row(Gx)→ Gx(D) . (5.335)

29The product of Hermetian cyclic Toeplitz matrices can be shown to be Hermetian cylic Toeplitz - hint, think circular
convolution.

30In fact, any noise whitening by cyclic R
−1/2
nn that is done for equivalent channels needs then also for Rnn and R

−1/2
nn

to be cyclic – cyclic Rnn occurs naturally in the white-noise case, but rarely otherwise. However, nearly all noise is close
to cyclic when N → ∞, and because the noise is much smaller than signal in cases where equalization of any type is of
interest, the approximation to a cyclic Rnn is usually very good. In fact, in DMT systems, noise-whitening is ignored and
the SNRs measured directly with whatever noise at each frequency, tacitly assuming the cyclic nature of Rnn.

31The entries in the rows of Gx need not be minimum phase, but will tend to such as N → infty.
32The statisfaction of (5.334) follows directly from Rvv being diagonal and thus vk−1 ... v0 or vk−1 are all uncorrelated

with vk and thus so must also be xk−1 ... x0 or xk−1 since xk−1 = Gx(k − 1)vk−1 from Cholesky factorization of one
order lower. Note the non-singularity of Rxx ensures Cholesky factorization of all orders.
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since the MMSE solution is unique when the inputs are stationary or equivalently all Rxx(N) as N →∞
are nonsingular.

The diagonal matrix Rvv must also become constant as N →∞ because the diagonal values represent
the single constant MMSE value

lim
N→∞

Rvv(i) = E|vk|2 = Sx ∀ i ≥ 0 .33 (5.336)

This result does not hold for a singular process – that means input singularity must be eliminated, or
equivalently the PW must be satisfied. When a water-filling or any other circulant Rxx has sets of
nonzero DFT values that are separated by zeroed values, the consequent singularity must be eliminated
as in Section 5.5.

Then a separate Cholesky filter, each acting on the independent inputs of each band, corresponds
to and ultimately converges to each linear prediction filter for each independent nonsingular band.
Canonical factorization across the whole band does not work for finite length nor for infinite-length
when water-filling produces unused bands. In this case, there must be multiple bands.

5.6.3 Convergence of the Canonical Channel Models and the PDFE

The CDFE must be separated into the M distinct bands of the block triangular Gx, creating
a set of Rf(m) for m = 1, ..., M in this section when M > 1. The following results will not
hold otherwise. The matrix Rf of each band of the CDFE is Toeplitz when Rnn is Toeplitz, and P
and Rxx are circulant as would occur in most higher-performance designs. If Rnn is circulant, then
so is Rf . Then R−1

b = Rf + R−1
vv will approach a Circulant matrix as N → ∞. R−1

b ’s only deviation
from circulant structure is the non-constant diagonal of Rvv that becomes constant as N is large. In
fact for most water-filling designs, the diagonal entries of Rvv are quite close to constant for relatively
small N , because water-filling is often close to spreading equal energy across all the dimensions that are
worthwhile using, at least within each band.

The Cholesky factorization of
R−1

b = G∗S0G (5.337)

corresponds to a inverse-order prediction problem (sometimes called reverse or “backward” linear pre-
diction), or equivalently

Rb = G−1S−1
0 G−∗ (5.338)

corresponds to a normal “forward” linear-prediction problem with G−1 itself viewed as the upper-
triangular causal matrix that relates computation of sequence values to their components on past in-
novations input samples. In either case, the rows of G and therefore G−1 (or vice versa) converge to
constant settings. This means the CDFE (or any GDFE that has asymptotically Toeplitz Rb) must
then converge to a system with a constant feedback section (including DMT and VC, which have that
constant equal to zero at all lengths). This filter is known to be the unique G(D) of the corresponding
band of the MMSE-DFE, so then

lim
N→∞

any row of G = G(D) . (5.339)

The MMSE for this factorization must also then converge to a constant so that

lim
N→∞

S0(i) = s0 ∀ i . (5.340)

The diagonal entries of the matrix S−1
0 also represent the MMSE associated with the GDFE for each

time instant, and thus because S0 tends to a constant-diagonal matrix, there is then a constant MMSE
for the GDFE as N →∞, which is known from Chapter 3 as

s−1
0 =

N0

2

γ0 · ‖p‖2
(5.341)

33The limit here is taken in the two-sided sense of time going forward and backward to infinity so that is then true for
all i.
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or

s0 =
γ0 · ‖p‖2

N0

2

. (5.342)

The feedforward matrix S−1
0 G−∗ will be thus be anticausal (lower triangular) as N → ∞. The

matched filter P ∗ can be mixed phase, and already has circulant structure directly so is effectively a
fixed filter for all N . Both the matched filter and the feedforward matrix need realization in practice
with delay (which is at most N + ν with GDFE’s).

The SNR for the CDFE then converges in each band to

lim
N→∞

SNRcdfe = lim
N→∞

[|Rvv| · |S0|]N+ν
(5.343)

=
Sx

s0
(5.344)

=
Ēx · γ0 · ‖p‖2

N0

2

(5.345)

= γ0 · SNRmfb (5.346)

= 22Ī(X(D);Y (D) (5.347)

The unbiased SNR is as always SNRcdfe,u → SNRmmse-dfe,u = SNRmmse-dfe−1. An overall SNR can

be defined based on fraction of bandwidth use of each of the DFEs as in Section 5.2.
Some final comments are in order:

1. All asymptotic results hold ν as a constant (correctly as it is a constant). The corresponding
“wasted samples” and any energy “wasted” in the cyclic prefix clearly then go to zero as block
length N increases.

2. Error propagation is limited to within each block in all GDFE’s, including the CDFE. Shorter
block’s can thus limit error bursts, while the MMSE-DFE has a potential for infinite catastrophic
bursts.

3. A designer could pick N too large, much larger than is necessary to obtain infinite-length results,
thus resulting in a huge unnecessary complexity for no performance gain. Complexity comparisons
where DMT (VC) perform at lower complexity than CDFE (GDFE, respectively) are made in this
same good-design context. Obviously, a the channel P (D) = 1 works equally well with all methods
with N = 1 and ν = 0. As ISI increases, there is a judicious choice of N that allows infinite-
length performance without infinite-complexity in either DMT or CDFE. At this choice, DMT
complexity is log2(N) per sample while CDFE (or MMSE-DFE) complexity is upper bounded
by N and typically between log2(N) and N , typically about 3 log2(N) ignoring modulation or
interpolation complexity unique to CDFE, and about 5 log2(N) if those are included.

4. Any gap greater than 0 dB will lead to the CDFE having a lower SNR than DMT because the
CDFE is designed and optimized for 0 dB gap, while the DMT (because the feedback section is 0)
simultaneously minimizes MSE as well as maximizing product SNR at all gaps. Beware of certain
statements that state the opposite as an “SNR averaging” property of the DFE – correct use of
codes and gaps reverses and such argument (and it is errors in the use of the codes and gaps that
leads to the misinformed making such high-level arguments.

