Openmixer: a routing mixer for multichannel studios

Fernando Lopez-Lezcano, Jason Sadural
CCRMA, Stanford University
Stanford, CA, USA
nando @ccrma.stanford.edu, jsadural @ ccrma.stanford.edu

Abstract

The Listening Room at CCRMA, Stanford
University is a 3D studio with 16 speakers (4 hang
from the ceiling, 8 surround the listening area at
ear level and 4 more are below an acoustically
transparent grid floor). We found that a standard
commercial digital mixer was not the best interface
for using the studio. Digital mixers are complex,
have an opaque interface and they are usually
geared towards mix-down to stereo instead of
efficiently routing many input and output channels.
We have replaced the mixer with a dedicated
computer running Openmixer, an open source
custom program designed to mix and route many
input channels into the multichannel speaker array
available in the Listening Room. This paper will
describe Openmixer, its motivations, current status
and future planned development.

Keywords

Surround sound, studio mixer, spatialization,
ambisonics.

1 Introduction

The Listening Room was created when The
Knoll (the building that houses CCRMA) was
completely remodelled in 2005. It is a very quiet
studio with dry acoustics designed for research,
composition and diffussion of sounds and music in
a full 3D environment. Digital mixers proved to be
less than optimal for using the room and the
Openmixer project was started to write an
application from scratch that would be a better
match for our needs.

The need for an alternative solution to digital
mixers was recognized by Fernando Lopez-
Lezcano in 2006/2007 and he did some research
into existing software based alternatives together
with Carr Wilkerson at CCRMA. None of the
options that were found quite met the goals we had

in mind. It was only last year (2009) that the
project really started taking off thanks to the
enthusiasm and dedication of Jason Sadural (a
student at CCRMA) and the support of Jonathan
Berger and Chris Chafe. Both Jason and Fernando
have been working on hardware and software
design and coding since then.

The Listening Room

2 Digital Mixersand the Listening Room

Existing digital mixers are very versatile but are
generally not a good fit for a situation that needs
many input and output channels. Most of them are
designed for mix-down to stereo or at most for
mix-down to a fixed 5.1 or 7.1 surround
environment. If more output channels are needed
expansion slots have to be used and the physical
size and price of the mixer goes up very fast. It is
also difficult to find mixers with the capabilities
we needed and without fans.

Another usability problem of digital mixers is
preset management. While it is possible to save
and load the mixer state to presets (a feature
absolutely necessary in our multi-user shared
environment), digital mixers don't have a user
database or per-user password protection, at least
in mixers that are in our price range. Presets can be

mailto:nando@ccrma.stanford.edu
mailto:jsadural@ccrma.stanford.edu

protected but there is nothing to prevent someone
from changing other user's presets by mistake.

Digital mixers have opaque interfaces, with
options sometimes buried deeply inside a layered
menu structure. It is sometimes very hard to know
why a particular patch is not working.

We originally installed a Tascam DM3200 in the
Listening Room, using two expansion cards to
barely provide enough input/output channels (the
3200 has 16 buses and we would like to have a
maximum of 24 mixer outputs). In addition to the
generic digital mixer problems we found out that
switching presets in the 3200 would cause clicks in
the analog outputs of the expansion boards that
were driving the speakers. How this can happen in
a professional mixer is beyond our understanding.

3 Requirements

What would be the ideal sound diffusion system
for the Listening Room?

The user interface should be very simple.
Nothing should be hidden inside hierarchical
menus. All controls should directly affect the
diffusion of sound. It should be easy to learn to use
it (intuitive). It should be possible to load and save
presets using the same authentication system that is
used to login in all computers at CCRMA. It
should also be possible to control all aspects of the
mixer remotely over the network using OSC (Open
Sound Control).

The system should support a routing and level
control matrix with many multichannel input
streams (up to 24 channels wide) coming from
different types of sources (analog, digital, network)
and many analog outputs (up to a maximum of 24
channels). The system should be able to also deal
with multichannel input streams already encoded
in Ambisonics, and give the user a choice of
predefined decoders calibrated to the speaker array
installed in the room.

The system does not need to have audio
processing tools such as limiters, compressors,
equalization, effects, etc. It should be as
transparent as possible. Anything that complicates
the user interface should be trimmed down.

It has to be a stand-alone system, always
running, and users should not need to login into a
computer to start a custom mixer application (for
example they should be able to play multichannel
content directly from the dvd or blue ray player).

