M. Ye, E. Johns, S. Giannarou, and G. Yang, “Online scene association for endoscopic navigation,” Med. Image Comput. Comput. Interv. 8674, 316–323 (2014).
K. L. Lurie, G. T. Smith, S. A. Khan, J. C. Liao, and A. K. Ellerbee, “Three-dimensional, distendable bladder phantom for optical coherence tomography and white light cystoscopy,” J. Biomed. Opt. 19, 036009 (2014).
[Crossref]
M. Agenant, H.-J. Noordmans, W. Koomen, and J. L. H. R. Bosch, “Real-time bladder lesion registration and navigation: a phantom study,” PLOS ONE 8, e54348 (2013).
[Crossref]
[PubMed]
P. Clark, N. Agarwal, and M. C. Biagioli, and E. al, “Clinical Practice Guidelines in Oncology,” J. Natl. Compr. Canc. Netw. 11, 446–475 (2013).
[PubMed]
B. Allain, M. Hu, L. B. Lovat, R. J. Cook, T. Vercauteren, S. Ourselin, and D. J. Hawkes, “Re-localisation of a biopsy site in endoscopic images and characterisation of its uncertainty,” Med. Image Anal. 16, 482–496 (2012).
[Crossref]
E. Sanchez, A. Goh, S. Soni, and S. Lerner, “Optical coherence tomography (OCT) as an adjunct to conventional cystoscopy and pathology for non-invasive endoscopic staging of bladder tumors,” Urology 78, 2011 (2011).
[Crossref]
C. Zach and M. Pollefeys, “Practical methods for convex multi-view reconstruction,” Lect. Notes Comput. Sci. 6314, 354–367 (2010).
[Crossref]
J. Schmidbauer, M. Remzi, T. Klatte, M. Waldert, J. Mauermann, M. Susani, and M. Marberger, “Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder,” Eur. Urol. 56, 914–919 (2009).
[Crossref]
[PubMed]
J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]
H. Ren, W. C. Waltzer, and R. Bhalla, and E. al, “Diagnosis of bladder cancer with microelectromechanical systems-based cystoscopic optical coherence tomography,” Urology 74, 1351–1357 (2009).
[Crossref]
[PubMed]
S. Atasoy, B. Glocker, S. Giannarou, D. Mateus, A. Meining, G.-Z. Yang, and N. Navab, “Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy,” Med. Image Comput. Comput. Interv. 5761, 499–506 (2009).
P. Mountney, S. Giannarou, D. Elson, and G.-Z. Yang, “Optical biopsy mapping for minimally invasive cancer screening,” Med. Image Comput. Comput. Assist. Interv. 12, 483–490 (2009).
[PubMed]
G. A. Sonn, S. N. E. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J Urol 182, 1299–1305 (2009).
[Crossref]
[PubMed]
S. P. Lerner, A. C. Goh, N. J. Tresser, and S. S. Shen, “Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and staging of bladder cancer,” Urology 72, 133–137 (2008).
[Crossref]
[PubMed]
C. A. Lingley-Papadopoulos, M. H. Loew, M. J. Manyak, and J. M. Zara, “Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis,” J. Biomed. Opt. 13, 024003 (2008).
[Crossref]
[PubMed]
H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping,” IEEE Robot Autom. Mag. 13, 99–116 (2006).
[Crossref]
M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” Symp. Geom. Process 7, 61–70 (2006).
C. Doignon, P. Graebling, and M. De Mathelin, “Real-time segmentation of surgical instruments inside the abdominal cavity using a joint hue saturation color feature,” Real-Time Imaging 11, 429–442 (2005).
[Crossref]
E. V. Zagaynova, O. S. Streltsova, and N. D. Gladkova, and E. al, “In vivo optical coherence tomography feasibility for bladder disease,” J. Urol. 167, 1492–1496 (2002).
[Crossref]
[PubMed]
R. Zhang, P.-s. Tsai, J. E. Cryer, and M. Shah, “Shape from Shading : A Survey,” Rev. Lit. Arts Am. 21, 1–41 (1999).
R. M. Cothren, R. Richards-Kortum, and M. V. Sivak, and E. al, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[Crossref]
[PubMed]
P. Clark, N. Agarwal, and M. C. Biagioli, and E. al, “Clinical Practice Guidelines in Oncology,” J. Natl. Compr. Canc. Netw. 11, 446–475 (2013).