5. DMT is a maximum likelihood detector and thus canonical and optimal. The CDFE is only
canonical and does not have ML performance of the detector, and as well may have then error
propagation problems.

6. If modulation and interpolation is carefully implemented (not shown in these notes), it may be
possible to reduce the delay from input to output in a CDFE design with respect to DMT.
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7. OFDM does not achieve the performance levels of DMT nor CDFE. However, it has been observed
that will a very-well-designed “robust” code, it is possible for an OFDM system to obtain the
SNR of 22Ī − 1 with gap 0 dB for the one special case of flat transmission energy. This result has
significance in time-varying channels (i.e., some wireless applications) where it is not possible to
convey to the transmitter the best transmit spectrum to use either because the channel is broadcast
only (unidirectional, possibly through many simulataneous different channels to different users) or
because the channel changes so fast that the input dynamic spectra could not follow the channel.
Thus, a fixed flat spectrum has a certain Ī that corresponds a certain performance level (in the
absence of channel singularity) of both OFDM and MMSE-DFE systems if gap=0 dB codes are
used in both cases. The code for OFDM may be different than the code for the MMSE-DFE.
Thus, in time-varying channels, there can be no difference between a flat-input-coded OFDM
system and a flat-input-QAM-MMSE-DFE system, other than possibly the receiver’s ability to
track channel changes (which is likely going to favor the multicarrier system for which each band
is separately equalized by a single coefficient, rather than a complicated matrix system with many
more coefficients (N2 versus N). Time variation is still an area of open research.

8. DMT systems do not require an optimum transmit filter matrix, and use the IFFT – a known
and fixed transmit partitioning system that can be designed once. CDFE systems alone use an
optimum transmission filter (as well as Rxx that is common to DMT and CDFE) that is a function
of the channel and thus must be implemented adaptively.

9. CDFE systems exhibit the same “Gaussian” like high peak-to-average ratio of DMT systems (con-
trary to misinformed popular belief), this is particularly true as ISI becomes severe, or equivalently
large N is required. Simply put, this is a function of the “central limit theorem” and the transmit
signal being simply a sum of many contributions of independent random variables, and thus ap-
proaches Gaussian. PAR-reduction methods, such as those of Section 4.10 for DMT and OFDM,
have not been studied for CDFE or MMSE-DFE (which shares the high PAR problem). Such
studies should investigate at least 4x the sampling rate of the transmission system to be of prac-
tical significance (often academic researchers forget that it is the analog PAR that is important,
not the sample-time-only PAR).

10. Adaptive training of DMT and CDFE systems requires some kind of “loading” algorithm to deter-
mine good use of transmit spectra. While this training is well studied for DMT, it is an open area
for CDFE presently unless one has a DMT system behind it that simply supplies the information
for training the CDFE to the procedures given in this chapter. “Blind” training (i.e., with no
feedback from receiver to transmitter loses performance in the case where the initially presumed
spectrum is not correct. Beware of statements that DFE systems can be trained blindly from
the misinformed who do not understand the effect and need for transmit optimization for best
performance.

11. The matched-notching ability of the MS-WMF of the MMSE-DFE that occurs when the noise-
equivalent ISI channel has notches is absolutely NOT equivalent to the use of multiple bands. This
statement is found throughout the literature on MMSE-DFEs and is simply incorrect every single
time it has been said, even if that is often and by many. A single MMSE-DFE will perform worse
than multiple MMSE-DFEs on each side of all the notches - no exceptions.

Ideal MMSE-DFE is lower bound for MLSD Performance

The ideal MMSE-DFE (or ideal MMSE-GDFE) upper bounds the performance of a maximum likelihood
detector in that the probability of a sequence error is always lower for MLSD. Before accepting this result
trivially, one needs to recall that the ideal MMSE-DFE assumes that all previous decisions are correct.
Such correct previous decision making may not be the case in practice, so at least there is a chance this
ideal GDFE system could outperform the optimum detector because of the potentially false presumption
of no decision errors.

However, the bound does hold: The probability of sequence error for the ideal DFE case is actually
one because the probability of a symbol error is finite non-zero (in other words, the gap is non zero),
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so that there is a certainty of at least one error made in an infinite sequence of such symbol-by-symbol
decisions. By contrast, the probability of sequence error for MLSD can be made arbitarily small and
nonzero if the code is well chosen at rates less than capacity. Even with poor codes, the MLSD probability
of error cannot exceed one. Thus, MLSD has a lower probability of sequence error than an ideal DFE
whenever the probability of symbol error in the ideal DFE is non-zero. A limiting argument would find
that the ideal DFE probability of error is lower bounded by MLSD as the probability of symbol error
of the ideal DFE is lowered gradually to zero because if there are no errors in reality, then it is still a
suboptimum structure relative to MLSD.

This result is somewhat profound also, albeit it again trivial. The result implies that a receiver design
that follows the MS-WMF(matrix) of a MMSE-GDFE with a sequence detector for the consequent
equivalent channel output will can perform at least as well as an ideal MMSE-GDFE. Thus, any loss
caused by error propagation can be ignored for capacity purposes in that the GDFE feedback section
can be replaced by infinite complexity receiver that will at least attain the canonical ideal MMSE-GDFE
performance level, albeit with infinite decoding delay. This section essentially establishes that in the
limit, there is no loss from capacity by using the feedforward part of a GDFE, a good code, and maximum
likelihood detector for the channel shaped by the GDFE feedforward matrix/filter.

In short, Claude Shannon had it right as with so many other of his basic simple and information-age-
envisioning results – a multicarrier system is optimum for handling ISI. And, as we see in the last two
chapters, quite practical and efficient as well with modern digital signal processing. Wide-band QAM
or PAM can be saved to a canonical level, but this is unnecessarily complex – these systems exist as a
legacy of analog processing methods of decades past where high precision digital signal processing was
not available to efficiently implement what Shannon originally conceived as best. In time, as this legacy
dwindles, the need for the wide-band system theories and designs will diminish also as more educated
engineers proceed to good designs initially when faced with bandlimited channels.
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5.7 Block infinite channels and results

The channel matrix P has been arbitrary in this chapter, but much of the theory for the equivalence
conditions for CDFE and DMT have focused on the situation in which P models the time-domain
convolution of the input samples xk with a finite-length channel pulse response pk. However, at times P
has represented a multiple-input-multiple-output transmission system (wired or wireless) for which the
matrix P is more arbitrary and has in general no “sample-stationary” nor even convolutional stucture.
However, all GDFE theory has assumed independent packet transmissions through the channel P – that
is no intersymbol interference between “packets” (in the GDFE theory, the packets are symbols).

