Department of Civil and Environmental Engineering Stanford University CEE 70 – Environmental Science and Technology (Engr 90 Cross Listed)

Time and Place:	Monday through Thursday 10:30 to 11:20, Y2E2 111
Instructor:	Royal Kopperud royalk@stanford.edu
Teaching Assistants:	James Winter, Annie Yu
Office Hours:	Y2E2, time and location to be announced
Textbook:	Introduction to Environmental Engineering and Science, 3rd Edition, Prentice-Hall 2008, Gilbert M. Masters and Wendell P. Ela. Available at the bookstore and on reserve at the Engineering Library.
Homework:	20% of Final Grade Homework sets handed out approximately weekly, due 1 week later. Homework is due before class begins and may be submitted in class or in the drop box at Y2E2 (Yellow Atrium Basement - Shelves).
	Although you may work together in groups of 2 or 3 to develop your understanding of the homework questions, your submitted homework must be a product of your own effort and must represent your own understanding. Observe the Honor Code in preparing your homework.
Exams:	3 quizzes in class for 80% of Final Grade. 7/13/2017, 8/1/2017, and 8/17/2017. There will be no final exam.
Announcements:	Canvas course site. You should be automatically added to the site. Be sure to enable immediate notifications for announcements.

Topic Outline (Readings from IEES 3rd Ed.) Lecture Numbers are at the right.

Mass and Energy (pp. 1 - 35)1, 2, 3
Ideal gas law
Mass balances
Steady-state
First-order decay
Energy balance
Heat capacity and heat of vaporization
Energy efficiency
Chemistry (pp. 47-70)
Stoichiometry
Reaction enthalpy
Equilibrium constants and pH
Read and understand alpha-diagrams
Population Growth (Ch 3 especially pp. 87-94, 106-120)5
Exponential growth
Half life and doubling time
Human population dynamics
Risk Assessment (Ch 4 especially pp. 145-157)6,7
Potency Factor or Oral Slope Factor
Drinking water unit risk / Inhalation unit risk
Drinking water equivalent level at 10^{-4} , 10^{-5} , and 10^{-6} risk
Inhalation unit risk
RfD, hazard quotient, and Hazard Index
Water Pollution (Ch 5, especially pp. 199-226, 229-240)
Biochemical Oxygen Demand
ThOD, BOD ₅ , CBOD, NBOD
Rate constants and temperature dependence
Streeter-Phelps oxygen sag curve
Lakes (pp. 219-226)10
Algae and limiting nutrients
Oligotrophic, mesotrophic, and eutrophic lakes
Thermal stratification
Groundwater (pp. 229-244)11
Porosity
Hydraulic gradient
Darcy's Law, Darcy velocity
Average linear velocity and retardation
Water Quality (pp 289-295, 299-302, 314-332)12, 14
Safe Drinking Water Act
Maximum Contaminant Level (MCL) and MCL Goal (MCLG)
Treatment Technique (TT)
Secondary Standards
Basic wastewater unit operations

Settling and Stoke's Law
Settling basins
Combined and separate sewer systems
Reverse Osmosis (pp. 314-315
Air Pollution (Skim pp. 367-384; 389-393; skim 394-426; 426-428; 437-438; 438-450;
450-458; 483-end of ch.7)15 through 19
Criteria Pollutants
Air Quality Index (AQI)
Carbon monoxide
Stokes Law
Atmospheric stability
Ozone
Automobile pollution
Gaussian dispersion
Box model - steady state and transient solutions
Global atmospheric change (Skim pp. 502-512; 512-536; skim 536-545; 545-551; 554-
558; 574-587)20, 21
Energy balance and radiation
IR window
Albedo
Climate sensitivity
Global Warming Potential (GWP)
Stabilization wedges
Chlorine and stratospheric ozone