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Abstract

Communication facilitates cooperation by ensuring that deviators are collectively
punished. We explore how players might misuse messages to threaten one another, and
we identify ways in which organizations can deter these threats and restore cooperation.
In our model, a principal plays trust games with a sequence of short-run agents who
communicate with each other. A shirking agent can extort pay by threatening to
report that the principal deviated. We show that these threats can completely destroy
cooperation. Public signals of agents’ efforts, or bilateral relationships between the
principal and each agent, can deter extortion and restore some cooperation. Signals of
the principal’s action, on the other hand, typically don’t help.
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1 Introduction

Productive relationships thrive on the enthusiastic cooperation of their participants. In
many settings, however, individuals cooperate only because they expect opportunistic be-
havior to be punished (Malcomson (2013)). Communication plays an essential role in these
punishments, since it allows those who do not directly observe misbehavior to nevertheless
punish the perpetrator. The resulting coordinated punishments are central to relationships
between managers and workers (Levin (2002)), suppliers and their customers (Greif et al.
(1994); Bernstein (2015)), community members (Ostrom (1990)), and participants in online
marketplaces (Horner and Lambert (2018)).

Once armed with the power to trigger widespread punishments, individuals face a grave
temptation: they can extort concessions from their partners by threatening to falsely report
opportunistic behavior (Gambetta (1993); Dixit (2003a, 2007)). In this paper, we explore
how rent-seeking individuals might misuse coordinated punishments to extort one another,
and we identify ways that organizations can encourage cooperation in the face of such misuse.
To do so, we develop a principal-agents model in which cooperation depends on communi-
cation among the agents. This model allows each agent to threaten to make a false reports
unless the principal takes a desired action, a deviation that we will call extortion.

We use this framework to make two points. First, we show that extortion is a serious
threat that can destroy cooperation. Second, we identify practical ways that organizations
can overcome extortion. These remedies rely on familiar instruments, but as we will show,
extortion is not like other kinds of misbehavior, so these instruments must be used in new
ways to combat it.

Coordinated punishments, and the corresponding threat of extortion, are an important
part of many cooperative relationships. For instance, consider a manager who wants to
motivate her workers. Manager-worker relationships are rarely governed by formal contracts
alone; instead, workers strive for excellent performance only if they trust managers to reward

their efforts (Gibbons and Henderson (2013)). In this context, institutions that allow workers



to collectively punish misbehaving managers, such as labor unions (Freeman and Medoff
(1979)) or job review platforms like Glassdoor.com, can encourage cooperation and lead
to highly productive outcomes. Unless such institutions are carefully designed, however,
workers might face the temptation to subvert them in pursuit of private gain. In some
cases, this subversion is shockingly overt, as in the recent indictment of an Illinois union
official who extorted personal bribes from local businesses by threatening to initiate labor
unrest (Meisner and Ruthhart (2017)). Subtler forms of extortion can also have serious
consequences. In the 1980s, for example, workers at General Motor’s Fremont plant used
the threat of accumulated grievances to get away with destructive “shirking” activities — drug
use, absenteeism, and so on — that neither management nor the union condoned (Glass and
Langfitt (2015)).

The use of coordinated punishments, and their potential for misuse, extend far beyond
the factory floor. During the recent Wells Fargo scandal, for instance, the company faced
allegations that it punished employees who spoke up about fraudulent practices by falsely
reporting them for unethical behavior (Arnold and Smith (2016)). In the early days of eBay,
sellers would extort positive reviews by threatening to reciprocate on any negative review,
leading to lower seller effort and less satisfied buyers (Klein et al. (2016)).! Dixit (2003a)
raises a similar concern that information intermediaries might misuse their power to pursue
private profit.

To explore the use and misuse of coordinated punishments, we consider a model of a
long-run principal who interacts with a sequence of short-run agents. Each agent exerts
costly effort to benefit the principal, who can then choose to pay that agent. Agents observe
only their own interactions but can communicate with one another. To capture the idea
that extortion entails action-contingent threats —i.e., “pay me or else I will punish you” — we

allow each agent to make a threat when he chooses his effort. This threat, which is observed

! Platforms have policies to combat these types of extortionary threats. See, for instance, TripAdvisor’s
policy at policy at https://www.tripadvisor.com/TripAdvisorInsights/w592. It is not clear how such policies
are enforced.



by the principal but not by other agents, associates a message to each possible transfer to
that agent. Agents then follow through on their threats.?

Communication is essential for cooperation in this setting, since the principal is willing to
pay an agent only if she would otherwise be punished by future agents. Once endowed with
messages that trigger punishments, however, an agent can extort the principal by shirking
and then threatening to report the principal unless she pays him. Since this threat is enough
to induce the principal to pay a hard-working agent, it is also enough to induce her to pay
a shirking agent. Thus, the pay that an agent can demand is essentially independent of
his effort. This logic has a stark implication in our baseline model: the unique equilibrium
outcome entails zero effort.

After establishing this impossibility result, we enrich the model to explore how organiza-
tions can deter extortion and encourage cooperation. We focus on two instruments that are
available in many cooperative endeavors: investigations, which we model as public signals
of either the agents’ efforts or the principal’s transfers, and bilateral relationships, which we
model as a coordination game played by the principal and each agent. We focus on how
these instruments can encourage cooperation, and how the resulting equilibria reflect the
unique features of extortion.

The basic insight from our model is that an agent’s gains from extortion depend on how
severely a shirking agent can threaten the principal. To deter extortion, an equilibrium
must therefore discipline the principal’s payoff as a function of the agents’ efforts. To make
this point, we define an agent’s leverage as how severely he can punish the principal in
equilibrium. An agent’s gains from extortion depend on how his leverage varies with his
effort. In particular, an organization can encourage cooperation by driving a wedge between
the leverage of a shirking agent and that of a hard-working agent. We show that both effort
investigations and bilateral relationships can typically drive such a wedge, while transfer

investigations typically cannot.

2See Wolitzky (2012), Chassang and Padro i Miquel (2018), and Ortner and Chassang (2018), which make
similar commitment assumptions to study other kinds of action-contingent promises or threats.



We first constrast effort signals, which typically improve cooperation, with transfer sig-
nals, which typically do not. Effort signals are useful because they can be used to directly
tie the severity of the principal’s punishment to the effort of the agent who triggers that
punishment. An agent then exerts effort to increase his leverage in order to demand higher
pay. However, agents typically earn rent in the resulting equilibrium, which deters them
from shirking and using their limited leverage to extort some payment.

Transfer signals, on the other hand, cannot distinguish between deserved and undeserved
pay and so cannot link an agent’s leverage to his effort. Consequently, transfer signals
typically do not improve cooperation. Even in those cases where they do help, they do so
only by making the principal exactly indifferent between multiple transfers, and the resulting
gains from cooperation are limited by the need for occasional on-path punishments.

In many settings, the principal has ongoing interactions with each agent. Our final
remedy studies how these bilateral relationships can deter extortion. We show that the
bilateral relationship rewards the principal for refusing to pay a shirking agent, which ties
leverage to effort. Bilateral relationships therefore complement coordinated punishments,
as agents with strong bilateral relationships can be given access to a lot of leverage on the
equilibrium path without opening the door to extortion. Weak bilateral relationships, on
the other hand, lead to potentially lucrative extortionary threats and thus little reliance on
coordinated punishments in equilibrium.

Finally, we explore how organizations might detect extortion in practice. We argue that
an observer can infer the prevalence and severity of extortion from data on performance and
leverage. In particular, the gain from extortion depends on how an agent’s leverage varies
with effort, so that systematic variation in the mapping from effort to leverage allows an
observer to detect extortion and distinguish it from other kinds of misbehavior. We also
enrich our model, bringing extortion onto the equilibrium path, to study how coordinated

sanctions affect the prevalence of extortion.



Related Literature

Our analysis builds on classic studies that show how institutions can facilitate communication
and coordinate punishments (Milgrom et al. (1990), Greif et al. (1994), Dixit (2003a,b)).
Much of this literature focuses on networks of players and has as its goal the identification of
network structures or equilibrium strategies that are particularly conducive to cooperation
(Lippert and Spagnolo (2011), Wolitzky (2013), Ali and Miller (2013, 2016), Ali et al. (2017)).
Within this literature, our paper is closely related to Ali and Miller (2016), which shows that
players might not report deviations if doing so reveals that they are more willing to renege
on their own promises. Extortion is a different but complementary challenge to coordinated
punishments.

Since extortion is inherently action-contingent — i.e., “pay me or else I will lie” — our analy-
sis is related to a growing literature on action-contingent threats and promises. Like us, some
of these papers study action-contingent threats, as in Chassang and Padro i Miquel (2018)
on retaliation and whistle-blowing and Zhu (2019) on information in subjective performance
contracts. Other papers study action-contingent promises, as in Wolitzky (2012) on career
concerns, Zhu (2018) on efficiency wages, and Ortner and Chassang (2018) on monitor-agent
collusion.?> These papers study different settings, instruments, and implications. However,
they all assume a bit of commitment to allow players to deviate in an action-contingent
way. In our paper, agents can similarly commit to pay-contingent messages, although we
can re-interpret commitment as an equilibrium refinement of the game without commitment.

The literature on cooperation has devoted less attention to how coordinated punishments
might be misused. Dixit (2003a, 2007) is perhaps the first to formally model the misuse of
coordinated punishments, although those models study centralized enforcers rather than de-
centralized communication. Bowen et al. (2013), which studies local adaptation in communi-

ties, considers a type of misuse that is not action-contingent and so differs substantially from

3Indeed, Ortner and Chassang (2018) have an appendix that studies extortion. However, that appendix
assumes that reports lead to exogenous and fixed punishments, while the point of our analysis is to show
how to optimally link messages to punishments.



extortion. The literature on coalitional deviations in repeated games (Ali and Liu (2018),
Liu (2019)) is more closely related, as extortion resembles a bilateral coalitional deviation
in which an agent has all the bargaining power. In contrast to that literature, however,
extortion occurs in the middle of a period, rather than at the start, and the resulting actions
(effort and transfers) are not publicly observed.