This section generalizes the case to possible block-channel memory in forming a block-stationary
matrix channel pulse response with D-transform:

P (D) = P0 + P1 ·D + P2 ·D2 + ... + Pν̃ ·Dν̃ + ... , (5.348)

where ν̃ is now used in a block or symbol sense, but is analogous to the ν parameter used to represent
the channel length of the time-domain pulse response on single-input-single-output channel. However,
P (D) can be infinite in length also if necessary and none of the following theory in this Section changes.
Fundamentally, ν̃ represents a response length in symbol periods. This type of model, for instance, can
allow the omission of guard-bands between blocks and the associated excess-dimensionality loss. In most
transmission systems without a guard band and some pulse response wiht N = ν + 1 and ñu = 1,

P (D) = P0 + P1 ·D (5.349)

where

P0 =








p0 p1 ... pν

0 p0 ... pν

...
. . .

. . .
...

0 ... 0 p0








(5.350)

and

P1 =








0 ... 0 0
pν 0 ... 0
...

...
. . .

. . .
...

...
p1 ... pν








. (5.351)

Other block lengths, ν ’s , and structure can be imposed on Pi, depending on the particulars of the
application. For wireless MIMO, the P (D) structure allows memory within the channel or intersymbol
interference to be modelled along with crosstalk. For a cable of wires, it can represent the matrix
channel’s memory and the memory of the crosstalk between the lines. Vector D transforms can be
associated with the channel input, channel noise, and channel output to produce

y(D) = P (D) · x(D) + n(D) . (5.352)

Conceptually, all the concepts previously introduced generalize so that in particular

• singularity elimination (channel and input) A→ A(D).

• equivalent nonsingular channel P̃ → P̃ (D) = R
−1/2
nn (D) · P (D) · A(D).

• forward canonical channel matrix Rf → Rf(D) = P̃ ∗(D−∗)P̃ (D).

• white input Rvv → Rvv (no D)

• backward canonical channel matrix R−1
b → R−1

b (D) = Rf(D) + R−1
vv

Singularity elimination requires that P̃ (D) be N ×N∗ where N∗ ≤ Ñ ≤ N defines the number of
non-zero energy input dimensions that pass to the channel output. Equivalently Rf(D) is invertible at all
frequencies D = e−ωT except possible a set of measure zero (i.e., notches are allowed, but no dead-bands
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Figure 5.35: GDFE for channel P (D).

in frequency or dead-spatial zones). Mutual information is maintained Ī(x(D); y(D)) = Ī(u(D); z(D))
and performance is canonical for any derived GDFE’s, which are now a function of D,

G → G(D) (5.353)

S0 → S0 (5.354)

W → W (D) = S−1
0 G−∗(D−∗) (5.355)

The GDFE then generalizes to the structure of Figure 5.35. However, Cholesky factorization, and also
any singular-value or eigenvector decompositions, need re-interpretation.

Definition 5.7.1 (Smith-Canonical Form) The generalization of Cholesky factorization
of any positive definite symmetric (R(D) = R∗(D−∗)) is known in the mathematical and
control literature as Smith Canonical Factorization, a special form of which is guaranteed
to exist and provide

R(D) = G(D) · S ·G∗(D−∗) (5.356)

where G(D) = G0 + G1 · D + ... + Gν̃Dν + ... is monic volume preserving(G0 has ones on
diagonal and |G(D)| = 1), block causal, and minimum phase (all roots of |G(D)| = 0 are
outside or on unit circle, and G0 is triangular (upper or lower as appropriate). S is positive-
definite diagonal matrix with constant entries (no D). For the factorization to exist, the PW
criterion generalizes to

∫ π

−π

| lnR(e−ωT )|dω <∞ . (5.357)

and must be satisfied, wher |•| denotes determinant and ln(matrix) is defined in the polynomial
Taylor series sense.

The smith-canonical (Cholesky Factorization) form has known algorithms that produce it (see Chapter
10 appendices) symbolically for polynomial R(D). Conceptually, Cholesky factorization is used for the
transmitted input in two cases:

1. input triangular factorization Ruu = Gu(D)RvvGu(D−∗ where Gu,0 is monic upper triangular

2. and for the feedback section of the GDFE R−1
b (D) = G∗(D−∗) ·S0 ·G(D) where G0 is monic upper

triangular.

Eigenvector and/or singular-value decompositions follow directly the case in which P (D) = P0 but
must be executed (conceptually) for each and every value of D at least on the unit circle. As far as
this author has been able to determine, there is no body of mathematics ever devoted to the concept
of such matrix-polynomial eigen-vector or singular-value factorization. Even for any fixed value of D,
such factorizations require iterative approximate algorithms for computation, so there is certainly no
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closed form means for executing the generalized forms as a function of D. A means for approximating
such factorizations is to execute them for equally spaced values (say 100 or so) around the unit circle
D = e−·(i/100)·π for i = −100, ..., 0, ..., 100. When the resulting 201 matrix factorizations are stored,
one can then take the IFFT of each entry of such matrices to get the time-domain equivalent response
at the packet-sampling interval and construct the various GDFE matrices. A lot of design work for the
designer, but a means for approximating matrix polynomial series.

5.7.1 The Finite Block-Length Stationary MMSE-DFE for packets

The above involved polynomial factorizations can be simplified considerably and the GDFE well ap-
proximated by in some sense returning to Chapter 3’s MMSE-DFE, but this time for packets. Such a
structure presumes a block-stationary nature of the channel so that Pi are all constant matrices, and
also a nonsingular input with no energy in the null space of the channel. In the matrix channel case,
these may be difficult assumptions to postulate in practice.

The vector of inputs at packet time k to the feedforward matrix filter is Y k, now a vector of N -
dimensional packet symbols, thus Nf ·N in length. and the corresponding vector of filter coeficients is
W , so the feedforward filter output is Zk = W ∗Y k, which attempts to assist a block feedback section
in estimating the packet symbol Xk−∆. The DFE error signal is then described by

Ek = BXk(∆) −WY k , (5.358)

B is monic and volume preserving. A GDFE for the monic triangular feedback section of B0 is inde-
pendently still executed to obtain each packet decision.

B
∆
= [B0 B1 B2 ... BNb ] , (5.359)

where B0 is triangular (and monic). The mean-square (trace) of the Error-autocorrelation matrix
trace(REE) is to be minimized over B and W . Signals will again be presumed to be complex, but
all developments here simplify to the one-dimensional real case directly, although it is important to
remember to divide any complex signal’s variance by 2 to get the energy per real dimension. The SNR
equals Ēx/N0

2 = Ex/N0 in either case.