4 A solution

One solution is to use a general purpose
computer and off the shelf components as the heart
of the mixer, and write a program that orchestrates
the process of routing, mixing and decoding the
audio streams. A Linux based workstation running
Jack [1] and Planet CCRMA is the high
performance, low latency and open platform in
which we based the design.

Other projects have implemented software
mixing and sound diffusion in a general purpose
computer, examples include the very capable
SuperCollider based software mixer written by
Andre Bartetzki [2] at TU Berlin. Or the ICAST
[3] sound diffusion system at the Louisiana State
University. Or the BEAST system [4] at
Birmingham.

Our needs are much more modest and require a
system that is based on a single computer that can
directly boot into a fully working mixer system.

41 Thehardware

The Listening Room is a very quiet room with
dry acoustics. It is essential it remains quiet so one
of our fanless workstations [5] is used as the
Openmixer computer. It is a high performance
quad core computer with 8Gbytes of RAM and
should be able to cope with all reasonable future
needs for mixing and processing (see Figure 1 for
an overview of the hardware).

4.1.1 Input/output requirements

This is what we need to have available: 16
channels of analog line level balanced input, 8
channels of microphone level input, 8 channels of
line level audio input for a media player (DVD/Blu
Ray), 3 ADAT lightpipes for direct connection of
the audio workstation in the Listening Room
(another custom made fanless computer), 3 ADAT
lightpipes available for external computers, and
dedicated Gigabit Ethernet network jacks with a
DHCP server and netjack or jacktrip software for
multichannel network audio sources (up to 24
channels per source). All external connections
(analog, ADAT, network) should be available in a
rack mounted patch panel.

4.1.2 Audioinput / output hardware

The core of the audio interface is an RME MADI
PCI express soundcard connected through MADI
to a Solid State Logic XLogic Alpha-Link MADI

AX box. This combination alone provides for 64
i/o channels from the Openmixer computer
including 24 high quality analog inputs and outputs
and 3 ADAT lightpipes.

Additional ADAT lightpipes for external
computers are provided by an RME RayDAT
sound card. This card is currently not installed as
we are waiting for the newer implementation of the
RME driver for Linux - the existing driver does not
support the word clock daughter card that we need
to use to synchronize the RayDAT with the main
RME MADI card using Word Clock.

The 24 analog outputs are reserved for direct
speaker feeds. 16 of the 24 analog inputs are
connected to a front panel analog patchbay and the
other 8 are connected to the media player.
Currently 2 of the 3 ADAT lightpipes go to the
audio workstation and 1 ADAT lightpipe is fed
from an 8 channel mic preamp with connections to
the analog patchbay (this setup will change when
the RayDAT card is again part of the system).

s, §3 ©
-? |/ Y
o v

= /] oy

ETHERNET ADAT ANALOG

rme ray%lat / patchbay l!l /

P e s e
= 780Teesees Teaeese it

\ mic preamp
Eek BL 0k BEBE BEBE BE Sk Yo

it wm ss|l madiinterface

X
MADI

\ Ve
e

usB usB ANALOG

OPENMIXER

¥ user interface X speakers (up to 24)

Figure 1: Hardware Overview

The computer has two ethernet interfaces, one
connects to the Internet and the other provides
DHCP enabled dedicated Gigabit switch ports for
laptops or other wired computer systems that
connect to Openmixer through the network using
either Jacktrip or Netjack.

The RME MADI card is the master clock source
for the system, everything else slaves to it through
Word Clock or ADAT Sync.

413 User interface hardware

The only (for now) interface to Openmixer is
through a couple of USB connected dedicated
MIDI controllers. The current controllers are a
Behringer BCF2000 for the main controller and a
BCR2000 for the secondary routing controller.
Those were selected based on having enough
functionality for our needs and being very cheap
(and thus easy to replace if they break down).
Other more robust controllers might be used in the
future. As Openmixer is just software it is easy to
switch to a slightly different controller with simple
modifications to the source code.

