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Abstract

This review summarizes current knowledge of synaptic proteins that are cen-
tral to synaptic vesicle fusion in presynaptic active zones, including SNAREs
(soluble N-ethylmaleimide sensitive factor attachment protein receptors),
synaptotagmin, complexin, Munc18 (mammalian uncoordinated-18), and
Munc13 (mammalian uncoordinated-13), and highlights recent insights in
the cooperation of these proteins for neurotransmitter release. Structural
and functional studies of the synaptic fusion machinery suggest new molec-
ular models of synaptic vesicle priming and Ca2+-triggered fusion. These
studies will be a stepping-stone toward answering the question of how the
synaptic vesicle fusion machinery achieves such high speed and sensitivity.
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1. INTRODUCTION

During synaptic transmission, Ca2+ influx into the presynaptic terminal triggers neurotransmitter
release. This process involves sensing Ca2+ and subsequently fusing neurotransmitter-filled synap-
tic vesicles with the presynaptic membrane in less than a millisecond (125, 142). In the neuron,
neurotransmitters are released “synchronously” upon action potential arrival in the synaptic termi-
nal, “asynchronously” with a certain delay after an action potential, and “spontaneously” without
an action potential; each of these processes likely involves specific sets of synaptic proteins (70).
Many, if not most, of the key factors of the core synaptic fusion machinery have been identified, in-
cluding SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors), NSF
(N-ethylmaleimide-sensitive factor), SNAP (soluble NSF adaptor protein), synaptotagmin (ab-
breviated as Syt), complexin (abbreviated as Cpx), Munc18 (mammalian uncoordinated-18), and
Munc13 (mammalian uncoordinated-13). Yet important questions remain: How is the process
tightly regulated by Ca2+, and how is it triggered within less than a millisecond, much faster than
any other biological membrane fusion process? We first summarize the current knowledge about
each individual factor in an encyclopedic fashion (Sections 2–7) and then discuss recent insights
into the cooperation and interplay between these factors for neurotransmitter release (Sections 8–
10). The reader may wish to skip to these sections first and consult the sections on the individual
factors when more information is needed.
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Syt1 and Ca2+ 
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Plasma
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Disassembly
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Figure 1
The roles of SNAREs in the synaptic vesicle cycle. SNAREs form a trans complex that juxtaposes
membranes after synaptic vesicle docking and priming, and when it combines with Syt1, evoked fusion
occurs upon an action potential. During fusion, SNARE complexes are fully formed (cis complex). Cis
SNARE complexes are disassembled by the ATPase NSF in conjunction with SNAPs and made available for
another round of synaptic vesicle formation. Abbreviations: NSF, N-ethylmaleimide-sensitive factor; SNAP,
soluble NSF adaptor protein; SNARE, soluble N-ethylmaleimide sensitive factor attachment protein
receptor; Syt1, synaptotagmin-1.

2. SNAREs

In this review, we focus on the neuronal SNAREs and their most extensively studied isoforms. Prior
to membrane fusion, synaptobrevin-2 (also called VAMP2—vesicle associated membrane protein
2) on the synaptic vesicle, and syntaxin-1A and SNAP-25A on the plasma membrane initially
form a trans SNARE complex with the transmembrane domains of synaptobrevin-2 and syntaxin-
1A in their respective membranes (Figure 1). Moreover, individual syntaxin-1A molecules form
clusters in the plasma membrane that are segregated from phosphatidylinositol-4,5-bisphosphate
(PIP2) domains (152). During fusion, the SNARE complex completely zippers into the fully
assembled cis SNARE complex where the soluble core consists of a parallel four-α-helix bundle
(147). The synaptobrevin-2 and syntaxin-1A helices of the cis SNARE complex extend into the
merged membrane (139). The topology of the core of the SNARE complex is a left-handed four-
helix coiled coil where the core consists of layers of primarily hydrophobic residues, except for
an ionic layer at the center of the complex consisting of three glutamine amino acid residues and
one arginine residue (referred to as the ionic or zero layer) (40, 147). In addition to this parallel
four-α-helix bundle configuration, SNAREs can form a variety of noncanonical stoichiometries
and configurations in vitro (reviewed in 17), and we discuss potential physiological roles of these
noncanonical assemblies in Section 10.
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The assembly of the SNARE complex is thought to provide the energy necessary for membrane
fusion (147, 162). Single-molecule optical and magnetic trap pulling experiments suggest that the
free energy that is released by the zippering of one SNARE complex is approximately 36 kBT (43,
106) and that a half-zippered intermediate exists under so-called loaded conditions (i.e., when the
juxtamembrane regions of the SNARE complex are steadily pulled by a force apparatus). However,
we note that direct imaging of the trans SNARE complex has not yet been achieved. Nevertheless,
the estimated free energy that is required to pull one SNARE complex apart is somewhat less than
the energy that is required to overcome the hydration-force barrier for the formation of a lipid
stalk (i.e., the dehydration energy of ∼40–90 kBT that is required to induce stalk formation) (2).
Additional energy may be required for pore formation and expansion (29). Consistent with this
notion, SNAREs mediate membrane exchange when reconstituted into proteoliposomes (162).
As little as one SNARE complex (151) is sufficient for ensemble lipid mixing of proteoliposomes,
but at least two synaptobrevin-2 molecules, and presumably two SNARE complexes, are required
for fast Ca2+-triggered exocytosis (134). Although these lipid mixing experiments demonstrate
that SNAREs mediate membrane exchange, content mixing is the proper correlation for neuro-
transmitter release since lipid mixing can occur in the absence of full fusion owing to metastable
hemifusion diaphragms (36, 55, 80). Moreover, dequenching of the fluorescent dyes used in lipid
mixing assays may occur because of other phenomena (190). The first genuine content mixing
experiment for precisely timed Ca2+-triggered fusion with synaptic proteins was reported in Ref-
erences 80 and 81 (Figure 2) (for a review of other assays and for more details, see 18). Over the
years, this single-vesicle fusion assay has progressed to include more molecular components with
the goal of a more complete physiological reconstitution (36, 82–84) (Section 10).

3. SYNAPTOTAGMIN

Since SNARE complex formation is not sensitive to Ca2+, other factors introduce the Ca2+ sensi-
tivity that is required for synaptic vesicle fusion. Syts constitute an evolutionary conserved family
of proteins (108) that are composed of an N-terminal single transmembrane-spanning domain,
a variable juxtamembrane linker, and two C-terminal cytoplasmic C2 domains, termed C2A and
C2B (115). Sixteen Syts are expressed in the brain, eight of which bind Ca2+. In this review, we
focus on the major Ca2+ sensor synaptotagmin-1 (Syt1), which resides on the synaptic vesicle and
is vital for synchronous Ca2+-triggered synaptic vesicle fusion (42, 44).

Syt2 and Syt9 are also involved in Ca2+-triggered synchronous neurotransmitter release for
different subsets of neurons (171), while Syt7 predominates in asynchronous release (5, 164). In
addition, Syt1 and Syt7 together act as redundant Ca2+ sensors for neuroendocrine exocytosis (128,
144), and they also participate in postsynaptic AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid) receptor exocytosis during long-term potentiation (168).

