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Abstract

In this paper, we introduce the concept of “self-justified equilibria” as a tractable alternative

to rational expectations equilibria in stochastic general equilibrium models with heterogeneous

agents. A self-justified equilibrium is a temporary equilibrium where, in each period, agents trade

in assets and commodities to maximize the sum of current utility and expected future utilities

that are forecasted on the basis of current endogenous variables and the current exogenous

shock. Agents’ characteristics include a loss function that prescribes how the agent trades off

the accuracy and the computational complexity of possible forecasts. We provide sufficient

conditions for the existence of self-justified equilibria, and we develop a computational method

to approximate them numerically. For this, we focus on a convenient special case where we

use Gaussian process regression coupled to active subspaces to model agents’ forecasts. We

demonstrate that this framework allows us to solve stochastic overlapping generations models

with hundreds of heterogeneous agents and very accurate forecasts.
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1 Introduction

In this paper, we develop an alternative to rational expectations equilibria and consider temporary

equilibria with forecasting functions that approximate the temporary equilibrium correspondence,

but that might lead to imprecise forecasts at any given time. We derive simple sufficient conditions

that ensure the existence of these “self-justified” equilibria, we develop an algorithm to approximate

self-justified equilibria numerically, and we give an example that shows that by restricting the

complexity of agents’ forecasts one can often solve models with very many agents.

The basic idea of our proposed approach is as follows: In a temporary equilibrium, agents use

current endogenous variables and the exogenous shock to forecast future marginal utilities for assets;

prices for commodities and assets in the current period ensure that markets clear. Forecasting

functions are assumed to lie in a pre-specified class, and an agent chooses a function that minimizes

the agents’ loss function, which depends on the mean-squared long-run errors of the forecasts and

on the computational complexity of the forecasting function.

The assumption of rational expectations and the use of recursive methods to analyze dynamic

economic models has revolutionized financial economics, macroeconomics, and public finance (see,

e.g., Ljungqvist and Sargent (2000)). Discrete-time, infinite-horizon, general equilibrium models

with heterogeneous agents and incomplete financial markets now play an important role in macroe-

conomics and public finance. Unfortunately, for these stochastic general equilibrium models with

heterogeneous agents, rational expectations equilibria are generally not tractable, computational

methods to approximate these equilibria numerically are often ad-hoc, and a rigorous error analysis

seems impossible. In particular, it is generally not possible to make statements about how close an

approximate equilibrium is to an exact equilibrium (see Kubler (2011)). Therefore computational

methods typically focus on computing rational expectation ε-equilibria, i.e., allocations and prices

that clear markets and satisfy agents optimality conditions (i.e., Euler equations) up to some ε > 0.

Errors in Euler equations provide a good method to analyze solutions to dynamic optimization

problems (see Santos (2000) or Judd (1992)). However, they become meaning-less in models with

heterogeneous agents: Agents’ incorrect choices need to be coordinated to ensure the definition

of an approximate equilibrium. Agents’ mistakes cannot be systematic or random, but they are

determined by the requirement that at any time, agents rational expectations from the previous

period need to turn out to be correct this period and that markets clear. In an approximation that

is theoretically sound, one would hope that it is explicit what determines agents choices and that

the fact that they make mistakes is part of the model.

As Sargent et al. (1993) points out, “when implemented numerically ... rational expectations

models impute more knowledge to the agent within the model ... than is possessed by an econome-

trician”, and a sensible approach to relax rational expectations is “expelling rational agents from

our model environment and replacing them with ‘artificially intelligent’ agents who behave like
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econometricians.”

This quote motivates the idea underlying self-justified equilibria—to construct a tractable model

of the macro-economy that takes into account substantial heterogeneity across agents, one needs to

assume that the modeler can compute agents’ expectations. As argued above, for the case of rational

expectations this is, in general, only possible if one forces agents to make the ”right mistakes” that

ensure that previous expectations turn out to be correct. In the temporary equilibrium we consider

in this paper, the agents might make significant mistakes in their forecasts, but these stem from

the definition of equilibrium. They make no mistakes in choices, given their forecasts, and the only

reason that prevents agents’ forecasts from being arbitrarily accurate is the computational cost

associated with more accurate forecasts.

In order to ensure a mathematically simple concept and the existence of a stationary equilibrium,

we need to assume that our agents are “hyper-intelligent”in the sense that they solve optimization

problems and integrals exactly.

We introduce the concept of self-justified equilibria in the context of an infinite horizon pure

exchange economy with overlapping generations, a single perishable commodity, and aggregate

uncertainty. This allows us to investigate the properties of a self-justified equilibrium with as

little notation as possible. An extension to production economies with several commodities and to

economies with infinitely lived agents is conceptually straightforward (e.g., along the lines of Brumm

et al. (2017)).

To prove the existence of a self-justified equilibrium, we make the simplifying assumption that

accounting is finite. That is to say, we assume that beginning-of-period portfolios across agents

lie on some finite (arbitrarily fine) grid, that agents’ portfolio-choices in the current period induce

a probability distribution over next period’s state, and that the support of this distribution is a

subset of the grid of possible beginning-of-period portfolios across agents. This assumption can

be viewed as a technical approximation to a continuous model, but one can also think of bounded

rationality justifications. Our preferred interpretation is that at the beginning of each period, there

are (small) transfers across agents that depend only on the aggregate state of the economy. In this

framework, our definition of a self-justified equilibrium applies directly.

We argue that it is necessary to allow for the possibility that the set of admissible forecasting

functions is non-convex. In order to obtain existence, we assume that the set decomposes into a finite

union of convex sets and that agents make discrete choices. When one introduces discrete choices

into a standard dynamic stochastic model with heterogeneous agents, individual best responses are

not longer convex-valued. Following Starr (1969), who establishes the existence of Arrow Debreu

equilibria in economies with non-convex preferences, the assumption of a continuum of agents is

crucial to ensure convexity of the best response correspondences.

To develop an algorithm to compute self-justified equilibria, we consider a specific form for
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the forecasting functions and the associated non-parametric regression. We assume that each

agent projects the current endogenous variables into a relatively low dimensional subspace and

approximates forecasts over this subspace by regularized least squares with a reproducing kernel

Hilbert space (RKHS) regularization. Computationally this amounts to combining Gaussian process

regression (see, e.g., Rasmussen and Williams (2005)) with the exploitation of active subspaces (see,

e.g., Constantine et al. (2014)). For dynamic economic problems, this method was first introduced

by Scheidegger and Bilionis (2019). It directly gives rise to a simple algorithm that trades off

complexity and simplicity of the forecasting function and allows us to approximate self-justified

equilibria numerically. Moreover, the error analysis becomes simple since we can reverse-engineer

a cost-function of computational complexity, which rationalizes the computed approximation as

a self-justified equilibrium. We demonstrate that our computational method can be applied to

large-scale heterogeneous agents models by solving for self-justified equilibria in an overlapping

generations economy with segmented financial markets. We assume that agents live for 60 periods

and that there are three types of agents per generation, resulting in 180 agents altogether. The

three types distinguish themselves by preferences, endowments, and trading restrictions.

There is a large and diverse body of work exploring deviations from rational expectation (see,

e.g., Sargent et al. (1993), Kurz (1994), Woodford (2013), Gabaix (2014), Adam et al. (2016), Molavi

(2019), Geng (2018)). Much of this work is motivated by insights from behavioral economics about

agents’ behavior or by the search for simple economic mechanisms that enrich the observable

implications of standard models. Much of the work also focuses on single-agent models where

many of the technical difficulties discussed in this paper disappear. The motivation of this paper

is rather different in that we want to develop a simple alternative to rational expectations that

allows researchers to rigorously analyze stochastic dynamic models with a very large number of

heterogeneous agents.

