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Abstract

Azevedo and Gottlieb [2017] (AG) define a notion of equilibrium that always ex-

ists in the Rothschild and Stiglitz [1976] (RS) model of competitive insurance mar-

kets, provided costs are bounded. However, equilibrium predictions are sensitive

to assumptions made about the upper bound of cost: introducing an infinitesimal

mass of high cost individuals discretely increases all equilibrium prices and reduces

coverage for all individuals. We measure model sensitivity to these assumptions by

considering sequences of economies with increasing upper bounds of cost, and de-

termining whether the sequence of their equilibria converges. We present sufficient

conditions under which AG equilibrium exists when cost is unbounded. For simple

insurance markets, we derive a condition which is necessary and sufficient for exis-

tence: surplus from insurance must increase faster than linearly with expected cost.

This condition is empirically common. If this condition does not hold, a wider range

of costs results in market unraveling because all prices increase without bound and,

in the limit, an AG equilibrium does not exist. We use these results to show that

the equilibrium for an insurance market with an unbounded continuum of types is

characterized by a simple differential equation. We also provide examples of non-

existence for lemons markets (where a single insurance product is available) with

unbounded cost.
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1 Introduction

The Rothschild and Stiglitz [1976] (RS) model of competitive insurance has (at least) two
limitations. First, there need not exist a pure-strategies Nash equilibrium. Second, the
equilibrium is sensitive to assumptions made about the upper bound of the cost dis-
tribution, because introducing an infinitesimal mass of high cost individuals discretely
increases the equilibrium price of all insurance contracts. Azevedo and Gottlieb [2017]
(AG) suggest a notion of equilibrium that always exists in the RS context. By tackling
existence, the AG equilibrium concept allows us to focus on the second limitation: sen-
sitivity to assumptions about cost. In fact, an AG equilibrium is only guaranteed to exist
when the distribution of cost is bounded. Moreover, the predictions of AG equilibrium
can be similarly sensitive to cost bounds. This can limit the practical usefulness of in-
surance models for two reasons. First, it is often unclear what constitutes a reasonable
upper bound for cost (especially when costs exhibit “fat tails”). Second, it is unclear
what settings feature the extreme sensitivity of the RS setting.

This article derives conditions under which markets with adverse selection (and,
in particular, insurance markets) have AG equilibria which are robust to assumptions
about the cost distribution. We do so by considering sequences of truncated economies
where cost is bounded, and progressively relaxing this truncation. Our measure of ro-
bustness is whether the equilibria of the truncated economies converge, that is, whether
an equilibrium exists for the limit economy with unbounded cost.

Our motivation is not that economies with unbounded costs are particularly relevant
or realistic. Instead, we take existence of equilibria as our measure of whether a model’s
predictions are sensitive to assumptions about the (support of the) cost distribution.
If the equilibria of bounded economies converge to an equilibrium of the unbounded
economy, then equilibrium predictions are robust. Conversely, if cost assumptions can
have an unbounded impact on equilibrium predictions, this can be diagnosed by find-
ing that the limit economy has no equilibrium.

We begin by considering the (quite general) setting described in AG. Intuitively, an
AG equilibrium is a set of prices and choices such that a) individuals optimize, b) each
contract breaks even and c) the choices and the prices of non-traded contracts are ro-
bust to small perturbations in the model’s fundamentals. In the RS model, there ex-
ists a unique AG equilibrium which predicts the same allocation as the pure strategies
Nash equilibrium (when it exists). In that setting, we provide sufficient conditions un-
der which an economy with unbounded cost has an equilibrium.

We then focus on the case of insurance markets, in the spirit of Rothschild and Stiglitz
[1976]. We allow individuals to differ in both risk and risk aversion (although a single
parameter determines both), and assume that costlier types have higher marginal will-
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ingness to pay for more generous insurance contracts. We begin by providing a novel
characterization of the (unique) AG equilibrium for an arbitrary number of (possibly
unbounded) discrete or continuous types. We also show that, if cost is unbounded, the
price of full insurance is also unbounded in any equilibrium. Then, we derive a condi-
tion on model primitives which is both necessary and sufficient for existence of equi-
librium when cost is unbounded. Intuitively, this condition requires that surplus from
insurance increases faster than linearly with expected cost.

The condition divides insurance economies into “robust” and “fragile.” For fragile
economies, where the condition does not hold, as cost becomes unbounded, the market
unravels: the price of each alternative increases without bound and the chosen level of
coverage of each type converges to zero. For fragile economies with unbounded cost,
an equilibrium does not exist. Conversely, robust economies have an equilibrium no
matter what the assumption is imposed on the support of cost.

This condition is intuitive and empirically relevant. For instance, if individual util-
ities are CARA and wealth shocks are Gaussian, our existence condition requires that
the variance of wealth shocks increases (asymptotically) faster than linearly relative to
the mean of these shocks. This condition is satisfied in the empirical findings of Handel
et al. [2015] and, more broadly, it is empirically common that individuals with higher ex-
pected cost also experience higher variance in insurable wealth shocks (Hendren [2011],
Brown et al. [2014]). Therefore, robust insurance economies seem empirically common.

Our results also emphasize that unidimensional heterogeneity necessarily implies
that an economy is fragile. For instance, if all individuals have the same risk aversion (as
in Rothschild and Stiglitz [1976]) and costs are unbounded, an AG equilibrium does not
exist. Multidimensional heterogeneity, while rare in theoretical models, is commonly
considered in applied work like Cohen and Einav [2007], Einav et al. [2010b, 2012, 2013],
Handel [2013], Handel et al. [2015], Veiga and Weyl [2016]. Such applied work (and, in
fact, the calibration in AG) frequently assume unbounded cost distributions.

We use these results to characterize the equilibrium of an insurance market with an
unbounded continuum of types, and show it is defined by a simple differential equation.
We also characterize the equilibrium for an economy with unbounded discrete types.

We then briefly consider the setting of lemons markets, as in Akerlof [1970], Einav
et al. [2010a]. In these markets, there is a single non-zero insurance contract available,
so individual choices are binary. We show that, even in such simple settings, unbounded
costs (for instance, if cost has an exponential or Pareto distribution) can result in equi-
librium non-existence.

We then generalize several of our results beyond simple insurance markets. For in-
stance, unbounded costs imply unbounded prices even in more general settings where
types are truly multidimensional and, therefore, there is pooling of multiple types in
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each contract. This result allows us to identify a large class of economies in which costs
are unbounded and equilibrium does not exist.

The usefulness of our results is two-fold. First, in insurance markets where model
primitives are well known, we provide a novel characterization of equilibrium. This
characterization shows under which conditions a wider distribution of cost types causes
a market to unravel or not. Second, when model primitives are uncertain, we identify
conditions under which assumptions about the support of the cost distribution have a
large impact on equilibrium predictions.

The rest of the article is organized as follows. Section 2 summarizes the setting and
results of AG. Section 3 specializes that model to the case of insurance markets, in the
spirit of Rothschild and Stiglitz [1976]. Section 4 considers a market for lemons, as in
Akerlof [1970], Einav et al. [2010a]. Section 5 generalizes several results. Section 6 con-
cludes. All proofs are contained in the Appendix, although we provide some intuition
for the proofs in the main text.

2 The AG Setting

In this section, we consider the model of a competitive market with adverse selection
presented in AG, generalized to allow for unbounded costs. We summarize the existence
results in AG, which require cost to be bounded. Then, we provide sufficient conditions
for existence in economies with unbounded cost.

2.1 Setup

A consumer type is a vector ◊ œ �, where � is a Polish space with measure P .1 The type
◊ can describe each individual’s risk, risk aversion, wealth, etc. An alternative is a vector
x œ X, where X is a locally compact Polish space. Alternatives can be characterized by
deductibles, co-insurance rates, etc. Price is p œ R+. A contract is a pair (x, p) œ X ◊R+.
We consider Borel-measurable price functions p : X æ R+ where p (x) is the price of
alternative x. An economy E is a triple E = [�, P, X].

Utility is a continuous function u (◊, x, p) = u◊(x, p), where u : � ◊ X ◊ R+ æ R is
strictly decreasing in p. Cost is a continuous function c (◊, x) Ø 0, where c : � ◊ X æ R+.
Cost depends on type ◊ which creates the possibility of adverse selection.

An allocation is a distribution – on � ◊ X with marginal P on �, and marginal –X

on X, such that
s

�◊X c(◊, x)d– < Œ. One can think of – ({◊, x}) as the mass or density of
types ◊ purchasing alternative x under allocation –.

1A Polish space is a complete, separable metrizable space.
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AG assume that �, X are compact. Since c (◊, x) is continuous, this implies that cost
is bounded. In this article, we will allow �, and therefore cost, to be unbounded. We
assume that, for each compact sub-set of alternatives K ™ X, if all agents choose alter-
natives in K, expected cost is finite: formally,

s
� supxœK c(x, ◊)dP (◊) < Œ.

2.2 Existence in AG

AG define a “weak equilibrium” as a price function and an allocation (p, –) where in-
dividuals are maximizing and each contract breaks even (for each x, price equals the
average cost of its buyers under –).

Definition 1. A pair (p, –), consisting of a price function p : X æ R and an allocation
– is a weak equilibrium of an economy E = [�, X, P ] if, for –-a.e. (◊, x) œ � ◊ X, the
following two conditions hold. First, individuals maximize: for – ≠ a.e. (◊, x), we have
supxÕœX u◊(p(xÕ), xÕ) = u◊(p(x), x). Second, contracts break even: for – ≠ a.e. x, we have
p(x) = E–[c | x].2

Typically, there exists a large multiplicity of weak equilibria because, for alternatives
x which are not traded, p (x) is arbitrary. This motivates AG’s definition of equilibrium.
Intuitively, an equilibrium is a weak equilibrium which is also robust to the introduction
of a small mass of zero-cost “behavioral” types who purchase every alternative x œ X.3

More precisely, an equilibrium is the limit of a sequence of weak equilibria of perturbed
economies Ej where the mass of behavioral types vanishes as j æ Œ. This requirement
pins down the prices of alternatives which are not purchased in equilibrium, and im-
plies that there typically exist much fewer equilibria than weak equilibria. This article
uses “equilibrium” exclusively to refer to the notion of equilibrium described by AG and
formalized below.

Definition 2. Consider the economy E = [�, X, P ], and the sequence of perturbed
economies Ej = [� fi Xj, Xj, P + ÷j]. Let (Xj)jœN be a sequence of finite subsets of X

which converge to X in the sense of Haussdorf,4 where X is a Polish space such that X

is dense in X.5 Let (÷j)jœN be a sequence of measures, with ÷j supported on Xj , strictly
positive on Xj , and ÷j(Xj) æ 0. Suppose there exists a sequence of pairs (pj, –j)jœN, such
that:

2The conditional expectation is well-defined, as we have assumed that X is locally compact and for
each compact set K ™ X,

s
� supxœK c(x, ◊)dP (◊) < Œ.

3A similar construction is used by Dubey and Geanakoplos [2002]. AG prove (do not assume) that
every equilibrium is a weak equilibrium.

4I.e., for each x œ X, there is (xn)nœN converging to x with xn œ X
n

for each n œ N.
5Formally, X embeds to a dense subset of X, but we disregard such technicalities for the sake of brevity

at no cost to the generality. In insurance markets, we often take X = [0, 1) which naturally embeds in
X = [0, 1].
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• (pj, –j) is a weak equilibrium Ej , where type x œ Xj has zero cost and prefers x to
any other alternative (regardless of price); the types x œ Xj are known as behav-
ioral types.

• –j æ – weakly.6

• Whenever (xj)jœN converges to x œ X with xj œ Xj , then pj(xj) æ p(x).

Then, the pair (p, –) is an equilibrium of E = [�, X, P ].

AG prove that every economy satisfying certain boundedness conditions has an equi-
librium, as formalized by Theorem 1. More specifically, existence requires certain tech-
nical assumptions on utilities and cost and, importantly, requires that the space of types
and alternatives (� and X) are both compact.