Syt1 interacts with anionic membranes and SNARE complexes in both Ca2+-dependent and
Ca2+-independent manners (7, 15, 16, 22, 27, 32, 42, 61, 75, 79, 114, 156, 160, 188). Syt1 function
and membrane binding are specific to Ca2+; in other words, other divalent cations, such as Sr2+,
only weakly trigger synaptic vesicle fusion (39). Under certain experimental in vitro conditions
(i.e., in the presence of Ca2+), the Syt1 C2B domain or the C2A-C2B fragment binds to curved
membranes or favors deformation of the membrane (62, 96), and they may stimulate membrane
juxtaposition, bridging, or clustering (3, 94, 153). Computer simulations support the notion that
both C2 domains cooperate to induce membrane bending (169). Moreover, the linker between
the C2 domains is important for Syt1 function in neurons (6, 89), and both C2 domains can
insert into the same membrane at the same time upon Ca2+ binding in vitro (60). Additionally,
the juxtamembrane linker domain—the domain between the transmembrane domain and the C2

472 Brunger et al.
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Figure 2 (Figure appears on preceding page)

Single-vesicle fusion assay. (a) The schema shows the initial setup with vesicles with reconstituted synaptobrevin-2 and
synaptotagmin-1 that mimic synaptic vesicles, and surface-tethered vesicles with reconstituted syntaxin-1A and SNAP-25A that mimic
the plasma membrane. Cpx1 is included in solution. A soluble dye is encapsulated into the synaptic vesicle mimics. The dyes are at high
enough concentration to result in self-quenching of the fluorescence intensity. An increase in volume will produce an increase in the
fluorescence intensity, indicating a fusion event. (b) Examples of content-dye fluorescence-intensity time traces of no fusion (top trace),
Ca2+-independent fusion (second trace from top), and Ca2+-triggered fusion (third trace from top). The bottom trace shows the
fluorescence intensity of an indicator dye that is included along with the injected Ca2+ solution. For more details, see References 36,
80–82, and 84. Additional abbreviations: Cpx1, complexin-1; SNAP-25, synaptosomal-associated protein 25.

domains—is important for Syt1 function in fusion assays (85) and in neurons (87). Thus the relative
locations of the C2 domains are critical for proper function, but the precise location of Syt C2
domains before and after Ca2+ triggering remains to be directly visualized.

While mutations in the Ca2+-binding sites of the Syt1 C2A domain can partially rescue Syt1-
deficient mammalian neurons, mutations in the Ca2+-binding sites of the Syt1 C2B domain cannot
(110, 133, 172). The mutations in the Syt1 C2B domain not only block Ca2+-evoked synchronous
release in an intact synapse but also dominantly inhibit the ability of endogenous wild-type Syt1
to trigger fusion, consequently increasing spontaneous miniature release when coexpressed (86,
168, 189).

SNAREs and Syt1 alone are sufficient to promote Ca2+-triggered proteoliposome lipid mixing
(150). However, as mentioned above, lipid mixing does not necessarily correlate with neurotrans-
mitter release since lipid mixing can occur without content mixing. While SNAREs and Syt1 can
indeed promote full fusion (i.e., content mixing) upon Ca2+ triggering (36, 80) with a ratio of ∼10
of Ca2+-triggered to Ca2+-independent fusion probabilities (84), Ca2+-triggered fusion with this
minimal system is relatively inefficient. As discussed in Section 10, a more complete reconstitution
greatly increases the efficiency and synchrony of Ca2+-triggered fusion.

The first crystal structure of a Syt C2 domain (146) revealed that there are no large conforma-
tional changes upon Ca2+ binding. Rather, the C2 domain acts as an electrostatic switch where
Ca2+ binding neutralizes the negative charges in that region as suggested by nuclear magnetic res-
onance (NMR) experiments (130). Structures of complexes between Syts and the SNARE complex
have been extremely difficult to obtain owing to the multiple binding modes of the components
of the complex (15, 27), and electrostatic shielding may disrupt certain SNARE-Syt interactions
(113). It is only recently that crystal structures of SNARE/Syt1 and SNARE/Cpx1/Syt1 complexes
have been obtained and functionally validated (188, 189) (Section 9).

4. COMPLEXIN

The cytoplasmic protein Cpx also plays critical roles in neurotransmitter release. Specifically,
synchronous evoked neurotransmitter release depends on Cpx (102), and this activating role of
Cpx is conserved across all species and different types of Ca2+-induced exocytosis studied to date
(21, 56, 63, 72, 97, 100, 122, 177, 179, 181). Cpx also regulates spontaneous release, although this
effect is less conserved among species and experimental conditions: For example, in Drosophila,
spontaneous release increases with knockout of Cpx compared to wild-type neurons (67, 175).
Likewise, knockdown in cultured cortical mouse neurons increases spontaneous release compared
to wild-type neurons, and knockout of Cpx affects spontaneous release depending on the particular
neuronal cell type (72, 100, 149, 179).

We focus here on the homolog complexin-1 (Cpx1) of the mammalian Cpx family whose
primary sequence is highly conserved (96%) in mouse, rat, and human. Cpx1 consists of four

474 Brunger et al.
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domains: The N-terminal domain is important for activation of synchronous Ca2+-triggered
release in murine neurons (100, 174, 176) and in isolated chromaffin cells (34); the accessory
domain regulates spontaneous release (100); the central domain is required for all functions of
Cpx1 and it binds with high affinity (∼10 nM) to the neuronal ternary SNARE complex (24, 102,
112); and the C-terminal domain is involved in vesicle priming and binds to anionic membranes
in a curvature-sensitive fashion (24, 48, 72, 100, 136).

As revealed by structural studies, both the N- and C-terminal domains of isolated Cpx1 are
largely unstructured in solution, while the accessory and central domains have α-helical propen-
sity (111). The central domain of Cpx1 binds to the groove formed by the synaptobrevin-2 and
syntaxin-1A α-helices in the SNARE complex (14, 24). This interaction is antiparallel; in other
words, the direction of the α-helix of the accessory domain of Cpx1 is antiparallel to the direction
of the α-helices in the ternary SNARE complex.

The accessory domain of Cpx1 is not required for activation of Ca2+-triggered single-vesicle
fusion with reconstituted neuronal SNAREs and Syt1 (83), and mutations of this domain have
little effect on evoked release in neurons (180). However, mutations of the Cpx1 accessory domain
affect spontaneous release (26, 149, 180) (although these studies differed in the effect of the so-
called superclamp mutation (D27L, E34F, R37A) of Cpx1), and elimination of the accessory
domain increases Ca2+-independent single-vesicle fusion (content mixing) (83) compared to wild-
type control. In another study, introduction of an α-helix breaking mutation into the accessory
domain of Cpx1 increased spontaneous release in Caenorhabditis elegans (120).

Functional studies, along with molecular modeling, suggested that Cpx1 may inhibit full ternary
SNARE complex formation by preventing the C-terminal part of synaptobrevin-2 from binding
to the syntaxin-1A/SNAP-25A subcomplex of the ternary SNARE complex (46, 47). However,
a subsequent crystal structure of the superclamp mutant of Cpx1 showed an interaction with
a partially truncated SNARE complex (containing a truncated synaptobrevin-2 fragment). The
mutated Cpx1 bridges two partially truncated SNARE complexes: One partial SNARE complex
binds to the central domain of Cpx1, while another partial SNARE complex binds weakly to the
accessory domain of the same Cpx1 molecule (PDB IDs 3RK3 and 3RL0) (77, 78). Although an
interaction of the accessory domain was weakly observed for wild-type proteins with isothermal
titration calorimetry (ITC) and light scattering experiments, it may not necessarily correspond
to that observed in the crystal structure with mutated Cpx1. However, this interaction was not
observed by NMR (149), perhaps because of differences in the length of syntaxin constructs (77,
119). Finally, single-molecule fluorescence experiments demonstrated that the accessory domain
also weakly interacts with the syntaxin-1A/SNAP-25A (binary) complex (28). Moreover, these
single-molecule studies showed that both binding modes of the Cpx1 accessory helix are possi-
ble, reconciling the previous results. However, the biological context of these weak interactions
involving the accessory domain remains to be elucidated.