The methods developed in Krusell and Smith (1998) and Evans and Phillips (2014) can also

be interpreted to arise from this motivation, and there are some important similarities to our

work. In fact, the equilibrium concept in Krusell and Smith (1998) can be interpreted as that of

a self-justified equilibrium (although they do not call it that and do not define it formally). To

defend their computational strategy, Krusell and Smith (1998) write “the calculated object satisfies

all the standard equilibrium conditions except the agents ability to make perfect forecasts. . . The

accuracy is so high that we find it very hard to argue on the basis of the irrationality’ of the agents

in our model that our approximate equilibrium is a less satisfactory economic model than an exact

equilibrium”. Unfortunately, there is no formal way to relate the computed equilibrium to a rational

expectations equilibrium. It should be noted, however, that our forecasting errors can be viewed

as errors in Euler equations. While every self-justified equilibrium is a rational expectations ε−

equilibrium, most rational expectation ε− equilibria are not self-justified equilibria. In this sense,
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our concept can be viewed as a refinement of approximate equilibria that naturally leads to an

efficient way to compute them numerically and to straightforward error analysis.

The remainder of the paper is organized as follows. In Section 2, the general economy is

introduced, and a self-justified equilibrium is defined. In Section 3, we prove existence. In Section

4, we explain some basic ideas on how to numerically model a self-justified equilibrium and describe

our algorithm. In Section 5, we give a numerical example to illustrate the concept. Section 6

concludes.

2 A general dynamic Markovian economy

We consider a Bewley-style overlapping generations model (see Bewley (1992)) with incomplete

financial markets and a continuum of agents. Time is discrete and indexed by t ∈ N0. Exogenous

shocks zt realize in a finite set Z = {1, . . . , Z}, and follow a first-order Markov process with tran-

sition probability π(z′|z). A history of shocks up to some date t is denoted by zt = (z0, z1, . . . , zt)

and called a date event.

At each date event, a continuum of ex-ante identical agents enter the economy, live for A periods,

and differ ex-post by the realization of their idiosyncratic shocks. Each agent faces idiosyncratic

shocks, y1, ..., yA, that have support in a finite set YA. We denote by ηya(ya+1) the (conditional)

probability of idiosyncratic shock ya+1 for an agent with shock history ya, η0(y1) to denote the

probability of idiosyncratic shock y1 at the beginning of life, and, η(ya) to denote the probability

of a history of idiosyncratic shocks. We assume that the idiosyncratic shocks are independent of

the aggregate shock, that they are identically distributed across agents with the same history of

shocks and, as in the construction in Proposition 2 in Feldman and Gilles (1985), that they “cancel

out” in the aggregate, that is, the joint distribution of idiosyncratic shocks within a type ensures

that at each history of aggregate shocks, zt, for any ya ∈ Ya the fraction of agents with history

ya = (y1, ..., ya) is η(ya). This allows us to focus on equilibria for which prices and aggregate

quantities only depend on the history of aggregate shocks, zt. We denote the set of all date events

at time t by Zt and, taking z0 as fixed, we write zt ∈ Zt for any t ∈ N0 (including t = 0). At each

zt, there are finitely many different agents actively trading, that distinguish themselves by age and

history of shocks, and who are collected in a set I = ∪Aa=1Y
a. A specific agent at a given node zt

is denoted by ya ∈ I.

At each date event, there is a single perishable commodity, the individual endowments are

denoted by eya(zt) ∈ R+ and assumed to be time-invariant and functions of the current aggregate

shock.1 Aggregate (labor) endowments are given by e(z) =
∑

ya∈I η(ya)eya(z). Each agent who is

1As opposed to the standard formulation (Bewley (1992)), where an agent’s fundamentals are functions of his cur-

rent idiosyncratic shock, y, we assume that they are functions of the history of all shocks. Clearly, these formulations

are equivalent if one allows for a sufficiently rich set Y.
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born at some node zt has a time-separable expected utility function

Uzt((xt+a)
A−1
a=0 ) =

A∑
a=1

∑
zt+a−1�zt

∑
ya

η(ya)π(zt+a−1|zt)uya
(
xya(zt+a−1)

)
, (1)

where xya(zt+a−1) ∈ R+ denotes the agent ya’s (stochastic) consumption at date t+ a− 1.

There are J assets, j ∈ J = {1, . . . , J} traded at each date event. Assets can be infinitely lived

Lucas trees in positive net supply or one-period financial assets in zero net supply. The net supply

of an asset j is denoted by θ̄j ≥ 0. Assets are traded at prices q, and their (non-negative) payoffs

depend on the aggregate shock and possibly on the current prices of the assets fj : RJ+ × Z→ R+.

If asset j is a Lucas tree (i.e., an asset in positive net supply), then fj(q, z) = qj + divj(z) for some

dividends divj : Z → R+. Asset j could also be a collateralized loan whose payoff depends on the

value of the underlying collateral, or an option, or simply a risk-free asset. The aggregate dividends

of the trees are defined as

div(zt) = θ̄ · f(q(zt), zt)− θ̄ · q(zt). (2)

At each zt an agent ya enters the period with a portfolio θ−ya(zt) and chooses a new portfolio

θya(zt) and consumes

xya(zt) = eya(zt) + θ−ya(zt) · f(q(zt), zt)− θya(zt) · q(zt). (3)

The agent ya faces trading constraints θya ∈ Θya ⊂ RJ , where ΘyA = {0} for all yA ∈ YA.

2.1 Self justified equilibria

In a competitive environment, agents choose asset-holdings in the current period to maximize their

expected lifetime utility, and current prices ensure that markets clear. To understand how today’s

asset choices affect future utilities, the agent needs to form some expectations about future prices

and to compute his optimal life-cycle asset-holdings under these prices. As already mentioned, it

turns out to be useful to model the forecasting of prices and the recursive solution of the agents’

problem in one step, and assume that the agent makes a current decision given expectations over the

next period’s marginal utility of asset holdings. These expectations are based on current endogenous

variables and the exogenous shock. While in a rational expectations equilibrium, these expectations

are always correct, we allow them here to be imprecise and heterogeneous across agents.

In a temporary equilibrium, the expectations of each agent, ya ∈ I, are characterized by a

function Mya that predicts marginal utilities of assets in the next period based on the current

state, current prices, and current consumption and portfolio-holdings across agents.

For what follows, it will turn out to be useful to allow for otherwise identical agents to use

different forecasting functions. We assume that there is a finite number, K, of different forecasts

used by the agents over their life-cycle, and that the measure of agents that use forecast k is νK .
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We write Mk
ya(z, ·) = Mk(ya, z, ·) to denote the forecasting function of agent (ya, k) given the shock

z.

To simplify the notation, we write ~θ = (θya,k)ya∈I,k=1,...,K , ~θ− = (θ−ya,k)ya∈I,k=1,...,K , and ~x =

(xya,k)ya∈I,k=1,...,K . Next, it is useful to define the set of possible portfolio holdings with market-

clearing built-in as

Θ = {~θ :
∑

ya∈I,k=1...K

η(ya)νkθya,k = θ̄, θya,k ∈ Θya for all ya−1 ∈ I, k = 1...K}. (4)

Similarly, let the set of all beginning-of-period portfolio holdings be

Θ− = {~θ− : θ−
y1

= 0,
∑

ya−1∈I,k=1...K

νkη(ya−1)θ−ya,k = θ̄ and θ−ya,k ∈ Θya−1 for all yak = 1...K}. (5)

In the following we assume that Mya only depends on current asset holdings across agents and

the current exogenous shock, i.e.,

Mk
ya : Z×Θ→ RJ+. (6)

In our formulation, the agent forecasts the marginal utilities from asset holdings. It might seem

more natural to assume that the agent forecasts prices and then solves his life-cycle optimization

problem based on forecasted prices (as, for example in Krusell and Smith (1998)). However, this

turns out to be much more complicated because he has to forecast prices over his entire life-cycle,

and not just one-period ahead. Moreover, we illustrate in a simple example below that forecasting

prices might be more complicated than forecasting marginal utilities from asset-holdings. Finally,

one could argue that the agent might forecast his value function in the next period to solve the

maximization problem. This turns out to be too complicated since he has to forecast an entire

function.2

We denote by ~M = (Mk
ya)ya∈I,k=1,...,K the forecasting functions across all agents. Throughout

this paper, we assume that Mk
yA

(·) = 0 for all yA ∈ YA, k = 1, . . . ,K, forecasts of agents of age A

are irrelevant.