Theorem 1. Suppose that X, � are compact metric spaces. Suppose also that u obeys a
form of Lipschitz-ness in X uniformly over types,7 and that c is continuous (which implies
c is bounded). Then, an equilibrium exists.

AG also derive additional properties of equilibrium (their Proposition 1). An equilib-
rium is also a weak equilibrium, and hence in equilibrium a.e. agent is optimizing (we
use this conclusion implicitly throughout this article). The price function p (·) is Lips-
chitz and continuous. Every alternative that is not traded in equilibrium has a price low
enough that some individual is indifferent between buying it and not, and the cost of
that individual at the non-traded alternative is at least as high as the price of the alterna-
tive. We generalize these results for environments with unbounded types in Proposition
12 and Lemma 18.

2.3 Existence with unbounded cost

To assess robustness to assumptions on the support of costs, we will consider sequences
of economies with truncated cost distributions, which progressively approximate an
economy with unbounded cost. We then consider existence of equilibrium of this limit
unbounded economy.

The truncated economy En = [�n, X, P (· | �n)] has a bounded type space �n. More
specifically, we consider a sequence of compact subsets �1 ™ �2 ™ · · · ™ � with
fin�n = �. We assume that for each n œ N, each ◊ œ �n and each ◊Õ œ �\�n, we

6i.e., for each f : � ◊ X æ R continuous and bounded,
s

fd–n æ
s

fd–.
7Formally, there exists L, such that for any p Æ pÕ in the image of c, any x, xÕ œ X, and any type ◊ œ �, if

u(x, p, ◊) Æ u(xÕ, pÕ, ◊), then pÕ ≠ p Æ Ld(x, xÕ), where d(·, ·) is a metric. This is Assumption 2 in AG. If utility
is of the form u(◊, x, p) = v(◊, x) ≠ p, this amounts to u(◊, x, p) being Lipschitz in x, uniformly in ◊ (same
Lipschitz constant for all ◊).
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have c(◊, ·) Æ c(◊Õ, ·). That is, types not included in �n have costs higher than those
in �n. The alternative space X̄ is the compactification of X (the union of X with its
limit points). We assume that c(·, ·) and u(·, ·, ·) extend continuously to X ◊ � and
X ◊ � ◊ R+. Conditional distributions in each En are defined in the standard way:
P (· | �n) = P (· fl �n) /P (�n).

By Theorem 1, each truncated economy En has an equilibrium (pn, –n). Our first
result considers the existence of an equilibrium (p, –) of the limit unbounded economy
E .

Proposition 1. For each n œ N, let (pn, –n) be the equilibrium of the truncated economy
En, such that:

• There is a function p : X æ R+ s.t. pn æ p uniformly on compact subsets of X.

• There is a distribution – on � ◊ X ™ � ◊ X s.t. –n æ – weakly.

• (*) There is c0 > 0 such that for large enough k and n > k, types in �n\�k purchase
only options x with cost pn(x) Ø c0. I.e., –n({pn(x) Ø c0} | – œ �n\�k) = 1.

Then (p, –) is an equilibrium of the unbounded economy E = [�, X, P ].

Intuitively, condition (*) requires that costly types do not purchase cheap contracts.
This condition holds naturally in the insurance models we will consider.

Proof. The proof uses a diagonalization argument. For each truncated economy En, its
equilibrium (pn, –n) is the limit of the weak equilibria

1
pn

j , –n
j

2
of a sequence of perturbed

economies En
j which have a vanishing mass of behavioral types, as described in AG. We

then consider the sequence En and show that an appropriate diagonal of weak equilibria1
pn

jn
, –n

jn

2
converge to an AG equilibrium of E when n æ Œ. Finally, we modify the

equilibria on this diagonal to include all types, as –n
j only allocates types in �n. Due to

the behavioral types, this can be done without changing the price pn
j . For details, see

Appendix F.1.

One limitation of Proposition 1 is that it does not impose requirements directly on
model primitives. This is a limitation of our results in this general setting. However, in
Section 3, where we consider insurance markets with additional structure, we are able to
derive a condition on model primitives which is necessary and sufficient for Proposition
1 to hold in that setting.

3 Simple Insurance Markets

We now specialize the model of Section 2 to insurance settings, in the spirit of Roth-
schild and Stiglitz [1976]. This section contains the bulk of our contribution. First, we
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provide a novel characterization of equilibrium with arbitrarily many (and possibly un-
bounded) types, thereby extending AG’s analysis of RS. Then, we derive a condition on
model primitives which is necessary and sufficient for equilibrium existence in insur-
ance markets with unbounded cost. Lastly, we characterize equilibrium in insurance
markets with an unboundedly continuous or discrete types.

Intuitively, the existence condition we derive requires that surplus from insurance
increases sufficiently fast with risk. When this condition does not hold, economies are
said to be “fragile”: relaxing assumptions on the bound of the cost distribution has a
large (unbounded) effect on equilibrium predictions. We also show that, for fragile
economies, expanding the support of the cost distribution results in market unravel-
ing (the price of every alternative diverges, and every type’s allocation converges to zero
insurance coverage). When the condition holds, economies are “robust.”

3.1 A model of insurance

An individual of type ◊ is exposed to a stochastic wealth loss described by the random
variable Z◊. Let µ : � æ R++ be a continuous map assigning to type ◊ her expected loss,
denoted µ = µ (◊) = E [Z◊]. We assume µ > 0 P -a.s. We allow the marginal distribution
of µ to not be compactly supported: ’M Ø 0, P ({◊ | µ Ø M}) > 0. Denote the marginal
probability of µ by Pµ = P ¶ µ≠1, and let µ = min (supp (Pµ)).

We assume the following parameterization of alternatives. An individual who pur-
chases alternative x œ [0, 1] is only exposed to the random shock (1 ≠ x) Z◊, with the
remaining xZ◊ being absorbed by the insurer. Full insurance corresponds to x = 1, and
zero insurance to x = 0. Hence, the alternative space, unless otherwise specified, will al-
ways be either X = [0, 1] or X = [0, 1), i.e., we may remove the option of purchasing full
coverage, because, as we will show in Section 5.3, any equilibrium with unbounded cost
must have limxæ1 p(x) = Œ. In fact, all the results in Section 3 hold if the upper bound
of coverage is replaced with xmax œ (0, 1). We will proceed by considering X = [0, 1] or
X = [0, 1) for notational and expositional simplicity.

The cost to a risk neutral insurer of alternative x sold to a type ◊ is c(◊, x) = µx. We
assume

s
� µ (◊) dP < Œ: even if each individual chooses full insurance (x = 1), the

average cost is finite.
We make the following assumption regarding utilities.

Assumption 1. Utility (certainty equivalent) is

u(◊, x, p) = xµ◊ + g(x)‹◊ ≠ p,

for some continuous function ‹◊ : � æ R++. We assume g : [0, 1] æ R is twice continu-
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ously differentiable, gÕ > 0 in x œ [0, 1), gÕÕ Æ 0, gÕ (1) = 0 and gÕÕ (1) < 0.

Utility from alternative x has three components. First, xµ◊ is the individual’s ex-
pected cost, which is passed on to the insurer. Second, g(x)‹◊ captures the individual’s
surplus from insurance, where ‹◊ is the individual’s “insurance value.” Notice that g(x)
is common to all individuals, while ‹◊ is heterogeneous. If ‹◊ > 0, individuals are willing
to pay for insurance above their expected cost (for instance, due to risk aversion). There
are decreasing marginal returns from insurance and, at full insurance, insurance has
zero marginal value (gÕ (1) = 0). We also assume certainty equivalents are quasilinear
in prices. This assumption is not innocuous, but is common in models with constant
absolute risk aversion (CARA).8 These assumptions imply that types are effectively two-
dimensional, since only (µ◊, ‹◊) matter for decisions and costs.

The marginal willingness to pay for additional insurance is

w◊(x) = ˆu◊

ˆx
(x, p) = µ◊ + gÕ (x) ‹◊ Ø µ◊.

with equality iff x = 1. By Assumption 1, w◊ is independent of price.
We also make the following assumptions on the distribution of types.

Assumption 2. ‹◊ = ‹ (µ) with ‹ (·) a weakly increasing function, locally Lipschitz and
‹(µ) > 0 for µ > µ.

Assumption 3. Pµ is either absolutely continuous with a.e. positive density on a (bounded
or unbounded) interval, or purely atomic with finitely many atoms in each bounded in-
terval.

Assumption 2 implies that the marginal willingness to pay for insurance w◊ is strictly
increasing in cost µ. The assumption of w◊ monotonic in µ is true in RS, Riley [1979], in
AG’s treatment of insurance markets, and in all models of insurance with one-dimensional
types that we are aware of.9 Under Assumption 2, utility is completely determined by
risk µ: two types with the same risk also have the same marginal willingnesses to pay, so
types are effectively one dimensional: ◊ = (µ, ‹ (µ)).10 This nonetheless generalizes the
analysis of insurance markets by RS and AG, where ‹ (µ) was assumed to be constant.11

8Notice that quasi-linearity implies that utility is 1-Lipschitz in price.
9This assumption is not present in models with multidimensional types, like Wambach [2000], Pi-

card [2017], Veiga and Weyl [2016], Smart [2000], Villeneuve [2003]. Villeneuve [2003] and Smart [2000]
consider, as we do, settings where individuals differ in risk and risk aversion, but costs are bounded.
Wambach [2000], Crocker and Snow [2011] and Snow [2009] consider other forms of multidimensional
heterogeneity.

10We write µ◊, ‹◊ when the type space � is generic. We write µ, ‹ when the type space is a subset of R+.
11For this reason, we sometimes write, for instance, wµ instead of w◊.

8



Assumption 3 imposes some regularity on the marginal distribution of risk µ. The
condition is mild, and satisfied in all insurance models that we are aware of.12

Example 1 illustrates a setting where Assumptions 1 and 2 are satisfied. This CARA-
Gaussian parameterization is used, for instance, in Veiga and Weyl [2016], Levy and
Veiga [2017].

Example 1. Suppose wealth shocks are Gaussian: Z◊ ≥ N (µ◊, ‡2
◊). Suppose utility is

CARA: U◊ (y) = e≠a◊y where y is wealth and a◊ is risk aversion. Each type has initial
wealth w◊. Then, insurance value is ‹◊ = a◊‡2

◊ and certainty equivalents are u(◊, x, p) =
xµ◊ + 1

2

1
1 ≠ (1 ≠ x)22

‹◊ ≠p. Marginal willingness to pay for insurance is w◊(x) = µ◊ +(1≠
x)‹◊ and Assumption 1 is satisfied. Assumption 2 is satisfied if ‹◊ = ‹ (µ◊) for a weakly
increasing function ‹ (·).

3.2 Insurance Markets in AG

AG consider a specialization of their general model to insurance markets with two cost
types. In insurance markets, since c(◊, x) = µx, so the AG equilibrium break-even con-
dition becomes

p(x) = x · E–[µ | x], – ≠ a.e. x. (1)

In that setting, AG derive several properties of equilibrium (AG’s Corollary 1). An
equilibrium always exists and is unique. In equilibrium, the high-cost individual ob-
tains full insurance, and is indifferent between her choice and the contract chosen by
the low-cost individual.13 Moreover, the equilibrium price function p (x), is the upper
envelope of the line p = 0 and each type’s indifference curve at her chosen contract.
Notice that only 2 contracts are purchased in equilibrium but p (x) defines a price for all
contracts x œ X. This is illustrated in Figure 1.

3.3 Equilibrium Characterization

We generalize AG by characterizing equilibrium in insurance markets with arbitrarily
many (and possibly unbounded) types. Recall that X = [0, 1] or X = [0, 1).

12It is not conceptually difficult, but practically cumbersome, to extend Theorem 2 using the techniques
in this paper to the class of distributions Pµ with the following properties: Pµhas finitely many atoms
in each bounded interval, and there are a finite (possibly empty) or infinite sequence a1 < b1 < a2 <
b2 < . . . s.t. the non-atomic part of Pµ is concentrated on fin[an, bn] and distributes on this set absolutely
continuously with a.e. positive density.