Optimizing the feedforward and feedback filters For any fixed B in (5.358), the cross-correlation
between the error and the vector of channel outputs Y k should be zero to minimize MSE,

E [EkY ∗
k] = 0 . (5.360)

So,
W ∗R̄Y Y = B∗R̄XY (∆) , (5.361)

and

R̄XY (∆) = E
{

Xk(∆)
[

x∗
k x∗

k−1 ...x∗
k−Nf−ν+1

]

P ∗
}

(5.362)

= RvvJ∗
∆P ∗ , (5.363)

where J∗
∆ is a matrix with an N ×N Identity in the ∆th position and zeros elsewhere. The MSE for

this fixed value of B then becomes

REE = B∗
(

ĒxI − R̄XY (∆)R̄−1

Y Y
R̄Y X (∆)

)

B (5.364)

= B
∗R̄⊥

X/Y (∆)B (5.365)

= Rvv ·B∗
{

INb·N − J∗
∆P ∗

(

PP ∗ +
l

SNR
· R̄NN

)−1

PJ∆

)

B (5.366)

= l · N0

2

{

B∗J∗
∆

(

P ∗P +
l

SNR
· R̄NN

)−1

J∆B

}

, (5.367)
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and R̄⊥
X/Y

(∆)
∆
= ĒxI − R̄XY (∆)R̄−1

Y Y
R̄Y X(∆), the autocorrelation matrix corresponding to the

MMSE vector in estimating X(∆) from Y k. That is, R̄⊥
X/Y

is the autocorrelation matrix for the

error sequence of length Nb that is associated with a “matrix” MMSE-LE. The solution then requires
factorization of the inner matrix in to canonical factors, which is executed with Choleksy factorization.

By defining

Q̃(∆) =

{

J∗
∆

(

P ∗P +
l

SNR
I

)−1

J∆

}−1

. (5.368)

Cholesky factorization of Q̃ proceeds according to

ĒxQ̃ = G∗
∆S−1

∆ G∆ , (5.369)

where G∆ is an upper triangular (causal) and monic (ones down the diagonal) matrix and S∆ =
diag{S0(∆) S1(∆) ... SNb (∆)} is a diagonal matrix with smallest element in the upper left corner
and positive, real, non-decreasing values down the diagonal. The MSE then is

REE = BG−1
∆ S∆G−∗

∆ B∗ , (5.370)

which is minimized when
B = G(∆) , (5.371)

the top row of the upper-triangular matrix G∆. The MMSE is thus obtained by computing Cholesky
factorizations of Q̃ for all reasonable values of ∆ and then setting B = G(∆). Then

Rvv = S0(∆) . (5.372)

The packet decision device becomes a within-packet feedback section determined by Gvec0(∆) = B0

(the term with the monic diagonal).
The feedforward filter then becomes

W = bR̄XY (∆)R̄−1

Y Y
(5.373)

= G(∆)J∗
∆P ∗

(

PP ∗ +
l

SNR
I

)−1

(5.374)

= gJ∗
∆

(

P ∗P +
l

SNRmfb
I

)−1

︸ ︷︷ ︸

feedforward filter

P ∗
︸︷︷︸

matched filter

. (5.375)

The SNR is
SNRmmse-dfe,u = |RvvS−1

0 (∆)|1/N − 1 . (5.376)

Bias can be removed in the usual manner.
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Figure 5.36: Multiband transmission for Problem 5.3

Exercises - Chapter 5

5.1 Mutual Information and Parallel Independent AWGN Channels
Consider a set of parallel independent one-dimensional AWGN channels:

a. (2pts) Show that the mutual information for the set of channels is the sum of the mutual information
quantities for the set.

b. (3 pts) If the set of parallel channels has a total energy constraint that is equal to the sum of the
energy constraints, what energy En, n = 1, ..., N should be allocated to each of the channels to
maximize the mutual information. You may presume the subchannel gains are given as gn (so that
the individual SNRs would then be En · gn).

c. ( 2 pts) Find the overall SNR for a single AWGN that is equivalent to the set of channels in terms
of mutual information.

5.2 Innovations
Find the innovations variance per dimension, entropy and linear prediction filter for the following

Gaussian processes (let T = 1):

a. (2 pts) A real process with autocorrelation Rxx(D) = .0619 ·D−2 + .4691 ·D−1 + 1 + .4691 ·D +
.0619 ·D2.

b. (2 pts) A complex discrete-time process with power spectral density 10 (1.65 + 1.6 · cos(ω)).

c. ( 2 pts) A complex process that has a maximum of only 3 nonzero terms in its autocorrelation
function, a notch exactly in the middle of the band (i.e., at normalized frequency 1/4) and total
power 2.

5.3 Multibands
Three bands of transmission result from infinite-length water-filling as shown below with a gap of

5.8 dB at Pe = 10−6. The lowest band uses baseband PAM transmission, and the other two bands use
QAM transmission. Each band has an MMSE-DFE receiver with the SNR shown in Figure 5.36.

a. (1 pt) Find the optimum symbol rates 1/T ∗
i and carrier frequencies f∗

c,i for each of the 3 bands.

b. (2 pts) Find b1, b2, and b3 for these 3 bands and the data rate R.

c. (1 pt) Find the overall best SNR and b̄ for a single AWGN that is equivalent to the set of channels
in terms of mutual information.

d. (1 pt) The noise is such that Ēx = −70 dBm/Hz in all bands. What is the total energy used Ex =?

Suppose baseband PAM with a symbol rate of 1/T =200 MHz is used instead with total en-
ergy/power equally divided on all dimensions (i.e., successive PAM symbols are independent).
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e. (.5 pt) What is Ēx,PAM =?

f. (1.5 pts) Find approximate SNRmmse−dfe,PAM,u and new data rate for this alternative single-band
PAM design.

5.4 CDEF
An AWGN with intersymbol interference sustains successful transmission using a MMSE-DFE re-

ceiver with 256 QAM with Gap of Γ = 8.8 dB with a margin of 1.2 dB at P̄e = 10−6.

a. (2 pts) What is the mutual information in bits per symbol for this channel? In bits per dimension?

b. (2 pts) Suppose optimization of the transmit filter increased the margin to 2.5 dB. What is the
capacity of the channel at this symbol rate?

Suppose we return to the 1 + .9D−1 channel with SNRmfb = 10 dB when T = 1 with PAM
transmission.

c. (3 pts) At what new increased symbol energy per dimension would this channel have T ∗ = 1?

d. (2 pts) What is the capacity of this system in bits per symbol at symbol rate in part c with this
new energy level?

e. (1 pt) Suppose this optimized system transmits with code with gap of 6 dB for probability of error
10−6 at b̄ = 1. What is margin at this data rate? (fractional bits per symbol are ok for inclusion
in results and use of all formulas.)

5.5 channel singularity elimination
Given a binary antipodal white input with Ēx = 1 and the channel matrix

P =





.9 1 0 0
0 .9 1 0
0 0 .9 1



 , (5.377)

and with the choice of C = I,

a. (2 pts) Find the projection matrix PM̃ .

b. (2 pts) Determine the 4× 3 matrix C̃ and the input ũ that characterize the pass-space description
of this channel.

c. (2 pts) Determine the autocorrelation matrix Rx̃x̃.

d. ( 2 pts) How much energy is lost into the null space of this channel?