Assuming concavity of utility, the first order conditions are necessary and sufficient for agents’

optimality and, given prices q and beginning-of-period asset-holdings θ−ya,k, we can write an agent

(ya, k)’s maximization problem as

max
x∈R+,θ∈Θya

uya(x) +Mk
ya(z, ~θ) · θ s.t. (7)

x+ θ · q − eya(z)− θ−ya,k · f(q, z) ≤ 0.

The agent takes as given the current portfolio- and consumption choices across all agents, ~θ, ~x, and

current prices q. For now, the functions Mk
ya(·) are given—we endogenize this for our definition of

the self-justified equilibrium below.

2It is true that one could approximate the value function by a finitely parameterized family of functions, and

the agent forecasts the finite-dimensional vector of parameters. However, this would still be substantially more

complicated than merely forecasting a number.
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We define the state space to be S = Z × Θ−, with Borel σ-algebra S. It is useful to notice

that the law of motion of the exogenous shock, π, and current choices ~θ determine a probability

distribution over next period’s state, and to write Q(·|z, ~θ) to denote this probability distribution.

Given forecasting functions across agents, ~M = (Mk
ya), we define the temporary equilibrium

correspondence

N ~M : S ⇒ RIK+ ×Θ× RJ (8)

as a map from the current state to current prices and choices that clear markets and that are

optimal for the agents, given their forecasting functions, i.e.,

N ~M (s) = {(~x, ~θ, q) ∈ RIK+ ×Θ× RJ+ : (9)

(xya,k, θya,k) ∈ arg max
x∈R+,θ∈Θya

uya(x) +Mk
ya(z, ~θ) · θ s.t.

x+ θ · q − eya(z)− θ−ya,k · f(q, z) ≤ 0 for all ya ∈ I}.

Assuming that for a given ~M , the set N ~M (s) is non-empty for all s ∈ S, and that there exists

a single-valued (Borel-measurable) selection N ~M (s), we write

N ~M (s) = N(s) =
(
N~x(s), N~θ

(s), Nq(s)
)
. (10)

The function N(s) depends on ~M , but to simplify notation, we often drop the subscript.

In what follows, we assume that all agents base their forecasting functions on the selection,

N(·). In principle, one could imagine equilibria where different agents use different selections of

the correspondence. In such a framework, “sunspots”would play an important role. In this paper,

however, we focus on the “spot-less”case, where the possible multiplicity of temporary equilibria

plays no role.

The crucial innovation of this paper is to allow for heterogeneous and possibly imprecise forecasts

across agents while still allowing for the possibility that they are rational. For this, we assume that

the agents cannot evaluate (or store) arbitrarily complicated functions, but instead, approximate

the equilibrium forecasts by “simple” functions, for which we will give examples in the next section.

To formalize these ideas, we assume that the agents forecasting functions are in a given set

of (continuous) functions M, and that each agent ya takes as given a distribution over ~θ given z,

P(~θ|z), and chooses the forecast Mk
ya that minimizes a loss function that depends on the complexity

of the forecast, i.e.

Mk
ya(z, ·) ∈ arg min

M∈M
Lya

(∫
~θ∈Θ

∥∥∥M(~θ)−mya(z, ~θ)
∥∥∥p
p
dP(~θ|z),M

)
, (11)

where ‖x‖p = (
∑

i |xi|p)
1
p denotes the p-norm, for some p ≥ 1, and where the marginal utility from

assets purchased at s for agent ya, k–as read off from the temporary equilibrium correspondence–is

given by

mya,k(z, ~θ) =

∫
s′
f(Nq(s

′), z′)
∑
ya+1

ηya(ya+1)u′ya+1(Nxya+1 (s′))dQ(s′|z, ~θ). (12)
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We assume that the functions in M have an universal approximating property in that whenever

mya(z, ~θ) is continuous in ~θ, for each ε > 0, there is a M ∈M such that

sup
~θ∈Θ

‖M(~θ)−mya(z, ~θ)‖ < ε. (13)

In principle, an agent can make arbitrarily accurate forecasts if the equilibrium map is continuous.

However, in a self-justified equilibrium, computational costs prevent this.

We have the following definition for our concept of self-justified equilibrium.

Definition 1 A self-justified equilibrium consists of an integer K of different forecasts used across

otherwise identical agents, measures νk > 0 of agents that use these forecasts, as well as forecasts ~M ,

a selection N(·) of the temporary equilibrium correspondence, N ~M (·), and measure Q∗ on (S,S), such

that

1. Q∗ is invariant given the law of motion induced by N(·) and by Q(·, ·). That is to say, for all

B ∈ S

Q∗(B) =

∫
s∈S

Q(B|z,N~θ
(s))dQ∗(s).

2. For each ya, a < A, each k = 1, . . . ,K,

Mk
ya(z, ·) ∈ arg min

M∈M
Lya

(∫
s∈S

∥∥M(N~θ
(s))−mya,k(z,N~θ

(s))
∥∥p
p
dQ∗(s|z),M

)
.

Part 1 of Definition 1 is defining an invariant measure that is needed to compute the long-run

forecasting error. Part 2 ensures that each agent’s forecasting function is obtained by minimizing a

loss function that trades off the accuracy of the forecast and its computational complexity. In what

follows, we assume for simplicity that p = 2, in principle it could be heterogeneous across agents

and take any positive integer value.

Similarly to the concept of “self-confirming” equilibrium (see e.g. Fudenberg and Levine (1993)

or Cho and Sargent (2008)), a self-justified equilibrium can be interpreted as a stationary point

of a learning process which itself is not modeled in the theory. The crucial difference is that in a

self-justified equilibrium, an agent’s forecasts can be incorrect in every step.

Both rational expectations equilibria and self-justified equilibria are special cases of a temporary

equilibrium in this model. For the special case where

mya(z,N~θ
(s)) = Mya(z,N~θ

(s)) for all s ∈ S, (14)

we obtain a standard rational expectations equilibrium if we assume concave utility. In this case,

the first-order conditions that describe agents’ optimal choices are also necessary and sufficient

conditions for the optimization problem stated in (7), and agents forecast future prices perfectly.

Under the assumptions stated in Section 4, when the set of admissible functions, M is suffi-

ciently rich, and losses from computationally expensive functions are low, a self-justified equilibrium
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converges to a rational expectations equilibrium. The main contribution of this paper is to explore

what happens if the agent is unable to approximate mya,k perfectly.

3 Existence

To prove the existence of simple equilibria in heterogeneous agents models with incomplete markets,

one needs to impose strong assumptions on fundamentals. Brumm et al. (2017) present one possible

set of strong assumptions and argue that without strong assumptions, simple equilibria might fail

to exist (Kubler and Polemarchakis (2004) provide simple counterexamples). We show now that

under the (strong) assumption of finite accounting, proving existence is relatively straightforward.

3.1 Assumptions

We first make a number of fairly standard assumptions on fundamentals that are used to prove the

existence of a temporary equilibrium for given forecasting functions.