13In the RS model, the AG equilibrium has the same allocation as the Riley [1979] equilibrium, which
is also the Nash equilibrium, when the latter exists. However, a Riley [1979] equilibrium need not always
exist, as shown by Azevedo and Gottlieb [2016].
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Figure 1: Equilibrium in an insurance market with 2 types, as described in AG. Dashed
black lines represent zero-profit lines for each type. Solid lines represent each type’s
indifference curves at chosen contracts. The equilibrium price p (x) is the upper enve-
lope of the two indifference curves, above the line p = 0. Red diamonds represent the
combination (p, x) chosen by each type.

Theorem 2. Suppose Assumptions 1, 2 and 3 hold for a bounded or unbounded insurance
economy E = [�, X, P ]. There is at most a single equilibrium (p, –) for E , and when it
exists, it satisfies:

1. Price p(x) is continuous, and it is strictly increasing for {x | p(x) > 0}.

2. There is a continuous and strictly increasing mapping ‡ : supp(Pµ) æ X that assigns
to each type µ, the alternative ‡(µ) that she choses –-a.s.

3. Each contract breaks even: P ≠ a.s., p(‡(µ)) = µ · ‡(µ).

4. Full insurance (x = 1) is in the support of the equilibrium and zero insurance (x = 0)
is purchased by a set of individuals with measure zero.

5. Price is Lipshitz in any interval bounded away from full insurance (x = 1); if µ is
bounded P -a.s., price is Lipshitz.

6. If Pµ is discrete, each type is indifferent between the contract she choses –-a.s. and
the next highest coverage purchased in –.14

Proof. Most of Theorem 2, except for the uniqueness of equilibrium, follow immediately
from the more general Proposition 6, proved in Appendix G. The uniqueness (if equi-
librium exists) follows from Corollary 2 (continuous types, bounded costs), Corollary 4

14Formally: Let µ1 < µ2 be two atoms of Pµ with no atom between them. Suppose type µ1 purchases x1
and type µ2 purchases x2 –-a.s.. Then, type µ2 is indifferent between (x2, p(x2)) and (x1, p(x1)).
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(continuous types, unbounded costs), Proposition 2 (discrete types, bounded costs), or
Proposition 4 (discrete types, unbounded costs).

When risk µ is essentially bounded, existence follows from AG, but Theorem 2 estab-
lishes uniqueness. When µ is unbounded, Theorem 2 shows that uniqueness still holds
(when equilibrium exists). Moreover, the equilibrium has several properties familiar
from AG and RS: higher cost types purchase more generous insurance, full insurance
is purchased by some type in equilibrium, and incentive compatibility binds “down-
wards.”15

Theorem 2 has an additional implication for unbounded economies. In the limit
where cost becomes unbounded, the equilibrium price of the most generous contract
also becomes unbounded.

Corollary 1. Under Assumptions 1, 2 and 3, if Pµ is not compactly supported, then in any
AG equilibrium

lim
xæ1

p (x) = Œ.

Proof. From Theorem 2, the allocation ‡(µ) is strictly increasing, so there is full sepa-
ration of types and the costliest types purchase the maximum available insurance cov-
erage. If types are unbounded, this cost is arbitrarily high and therefore limxæ1 p (x) di-
verges. For details, see Appendix B.

This condition will play a key role in our analysis of existence. For equilibrium to
exist, preferences must be such that p (x) can diverge at full insurance (x = 1) but must
converge for all x < 1, while still preserving the incentive compatibility required by
Proposition 6. Corollary 1 is why, for economies with unbounded cost, we consider the
(non-compact) alternative space to be X = [0, 1).

Our interpretation of Corollary (1) is not that that we should expect infinite prices in
any insurance markets. Our goal in analyzing the equilibrium of unbounded economies
is to determine the robustness of the model to assumptions about cost. We take Corol-
lary (1) as a tool that will aid us in that analysis.

3.4 Existence

In this section we consider, as in Section 2, sequences of truncated bounded economies
economies En which approximate an economy E with unbounded cost. We will derive

15We remark that, although Theorem 2 is used to prove Corollary 2, Corollary 4, Proposition 2 and
Proposition 4, these proofs do not rely on the uniqueness of equilibrium. Instead, those proofs rely only
on the other properties listed in Theorem 2 (and hence we have not fallen trap to circular logic). We
present the uniqueness as part of Theorem 2 for expositional simplicity, instead of leaving this conclusion
for a later corollary.
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a necessary and sufficient condition on model primitives for the equilibria of En to con-
verge to the equilibrium of E , for unbounded continuous types (Subsection 3.5) and
unbounded discrete types (Subsection 3.6).

We briefly recall our construction of truncated economies. We consider the un-
bounded economy E = [�, X, P ] with the unbounded type space �, the measure P on
�, and the alternative space X = [0, 1) as discussed in Corollary 1. Recall that µ =
min (supp (Pµ)). We also consider a sequence of truncated economies En = [�n, X, P (· |
�n)], with bounded type space �n =

Ó
µ œ

Ë
µ, µn

È
fl supp (Pµ)

Ô
for some µn, bounded al-

ternative space X̄ = [0, 1], and conditional distribution P (· | �n) = P (· fl �n) /P (�n).
Since each �n, X̄ is compact, En has an equilibrium (pn, –n). We will consider a sequence
of economies En with µn æ Œ.

When the equilibrium of E exists, we say the insurance economies En are “robust.”
Since the equilibria (pn, –n) of En converge as cost becomes unbounded, the model’s
predictions are robust to assumptions about the support of cost. Conversely, when E
does not have an AG equilibrium, and we say that the economies En are “fragile.” For
these economies, assumptions about the distribution of risk have large effects on equi-
librium predictions.

We will apply the existence result in Proposition 1 to the setting of insurance markets.
To do so, Lemma 7 (Appendix F.1) shows that the technical condition (*) holds in insur-
ance markets. While Proposition 1 requires knowledge of the limit equilibrium (p, –),
this result is enough for the setting of simple insurance markets because the structure
of equilibrium is known from Proposition 6.

We will illustrate how to use Proposition 1 by means of two of examples. In each
case, we will derive a condition on model primitives which is necessary and sufficient
for the remaining conditions of Proposition 1 to hold. First, we consider a competitive
insurance market with an unbounded continuum of cost types. This setting is appealing
because the equilibrium (when it exists) is particularly tractable and characterized by a
simple differential equation. Our second example considers unbounded discrete types,
which is a setting more similar to traditional analyses of insurance markets like RS and
AG.

3.5 Insurance Market with a Continuum of Types

We now consider an insurance market with a continuum of cost types. Riley [1979]
showed that a Nash equilibrium (in pure strategies) do not exist in in this setting. AG
equilibrium exist (uniquely) if costs are bounded. We will obtain a simple condition
which is necessary and sufficient for existence of equilibrium when cost is unbounded.
When this condition does not hold, an economy is “fragile.” In this case, assumptions
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about the support of costs can have large effects on equilibrium predictions. Moreover,
expanding the support of the cost distribution results in market unravelling: the equi-
librium allocation to each type converges to zero.

We assume that Pµ has support [µ, Œ) and Lebesgue-a.e. positive density (so As-
sumption 3 holds). From Proposition 6, any equilibrium (p, –) is unique, has p strictly
increasing, locally Lipschitz, and features a continuous and strictly increasing choice
rule x = ‡ (µ).

We will first derive necessary conditions, and then show that these are also sufficient.
In the main text, we assume differentiability and that all types maximize utility (instead
of P -a.e. type). For general proofs, see Appendix D.

First, we consider a bounded economy En where cost is µ œ
Ë
µ, µn

È
. From Theorem

2, each En has an equilibrium (pn, –n) with a continuous increasing allocation rule ‡n :
[µ, µn] æ [0, 1]. We omit superscript n for clarity. For every type µ œ (µ, µn), the optimal
choice is characterized by the First Order Condition

ˆu

ˆx
|x=‡(µ)= µ + gÕ (‡(µ)) v (µ) ≠ pÕ (‡(µ)) = 0.

Since ‡(µ) is strictly increasing, it admits an inverse · = ‡≠1, so we can re-write this as

·(x) + gÕ (x) v (·(x)) ≠ pÕ (x) = 0.

Actuarily fair prices imply that, for every x in the interior of the support of –X ,

p (x) = ·(x) · x ∆ pÕ(x) = ·(x) + x · · Õ(x).

Summing these gives

· Õ (x)
‹(·(x)) = gÕ(x)

x
. (2)

Then ‡n (µ) can be recovered by integrating both sides of (2) over x and using the change
of variables · (x) = µ. Proposition 6 provides the boundary condition ‡n(µ) = 1. We
therefore obtain the following result, which applies to any bounded insurance economy.

Corollary 2. The bounded economy En has a unique equilibrium (pn, –n) , where the
choice rule ‡n(µ) satisfies, ’µ œ

Ë
µ, µn

È
,

⁄ µn

µ

1
‹(µÕ)dµÕ =

⁄ 1

‡n(µ)

gÕ(x)
x

dx (3)

and, in particular, ‡n(µ) > 0 for µ > µ.16

16If ‹(µ) > 0, ‡(µ) > 0.
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Proof. Since gÕ(x)
x Ø 0, there is a unique ‡n (µ) that solves (3) for each µ, so integration

establishes uniqueness and the (3). For details, see Appendix D.3.

We now consider the sequence of economies En as µn æ Œ. Corollary 2 suggests that
a necessary condition for the equilibria (pn, –n) to converge is, for some µ œ [µ, Œ),

⁄ Œ

µ

1
‹(µÕ)dµÕ < Œ. (4)

Corollary (3) formalizes the result.

Corollary 3. Suppose (4) does not hold. Then:

• For each 0 < x, price diverges: limnæŒ pn(x) = Œ.

• For each µ, coverage converges to zero: limnæŒ ‡n(µ) = 0

• E does not have an equilibrium.

Proof. From Corollary 1, as µn æ Œ, we must have limxæ1 pn (x) = Œ. However, the
curves pn (x) must also satisfy incentive compatibility throughout. If the integrability
condition fails, the curves pn (x) cannot be sufficiently convex to diverge at full insur-
ance without also diverging at every other alternative. In that case, increasing µn causes
all prices to rise without bound and the allocation of every individual approaches x = 0.
In the limit, equilibrium does not exist. For details, see Appendix D.5.

For “fragile” economies (where (4) does not hold) relaxing the truncation of the cost
distribution results in the market progressively unravelling. The price of each positive
coverage alternative increases without bound and, as a consequence, the levels of cov-
erage chosen by each type µ approaches zero. Moreover, for fragile economies, the limit
economy E does not have an equilibrium. When (4) does not, assumptions about the
cost distribution have an unbounded effect on the predictions regarding equilibrium
prices. Notice that, if ‹(µ) = ‹0 is a constant (as in Rothschild and Stiglitz [1976]), the
economy is fragile. While it is intuitive that the RS market would unravel if types with
higher expected cost were added, we are not aware of any article that makes this point
formally.

This result is illustrated in Figure 2. The left panel depicts a numerical simulation of
an insurance economy where ‹ is constant and therefore (4) does not hold. The different
curves correspond to the price function pn(x) in the equilibrium of several truncated
economies En with increasing values of µn, showing that pn (x) diverges for each x.17

17A graph of µ = ‡≠1 (x) would look similar (since each price p is associated to a single cost µ). This
implies that, as n æ Œ, each type µ obtains progressively lower coverage in equilibrium.
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Condition (4) is not just necessary for equilibrium existence, but also sufficient. When
(4) is satisfied, changes in the support of the type distribution have a bounded effect on
equilibrium predictions. Therefore, (4) creates a sharp distinction between fragile and
robust economies. This is formalized by Corollary 4.

Corollary 4. Suppose (4) holds. Then there exists a unique equilibrium (p, –) of E , and
the associated choice rule ‡ : [µ, Œ] æ [0, 1) is defined by

⁄ Œ

µ

1
‹(µÕ)dµÕ =

⁄ 1

‡(µ)

gÕ(x)
x

dx. (5)

and, in particular, ‡(µ) > 0 for µ > µ.18

Proof. Condition (4) ensures that Proposition 1 applies (pn æ p uniformly on compact
subsets of X = [0, 1) and –n æ – weakly), hence equilibrium exists. Uniqueness and (5)
follow since for any µÕ > µ > µ

⁄ µÕ

µ

1
‹(µÕ)dµÕ =

⁄ ‡(µÕ)

‡(µ)

gÕ(x)
x

dx

so taking µÕ æ Œ gives the result, as limµæŒ ‡(µ) = 1 by Theorem 2. For details, see
Appendix D.4.