[PubMed]
M. Agenant, H.-J. Noordmans, W. Koomen, and J. L. H. R. Bosch, “Real-time bladder lesion registration and navigation: a phantom study,” PLOS ONE 8, e54348 (2013).
[Crossref]
[PubMed]
B. Allain, M. Hu, L. B. Lovat, R. J. Cook, T. Vercauteren, S. Ourselin, and D. J. Hawkes, “Re-localisation of a biopsy site in endoscopic images and characterisation of its uncertainty,” Med. Image Anal. 16, 482–496 (2012).
[Crossref]
K. L. Lurie, R. Angst, D. Z. Zlatev, J. C. Liao, and A. K. Bowden, “3D reconstruction and co-registration of endoscopic video sequences for longitudinal studies,” (in rev).
S. Atasoy, B. Glocker, S. Giannarou, D. Mateus, A. Meining, G.-Z. Yang, and N. Navab, “Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy,” Med. Image Comput. Comput. Interv. 5761, 499–506 (2009).
H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping,” IEEE Robot Autom. Mag. 13, 99–116 (2006).
[Crossref]
H. Ren, W. C. Waltzer, and R. Bhalla, and E. al, “Diagnosis of bladder cancer with microelectromechanical systems-based cystoscopic optical coherence tomography,” Urology 74, 1351–1357 (2009).
[Crossref]
[PubMed]
P. Clark, N. Agarwal, and M. C. Biagioli, and E. al, “Clinical Practice Guidelines in Oncology,” J. Natl. Compr. Canc. Netw. 11, 446–475 (2013).
[PubMed]
M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” Symp. Geom. Process 7, 61–70 (2006).
M. Agenant, H.-J. Noordmans, W. Koomen, and J. L. H. R. Bosch, “Real-time bladder lesion registration and navigation: a phantom study,” PLOS ONE 8, e54348 (2013).
[Crossref]
[PubMed]
K. L. Lurie, R. Angst, D. Z. Zlatev, J. C. Liao, and A. K. Bowden, “3D reconstruction and co-registration of endoscopic video sequences for longitudinal studies,” (in rev).
P. Clark, N. Agarwal, and M. C. Biagioli, and E. al, “Clinical Practice Guidelines in Oncology,” J. Natl. Compr. Canc. Netw. 11, 446–475 (2013).
[PubMed]
B. Allain, M. Hu, L. B. Lovat, R. J. Cook, T. Vercauteren, S. Ourselin, and D. J. Hawkes, “Re-localisation of a biopsy site in endoscopic images and characterisation of its uncertainty,” Med. Image Anal. 16, 482–496 (2012).
[Crossref]
R. M. Cothren, R. Richards-Kortum, and M. V. Sivak, and E. al, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[Crossref]
[PubMed]
R. Zhang, P.-s. Tsai, J. E. Cryer, and M. Shah, “Shape from Shading : A Survey,” Rev. Lit. Arts Am. 21, 1–41 (1999).
C. Doignon, P. Graebling, and M. De Mathelin, “Real-time segmentation of surgical instruments inside the abdominal cavity using a joint hue saturation color feature,” Real-Time Imaging 11, 429–442 (2005).
[Crossref]
C. Doignon, P. Graebling, and M. De Mathelin, “Real-time segmentation of surgical instruments inside the abdominal cavity using a joint hue saturation color feature,” Real-Time Imaging 11, 429–442 (2005).
[Crossref]
G. A. Sonn, S. N. E. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J Urol 182, 1299–1305 (2009).
[Crossref]
[PubMed]
H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping,” IEEE Robot Autom. Mag. 13, 99–116 (2006).
[Crossref]
K. L. Lurie, A. A. Gurjarpadhye, E. J. Seibel, and A. K. Ellerbee, “Rapid scanning catheterscope for expanded forward-view volumetric imaging with optical coherence tomography,” Opt. Lett. 40, 3165–3168 (2015).
[Crossref]
[PubMed]
K. L. Lurie, G. T. Smith, S. A. Khan, J. C. Liao, and A. K. Ellerbee, “Three-dimensional, distendable bladder phantom for optical coherence tomography and white light cystoscopy,” J. Biomed. Opt. 19, 036009 (2014).