In our setting, an agent essentially threatens the principal with a bad “outside option”
unless she pays him. Our paper is therefore connected to the literature on bargaining in
repeated games. Several papers assume that players bargain over either a per-period surplus
or continuation play (Baker et al. (2002), Halac (2012, 2015), Goldlucke and Kranz (2017)).
Miller and Watson (2013) and Miller et al. (2018) define and analyze an equilibrium refine-
ment that essentially allows players to bargain over continuation equilibria. By focusing on
communication across agents, our paper studies a setting in which the principal’s “outside
option” depends on how messages affect future equilibrium play.

More broadly, our framework builds on the relational contracting literature (Bull (1987),
MacLeod and Malcomson (1989), Baker et al. (1994), Levin (2003)), especially those papers
that study coordinated punishments (e.g., Levin (2002)). We introduce extortion as a threat
that undermines such punishments. Recent papers have explored relational contracts in
the presence of limited transfers (Fong and Li (2017), Barron et al. (2018)), asymmetric
information (Halac (2012), Malcomson (2016)), or both (Li et al. (2017), Lipnowski and
Ramos (2017), Guo and Horner (2018)). We focus on a monitoring friction — agents do not
observe one another’s relationships — which implies that cooperation relies on communication.
Other papers that study relational contracts with bilateral monitoring, including Board
(2011), Andrews and Barron (2016), and Barron and Powell (2018), do not allow agents
to communicate. We complement these papers by identifying a reason why communication

might be relatively ineffective at sustaining cooperation.



2 Model

Our baseline model is the following extortion game. A long-run principal (“she”) interacts
with a sequence of short-run agents (each “he”). In each period ¢t € {0, 1,2, ...}, the principal
and agent t play a trust game: agent t exerts effort, the principal observes that effort, and
the two parties pay one another. This interaction is observed only by the principal and agent
t; however, agent ¢ can send a public message at the end of period ¢t. Our key assumption
is that before transfers are paid, agent ¢ chooses a threat, which is a mapping from the
transfer he receives to the message he sends. This threat is observed by the principal but
not by other agents.

Formally, the stage game in period ¢ is:

1. Agent t chooses his effort e, € R, and a threat p; : R — M, where M is a large, finite
message space.! Both e, and j; are observed by the principal but not by any other

agent.

2. The principal and agent ¢ simultaneously pay nonnegative transfers to one another,
with agent t’s (net) pay denoted by s; € R.> Transfers are observed by these two

players but not by any other agent.

3. The message m; = u(s;) is realized and observed by all players.®

The principal’s period-t payoff and agent ¢’s utility are (e; —s;) and (s; — c(e;)), respectively,
where ¢(+) is twice continuously differentiable, strictly increasing, and strictly convex, and
satisfies ¢(0) = /(0) = 0. We assume that there exists a unique first-best effort level, ef'B,
that solves ¢/(efB) = 1. The principal has discount factor § € [0,1), with corresponding
normalized discounted payoffs IT, = (1 — &)Y o, 8" “!(ey — sp). Players observe a public

randomization device (notation for which is suppressed) in every step of the stage game.

4The assumption that M is finite simplifies the proofs (by ensuring that various maxima and minima
exist) but is not essential for the results.

>With the exception of section 5, agents have no incentive to pay the principal, so s; > 0 in every period
t of any equilibrium.

6 Allowing yi; to condition on e; would not change any of our results.



The principal observes everything, while agents observe only their own interactions with
the principal and all public messages. Our solution concept is Perfect Bayesian Equilibrium.”
Some of our results focus on principal-optimal equilibria, which maximize the principal’s ex
ante expected payoff E[Ily] among all equilibria.

We will occasionally compare our results to a benchmark without extortion. Define the
no-extortion game as identical to the extortion game, except that each agent t chooses m;
at the end of period t rather than being committed to y;. In the no-extortion game, agents
cannot shirk and then make action-contingent threats, so they cannot misuse communication.

The goals of our analysis are to (i) show why agents have the incentive to extort the
principal, and (ii) explore how organizations can deter extortion in equilibrium. Commitment
is a necessary and transparent way to accomplish these goals, one that is similar to the
approaches taken in Dixit (2003a), Wolitzky (2012), Chassang and Padro i Miquel (2018),
and Ortner and Chassang (2018). In Online Appendix B, we show that we can re-interpret
commitment as an equilibrium refinement of the no-extortion game, since all equilibria in
the extortion game remain equilibria if agents cannot commit. Under this interpretation,
our approach is similar to Dewatripont (1987), Tranaes (1998) and Zhu (2018, 2019), which
study promises and threats in other contexts.

If we interpret the principal as a manager and the agents as her workers, then this model
shows how workers might misuse communication — whether grievances filed with a union or
negative reviews on a website — to extort concessions from their manager. Of course, the
real world is richer than our model: unions typically investigate grievances before acting on
them, and individual workers have long-term relationships with the manager. In sections
4 and 5, we examine how each of these enrichments can be used to (imperfectly) combat
extortion.

Online Appendix C considers richer communication structures, including models in which

"See Watson (2016). We consider a Perfect Bayesian Equilibrium in order to specify how agents form
beliefs over histories, but since those beliefs do not play an important role in our arguments, our results
would extend to various restrictions on off-path beliefs.



the principal can send messages or make threats, as well as ones in which each agent can
make repeated threats. In most of these variants, extortion continues to undermine coop-
eration. We also show that certain communication structures can lead to some equilibrium

cooperation, although these positive results typically come with substantial caveats.

3 Threats Undermine Equilibrium Cooperation

This section shows how communication is both used and misused in equilibrium. We first
illustrate how communication sustains cooperation in the no-extortion game. Then, we turn
to the extortion game and show that agents’ threats lead cooperation to completely unravel.
This impossibility result highlights the essential features of extortion and shows how it differs
from other kinds of misbehavior.

Cooperation requires that agents communicate among themselves, since without commu-
nication an agent would have no way to punish the principal for deviating. We first establish
a benchmark result: if agents cannot engage in extortion, then communication can indeed

sustain cooperation.

Proposition 1 In the no-extortion game, e; = e* and sy = c(e*) in each t > 0 of every
principal-optimal equilibrium, where e* equals the minimum of B and the positive root of

c(e) = de.

Proof: We first argue that total equilibrium surplus is at most e* — c¢(e*). By definition of
ef'B equilibrium surplus is at most ef® — c(efB). Tf c(ef'P) < §el™B, then e* = ef'P and the
result follows. If c(ef'®) > def'B, then let II be the principal’s maximum ez ante equilibrium
payoff. In any period ¢ > 0 of any equilibrium, (1 —d)s; < dII and s; — c(e;) > 0 must hold,
since otherwise the principal or agent ¢ could profitably deviate from s; or e;, respectively.
Therefore, (1 — d)c(e) < 0II. Let € be the effort that maximizes e — c(e) among any effort
that is attained in any period of any equilibrium. Then (1 — d)c(€) < 811 < §(€ — c(€)) and

so c(€) < de. We conclude that € < e* < efB| so equilibrium surplus is at most e* — c(e*).

10



Consider the following strategy profile for each period ¢t > 0: if my = C for all ¢’ < t,
then e; = e*; sy = c(e*) if e, = e* and s; = 0 otherwise; and m; = C' if neither player deviates
and m; = D otherwise. If my # C for at least one t' < t, then ¢, = s;, = 0 and m; = D.
If my # C for some t' < t, play is as in the one-shot equilibrium and so players cannot
profitably deviate. If my = C for all t’ < t, then agent ¢ has no profitable deviation because
he earns 0 on-path and no more than 0 from deviating. The principal has no profitable
deviation because (1 — d)c(e*) < d(e* — c(e*)) since c(e*) < de*. This strategy is therefore
an equilibrium. It is principal-optimal because it generates total surplus e* — ¢(e*), which is
the maximum equilibrium surplus, and it holds agents at their min-max payoffs. Moreover,
every principal-optimal equilibrium gives the principal a payoff of e* — ¢(e*) and so must

entail e, = e* in every period. l

Proposition 1 shows how communication can be used to induce the principal to pay a
hard-working agent. On the equilibrium path, each agent sends the message C'if the principal
pays him and D otherwise. Future agents min-max the principal if they observe the message
D. A shirking agent sends a message that is independent of the transfer and is paid nothing.
The principal would rather pay a transfer than be punished, and each agent would rather
exert effort than shirk and forgo the transfer, so this construction can lead to positive effort.

This construction requires that shirking agents choose transfer-independent messages,
and in particular do not threaten the principal. In the extortion game, shirking agents make
exactly this type of threat. In the resulting equilibrium, the compensation that an agent can

demand is essentially independent of effort, so agents do not exert effort.

Proposition 2 In the extortion game, every equilibrium entails e, = sy = 0 in every t > 0.

Proof: Define m'™! = (mg, my,...,my_1), and let

1= max {E [Ht+1|mt_1, my = m}}

11



be the principal’s maximum continuation surplus in period ¢+ 1 onwards, with corresponding
message m. Let II be the similarly-defined minimum continuation payoff, with corresponding
message m. Agent t is willing to choose e; = €* only if s; = s* > ¢(e*); the principal is willing
to pay this transfer only if

—(1—68)s* + 611 > &11. (1)

For small € > 0, consider the following deviation by agent ¢: e, = 0 and

m s=s"—¢
pe(s) = (2)
m otherwise.

If e* > 0, then s* — € > s* — ¢(e*) > 0 for € > 0 sufficiently small. Since (1) holds weakly at
sy = s*, it holds strictly for s; = s* — € and so the principal’s unique best response to this
deviation is to pay s; = s* — e. Hence, agent ¢ can profitably deviate from any e; = e* > 0.

Every equilibrium therefore has e; = 0 for all ¢ > 0, in which case IT = II = 0 and so s, = 0.