Assumption 1

1. For each ya ∈ I, the Bernoulli-utility function uya(·) is continuously differentiable, strictly increas-

ing, strictly concave, and satisfies an Inada condition

u′ya(x)→∞ as x→ 0.

Individual endowments are positive, i.e.,

eya(z) > 0 for all z ∈ Z.

2. For any ε > 0 for each ya ∈ I, z ∈ Z, and any (finite) θ−ya,k ∈ RJ the set

{(x, θ) ∈ R+ ×Θya(x− eya(z)) + θ · 1

ps
qs − θ−ya,k · f(

1

ps
qs, z) ≤ 0}

is a compact convex set containing the point (eya(z), 0), whenever p, qj ≥ ε for all j and p +∑J
j=1 qj = 1.

3. The payoff functions, f : RJ+ × Z→ RJ , are non-negative valued and continuous. Moreover, for

any i = 1, . . . , J and j = 1, . . . , J , the payoff fj(q, z) only depends on qi if θ̄i > 0.

Assumption 1.1 is a standard assumption in general equilibirum analysis (see, e.g., Kubler and

Polemarchakis (2004)). Assumption 1.2 is the crucial assumption that restricts agents’ trades. Part

of it is motivated by collateral and default. These constraints ensure that agents cannot borrow

against future endowments. In our formulation, this is true independently of prices, and could be

justified if we allow for default (see Kubler and Schmedders (2003) for a detailed motivation), or if
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agents face appropriate borrowing constraints. Although it is a strong, reduced-form assumption,

one can verify that it is satisfied in many variations of the model. Assumption 1.3 subsumes models

with Lucas trees and one-period assets.

The crucial and non-standard assumption of this paper is that accounting is finite, i.e., that

beginning of period portfolios lie in a finite set (or at least that agents perceive them to lie in a finite

set). This simplifies the analysis dramatically, and we will argue below that it has few practical

disadvantages. Formally, we make the following assumptions:

Assumption 2

1. There is a finite set Ŝ = Z × Θ̂− ⊂ S such that the support of the transition function Q(·|z, ~θ)

is a subset of Ŝ for all z ∈ Z and all ~θ ∈ Θ.

2. The measure Q(·|z, ~θ) is upper hemi-continuous and convex valued in ~θ for all z ∈ Z, ~θ ∈ Θ.

Assuming that Ŝ contains ZG elements, we then can take Q(·|z, ~θ) to be a vector in the ZG−1

dimensional unit simplex, ∆ZG−1. Assumption 2.2 then simply states that this vector changes

continuously in ~θ.

From a practical point of view, this assumption seems innocuous. Because of finite precision

arithmetic in scientific computations, almost any numerical method will lead to ~θ− lying on a

(possibly very fine) grid. Assumption 2.2 then states that there is some randomness in the rounding

error. However, from a technical point, the assumption turns out to be crucial. It is subject to

further research to see which of our results hold in the limit as the grid becomes dense in Θ−. The

assumption will allow us to obtain simple existence results below. However, it is certainly not a

standard assumption in this strand of literature. Note, however, that in the technically very related

literature on Markov-perfect equilibria in stochastic games this is the classical assumption, already

made by Shapley (1953), that can only be relaxed in special cases.

Assuming finite accounting has several economic justifications. One interpretation is that actual

portfolios lie in Θ−, but that agent cannot measure portfolios arbitrarily finely and make their

decisions based on rounded values, exhibiting some degree of bounded rationality. Our preferred

interpretation is that agents take the fact that at the beginning of each period, there are random

(small) transfers of assets between individuals. The transfers only depend on aggregate variables,

i.e., average asset-holdings of all agents within one type ya. An individual maximizes utility, taking

as given these random transfers. The transfers are designed to ensure that the resulting after-

transfer asset holdings like in Θ̂−.

Assumption 2 guarantees that Ŝ is finite and we can take it to contain ZG elements. For fixed

~M ∈M, a selection of the temporary equilibrium correspondence can then be viewed as a vector

N ∈
(
RI+ ×Θ× RJ+

)ZG
.

We make the following reduced-form assumption on forecasting-functions:

11



Assumption 3

1. There is a finite W and a set M̂ ⊂M with

M̂ = ∪Wi=1Mi

that has the following properties

(a) For all N ∈
(
RI+ ×Θ× RJ+

)ZG
, all distributions over s, P(s) and all ya and all z,

arg min
M∈M

Lya
(∫

s∈S
M(N~θ

(s))−mya,k(z,N~θ
(s))dP(s|z),M

)
⊂ M̂

(b) For all ya, for all N ∈
(
RI+ ×Θ× RJ+

)ZG
, all s ∈ Ŝ and all ~θ ∈ Θ, the function Mk

ya(z, ~θ;N)

is jointly continuous in ~θ, and N whenever

Mk
ya(z, .;N) ∈ arg min

M∈Mk
Lya

(∫
s∈S

M(N~θ
(s))−mya,k(z,N~θ

(s))dQ∗(s|z),M
)

2. All functions in M are uniformly bounded above.

Assumption 3.1 is the second key ingredient of our existence result. While the examples above

clearly demonstrate that it is too strong to assume that M is a convex and well-behaved set, we

assume that it can be written as the finite union of well-behaved sets, taking into account that it is

never optimal to choose certain M ∈M because the loss due to their complexity cannot possibly

outweigh the accuracy gain. The assumption allows us to assume that finitely many and otherwise

identical, agents make different choices and, with the right assignment of measures, can take the

best responses to be convex-valued. Assumption 3.2 is a weak assumption on the set of admissible

forecasts. In an overlapping generations economy this is without loss of generality.

3.2 The main theoretical result

With these assumptions, the existence of a self-justified equilibrium reduces to the existence of a

finite-dimensional fixed point. The main result of this section thus reads as follows:

Theorem 1 Under Assumptions 1-3, there exists a self-justified equilibrium.

Proof. Assumption 3.1 implies that we can define a finite W̃ ∈ N, W̃ ≤ W IZ , to be the maximal

number of possible forecasts an agent can use over his life-cycle. The total maximal number of

ex-post different agents in the economy is then given by IW̃ .

We take prices at each s ∈ Ŝ to lie in the trimmed simplex (p, q) ∈ ∆J
ε = {(p, q) ∈ RJ+1

+ , p +∑J
j=1 qj = 1, p ≥ ε, qj ≥ ε, j = 1, . . . , J}. For any ε > 0, Assumption 1.2 together with non-negative

consumption implies that we can take a compact set T− to denotes the possible beginning of period

portfolio holdings of all IW̃ agents. Note that this is generally a much larger set than Θ−, which

12



depends on measures νk and has market clearing built-in. Let T̂− denote a discretization and–in

a slight abuse of notation–let Ŝ = Z× T̂− denote the set of states, extended to all states that can

be reached without market-clearing.

We decompose the economy into sub-economies for each s ∈ Ŝ and construct a map from a

compact and convex set of all agents’ choices, prices, probabilities, µ, and forecasts, Ms, into itself.

We show that this map is upper-hemi-continuous (uhc) and convex valued, and using Kakutani’s

theorem (see Border (1985)), we can show that this map has a fixed point. As ε becomes sufficiently

small, one can prove market-clearing. We can then construct an equilibrium by choosing the correct

weights of different agents, νk, that correspond to the agents that are active in markets.

First, we need to find a suitable, convex, and compact domain for the map. Assumption 1.2

implies that the set

B = ∪(p,q)∈∆ε{(x, θ) ∈ R+ × RJ : (x− eya(z)) + θ · 1

ps
qs − θ−ya,k · f(

1

ps
qs, z) ≤ 0} (15)

is compact and convex.