[Crossref]
P. Mountney, S. Giannarou, D. Elson, and G.-Z. Yang, “Optical biopsy mapping for minimally invasive cancer screening,” Med. Image Comput. Comput. Assist. Interv. 12, 483–490 (2009).
[PubMed]
J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]
J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]
C. Q. Forster and C. Tozzi, “Towards 3D reconstruction of endoscope images using shape from shading,” SIBGRAPI pp. 90–96 (2000).
M. Ye, E. Johns, S. Giannarou, and G. Yang, “Online scene association for endoscopic navigation,” Med. Image Comput. Comput. Interv. 8674, 316–323 (2014).
S. Atasoy, B. Glocker, S. Giannarou, D. Mateus, A. Meining, G.-Z. Yang, and N. Navab, “Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy,” Med. Image Comput. Comput. Interv. 5761, 499–506 (2009).
P. Mountney, S. Giannarou, D. Elson, and G.-Z. Yang, “Optical biopsy mapping for minimally invasive cancer screening,” Med. Image Comput. Comput. Assist. Interv. 12, 483–490 (2009).
[PubMed]
E. V. Zagaynova, O. S. Streltsova, and N. D. Gladkova, and E. al, “In vivo optical coherence tomography feasibility for bladder disease,” J. Urol. 167, 1492–1496 (2002).
[Crossref]
[PubMed]
S. Atasoy, B. Glocker, S. Giannarou, D. Mateus, A. Meining, G.-Z. Yang, and N. Navab, “Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy,” Med. Image Comput. Comput. Interv. 5761, 499–506 (2009).
M. Waechter, N. Moehrle, and M. Goesele, “Let There Be Color! Large-Scale Texturing of 3D Reconstructions,” in “Proc ECCV,” (2014), pp. 836–850.
E. Sanchez, A. Goh, S. Soni, and S. Lerner, “Optical coherence tomography (OCT) as an adjunct to conventional cystoscopy and pathology for non-invasive endoscopic staging of bladder tumors,” Urology 78, 2011 (2011).
[Crossref]
S. P. Lerner, A. C. Goh, N. J. Tresser, and S. S. Shen, “Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and staging of bladder cancer,” Urology 72, 133–137 (2008).
[Crossref]
[PubMed]
C. Doignon, P. Graebling, and M. De Mathelin, “Real-time segmentation of surgical instruments inside the abdominal cavity using a joint hue saturation color feature,” Real-Time Imaging 11, 429–442 (2005).
[Crossref]
R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University Press, 2000).
B. Allain, M. Hu, L. B. Lovat, R. J. Cook, T. Vercauteren, S. Ourselin, and D. J. Hawkes, “Re-localisation of a biopsy site in endoscopic images and characterisation of its uncertainty,” Med. Image Anal. 16, 482–496 (2012).
[Crossref]
J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]
M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” Symp. Geom. Process 7, 61–70 (2006).
J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]
B. Allain, M. Hu, L. B. Lovat, R. J. Cook, T. Vercauteren, S. Ourselin, and D. J. Hawkes, “Re-localisation of a biopsy site in endoscopic images and characterisation of its uncertainty,” Med. Image Anal. 16, 482–496 (2012).
[Crossref]
G. A. Sonn, S. N. E. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J Urol 182, 1299–1305 (2009).
[Crossref]
[PubMed]
M. Ye, E. Johns, S. Giannarou, and G. Yang, “Online scene association for endoscopic navigation,” Med. Image Comput. Comput. Interv. 8674, 316–323 (2014).
G. A. Sonn, S. N. E. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J Urol 182, 1299–1305 (2009).
[Crossref]
[PubMed]
M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” Symp. Geom. Process 7, 61–70 (2006).
K. L. Lurie, G. T. Smith, S. A. Khan, J. C. Liao, and A. K. Ellerbee, “Three-dimensional, distendable bladder phantom for optical coherence tomography and white light cystoscopy,” J. Biomed. Opt. 19, 036009 (2014).
[Crossref]
J. Schmidbauer, M. Remzi, T. Klatte, M. Waldert, J. Mauermann, M. Susani, and M. Marberger, “Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder,” Eur. Urol. 56, 914–919 (2009).