If the principal pays s; > 0 on the equilibrium path, then agent ¢ can shirk and threaten
to send a message that punishes the principal unless she pays him an amount slightly less
than s;. Since the principal is willing to pay s; when faced with this punishment, she strictly
prefers to pay a smaller amount. An agent can therefore shirk and still guarantee nearly the
same transfer as if he had exerted effort. This deviation is so tempting that no agent will
work.

Before moving on, we reflect on what we learn from Proposition 2 about how extortion
undermines coordinated punishments. In any equilibrium, each of agent t’s messages leads
to some continuation payoff for the principal. Let IT and II be, respectively, the largest and

smallest payoffs induced by some message. Define an agent’s leverage over the principal as

12



the difference between these continuation payoffs,

5
L=—(0-1). (3)

We refer to IT and II as the principal’s best-case and worst-case payoffs, respectively.

In the extortion game, an agent’s leverage is independent of his effort, so a shirking
agent gets essentially the same pay as a working agent. A shirking agent also saves the cost
of effort, so shirking and extorting is better than working. This observation is the key to
the rest of our analysis, which explores how organizations can restore cooperation by giving
hard-working agents more leverage than shirking agents. Tying effort to leverage doesn’t
change the effort cost that a shirking agent saves, but it does change the pay that such an

agent can extort.

4 Investigations

This section introduces a public signal of either the effort or the transfer, which might either
arise naturally or be the result of an investigation. In the no-extortion game, such signals
do not improve cooperation at all. The reason is that the principal, who is the only party
that can reward or punish an agent, already observes effort, while the agents are willing to
truthfully report transfers. Signals are therefore redundant.

In contrast, we show that effort signals can improve cooperation in the extortion game.
Such signals work by tying an agent’s effort to his leverage. Agents typically earn rent
in equilibrium, creating a tension between the total value created by cooperation and the
principal’s payoff. Transfer signals, however, are usually of no use, since they tie leverage to
pay but not directly to effort. Only under certain stringent conditions can transfer signals

deter extortion.

13



4.1 Effort Investigations

The extortion game with effort signals is similar to the baseline extortion game, except
that an effort-dependent signal, y,, is publicly observed after s;. We focus on a simple, binary
signal structure: v, € {0,1} with Pr{y; = 1]e;} = ~(e;) for y(-) strictly increasing and twice
continuously differentiable. Agent ¢’s threat can be any mapping from his pay and this signal
to a message, so that (with an abuse of notation) p; : R* — M and my; = py(ss, y;).* Payofs
are the same as in the extortion game.

The signal y; can be used to encourage cooperation by tying an agent’s effort to his
expected leverage. Because signals are noisy, however, a shirking agent typically retains
some leverage and, hence, can demand some pay. Agents therefore refrain from extortion
only if they earn an equilibrium rent. The resulting tension between total surplus and the

agents’ rent determines effort in a principal-optimal equilibrium.

Proposition 3 Consider an equilibrium of the game with effort signals. If e, = e on the

equilibrium path, then agent t’s equilibrium payoff is at least u(e), where

i(e) = max {o, %7(6) - c(e)} .

Suppose () is weakly concave. Then, u(-) is strictly increasing and in any t > 0 of any
principal-optimal equilibrium, equilibrium e; solves

¢; € argmax {e —c(e) —u(e)}

subject to the constraint

Proof: See Appendix A.

8 Allowing j; to condition on %, simplifies our arguments, but the basic intuition would survive if s
depended only on s;.
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To prove Proposition 3, we show that equilibrium play is closely related to a static
moral-hazard problem in which y, is contractible and agents have limited liability. Consider
an agent’s leverage, defined as in (3). With effort signals, leverage is a function of y, L(y),
so agent t’s expected leverage depends on his effort. Agent ¢ chooses e; to maximize the

amount he can extort minus his effort, so
¢; € argmax {E [L(y)|e] — c(e)} . (5)

Since L(-) > 0, this incentive constraint is identical to that of a static moral-hazard problem
with limited liability, where agent t’s leverage is the analogue to the incentive payment. As
is typical in such models, agent ¢ earns a rent, which equals u(e;).

Thus far, we have ignored the principal’s incentives, which constrain leverage from above.
In a principal-optimal equilibrium, we can increase the principal’s best-case payoff, I1(y),
holding L(y) and hence agent t’s payoff fixed. Therefore, principal-optimal equilibria always
entail principal-optimal continuation play. As in a static moral-hazard problem with limited
liability, agent ¢’s effort incentives depends only on L(1) — L(0), so it is optimal to set L(0)

to be zero. If v(-) is concave, then u(-) is increasing and we can replace (5) with its first-

order condition L(1) = ;l,((z)) Calculating the principal-optimal equilibrium payoff therefore
¢(e)

reduces to maximizing the principal’s single-period payoff, given that L(1) = oL and

5
L(1) is bounded above by the principal’s continuation surplus, L(1) < 1‘576 (e — c(e) —u(e)).
Combining these constraints implies (4).

One consequence of Proposition 3 is that, if v(-) is concave, then the principal-optimal
equilibrium entails e < ef'B; decreasing effort at e/'? entails a second-order loss in surplus
but a first-order decrease in the agents’ rent. Moreover, the principal’s continuation payoff,
and hence the upper bound on L(-), is decreasing in the rent paid to future agents. That

is, each agent’s rent-seeking behavior undermines the credibility of the principal’s earlier

promises and so imposes a negative externality on her relationships with other agents.”

9Levin (2002) studies a related intertemporal externality in a setting without extortion.
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In practice, the agent might have some sway over the signal distribution, as, for instance,
when a union decides how to investigate grievances. Both agents and the principal prefer
some kind of investigation to none, but they disagree on the optimal signal structure. In a
principal-optimal equilibrium, the principal’s payoff is maximized by the signal distribution
that maximizes e — u(e), while the agent’s payoff is maximized by the distribution that
maximizes u(e). For fixed e, u(e) varies one-to-one with %‘3, which is larger when the signal
distribution puts weight on “false positives:” y; = 1 occurs frequently and with a probability
that is (locally) not very responsive to effort.!® While false positives lead to lower equilibrium
effort, they also make extortion more lucrative and so increase the rent that agents must be

paid, at least up to a point.

4.2 Transfer Investigations

We now turn to public signals of the transfer. In contrast to section 4.1, transfer signals
deter extortion only under stringent conditions and so are not a reliable remedy to extortion.

The extortion game with transfer signals is identical to the extortion game except
that in each period t > 0, a public signal x; € R is realized after s, and observed by everyone.
Agent t’s threat maps each (s;, ;) to a message my, so uy : R2 — M with py(ss, 1) = my.
We again focus on binary signals, so that z; € {0,1} with Pr{z; = 1|s;} = ¢(s;) for some
strictly increasing and twice continuously differentiable ¢(-).

Our main result in this section is a set of necessary conditions on ¢(-) that must hold for
an equilibrium with positive effort to exist. To understand these condtions, consider play in
some period t. Define II(my, x;) as the principal’s continuation payoff if agent ¢’s message
is m; and the signal is x;. After agent ¢ chooses his threat j;, the principal chooses s; to
maximize her payoff:

max —(1 — 0)s + 0 [T (s (s, x), x)]s]. (6)

S

190f course, the principal’s preferred e is not fixed as the signal distribution varies, which complicates
equilibrium comparative statics with respect to (-).
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Note that (6) is independent of agent t’s effort. Therefore, if a unique transfer maximizes (6),
then the principal will pay that transfer regardless of agent t’s effort. This leads to our first
necessary condition: agent t exerts positive effort only if the principal is exactly indifferent
between at least two transfers when she faces the equilibrium threat. The second necessary
condition requires that no alternative threat would induce the principal to pay agent ¢ more
than his equilibrium payoff. Only under these two conditions is agent ¢ willing to exert effort,
and even then, the effort cost cannot exceed the difference between the on-path transfer and
the largest amount that he can extort.

These two requirements imply a set of stringent necessary conditions on ¢(+).

Proposition 4 Consider an equilibrium of the game with binary transfer signals. If e; > 0
on the equilibrium path, then there exists s* > 0 and § € [0, s*) such that (i) c(e;) < s* — 3,
(11) ¢"(s*) <0, and (iii)

¢(s7) = —"—F— (7)

s* — 8§

In particular, if ¢(+) is strictly concave on R, then e, = 0 in each t > 0 of every equilibrium.

Equation (7) combines the two conditions for e, > 0 described above. First, the principal
must be indifferent between paying the on-path transfer, s*, and some other amount that
is no less than S, when faced with the equilibrium threat. Period-t effort must satisfy
s* —c(e;) > 8, since otherwise agent ¢ could profitably shirk and extort §. Second, no threat
can induce the principal to pay a transfer near s*. The first of these conditions pins down the
average slope of ¢(-) between § and s*, while the second condition pins down the derivative
of ¢(-) near s* to be the same number. In particular, the average slope between § and s*
must equal the tangent slope at s*, implying (7).

Condition (7) cannot hold if ¢(-) is strictly concave, in which case every equilibrium
entails e; = s; = 0 in each t > 0, just as in the extortion game without transfer signals.
Thus, positive equilibrium effort is possible only if ¢(-) has both convex and concave regions.

In that case, it is possible to construct equilibria with strictly positive effort in at least
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one period. Such a construction requires the principal to be punished whenever z; = 0,
since otherwise E [TT(p (s, x¢), z¢)|s;] would be constant in s;. The principal is therefore
periodically punished on the equilibrium path in any equilibrium with positive effort. For
that reason, we view transfer investigations as unreliable, in the sense that they do not
improve cooperation for a wide variety of signal distributions, and inefficient, because any

equilibrium with positive effort must also entail occasional on-path punishments.

5 Bilateral Relationships

In the extortion game, the principal can punish an agent only by withholding pay, while
an agent can punish the principal only by communicating with future agents. In this sec-
tion, we explore how future bilateral interactions between the principal and each agent can
support cooperation. As is familiar from the literature on repeated games, these bilateral
interactions can be used to punish an agent for shirking or the principal for reneging on a
hard-working agent. We now emphasize a third effect that is specific to our setting: bilateral
relationships can be used to punish the principal for acquiescing to an agent’s threats, which
makes extortion less tempting to each agent. Therefore, bilateral relationships complement
coordinated punishments.