The C-terminal domain of Cpx1 binds to phospholipids (72, 129), and it is important for vesicle
priming in neurons (34, 35, 72). Moreover, Cpx1 without the C-terminal domain does not reduce
spontaneous release, but it still activates Ca2+-triggered release in neuronal cultures (72) and in a
reconstituted system (84). The C-terminal domain is sensitive to membrane curvature, and it may
thus localize Cpx1 to the synaptic membrane (48, 136, 167). Interestingly, the curvature-sensing
value of the C-terminal domain is comparable to that of α-synuclein (48, 65) (i.e., a value that cor-
responds to the relatively high curvature of synaptic vesicles with a typical diameter of 40 nm). In
support of this notion, replacement of the C-terminal domain with plasma membrane–localizing
elements results in increased spontaneous neurotransmission and a prolonged synchronous de-
cay time constant of NMDA (N-methyl-D-aspartate receptor)-type glutamate receptor–evoked
postsynaptic currents in cultured neurons (48).
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In conjunction with neuronal SNAREs and Syt1, Cpx1 increases the Ca2+-triggered amplitude
(∼2.5-fold) and synchrony of proteoliposome fusion, and it also suppresses Ca2+-independent
single-vesicle fusion (content mixing) (84), resulting in a 50–100-fold ratio of Ca2+-triggered
fusion to Ca2+-independent fusion. Moreover, the functions of the four domains of Cpx1 have been
reproduced in vitro (83, 84). By varying the Cpx1 concentration, these single-vesicle studies suggest
that the regulatory effect on Ca2+-independent fusion and the facilitating role on Ca2+-triggered
fusion are governed by distinct molecular mechanisms involving different subsets of the four
domains of Cpx1. Similarly, genetic experiments in Drosophila also suggest distinct mechanisms
for activation of fast synchronous release and regulation of spontaneous release (25).

5. Munc18

Sec1/Munc18 proteins are also required components of all membrane trafficking pathways as ex-
emplified by the block of synaptic vesicle fusion upon Munc18-1 knockout in mice (155). Following
disassembly of either ternary or binary SNARE complexes with NSF and SNAP, Munc18-1 cap-
tures syntaxin-1A, locking it into a closed conformation and preventing reassembly of the ternary
SNARE complex (93). Munc18-1 binds tightly (Kd ≈ 1–4 nM) to syntaxin-1A in which the N-
terminal Habc domain of syntaxin-1A forms a cis conformation with the syntaxin-1A SNARE motif
(19, 23, 107), in turn hindering SNARE complex formation (117, 178). The Munc18-1/syntaxin-
1A complex may thus serve as a starting point for the synaptic vesicle cycle. However, to enable
ternary SNARE complex formation, another factor is required, such as Munc13 (discussed below).

Munc18 colocalizes with syntaxin and SNAP-25 in fixed cultured neurons and forms nan-
oclusters in the plasma membrane (116). Interestingly, in neuroendocrine cells, transfection of
syntaxin alone results in its mislocalization, whereas cotransfection of both Munc18 and syntaxin
results in proper trafficking to the plasma membrane (103, 126). Thus, one function of Munc18
may be to stabilize or “chaperone” syntaxin, which also agrees with the aforementioned knockout
studies of Munc18 in mice that showed a reduced level of syntaxin-1 in the plasma membrane
(13). The crystal structure of the Munc18-1/syntaxin-1A complex revealed extensive interactions
of syntaxin-1A in the closed conformation with the concave surface formed by domains 1 and
3 of Munc18-1 (107), explaining the inability of the syntaxin-1A SNARE motif in this closed
conformation to interact with SNAP-25A and synaptobrevin-2.

Binding of Munc18-1 to the closed conformation of syntaxin-1A is not always required, as
the syntaxin-1A N-terminal Habc domain is not essential for evoked synaptic vesicle fusion in
cultured syntaxin-1A-deficient neurons, although it is required for spontaneous synaptic vesicle
fusion (187). In marked contrast, the N-terminal residues of syntaxin-1A are required for binding
of the ternary SNARE complex to Munc18-1 and may thereby serve as a recruiting factor for
Munc18-1 (121). Munc18-1 binds to the assembled ternary SNARE complex via the syntaxin-1A
N-terminal residues, with syntaxin-1A in an open conformation (33, 59, 131, 173). In this open
conformation, the SNARE motif of syntaxin-1A interacts with its partner SNARE motifs to form
the SNARE complex (147), while the syntaxin-1A Habc domain is presumably flexibly linked to
the four-helix core of the SNARE complex (52, 109).

6. Munc13

Munc13-1 and its homologs are primarily brain-specific, cytoplasmic proteins in the presynaptic
terminal that are involved in synaptic vesicle priming and short-term synaptic plasticity (141,
142). Munc13-1 is expressed in all neurons of the rat central nervous system, while Munc13-2
and Munc13-3 are mostly restricted to different brain regions. The ubiquitously expressed splice
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variant ubMunc13-2 and the Munc13-4 isoform are predominantly expressed in nonneuronal cells
(74). Munc13-4 includes only the C2B, MUN, and C2C domains. The UNC-13 and Dunc-13
homologs of Munc13-1 lack the N-terminal C2A domain, as do a brain-specific splice-variant of
bMunc13-2 and the Munc13-3 isoform. Here, we focus on the Munc13-1 isoform.

Early studies found that neurons in mice lacking Munc13-1 exhibit severely limited activity-
dependent as well as hypertonic sucrose-induced neurotransmitter release (4). Moreover, deletion
of Munc13-1 results in substantially larger distances between synaptic vesicles and active zones as
observed by electron microscopy (51, 64, 163). The priming phenotype of Munc13-1 knockout is
much stronger than that of other priming factors, including Cpx1 (179); in other words, the size of
the readily releasable pool of synaptic vesicles is much smaller in Munc13-1 knockout mice than in
Cpx1 knockout mice. Moreover, Munc13-1, together with Munc18-1, prevents NSF-dependent
depriming of synaptic vesicles (54). Finally, Munc13-1 and -2 double-knockout mice have essen-
tially no release-competent synaptic vesicles (154) and exhibit a severe docking defect (64).

Below, we briefly summarize structural and functional studies for each domain of Munc13-1.
Munc13-1 consists of a C1 domain (C1), a calmodulin-binding domain, two C2 domains (C2A,
C2B), a MUN domain, and another C2 domain (C2C). The crystal structure of the C1C2BMUN
fragment of Munc13-1 revealed interdomain interactions among the C1, C2B, and MUN domains
and a folded linker region between the C1 and C2B domains (170). A cryo-electron tomography
(cryoET) study of vesicles with bound C1C2BMUN revealed filamentous features that suggest
hinge bending of this fragment, with the straight conformation being consistent with the crystal
structure (45).

Functionally, the C2A domain of Munc13-1 interacts with the Rab3 effector RIM (Rab3-
interacting molecule), forming a tripartite complex (37) that is important for the priming function
of Munc13-1 and for the presynaptic localization in mice (69). Likewise, the C2A domain of
UNC-13 in C. elegans is important for regulating both evoked and spontaneous release, as well as
its precise localization to the active zone (186).