We construct a uhc, non-empty and convex-valued correspondence, Φ, mapping choices and

prices at each element in Ŝ as well as a probability measure over Ŝ, to itself, which has a fixed

point,

Φ : BZGIW̃ ××∆ZGJ)×∆ZG ⇒ BZGIW̃ ×∆ZGJ ×∆ZG−1. (16)

For this construction, for all ya ∈ I, all k = 1, . . . , W̃ and all s ∈ Ŝ, let

Φya,k,s((xt, pt, qt)t∈Ŝ
) = arg max

(x,θ)∈B∩Θya

uya(x) + M̃k
ya(z, ~θs) · θ (17)

s.t.

(x− eya(z)) + θ · 1

ps
qs − θ−ya,k · f(

1

ps
qs, z) ≤ 0,

where

M̃k
ya(z, ·) = arg min

M∈Mk(ya,z)
Lya

(∫
s∈S

M(N~θ
(s))−mya,k(z,N~θ

(s))dQ∗(s|z),M
)
, (18)

and where k(ya, z) denotes agent k’s choices of forecasting sets at ya, z, for each k = 1, . . . , W̃ .

We say an agent k is active if his forecasts are always optimal, i.e. for all ya, z

Mk
ya(z.) ∈ arg min

M∈M
Lya

(∫
s∈S

M(N~θ
(s))−mya,k(z,N~θ

(s))dQ∗(s|z),M
)
. (19)

Define a best response correspondence for all active agents of history ya at s as

Φya,s((xt, pt, qt)t∈Ŝ
) = ∪k=1,...,W̃ ,k active Φya,k,s. (20)

Our definition of a self-justified equilibrium obviously requires that agents that are not active have

measure zero and their choices does not influence market clearing.

13



Let

(Φ̃ya,s(.))ya∈I,s∈S̃
= convex hull

(
(Φ)ya,s(.))ya∈I,s∈S̃

)
. (21)

This correspondence is convex valued and uhc.

For each s ∈ S, define the price-players best response as

Φ0,s(~θs, ~xs) = arg max
(p,q)∈∆J

ε

p(
∑
ya∈I

η(ya)(xya,s − eya(z)− div(z))) + q · (
∑
ya∈I

η(ya)(θya,s − θ̄)), (22)

and let the invariant measure, µ(s) be determined by

Φµ((~θs)s∈S, µ) = (
∑
s′∈S

µ(s′)Q(s|z′, ~θs′))s∈S. (23)

Assumptions 1 - 3 guarantee that the mapping

Φ = ×s∈S,ya∈IΦya,s ××s∈SΦ0,s ×Φµ (24)

is non-empty, convex valued, and uhc. By Kakutani’s fixed point theorem, there exists a fixed point

with prices (p̄s, q̄s)s∈Ŝ
.

As ε→ 0, Assumption 1 guarantees that there will be a strictly positive ε such that

(p̄s, q̄s)s∈Ŝ
∈ arg max

(p,q)∈∆J
0

p(
∑
ya∈I

η(ya)(xya,s − eya(z)− div(z))) + q · (
∑
ya∈I

η(ya)(θya,s − θ̄)). (25)

By a standard argument, markets clear. Since for each ya, (xya,s)s∈Ŝ
lies in the convex hull of

best responses of all agents with forecasts Mk, k = 1, . . . , W̃ that are active in the sense that their

forecasts yield the same minimal value of the loss function. We can write each

((xya,s, θya,s)s∈S =

K̃∑
i=1

νi(xya,i,s)s∈S, (26)

for some K̃ ≤ W̃ ∈ N and some νi ≥ 0,
∑

i νi = 1. From this, we can construct the appropriate

weights for all active agents. This finishes our proof of existence. �

The discretization of the state-space enables us to prove a relatively strong result. Without this,

strong assumptions would be needed to ensure the existence of a recursive rational expectations

equilibrium (Brumm et al. (2017)), and the existence of a self-justified equilibrium thus would

remain an open problem. With the assumption, the proof of existence reduces to essentially a

finite-dimensional problem. The only technical difficulty lies in the non-convexity in agents’ choices

in the forecast. The key to overcoming the obstacle of non-existence is to allow otherwise identical

agents to make different choices in forecasting functions.

Note that the assumption of a discrete set of states forces us to reduce the non-convexity of M

to a finite set of discrete choices.

Note also that the assumption and our result directly show the existence of recursive rational

expectations equilibria in this framework.
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4 Approximate SJE

Just like the concept of rational expectations equilibrium, our concept is an idealization that cannot

be computed exactly. In particular, it is clear that the invariant distribution in Definition 1.1 can

only be approximated by a finite number of simulated steps and that the integral in definition 1.2

can only be approximated by Monte-Carlo integration. Clearly, in a computed SJE, the condition

1.2 will hold with some error that can be estimated by simulating a new, larger sample, and then

comparing solutions. However, this error can be made arbitrarily small by simulating for sufficiently

many periods. It is therefore comparable to errors in agents’ optimization and market clearing,

which can be pushed close to machine precision.

Our definition of self-justified equilibria is very general, and it puts very little structure on

agents’ forecasts. In particular, so far we made no assumptions on how the loss-functions Lya(.)

depends on the complexity of the function M . In general, we want to examine economies were

individuals have access to very good forecasting technologies. We then reverse-engineer the loss

function to rationalize the good forecasts as optimal forecasts. Alternatively (in particular in cases

where good forecasts might not be easily available) we could measure the complexity of a function

by the number of floating point operations needed to evaluate it at a point.

Next, we employ concepts from numerical analysis to specify agents’ forecasts. Abstractly,

the problem of finding suitable forecasting functions reduces to how to approximate a function

f : Rn → R by a suitable weighted sum of basis functions, given observations, (xi, yi = f(xi))
L
i=1.

4.1 Polynomial approximation

The classical Weierstrass Approximation Theorem states that any continuous function on a closed

and bounded interval can be uniformly approximated on that interval by polynomials to any degree

of accuracy. This theorem is a special case of the Stone–Weierstrass Theorem (see, e.g., Judd

(1998)), which implies an analogous result for multidimensional real-valued functions. The set of

polynomials, therefore, has the universal approximation property that we require above.

In light of the classical results, polynomial interpolation is a natural starting point for an

overview of global approximation methods. Polynomials offer the advantage that they can be

evaluated, differentiated, and integrated easily and in finitely many steps using only the basic

arithmetic operations of addition, subtraction, and multiplication. This allows us to simply measure

the computational complexity of an approximation by the number of additions and multiplications

required to obtain the value of the forecasting function at a point.

The polynomial approximation would solve

min
c∈RN

L∑
l=1

 N∑
j=1

(cjφj(xi)− yi

2

, (27)
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where N =

 n+ d

d

 and (φj)
N
j=1 denotes a basis of polynomials of total degree d on Rn.

4.2 Radial basis functions

Unfortunately, polynomial regression is often ill-conditioned, and this is not the computationally

most convenient method to approximate our forecasting functions. To describe a convenient family

of forecasting-functions mapping some set X ⊂ Rk to the real numbers, we call a function k :

X × X → R a (positive definite) kernel if for any finite sequence (xj)j=1,...,n the n × n matrix

Kx = (k(xi, xj)i,j) is positive semi-definite. We assume that the kernel is “universal” in that it

has the following universal approximating property. Given any compact X ⊂ X, any continuous

function f : X→ R and any ε > 0 there are finitely many (xi, ci) ∈ X× R such that

sup
x∈X

|
∑
i

cik(x, xi)− f(x)| < ε. (28)

To fix ideas, it is useful to give a concrete example, namely the so-called square exponential

(SE) kernel, which we use in our computations below.

kSE(x, x′) = exp

{
−1

2

k∑
i=1

(xi − x′i)
2

`2i

}
. (29)

In this formulation the `1, . . . , `k ∈ R+ are so-called hyper-parameters and can be chosen depending

on the specific features of the data. As Micchelli et al. (2006) show, this is a universal kernel.