Consider the extortion game with bilateral relationships, which is identical to the
baseline extortion game except that after agent ¢ sends his message in each period ¢ > 0, the
principal and agent ¢ play a symmetric, simultaneous-move coordination game. The actions
and outcomes of this coordination game are observed by the two participants but not by
any other agent. We suppress notation for actions in this coordination game and instead
denote the resulting (symmetric) payoff by vy, so that the principal’s and agent t’s payoffs
are e; — s; + vy and sy — c(e;) + vy, respectively.

The outcomes of the coordination game are not observed by any future agents and so

cannot affect the principal’s continuation value. In equilibrium, v; must therefore correspond
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to a Nash equilibrium of the coordination game in each ¢ > 0. Define v; = vy and v, = v, as
the largest and smallest such Nash equilibrium payoffs, respectively. While our result can be
readily extended for general, asymmetric coordination games, the following simple example

suffices:

h l
h (vg,vyg) (vp,vr) -
[ (vp,vr) (vp,vr)
We show that positive effort can be sustained in the extortion game with bilateral re-
lationships. However, equilibrium effort is constrained by the strength of each bilateral

relationship, as measured by the difference (vy — vp).

Proposition 5 In the extortion game with bilateral relationships, c(e;) < 3(vyg—vy) in every
t >0 of any equilibrium. If e* is the minimum of e''® and the solution to c(e*) = 3(vyg —vr),
then there exists a 6 < 1 such that for any § > 6, e, = e* in every t > 0 on the equilibrium

path in any principal-optimal equilibrium.

Proof: See appendix A.

The effort constraint c(e;) < 3(vy — vy) reflects the fact that bilateral relationships can
encourage equilibrium effort via three different channels. Two of these channels are familiar:
agent ¢t can be punished by (vg —vp) if he fails to exert the equilibrium effort level, and the
principal can be punished by (vy —vy) if she fails to reward an agent who exerts effort. The
third channel arises because the coordination game can reward the principal for refusing to
pay an agent who shirks. An agent’s leverage is then tied to his effort, since the principal
is willing to pay (vyg — vz) more to an agent who exerts effort relative to one who shirks.
Consequently, agents’ messages can influence the principal’s continuation payoff without
opening the door to extortion. The proof of Proposition 5 tracks the histories associated

with each of these three channels and arranges transfers so that the appropriate players are
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rewarded or punished at each of those histories. Note that, unlike in the rest of the paper,
this proof uses the fact that agents can pay the principal.

As in the proof of Proposition 2, let us define II and II as the principal’s largest and
smallest equilibrium continuation payoffs, respectively, in some period ¢, in which case agent
t's messages can punish the principal by no more than §(IT—1II). Agent ¢ can therefore extort
no more than §(IT —II) — (1 — &) (vy — vy) if he shirks, since the principal loses (vg —vy) from
her bilateral relationship with agent ¢ if she gives in to extortion. That is, agent ¢ cannot

extort the principal at all as long as
) _
1—5(H—E) SUH—/UL. (8)

It is in this sense that bilateral relationships enable coordinated punishments: a larger
difference (vy — vy) implies that the coordinated punishment IT — II can be more severe
before it leads to extortionary threats. On the other hand, if (8) is violated, then increasing
I1 —1II increases both agent ¢’s on-path payment and the amount he can extort, and so could
not increase agent t’s equilibrium effort.

This intuition is related to the “rival claimants game” studied by Basu (2003) and Myer-
son (2004). As in our setting, the rival claimants game uses a coordination game to ensure
that one party pays another if, but only if, the second party “deserves” that payment. The
key difference is that players take simultaneous actions in the rival-claimants game. Conse-
quently, the channel that we emphasize — that once an agent tries to extort, the bilateral
relationship can reward the principal for not paying that agent — is not present.

The coordination game is an abstract way to reflect the idea that the principal has more
than one interaction with each agent. In reality, these bilateral relationships are typically
long-lived: managers interact repeatedly with each of their employees, community members
have repeated opportunities to contribute to public goods, and most businesses are long-term

members of their associations. We interpret the coordination-game payoff v, as a simple
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representation of the continuation payoff from these future interactions. In appendix D, we
confirm this interpretation by studying a setting with truly long-run agents who interact
repeatedly with the principal. While the resulting analysis is more involved, it remains true

that bilateral relationships facilitate coordinated punishments.

6 Extortion in Organizations

This section studies how to detect extortion in organizations. In Section 6.1, we consider
the variation that would allow an observer to distinguish extortion from other types of
misbehavior. Section 6.2 explores how our intuition generalizes to a setting in which extortion

occurs on the equilibrium path.

6.1 Uncovering Evidence of Extortion

In this section, we step back from the model to consider how an observer might detect
extortion and distinguish it from other kinds of misbehavior. Unlike shirking, which entails
low effort and low pay, extortion results in agents shirking and nevertheless receiving large
rewards. Observing noisy signals of both agents’ efforts and pay would therefore be enough
to detect extortion.

Can an observer make do with less data? Section 4.2 suggests that noisy observations of
transfers are usually not enough to detect extortion, since hard-working agents and extorting
agents are paid nearly the same amount. Even observing the agents’ threats might not be
enough, since both hard-working and shirking agents rely on similar threats to demand
payment. However, Section 4.1 suggests that an observer might be able to infer extortion
from noisy signals of effort—say, by observing output, productivity, or another outcome.

The challenge with using effort signals to detect extortion is that both extortion and
shirking result in low effort. Thus, our goal is to use the unique features of extortion to dis-

tinguish it from simple shirking. As we have argued, an agent’s gain from extortion depends
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on his leverage, while his gain from shirking does not. Consequently, we can exploit variation
in the mapping between performance and leverage, which could arise due to variation in the
quality of communication or the principal’s discount factor. It might also arise due to dif-
ferences in equilibria across organizations; for example, unions might investigate or respond
to grievances in different ways, platforms might have different conditions that must be met
before a user can post negative reviews, and communities might have different institutions
for reporting and punishing suspected misbehavior.

We adopt the notation L(y) for leverage as a function of performance, as in Section 4.1.

In equilibrium, an agent chooses e to solve
e € argmax {E [L(y)e] — c(e)}

in the extortion game with effort signals. It is straightforward to show that the corresponding
condition in the no-extortion game with effort signals is

E[L(y)le] = c(e).

These two incentive constraints highlight the fundamental difference between extortion
and shirking. In the no-extortion game, all that matters for effort is an agent’s expected
leverage on the equilibrium path. In the extortion game, effort incentives depend on how
leverage wvaries with an agent’s effort. Varying an agent’s leverage when it looks like he
shirked would therefore have opposite effects on effort in the extortion and no-extortion
games. For example, in the binary signal structure from Section 4.1, decreasing L(0) would
decrease effort in the no-extortion game but increase effort in the extortion game. This kind

of variation can distinguish extortion from shirking.
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6.2 Extortion on the Equilibrium Path

The preceding analysis treats extortion as a deviation, so that it never occurs on the equilib-
rium path. In this section, we enrich the model to bring extortion on the equilibrium path
and study the prevalence of extortion in organizations.

Consider the following hybrid extortion game. Suppose that, at the start of every
period t € {0,1,...}, agent ¢ privately observes a cost k; > 0, k; ~ G(-), and then chooses
whether or not to invest. If he invests, then his payoff decreases by k; and he plays the extor-
tion game with the principal; otherwise, he plays the no-extortion game with the principal.
Only the principal observes agent ¢’s investment decision; other agents observe only m;.

We interpret k; as agent t’s cost of making the principal believe that he will follow through
on his threats. An agent might incur these costs by developing an (unmodeled) reputation for
following through on extortionary threats, or by otherwise demonstrating that he is willing
to extort. The extortion and the no-extortion games are special cases of this game where
k; = 0 or k, is large, respectively. In this section, we focus on distributions over k; such that
agents invest with an interior probability.

Our next result characterizes principal-optimal equilibria in the hybrid extortion game.
We phrase this result in terms of an agent’s leverage L in order to discuss how changing L

changes the prevalence of extortion and its consequences for cooperation.

Proposition 6 At any period-t history of any equiltbrium in the hybrid extortion game,
there exists an L; such that, if the agent invests, then s; = L; and e, = 0, while if he
does not invest, then c(e;) < s, = s < L;. The agent is willing to invest if and only if
ki < cleg) + (Ly — sN).

In any t > 0 of any principal-optimal equilibrium,

L, € arg max {1-G(L)c(L)- L}
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subject to the constraint

(o)

(¢ (L) (1-G(L) - L).

Proof: See Appendix A.

As before, consider some period t, and define

L

o

m(ﬂ —1I)

as agent t’s leverage. If agent ¢ invests, then as in the proof of Proposition 2, his unique
equilibrium strategy is to shirk and extort as much as possible, so the transfer equals s¥ = L;
and effort equals ¢, = 0. If agent ¢ does not invest, then as in the proof of Proposition 1,
he is willing to choose ¢; only if c(e;) < sV, while the principal is willing to pay sV only
if s < L;. Agent t invests whenever the costs of doing so, k¢, are smaller than the gains,
Ly — (s — c(er)).

For reasons similar to those in Proposition 3, principal-optimal equilibria are sequentially
principal-optimal. In each period, L; ensures that the principal is exactly willing to compen-
sate each agent for his effort, given that (i) an agent who invests exerts zero effort and is paid
L, and (ii) L; is no more than the principal’s equilibrium continuation payoff. These two
conditions lead to the constrained maximization problem in the statement of Proposition 6.

Increasing an agent’s leverage increases both his temptation to extort and the effort he
is willing to exert if he does not. In a principal-optimal equilibrium of the hybrid extortion
game, agent ¢ extorts with probability G(L,); if he does not extort, his effort equals e, =
¢ '(L;). Thus, higher L; has two potential effects on equilibrium outcomes: it leads to a
higher prevalence of extortion and hence extremely low effort, but it also leads to higher effort
among those agents who do not extort. If output is a noisy signal of effort, then increasing
leverage leads to more weight on extreme output realizations. As in Section 6.1, identifying

a negative relationship between agents’ leverage and an organization’s performance would
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suggest that extortion is a potential cause for concern.