Munc13-1 and the ubiquitously expressed isoform Munc13-2 contain a conserved calmodulin-
binding domain. When calmodulin binding is disrupted by mutation, evoked release upon a single
action potential is unchanged, but short-term plasticity and Ca2+-dependent modulation of the
readily releasable pool are reduced (68).

The diacylglycerol-phorbol C1 binding domain regulates Munc13-1 functions in short-term
synaptic plasticity and priming of synaptic vesicles, although mutation of the site does not af-
fect isolated evoked neurotransmitter release (123). The C2B domain binds to phospholipids in
a Ca2+-dependent fashion, with particular specificity for phosphatidylinositol-4,5-bisphosphate
(PIP2). Additionally, an interaction between the C2B domain and presynaptic voltage-gated cal-
cium channels modulates use dependence of the channels (20). Interestingly, deletion of the C2B
domain enhances Ca2+-triggered exocytosis in C. elegans neurons, suggesting an autoinhibitory
function of this domain (105).

The MUN domain of Munc13-1 has two major roles in vesicle fusion: catalyzing the transit of
syntaxin-1A from the syntaxin-1A/Munc18-1 complex into the ternary SNARE complex (10, 93,
182) and promoting the proper assembly of the SNARE complex, in particular the parallel con-
figuration of syntaxin-1A and synaptobrevin-2, leading to a higher Ca2+-triggered amplitude and
Ca2+ sensitivity in a single-vesicle fusion assay with reconstituted SNAREs, Syt1, and Cpx1 (82)
(Figures 3 and 4). Supporting this latter role, the so-called LE mutant of syntaxin-1A (syntaxin-
1ALE) (38) bypasses the requirement of Munc13-1 for the transit of syntaxin-1A into the ternary
SNARE complex in the presence of SNAP-25A and synaptobrevin-2 in vitro (92). It accom-
plishes this by preferentially adopting an open conformation of syntaxin-1A (159). However, this
open syntaxin-1A mutant only minimally restores neurotransmitter release in unc-13 mutants of
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Figure 3
Reconstitution with neuronal SNAREs, complexin-1, synaptotagmin-1, NSF, αSNAP, Munc18-1, and Munc13-1. (a) Prior to the
schema shown in Figure 2a, a step is added that dissociates the syntaxin-1A/SNAP-25A complex by NSF, αSNAP, ATP, Mg2+, and
concomitant formation of the syntaxin-1A/Munc18-1 complex. Incubation of the resulting syntaxin-1A/Munc18-1 vesicles with
synaptic vesicle mimics is performed in the presence of Munc13-1, complexin-1, and SNAP-25A. (b) Ca2+ sensitivity of the fusion assay
using the schema shown in panel a. For more details, see Reference 82. Abbreviations: Munc, mammalian uncoordinated; NSF,
N-ethylmaleimide-sensitive factor; SNAP-25, synaptosomal-associated protein 25; SNARE, soluble N-ethylmaleimide sensitive factor
attachment protein receptor.

C. elegans (51), because it does not promote the proper assembly of the SNARE complex (i.e.,
SNARE complexes with the syntaxin-1A LE mutant are scrambled) (82); this observation explains
the poor rescue of Munc13 deletion by this mutant. Earlier studies in C. elegans suggest a similar
function of full-length unc-13 (124), although the role of the MUN domain has not been directly
studied in that system.

Finally, the C2C domain of Munc13-1 also plays a functional role in evoked release in chro-
maffin granule secretion and neurotransmission in C. elegans (95, 140) and in evoked release in
priming in mouse neurons (90). It also enhances ensemble lipid and single-vesicle content mixing
experiments (82, 90). In addition, Munc13 may be involved in synaptic vesicle tethering via the
C2C domain, although the physiological importance remains to be elucidated (90).

Similar to Munc13, CAPS (calcium-dependent activator protein for secretion) proteins are
members of an extended Munc13/CAPS family of proteins that are also important for priming of
synaptic vesicles (66). They contain one Munc13 homology domain (MHD) that includes a portion
of the MUN domain and a pleckstrin homology domain that interacts with PIP2. It is likely that the
MHD domain in CAPS proteins is partially responsible for their function in synaptic priming (31).
Both Munc13s and CAPS proteins are probably jointly important for synaptic vesicle priming.
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Figure 4
Munc13-1 and Munc18-1 assist in proper SNARE complex formation. Starting from the syntaxin-1A/Munc18-1 complex, the ternary
SNARE complex is formed upon addition of the MUN domain of Munc13-1 at the specified concentration, SNAP-25A, and
synaptobrevin-2. Single-molecule FRET measurements involving pairs of fluorescent dyes indicate that the components of the SNARE
complex are parallel to each other. (a) Parallel reporting fluorescent dye pairs on syntaxin-1A and synaptobrevin-2. (b) Parallel
reporting dye pairs on syntaxin-1A and SNAP-25A. The FRET histograms in the right panels indicate that the SNARE complexes are
properly assembled. For more details, see Reference 82. The yellow stars indicate fluorescent labels that are attached to the specified
proteins. Abbreviations: FRET, Förster resonance energy transfer; Munc, mammalian uncoordinated; SNAP-25, synaptosomal-
associated protein 25; SNARE, soluble N-ethylmaleimide sensitive factor attachment protein receptor.

In support of a partially redundant function of both molecules, the C1C2BMUN fragment of
Munc13 can substitute for deletion of CAPS in Ca2+-triggered dense-core vesicle fusion with a
planar supported bilayer (76).

7. NSF AND SNAPs

The ATPase NSF was first discovered as a key factor for intercompartmental transport in eukary-
otic cells, and subsequently, SNAREs were found to be substrates for NSF (9, 138). Independently,
SNAREs were discovered to be important for neurotransmitter release (11, 12, 143). In concert
with the adaptor protein, SNAP, the ATPase NSF disassembles the SNARE complex into indi-
vidual proteins upon ATP hydrolysis (52, 101, 137). Whereas Munc18 and Munc13 have been
implicated to prevent this disassembly of the primed trans SNARE complex (19), the molecular
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mechanism remains to be elucidated. NSF is a member of the AAA+ family consisting of two
ATPase rings (known as type II AAA+) and an N-terminal domain. Most eukaryotic organisms
encode only one NSF gene. By contrast, there are three homologs of SNAP, with αSNAP being
the most widely studied. Although earlier work suggested that disruption of the SNARE complex
by ATP hydrolysis drives fusion (137), later work clarified that it is actually the SNARE complex
formation that drives fusion (52, 101). For more structural details of NSF and SNAPs, we refer
to a recent review (184).

8. COOPERATION AMONG Syt1, Cpx1, AND SNAREs
FOR EVOKED RELEASE

In this section, we discuss the cooperation among Syt1, Cpx1, and SNAREs.

8.1. SNARE/Cpx1/Syt1 Synaptic Fusion Complex

As mentioned in Sections 2–4, Syt1, Cpx1, and SNAREs are all important for evoked release
upon action potential arrival in the synaptic terminal (100, 172). The structures of the neuronal
SNARE/Cpx1 subcomplex (24) and of the SNARE/Syt1 subcomplex (188), along with functional
studies, suggested that each of these binary interactions is essential for neurotransmitter release.
For example, the 4M mutant of Cpx1 that disrupts binding to the ternary SNARE complex
neither rescued deletion of wild-type Cpx1 in neuronal cultures (100) nor increased the Ca2+-
triggered amplitude in single-vesicle fusion experiments with reconstituted SNAREs and Syt1
(84). Similarly, disruption of the primary SNARE/Syt1 complex interface by mutations abolished
fast synchronous release in cultured neurons and greatly reduced the Ca2+-triggered amplitude
in single-vesicle fusion experiments (188).