Given any kernel, k, we consider the (unique) associated reproducing kernel Hilbert space Hk

(see, e.g., Williams and Rasmussen (2006), Chapter 6) endowed with an inner product 〈·, ·〉H, which

for f =
∑s

i=1 αik(., xi) and g =
∑r

j=1 βjk(., tj) satisfies

〈f, g〉H =
∑
i

∑
j

αiβjk(xi, tj). (30)

Given a data set {
(
x(i), y(i)

)
|i = 1, . . . , L} consisting of L vectors x(i) ∈ Rn and corresponding

observations, y(i) = f(x(i)), agents want to construct a function f̂ that trades off smoothness and

approximation in an optimal way.

Given a reproducing kernel Hilbert space, Hk, with a positive definite kernel k(x, y), classical

regularization theory (see, e.g., Williams and Rasmussen (2006), and the references therein) solves

the following problem:

min
f∈Hk

1

n

n∑
i=1

(y(i) − f(x(i)))2 + λ‖f‖2k, (31)

where ‖f‖k = 〈x, x〉Hk
is the norm defined by k(·). It can be shown that the solution to (31) can

be written as

f̂(x) =

n∑
i=1

αik(x, xi), (32)
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where α solves

(K + λI)α = y, (K)ij = k(xi, xj), y = (y(1), . . . , y(n))T . (33)

Using (32) to obtain agents’ forecasting functions, M , turns out to be computationally conve-

nient because this expression is identical to the posterior mean of a Gaussian process (GPs; see

Rasmussen and Williams (2005)). Formulating the problem in a Gaussian framework has the cru-

cial advantage that it naturally leads to systematic ways for choosing the hyper-parameters of the

kernel, k(·), as well as the regularization parameter λ in (31) via maximum likelihood estimation.

Moreover, the standard deviation of the GP can be used as an indication of goodness of fit and can

give some indication on whether a higher value of n can lead to much higher accuracy.

4.3 Ridge approximation and active subspaces

Unfortunately, neither polynomial nor radial basis function approximation is feasible if the domain

of the forecasting function is very high-dimensional. Therefore we have to use a method to re-

duce this dimension. We assume that agents project the very high-dimensional argument of the

forecasting function into a lower-dimensional space.

To approximate a very high dimensional function f : RD → R, assume that it can be reasonably

well approximated with the following form:

f(x) ≈ h
(
W Tx

)
, (34)

where the matrix W ∈ RD×d projects the high-dimensional input space, RD, to the low-dimensional

active subspace, Rd, d� D, and h : Rd → R is a d-dimensional function which we will denote as the

link function. Note that the representation of (34) is not unique. All matrices W whose columns

span the same subspace of Rd yield identical approximations. Thus, without loss of generality, we

restrict our attention to matrices in the Stiefel manifold, W ∈ Vd

(
RD
)
.

We want to find an optimal W , and an optimal link function, h, in the sense minimizing the

L2 norm of the difference of f(x) and h(W Tx) with respect to a probability density over Rd,

ρ(x). We can write a matrix V ∈ W ∈ Vd

(
RD
)

as (V1, V2), i.e. or given V1 ∈ Vd

(
RD
)

, we

can define V2 = ID×D − V1V
T

1 and write x = V1y + V2z for y = V T
1 x, z = V T

2 y. We can define

ρ̃(y, z) = ρ(V1y + V2z) and marginal and conditional densities by the standard equations. The

conditional expectation is then defined as

E (f(x)|y) =

∫
f(V1y + V2z)ρ̃(z|y)dz. (35)

The optimal V1 solves the following optimization problem:

min
V1∈Vn(Rd)

∫
x
(f(x)− E(f(x)|V T

1 x))2ρ(x)dx. (36)

It is conceptually easy to couple this idea with polynomial least square approximation. Hokanson

and Constantine (2018) note that the polynomial least-squares problem can be solved explicitly,
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reducing the search for an optimal projection, V1, to an optimization problem over the Stiefel

manifold.

Unfortunately, it turns out that the method there cannot be employed for large-scale problems.

In particular, the optimization-problem (36) is a complicated, non-convex optimization problem,

and even the search for a stationary point turns out to be very costly in high dimensions. Con-

stantine et al. (2017) propose to use active subspace methods to obtain an approximation for a

stationary point, and we use their method to obtain good projections in our computational strategy.

4.3.1 Active subspaces

Constantine et al. (2014) give a simple method to choose the projection matrix, W , which we briefly

review. Let ρ(x) be the probability density function of the relevant invariant distribution. Define

a matrix

C :=

∫
(∇f(x))(∇f(x))Tρ(x)dx, (37)

where

∇f(·) =

(
∂f(·)
∂x1

, . . . ,
∂f(·)
∂xD

)
. (38)

Since C is symmetric positive definite, it admits the form

C = V ΛV T , (39)

where Λ = diag(λ1, · · · , λD) is a diagonal matrix containing the eigenvalues of C in decreasing

order, λ1 ≥ · · · ≥ λD ≥ 0, and V ∈ RD×D is an orthonormal matrix whose columns correspond to

the eigenvectors of C. The classical active subspace approach in Constantine et al. (2014) suggests

separating the d largest eigenvalues from the rest,

Λ =

Λ1 0

0 Λ2

 , V =
[
V1 V2

]
, (40)

(here Λ1 = diag(λ1, . . . , λd), V1 = [v11 . . . v1d], and Λ2, V2 are defined analogously), and setting the

projection matrix to

W = V1. (41)

We can then write y = V T
1 x and z = V T

2 x and

f(x) = f(V V Tx) = f(V1V
T

1 x+ V2V
T

2 x) = f(V1y + V2z). (42)

Active subspace methods are attractive in practice because it turns out that for many multi-

variate functions in engineering models and in the natural sciences, one observes sharp drops in the

spectrum of C at relatively small values of d (see Constantine (2015) and the references therein).
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Constantine et al. (2014) prove the following theoretical result, which makes concrete how well

active subspace methods lead to a good approximation. Let ρ̃(y, z) = ρ(V1y + V2z) and define the

conditional expectation of the function value, given y as

G(y) =

∫
z
f(V1y + V2z)ρ̃(z|y)dz. (43)

Then, we have ∫
x
(f(x)−G(V T

1 x))2ρ(x)dx ≤ C(λd+1 + . . .+ λD), (44)

where C is the Poincaré constant that depends on the probability density ρ.

Unfortunately, as Parente et al. (2019) point out, the Poincaré constant depends on an un-

derlying probability distribution that weights sensitivities of the investigated function and what is

crucial for the error bounds is a conditional distribution, conditioned on a so-called active variable,

that naturally arises in the context. They propose a framework that allows for upper bounds on

this constant.

4.4 An algorithm

To numerically approximate a self-justified equilibrium, we focus on the case where agents use

optimal projections to form their forecasts. For each agent ya and each z ∈ Z, we, therefore need

to find forecasting functions

Mya(z, ~θ) = M̂(z,W T
ya
~θ), (45)

The main computational issues are then how to solve for the projection matrices Wya and for the

forecasting functions M̂ya . To this end, following Scheidegger and Bilionis (2019), we couple GPs

to active subspaces.