4.2 Thesoftware

4.2.1 Choosing a language and environment

Initial proposals included a simple
implementation using Pd but we did not go that
way because a system based on a text language
seemed easier to be debugged and could be easily
booted without needing monitors, keyboard or a
mouse to interact with it. Another option that was
explored was to program Openmixer in C and/or
C++ and borrow code from other compatible open
source projects or libraries (Openmixer is released
under the GPL license). This would have given us
complete control at a very low level and would
probably be the most efficient implementation, but
it would have been more complex to code
compared with our final choice. This approach was
discarded and simplicity won over efficiency.
Another option briefly discussed was to actually
use Ardour as the engine for the mixer (after all
that is what Ardour does best!), but adapting such a
complex project to our needs would have also been
very time consuming. In the end we settled for the
SuperCollider [6] language as it is text based and
can handle most of the needs of the project by
itself without the need to use any other software. It
can handle audio processing and routing very
easily and efficiently, it can send and receive MIDI
and OSC messages, and even use the SwingOSC
SuperCollider classes for a future GUI display. Of
course Jack is used as the audio engine, as well as
several support programs that are started and
controlled from within SuperCollider (amixer,

jack_connect, jack_lIsp, ambdec_cli, jconvolver,
etc).

4.3 Theuser interface

The current interface is layered on top of the
capabilities of the BCF2000/BCR2000 controllers.
See Figure 2 for an overview of the main controls.

master volume controls

source buttons active fader buttons ~ channel strip buttons ambisonics decoders

g
2
s
&
i

%é@@@%é@:j

@ [es e s R es)] (s es) [N NeNe e RNy
[e e R e R e e] [y es) (9 I =5 I = o = I 4 I = I o= J [e Iy e]
oo | | COOCOEEC s o
(e} [es)]
%%%é%%g@@ SOO0008B o0

HIEH 0O00000

reset
channel volume faders mute ¢peaker volume 44.1KHz 48KHz
ambisonics mode preset sampling rate
BCF2000 BCR2000

Figure 2: User interface

There are currently two modes of operation
already implemented and being used:

4.3.1 Normal Mode

Normal Mode (see Figure 3) routes and controls
volume levels of any channel of any input source
to a single speaker or a set of speakers. Each input
channel from a given input source is associated
with a fader in the BCF2000, and can be routed to
a single speaker or a set of speakers through the
speaker volume knobs in the BCR2000. The levels
of a particular input channel can be controlled
through the fader {2}, the volume through each
speaker can be controlled though the
corresponding speaker knob, {3} and a master
volume {5} can control all channels from a given
source at the same time.

Diffusion of sources is simple to learn and can
be done as follows:

1. Press the Source Button {1} for the desired
input (audio workstation, analog inputs,
microphone inputs, media player, network
sources, etc).

2. Press one of the Active Fader Buttons {2}
to activate it, or move the selected fader
{2}. The Active Fader Button will become
lit and the fader can be used to set the
overall volume for that channel.

button to access channels 1-8
button to access channels 9-16 e

34
3]3)

00
D

SOO00000 . o
OO0 o o
OROOOO00 S

|

TIPS, TN
TIPS, VTS
QU VTS

000 BB
3jaj(aga)a)

top speakers 1-8

middle speakers 1-8 }

bottom speakers 1-8

Figure 3: Normal mode

3. Turn up individual Speaker Volume Knobs
{3} to adjust speakers levels for that
channel.

4. Repeat steps 2 and 3 for each input
channel. For input sources that have more
than 8 channels use the Channel Strip
buttons {4} in the BCR2000 to access
additional input channel faders up to a
maximum of 24 input channels for each
source (a wider control surface would not
need this extra step).

5. Control overall volume for that source
with the Master Volume Control {5} for
that source.

Two keys allow you to set all levels to zero
(Reset) or load a preset for the selected source
(Preset) in which individual input channels are pre-
routed to individual output speakers.

Two more keys also allow you to select the
sampling rate of the whole system (currently only
44.1 KHz and 48 KHz are supported).

It should be noted that input sources are not
mutually exclusive, they route audio all the time to
the speakers. To use more than one at the same
time just select several sources separately and
adjust the levels appropriately. All faders and
controls will reflect the current state of a source
after the corresponding source button is pressed.

43.2 Ambisonics Decoder M ode

In “Ambisonics Decoder Mode” (see figure 4)
the assumption is made that the multi-channel

input source is an Ambisonics encoded audio
stream (arrangement of input channels and scaling
coefficients are fixed for each source). By pressing
the Ambisonics Mode button while in a “normal
mode” source, all channels of audio from that input
source will be directly routed to an Ambisonics
decoder with the same level, and from there to the
speaker array.

All faders for that source are disabled and set to
zero except for fader #1 which is the master
volume control for all channels of the encoded
input source (if any of the faders besides fader #1
are adjusted, it will automatically be adjusted back
to zero after a few seconds).