5.6 Singularity Elimination short problems.
For each of the following channels and inputs, determine N , Ñ , N∗, and ν .

a. (1 pt) P =





1 1 0 0
0 1 1 0
0 0 1 1



 and Rxx = I .

b. (1 pt) P =





1 1 0
0 1 1
1 0 1



 and Rxx = I .
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c. (1 pt) P =





5 6 7 8
1 3 2 4
4 3 5 4



 and Rxx = I .

d. (1 pt) P =





1 1 0 0
0 1 1 0
0 0 1 1



 and Rxx =







1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1







.

e. (1 pt) P =





1 1 0
0 1 1
1 0 1



 and Rxx =





1 0 0
0 0 0
0 0 1



 .

f. (1 pt) P =





5 6 7 8
1 3 2 4
4 3 5 4



 and Rxx =







1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1







.

5.7 MMSE Estimation
Two zero-mean Gaussian random variables have probability distributions px and py with joint prob-

ability distribution px,y and nonsingular autocorrelation matrix

Rx,y =

[
Ex rxy

r∗xy Ey

]

(5.378)

The minimum mean-square estimate of x given y has variance σ2
x/y

a. (1 pt)

Find σ2
x/y in terms of Ex, rxy and Ey.

b. (2 pts)

Find px/y and show that it is also Gaussian with mean [rxy/(Ey] · y and variance σ2
x/y.

c. (2 pts)

Relate the conditional entropy Hx/y to σ2
x/y and therefore to the MMSE estimate.

d. (1 pt)

Show the results in parts a,b, and c are symmetric in x and y in that the two random variables
can be interchanged.

e. (1 pt)

Now let y = x+n where n is zero-mean complex Gaussian and independent of x with variance σ2.
Determine Hy/x.

f. (3 pts)

Show that SNRx = Ex

σ2

x/y

= SNRy =
Ey

σ2

y/x

. Relate these two identical SNRs to the SNR = Ex

σ2 .

g. (1 pt)

Relate the mutual information to SNRx and to SNR.

h. (2 pts)

Suppose y becomes a complex vector y but x remains a scalar with y =

[
1
1

]

x + n where n has

independent zero-mean Gaussian components all with variance σ2. Does your answer to part g
change? How might you interpret SNRx in this case in terms of equalizers you know from Chapter
3?
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5.8 DFE - MT connection.
This problem explores the connection between DFE and multi-tone-like concepts for transmitter

optimization.

a. (4 pts) Show that the following are all equivalent expressions for I. (QAM is assumed)

I =
T

2π

π
T∫

− π
T

log2(1 + SNR(w))dw =
T

2π

π
T∫

− π
T

log2(1 + SNRMFB

∣
∣Q(ejwT )

∣
∣)dw

=
T

2π

π
T∫

− π
T

log2(1 + SNR
∣
∣H(ejwT )

∣
∣
2 ∣
∣Φ(ejwT )

∣
∣
2
)dw

where H is the transform of the sampled channel. Assume that the sampling rate is high enough
so that there is no aliasing.

b. (4 pts) One can approximate the integral in part (a) by the following sum

Ī =
1

2NT
× T

N∑

−N+1

1

2
log2(1 + SNR

∣
∣
∣H(ej2πn/2NT )

∣
∣
∣

2 ∣
∣
∣Φ(ej2πn/2NT )

∣
∣
∣

2

)

Do you see a transmitter optimization problem here? Show that the water-fill equations for this
problem are :

1

SNR
∣
∣H(ej2πn/2NT )

∣
∣
2

+
∣
∣
∣Φ(ej2πn/2NT )

∣
∣
∣

2

= Constant

5.9 Input Singularity Elimination.
The channel input autocorrelation after elimination of components on the channel singularities is

Rx̃x̃ =





1 .5 1
.5 1 .5
1 .5 1



 . (5.379)

a. (1 pts) What is N∗ for this channel input?

b. (2 pts) Find Q̃ and PQ̃.

c. (4 pts) Find A and N∗-dimensional u such that Rx̃x̃ = ARuuA∗, and relate the components of
u to those of x̃.

5.10 Canonical Triangles
This problem illustrates easy derivation of a number of important mathematical relationships in the

GDFE through the canonical triangles associated with the canonical forward and backward channel
models, which are found in Figure 5.23.

a. (2 pts) The forward channel in Figure 5.23 has two right subtriangles embedded within it. From the
one describing a decomposition of the noise vector n′, one notes that the MMSE estimation filter
for n′ given z is Rn′zR−1

zz = (I − RfRb). Use this relation, and note that Rn′z = Rn′n′ = Rf ,
to prove that R−1

f = Rb + R−1
zz .
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b. (2 pts) Use the triangle for decomposition of the error vector in the backward triangle to note that
Rb = −Ren′R−1

n′n′ to prove easily that Ree = Rb.

c. (2 pts) Follow parts a and b to prove that R−1
b = Rf + R−1

uu.

d. (2 pts) Use a convenient triangle to show that Ren′
∗ = −RfRb and thus that RfRb = (I−RfR−1

zz).

e. (2 pts) Prove that RbRf = (I −RbR
−1
uu).

f. (3 pts) The matrix SNR for a matrix MMSE-LE is SNR = RuuR−1
ee. Use the Pythagorean

relationship Ruu = RbRzzRb + Ree to prove the “similar” triangles relationship SNR is also
equal to R−1

n′n′Rzz. Why is I(x; y) = I(u; z) = log2 |SNR|?

5.11 Matrix Bias.
The relationships for bias in the matrix MMSE-LE and the GDFE generalize easily from their scalar

counterparts. Let û = Rbz and SNR = RuuR−1
ee.

a. (1 pt) Show that E [û/u] = RbRfu 6= u unless u = 0.

b. (1 pt) Show that E [e/u] = (I − RbRf)u.

c. (2 pts) Show that SNRu
∆
= RûûR−1

ee is equal to SNR − I.

d. (2 pts) Show that another expression for the unbiased matrix SNR is R−1
n′n′Rẑẑ where ẑ = Rfu.

e. (2 pts) Show that I(u; z) = log2 |SNR| for complex signals and I(u; z) = 1
2 log2 |SNR| for real

signals. Explain the difference in formulae for real and complex channels.

5.12 Non-white inputs to GDFE.
In Example 5.3.3, assume that the binary PAM input on the N + ν = 3 input dimensions is inde-

pendent and one of the eight possible 3-dimensional vectors x = [±1, ±1, ±1].

a. (4 pts) What are the eight corresponding u?

b. (2 pts) Find Ruu.

c. (1 pt) What kind of detector would do best for the backward canonical channel created in terms
of probability of error?

d. (2 pts) Compare 22Ī(x;y) to SNRGDFE for this u. What can you say about probability of error if
the original 2PAM x is used in this GDFE?