For the first step, it is natural to assume that the integral (37) is approximated via Monte Carlo,

that is, assuming that the observed inputs are drawn from a simulated path of the economy, and

to assume that one approximates the gradients via finite differences—that is,

Ĉya,z,j =
1

N

N∑
i=1

g(i)
(
g(i)
)T

, (46)

where

g(i) =

mya,j

(
z, θiya , θ

i
−ya
)
−mya,j

(
z, θiya , θ

i
ỹa

+ h, θi−(ya,ỹa)

)
h


ỹa 6=ya

. (47)

Given d and d × IJ projections Wya,j,z, the agent uses a regularized least squares method to

find a good fit for x(i) =
(
θya(zt(i)),Wya,z,j

~θ−ya(zt(i))
)

and y(i) = mya,j(z, ~θ(z
t(i))), i = 1, . . . , n,

where (zt(i)) are nodes with the current shock zt(i) = z. Due to our projection, there is now a

noise-component which determines the parameter λ in (31). In our computational examples below,

we determine this by maximum-likelihood.
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In our setup, the computation of self-justified equilibria is straightforward and reduces to GP

regression and the repeated solution of non-linear systems of equations. In particular, we employ

an iterative simulation scheme to solve for the optimal forecasting functions. In many respects, our

method is very close to standard stimulation based projection-methods pioneered by – Den Haan

and Marcet (1990) (see also Judd et al. (2011)). The basic steps of the algorithm are the following:

1. Fix a stopping criterium, η, the size of the training sample, an upper bound on iteration iter,

as well as the number of samples used for estimating CN—that is, N .

The initial guess for each agent’s forecasting:

Fix an initial size of the training sample, n. Assume that agents only use own asset holdings

to forecast, i.e., d = J and each IJ × d projection matrix Wya,z project on agent ya’s asset

holdings. Next, construct the GP whose posterior means approximate

M0
ya,z′ : Z× Rd → R+. (48)

Then, choose an approximation accuracy ξ and choose an initial condition z0, ~θ(z
−1).

2. Iteration step:

Simulate a temporary equilibrium path for given forecasts ~M0.

For i = 1, n

(a) Solve numerically for a temporary equilibrium, set ~xi, ~θi, qi to the equilibrium values and

set zi = z.

(b) Using pseudo random numbers, draw a new z′ and set θ−ya = θya−1 for all agents ya.

3. For each ya, regress the equilibrium values of f(qi, zi)u
′(xya+1,i) on Wya,zi−1

~θi−1 and zi−1 to

obtain a new GP whose posterior mean gives a new forecasting function M1
ya .

4. If

‖M1 −M0‖ < η, (49)

then set M∗ = M1. Elseif number of iteration steps below iter set M0 = M1 and repeat time

iteration step 2. Else increase n and repeat iteration step 2.

5. Compute on a test-sample with nt � n an equilibrium sequence of length nt and the realized

forecasting error for all agents. If the average error is below some threshold, exit. Else

6. Compute Cya as defined in Equation 46 and its eigenvalues, λ. At sharp drops of the spectrum,

form an active subspace, and check if the improvement in accuracy is large given the old

sample of points. If no, exit. Else, include the relevant eigenvectors of CN into the projection

matrix, Wya , make a new initial guess for GPs and go to time iteration step 2.
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Using active subspaces as a dimension-reduction technique turns out to fit well our economic

model and produces excellent results in our examples below. Reiter (2010) considers an alternative

approach that is better suited for models with 100,000 agents which differ only in their asset

holdings, but it does not fit well into our framework where we target models with 100 - 1000

heterogeneous agents. Building on Reiter (2010), Ahn et al. (2018) solve heterogeneous agent

macro models in continuous time by applying dimension reduction techniques to reduce the linear

system of PDEs that characterizes their equilibrium. While their setting substantially differs from

the one we are targeting here, a comparison of these approaches would be an interesting subject

for further research.

5 A numerical example

We assume that all agents live for A = 60 periods, that aggregate shocks take two values, z = 1, 2,

and that an idiosyncratic shock only occurs in the first period of an agent’s life. We assume that

this initial idiosyncratic shock can take three values y = 1, 2, 3 and that η0(y) = 1
3 , y = 1, . . . , 3.

The initial shock can be interpreted as the type of the agent. The types of agents distinguish

themselves by trading constraints, endowment risk over the life-cycle, and preferences. An agent is

then characterized by (y, a), where y = 1, 2, 3 denotes the initial shock, and a = 1, . . . , 60 denotes

an agent’s age. Taken together, there are 3 · 60 = 180 agents trading in commodity- and asset

markets in each period.

Type 1 agents (y = 1) can trade in a single Lucas-tree and a full set of Arrow securities (or

options on the tree). In our framework, it is useful to assume that the Arrow-securities pay in the

Lucas-tree (as in Gottardi and Kubler (2015)). Type 2 and 3 agents (y = 2, 3) can only trade in

the Lucas tree. All agents face borrowing constraints, which (in this simple model) are equivalent

to short-sale constraints. The model is a simplified OLG-version of Chien et al. (2011).

We assume that agents have CRRA utility functions with

uy,a(c) = βa
c1−γy

1− γy
. (50)

We choose β = 0.98, γ1 = 0.5, and γy = 1.5 for y = 2, 3. Individual endowments are

e1,a(z) = 0.4 + a/500, for a < 50, e1,a(z) = 0.3 for a ≥ 50, z = 1, 2,

e2,a(1) =
e1,a

1.2
, e2a(2) = 1.2e1,a for a = 1, . . . , A,

e3,a(1) = 1.2e1,a, e2a(2) =
e1,a

1.2
for a = 1, . . . , A.

The dividends of the single tree are given by div(z) = 3 for z = 1, 2, and we take its supply

to be θ̄ = 7 – since the number of agents who hold the tree is fairly large this turns out to be

numerically more stable than the standard value θ̄ = 1.
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We assume that the Markov transition matrix for the aggregate shock is

π =

 0.95 0.05

0.05 0.95

 . (51)

For concreteness, it is useful to define the temporary equilibrium system of inequalities as the

system of all agents’ KKT-conditions together with the market clearing conditions, i.e.,

−u′1,a(e1,a(z) + θ−(1,a−1),z(
∑
z′∈Z

qz′ + div(z))− q · θ1,a) + βM1,a(z, z
′,W1,a

~θ) + κ1,a, for all a, z′ (52)

κ1,a · θ1,a

−u′y,a(ey,a(z) + θ−y,a−1(
∑
z′∈Z

qz′ + div(z))−
∑
z′∈Z

qz′θy,a) + βMy,a(z,Wy,a
~θ) + κy,a for all a; y = 2, 3

κy,aθy,a, y = 2, 3, a = 1, . . . , A∑
a

(θ(1,a),z + θ2,a + θ3,a)− θ̄, for all z ∈ Z.

We can combine κy,a and θy,a into one variable and obtain a system with (A−1)Z+2(A−1)+Z = 238

equations and unknowns.

5.1 A simple self-justified equilibrium

As mentioned above, we start by assuming that agents only use their own asset holdings to forecast

future marginal utilities. It is natural to assume that agent 1 (who can trade in two assets) assumes

that his holdings in asset z (that pays if shock z realizes) only affects marginal utility in shock z

for each z = 1, 2. Agents 2 and 3 base their forecasts on their Lucas-tree holdings. For all three

agents, forecasts are, therefore, a function of the current shock and a single continuous variable.

This is the simplest candidate self-justified equilibrium in our framework, and the question is how

high do costs of a more accurate approximation have to be to rationalize this as an equilibrium.

With this specification, forecasts are, somewhat surprisingly, very good for most agents. This

is somewhat reminiscent of the results by Krusell and Smith (1998), where very simple forecasts

also turn out to be very accurate in the calibrated model.

Figure 1 depicts the forecasts for the marginal utility of the Lucas tree of a 59-year-old agent

of type 2 plotted against the average realized marginal utility of the tree for the exogenous shock

being z = 1. As can be seen in this figure, there is almost a perfect overlap between forecasted

values and realized values. The mean-squared forecasting errors are below 5 × 10−4 for all agents

of types 2 and 3 and all ages. The forecasting functions are obtained by a GP regression using

approximately 200 points3. Despite the fact that the asset holdings of all other agents will affect

prices and hence the marginal utility of the tree, these seem to play almost no role for accurate

forecasts.