¢ £
S &£ & o o
SR SPRSR, R TR
. Y ST &
E RN s & & &
SO 0 000009 e- S o o &
" 9
source
OO0 G

ambisonics decoder buttons

Z (4]
32000000 | 00000000)

oo | |[OOOBOO80 o
L1 1ES | [oooco000ls:
Iflllll’?g e e e e
9 master volume 9 ambisonics mode

Figure 4: Ambisonics mode

Routing audio to the ambisonics decoders can be
done as follows:

1. Select an input source {1} as you would in
normal mode.

2. Press the Ambisonics decoder button {2}
to route that input source directly to the
Ambisonics decoders.

3. Adjust fader #1 {3} as the master volume
control for the multichannel input source.
All other fader or volume knobs are
deactivated.

4. Choose the decoder {4} you would like to
use.

5. Master mode volume controls {5} are set
to unity by default and have exactly the
same functionality as in Normal Mode.

4.3.3 Ambisonics Decoders

Openmixer uses ambdec_cli [7] and jconvolver
[8] as external Jack programs that perform the
Ambisonics decoding. Several decoders tuned to
the speaker array are currently available:

3D 2nd order horizontal, 1st order vertical
2D third order horizontal

2D 5.1 optimized decoder

Stereo (UJH decoding done through
jeonvolver)

el NS

This enables the composer or researcher to
compare the rendering of the same Ambisonics
encoded stream when it is decoded through several
different decoders with varying order and
capabilites, all properly tuned to the room and
speaker arrangement.

When more speakers are added in the future the
vertical order of the 3D decoder will be increased.

44 Network sources

An extremely simple and efficient way to
connect external multichannel sound sources to the
mixer is through a network connection. All laptop
and desktop computers have a wired interface for
high speed network connectivity and it would be
perfect to use that for supplying audio to the mixer
through the network (only one cable to connect).

There are currently two options:

44.1 Jacktrip

The Soundwire [9] project at CCRMA has
created a software package (Jacktrip [10]) that is
used for multi-machine network performance over
the Internet. It supports any number of channels of
bidirectional, high quality, uncompressed audio
signal streaming. It would be ideal for our purposes
except that it currently does not do sample rate
synchronization between the computers that are
part of a networked performance, so that if there is
any clock drift between them there will be periodic
clicks when the computers drift more than one
buffer apart.

This is not of much concern in a remote network
performance with high quality sound cards in both
ends, as the quality of the network will usually
create more significant problems, but it is crucial in
a studio environment where all sources have to be
in sync at the sample level (i.e.: no clicks allowed).

Still, Jacktrip is going to be supported with the
idea of providing a remote (i.e.: not within the
Listening Room) connection for jam sessions and
small telepresence concerts.

442 Netjack

Netjack [11] is an ideal solution for a local
network connection as the client computer does not
use its own sound card at all (but it is possible to
do that locally in the client computer with
resampling being used to synchronize the two
clocks), but just sends samples to an external Jack
sink in the Openmixer computer. It is expected it
will quickly become the preferred way to connect
laptops and other external computers to the
Openmixer system (as long as they can run Jack
and Netjack).

The implementation of the Netjack connection in
Openmixer was somewhat delayed due to the
changing landscape of Netjack. The Openmixer
computer is currently running Jack2 which had its
own separate Netjack code base - one that relied on
automatic discovery of the netjack server through
multicast (which we don't currently have enabled at
CCRMA). But there is now a backport of the Jackl
implementation of netjack to jack2 (netone) that
would appear to be perfect for our needs.

The second ethernet interface of the Openmixer

computer is connected to a small gigabit switch
that provides local network jacks. The computer is
set up to provide four DHCP ip addresses on that
ethernet port and the firewall is structured to also
route traffic to the Internet through the primary
ethernet interface (NAT).
Four jack_netsource processes are spawned by
SuperCollider, each one waiting for its DHCP ip
address to become active with a netone jack client.
When that happens the audio connection becomes
active and Openmixer can control the volume and
routing of all channels for that netjack source. For
simplicity all potential network connected sources
are currently mixed in parallel with equal gains
(otherwise the user interface side of Openmixer
would start to get more complicated).

5 Structure of the software

The software is written almost exclusively in
SuperCollider. A boot time startup script written in
perl is triggered when the computer enters into
unix run level 5.