5.13 GDFE’s and White Inputs.
A real linear-ISI channel with discrete-time response 1+D and AWGN N0

2 = .001 has initially 8PAM
inputs that are independent. Ēx = 1.

a. (4 pts) For N = 3 and ν = 1, find the CDFE on this channel, including G, feedforward filter
matrix , SNRcdfe,u and P̄e with equal-energy 16 PAM on each of the 3 used subchannels.

b. (2 pts) Compare the probability of error in part a with the asymptotic probability of error of an 8
PAM MMSE-DFE with Nf = 3 and Nb = 1 on this channel. Comment on why the latter appears
better.

c. (4 pts) Now rework part a for a GDFE (with no cyclic prefix) that instead places 4/3 units of
energy on each of the 3 useful dimensions of the input. Why does this work better than part a?
Compare with part b and comment as to which system is actually better.
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d. (5 pts) Repeat part c for N increasing to 10, 20, 100, 200 except only compute the unbiased SNR
(and not all the matrices). Estimate to which value this SNR converges as N becomes infinite.
What is the number of levels of PAM that would be used as N increases at P̄e = 10−6. Which
system in this problem is best and why?

5.14 Comparing the GDFE and the MMSE-DFE.
For the 1 + .9D−1 with SNRmfb = 10 dB, the GDFE performs worse than the MMSE-DFE for

N = 2 and ν = 1. One might conjecture that this is caused by a large (ν/(N + ν) = 1/3) bandwidth
loss due to too small N . This problem investigates increasing N and assumes the student has access to
their old EE379A MMSE-DFE Matlab program (dfecolor3.m will be provided on the web).

Initially let Rxx = I and let N increase.

a. (5 pts) Write a matlab program to compute the GDFE performance for variable N and ν = 1.
Plot SNRgdfe,u versus N for N = 2, ..., 40. (Recall SNRgdfe = 22∗Ī(X,Y ). Is there an easy way to
compute Ī(X, Y )??, THINK vector coding)

b. (2 pts) Repeat part a for the MMSE-DFE of Chapter 3 and plot SNRmmsedfe,u versus N with
the number of feedback taps fixed at ν = 1. Compare with part a results by plotting on the same
graph.

c. (2 pts) Plot the performance of Vector Coding with waterfilling, which equals the performance of
the GDFE with optimized input, for N = 2, ..., 40 with ν = 1 and compare to parts (a) and (b).

d. (5 pts) Draw conclusions from your plots in parts (a), (b), (c).

5.15 MIMO Antenna

For the 6-real-dimensional cyclic channel visited in Chapter 4 with P =





1 .5 .5
.5 1 .5
.5 .5 1



 and shown

in Figure 5.37 with noise variance (2-side PSD) .01 and a gap of 0 dB, the energy per real dimension
is 1. It may help to note that the Cholesky factorization of a matrix that is nearly white is trivial and
generally for a 3× 3 matrix, trivial linear prediction and the determinant of the matrix can be used to
compute Cholesky factorization rapidly if if the matrix is not close to diagonal or matlab is not available.

a. (2 pts) Find a water-filling input covariance matrix Rxx =? and corresponding Cholesky factor-
ization Rxx = GxRvvG∗

x.

b. (2 pts) Find the forward and backward canonical-channel-characterizing matrices Rf and R−1
b .

c. (2 pts) Find the feedback matrix G and the combined matched-filter feedforward filter matrix.

d. (1 pt) What is the SNR of this CDFE-equalized channel and what is the corresponding largest
number of bits per dimension that can be transmitted at Pe = 10−6?

5.16 Bonded DMT
Two transmission lines share a common cable and are not shielded with respect to one another and

so thus experience crosstalk as well as ISI, as in Figure 5.38. The two transmitters are not co-located,
but each uses DMT with the same clocks and cyclic-prefix lengths - that is the symbols are aligned on
the two channels. The inputs to the transmit IFFT’s are X1,n and X2,n respectively, and each such
component is independent of all others (including all frequency indices on the other input). The input
energy per dimension for each tone of these two transmitters on each such input is denoted E1,n and
E2,n. The two outputs are received in the same box at the end of the cable, so that coordinated signal
processing/detection of the two input streams (as if they were one) is possible. The discrete-time matrix
impulse response of the channel is

hk =

[
h11,k h12,k

h21,k h22,k

]

(5.380)
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Figure 5.37: MIMO Antennae for Problem 5.15

Figure 5.38: Illustration of bonded DMT for Problem 5.16
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where each entry is an FIR channel and

hij,0 + hij,1 ·D + ... + hij,νij ·Dνij . (5.381)

The channel output is thus

y(D) =

[
y1(D)
y2(D)

]

= h(D)

[
x1(D)
x2(D)

]

+ n(D) , (5.382)

where Rnn(D) = σ2 · I.

a. (1 pt) What is the shortest-length cyclic prefix that can be used to ensure there is no intersymbol
interference on or between any of the discrete-time paths?

b. (2 pts) Write a relationship for each DMT-output (i.e. tone n for both of the outputs Y1,n and
Y2,n) of a receiver in terms of ALL the tone inputs to both channels. What is the dimension of
the channels created?

c. (4 pts) For the resultant channels in part b, determine GDFE settings in terms of the given
quantities above and Hn and/or its elements? What happens if any of the inputs have zero
energy on a given frequency? You should use the defined quantities r1,n = |H11,n|2 + |H21,n|2,
r2,n = |H22,n|2 + |H12,n|2, and r12,n = H∗

11,n ·H21,n + H∗
21,n ·H22,n to simplify derived expressions.

The total feedforward-filter/matched-filter may be expressed as a product of 3 matrices, and not
simplified further.

d. (2 pts) If the two inputs have mutual information Ī1(x1; y) and Ī2(x2; y), what is the overall SNR
of the DMT/GDFE (bonded DMT) system?

5.17 Generalized Cholesky.
Given the discrete-time channel P (D) = 1 + .8D with Ēx = 1 and N0

2 = .164 and a gap of 0 dB:

a. (4 pts) Find the best Rxx and corresponding SNRgdfe,u for N = 4 and ν = 1.

b. (5 pts) Compute all the matrices in the GDFE for your answer in part a if the designer is allowed
to construct a white input and wants a triangular or “causal” implementation. Provide a block
diagram of both transmitter and receiver.

c. (1 pt) Why can’t a CDFE or DMT obtain quite this same performance with N = 4 and ν = 1?