The main lesson of this discussion is that it is possible to indirectly detect extortion, even
if an observer cannot perfectly see the principal’s relationship with each agent. In particular,
the prevalence from extortion, and the resulting variation in performance, depend on an

agent’s leverage.

7 Conclusion

This paper studies a serious obstacle to using coordinated punishments to facilitate coop-
eration: agents may misuse messages intended to report deviations to extort the principal.
Communication is particularly susceptible to these kinds of extortionary threats for two rea-
sons. First, communication is necessary precisely when players do not observe one another’s
interactions, which means that extortion is unlikely to be widely observed. Second, coor-
dinated punishments are valuable when bilateral relationships are relatively weak, which
means that the extorted party has little direct recourse to punish the extorter. Both of
these features suggest that agents incur little cost from making, and following through on,
extortionary threats.

Our analysis suggests three natural next steps. First, we could delve further into the
assumption that agents commit to their threats. We have argued that this assumption is
both reasonable and (in a sense) necessary to study extortion, which requires shirking agents
to make action-contingent threats. We could therefore ask: how might an agent develop a
reputation for following through on these threats? If such a reputation is publicly known,
then other agents can simply ignore the resulting messages. If the principal is aware of the
reputation and other agents are not, however, then a reputation for extortion is valuable.
Each agent therefore has the incentive to develop a public reputation for honesty and a
bilateral reputation for extortion.

Second, we could consider how an organization’s use of coordinated punishments affects
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the types of workers that it attracts and retains. An agent who is willing to extort the
principal benefits more from coordinated punishments than agents who use those punish-
ments only for their intended purpose. Therefore, organizations that rely on coordinated
punishments risk attracting exactly those agents who are most likely to misuse them. How
might an organization that relies on coordinated punishments overcome this adverse selection
problem?

Finally, extortionary threats are also a feature in more symmetric interactions, as in, for
example, communal enforcement (e.g., Dixit (2007), Ali and Miller (2016)). In such settings,
both sides have the opportunity to extort one another. How do players cooperate in the
presence of two-sided extortion? What networks best facilitate cooperation, and how are
rents shared within those networks? How should business associations, communities, and
firms structure their communication channels to support strong relational contracts? We

hope that our analysis provides a foundation for analyzing such questions.
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A Omitted Proofs

A.1 Proof of Proposition 3

Consider an equilibrium. Suppose e; = e at some on-path, period-t history, and let TI(y) and
II(y) be the principal’s largest and smallest continuation payoffs following signal realization
y, with corresponding messages m(y) and m(y). Define L(y) = {2+ (I(y) — L(y)).

For each effort e;, agent t can choose

m(y) se=8

pu(s,y) =
m(y) otherwise.

Whenever

5 < 3(e) = L(0) + v(e) (L(1) — L(0)),

the principal’s unique best response to this j; is to pay 5. On the other hand s, = 0 is a

best response to any § > §(e;). Thus, agent t’s equilibrium effort, e, must satisfy
¢ € arg max {3(¢") —c(e)}.
If e > 0, then a necessary condition for agent t to choose ¢, = e is that
c(e) = §(e) = 7'(e)(L(1) — L(0)). (9)

Since +'(e) > 0, we can solve for L(1) — L(0) in (9) and plug into the definition of 3(e;) to

yield
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Agent t earns at least 0, so

s¢ — c(e) > max {0, 5(e) — c(e)} = max {O, v(e)sll((i)) — c(e)} = u(e),

as desired.

Now, suppose v(+) is concave. Since /(0) = ¢(0) =0, u(0) = 0, and

LS - dab>o

7'(e)

so that u(-) is strictly increasing. Moreover, the first-order condition (9) is both necessary
and sufficient for agent ¢ to exert effort e, = e.

We now characterize principal-optimal equilibrium. Let IT* be the principal’s payoff in
such an equilibrium. Note that on the equilibrium path, the principal’s continuation payoff
equals TI(y) following realization y, since otherwise agent ¢ could demand a higher transfer
using the promise of II(y).

Suppose that I1(y) < IT* for some y € {0,1}. In that case, we can increase both II(y) and
II(y) by the same constant to keep L(y), and hence agent t’s incentives, unchanged. Doing so
strictly increases the principal’s payoff. So the principal’s on-path continuation payoff equals
IT* in each t > 0 of any principal-optimal equilibrium. But then IT* = (1 — §)(e; — s;) + 0117,
so II* = e; — s; in any t > 0 on the equilibrium path.

In a principal-optimal equilibrium with v”(e) < 0, s, = E[L(y)|e], where e; solves

max e — E[L(y)le]

L()>0,e

subject to (9) and

5
< ——1IT%.
L{y) < ;51

Thus, L(0) = 0, in which case L(1) = 5% and so E[L(y)|e]] = v(e)53 = a(e) + c(e).

Moreover, II* = e, — s; by the argument above, where e; and s; solve an identical constrained
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maximization problem. Substituting these simplifications into this constrained maximization
problem yields the constrained maximization problem in the statement of the Proposition.

A.2 Proof of Proposition 4

Fix a period t. Let II(m, x) be the principal’s continuation payoff following message m and
signal . Let II(z) = max,, I[I(m, z) and II(z) = min,, II(m, z) with m(z) and m(x) being
the corresponding maximizer and minimizer. We let 7” be the smallest payoff that the
principal can guarantee herself,

7 = max —(1 — §)s + 6 [I(z)|s] . (10)

s

Define s, as the smallest maximizer of (10). We argue that agent t’s payoff is at least

s4. He can always choose e; = 0 and

m(z), if s=sy
(s, ) =
m(x)a if s 7é SA-

Faced with this threat, the principal earns 7 from paying s, and strictly less than 7 from
paying s < s4. Therefore, the principal will pay at least s4.

Consider the set of transfers that can give the principal a higher payoff than 7%:
{s:—(1—6)s+E [II(z)|s] >="}. (11)

If this set is nonempty, we let sp be the supremum of this set. We argue that agent ¢ can
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get a payoff arbitrarily close to sp. In particular, he can choose e; = 0 and

m(x), ifs=sp—c¢
Mt(S,x) =
m(x), ifs#sp—e

Since ¢(-) is continuous, the principal’s unique best response is to pay s; = sp — € for small
enough € > 0.

Now, define § = max{sa, sp} if the set (11) is nonempty, and § = s4 otherwise. Agent
t can guarantee a payoff arbitrarily close to § if he shirks, so he chooses e; = e* only if

s* — c(e*) = 8, which is our first necessary condition. Moreover, we can show that

—(1=6)s* + 0E [II(z)|s*] = s” (12)

—(1—6)8 + 6E [II(z)]5] = s”. (13)

To see why (12) holds, note that the principal is willing to pay s* so the left-hand side of
(12) must be weakly higher than 7. But either s does not exist, in which case (12) must
hold with equality, or the supremum of the set (11) must be strictly below s*, so that again
(12) holds with equality. Equality (13) follows from the continuity of ¢(-) and the definition
of s.

Combining (12) and (13), we have

5= 8= =2 (8(s) — 6(8) (TI() ~ TI(0)) (1)

Given (12) , —(1—6)s+0E [II(z)|s] must attain a local maximum at s = s*, since otherwise

(11) would contain elements arbitrarily close to s* and so s* < §. Thus,

_ 1-96
)

¢'(s7) (II(1) - 11(0)) = (15)
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and ¢”(s) < 0. Combining (14) and (15) yields our final necessary condition:

If ¢(+) is strictly concave, it cannot satisfy this condition for s* > 5. B

A.3 Proof of Proposition 5

Consider period t of an equilibrium. Define IT and II as the principal’s largest and smallest
continuation payoffs, respectively, with corresponding messages m and m. Agent ¢ can always
deviate to e, = 0 and

m s=3

m otherwise.

Following this deviation, the principal’s unique best response is s; = § if

) _
§<UL—’UH+H(H—H). (16)

Similarly, if agent ¢ does not deviate, the principal is willing to pay s; = s* only if

)
s* SUH_UL‘i‘m(H_E)- (17)

Agent t is willing to choose e; = e* only if s* —c(e*) + (vg —vr) > § for any § satisfying (16).
Given the bound (17) on s*, we conclude that e; = e* in equilibrium only if 3(vg—vy) > c(e*).

Each agent must earn at least vy, so the principal’s equilibrium payoff cannot exceed
e*—c(e*)+2vy —vr, where e* = ef'P if ¢(e!P) < 3(vy—wvr) and e* satisfies ¢(e*) = 3(vy —vy)

otherwise. To complete the proof, we construct an equilibrium that attains this bound. Play
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starts in the cooperative phase: in each ¢t > 0, agent ¢ chooses e; = ¢* and

C s=c(e’)
pe(s) =
D otherwise.
The transfer equals s; = ¢(e*) — (vg — v if agent ¢t does not deviate and s; = —(vg —vp) if

he does. If either nobody deviates or agent ¢ deviates from (e;, i¢) but then nobody deviates
from s;, then v; = vy; otherwise, v; = vy. Play continues in the cooperative phase until
my = D, at which point it transitions to the punishment phase with probability a. In the

punishment phase, ¢, = s; = 0 in each period. Let « satisfy
max {0, c(e*) — 2(vy —vp)} = 5% (e" —c(e”) + 2vy —vy).

For 6 < 1 sufficiently close to 1, a € [0, 1].

The principal earns e* — ¢(e*) + vy + (vg — vy) surplus in each period of the cooperative
phase. Denote s > 0 and s > 0 as the principal’s and agent t’s transfer to each other,
respectively, so that s; = s — s, If agent t deviates in (e;, pi;), then he earns s + vy, by
paying s = (vy —vy) and s’ — s + vy, from deviating, so he has no profitable deviation

from s&. Regardless of pi,, the principal has no profitable deviation from s” = 0 following a

deviation in (e, pur) if

Vg — vp > %a(e* —c(€") + 2vy —vr) = max {0, c(e”) — 2(vy —vp)},

which holds because ¢(e*) < 3(vyg—wvg). On the equilibrium path, if s, = ¢(e*)—(vg—vr) > 0,

then the principal has no profitable deviation because

(e*—c(e")+2vg—vr) > UL—i—L(l—a)(e*—c(e*)—l—%}q—m).