[Crossref]
[PubMed]
M. Agenant, H.-J. Noordmans, W. Koomen, and J. L. H. R. Bosch, “Real-time bladder lesion registration and navigation: a phantom study,” PLOS ONE 8, e54348 (2013).
[Crossref]
[PubMed]
E. Sanchez, A. Goh, S. Soni, and S. Lerner, “Optical coherence tomography (OCT) as an adjunct to conventional cystoscopy and pathology for non-invasive endoscopic staging of bladder tumors,” Urology 78, 2011 (2011).
[Crossref]
S. P. Lerner, A. C. Goh, N. J. Tresser, and S. S. Shen, “Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and staging of bladder cancer,” Urology 72, 133–137 (2008).
[Crossref]
[PubMed]
K. L. Lurie, G. T. Smith, S. A. Khan, J. C. Liao, and A. K. Ellerbee, “Three-dimensional, distendable bladder phantom for optical coherence tomography and white light cystoscopy,” J. Biomed. Opt. 19, 036009 (2014).
[Crossref]
G. A. Sonn, S. N. E. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J Urol 182, 1299–1305 (2009).
[Crossref]
[PubMed]
K. L. Lurie, R. Angst, D. Z. Zlatev, J. C. Liao, and A. K. Bowden, “3D reconstruction and co-registration of endoscopic video sequences for longitudinal studies,” (in rev).
C. A. Lingley-Papadopoulos, M. H. Loew, M. J. Manyak, and J. M. Zara, “Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis,” J. Biomed. Opt. 13, 024003 (2008).
[Crossref]
[PubMed]
C. A. Lingley-Papadopoulos, M. H. Loew, M. J. Manyak, and J. M. Zara, “Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis,” J. Biomed. Opt. 13, 024003 (2008).
[Crossref]
[PubMed]
B. Allain, M. Hu, L. B. Lovat, R. J. Cook, T. Vercauteren, S. Ourselin, and D. J. Hawkes, “Re-localisation of a biopsy site in endoscopic images and characterisation of its uncertainty,” Med. Image Anal. 16, 482–496 (2012).
[Crossref]
K. L. Lurie, A. A. Gurjarpadhye, E. J. Seibel, and A. K. Ellerbee, “Rapid scanning catheterscope for expanded forward-view volumetric imaging with optical coherence tomography,” Opt. Lett. 40, 3165–3168 (2015).
[Crossref]
[PubMed]
K. L. Lurie, G. T. Smith, S. A. Khan, J. C. Liao, and A. K. Ellerbee, “Three-dimensional, distendable bladder phantom for optical coherence tomography and white light cystoscopy,” J. Biomed. Opt. 19, 036009 (2014).
[Crossref]
K. L. Lurie, R. Angst, D. Z. Zlatev, J. C. Liao, and A. K. Bowden, “3D reconstruction and co-registration of endoscopic video sequences for longitudinal studies,” (in rev).
G. A. Sonn, S. N. E. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J Urol 182, 1299–1305 (2009).
[Crossref]
[PubMed]
C. A. Lingley-Papadopoulos, M. H. Loew, M. J. Manyak, and J. M. Zara, “Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis,” J. Biomed. Opt. 13, 024003 (2008).
[Crossref]
[PubMed]
J. Schmidbauer, M. Remzi, T. Klatte, M. Waldert, J. Mauermann, M. Susani, and M. Marberger, “Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder,” Eur. Urol. 56, 914–919 (2009).
[Crossref]
[PubMed]
S. Atasoy, B. Glocker, S. Giannarou, D. Mateus, A. Meining, G.-Z. Yang, and N. Navab, “Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy,” Med. Image Comput. Comput. Interv. 5761, 499–506 (2009).
J. Schmidbauer, M. Remzi, T. Klatte, M. Waldert, J. Mauermann, M. Susani, and M. Marberger, “Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder,” Eur. Urol. 56, 914–919 (2009).
[Crossref]
[PubMed]
S. Atasoy, B. Glocker, S. Giannarou, D. Mateus, A. Meining, G.-Z. Yang, and N. Navab, “Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy,” Med. Image Comput. Comput. Interv. 5761, 499–506 (2009).