The script starts the SuperCollider sclang
language interpreter, which takes care of setting up
and monitoring the rest of the system. The perl
script waits for the interpreter to finish (it should
never exit in normal conditions) and restarts it if
necessary. This can deal with unexpected problems
that could cause SuperCollider's sclang to stop
prematurely and it also implements a ‘“‘system
restart” function useful for development and
debugging the system (a user can “touch” a file
that triggers an orderly shutdown of the
SuperCollider portion of Openmixer, and removing
that file makes the perl script start it again). The
perl script also logs the output of the SuperCollider
program for debugging.

Once the SuperCollider sclang interpreter starts,
it takes control of the rest of the Openmixer startup
process. A number of external programs are used
to control the hardware. The mixer of the RME
card is initialized using amixer, and jackd is started
with the appropriate parameters (currently jack
runs with 2 periods of 128 frames — aproximately
5.3 mSecs of latency - but with the current cpu and
load it should be possible to run at 64 frames if the
lower latency is deemed necessary). After Jack is
up and running two instances of the SuperCollider
synthesis server scsynth are started (to spread the
audio processing load between different cores of
the processor), the Ambisonics decoders
(ambdec_cli and jconvolver) are started and finally
the jack_netsource processes for netjack inputs are
spawned. Everything is connected together in the
Jack world using calls to jack_connect. Finally the
SuperCollider MIDI engine is initialized.

Once audio and midi are initialized the
SuperCollider Synths that comprise the audio
processing section of Openmixer are started and
finally the SuperCollider MIDI and OSC
responders that tie user controls to actions are
defined and started. At this point Openmixer is
operational and the user can start interacting with
it.

Changing sampling rates is done by shutting
down all audio processing and Jack, and restarting
everything at the new sampling rate.

Periodic processes check for the presence of the
USB MIDI controllers and initializes and
reconnects them if necessary (that makes it
possible to disconnect them and reconnect them to
Openmixer without affecting the system).

Openmixer is currently around 2000 lines of
SuperCollider code.

Much needs to be done, some parts of the code
need work and reorganizing, and code needs to be
added to make the system more reliable. All
external programs will be monitored periodically
by SuperCollider processes and restarted and
reconnected if necessary. Depending on which
program malfunctions the audio processing may be
interrupted momentarily, but at least the system
will recover automatically from malfunctions. The
worst offender would be Jack, if it dies the whole
system would need to be restarted (as it also
happens when, for example, the sampling rate of
the system is changed). If SuperCollider itself dies
the perl script that starts up the system will restart
it. The system is expected to be very stable as the
computer in which Openmixer is running is
dedicated to that purpose alone (ie: users are not
logged in and running random software in it).

6 Future Development

6.1 Encodingto Ambisonicsand VBAP

This is a different mode of operation in which
individual channels of a given source can be
positioned in space through Openmixer instead of
being spatialized in the source through a separate
program. In this case the second controller
(BCR2000) is used to set elevation and azimuth
angles in 3D space for each input channel instead
of controlling the volume of individual speakers.

This has already been implemented for the case
of Ambisonics but we have not yet made it
available to end users.

An alternative implementation would do the
same thing but using VBAP for spatialization
instead of Ambisonics.

All parameters of the spatialization can also be
controlled though OSC from a computer connected
to the network.

6.2 Start-up sequence

The start-up sequence of the SuperCollider code
needs to be changed so that the MIDI subsystem is
initialized at the very beginning. That will enable
us to use the control surfaces to give feedback to
the user while Openmixer starts. Currently there is
no way to know how far in the start-up sequence
the software is, and when it is available for use

(except for the movement of the faders at the very
end if their position is different from the default).

7 Future

Saving and recalling presets is a very important
feature and is difficult to implement properly. As a
stopgap measure Jason has written a very simple
OSC responder that enables a user to send OSC
messages that save and restore named presets from
a common directory. For now the communication
is unidirectional so it is not possible to list existing
presets, and they can't be protected or locked, but it
enables users to save and restore a complex set-up
which would otherwise need to be redone from
scratch each time a user starts using Openmixer.

Without a display and a keyboard it is difficult to
design an interface that is easy to use (because
ideally preset management should be tied to the
LDAP user database for authentication). One
possible option to explore would be to use a web
server interface in the Openmixer computer so that
preset management can be accessed through a web
browser in any computer connected to the network
in the Listening Room. A user would need to login
with the CCRMA user name and password to be
able to access the web site. After that presets
would be stored and recalled from a dot
subdirectory of the home directory of the user. This
would provide adequate functionality without
adding a keyboard, mouse and display to the
system and without relying of special software in
the user's computer.