The result is illustrated in Figure 2, where the right panel shows a setting where
‹ = µ1.2, so the integrability condition (4) is satisfied. As the support of µ expands,
the functions pn (x) converge to p (x), and each type’s choice ‡n (µ) converges to ‡ (µ).

How restrictive is (4)? It is satisfied, for instance, if P -a.s., ‹ grows asymptotically
at least as fast as Cµ– for some C > 0 and – > 1.19 In the CARA-Gaussian framework
of Example 1, ‹◊ = a◊‡2

◊ is the product of the CARA risk aversion coefficient a◊ and the
variance of shocks ‡2

◊ . In this case, (4) holds if a◊ is constant and ‡2
◊ increases more than

linearly with the expected cost µ◊. On the other hands, the result also shows that models
where ‹◊ is constant necessarily describe “fragile” economies.

Condition (4) seems empirically reasonable for markets like health and auto insur-
ance where individuals with higher expected risk tend to have larger variance in out-
comes (Hendren [2011], Brown et al. [2014]). For instance, Handel et al. [2015] esti-
mate the distribution of healthcare expenditures conditional on individual covariates
and based on an empirical model with CARA utility. Those authors find (Table III of
their article) that, as age increases, both the variance ‡2

◊ and the mean µ◊ increase, but
the former increases faster than linearly w.r.t. the latter.

18If ‹(µ) > 0, ‡(µ) > 0 .
19Formally, lim infµæŒ

‹(µ)
µ– > 0, where the limit is taken along the support of Pµ.
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Figure 2: Left panel: equilibrium does not exist when ‹ is constant. Right panel: equi-
librium does exist when ‹ = µ1.2. The different curves correspond to the prices pn(x) of
simulated economies where log10 (µn) took the values {1, 2, 3, 4, 5} when ‹ constant and
values {5, 10, 15, 20, 25} when ‹ = µ1.2.

Condition (4) will not hold, for instance, if ‹ Æ Cµ– +D with – Æ 1 and C, D œ R. Sec-
tion 5.3 provides an example where this condition implies equilibrium non-existence,
in a more general setting where type ◊ = (µ◊, ‹◊) may be truly two-dimensional.

3.6 Example: Discrete types

We now consider an insurance market with unbounded discrete types. Our goal is to
illustrate features of equilibrium familiar from RS and AG. For instance, p (x) is the upper
envelope of indifference curves (as in AG) and incentive compatibility constraints bind
“downwards” (as in RS). We present heuristic arguments in the main text, and proofs in
Appendix E.

The unbounded economy E = [�, X, P ] has types � = {(µk, ‹k)Œ
k=1} where µk, ‹k are

strictly increasing in k, with µk æ Œ, ‹k æ Œ. The alternative space is X = [0, 1). The
truncated economy En = [�n, X̄, P (· | �n)] has types �n = {(µk, ‹k)kÆn}, alternative
space X̄ = [0, 1] and distribution P (· | �n) = P (· fl �n) /P (�n).

We first construct the unique equilibrium of each En. Type ◊k chooses (xk, pk), where
xk, pk are strictly increasing in k. Contracts break even: pk = xkµk, ’k. Type µk is indiffer-
ent between (xk, pk) and (xk≠1, pk≠1). Combining these implies

µk ≠ µk≠1
‹k

= g(xk) ≠ g(xk≠1)
xk≠1

(6)
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which is the discrete analogue of (2).
We now determine the equilibrium choices xn

k of economy En. The highest-cost type
µn

n obtains the maximum available insurance contract (1, µn
n). Then, (6) pins down the

value of xn
n≠1, then of xn

n≠2, and so forth. In fact, (6) implies that there exists a function
„k (·) that determines any xn

k = „k(xn
k+1) based on knowledge of xn

k+1, so equilibrium
choices can be defined recursively.20

We now build the price function pn (x). Let In
k : [0, 1] æ R be the indifference curve

of type µn
k through her chosen contract, (xn

k , pn
k). In

k is expressed algebraically by (15) in
Appendix A. We define pn(x) = In

k (x) if x œ
Ë
xn

k≠1, xn
k

È
.21 Incentive compatibility requires

In
k (xn

k) = In
k+1(xn

k), so pn(·) is continuous.22 Moreover, In
k (xn

k) = µnxn
k so the break-even

condition is satisfied. Notice that pn (x) is the upper envelope of indifference curves at
each individual’s chosen contract, as in AG.

Proposition 2 below uses these results to characterize the (unique) equilibrium of
En, thereby generalizing AG’s Corollary 1. Figure 3 provides a visual illustration of the
equilibrium for E4.

Proposition 2. The truncated economy En has a unique equilibrium where price is pn(·)
and the allocation –n is concentrated on (µk, ‹k, xn

k)kÆn, with –n({(µk, ‹k, xn
k)}) = P (µk)

P (�n) .

Proof. Follows from Theorem 2.23

We now consider the unbounded economy E . Appendix E.2 shows that (xn
k)Œ

nØk is
monotonically decreasing for each k, and hence limnæŒ xn

k = xk œ [0, 1) exists, which
will be the choice of type k in the limit economy E . Moreover, continuity of „k (·) also
implies incentive compatibility in the limit economy, so xk = „k(xk+1) as desired. The
equilibrium allocation is –({(µk, xk)}) = P (µk). Moreover, we define Ik : [0, 1] æ R as
the indifference curve of µk through (pk, xk), and piece these together as above to form
the price function p(x) = Ik(x) if x œ [xk≠1, xk].24

Since (6) is the discrete analogue of (2), it seems likely that, in this setting, a necessary
condition for existence will be a discrete analogue of (4):

20We have xn
k := „k(„k+2(· · · („n≠1(1)) · · · )). In the CARA-Gaussian framework of Example 1, „k (·) is

the positive solution of a second degree equation.
21Let xn

0 = min[x | In
0 (x) Ø 0], and for convenience, set xn

≠1 = 0 and In
0 = 0.

22Notice also that, for x Æ xn
k , the indifference curve is below the break even line (In

k (x) Æ µnxn
k ), as

shown in Figures 1 and 3.
23

Proof. As remarked there, to avoid circular logic, the uniqueness stated in that theorem should not be
relied on here, but the specific allocations follows immediately from the other properties, as the highest
type purchases full insurance and the other types allocations are determined inductively

24Again, x0 = min[x | I0(x) Ø 0], and set x≠1 = 0 and I0 = 0. Again p(·) is well-defined and continuous,
and p (x) = maxkœN gk (x). Note that p involves ’infinitely many pieces’ and hence is not defined at x = 1.
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chooses (xk, pk). As in AG, the price p4 (x) corresponds to the upper envelope of the
indifference curves of buyers.

Œÿ

k=1

µk+1 ≠ µk

‹k+1
< Œ. (7)

Proposition 3 below shows that this condition is indeed necessary, in parallel to Corol-
lary 3.

Proposition 3. Suppose (7) does not hold. Then:

• For each x > 0, price diverges: limnæŒ pn(x) = Œ

• For each k œ N, coverage converges to zero: limnæŒ xn
k = 0.

• E does not possess an equilibrium.

Proof. See Appendix E.2.

If (7) does not hold, as we relax the truncation on economy E , the price of each contract
increases without bound and each type’s chosen coverage converges to zero. In the limit,
the AG equilibrium does not exist.

In parallel to your analysis of economies with continuous types, (7) is also sufficient
for equilibrium existence, as we now show.

18



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

7

Insurance Level (up to 0.75)

P
ric
e

Price Function in Example

1

2

3

4

(0,x0)
(p1,x1)

(p2,x2)

(p3,x3)
1

2

3

4

p(•)

Figure 4: Construction of Price Function for the unbounded economy with discrete
types. We show only the domain x œ
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4

2
, since limxæ1 p (x) = Œ.

Proposition 4. Suppose that (7) holds. Then:

• pn æ p uniformly on compact subsets of [0, 1), and –n æ – weakly. Therefore, by
Proposition 1, (p, –) is an equilibrium.

• The equilibrium is unique.

Proof. Convergence follows from the definitions of –n, –, pn, p in terms of the xn
k , since

xn
k æ xk for each k, and since each compact subset of [0, 1) contains only finitely many

of the points xn. Details are given in Section E.3. Uniqueness is shown in Appendix E.2;
essentially, it shows that in any equilibrium, for each k œ N, the contact xk purchased
by type (µk, ‹k) must satisfy xk := limnæŒ „k(„k+2(· · · („n(1)) · · · )) and, in particular, that
the limit is well-defined.

The intuition for the summability condition (7) is similar to that of (4). In this case, p (x)
is the upper envelope of indifference curves. The slope of these indifference curves is
w◊(x) = µ◊ + (1 ≠ x)‹◊. For unbounded economies, limxæ1 p (x) = Œ by Proposition
3, so w◊ must increase sufficiently fast as x æ 1. Since the choice of x increases with
µ, then ‹ must increase sufficiently fast to allow for p(x) æ

xæ1
Œ without also arbitrarily

raising prices for all x < 1 (which would result in non-existence). The function p (·) of
the unbounded economy E is illustrated in Figure 4.

We now give a heuristic argument as to why (7) guarantees existence of an equilib-
rium. In particular, if in equilibrium type (µk, ‹k) purchases covering xk, the (xk) are such
that type (µk+1, ‹k+1) is indifferent between (xk+1, µk+1xk+1) and (xk, µkxk). This implies

µk+1xk + g(xk)‹k+1 ≠ µkxk = µk+1xk+1 + g(xk+1)‹k+1 ≠ µk+1xk+1 = g(xk+1)‹k+1
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Denote �xk = xk+1 ≠ xk, �µk = µk+1 ≠ µk and �gk = g(xk+1) ≠ g(xk). The expression
above becomes

�µkxk = �gk‹k+1 (8)

For such an equilibrium, we must have many (xk) close to full coverage; fix T small
and a range of values s.t. for K1 Æ k Æ K2, xk ¥ 1 ≠ T . Now suppose xk+1 > xk are in this
range; since gÕ(1) = 0, the second order expansion of �gk around x = 1 gives

�gk = g(xk+1) ≠ g(xk) ¥
C

g (1) + gÕÕ (1)
2 (1 ≠ xk+1)2

D

≠
C

g (1) + gÕÕ (1)
2 (1 ≠ xk)2

D

=

= ≠gÕÕ (1)
2 [2 ≠ xk+1 ≠ xk] �xk ¥ ≠gÕÕ (1) · T · �xk

where the first ¥ refers to a second-order approximation. Denote tk = �µk
‹k+1

and G =
≠gÕÕ(1) > 0. Plugging this into (8) and

�xk ¥ �gk

G · T
= tk · xk

G · T
¥ (1 ≠ T )

G · T
· tk (9)

Hence,
ÿ

k

�xk < Œ ≈∆
ÿ

k

tk < Œ

A formal argument of the necessity of (7) could be made from the heuristic one
above. An argument for sufficiency is somewhat more delicate but is similar to the ar-
gument given in H, which proves a very similar result in a more general setting.25

Appendix J also contains an alternative proof that (p, –) is an equilibrium of E . This
is a “direct” construction of the equilibrium which does not use Proposition 1.

4 Market for Lemons

We now briefly consider a further simplification of insurance markets to the classic case
of lemons markets, as in Akerlof [1970], Einav et al. [2010a], where individuals make a bi-
nary choice. Our goal is chiefly to illustrate the possibility of equilibrium non-existence
when cost is unbounded, even in these very simple settings.