M. Waechter, N. Moehrle, and M. Goesele, “Let There Be Color! Large-Scale Texturing of 3D Reconstructions,” in “Proc ECCV,” (2014), pp. 836–850.
P. Mountney, S. Giannarou, D. Elson, and G.-Z. Yang, “Optical biopsy mapping for minimally invasive cancer screening,” Med. Image Comput. Comput. Assist. Interv. 12, 483–490 (2009).
[PubMed]
S. Atasoy, B. Glocker, S. Giannarou, D. Mateus, A. Meining, G.-Z. Yang, and N. Navab, “Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy,” Med. Image Comput. Comput. Interv. 5761, 499–506 (2009).
M. Agenant, H.-J. Noordmans, W. Koomen, and J. L. H. R. Bosch, “Real-time bladder lesion registration and navigation: a phantom study,” PLOS ONE 8, e54348 (2013).
[Crossref]
[PubMed]
B. Allain, M. Hu, L. B. Lovat, R. J. Cook, T. Vercauteren, S. Ourselin, and D. J. Hawkes, “Re-localisation of a biopsy site in endoscopic images and characterisation of its uncertainty,” Med. Image Anal. 16, 482–496 (2012).
[Crossref]
J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]
C. Zach and M. Pollefeys, “Practical methods for convex multi-view reconstruction,” Lect. Notes Comput. Sci. 6314, 354–367 (2010).
[Crossref]
J. Schmidbauer, M. Remzi, T. Klatte, M. Waldert, J. Mauermann, M. Susani, and M. Marberger, “Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder,” Eur. Urol. 56, 914–919 (2009).
[Crossref]
[PubMed]
H. Ren, W. C. Waltzer, and R. Bhalla, and E. al, “Diagnosis of bladder cancer with microelectromechanical systems-based cystoscopic optical coherence tomography,” Urology 74, 1351–1357 (2009).
[Crossref]
[PubMed]
R. M. Cothren, R. Richards-Kortum, and M. V. Sivak, and E. al, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[Crossref]
[PubMed]
E. Sanchez, A. Goh, S. Soni, and S. Lerner, “Optical coherence tomography (OCT) as an adjunct to conventional cystoscopy and pathology for non-invasive endoscopic staging of bladder tumors,” Urology 78, 2011 (2011).
[Crossref]
J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]
J. Schmidbauer, M. Remzi, T. Klatte, M. Waldert, J. Mauermann, M. Susani, and M. Marberger, “Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder,” Eur. Urol. 56, 914–919 (2009).
[Crossref]
[PubMed]
J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]
J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]
R. Zhang, P.-s. Tsai, J. E. Cryer, and M. Shah, “Shape from Shading : A Survey,” Rev. Lit. Arts Am. 21, 1–41 (1999).
S. P. Lerner, A. C. Goh, N. J. Tresser, and S. S. Shen, “Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and staging of bladder cancer,” Urology 72, 133–137 (2008).
[Crossref]
[PubMed]
R. M. Cothren, R. Richards-Kortum, and M. V. Sivak, and E. al, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[Crossref]
[PubMed]
K. L. Lurie, G. T. Smith, S. A. Khan, J. C. Liao, and A. K. Ellerbee, “Three-dimensional, distendable bladder phantom for optical coherence tomography and white light cystoscopy,” J. Biomed. Opt. 19, 036009 (2014).
[Crossref]
E. Sanchez, A. Goh, S. Soni, and S. Lerner, “Optical coherence tomography (OCT) as an adjunct to conventional cystoscopy and pathology for non-invasive endoscopic staging of bladder tumors,” Urology 78, 2011 (2011).
[Crossref]
G. A. Sonn, S. N. E. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J Urol 182, 1299–1305 (2009).
[Crossref]
[PubMed]
E. V. Zagaynova, O. S. Streltsova, and N. D. Gladkova, and E. al, “In vivo optical coherence tomography feasibility for bladder disease,” J. Urol. 167, 1492–1496 (2002).
[Crossref]
[PubMed]
J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]
J. Schmidbauer, M. Remzi, T. Klatte, M. Waldert, J. Mauermann, M. Susani, and M. Marberger, “Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder,” Eur. Urol. 56, 914–919 (2009).