5.18 Some review questions.

a. (1 pt) For what types of Rxx can a CDFE be implemented? Equivalently, for what types of
channel matrices P ?

b. (1 pt) For what types of Rxx can a GDFE be implemented? Equivalently, what are the restrictions
on P ?

c. (1 pt) What is the characteristic that defines a “canonical channel”?

d. (1 pt) What is the difference between “canonical factorization” and a “canonical channel”?

e. (1 pt) Why does the appropriate use of the CDEF result allow suboptimum equalizers to play at
highest performance levels?

f. (1 pt) Generally on a channel with à prior unknown or severe intersymbol interference, if you had
the option to implement DMT or a CDFE/MMSE-DFE, what would you choose if complexity/cost
was your dominant concern? Why? (Give two reasons).

5.19 A multi-band design.
We are given the channel P (D) = 1−D3 with N0

2 = .01 and Ēx = 1.
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a. (5 pts) Suppose this channel were modelled as 3 independent 1−D channels in parallel. Find the
CDFE for N = 8 and ν = 1 and the best data rate with Γ = 3 dB.

b. (1 pt) Now instead model this channel directly with N = 24 and ν = 3. How may independent
CDFE bands are there, M =? .

c. (5 pts) Design the CDFE and compute its SNR for the overall design in part b. You need not pro-
vide the feedforward and feedback matrices, but do provide the set of SNR’s for all the subchannels
implemented. Use a water-filling rate-adaptive input design for the best covariance.

d. (2 pts) Can you guess an eventual setting for the CDFE’s feedforward and feedback sections from
part c. If so, provide it.

e. (1 pt) What is the SNR of a DMT with N = 24 and ν = 3?

f. (3 pts) Draw a block diagram of the DMT implementation and of the CDFE implementation and
compare (you can label boxes with letters and do not have to provide the settings for each and
every matrix entry).
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Appendix A

Information Measures

A concept generalizing the number of input bits to an encoder, b, is the entropy. Entropy (in this text)
is defined for a stationary distribution for x, px(i), that exists in N -dimensions.1

Definition A.0.2 (Entropy) The entropy for an N -dimensional sequential encoder with
probability distribution px(i) i = 0, ..., M − 1 is:

Hx
∆
= −

M−1∑

i=0

px(i) log2 [px(i)] bits/symbol (A.1)

= E {log2 [1/px]} , (A.2)

The entropy Hy of the channel output is also similarly defined for discrete channel-output distributions.
The entropy of a random variable can be interpreted as the “information content” of that random

variable, in a sense a measure of its “randomness” or “uncertainty.” It can be easily shown that a
discrete uniform distribution has the largest entropy, or information – or uncertainty over all discrete
distributions. That is, all values are just as likely to occur. A deterministic quantity (px(i) = 1 for
one value of i and px(j) = 0 ∀j 6= i) has no information, nor uncertainty. For instance, a uniform
distribution on 4 discrete values has entropy Hx = 2 bits/symbol. This is the same as b for 4-level
PAM or 4 QAM with uniform input distributions. The entropy of a source is the essential bit rate of
information coming from that source. If the source distribution is not uniform, the source does not have
maximum entropy and more information could have been transmitted (or equivalently transmitted with
fewer messages M) with a different representation of the source’s message set. Prior to this chapter,
most of the message sets considered were uniform in distribution, so that the information carried was
essentially b, the base-2 log of the number of messages. In general, Hx ≤ log2(M), where M is the
number of values in the discrete distribution.

In the case of a continuous distribution, the differential entropy becomes:

Hy
∆
= −

∫ ∞

−∞
py(u) log2

[

py(u)
]

du . (A.3)

Theorem A.0.1 (Maximum Entropy of a Gaussian Distribution) The distribution with
maximum differential entropy for a fixed variance σ2

y is Gaussian.

Proof: Let us denote the Gaussian distribution as gy(v), then

log2 gy(v) = − log2

(√

2πσ2
y

)

−
(

v√
2σy

)2

• (ln(2))
−1

. (A.4)

1Information measures in this book use a base-2 logarithm and are measured in bits per symbol. Any other base, p,
could be used for the logarithm, and then the measures would be in the pits/symbol!
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For any other distribution py(v) with mean zero and the same variance,

−
∫ ∞

−∞
py(v) log2 (gy(v)) dv = log2

(√

2πσ2
y

)

+
1

2 ln(2)
, (A.5)

which depends only on σ2
y. Then, letting the distribution for y be an argument for the

entropy,

Hy(gy) −Hy(py) = (A.6)

= −
∫ ∞

−∞
gy(v) log2(gy(v))dv +

∫ ∞

−∞
py(v) log2(py(v))dv (A.7)

= −
∫ ∞

−∞
py(v) log2(gy(v))dv +

∫ ∞

−∞
py(v) log2(py(v))dv (A.8)

= −
∫ ∞

−∞
py(v) log2

(
gy(v)

py(v)

)

dv (A.9)

≥ 1

ln2

∫ ∞

−∞
py(v)

(

1− gy(v)

py(v)

)

dv (A.10)

≥ 1

ln2
(1− 1) = 0 , (A.11)

or2

Hy(gy) ≥ Hy(py) . (A.12)

QED.

With simple algebra,

H(gy) =
1

2
log2(2eπσ2

y) . (A.13)

For baseband complex signals, Hy, in bits per complex (two-dimensional) symbol is often written Hy =
log2

(
πeσ2

y

)
where σ2

y becomes the variance of the complex random variable (which is twice the variance
of the variance of the real part of the complex variable, when real and imaginary parts have the same
variance, as is almost always the case in data transmission).

Most of the uses of entropy in this text are associated with either the encoder distribution px, or with
the channel output distributions py or py/x. The normalization of the number of bits per dimension to

b̄ = b
N tacitly assumes that the successively transmitted dimensions were independent of one another.

In the case of independent successive dimensions, Hx = NHx. Hx is equal to b̄, if the distribution on
each dimension is also uniform (as well as independent of the other dimensions). Equivalently in (A.2),
Hx = N ·Hx if each of the dimensions of x is independent.

For instance, 16QAM has entropy Hx = b = 4 bits/symbol and normalized entropy H̄x = b̄ = 2
bits/dimension. However, 32CR has entropy Hx = b = 5 bits/symbol, but since p(±x = 1) = p(±x =
3) = 6/32 and p(±5) = 4/32, the entropy Hx = 2.56 bits/dimension 6= H̄x = b̄ = 2.5 bits/dimension.
Note also that the number of one-dimensional distribution values is 6, so Hx = 2.56 < log2(6) = 2.58.