We maintain the insurance framework described in Section 3, in particular Assump-
tion 1. We further assume that individuals make a binary choice, captured by the prod-

25The difference is the following: The proof Lemma 17 begins by fixing types ◊ÕÕ, ◊Õ and denoting µÕÕ :=
µ(◊ÕÕ) > µÕ := µ(◊Õ), xÕÕ := ‡(µÕÕ) > xÕ := ‡(µÕ) Ø 1 ≠ ” , and ‹ÕÕ := ‹”(◊ÕÕ), ‹Õ := ‹”(◊Õ), these last terms
being defined in Section 5.1; for our simpler model, ‹Õ = ‹(◊Õ), ‹ÕÕ = ‹(◊ÕÕ). Equation (27) in that proof
gives an inequality relating the differences �x, �p between the contracts purchased between these two
types and the difference in prices, using µÕ, µÕÕ, ‹Õ but not ‹ÕÕ. In our case, this inequality becomes equality,
and - more importantly - with ‹ÕÕ in place of ‹Õ, which gives (when ‹ÕÕ > ‹Õ) a tighter bound.
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uct space consisting of a single non-zero product, so X = {0, x̄} for some x̄ > 0. For
simplicity, we assume that the insurance value ‹ = ‹(·) is constant in this case, and as-
sume µ distributes with positive PDF on some interval (µ, Œ). Note that the utility from
purchasing non-zero coverage at price p for an agent of riskiness µ is x̄µ + g(x̄)‹ ≠ p.26

4.1 Existence

AG show that an equilibrium exists in lemons markets, assuming risk µ is bounded. We
extend this discussion to certain unbounded cases. Suppose an equilibrium exists. The
equilibrium must prescribe p(0) = 0 and p(x̄) equals the average cost of buyers. Hence-
forth, let p = p(x̄) denote the price of the non-zero alternation. If x̄ · µ + g(x̄)‹ > x · E[µ],
then charging price p = x · E[µ] and having all agents purchase is an equilibrium. Oth-
erwise, for p = p(x), let the marginal type be µı defined by x̄µı + g(x̄)‹ = p. Equilibrium
must occur at a price p where

p = E[x̄µ | µ Ø µı].

If types are bounded, such a price p always exists. (The existence of such a p is necessary
also for the existence of a pure-strategies Nash equilibrium, e.g. in the RS model in
which firms set contracts and consumers respond.) Hence we can state:

Proposition 5. If µ distributes with positive PDF on some interval (µ, Œ) s.t.

E[µ | µ Ø M ] ≠ M æ
MæŒ

0 (10)

then an equilibrium exists for any x œ (0, 1] and any ‹ > 0. In particular, (10) holds if µ

distributes with PDF „ and CDF � s.t.

lim
MæŒ

„(M) = lim
MæŒ

1 ≠ �(M)
„(M) = 0.

Proof. The condition p = E[x̄ · µ | µ Ø µı] is equivalent to

x̄µı + g(x̄)‹ = xE[µ | µ Ø µú] = xµú + x’(µú).

That is, we define g(x̄)
x̄ ‹ = ’(µú) where ’(µú) æ

µúæŒ
0 is a continuous function. Either there

exists such a point, or ’(µ) < g(x̄)
x̄ ‹, in which case, as remarked above, p = x · E[µ] is an

equilibrium in which all types purchase coverage.

26We do not consider in this article existence when the space of alternatives is a fixed finite subset of
[0, 1]. That analysis is outside the scope of this article and left for future research.
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For the second part,27 let P (·) denote probability. Then,

E[µ | µ Ø M ] ≠ M = E[µ ≠ M | µ ≠ M Ø 0] = E[(µ ≠ M)+]
P (µ Ø M) =

s Œ
0 P ((µ ≠ M)+ Ø x)dx

P (µ Ø M)

=
s Œ

0 P ((µ ≠ M)+ Ø x)dx

P (µ Ø M) =
s Œ

M P (µ Ø x)dx

P (µ Ø M) =
s Œ

M (1 ≠ �(x))dx

�(M)

where Y + = max[Y, 0]. Hence, by L’Hospital’s law, since „ = �Õ,

lim
MæŒ

E[µ | µ Ø M ] ≠ M = lim
MæŒ

s Œ
M (1 ≠ �(x))dx

�(M) = lim
MæŒ

1 ≠ �(M)
„(M) = 0

For example, suppose µ distributes with a half-Gaussian distribution. That is, µ ≥ |µ̃|
for µ̃ ≥ N(0, 1). Let � denote the CDF of N(0, 1) and „(x) =

Ò
2
fi ·e≠ 1

2 x2
the PDF of µ in R+.

Notice that „Õ(x) = (≠x) · „(x), so by L’Hopital’s law, limMæŒ
1≠�(M)

„(M) = limMæŒ
≠„(M)
„Õ(M) =

limMæŒ
1

M = 0.

4.2 Non-existence

If µ is unbounded, it is possible that an equilibrium does not exist. This will occur if
every price is lower than the average cost of those who would purchase at that price, so
firms are unable to break even at any price. We now provide two simple examples.

Suppose that µ has an exponential distribution with parameter 1
⁄ , so that E[µ] = ⁄

and E[µ | µ Ø µı] = µı + ⁄. The condition for non-existence of equilibrium p < E[x̄µ |
µ Ø µı] is equivalent to

x̄µı + g(x̄)‹ < x̄ (µı + ⁄) … g(x̄)
x̄

‹ < ⁄.

Therefore, if average cost (⁄) is large and risk aversion (‹) is low, equilibrium does not
exist.

Suppose now that µ has a Pareto distribution28 with parameters µ0 and ⁄ > 1. That
is, µ is concentrated on (µ0, Œ) with PDF f(µ) = ⁄µ–

0 µ≠⁄≠1. The conditional mean is
E[µ | µ Ø µı] = ⁄

⁄≠1µı for any µú Ø µ0. In this case, equilibrium does not exist if

x̄µı + g(x̄)‹ < x̄
⁄

⁄ ≠ 1µı … g(x̄)
x̄

‹ <
1

⁄ ≠ 1 .

Again, if risk aversion is sufficiently low, equilibrium will not exist.

27The authors are grateful to Ilan Nehama for pointing out this argument.
28That is, a distribution with CDF given by F (µ) = 1 ≠ ( µ0

µ )⁄ for µ > µ0.
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5 Generalization & Variations

In this section, we generalize several of the results presented above.

5.1 General Insurance Setup

We now describe a more general insurance setting, where we relax Assumptions 1 and
2 and 3. We maintain the notation µ = µ (◊) = E [Z◊], and the assumption that a alter-
native x covers a share x of the individual’s cost. Therefore, cost is c (x, ◊) = xµ. Unless
otherwise specified, we take the alternative space to be either X = [0, 1] or X = [0, 1).
We require the utility functions u◊ to be defined for all alternatives [0, 1] (and all prices
in R+).

We emphasize that, in this section, we do assume that the most generous contract is
full insurance (unlike in Section 3).

We now list several assumptions, which will replace Assumptions 1 and 2. Not all
of these assumptions are used simultaneously in the results below. We will be explicit
about which are necessary for each of the results.

Assumption 4. Utility is quasilinear in price: u◊(x, p) = xµ◊+g◊(x)≠p, with g◊ : [0, 1] æ R
smooth, strictly increasing and concave (ˆg◊

ˆx > 0, ˆ2g◊
ˆx2 < 0 in (0, 1)), with gÕ

◊(1) = 0.

Assumption 4 generalizes Assumption 1, where it was required that g◊ (x) = g (x) ‹◊.
The more demanding aspect of Assumption 4 is quasi-linearity of utility. Notice that
Assumption 4 guarantees the condition on utilities required by Proposition 8.

The marginal willingness to pay for additional insurance is

w◊(x) = ˆu◊

ˆx
(x, p) = µ◊ + gÕ

◊(x) Ø µ◊

with equality if and only if x = 1. By quasi-linearity, w◊ is independent of price.
Notice that ≠ˆw◊

ˆx (x) = ≠ˆ2u◊
ˆx2 (x) > 0 is the curvature of indifference curves in (x, p)-

space for type ◊. We will denote, for a given ” > 0,

‹”(◊) := max{≠ˆw◊

ˆx
(x) | x œ [1 ≠ ”, 1]} (11)

‹”(◊) := min{≠ˆw◊

ˆx
(x) | x œ [1 ≠ ”, 1]} (12)

The quantity ‹”(◊) is the highest level of curvature, in (x, p)-space, that type ◊ exhibits
among contracts with generosity greater than 1 ≠ ”. Similarly, ‹”(◊) captures the lowest
such curvature.29

29For instance, in the CARA-Gaussian framework of Example 1, ‹”(◊) = ‹”(◊) = ‹◊ is independent of ”.
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The following assumption constrains the joint distribution of µ and ‹.

Assumption 5. For each µ, there is a ” > 0 such that ‹” can be bounded as a function of
µ. Formally, for each µ s.t. P (µ Æ µ) > 0, there is fl = fl”(µ) s.t. P (‹”(◊) Æ fl | µ Æ µ) = 1.

WLOG, we can take fl”(·) increasing and right-continuous.30 This assumption, while
allowing for unbounded µ, does not allow the distribution of (µ, v) to be, for instance,
bivariate Gaussian or lognormal, although these distributions can be approximated ar-
bitrarily closely.

The following assumption relaxes Assumption 2.

Assumption 6. w◊2 Ø w◊1 iff µ(◊2) Ø µ(◊1).

If Assumption 6 holds, all types with the same riskiness have the same utility func-
tion, so we may view ‹” as a function of µ, defined on the support of Pµ. That is, types
are effectively one-dimensional. Notice that assumption 6 implies Assumption 5.

Recall µ = min(supp(Pµ)). If (a, b) is a maximal open interval not intersecting the
support of Pµ,31 we interpret ‹”(µ) = ‹”(a) in (a, b). That is, we complete the function ‹”

from the domain supp(Pµ) to [µ, Œ) such that

‹”(µ) = ‹”(max{’ œ supp(Pµ) | ’ Æ µ}).

5.2 Equilibrium Properties in Insurance Markets

We now show that the insurance market equilibrium properties of Proposition 6 hold
more generally than previously stated. The result does not require Assumptions 5, nor
Assumption 4, using instead a generalization (Assumption 7), described below.

Assumption 7. Utility is u : � ◊ [0, 1] ◊R+ is continuous, u◊(·, ·) is twice differentiable for
all ◊ œ � and the second derivates are continuous in (◊, x, p), with ˆu◊

ˆx > 0, ˆu◊
ˆp < 0, and

w◊(x, p) = ≠ˆu◊

ˆx
(x, p)/ˆu◊

ˆp
(x, p)

satisfies w◊ Ø µ◊ with equality iff x = 1, ˆw◊
ˆx Æ 0 in (0, 1).

Note that, now, w◊ depends on both coverage and price.
We will need the following technical assumption:

Assumption 8. For every µú > µ, the set {◊ | µ(◊) Æ µú} is compact in �.

30If fl”(·) is not monotonic, it can just be replaced with its ’monotonic closure’, x æ sup0ÆyÆx fl”(y). If
it is not right-continuous, it can be replaced with x æ limyæx+ fl”(y). Both of these operations preserve
linear growth, which is what we require in Proposition 7.

31That is, there are no types with riskiness µ in (a, b), but a, b œ supp (Pµ).
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That is, for each upper bound on cost, only a compact set of types have cost below
this bound. Like Assumption 6, Assumption 8 rules out e.g. log-normal distributions.
We know of no case of interest in which the former assumption holds and the latter does
not, so Assumption 8 is with a small additional loss of generality.

The following result generalized Theorem 2 and thereby generalizes the treatment of
RS in AG.