—c(e*)+(vg—vp)+vg+ 13

1—9
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This is because, by definition of «,
* 6 * *
_C(B )+2(’UH —’UL) Z 1—_6&<€ —c(e )+2'UH —UL).

If s; = c(e*) — (vg —vr) < 0, then agent ¢ has no profitable deviation from it because
c(e*) — (vg —vr) + vy > vp.

Given these transfers, agent ¢ earns vy, from choosing the equilibrium (e, ;) and no more
than vy from deviating. So this strategy profile is an equilibrium. It is principal-optimal

because it attains the upper bound on the principal’s equilibrium payoff. B

A.4 Proof of Proposition 6

Consider an equilibrium and a history at the start of period ¢. Define IT and II as in the

proof of Proposition 2, with corresponding messages m and m, and let
5 _
L= ——(IT —1).
(= (1)

Suppose agent ¢t invests. If e, > 0 or s; < Ly, then the deviation from the proof of Proposition
2 is profitable for € > 0 sufficiently small. Consequently, e; = 0 and s; = L; whenever agent
t invests.

Suppose agent t does not invest. He must earn at least 0 in equilibrium, so s; — ¢(e;) > 0.
The principal must be willing to pay s;, so s; < L;. For any eV and sV that satisfy these
two constraints, consider the following strategy:

1. Agent ¢ chooses e; = el.

2. The principal pays s; = s if agent ¢ has not deviated and s; = 0 otherwise.

3. Agent t sends m if no deviation has occurred and m otherwise.

If agent t chooses e; = e, the principal is willing to pay s because s < L;. If agent ¢

deviates, then m; = m regardless of the principal’s action, so she pays s; = 0. Agent t is
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willing to choose eV because s¥ > c(e)). Thus, no player has a profitable deviation from
these strategies. We conclude that any sV < R; and eV < ¢7!(s)) can be implemented in
an equilibrium, as desired.

Given this continuation play, the agent is willing to invest if and only if

Li — (s 4 clel)) > ki,

where L; — (s —c(el)) and k; represent the gains from, and cost of, investment, respectively.

Now, consider a principal-optimal equilibrium, and let IT* equal the principal’s maximum
equilibrium payoff. The preceding argument uniquely pins down equilibrium play if agent ¢
invests and the range of possible outcomes if he does not. The principal’s payoff is decreasing
in s;, so sV = c(e) in any principal-optimal equilibrium. The principal’s payoff is weakly
decreasing in L;, so it is without loss to set L; = sV in equilibrium. Finally, period-t
incentives depend on L, but not on II, so II = IT* in any principal-optimal equilibrium. That
is, principal-optimal equilibria are sequentially principal-optimal.

The probability that agent ¢ invests equals G(L;). Therefore,

IT* = (1 — G(Lo)) (&g — s5') — G(Lo)Lo,

where Ly is feasible if and only if Ly < {2II*. Plugging in e) = ¢'(Ly), s) = Lo, and
the resulting expression for II*, yields the constrained maximization problem given in the

statement of the result. W
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B Online Appendix: Interpreting Commitment

In this section, we interpret the commitment assumption at the heart of our analysis.

Without the threat or a similar modeling device, Proposition 1 shows that we can always
construct equilibria in which agents do not follow through on extortionary threats. Commit-
ment is a straightforward way to make sure that agents’ threats are more than just cheap
talk. Crucially, however, the threat does not force an agent to send an ex post suboptimal
message. Indeed, our next result shows that commitment refines the set of equilibria in each
game that we study.

Recall that the no-extortion game is identical to the extortion game, except that each

agent t chooses m, freely at the end of period ¢ rather than being committed to u,.

Proposition 7 For any equilibrium of the extortion game or of the extortion game with
effort signals, transfer signals, or bilateral relationships, there exists an equilibrium of the

corresponding no-extortion game that induces the same distribution over (e, s¢, M), -

Proof: In the extortion game, this result follows immediately from the fact that agents are
indifferent among messages and so are willing to follow their threats. Proposition 2 shows
such an equilibrium exists, which completes the proof. In the games with effort signals or
transfer signals, agents are again indifferent over messages and so a nearly identical argument
proves the result.

Consider the extortion game with bilateral relationships. Let ¢* be an equilibrium, and

consider the following strategy profile of the game: in each period ¢ > 0,
1. Agent t chooses e;, j; as in o*.
2. The principal chooses s; as in o*.
3. Agent t chooses m; = py(sy).
4. If agent t follows this message strategy, a,; is as in ¢*; otherwise, a; = L.
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No player has a profitable deviation from a; because a; is always an equilibrium of the
simultaneous move game at the end of the period. By the choice of a; following a deviation
in m,, agent ¢t has a weak incentive to follow the specified message strategy m,. But then
the principal and agent ¢ have no profitable deviation from e;, u;, or s;, since continuation
play is exactly as in o*. So this strategy profile is an equilibrium of the no-extortion game,

as desired. l

Since agents are indifferent among messages, they are always willing to follow through
on their threats. If they do, then the resulting mapping from transfer to message is identical
to the corresponding mapping in the extortion game, leading to identical equilibrium out-
comes. The only complication to this argument arises in the extortion game with bilateral
relationships, since an agent’s payoff in the coordination game can potentially respond to
his message. However, we can always find an equilibrium in which agents are punished in
the bilateral relationship if they deviate from their threats, in which case agents are willing
to follow through on those protocols.

Since agents are indifferent among their messages in the extortion game, even a small
intrinsic preference for following through on threats is enough to replicate Proposition 2. To
make this point, we consider the game with e-compliance preferences, which is identical to
the no-extortion game except that each agent ¢ earns an additional ¢ > 0 payoff for choosing
my = py(sy). This small preference for complying with the threat is enough to lead to the

complete collapse of effort in equilibrium.

Proposition 8 For any € > 0, every equilibrium in the game with e-compliance preferences

has e, = sy = 0 in every t > 0.

Proof: Fix € > 0. Consider an equilibrium of the game with e-compliance preferences.
Since agent ¢ is otherwise indifferent among messages, he sends m; = p(s;) in every equi-
librium. For each u;, the equilibrium mapping from s, to m; is identical to that of an

equilibrium of the extortion game, from which the result follows. l
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Even a small preference for following the threat is enough to break agents’ indifference
across messages and so replicate our impossibility result. We could apply a similar argument
in the extortion game with either effort signals or transfer signals to prove that equilibrium
outcomes are similarly equivalent. In contrast, such an equivalence does not hold in the
extortion game with bilateral relationships, since the bilateral relationship can be used to
deter agents from following their threats if € > 0 is small.

Proposition 8 assumes that agents prefer to “keep their word” by acting according to their
threats. Other types of intrinsic preferences could lead to different equilibrium outcomes,
including equilibria with strictly positive effort. To illustrate this point, suppose that each
agent t instead prefers to “tell the truth,” in the sense that he receives an extra e > 0 utility
if (i) he sends m; = C' and no deviation occurred in period ¢, or (ii) he sends m; = D and a
deviation did occur. It is straightforward to show that intrinsic preferences of this sort are
enough to restore cooperation to the game level from Proposition 1. Note, however, that
agents who prefer to tell the truth earn lower utility than those who can extort the principal,
since the former must exert effort to earn a transfer while the latter can shirk. Consequently,
if an agent could develop a reputation with the principal (unobserved by other agents), then
he would prefer to have a reputation for extortion rather than for telling the truth. By the
same logic, organizations that rely on coordinated punishments risk attracting exactly those
agents who are most willing to make extortionary threats.

Propositions 7 and 8 suggest two reasons why commitment is a relatively mild assump-
tion in our setting. Fundamentally, however, we introduce commitment for a more applied
reason: the threat of extortion features prominently in each of our applications, and studying
extortion requires a setting in which agents can make action-contingent threats even after
they deviate. The threat, or something like it, is therefore necessary to study extortion and

identify new ways to encourage cooperation.
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C Online Appendix: Communication by the Principal

Communication among the agents lies at the heart of our analysis. This appendix explores
alternative assumptions about communication. In Online Appendix C.1, we show that ex-
tortion remains a problem even if the principal can send a public message at the end of each
period. Intuitively, if the principal could lessen her punishment by reporting extortion, then
she would always do so regardless of whether or not extortion actually occurred. Online
Appendix C.2 then shows that extortion can be eliminated if the principal can commit to
threats as a function of each period’s transfer, provided that she makes her threat weakly
before the agent makes his threat. This positive result should be interpreted with skepticism,
however, since unlike the agents, the principal sometimes has an incentive to deviate from
her threat.!! Finally, once the principal pays an extorting agent, that payment is sunk and
so the agent has an incentive to extort again. Online Appendix C.3 explores cooperation
when agents have multiple opportunities to extort, with the conclusion that extortion has

similar effects on equilibrium outcomes in that setting.

C.1 The Principal Can Send Messages

Let M, be the set of messages for the principal, and m, a typical message. In each period
t > 0, the principal chooses a message m,,; in each period ¢ > 0, and this message is publicly
observed. We consider two different stage games: the principal might either choose m,; € M,
before or after agent ¢ chooses m,. If the principal chooses m,; before m, is realized, we

assume that g, is a function of s; only (and so doesn’t depend on m,,;).

The principal talks after agent ¢. Consider some period t. We let m(m,m,) be the
principal’s continuation payoff if (m,m,) realizes. Given agent t’s message m, the principal

always chooses m,, to maximize m(m,m,). We let m(m) := max,,, m(m,m,), so w(m) is the

" That is, unlike its role for agents, commitment forces the principal to send messages that are ex post
suboptimal. Hence, allowing the principal to commit does not refine the equilibrium set of the game without
commitment.
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principal’s continuation payoff after agent ¢’s message m. We let I and II be the highest and
lowest continuation payoffs that agent t’s message can induce. Then, incentive constraints
are identical to the the extortion game (i.e., Proposition 2). The principal’s message does

not mitigate extortion at all, so our impossibility result still holds.