[Crossref]
[PubMed]
G. A. Sonn, S. N. E. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J Urol 182, 1299–1305 (2009).
[Crossref]
[PubMed]
C. Q. Forster and C. Tozzi, “Towards 3D reconstruction of endoscope images using shape from shading,” SIBGRAPI pp. 90–96 (2000).
S. P. Lerner, A. C. Goh, N. J. Tresser, and S. S. Shen, “Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and staging of bladder cancer,” Urology 72, 133–137 (2008).
[Crossref]
[PubMed]
R. Zhang, P.-s. Tsai, J. E. Cryer, and M. Shah, “Shape from Shading : A Survey,” Rev. Lit. Arts Am. 21, 1–41 (1999).
B. Allain, M. Hu, L. B. Lovat, R. J. Cook, T. Vercauteren, S. Ourselin, and D. J. Hawkes, “Re-localisation of a biopsy site in endoscopic images and characterisation of its uncertainty,” Med. Image Anal. 16, 482–496 (2012).
[Crossref]
M. Waechter, N. Moehrle, and M. Goesele, “Let There Be Color! Large-Scale Texturing of 3D Reconstructions,” in “Proc ECCV,” (2014), pp. 836–850.
J. Schmidbauer, M. Remzi, T. Klatte, M. Waldert, J. Mauermann, M. Susani, and M. Marberger, “Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder,” Eur. Urol. 56, 914–919 (2009).
[Crossref]
[PubMed]
H. Ren, W. C. Waltzer, and R. Bhalla, and E. al, “Diagnosis of bladder cancer with microelectromechanical systems-based cystoscopic optical coherence tomography,” Urology 74, 1351–1357 (2009).
[Crossref]
[PubMed]
M. Ye, E. Johns, S. Giannarou, and G. Yang, “Online scene association for endoscopic navigation,” Med. Image Comput. Comput. Interv. 8674, 316–323 (2014).
S. Atasoy, B. Glocker, S. Giannarou, D. Mateus, A. Meining, G.-Z. Yang, and N. Navab, “Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy,” Med. Image Comput. Comput. Interv. 5761, 499–506 (2009).
P. Mountney, S. Giannarou, D. Elson, and G.-Z. Yang, “Optical biopsy mapping for minimally invasive cancer screening,” Med. Image Comput. Comput. Assist. Interv. 12, 483–490 (2009).
[PubMed]
M. Ye, E. Johns, S. Giannarou, and G. Yang, “Online scene association for endoscopic navigation,” Med. Image Comput. Comput. Interv. 8674, 316–323 (2014).
C. Zach and M. Pollefeys, “Practical methods for convex multi-view reconstruction,” Lect. Notes Comput. Sci. 6314, 354–367 (2010).
[Crossref]
E. V. Zagaynova, O. S. Streltsova, and N. D. Gladkova, and E. al, “In vivo optical coherence tomography feasibility for bladder disease,” J. Urol. 167, 1492–1496 (2002).
[Crossref]
[PubMed]
C. A. Lingley-Papadopoulos, M. H. Loew, M. J. Manyak, and J. M. Zara, “Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis,” J. Biomed. Opt. 13, 024003 (2008).
[Crossref]
[PubMed]
R. Zhang, P.-s. Tsai, J. E. Cryer, and M. Shah, “Shape from Shading : A Survey,” Rev. Lit. Arts Am. 21, 1–41 (1999).
R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University Press, 2000).
K. L. Lurie, R. Angst, D. Z. Zlatev, J. C. Liao, and A. K. Bowden, “3D reconstruction and co-registration of endoscopic video sequences for longitudinal studies,” (in rev).
J. Schmidbauer, M. Remzi, T. Klatte, M. Waldert, J. Mauermann, M. Susani, and M. Marberger, “Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder,” Eur. Urol. 56, 914–919 (2009).
[Crossref]
[PubMed]
R. M. Cothren, R. Richards-Kortum, and M. V. Sivak, and E. al, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990).
[Crossref]
[PubMed]
H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping,” IEEE Robot Autom. Mag. 13, 99–116 (2006).
[Crossref]
G. A. Sonn, S. N. E. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, and J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J Urol 182, 1299–1305 (2009).
[Crossref]
[PubMed]
C. A. Lingley-Papadopoulos, M. H. Loew, M. J. Manyak, and J. M. Zara, “Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis,” J. Biomed. Opt. 13, 024003 (2008).