Proposition 6. Suppose that Assumptions 7, 6, and 8 hold. Any equilibrium (p, –) of the
bounded or unbounded insurance economy E = [�, X, P ], satisfies the following proper-
ties:

1. Price p (x) is continuous and strictly increasing on the domain on which it is non-
zero. (Lemma 3)

2. There is a continuous mapping ‡ : supp(Pµ) æ [0, 1], strictly increasing on the
domain in which it is non-zero, that assigns to each type µ her chosen contract.
Formally, –

Ó
(µ, x) | x = ‡(µ)

Ô
= 1.32 (Lemma 11)

3. Contracts are actuarily fair. Formally, P ≠ a.s., p(‡(µ)) = µ · ‡(µ). (Lemma 10)

4. Full insurance is in the support of the equilibrium.33 (Corollary 13.)

5. Let x0 < 1 . If L Ø w◊ in {x Æ x0} for a.e. ◊ which chooses coverage up to x0

(i.e., –(· | x Æ x0) ≠ a.s.) then p(·) is L-Lipshitz in [0, x0].34 Formally, L = ess ≠
sup{maxxœ[0,1] (wµ | ‡(µ) Æ x0)}.35

6. Let x œ (0, 1] and p(x) > 0. Let ÷(µ, x) be the price at which type µ is indifferent
between his purchased contract (‡(µ), p(‡(µ)) and (x, ÷(µ, x)). Then, for every y >

x for which –X((x, y]) > 0,

p(x) = ess ≠ sup{÷(µ, x) | x < ‡(µ) Æ y} (13)

That is, price is an envelope of indifference curves, and in fact one can take just
those indifference curves of types who buy the ’next alternatives above it’.36

32Under Assumptions 1, 2, and 3, we show that x = 0 is never chosen in equilibrium (see Sections 3.5
and 3.6). However, we have not been able to show this in more general settings. Therefore, we only assert
that ‡ is strictly increasing on supp(Pµ)\‡≠1({0}).

33The support of a positive measure is the smallest closed non-null set. Therefore, we mean that every
neighborhood of x = 1 has strictly positive measure under –.

34If � is compact, this implies that the price function is Lipshitz.
35Recall that the essential supremum (“ess ≠ sup”) of a random variable X with distribution P is the

supremum over all x œ R s.t. P (X > x) > 0; intuitively, this is the ’supremum up to measure zero’.
36In particular, if µ1 < µ2 are atoms of Pµ but there are –-a.s. no types with riskiness between µ1, µ2,

then type µ2 is indifferent between (‡(µ2), p(‡(µ2)) and the alternative “just below”, (‡(µ1), p(‡(µ1)). This
follows by taking x = ‡(µ1), y = ‡(µ2) in the first part.
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Proposition 1, Part (6)

0 x* y``y` y 1
x
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p(y``)
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p(y)p(

x)

( )=y,  ( `)=y`,  ( ``)=y``

Price of contracts purchased
Price of contracts not purchased

Figure 5: Suppose a alternative xı is not purchased in equilibrium. Consider a sequence
of types µ, µÕ, µÕÕ... who purchase coverages y, yÕ, yÕÕ..., respectively, which converge to the
infimum of purchased alternatives strictly above xı. Consider the indifference curves of
these types. The price at xú is the supremum of the indifference curves of these types at
xú. A similar figure holds when xú is in the support of the equilibrium but no alternative
in a right neighborhood of xú is purchased (e.g., when –X is purely atomic).

7. If in addition Assumption 3 holds, then 0 is –-a.s. never puchased, and in particu-
lar ‡ : supp(Pµ) æ [0, 1] is strictly increasing.

Proof. See Appendix G.

Proposition 6 shows that several features of competitive insurance markets, derived by
RS and AG, remain true in unbounded settings (if an equilibrium exists). The allocation
x = ‡ (µ) is increasing in risk µ, each contract breaks even, and incentive compatibil-
ity constraints bind “downward.” Notice that the equilibrium price p (x) is the upper
envelope of the indifference curves, which is illustrated in Figure 5.

5.3 Unbounded Price in Insurance Markets

We now show that, more generally in insurance markets with unbounded cost, price is
unbounded. The proof uses Assumptions 4 and 5. However, the result does not require
X = [0, 1] or X = [0, 1), instead requiring only that X ™ [0, 1) be Borel37 such that

37We require this to be able to define a Borel measure on X. As the example of Section 3.4 hints, a count-
able discrete set is often appropriate. An obvious initial objection to a non-compact space of contracts
is that agents may not have a best contract, even when prices are continuous. However, when utilities
extend continuously to [0, 1] ◊ R+ and limxæ1 p(x) = Œ, agents do attain their maximal utility contract.
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full insurance is a limit point of X.38. Moreover, the proof does not require that ‹ is
a function of µ (Assumption 6) and therefore applies to settings where types are truly
multi-dimensional. Let X\{1} be the closure of X\{1}.

Theorem 3. Suppose that Assumptions 4 and 5 hold, and that Pµ is not compactly sup-
ported. Then, in any equilibrium,

lim
xæ1

p (x) = Œ

In particular, 1 /œ X, i.e., full insurance is not a possible contract.

Proof. First, we use Assumption 1 to establish bounds on the slope of p (x) in equilib-
rium. Then, we show that full insurance cannot be an atom of an equilibrium (unless
x = 1 is bought by a single type). Then, we show that smaller and smaller neighbor-
hoods of full insurance attract arbitrarily large risks. Finally, we use this to show that the
price cannot be bounded in equilibrium. For details, see Appendix B.

The use of Assumption 5 should not be seen as imposing significant restrictions
on the result’s implications (even though Assumption 5 excludes common distribution
such as bivariate Gaussian or lognormal distributions). First, it is not clear if this as-
sumption is needed, as we have we have not found any example of a distribution with
unbounded costs but with an equilibrium having bounded prices. Second, any distribu-
tion is arbitrarily well approximated by a distribution satisfying Assumption 5. Suppose,
for instance, that the distribution of types f ı(◊), for which 5 did not hold, resulted in a
bounded equilibrium price pı(·). Approximating f ı(◊) arbitrarily closely with a distri-
bution f(◊) for which 5 holds, would result in some unbounded equilibrium prices p(.)
which would be arbitrarily different from pı(·). Therefore, the result should be under-
stood to say that no economy satisfying Assumption 4 and Pµ is not compactly sup-
ported, can possess an equilibrium with bounded prices which is robust in any reason-
able sense.

Figure 6 illustrates graphically one of the steps of the proof of Theorem 3. If µ is un-
bounded, full insurance cannot be an atom, purchased by multiple types, of the equi-
librium (Lemma 4) even thought x = 1 must be in the support of the equilibrium (this
follows from full insurance being a limit point of X and the unbounded willingness to
purchase insurance). At full insurance, gÕ

◊ (1) = 0, so indifference curves are (approxi-
mately) straight lines with slope determined by µ. If multiple types bought full insur-
ance, then there would be some type µı which is the cheapest (lowest µ) buyer of x = 1.
Necessarily, µı < p (1). However, since x = 1 is a limit point of X, there is some type

38I.e., there is a sequence (xn) in X with xn æ 1 but ’n, xn < 1. We require that x = 1 is a limit point of
X in order to prove that full insurance is not an atom of the equilibrium, in Proposition 3.
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purchasing a slightly lower alternative (x, p (x)) who has riskiness µ̃ Ø p(x)
x > µı. This

type µ̃ would then prefer to purchase coverage greater than x. Therefore, this cannot be
an equilibrium. A slightly technical argument but with a similar geometric flavor then
shows that price could not be bounded.
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x
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Figure 6: Proof of Lemma 4.

5.4 Non-Existence in Insurance Markets

In Section 3 we mentioned that the condition (4) required for existence of equilibrium
there would not hold, for instance, if ‹ Æ Cµ– + D with – Æ 1. Theorem 3 describes a
more general class of economies where equilibrium cannot be bounded, and we now
show that under these more general conditions, such a bound will imply non-existence
of equilibrium. The result requires only Assumption 4 and 5, so types are allowed to be
“truly” multidimensional.

Proposition 7. Under Assumption 4 and 5, if Pµ is not compactly supported, and for some
”, C, D > 0 P -a.s., ‹”(◊) Æ Cµ(◊) + D, there exists no AG equilibrium.

Proof. We give here a heuristic argument under the simple setup of Assumption 1, if
equilibrium p is continuously differentiable, X = [0, 1), and the equilibrium distribu-
tion, marginal on the alternatives [0, 1], has full support at least in a neighborhood (”, 1].
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The first-order condition of utility maximization of a type ◊ purchasing insurance
in (”, 1) is pÕ(x) = µ◊ + gÕ(x)‹◊. In particular, the break-even condition p(x) = E–[c |
x], – ≠ a.e. x suggests for any such x, there is a type ◊ purchasing x such that p(x) Ø xµ◊.
Hence,

pÕ (x) Æµ◊ + gÕ(x)‹◊ Æ p(x)
x

+ gÕ(x) · (C p(x)
x

+ D).

=(1 + CgÕ(x))p(x)
x

+ gÕ(x)D Æ A · p(x) + B

where A = 1
” (1 + sup[”,1] gÕ(x)), B = D sup[”,1] gÕ(x). This will imply, for x Ø ”,

(e≠Axp(x))Õ Æ e≠Ax · B ≠æ e≠Axp(x) Æ e≠A”p(”) ≠ B

A
[e≠Ax ≠ e≠A”]

Therefore p (x) is bounded, which results in a contradiction to Theorem 3: no AG equi-
librium exists. For a full proof, see Appendix C.

In the framework of Section 3.1, Proposition 7 applies if, for some C, D > 0, P -a.s.
it holds that ‹◊ Æ Cµ◊ + D. That is, if ‹◊ is bounded by a linear function of µ◊. This
includes the case of consumers homogeneous in risk aversion (as in RS) but also applies
in settings where types are truly multidimensional.

5.5 Existence in Insurance Markets

We now generalize the existence results for insurance markets of Sections 3.5 and 3.6.
The result uses Assumptions 4 and 6 and therefore requires that types be effectively one-
dimensional.

Theorem 4. Suppose that Assumptions 4 and 6 hold. Denote X = [0, 1). Suppose that for
some ” > 0, ⁄ Œ

µ

1
‹”(µ)dµ < Œ (14)

Then the unbounded economy E possesses an AG equilibrium.

Proof. See Appendix H.

When Pµ is purely atomic, supported on µ1 < µ2 < µ3 < · · · , (14) should be written
as Œÿ

n=1

µn+1 ≠ µn

‹”(µn) dµ < Œ
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5.6 Existence When the Limit Equilibrium is Not Know

As mentioned, a limitation of Proposition 1 is that it requires knowledge of the equilib-
rium of the limit economy, (p, –), which is often not available. Proposition 8 is a useful
variant which does not require such knowledge, but requires stronger assumptions.

Proposition 8. Assume that for every two alternatives x, y œ X, price p Ø 0, and type
◊ œ �, there is price q high enough s.t. u(◊, x, p) > u(◊, y, q). For each n, let (pn, –n) be an
equilibrium of En such that:

• The collection (pn)Œ
n=1 is point-wise bounded and equicontinuous in X.39

• For every M œ R, there is a compact subset K of X, s.t. infx/œK pn(x) Ø M for all n

large enough.

• Condition (*) of Proposition 1.

Then there exists an equilibrium (p, –) of the unbounded economy E , which is a limit of a
subsequence of the equilibria (pn, –n)Œ

n=1 in the sense of Proposition 1.

Proof. See Appendix F.2.

We use Proposition 8 in Section 5.1 to derive existence results in insurance markets
which are more general than those considered in Section 3. Note that the first condition
required in Proposition 8 (one option is preferred over another if the latter’s price is high
enough) holds when utility is quasi-linear in price, as in Section 3.

6 Conclusion

The analysis of insurance markets in RS and AG is sensitive to assumptions on the
bounds of the cost distribution, which can significantly reduce the predictive power of
such models. We show that, when assumptions on these bounds are fully relaxed, AG
equilibria need not exist. However, we also provide sufficient conditions for equilibrium
to exists when costs are unbounded.

We apply our results to insurance markets. In a simplified setting, we derive new
properties of equilibrium that generalize AG and RS. We then present a condition which
is necessary and sufficient for the existence of a unique equilibrium in these markets. In
particular, we are able to derive a characterization of equilibrium for insurance markets
with an unbounded continuum of types which is particularly tractable and based on a

39A collection of real-valued functions F on a metric space (X, d) is point-wise bounded if ’x œ X,
supfœF |f(x)| < Œ, and F is equicontinuous if for each Á > 0 and each x œ X, there is ” > 0 such that if
y œ X with d(x, y) < ”, then |f(y) ≠ f(x)| < Á for all f œ F .
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simple differential equation. We also show that, when it exists, the equilibrium features
unbounded price at full insurance.