Proposition 9 Suppose that in each period t the principal sends m, € M, after agent t

sends m. The principal-optimal equilibrium is outcome-equivalent to that in Proposition 2.

The principal talks before agent ¢. Consider some period t. Define m(m,, m) as the
principal’s continuation payoff if m; = m and m,; = m,. Once the principal chooses s,
she knows m; = p(s;). The principal therefore chooses m,; to maximize her continuation
payoff given agent t’s message.!? The same argument as in the previous case applies, so

every equilibrium involves zero effort in each period.

C.2 The Principal Can Make Threats

In this appendix, we modify the extortion game by allowing the principal to choose a threat
at the same time as each agent. We first show that Proposition 1 holds in this game, which
means that allowing the principal to commit to messages as a function of transfers eliminates
extortion. We then give two reasons why this result should be treated with skepticism.
Formally, suppose that in each ¢ > 0, the principal chooses a threat v, : R — M at
the same time that agent ¢ chooses e; and p;. At the end of ¢, message m!I’ = v,(s;) is
realized and publicly observed (along with agent ¢’s message m;). We can adapt the proof
of Proposition 1 to show that the principal can earn no more than e* — ¢(e*) in this game,

where e* is defined as in Proposition 1. It suffices to construct an equilibrium in which she

earns that payoff.

12This intuition would not change if agents could commit to a mixture over M, in which case the principal
would choose m, ; to maximize her continuation payoff given the mixture. The key is that agent ¢ can use
her message to implement the same punishment regardless of whether he works or shirks.
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Consider the following strategy profile. Play starts in the cooperation phase. In this
phase,

C s> cle”)
vi(se) = pu(se) =
D otherwise

and e; = e*. If neither player deviates, then s, = c¢(e*); if only agent ¢ deviates, then s, = 0;
if the principal or both players deviate, then the principal best-responds given the threats.
The game stays in the cooperative phase if m; = m!” = C. Otherwise, it switches to the
punishment phase with probability v € [0,1]. In the punishment phase, agents exert no
effort and the principal pays no transfers.

Choosing 7y to solve

c(e’) = 757 (" —c(e”)) (18)

implies that the principal is willing to pay s; = c(e*) on the equilibrium path. If agent
t deviates, then the principal’s continuation payoff cannot exceed e* — c¢(e*) if she pays
s = c(e*) and equals (1 — v)(e* — c(e*)) if she pays any other amount. Condition (18)
implies that she is willing to pay s; = 0 in that case. Agent ¢ therefore has no profitable
deviation from e; or y;. The principal has no profitable deviation from 4, since given p;, she
earns no more than e* — ¢(e*) for paying s, = ¢(e*) and no more than (1 —)(e* — ¢(e*)) for
paying any other amount. This strategy profile is therefore an equilibrium. It is principal-
optimal because it maximizes total equilibrium surplus and gives all of that surplus to the
principal.

This argument shows that allowing the principal to commit to a threat eliminates extor-
tion. Essentially, the principal’s and each agent’s threats can be used to “cross-check” one
another. If the principal is punished whenever messages disagree, then agents cannot extort
any smaller amount than the amount that the principal pays a hard-working agent on-path.
As in the proof of Proposition 4, the principal can then be made indifferent between paying

s = c(e*) and s; = 0, so that she is willing to pay a hard-working agent but not one that
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shirks.

While allowing the principal to commit to a threat can in principle restore cooperation,
this result should be treated with skepticism for two reasons. First, while agents are in-
different across messages, the principal is not. Indeed, appendix C.1 shows that she has a
strict incentive to send the message that maximizes her continuation payoff. Commitment
therefore forces the principal to send messages that she strictly prefers not to send, which
stands in contrast to the agents, for whom commitment simply breaks indifference across
messages. Consequently, we cannot treat the principal’s threat as an equilibrium refinement;
no analogue to Proposition 7 exists for the game with principal commitment.

Second, as appendix C.1 illustrates, this result requires the principal to choose v; (weakly)
before agent t chooses p; and e;. If agent ¢t chooses p; first, then he can shirk and extort
the principal, in which case her unique best-response is to pay that agent and then send a
message that guarantees a high continuation payoff. If the principal chooses 1, before agent
t chooses pi;, in contrast, then we can slightly modify the equilibrium construction above
to show that a version of Proposition 1 holds. The conclusion that principal commitment
eliminates extortion therefore depends on a particular assumption about when each player

makes threats.

C.3 Each Agent has Multiple Extortion Opportunities

This section considers equilibria if agents have multiple opportunities to make threats in
the extortion game. Once the principal gives in to an extortion attempt, an agent has
every incentive to repeat the same threat in the hopes of extracting yet more money. In
equilibrium, the principal should anticipate that each payment might not be the final one.
What is the effect on equilibrium cooperation?

We introduce the extortion game with repeated threats to address this question.

In each period t € {0, 1,...}, the principal and agent ¢ play the following stage game:

1. Agent t chooses ¢; € R,.
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2. The following payment subgame is played repeatedly. At the end of each repetition,
the stage game moves to the next stage with probability p € (0, 1), and otherwise the

payment subgame repeats. In repetition k € {1,2,...} of the payment subgame:

(a) Agent t chooses uf : R — M;

(b) The principal chooses a transfer s¥ € R,.

3. Let K € R be the final iteration of the payment subgame. Then s, = Zszl sk and

my = Mf(sf)

The principal and agent t’s payoffs are identical to the extortion game. In particular, the
principal does not discount between iterations of the payment subgame.

This model assumes that agents can threaten the principal an unknown number of times,
and that only the message associated with the final threat is observed by other agents. If
each agent could threaten the principal a known, finite number of times, then only their
final threats would matter in equilibrium, so the analysis from the baseline extortion model
would apply.

We show that our results from the extortion game hold even if each agent can make
an uncertain number of threats, provided that the probability of being able to make one
additional threat, 1 — p, is not too large. To prove this result, we characterize the amount

that an agent can extort as a function of his leverage.

Proposition 10 Consider an equilibrium of the payment subgame, and let 11 and II equal
the best-cast and worst-case principal payoffs, respectively, with corresponding messages m

and m. If p > %, then

E[St]:%<ﬁ_ﬂ>

in any equilibrium.
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Proof of Proposition 10

Let Uy and U, be the agent’s largest an smallest equilibrium payoffs in the payment sub-
game. Our goal is to show that for any p > %, Uy =U, = 1%5(1:[ —I)=L.

The following equilibrium strategy gives agent t a payoff of L: in each k,

m otherwise.

The principal pays s¥ = pL. The probability of the payment subgame surviving to iteration

k equals (1 — p)¥, so this strategy profile gives the agent an expected payoff

[e.9]

Uy =Y (1-p)pL=L.
k=0

The principal’s expected payoff equals %ﬂ. Continuation play is independent of sF, so the

principal is willing to pay pL, because
—pL + pIl + pIl = II.

Agent t has no profitable deviation from p¥, since the principal would be unwilling to pay
any amount larger than pL. Thus, this strategy is an equilibrium. Moreover, Uy, < L,
because the principal cannot earn a payoff lower than %ﬂ in equilibrium, and total surplus
cannot exceed 1%51:[.

Now, we bound U,, from below. The principal’s minimum equilibrium payoff equals
%ﬂ; let %H u equal her maximum equilibrium payoff. Then, the principal’s unique best
response to

m sf:s

i = (19)
m otherwise
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equals s¥ = s, so long as

)
O+ (1 —p)——=Iy,

J
—s+p——I+(1—p) T3

II >
1-5 =F

1—9 1—90

or

) )
s < (1—2P)—H+Pm —(1=p )HHM

Let sy equal the supremum transfer that satisfies this constraint, with s;; = 0 if no transfer

does. Then,

115Y; S%ﬁ Z ) sar,

k=0
since if agent ¢ earns less than >, (1 — p)¥sy = 2L, he can profitably deviate to (19) in
each k, with s = s); — e for € > 0 arbitrarily small.

By definition of s;;, we must have

0 ) 5 -
SM:maX{O (1_2P)T5H+Pﬁn (1—p) (—1_51'[—%)}.

Simplifying, we have

_ 1—
Sy = max {O, (2p — 1)%{5(1'[ — 1) + ; /)SM}'

For p > %, the right-hand side of this equality is strictly positive. In that case, we can gather

terms to yield

‘ N

T 5(1’[ 10).

Cancelling 2p — 1 from both sides of this expression yields

0
= — L
SMm 1_5P )

in which case Uy, > > 72 (1 — p)*pL = L.
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We conclude that if p > %, agent t’s unique equilibrium payoff equals L, so E[s;] = L, as

desired.l

What happens if p < %?

The payment subgame resembles a repeated game, where the probability of continuing to
another iteration, 1 — p, corresponds to the discount factor. This subgame is also positive-
sum; feasible total surplus can be as low as %ﬂ or as high as &f{. Consequently, for p < %,
we can use repeated-game incentives to deter agent t from extorting. One way to construct
these incentives is familiar from Section 5: the principal is punished after she gives in to an
extortion attempt. The principal therefore refuses to pay anything following a deviation, so
the agent refrains from extortion.

This equilibrium construction might not be possible in practice, since it requires extortion
attempts to be structured in a way that facilitates the use of repeated-game style incentives.
Nevertheless, we can construct this kind of equilibrium when p < %, so it represents an

alternative potential remedy to extortion.

D Online Appendix: Long-run Agents

D.1 A Result with long-run Agents
D.1.1 Model, Result, and Discussion

Consider a repeated game with a single principal and N agents with a shared discount factor

d € [0,1). In each period, the following stage game is played:

1. Exactly one agent is publicly selected to be active. For each agent i € {1,..., N}, let
xi+ € {0,1} be the indicator function for agent i being selected. Let Pr{x;, = 1} = p;,
where > . p; = 1.
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2. The active agent chooses e; € R, and p; : R — M, which are observed only by the

principal and the active agent.