3In our simulation approach, the actual number of points varies in each iteration.
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Figure 1: This figure shows the forecasts (red crosses) for the marginal utility of asset 1 of a 57-

year-old agent of type 2 plotted against the average realized marginal utility (black bullets) of the

tree for the exogenous shock being z = 1. Clearly, the own asset-choice gives an excellent forecasts.
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Figure 2: This figure depicts the variation in prices (given the current shock is 1 and the previous

shock also was 1) which is not explained by shocks.
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Asset prices certainly do vary as the wealth-distribution varies along the equilibrium path.

Figure 2 shows the variation of the tree price, given the current shock is 1, and the previous shock

also was 1. This must be caused by changes in the wealth distribution over time. Why does it not

affect the forecasts of type 2 and 3 agents? Note that the variation in prices is relatively small, and

while this variation does affect forecasts, the effects are quantitatively tiny. The reason for this is

that the marginal utility of agents of types 2 and 3 (which needs to be forecasted) is given by q+div
c1.5

which turns out to vary much less than the price q. A relative increase of the price by a factor

of 1 + ε for some small ε > 0 will lead to a much smaller increase of consumption (for younger

agents because they save more, for the old agents because they have labor income) and therefore

to a variation in marginal utility that is significantly smaller than
√

1 + ε. This can be seen easily

for the agents of age 60, where c = e60,a(zt) + θ−(q + div) and magnitude of θ−(q + div) is about

the same as of ey,60.

For agents of type 1, however, the situation is different. Figure 3 depicts the forecasts of a 59-

year-old agent of type 1 plotted against the (average) realized marginal utilities of the 60-year-old

agent. There are variables in addition to the own asset holdings that have significant effects on the

marginal utilities4

0.0152 0.0154 0.0156 0.0158 0.016 0.0162 0.0164
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Figure 3: Forecasts of a 59-year-old agent of type 1 (red crosses) plotted against the average realized

marginal utilities (black bullets) of the 60-year-old agent. It becomes obvious from this figure that

the own asset-choice is insufficient for a good forecast.

The average (squared) forecasting error is around 4 × 10−3 for agents of ages 58 and 59 and

4One should note the scale; the variation in own asset holdings is rather small, the overall variation of marginal

utilities is also relatively small.
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type 1 and, therefore, about an order of magnitude larger than for agents of types 2 and 3.

In particular, the variation in marginal utilities for the 59-year-olds of type 1 is relatively large

compared to type 2 agents because of the utility function: the marginal utility is given by q+div
c0.5

and, as for the agents of types 2 and 3, a relative increase in the price by 1 + ε will lead to a much

smaller increase in consumption. However, this means that marginal utility will vary by much more

than
√

1 + ε. The variation in prices, therefore, causes significant variations in the marginal utilities

of the old agents of type 1. This is what is depicted in Figure 3. A similar effect comes into play

for agents of ages 55-58, but it becomes quantitatively small for younger agents. In particular, it is

important to note that for younger agents, this problem is much less severe—that is, the average

(squared) forecasting errors of agents under the age of 55 are below 6× 10−4.

5.2 Finding the active subspaces

Suppose that the costs of moving from a one-dimensional to a higher dimensional domain of forecast-

ing functions are relatively low. In particular, let us assume that agents whose average forecasting

errors are above 10−3 search for a higher-dimensional active subspace.

It turns out that for this specification, there exists a two-dimensional active subspace for agents

of type 1 and ages 55-60. In addition to an agent’s own asset holding, a single one-dimensional

variable is needed to obtain accurate forecasts. The additional variable turns out to be a weighted

sum of asset holdings across all agents, (roughly) weighted by the agents’ marginal propensity to

consume. Employing a higher-dimensional (d > 2) space to forecast future marginal utilities turns

out to improve the accuracy of the forecasts by very little.

For the agents y = 1, a > 54 we compute the matrix CN (cf. (46)) by employing Monte-Carlo

draws and finite differences, and we find that one single eigenvalue (in addition to the ones associated

with own asset holdings) dominates all others. In Figure 4, we plot the 18 largest eigenvalues on a

log10-scale (for the agent (1,59) whose realized marginal utilities are plotted in Figure 3 above). The

figure confirms that all other eigenvalues are negligibly small compared to the one that corresponds

to the weighted sum of asset holdings across agents – the jump from the largest to next largest

eigenvalue is in the order of 10,000. This suggests that there is a two dimensional active subspace.

We, therefore, re-compute a self-justified equilibrium with agents of type 1 and ages 55 to 60 using

a two-dimensional active subspace. The optimal projection matrices Wya,j will obviously change

since the equilibrium prices and allocations change with better forecasts. We start using the active

subspace resulting from the computation of CN in the old equilibrium and recompute the matrix

CN twice as we iterate towards the new equilibrium.

In the new equilibrium, the one-dimensional subspace continues to work very well for all agents

of types 2 and 3—the error for those types is almost the same as above. In addition, the average

forecasting errors of type 1 agents are now uniformly below 5×10−4. Figure 5 depicts the analog of
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Figure 4: This figure depicts the largest eigenvalues for agent (1,59) and shock 2.

Figure 3 for the case of a two-dimensional active subspace. As can be seen, also for the 59-year-old

agents of type 1, the forecasts are now almost exact. Forecasts of agents of types 2 and 3 look

almost the same as the ones depicted in Figure 1.

It turns out that the variation in prices is well explained by weighting all agent’s asset holdings

by their marginal propensities to consume. Asset prices are high if the young agents are relatively

wealthy, and asset prices are low if the old agents are relatively wealthy. Moreover, we find that

the projection matrix W obtained through the eigenvector associated with the largest eigenvalue of

the matrix CN captures this mechanism almost perfectly. It remains to be the case that all other

eigenvalues of CN are several orders of magnitude smaller than the largest eigenvalue, confirming

that we have found the active subspace.

In the new equilibrium, the one-dimensional subspace continues to work very well for all agents

of types 2 and 3—the error for those types is almost the same as above. In addition, the average

forecasting errors of type 1 agents are now uniformly below 5×10−4. Figure 5 depicts the analog of

Figure 3 for the case of a two-dimensional active subspace. As can be seen, also for the 59-year-old

agents of type 1, the forecasts are now almost exact. Forecasts of agents of types 2 and 3 look

almost the same as the ones depicted in Figure 1.

It turns out that the variation in prices is well explained by weighting all agent’s asset holdings

by their marginal propensities to consume. Asset prices are high if the young agents are relatively

wealthy, and asset prices are low if the old agents are relatively wealthy.

Note that in the computed equilibrium, the forecasting errors are so small that one might be

tempted to view it as an approximation to a rational expectations equilibrium. As explained in

the introduction, our computational strategy actually produces excellent ε rational expectations

equilibria.
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Figure 5: Forecasts of a 59-year-old agent of type 1 (red crosses) plotted against the average realized

marginal utilities (black bullets) of the 60-year-old agent as a function of the two-dimensional active

subspace. The forecasts based on a two-dimensional active subspace are now extremely accurate.

6 Conclusion

This paper makes two contributions. First, we define the concept of self-justified equilibria as a

natural generalization of rational expectations equilibrium, and we provide sufficient conditions for

their existence. Second, we develop a numerical algorithm to approximate self-justified equilibrium

numerically.

An example shows that our approximations to self-justified equilibria satisfy all of the conditions

that, in the literature, typical approximations to rational expectations equilibria satisfy. Hence

our computational method can also be viewed as a competitive method to approximate rational

expectations ε-equilibria in models with many agents.
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