Our characterizations of equilibrium for simple insurance markets required a num-
ber of assumptions on utilities, contracts, and the distribution of types. In particular,
several of our results require that types effectively be one-dimensional. Relaxing these
assumptions would be an interest avenue for future research.

Moreover, we consider only the AG equilibrium concept, since it exists in a wide
range of screening markets. It would be interesting to replicate the exercise in this paper
to other equilibrium concepts, such as those of Miyazaki [1977], Wilson [1977], Spence
[1978].40

We also do not consider in this article existence of equilibrium when the space of
alternatives is a fixed finite subset of [0, 1]. This analysis is outside the scope of this
article and also left for future research.

40Gemmo et al. [2018] shows existence of the MWS equilibrium for continuous type distributions.
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A Comparisons of Utilities

Assumption 4 implies Lemma 1 below, which is later used to obtain upper and lower
bounds on the slopes of the price in equilibrium.

Lemma 1. Under Assumption 4, in any equilibrium (p, –), if 1 Ø x2 Ø x1 Ø ” Ø 0, then
for a given type ◊ œ �:

u◊(p2, x2) Ø u◊(p1, x1) ∆ p2 ≠ p1
x2 ≠ x1

Æ µ◊ + ‹”(◊) · (1 ≠ x1 + x2
2 ) (15)

and

u◊(p2, x2) Æ u◊(p1, x1) ∆ p2 ≠ p1
x2 ≠ x1

Ø µ◊ + ‹”(◊) · (1 ≠ x1 + x2
2 ) (16)

Proof. By Assumption 4, u◊(x, p) = g◊(x) ≠ p and w◊(1) = µ◊ + ˆg◊
ˆx |x=1 = µ◊, so

ˆg◊

ˆx
(s) = µ◊ ≠

⁄ 1

s

ˆ2g◊

ˆ2x
dx.

Now, for any 0 Æ x1 < x2 Æ 1,

u◊(x2,p2) ≠ u◊(x1, p1) = p1 ≠ p2 +
⁄ x2

x1

ˆg◊

ˆx
dx = p1 ≠ p2 + µ◊(x2 ≠ x1) +

⁄ x2

x1

⁄ 1

s
(≠ˆ2g◊

ˆ2x
)dx.

Denote

�(x1, x2) =
⁄ x2

x1

⁄ 1

s
1dx = 1

2(1 ≠ x1)2 ≠ 1
2(1 ≠ x2)2 = (x2 ≠ x1)(1 ≠ x1 + x2

2 ).

If x2 > x1 Ø ”, ‹”(◊) · �(x1, x2) Æ
s x2

x1

s 1
s (≠ˆ2g◊

ˆ2x )dx Æ ‹”(◊) · �(x1, x2), and hence

p1 ≠ p2 + µ◊(x2 ≠ x1) + �(x1, x2) · ‹”(◊) Æ u◊(x2,p2) ≠ u◊(x1, p1) Æ

Æp1 ≠ p2 + µ◊(x2 ≠ x1) + �(x1, x2) · ‹”(◊)

Dividing by x2 ≠ x1 gives the lemma.

B Unbounded Price

In this section prove Theorem 3: when µ is unbounded, any AG equilibrium has p (·)
unbounded. The result requires Assumptions 4 and 5. However, it does not require
Assumption 2 or its weaker analogue, Assumption 6.
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Throughout this section, fix ” > 0 for which Assumption 5 holds. Suppose that (p, –)
constitute an AG-equilibrium. We denote the marginal distribution of – on � by P , and
denote the marginal of – on X by –X . Consider any x œ supp(–X).

We now define analogues of the maximum and minimum risk µ which purchases
each alternative x, which will also be of use in later sections. To eliminate the influence
of zero-measure types µ purchasing x, we use a variation of the essential supremum and
infimum, defined for x œ supp(–X) as41

Â+(x) = lim
”æ0+

5
sup

;
µ | –

1
{◊ | µ◊ Ø µ} ◊ (x ≠ ”, x + ”)

2
> 0

<6
(17)

Â≠(x) = lim
”æ0+

5
inf

;
µ | –

1
{◊ | µ◊ Æ µ} ◊ (x ≠ ”, x + ”)

2
> 0

<6
. (18)

Intuitively, Â+(x) captures the largest value of µ which purchases x under –, and Â≠(x)
as the lowest such value of µ.

Note that either of these quantities can, a priori, be infinite. Moreover, note that for
each A ™ supp(–X),

sup
;

µ | –
1
{◊ | µ◊ Ø µ} ◊ A

2
> 0} Æ sup

xœA
Â+(A) (19)

inf
;

µ | –
1
{◊ | µ◊ Æ µ} ◊ A

2
> 0} Ø inf

xœA
Â≠(A) (20)

Therefore, by comparing the left-hand terms of the following expressions to the left-
hand terms of the previous expressions for shrinking neighborhoods A around x,

limsupyæxÂ+(y) Æ Â+(x) (21)

liminfyæxÂ≠(y) Ø Â≠(x) (22)

where the limits are taken along supp(–X). These hold with equality when x is not an
atom of supp(–X): If x œ supp(–X), then for each µ < Â+(x) and ” > 0, –

1
{◊ | µ◊ Ø

µ ≠ Á} ◊ (x ≠ ”, x + ”)
2

> 0. If x is not an atom of –X , then for some y œ (x ≠ ”, x + ”)\{x},
Â+(y) Ø µ by (19), and this was for any ” > 0 and any µ < Â+(x).

The remainder of this section proves Theorem 3 in five steps.

41Observe that, if –Õ is the marginal of – on the variables (µ, x) - i.e., –Õ = P ¶ (µ, id)≠1 - and x æ –Õ(· | x)
is a decomposition of –Õ conditional on x, then for –-a.e. x œ X, Â+(x) is a supremum of the support of
–Õ(· | x). Similarly, Â≠(x) is an infimum of this support. The limits exist as the terms they are taken over
are monotonic.
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B.1 Price is Lipschitz in Weak Equilibrium

Our first auxiliary results establishes bounds on prices in a weak equilibrium. (We de-
fined “weak equilibrium” in Section 2.2).

Lemma 2. Assume (p, –) is a weak equilibrium s.t. p is continuous on supp (–X).42 Let
0 < 1 ≠ ” < x1 < x2 be two points in supp (–X). Then,

p(x1)
x1

Æ Â+(x1) Æ p(x2) ≠ p(x1)
x2 ≠ x1

Æ Â≠(x2) + (1 ≠ x1 + x2
2 )fl”(Â≠(x2)) Æ p(x2)

x2
+ (1 ≠ x1 + x2

2 )fl”(
p(x2)

x2
)

In particular, Â+(x) must be finite for each x œ supp(–X) with x < 1.

Proof. The break-even condition (p(x) = E–[c | x], – ≠ a.e. x) requires that for –X-a.e.
x > 0 in supp (–X), Â≠(x) Æ p(x)

x Æ Â+(x). This, together with the monotonicity of fl” ,
implies the first and last inequalities. To show the third inequality, notice that for each
x1 œ [0, 1], utility maximization implies

–({u(◊, p(x), x) Ø u(◊, p(x1), x1)}) = 1

In particular, by the definition of Â≠, there is a sequence yn æ x2 in supp(–X) and types
(◊n) with µ(◊n) æ Â≠(x2) (if x2 is an atom of –X , take yn © x2), such that for all n,
u(◊n, p(yn), yn) Ø u(◊n, p1, x1). Recall that fl”(·) is monotonically increasing and right-
continuous. Hence also (fl”(◊n)) satisfies lim supnæŒ ‹”(◊n) Æ fl”(Â≠(x2)). An application
of Lemma 1, the fact that liminfyæx2Â≠(y) = Â≠(x2) if x2 is not an atom of –X , the right-
continuity of fl” and the continuity of p on supp(–X) completes the proof. The second
inequality follows similarly, by using the fact that that ‹”(◊n) Ø 0.

B.2 Price is Locally Lipschitz in Equilibrium

The second auxiliary result shows the outer-most bounds hold for equilibria everywhere
(not just on the support of –X).

Lemma 3. Assume (p, –) is an equilibrium. If 0 < 1 ≠ ” < x1 < x2 with p(x2) > 0 (x1, x2

are not necessarily in the support of –X), then

p(x1)
x1

Æ p(x2) ≠ p(x1)
x2 ≠ x1

Æ p(x2)
x2

+ (1 ≠ x1 + x2
2 )fl”

A
p(x2)

x2

B

42In particular, this is true if supp (–X) is finite.

36



In particular, p is non-decreasing.

Proof. If p(x1) = 0, the first inequality is trivial, so assume p(x1) > 0. Since p (·) is part
of an equilibrium, there are finite subsets X

n ™ X, prices pn : X
n æ R+ and associated

distributions –n on (� fi X
n) ◊ X

n as described in Section 2.2 which witness that (p, –) is
an equilibrium. Let yn æ x1 and zn æ x2 with yn, zn œ X

n. Since each (pn, –n) is a weak
equilibrium whose projection to X is finitely supported, it follows from Lemma 2 that,
at each n,

pn(yn)
yn

Æ pn(zn) ≠ p(yn)
zn ≠ yn

Æ pn(zn)
zn

+
3

1 ≠ yn + zn

2

4
fl”

A
p(zn)

zn

B

Taking n æ Œ, and recalling that fl” is monotonically increasing and right-continuous,
completes the proof.

B.3 Full insurance is not a Heterogeneous Atom

We now show that full insurance (x = 1) cannot be an atom of –X purchased by multiple
types if µ is not essentially bounded w.r.t. P . I.e., it is not possible to ’stuff all the highest
types’ there. Of course, this proposition is only relevant when 1 œ X.

Lemma 4. If x = 1 is an atom of –X , it must be that –(· | {x = 1}) is concentrated on one
riskiness, i.e., there must be µ̃ œ R+ s.t. –(µ(◊) = µ̃ | x = 1) = 1.

Proof. Suppose, by way of contradiction, that x = 1 is an atom of –X but not concen-
trated on a single riskiness. Then, the break-even condition (1) requires that there are
some types buying x = 1 who are less risky than the average buyers of that contract, with
p (1) being determine by the these average buyers. Define µı = Â≠(1) and pı := p(1);
then µı < E–[µ | x = 1] = p(1) = pı.

Lemma 2 implies that, for any x Ø 1 ≠ ”,

p(x)
x

Æ pı ≠ p(x)
1 ≠ x

Æ µı + 1
2fl”(µı)(1 ≠ x).

In turn, this implies

pıx Ø p(x) Ø pı ≠ µı(1 ≠ x) ≠ 1
2fl”(µı)(1 ≠ x)2.

It then follows that

1
2fl”(µı)(1 ≠ x) Ø pı ≠ µı.

However, this last condition cannot hold for x close enough to 1 since pı > µı, a contra-
diction.
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The proof of Lemma 4 is illustrated graphically in Figure 6.
It follows then that:

Lemma 5. supx<1 Â+(x) = Œ, that is, types with arbitrarily large cost µ purchase less than
full insurance.

Proof. Since full insurance cannot be an atom with unbounded support of riskiness of
–, the projection of –(· | [0, 1)) to riskiness µ cannot be compactly supported. Hence,
the lemma follows from applying (19) with A = X\{1}.

B.4 Price is unbounded

We now prove Theorem 3.

Proof. Suppose not. Denote pı = limxæ1 p(x) < Œ. Fix some 0 < ” Æ ” < 1. Recall that
pı = p(1). Then, from Lemma 3 and the facts that p and fl” are non-decreasing, for all
1 ≠ ” Æ x1 < x2 in X,

Â+(x1) Æ p(x2) ≠ p(x1)
x2 ≠ x1

Æ p(x2)
x2

+ ‹(p(x2)
x2

) Æ M := pú

1 ≠ ”
+ fl”(

pú

1 ≠ ”
),

while for x1 Æ 1 ≠ ” in X,

Â+(x1) Æ lim
x2æ1≠

p(x2) ≠ p(x1)
x2 ≠ x1

= pú ≠ p(x1)
1 ≠ x1

Æ pú

”

Hence, supx<1 Â+(x) Æ max[M, pú

” ], contradicting Lemma 5.

