Skip to:

PUBLICATIONS

The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields
Journal Article

Large-scale crop monitoring and yield estimation are important for both scientific research and practical applications. Satellite remote sensing provides an effective means for regional and global cropland monitoring, particularly in data-sparse regions that lack reliable ground observations and reporting. The conventional approach of using visible and near-infrared based vegetation index (VI) observations has prevailed for decades since the onset of the global satellite era. However, other satellite data encompass diverse spectral ranges that may contain complementary information on crop growth and yield, but have been largely understudied and underused. Here we conducted one of the first attempts at synergizing multiple satellite data spanning a diverse spectral range, including visible, near-infrared, thermal and microwave, into one framework to estimate crop yield for the U.S. Corn Belt, one of the world's most important food baskets. Overall, using satellite data from various spectral bands significantly improves regional crop yield predictions. The additional use of ancillary climate data (e.g. precipitation and temperature) further improves model skill, in part because the crop reproductive stage related to harvest index is highly sensitive to environmental stresses but they are not fully captured by the satellite data used in our study. We conclude that using satellite data across various spectral ranges can improve monitoring of large-scale crop growth and yield beyond what can be achieved from individual sensors. These results also inform the synergistic use and development of current and next generation satellite missions, including NASA ECOSTRESS, SMAP, and OCO-2, for agricultural applications.

Share This Publication