[Crossref]
[PubMed]
K. L. Lurie, G. T. Smith, S. A. Khan, J. C. Liao, and A. K. Ellerbee, “Three-dimensional, distendable bladder phantom for optical coherence tomography and white light cystoscopy,” J. Biomed. Opt. 19, 036009 (2014).
[Crossref]
P. Clark, N. Agarwal, and M. C. Biagioli, and E. al, “Clinical Practice Guidelines in Oncology,” J. Natl. Compr. Canc. Netw. 11, 446–475 (2013).
[PubMed]
E. V. Zagaynova, O. S. Streltsova, and N. D. Gladkova, and E. al, “In vivo optical coherence tomography feasibility for bladder disease,” J. Urol. 167, 1492–1496 (2002).
[Crossref]
[PubMed]
C. Zach and M. Pollefeys, “Practical methods for convex multi-view reconstruction,” Lect. Notes Comput. Sci. 6314, 354–367 (2010).
[Crossref]
B. Allain, M. Hu, L. B. Lovat, R. J. Cook, T. Vercauteren, S. Ourselin, and D. J. Hawkes, “Re-localisation of a biopsy site in endoscopic images and characterisation of its uncertainty,” Med. Image Anal. 16, 482–496 (2012).
[Crossref]
P. Mountney, S. Giannarou, D. Elson, and G.-Z. Yang, “Optical biopsy mapping for minimally invasive cancer screening,” Med. Image Comput. Comput. Assist. Interv. 12, 483–490 (2009).
[PubMed]
J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feussner, B. Schmauss, and J. Hornegger, “Time-of-Flight 3-D endoscopy,” Med. Image Comput. Comput. Assist. Interv. 12, 467–474 (2009).
[PubMed]
S. Atasoy, B. Glocker, S. Giannarou, D. Mateus, A. Meining, G.-Z. Yang, and N. Navab, “Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy,” Med. Image Comput. Comput. Interv. 5761, 499–506 (2009).
M. Ye, E. Johns, S. Giannarou, and G. Yang, “Online scene association for endoscopic navigation,” Med. Image Comput. Comput. Interv. 8674, 316–323 (2014).
M. Agenant, H.-J. Noordmans, W. Koomen, and J. L. H. R. Bosch, “Real-time bladder lesion registration and navigation: a phantom study,” PLOS ONE 8, e54348 (2013).
[Crossref]
[PubMed]
C. Doignon, P. Graebling, and M. De Mathelin, “Real-time segmentation of surgical instruments inside the abdominal cavity using a joint hue saturation color feature,” Real-Time Imaging 11, 429–442 (2005).
[Crossref]
R. Zhang, P.-s. Tsai, J. E. Cryer, and M. Shah, “Shape from Shading : A Survey,” Rev. Lit. Arts Am. 21, 1–41 (1999).
M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” Symp. Geom. Process 7, 61–70 (2006).
H. Ren, W. C. Waltzer, and R. Bhalla, and E. al, “Diagnosis of bladder cancer with microelectromechanical systems-based cystoscopic optical coherence tomography,” Urology 74, 1351–1357 (2009).
[Crossref]
[PubMed]
E. Sanchez, A. Goh, S. Soni, and S. Lerner, “Optical coherence tomography (OCT) as an adjunct to conventional cystoscopy and pathology for non-invasive endoscopic staging of bladder tumors,” Urology 78, 2011 (2011).
[Crossref]
S. P. Lerner, A. C. Goh, N. J. Tresser, and S. S. Shen, “Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and staging of bladder cancer,” Urology 72, 133–137 (2008).
[Crossref]
[PubMed]
K. L. Lurie, R. Angst, D. Z. Zlatev, J. C. Liao, and A. K. Bowden, “3D reconstruction and co-registration of endoscopic video sequences for longitudinal studies,” (in rev).
M. Waechter, N. Moehrle, and M. Goesele, “Let There Be Color! Large-Scale Texturing of 3D Reconstructions,” in “Proc ECCV,” (2014), pp. 836–850.
R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University Press, 2000).
C. Q. Forster and C. Tozzi, “Towards 3D reconstruction of endoscope images using shape from shading,” SIBGRAPI pp. 90–96 (2000).