The primary SNARE/Syt1 interface is structurally conserved in very different crystal packing
environments and conditions (188, 189), suggesting that it is a genuine and specific interface. In
the presence of anionic phospholipid membranes, the polybasic region of Syt1 C2B primarily in-
teracts with the membrane (114), and this membrane interaction likely stabilizes the SNARE/Syt1
primary interface (188), lowering the dissociation constant by about an order of magnitude (160).
Moreover, the primary SNARE/Syt1 interface is not disrupted by electrostatic shielding (160).
On the basis of primary sequence alignment, the SNARE/Syt1 primary interface is specific for
fast Ca2+ sensors (Syt1, Syt2, Syt9) (171, 188).

The binary SNARE-Syt1 and SNARE-Cpx1 interactions alone do not explain certain exper-
imental results. For example, mutation of the Ca2+-binding region of the C2B domain of Syt1
has dominant negative effects on both evoked and spontaneous neurotransmitter release (86, 168),
while deletion of Cpx1 abrogates these dominant negative phenotypes (189), suggesting a tripartite
cooperation among SNAREs, Cpx1, and Syt1. The structure of the tripartite SNARE/Cpx1/Syt1
complex (Figure 5) (189) suggests an explanation for these experimental results since it revealed
a hitherto unknown tripartite interface between one Syt1 C2B domain and both the SNARE
complex and Cpx1 (Figure 5) (189). Simultaneously, a second Syt1 C2B domain interacts with
the other side of the SNARE complex via the abovementioned SNARE/Syt1 primary interface
(Figure 5). Structure-guided mutagenesis, solution-binding studies by ITC, and electrophysiolog-
ical recordings showed that both Ca2+-triggered synaptic release and suppression of spontaneous
release depend on Syt1 C2B residues involved in both the SNARE/Cpx1/Syt1 tripartite and the
SNARE/Syt1 primary interfaces (189).

For the tripartite interface, the Syt1 C2B domain binds to the SNARE/Cpx1 subcomplex via
interactions with both the SNARE and Cpx1 components (Figure 5). Among the most striking
structural features of this tripartite interface is the continuation of the Cpx1 central helix into an
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Syt1 C2A-C2B

SNARE complex

Syt1 C2A-C2B

Cpx1

Figure 5
Structure of the SNARE/Cpx1/Syt1 complex. Shown are both the primary and the tripartite interface. For
details, see Reference 189. Abbreviations: Cpx1, complexin-1; SNARE, soluble N-ethylmaleimide sensitive
factor attachment protein receptor; Syt1, synaptotagmin-1.

α-helix of Syt1 (called HA α-helix). Since this particular α-helix is structurally conserved in C2B
domains of all Syts, Doc2b, and Rabphilin, but not present in the Munc13-1 C2B domain and Syt
C2A domains, the SNARE/Cpx1/Syt1 tripartite interface may be more general and involve other
Syts. The different types of Syt-regulated exocytosis are mediated by similar Cpx1-dependent
fusion mechanisms (Syt1, Syt2, Syt7, Syt9, and Syt10) (21, 50, 128, 171), so it is conceivable
that these Syts could participate in a tripartite interface, while only a subset of the Syt molecules
involved in synchronous neurotransmitter release (Syt1, Syt2, or Syt9) may be involved in the
primary interface, based on primary sequence conservation.

The tripartite interface involves the central α-helix but not the accessory helix of Cpx1 or any
other part of Cpx1. Indeed, the accessory domain can be entirely eliminated while maintaining the
activating function of Cpx1 in single-vesicle fusion experiments with reconstituted SNAREs, Syt1,
and Cpx1 (24, 83, 149, 180) and for evoked neurotransmitter release in neurons. The structure
of the SNARE/Cpx1/Syt1 complex now explains the functional requirement of the central α-
helix of Cpx1 since it is an integral part of the tripartite interface (Figure 5). In contrast, the
N-terminal domain of Cpx1 is important for activation of synchronous Ca2+-triggered release
(34, 100, 174, 176), and it increases the Ca2+-triggered amplitude in single-vesicle fusion (content
mixing) experiments when added as an independent fragment in addition to the Cpx1 central
domain (83). One possibility is that the Cpx1 N-terminal domain may independently interact with
the splayed open trans SNARE complex (28). Note that the membrane-proximal parts of the trans
SNARE complex were not included in the crystal structure of the SNARE/Cpx1/Syt1 complex,
possibly explaining why the Cpx1 N-terminal domain is not visible in that crystal structure.

Why did it take so many years since publication of the first crystal structure of the SNARE
complex (147) to obtain structures of the SNARE/Syt1 and SNARE/Cpx1/Syt1 complexes? In
retrospect, we now know that there are other interactions between Syt1 and the SNARE complex
that have been observed by single-molecule FRET and solution NMR studies (15, 27) in addition
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to the SNARE/Syt1-C2B interfaces observed in the crystal structures (188, 189), which made
crystallization exceedingly difficult. Covalently linked chimeras of the components of the complex
were therefore designed to stabilize the SNARE/Syt1 complex and enable crystallization (188).
In contrast, crystallization of the tripartite SNARE/Cpx1/Syt1 complex did not require covalent
linkers, but was rather achieved by truncation of the 23 C-terminal residues of the cytoplasmic
domain of synaptobrevin-2 that prevented formation of the six membrane-proximal layers of the
SNARE complex but left the binding interface to the central α-helix of Cpx1 intact (189). This
truncated complex probably mimics a prefusion state of the trans SNARE complex where the
membrane-proximal part of the complex is not fully zippered. For crystallization, this feature
of the truncated complex was essential since it prevented formation of inter-SNARE complex
interactions that would otherwise interfere with formation of the SNARE/Cpx1/Syt1 complex.
Moreover, this strategy alleviated the need for covalent linkers between the components.

8.2. Supramolecular Arrangements of Synaptic Fusion Complexes

The structure of the SNARE/Cpx1/Syt1 complex likely represents the prefusion primed state
of the system (189), one of likely two or more synaptic complexes involved in Ca2+-triggered
fusion (134). These two or more synaptic complexes likely interact with one another. For exam-
ple, one Syt1 C2B domain could bridge two SNARE complexes via the primary and tripartite
interfaces and it could be sandwiched between the two membranes (189). CryoET images of the
same proteoliposomes as used for the single-vesicle fusion experiments indeed revealed contacts
with a variety of morphologies between the vesicle membranes with a preference for relatively
compact point contacts (Figure 6a) (45), although it remains to be established that it is these
point contacts that undergo fast Ca2+-triggered fusion. These contacts are likely proteinaceous
since the observed densities of these contacts are connected (Figure 6b) (45), and the observed
separation in the cryoET images between the membranes is 40 to 60 Å, substantially longer than
the critical distance at which lipid stalks can form (<9 Å) (2). Volumetric analysis suggested that
the compact point contacts can accommodate approximately two SNARE/Cpx1/Syt1 complexes,
while the lone contacts can accommodate more complexes (45). Thus, the juxtaposition of pro-
tein complexes between membranes prevents membrane fusion until Ca2+ triggering, in remote
analogy to the action of viral fusion proteins where fusion happens only when a sufficient number
of neighboring viral fusion proteins switch to their fusogenic form (53).