3. The principal and the active agent exchange transfers, with resulting net transfer to
the active agent s; € R. These transfers are observed only by the principal and the

active agent.

4. The message m; = p;(s;) is realized and publicly observed.

The principal’s and agent i’s payoffs in each period ¢ are m, = e, —s; and u;; = x;4(s:—c(er)),
respectively, with corresponding expected discounted payoffs IT, = > 57, 6" ~4(1 — &) (e, — )
and Uy = > 50, 0" (1 — §)xi4(s; — ceir)). Our solution concept is plain Perfect Bayesian
Equilibrium with one additional restriction: at any history hA! such that agent ¢ has observed
a deviation, we require that E[U;,|h'] > 0. This restriction rules out pathological off-path
behavior that might arise from the fact that an agent’s beliefs about the history are essentially

13

arbitrary once he observes a deviation.”> We also restrict attention to equilibria in pure

strategies to simplify agents’ beliefs on the equilibrium path.

Proposition 11 Let e} be the mazimum effort attainable in any pure-strategy Perfect Bayesian

equilibrium. Letting st = min{e}, P} — c(min{e}, efP}), €3, ¢35, ..., €N must satisfy the sys-

tem of inequalities

* * 22
(1= D)elel) < 20pisi + = o Zp” (20)

It is instructive to compare the right-hand side of (20) to the condition c(e*) < 3(H — L)
from Proposition 5. To translate between settings, note that the total surplus created by
the principal’s future interactions with agent i equals dp;s;, which corresponds to 2(H — L)
in Proposition 5. In Proposition 5, the principal earns an additional H — L if she refuses to

pay an agent who has shirked. In the game with long-run agents, the principal can be given

13This condition is trivially satisfied in any equilibrium that is recursive. It is needed here because this
game has private monitoring, which means that equilibria are not necessarily recursive.
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the entire continuation surplus from her relationship with agent ¢, which accounts for the
second dp;s; in the right-hand side of (20).

The second term on the right-hand side of (20) represents a new force for cooperation
that is not present in Proposition 5. Since each agent i chooses a new threat whenever he is
active, he essentially commits to his messages only until he next interacts with the principal
again. An agent might therefore use his future messages to reveal that he has extorted the
principal in equilibrium. However, he cannot do so until the next time that he is active, so
this term shrinks to zero as p; — 0.

An immediate corollary of Proposition 11 is that, as the probability that an agent inter-
acts with the principal p; approaches zero, that agent’s maximum equilibrium effort does too.
This implication is similar to our main takeaway from Proposition 5: the strength of each
agent’s bilateral relationship limits the severity of the coordinated punishments available to
him. This result relies on the fact that agents can send messages only when they are active.
We can interpret this assumption as the natural extension of our commitment assumption
to a setting with long-run agents; indeed, a result identical to Proposition 11 would hold if

agents could communicate in every period but whenever an agent is active, he commits to a

sequence of messages in each period until he is again active.

D.1.2 Proof of Proposition 11

For each agent j € {1,...,2}, let €] be the maximum effort that can be attained in any period
of any equilibrium. Consider a history h' right after agent ¢ is chosen to be the active agent

in period ¢. Define four different expectations of Il;,; that follow four different outcomes:
1. II' if no player deviates, with corresponding message m;

2. IT* if the principal deviates but the active agent does not, with corresponding message

m;

3. T if the active agent deviates and m; = m;
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4. TIMY if the active agent deviates and m; = m

We identify necessary conditions for effort e to be attained in equilibrium.
First, the principal must be willing to pay s* if the active agent does not deviate, which
requires

s < 1L—5 (ﬁ* - ﬂ*) . (21)

Second, the active agent ¢ must be willing to choose effort e and the equilibrium threat u.

Agent ¢ can always deviate by choosing e; = 0 and

m s <38

My =
m otherwise

for some 5§ > 0. Following this deviation, the principal’s unique best response is to pay § so
long as
0 —HU o [THU

s Tl 7
ST 50 T 15

since the principal can earn no less than 7Y in the continuation game if m; = m and no
more than IT?Y if m, = m. Therefore, agent i has no profitable deviation of this form only
if
& —ele) + —T" > max J0, 0 (ﬁHU . HHU> (22)
1-6 "7 16 = ’
where U;k is the agent’s expectations about her continuation payoff at the history that yields
principal payoff ﬁ: .
Combining (21) and (22) yields the following necessary condition for effort e to be part

of equilibrium:
cle) < 0 (Uf +1II - H*) — max < 0 0 (ﬁHU - HHU> (23)
S1-s V7t - "1-6 -
Our next goal is to connect (21) and (22) by studying the relationship between U, +1I —

ol



II* and ol - II7Y. We do so by bounding U: +10 — Y from above and I — I from
below.

Fix two histories h'*! and At at the start of period ¢+1 such that agent i can distinguish
ht*+! from ht+! but no other agents can. For ¢ >t + 1, we will use the notation A and ht'to
represent successor histories to '™ and ht™!, respectively. At history h*!, the principal

can always play the following strategy:

1. At any history A that the active agent believes is consistent with 2™, play as in the

corresponding successor history to hi*!;
2. At any other history, choose s; = 0.

Under this strategy, each agent j # i learns that the history is inconsistent with A only
when agent i sends a message that is inconsistent with play following h**!. In a pure-strategy

equilibrium, all agents learn this fact at the same time. For each ' > t + 1, denote

B! = {izt/]Agents § # i learn that the history is inconsistent with A'*! in period t' — 1,

but not before} .

Where B° denotes the event that agents 7 # ¢ never learn that the history is inconsistent
with '™, Note that these events collectively partition the set of histories following R+
We can define an analogous collection of sets for the event that agents j # ¢ learn that the
history is inconsistent with h*!. We denote this analogous collection BY'.

For each agent j € {1,..., N}, define m;; = z;4(e; — s¢) and m_;; = Zk# zr(er — St)
as the principal’s payoff from agent j and from all other agents, respectively. Define II;; =
S, 01 = 0)mj e and Ty, = > 00, 6" 741 — §)m_; . Because {Bf}t, partitions the

! — ~
v=t t=t+1

histories of length ¢’ following A+,
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00 t
E [HMWH} - S (1-s " E [WWH} + 3 E [77_17t/]izt+1,8t] Pr{[;’t}
t'=t+1 t=t+1
(24)
The right-hand side of (24) is absolutely convergent, so we can rearrange the order of sum-

mation to yield

> (1— §)0t 1R [Wi,t1|ilt+1i| +

g [H”l‘hm] N S, ( Ll (1—8)0" IR [w_z-,ﬂlﬂ + 6 [HJ,HB'?D br {B E}'
(25)

Under the principal’s strategy specified above, the principal and agents j # i act identically

until those agents learn of a deviation. Therefore, for any t' < {,
E [71'_“/’8{] Pr {Bf} =K |:7T_i7t/|[;)£i| Pr {BE} )

Moreover, for any ¢, Pr {BE} =Pr {1’5’5}7 since any message that distinguish A*™! from
A1 must also distinguish A from hi*L.
Now, E [Htﬂ |ﬁt+1] is bounded below by the principal’s payoff from the strategy specified

above. Therefore, we can use (25) to bound the difference

E [l |h*] — E |:Ht+1’ilt+1] <
S5 8 (1= 6) (B 1] — B [ 31 ) + (26)
S 0 (B[] — 2 18] ) pe {7}

Under the specified strategy, E [H_i7t~|l§’1 > 0 because the principal pays no transfer to an
agent j who knows that the history is inconsistent with !, with E [m,t/%t“} > 0 for a

similar reason. A necessary condition for (26) is therefore
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E [y |BH] — B |y A <
Moy A1) — B [Tt o
S 07T (1 = O)E [mi [WY] + E [IT 0 BY] Pr {B"})

Suppose that At is the on-path history such that E [II,,;|h'*!] = IT . In a pure-strategy
equilibrium, agents correctly infer the true history on the equilibrium path, which means
that they must earn nonnegative utility. Consequently, the principal earns no more than

total continuation surplus, so (27) requires

E [, k] — E [Ht+1|ht+1:| < Z 5t —t-1 ((1 —0)pis; + ijs;fPr {Bt’}> . (28)
t'=t+1 i

Note than an identical bound holds for the expression U;k +II° —1II* because agents j #+1
earn nonnegative continuation utilities on the equilibrium path. If h**! is instead the history
such that E [II,,;|h**'] = IV, then agents have observed m and so know that play is off-
path. Our equilibrium restriction requires their utilities to be nonnegative at such a history,
so (28) again holds.

Since s} > 0, the right-hand side of (28) is maximized by having the event Bt happen as
early as possible. The earliest it can occur is the next time that agent ¢ is the active agent,
since agent ¢ can send a message only when he is active. Agent i is active for the first time

since period t in period ¢’ with probability (1 — p;)* ~*1p;, so (28) requires

E [y, A+ - E [Ht+1|ﬁt+1} < Y 0! ((1 —8)pist + (1= pi)' s Z;'V:I Pj3;>

= Pis; + T s 2o PS5
(29)

As argued above, an identical bound holds for E [U; ;11 + ;41| — E [Ht+1|ﬁt“]

From (29), we conclude that

—x —x —=HU 2pz
U .+ —II*<TT -0 420+ ——2 5%,
o+ I v 4 pSZ—O—l_(l_pi)(;ijsj

JFi

o4



A necessary condition for (23) to hold is therefore

§ =HU HU * 2pi *
1% (H — 117" +2p;s7 + —1_(15,,1.)5 Zj;éi Pj3j> -
max {0 i <ﬁHU — HHU) }

cle) <

»1-5
The right-hand side of this condition is maximized by ol - II7Y = 0, in which case

. 2pi .
(1 —=0d)cle) < 2pis; + T—(—p) ;msw

as desired. R
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