The differential entropy of a (real) Gaussian random variable with variance σ̄2 is

Hx =
1

2
log2

(
2πeσ̄2

)
bits/symbol. (A.14)

A complex Gaussian variable with variance σ2 has differential entropy

Hx = log2

(
πeσ2

)
bits/symbol. (A.15)

2Equation (A.11) uses the bound ln(x) ≥ x − 1.
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The conditional entropy of one random variable given another is defined according to

Hx/y
∆
=

∑

v

M−1∑

i=0

px(i)py/x(v, i) log2

1

px/y(v, i)
(A.16)

Hy/x
∆
=

∑

v

M−1∑

i=0

px(i)py/x(v, i) log2

1

py/x(v, i)
, (A.17)

with integrals replacing summations when random variables/vectors have continuous distributions. The
definition of conditional entropy averages the entropy of the conditional distribution over all possibilities
in some given input distribution. Thus, the conditional entropy is a function of both py/x and px.
Conditional entropy measures the residual information or uncertainty in the random variable given
the value of another random variable on average. This can never be more than the entropy of the
unconditioned random variable, and is only the same when the two random variables are independent.
For a communication channel, the conditional entropy, Hy/x, is basically the uncertainty or information
of the “noise.” If the conditional distribution is Gaussian, as is often the case in transmission, the
conditional entropy of a scalar x becomes

Hx/y =

{
1
2 log2

(
2πeσ2

mmse

)
real x

log2

(
πeσ2

mmse

)
complex x

(A.18)

The MMSE in the above equations is that arising from estimation of x, given y. Thus, the conditional
entropy then measures the information remaining after the effect of the y has been removed. That is in
some sense measuring useless information that a receiver might not be expected to use successfully in
estimating x.

The information of the “noise,” or more generically, the “useless part” of the channel output given
a certain input distribution, is not of value to a receiver. Thus, while the entropy of the source is a
meaningful measure of the data transmitted, the entropy of the channel output has extra constituents
that are caused by the randomness of noise (or other useless effects). Given that it is the output of a
channel, y, that a receiver observes, only that part of the output that bears the information of the input
is of value in recovering the transmitted messages. Thus, the entropy Hy −Hy/x measures the useful
information in the channel output. This information is called the mutual information.

Definition A.0.3 (Mutual Information) The mutual information for any N -dimensional
signal set with probability distribution px(i) i = 0, ..., M − 1, and a corresponding channel
description py/x(v, i), is:

Iy,x
∆
= Hy −Hy/x . (A.19)

The identity,
Iy,x = Hy −Hy/x = Hx −Hx/y , (A.20)

easily follows from transposing x and y. Using probability distributions directly:

Iy,x
∆
=

∑

v

M−1∑

i=0

px(i)py/x(v, i) log2

[

py/x(v, i)
∑M−1

m=0 py/x(v, m)px(m)

]

bits/symbol (A.21)

= E log2

[

py/x

py

]

(A.22)

= E log2

[
py,x

px · py

]

(A.23)

= E log2

[
px/y

px

]

, (A.24)

In the case of a continuous distribution on y and/or x, the summation(s) is (are) replaced by the
appropriate integral(s).
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Appendix B

Cholesky Factorization

This appendix illustrates two approaches to Cholesky factorization that can either simply the direct
computation of triangular matrices in Section B.1 or provide a MMSE approach as in Section ??.

B.1 The Simple Arithmetic Approach

This approach was provided by former EE379C student Chan Soo Hwang.
Definition of Cholesky decomposition Given a symmetric positive definite matrix R, the Cholesky

decomposition is an upper triangular matrix G such that

R = G∗SG (B.1)

B.1.1 Direct Arithmetic Computation of Cholesky decomposition

Cholesky decomposition in this text requires G to be monic, i.e. all the diagonal terms are 1. Therefore,
the decomposition is R = G∗SG where S is a diagonal matrix and G is monic upper triangular matrix.
Since elementary row operations1 are equivalent to multiplication by monic triangular matrices, we can
obtain G, an upper triangular matrix, by finding a sequence of elementary matrices that transforms R
to upper triangular. Application of the same matrix sequence to identity matrix provides G∗S.

The squence of transformations alternates between diagonal scaling and monic elementary triangular
row operations. The diagonal scaling force the resultant matrix from the immediately preceding step to
be monic. The monic row operations are then used to zero all entries below the diagonal in one column
of the resultant matrix. Thus, the sequency appears as

S−1
N ·G−1

N−1 · S−1
N−1 · ... ·G1 · S−1

1 · R = G . (B.2)

The resultant matrix is G and thus, the uniqueness of Cholesky factorization (non-singular matrix) forces
the left side of the equation to be also S−1 ·G−∗R. Since the G matrices are all monic, then the overall
S diagonal matrix is simply the product of the Si matrices.

The computation is illustrated through use of an example from the text. Exercise 5.15 uses the
following matrix as R−1

b which will be used to derive feedback and feedforward filter of GDFE.

R−1
b =





151 125 125
125 151 125
125 125 151



 (B.3)

Step 1a) Normalize each row by the first column

S1 =





151 0 0
0 125 0
0 0 125



 (B.4)

1An elementary row operation is the replacement of any row by the sum of it and some scalar times another row.
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R1a =





1 0.828 0.828
1 1.21 1
1 1 1.21



 (B.5)

Step 1b) Subtract the first row from the second and third row

G1 =





1 0 0
−1 1 0
−1 0 1



 (B.6)

R1b =





1 0.828 0.828
0 0.382 0.172
0 0.172 0.382



 (B.7)

Step 2a) Normalize the second and third row by the second column

S2 =





1 0 0
0 0.382 0
0 0 0.172



 (B.8)

R2a =





1 0.828 0.828
0 1 0.45
0 1 2.22



 (B.9)

Step 2b) Subract the second row from the third row

G2 =





1 0 0
0 1 0
0 −1 1



 (B.10)

R2b =





1 0.828 0.828
0 1 0.45
0 1 2.22



 (B.11)

Step 3) Normalize the third row by the third column

S3 =





1 0 0
0 1 0
0 0 1.77



 (B.12)

R3 =





1 0.828 0.828
0 1 0.45
0 0 1



 (B.13)

The overall S is then

S =





151 0 0
0 47.8 0
0 0 38.1



 (B.14)

Cholesky decomposition for Rxx
In Section 5.5, the Cholesky decomposition locates the upper triangle first, and lower triangular

matrix last. To do this calculation, the sequence instead then works above the diagonal instead of
below. As an example”

Rxx =

[
0.6715 0.2956
0.2956 0.7340

]

. (B.15)

Step1) Normalize each row by the first column and Subtract the second row from the first row.

S1 =

[
0.2956 0

0 0.7340

]

(B.16)

G1 =

[
1 −1
0 1

]

(B.17)

R1 =

[
1 0

0.403 1

]

(B.18)
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Step 2) Normalize the first row

S2 =

[
1.87 0
0 1

]

(B.19)

G =

[
1 0

0.403 1

]

(B.20)

Then

S =

[
1.87(.2956) 0

0 .7340

]

. (B.21)

B.2 MMSE interpretation of Cholesky Factorization

The MMSE approach to Cholesky factorization is trivially Generalized Cholesky without the extra rows
and zeroed prediction errors.
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