How does Cpx fit into this picture? Cpx1 has at least two conformations when bound to
the ternary SNARE complex (28). In one conformation, the accessory domain cooperates with
the N-terminal domain of Cpx1 to induce a conformational change at the membrane-proximal
C-terminal end of the bound SNARE complex, likely making it similar to the splayed open trans
SNARE complex. Conversely, if the SNARE complex is in the trans conformation, the interaction
of the N-terminal domain of Cpx1 can occur, regardless of the accessory domain, consistent with
the expendable nature of the accessory domain for evoked release. In the other Cpx1 conforma-
tion, Cpx1 can bridge two SNARE complexes, such as a fully assembled ternary SNARE complex
and a binary SNARE complex (consisting of syntaxin-1A and SNAP-25A), via both the central and
accessory Cpx1 domains (28). It has been proposed that Cpx1 could bridge many SNARE com-
plexes in a zigzag arrangement (78). However, such an arrangement would be incompatible when
Syt1 would bridge SNARE complexes via the primary and tripartite interfaces (189), although
the abovementioned bridging of a ternary and a binary SNARE complex would be possible.

In addition to forming a complex with SNAREs and Cpx1, Syts are capable of forming ring-
like homo-oligomeric assemblies on membranes containing acidic lipids (157) and in solution
(158), although the functional importance of these assemblies has yet to be established. These
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Membrane

Membrane

Contact density

a

b

40 Å

Figure 6
Point contact between proteoliposomes with neuronal SNAREs, Cpx1, Syt1, and Munc13. (a) Shown is a
slice of an isosurface representation of a synaptic vesicle (bottom) and a plasma-membrane vesicle (top) in the
presence of the C1C2BMUN fragment of Munc13. (b) Close-up view of gray scale tomographic
two-dimensional slices of the contact site between the two membranes. For more details, see Reference 145.
Abbreviations: Cpx1, complexin-1; Munc13, mammalian uncoordinated-13; SNARE, soluble
N-ethylmaleimide sensitive factor attachment protein receptor; Syt1, synaptotagmin-1.

rings are disrupted by Ca2+ when bound to acid phospholipid membranes (157, 183). Finally,
synaptobrevin is capable of forming ring-like structures in complex with synaptophysin in vitro
(1). In contrast to these studies, no such ring structures have been observed by cryoET of slices
of unstained, vitrified frozen-hydrated mouse synapses (41) or electron cryoET of thin sections
of high-pressure frozen hippocampal neuronal cultures (30), although they may not be easily
observable if they are of a transient nature. Moreover, cryoET studies of proteoliposomes with
neuronal SNAREs, Syt1, Cpx1, and Munc13 revealed short and long contacts but no ring-like
morphologies (45). In any case, the long contacts may represent higher-order oligomeric, but
asymmetric, assemblies. Perhaps multiple membrane contact morphologies coexist in the neuron
and are relevant in different contexts (e.g., fast synchronous release, asynchronous release, and
spontaneous release).

8.3. Model of Unlocking and Ca2+ Triggering

Regardless of the supramolecular arrangement of the synaptic protein complexes in the observed
contacts between membranes, they appear stably locked into a conformation from which fusion
is unlikely, considering the observed membrane separation of 40–60 Å (Figure 6). If one assumes
that the observed contacts indeed contain SNARE/Cpx1/Syt1 complexes, as observed in the crystal
structure, the SNARE complex would have to be partially splayed open since the transmembrane
domains of syntaxin and synaptobrevin are in opposite membranes (Figure 7). In support of this
model, the readily releasable pool of synaptic vesicles—in other words, the primed state of synaptic
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Figure 7
Model of primed prefusion SNARE/Cpx1/Syt1 complexes. In this model, two SNARE/Cpx1/Syt1
complexes (189) form a contact between a synaptic vesicle (top) and the plasma membrane (bottom). Blue:
synaptobrevin-2; green: SNAP-25A; red: syntaxin-1A; yellow: Cpx1; light/dark magenta: Syt1s. The
molecules and membranes are drawn to scale, with an ∼40-Å separation between membranes as observed by
cryo-electron tomography (45). Note that the relative arrangement of the two SNARE/Cpx1/Syt1
complexes is unknown. Also, there can be more than two such complexes forming long membrane contacts
(45). Abbreviations: Cpx1, complexin-1; SNAP-25, synaptosomal-associated protein 25; SNARE, soluble
N-ethylmaleimide sensitive factor attachment protein receptor; Syt1, synaptotagmin-1.

vesicles—is sensitive to mutations in both interfaces (189), suggesting that the crystal structure of
the SNARE/Cpx1/Syt1 complex represents the primed state.

Upon Ca2+ binding to the C2 domains of the primed complex, the SNARE/Cpx1/Syt1
tripartite interface must be unlocked or uninhibited, allowing membranes to move closer
and Ca2+-triggered fusion to commence. At present, there is no structure of the uninhibited
SNARE/Cpx1/Syt1 complex—in other words, after Ca2+ binding to Syt1. We speculate that
upon Ca2+ binding, the Syt1 molecule that is involved in the SNARE/Cpx1/Syt1 tripartite inter-
face is dislodged by interacting with the synaptic vesicle membrane (189), or by switching to a
different interface with the SNARE complex, or both (15). This Syt1 dislodging may also induce a
conformational change of Cpx1 (28). However, full release of Cpx1 (148) is unlikely, considering
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the tight binding (Kd ≈ 10–100 nM) and the relatively slow off-rate of 0.1 s−1 between Cpx1
and the cis ternary SNARE complex (28). Moreover, there was only partial Ca2+-dependent com-
petition between Cpx1 and Syt1 binding to the SNARE complex as reported in Reference 148,
and noncompetitive binding in both the absence and presence of Ca2+ reported by another group
(25). Upon unlocking the primed complexes by Syt1 dislodging, the SNARE then may fully zipper
(147, 162) and trigger fusion, likely in conjunction with a membrane remodeling action of Syt1
(61, 96), or by membrane bridging by Syt1 (3, 94, 153).

This model of locked and primed SNARE/Cpx1/Syt1 complexes that juxtapose synaptic and
plasma membranes (Figure 7) explains the dominant negative effect of certain mutations of the
Ca2+-binding region of the Syt1 C2B domain (86, 168, 189): The presence of permanently locked
complexes would prevent membranes from approaching the critical distance to form lipid stalks
(less than 9 Å) (2). As mentioned in Section 3, neuronal SNAREs and Syt1 alone are a minimal
system for Ca2+-triggered membrane fusion (36, 80, 84, 150). Thus, the triggering mechanism in
this even more minimal system may be similar to that of the unlocked SNARE/Cpx1/Syt1 system
after dislodging of the Syt1 molecule that is involved in the tripartite interface. Clearly, high-
resolution images of the SNARE/Cpx1/Syt1 complexes between membranes, and monitoring the
rapid conformational transitions of the complexes upon Ca2+ triggering, will be important next
steps.

9. IMPLICATIONS FOR SPONTANEOUS RELEASE

Syt1, Cpx1, and SNAREs are also important for spontaneous release (34, 67). More specifically,
both the primary SNARE/Syt1 and tripartite SNARE/Cpx1/Syt1 interfaces are required for the
suppression of spontaneous release in neurons; in other words, elimination of either interface
resulted in an increase in mini frequency (189). Why is there an increase in spontaneous fusion
frequency when either interface is disrupted? At a structural level, it could simply mean that
membranes can get closer when one or more components of the SNARE/Cpx1/Syt1 complex
are missing, consistent with the closer membrane separation distance observed by cryoET of
proteoliposomes when Cpx1 was absent (45). However, there is an observation that counters this
simple membrane separation distance argument: The probability of Ca2+-independent fusion did
not increase when Syt1 was absent in single-vesicle fusion experiments with SNAREs and Cpx1
only (84). Despite this, these experiments should be repeated with full reconstitution (82), since in
the absence of full reconstitution, improperly formed SNARE complexes may obscure the more
subtle effect of suppression of Ca2+-independent fusion.