A GUI with feedback for level metering, state of
the mixer, etc., would also be very useful (and
could potentially make it easier to code a preset
management interface).

Once the code stabilizes we think it would also
be very useful to add an Openmixer system to our
small concert hall, the Stage.

8 Additional Applications

The fact that Openmixer is just a program
enables it to be customized for projects that have
very special needs. Here is an example:

A study into archaeological acoustics has led
Stanford students into researching and questioning
the implications of acoustical environments in a
3000-year old underground acoustic temple in
Chavin de Hudantar, Perd. A group of students
explored the effects of reverberant acoustical
features of the temple and ran a series of traditional

social scientific experiments to see what the effects
of a sound environment are on an individual's
ability to complete different types of tasks.
Students used a customized version of Openmixer
to connect piezo microphones around an apparatus
in which subjects were asked to perform tasks on.
The signals were convolved (using jconvolver as
an external program run from within
SuperCollider) with synthetic signals emulating
certain 3d aspect of the reverberation and presented
to subjects in different spatialized settings during
the tasks.

9 Conclusons

So far Openmixer has improved the usability of
the Listening Room and has opened the door to
interesting ways of interacting with space. In
particular it now enables very simple multichannel
connection through a network jack. Hopefully it
will keep making the Listening Room a productive
environment for research and music production.

Openmixer is released under the GPL license,
and is available from:

https://ccrma.stanford.edu/software/openmixer

10 Acknowledgements

Many thanks for the support of Chris Chafe and
Jonathan Berger at CCRMA for this project. Many
many thanks also to the Linux Audio user
community for the many very high quality
programs that have made OpenMixer possible.

References

[1] Stephane Letz, Jack2,
http://www.grame.fr/~letz/jackdmp.html

[2] Andre Bartetzki, LAC2007, “A Software-based
Mixing Desk for Acousmatic Sound Difussion”
(http://www.kgw.tu-
berlin.de/~lac2007/descriptions.shtml#bartetzki)

[3] Beck, Patrick, Willkie, Malveaux, ,
SIGGRAPH2009, “The Immersive Computer-
controlled Audio Sound Theater”

[4] BEAST (Birmingham ElectroAcoustic Sound
Theatre), http://www.beast.bham.ac.uk/about/

[5] Fernando Lopez Lezcano, LAC2009, “The
Quest for Noiseless Computers”

[6] SuperCollider,
http://www.audiosynth.com/

http://supercollider.sourceforge.net/

[7] Fons Adriaensen, AmbDec, An Ambisonics
Decoder, http://www.kokkinizita.net/linuxaudio/

[8] Fons Adriaensen, Jconvolver, A Convolution
Engine, http://www.kokkinizita.net/linuxaudio/

[9] The Soundwire Project,
https://ccrma.stanford.edu/groups/soundwire/

[10] Jacktrip, http://code.google.com/p/jacktrip/

[11] Netjack, http://netjack.sourceforge.net/

http://netjack.sourceforge.net/
http://code.google.com/p/jacktrip/
https://ccrma.stanford.edu/groups/soundwire/
http://www.kokkinizita.net/linuxaudio/
http://www.kokkinizita.net/linuxaudio/
http://supercollider.sourceforge.net/
http://www.audiosynth.com/
http://www.beast.bham.ac.uk/about/
http://www.kgw.tu-berlin.de/~lac2007/descriptions.shtml#bartetzki
http://www.kgw.tu-berlin.de/~lac2007/descriptions.shtml#bartetzki

	1 Introduction
	2 Digital Mixers and the Listening Room
	3 Requirements
	4 A solution
	4.1 The hardware
	4.1.1 Input / output requirements
	4.1.2 Audio input / output hardware
	4.1.3 User interface hardware

	4.2 The software
	4.2.1 Choosing a language and environment

	4.3 The user interface
	4.3.1 Normal Mode
	4.3.2 Ambisonics Decoder Mode
	4.3.3 Ambisonics Decoders

	4.4 Network sources
	4.4.1 Jacktrip
	4.4.2 Netjack

	5 Structure of the software
	6 Future Development
	6.1 Encoding to Ambisonics and VBAP
	6.2 Start-up sequence

	7 Future
	8 Additional Applications
	9 Conclusions
	10 Acknowledgements