We would like to emphasize that Ca2+-independent fusion of single-vesicle experiments cannot
strictly be compared with spontaneous release in neurons. First, Ca2+-independent fusion proba-
bilities are normalized to the number of associated vesicles. Second, the frequency of spontaneous
release measured in electrophysiological experiments depends on both the number of functional
synapses and the number of synaptic vesicles that are capable of undergoing spontaneous fusion.
Third, there is likely another Ca2+ sensor that competes with Syt1 in binding to the tripartite
interface (145). Elimination of the primary interface or presence of the certain Syt1 C2B mutants
would affect the binding equilibrium, possibly explaining the increase of spontaneous release in
neurons (189).

10. COOPERATION BETWEEN Munc18 AND Munc13 FOR PROPER
SNARE ASSEMBLY

In this section, we discuss the cooperation among SNAREs, Munc13, and Munc18.
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10.1. SNARE Assembly Is Fuzzy

As mentioned above, the residues involved in two Syt1 C2B interfaces in the SNARE/Cpx1/Syt1
complex are important for maintaining the readily releasable pool of synaptic vesicles (189). The
readily releasable pool of synaptic vesicles in turn is established by a process that is referred to
as priming (i.e., the association of synaptic vesicles with presynaptic proteins that enables them
to undergo fast evoked fusion) (71). There are several factors involved in priming, including
Munc18 and Munc13, but the molecular basis of the priming function of these molecules had
been unknown until recently. There is now evidence that at least one function of priming factors
is to ensure the proper assembly of SNARE complexes (82). Why is it necessary to assist the proper
assembly of the SNARE complex? When soluble fragments of SNARE proteins are simply mixed
in solution, improper configurations may occur (28, 91, 127, 166). In particular, the existence
of antiparallel SNARE complex configurations was directly probed by using Förster resonance
energy transfer (FRET) dye pairs (28, 166). As described (166), antiparallel configurations can be
suppressed by extensive purification of the ternary SNARE complex, including a urea wash step.
Another biochemical method to obtain more fusogenic complexes consists of incubating with
C-terminal fragments of synaptobrevin-2 (104, 118) prior to assembling the SNARE complex.
Single-molecule FRET experiments now revealed that these C-terminal synaptobrevin fragments
promote proper SNARE complex formation (28). Clearly, urea treatments or incubation with
synaptobrevin-2 fragments are not physiological mechanisms, but they illustrate the importance
of proper SNARE complex assembly in establishing maximum fusogenicity.

10.2. Munc13 and Munc18 Promote Proper SNARE Complex Assembly

In search for a physiological mechanism that ensures proper SNARE complex formation, Lai et al.
(82) found that the MUN domain of Munc13-1 promotes the proper parallel subconfiguration
between syntaxin-1A and synaptobrevin-2 when assembling the ternary SNARE complex when
starting from the syntaxin-1A/SNAP-25A complex; in other words, the MUN domain prevented
improper subconfigurations, and it increased the Ca2+-triggered amplitude in single-vesicle fusion
(content mixing) experiments. Inclusion of the longer C1C2BMUN or C1C2BMUNC2C frag-
ments of Munc13-1 in the fusion assay enhanced the Ca2+-triggered amplitude and fusion ratio in
a manner similar to the MUN domain. However, these longer fragments were able to achieve these
effects at, respectively, twenty- and hundredfold-lower concentrations than the MUN domain.

In addition to its autonomous function of promoting the proper syntaxin-1A/synaptobrevin-
2 subconfiguration, Munc13 also cooperates with Munc18-1 to promote the proper syntaxin-
1A/SNAP-25A subconfiguration within the assembled ternary SNARE complex (82). Thus, while
Munc13 alone is sufficient to promote the proper syntaxin-1A/synaptobrevin-2 subconfigura-
tion starting from the syntaxin-1A/SNAP-25A complex and consequently increasing the Ca2+-
triggered fusion amplitude, the proper syntaxin-1A/SNAP-25A subconfiguration is achieved only
when starting from the syntaxin-1A/Munc18-1 complex. Moreover, near-physiological Ca2+ sen-
sitivity of the assay was achieved when both Munc13-1 and Munc18-1 were included (82). Taken
together, Munc13-1 and Munc18-1 are factors for establishing the proper subconfigurations dur-
ing trans ternary SNARE complex assembly (with parallel arrangements of the SNARE compo-
nents and 1:1:1 stoichiometry) by suppressing improper subconfigurations, thus promoting proper
ternary SNARE complex assembly. The cooperation of Munc18-1 and Munc13-1 in promoting
the proper SNARE complex assembly suggests that Munc18-1 has an indirect but essential role in
enabling high fusion efficiency, perhaps explaining the severe phenotype of deletion of Munc18-1
in neurons (155).
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When some of the SNARE complexes around the contact site between the synaptic and plasma
membranes are improperly assembled in the absence of Munc13, they have a large effect on mor-
phologies of the contact sites between synaptic and plasma-membrane vesicles as observed by
cryoET of these vesicles (45). Upon inclusion of Munc13, the contacts are largely restricted to
point contacts only (i.e., no long contacts are present and very few so-called dead-end hemi-
fusion diaphragms were observed prior to Ca2+ triggering). The ternary SNARE complex in-
teracts with both Syt1 and Cpx1, forming the primed complex (189). These interactions in the
SNARE/Cpx1/Syt1 complex may not occur if there are improper subconfigurations within the
ternary SNARE complex. In particular, an antiparallel subconfiguration between syntaxin-1A and
synaptobrevin-2 would prevent formation of the SNARE/Cpx1/Syt1 tripartite interface (Figure 5)
(189). Moreover, an antiparallel subconfiguration between SNAP-25A and syntaxin-1A would
prevent formation of the primary SNARE/Syt1 interface since it involves the SNAP-25A and
syntaxin-1A components of the SNARE complex (188).

10.3. Toward More Complete Reconstitution of Synaptic Vesicle Fusion

Consistent with their molecular functions, Munc18 and Munc13 increased the efficiency of en-
semble proteoliposome lipid and content mixing in the presence of SNAREs, Syt1, NSF, and
αSNAP (93). Moreover, when Munc13 and Munc18 were included, the Ca2+-triggered ampli-
tude of single-vesicle content mixing was fourfold higher and the ratio of Ca2+-triggered fusion
to Ca2+-independent fusion increased to 500 for a reconstitution with SNAREs, Syt1, Cpx1,
NSF, and αSNAP (82). Remarkably, the Ca2+ sensitivity of this single-vesicle fusion assay was
approximately 23 μM, which is close to the physiological range (Figure 3). These improvements
in amplitude and sensitivity are achieved by proper assembly of all components of the SNARE
complex by Munc18 and Munc13 (Figure 4) (82). Interestingly, inclusion of Munc13 in a recon-
stitution of single dense-core vesicle fusion with a planar-supported bilayer also greatly improved
the Ca2+-triggered fusion probability in that system (74).

10.4. How Do Munc13 and Munc18 Function?

The molecular mechanism by which Munc13 and Munc18 promote proper SNARE complex
assembly is still a mystery, although there is some information about the molecular interactions.
The MUN domain initially interacts with the Munc18-1/syntaxin-1A complex via a conserved
hydrophobic pocket located at the midpoint of the MUN domain (92, 182). Moreover, two con-
served residues, R151 and I155, in the syntaxin-1 linker region are also critical for the function
of Munc13-1, and they likely interact with the MUN domain (159). Single-molecule FRET ex-
periments revealed that the MUN domain does not dissociate the closed Munc18-1/syntaxin-1A
complex but that it rather induces a conformational change in the syntaxin-1A linker region,
thus enabling syntaxin-1A to transit into the ternary SNARE complex once synaptobrevin-2 and
SNAP-25A are added. In addition to these interactions, the MUN domain weakly interacts with
synaptobrevin-2 (82, 135), syntaxin-1A (82, 92), the syntaxin-1A/SNAP-25A complex (49, 165),
and the ternary SNARE complex (49).

In some ways, assistance of proper ternary SNARE complex formation by Munc13-1 is remi-
niscent of certain ATP-independent chaperones such as Trigger Factor that assist protein folding
of the nascent polypeptide chain upon synthesis by the ribosome (58). It has been proposed that
Trigger Factor functions by shielding exposed hydrophobic residues during folding (73), inhibiting
premature folding (99), unfolding preexisting structures and intermediate structures (57), or as-
sisting protein assembly (98). While the MUN domain of Munc13-1 is structurally quite different
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than Trigger Factor, some of the properties of Trigger Factor also apply to the MUN domain in
that both act through a series of weak and transient interactions to ensure a given conformation.

The existence of factors for proper assembly of the ternary SNARE complex may be a general
phenomenon. In the context of a different SNARE-mediated fusion process, the so-called homo-
typic fusion and protein sorting (HOPS) complex is essential in promoting maximum efficiency of
homotypic vacuolar fusion (190), where the Munc18-1 homolog in the HOPS complex (Vps33)
affects vacuolar SNARE-mediated membrane fusion (8). The crystal structures of a complex with
the Munc18 homolog Vps33 and the synaptobrevin homolog Nyv1 as well as the complex of
Vps33 and the syntaxin homolog Vam3 suggest that Vps33 regulates the proper assembly of Nyv1
and Vam3. Moreover, NMR experiments showed that synaptobrevin-2 interacts with Munc18-1
(135) in a similar fashion as suggested by the Vps33/Nyv1 complex. It is of course possible that the
Vps33/Nyv1 interaction is promiscuous and may allow interactions with other SNAREs as well.
Such a promiscuous interaction would be consistent with the cooperation of Munc18 and Munc13
in promoting the proper assembly of all components of the neuronal SNARE complex. Finally,
there is no Munc13 homolog in homotypic vacuolar fusion, and all Munc13 homologs are thought
to be involved in Ca2+-triggered exocytosis (74, 88). Thus, the evolution of the Ca2+-triggered
fusion machineries deviated from that of constitutive vesicle fusion.

10.5. Hypothesis: Presynaptic Plasticity May Be a Manifestation of Regulation
of Proper SNARE Complex Assembly

The key roles of Munc13-1 in priming and short-term plasticity may be related to the role of
the MUN domain in proper assembly of the SNARE complex (82). This function of the MUN
domain may in turn be subject to regulation by the other domains of Munc13-1. For example,
Ca2+ binding to the C2B domain; the synergy among C1, C2B, and C2C domains (90); and the
Ca2+-dependent interaction between calmodulin and Munc13 (68) may localize Munc13 to sites
of docked synaptic vesicles and increase its ability to assist in proper SNARE complex assembly, as
corroborated by the concentration dependence of the various Munc13 fragments in single-vesicle
fusion experiments (82). Indeed, mutations of the Munc13-2 C2B domain affect neurotransmitter
release upon a single action potential as well as short-term synaptic plasticity (132), and mutations
in the interface regions among the C1, C2B, and MUN domains have differential effects on
evoked release and the readily releasable pool (170), suggesting that the two molecular functions
of Munc13 may be differentially regulated in the neuron. Taken together, regulation of presynaptic
plasticity via Munc13 may be in part accomplished by its profound molecular function on ensuring
proper assembly of the ternary SNARE complex. The starting point for the action by Munc18 and
Munc13 is the disassembled SNARE complex mediated by NSF and αSNAP (Figure 8). Thus,
NSF, αSNAP, Munc18, and Munc13 constitute a quality control system that produces maximal
fusogenic synaptic complexes.

11. PERSPECTIVES AND OUTLOOK

There are other important factors that were not reviewed here—in particular, factors that are
involved in tethering, regulation through Rab G proteins, and voltage-gated Ca2+ channels (69,
161). Clearly, complexes with these factors also need to be imaged at near-atomic resolution
and functionally reconstituted. Moreover, there are many proteins in synaptic vesicles with little
known function that may deserve closer examination. Ultimately, studying the effects of disease
and aging on the synaptic neurotransmitter release machinery and its regulations may provide
clues for entirely new therapeutic developments.
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Syntaxin/Munc18

SNARE/αSNAP/NSF

Disassembly

Recycling

Triggering

Primed and locked
SNARE/Cpx1/Syt1

Ca2+

Munc13 (C1C2BMUN)

SNARE complex
Regulated

proper assembly
Plasma

membrane

Figure 8
Structures of synaptic proteins and their complexes. Shown are structures of the neuronal SNARE complex (147); the
SNARE/Cpx1/Syt1 complex (189); the SNARE/αSNAP/NSF complex (185); the Munc18/syntaxin complex (107); and the
C1C2BMUN fragment of Munc13 (170). Abbreviations: Cpx1, complexin-1; Munc: mammalian uncoordinated; NSF, soluble
N-ethylmaleimide sensitive factor; SNAP, soluble NSF adaptor protein; SNARE, soluble NSF attachment protein receptor; Syt1,
synaptotagmin-1.
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4. Augustin I, Rosenmund C, Südhof TC, Brose N. 1999. Munc13-1 is essential for fusion competence of
glutamatergic synaptic vesicles. Nature 400:457–61

5. Bacaj T, Wu D, Yang X, Morishita W, Zhou P, et al. 2013. Synaptotagmin-1 and synaptotagmin-7
trigger synchronous and asynchronous phases of neurotransmitter release. Neuron 80(4):947–59

6. Bai H, Xue R, Bao H, Zhang L, Yethiraj A, et al. 2016. Different states of synaptotagmin regulate evoked
versus spontaneous release. Nat. Commun. 7:1–9

7. Bai J, Tucker WC, Chapman ER. 2004. PIP2 increases the speed of response of synaptotagmin and steers
its membrane-penetration activity toward the plasma membrane. Nat. Struct. Mol. Biol. 11(1):36–44

8. Baker RW, Jeffrey PD, Zick M, Phillips BP, Wickner WT, Hughson FM. 2015. A direct role for the
Sec1/Munc18-family protein Vps33 as a template for SNARE assembly. Science 349(6252):1111–14

9. Balch WE, Glick BS, Rothman JE. 1984. Sequential intermediates in the pathway of intercompartmental
transport in a cell-free system. Cell 39(3):525–36

10. Basu J, Shen N, Dulubova I, Lu J, Guan R, et al. 2005. A minimal domain responsible for Munc13
activity. Nat. Struct. Mol. Biol. 12(11):1017–18

11. Baumert M, Maycox PR, Navone F, De Camilli P, Jahn R. 1989. Synaptobrevin: an integral membrane
protein of 18,000 daltons present in small synaptic vesicles of rat brain. EMBO J. 8(2):379–84

12. Bennett MK, Calakos N, Scheller RH. 1992. Syntaxin: a synaptic protein implicated in docking of
synaptic vesicles at presynaptic active zones. Science 257(5067):255–59
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