C Non-Existence

We now prove Proposition 7: equilibrium does not exist for insurance markets with un-
bounded cost, if ‹”(◊) is bounded by a linear function of µ. Fix ” > 0 for which Assump-
tion 5 holds.

Proof. Let C, D be such that ‹”(◊) Æ Cµ(◊) + D P -a.s.. Let xn æ 1 strictly monotonically
in X. WLOG, x1 > 1 ≠ ”. Denote B = max[1+C

x1
, D] and pn = p(xn). Then, fl”(

pn+1
xn+1

) Æ
C pn+1

xn+1
+ D, so by Lemma 3,

pn+1 ≠ pn

xn+1 ≠ xn
Æ pn+1

xn+1
+ (1 ≠ xn)fl”(

pn+1
xn+1

) Æ pn+1
xn+1

+ C
pn+1
xn+1

+ D Æ B(pn+1 + 1)

Denote qn = pn + 1 and ”n = B(xn+1 ≠ xn); w.l.o.g. ”n < 1 for all n, and hence
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qn+1 Æ qn

1 ≠ ”n
∆ qn Æ q1 ·

Ÿ

j<n

1
1 ≠ ”j

by induction. Then,
q

”n = q
B(xn+1 ≠ xn) = B(1 ≠ x1) < Œ which implies

r
j<Œ

1
1≠”j

<

Œ. This, together with the monotonicity of p, shows that

sup
xœX

p(x) = lim
næŒ

pn < Œ

which contradicts Proposition 7.

D Simple Insurance: Continuous Types

This section proves the results for simple insurance markets with a continuum of types
(Section 3.5). We will make use of Assumptions 1, 2, and 3 throughout, which in partic-
ular guarantee by Theorem 2 a coverage function ‡ from riskiness to coverage satisfying
the assumptions given there. Under the latter assumption, since the riskiness µ entirely
determines the type, we will write wµ instead of w◊ when µ = µ(◊). We will use a similar
convention for uµ. Recall that –X denotes the marginal distribution of – on X.

D.1 Proposition 9

Proposition 9. Suppose Pµ, conditional on some interval I = (µ, µ), has full support with
a.e. strictly positive density w.r.t. the Lebesgue measure, and (p, –) is an equilibrium with
associated coverage function ‡ (µ). Suppose ‡(µ) > 0 (i.e., a.e. type with riskiness in I

purchases positive coverage). Then, denoting J = (‡(µ), ‡(µ)) and letting –J be the pro-
jection of – to alternatives and conditional on J , –J is equivalent to the Lebesgue measure
on J , i.e., –J and the Lebesgue measure on J are absolutely continuous w.r.t. each other.
In other words, –J and the Lebesgue measure on J have the same null sets or, equivalently,
–J has Lebesgue-a.e. positive density.

Proof. Note that ‡ : I æ J is a strictly increasing bijection (and in particular, continu-
ous), and –J = Pµ(· | J) ¶ ‡≠1. Hence, it suffices to show that both ‡ and · = ‡≠1 : J æ I

are locally Lipschitz in the interior of I, J respectively. By Theorem 2, p is L-Lipschitz in
J for some L > 0. Now,

p(‡(µ)) = µ · ‡(µ), Pµ ≠ a.s

Since ‡ is continuous and Pµ has full support in I, this implies

p(‡(µ)) = µ · ‡(µ), ’µ œ I
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and hence
·(x) = p(x)

x
, ’x œ J

Since p is Lipschitz in J and ‡(µ) > 0, · is Lipschitz. Observe that for fixed z, the
mapping w·(x)(z) = ·(x) + gÕ(z) · ‹(·(x)) is well-defined –J a.e.. Note that supp(–J) = J ,
as ‡ is continuous. So, for –J a.e. every x1 œ J and every x2 œ J ,

p(x2) ≠ p(x1)
x2 ≠ x1

Ø
⁄ x2

x1
w·(x1)(x)dx

and hence pÕ(x) Ø w·(x) Lebesgue a.e.. Therefore, Lebesgue-a.s.,

· Õ(x) = 1
x

[pÕ(x) ≠ p(x)
x

] Ø 1
x

[w·(x)(x) ≠ ·(x)] = 1
x

gÕ(x) · ‹(·(x)) Ø gÕ(x) · ‹(µ)

Hence, in each sub-interval of J which is bounded away from full insurance, · Õ > 0 is
bounded away from 0 and hence ‡ = ·≠1 is locally Lipschitz in the interior of ·(J).

D.2 Proposition 10

We now prove the necessary condition for equilibrium with continuous types.

Proposition 10. If Pµ, conditional on some interval I = (µ, µ), has full support with a.e.
strictly positive density w.r.t. the Lebesgue measure, and (p, –) is an equilibrium with
associated coverage function ‡ with ‡(µ) > 0, then

⁄ µ

µ

1
‹(µ)dµ =

⁄ ‡(µ)

‡(µ)

gÕ(x)
x

dx (23)

Proof. Let (p, –) be an equilibrium, with associate ‡ : I æ [0, 1] as above. Denoting J =
[‡(µ), ‡(µ)], we know from Proposition 9 that –J is equivalent to the Lebesgue measure.
Given the differentiability of the price function Lebesgue a.s. in J (equivalently, –J -a.s.),
utility maximization implies

ˆ

ˆx
(uµ(x, p(x))) | x=‡(µ) = 0 …

ˆu·(x)
ˆx

(x, p(x)) + ˆu·(x)
ˆp

(x, p(x)) · pÕ(x) = 0, a.e.x œ J (24)

where ·(x) = p(x)
x = ‡≠1(x). Explicitly: For this to hold at some x we need two condi-

tions: p to be differentiable at x, and for the type with riskiness µ = ‡≠1(x) to be a utility
maximizer. Both of these properties hold Lebesgue a.s. in J , equivalently, –J -a.s. Hence,

pÕ(x) = ≠
ˆu·(x)

ˆx (x, p(x))
ˆu·(x)

ˆp (x, p(x))
= p(x)

x
+ gÕ(x) · ‹(p(x)

x
), a.e.x œ J
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Denote · = ‡≠1 on J . The equilibrium property of actuarily fairness (and continuity of
prices and · ) shows that

p (x) = ·(x) · x, ’x œ J

and hence ‡≠1 is differentiable a.e. and

pÕ(x) = ·(x) + x · · Õ(x), a.e .x œ J

Rewriting (24) gives

·(x) + gÕ (x) v (·(x)) ≠ pÕ (x) = 0, a.e. .x œ J.

Summing these gives

gÕ(x) · ‹(·(x)) = x · · Õ(x), a.e. .x œ J

or
gÕ(x)

x
= 1

‹(·(x))· Õ(x) = 1
‹(·(x))· Õ(x), a.e. .x œ J

and hence, by change of variable (note that · is strictly increasing),

⁄ ‡(µ)

‡(µ)

gÕ(x)
x

dx =
⁄ ‡(µ)

‡(µ)

1
‹(·(x))· Õ(x)dx =

⁄ µ

µ

1
‹(µ)dµ

as required. Note that we have made use of a change of variable formula for functions
which are differentiable a.e.., see e.g. Theorem 7.26 of Rudin [1987] (3rd Ed).

D.3 Equilibrium with Bounded Risk

We now prove the equilibrium characterization when µ is bounded (Corollary 2).

Proof. Follows immediately from Proposition 10, as one of the properties of equilibrium
of Proposition 6 under these assumptions is ‡(µ) = 1. The right-hand side defines ‡

uniquely as gÕ > 0 except possibly at 1. The last conclusion follows since gÕ(0) > 0 so
s 1

0
gÕ(x)

x dx = Œ.

D.4 Equilibrium with Unbounded Risk

We now characterize equilibrium when µ is unbounded (Corollary 4).

Proof. We prove the last part first: WLOG, (µn)n is increasing. Define the function ‡

using (5). SincegÕ > 0 in (0, 1) and
s 1

0
gÕ(x)

x dx = Œ >
s Œ

µ
1

‹(µ)dµ for all µ > µ, this is
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well-defined, continuous, and its image is an interval. Let xmin = ess ≠ inf(‡(µ(◊))),
and xn

min = ess ≠ inf(‡n(µ(◊))).43 Define · = ‡≠1 : [xmin, 1) æ R, p(x) = x · ·(x) for
x œ [‡(µ), 1), and extend p in [0, xmin) in the following way: For each x œ [0, xmin), set

p(x) = max[0, ess ≠ sup◊„(◊, x)]

where „(◊, ·) is the indifference curve of type ◊ through his purchased contract (‡(µ, ◊), p(‡(µ(◊)),
i.e.,

„(◊, x) = p(‡(µ(◊)) ≠
⁄ ‡(µ(◊))

x
w◊(t)dt

i.e., p(·) is the upper envelope of indifference curves. Finally, define for �̃ ™ �,

–(◊ œ �̃, x œ (a, b)) = P (◊ œ �̃, µ(◊) œ (·(a), ·(b))

By (3), we obtain
⁄ µn

µ

1
‹(µ)dµ =

⁄ 1

‡n(µ)

gÕ(x)
x

dx.

Comparing with (5), it follows that ‡n æ ‡ point-wise, and in particular xn
min æ xmin,

and (xn
min) is monotonically decreasing. Letting ·n = ‡≠1

n : [xmin, 1), we have ·n æ ·

point-wise. Therefore, pn æ p point-wise on [xmin, 1], as pn(x) = x · ·n(x) on [xn
min, 1]. Let

xÕ < xmin; for large enough n, x < xn
min. Recall from Proposition 6,

pn(x) = max[0, ess ≠ sup◊„
n(◊, x)]

where

„n(◊, x) = p(‡n(µ(◊)) ≠
⁄ ‡n(µ(◊))

x
w◊(t)dt

is the indifference curve of type ◊ through his purchase contract under (pn, ‡n). Observe
that n > k æ µn Ø µk æ ‡n Æ ‡k æ ·n Ø ·k and „n Ø „k æ pn Ø pk - intuitively,
the indifference curve of each type moves to the left, so prices go up. Hence pn æ p

point-wise in [0, xmin] as well, as („n(◊, ·)) is increasing with n.44 Hence, we have pn æ p

point-wise. Since n > k æ pn Ø pk, Dini’s theorem implies that the pn æ p uniformly in
every compact subset of [0, 1).

Finally, for any continuous bounded f : [µ, Œ) ◊ [0, 1] æ Œ,

⁄
f(µ, x) · d– =

⁄
f(µ, ‡(µ))dPµ = lim

næŒ

⁄
f(µ, ‡n(µ))dPµ = lim

⁄
f(µ, x) · d–n

43The essential infimum is defined similar to the essential supremum.
44Lemma: Let (fn) be a sequence of bounded Borel functions on a measurable space, f1 Æ f2 Æ f3 Æ · · ·

which converge point-wise to f . Then ess ≠ sup(fn) æ ess ≠ sup(f).
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by the bounded convergence theorem, and hence –n æ – weakly.
We now prove the first point of Corollary 4. Existence now follows from the approx-

imation result Proposition 1. Uniqueness can we proved as follows. Given any equilib-
rium with associated choice function ‡, for each µ > µ, (23) holds. Take µ æ Œ. Since
full coverage is in the support of the equilibrium and ‡ is increasing, limµæŒ ‡(µ) = 1.
The last part of the proposition follows again as

s 1
0

gÕ(x)
x dx = Œ.

D.5 Non-Existence with Unbounded Risk

We now show that the integrability condition is indeed necessary for equilibrium (Corol-
lary 3).

Proof. For the first part: We can find intervals I = [an, bn] with an, bn æ Œ for which
s bn

an

1
‹(µ)dµ æ Œ but since ‡(an), ‡(bn) æ 1,

s ‡(bn)
‡(an)

gÕ(x)
x dx æ 0, which contradicts (23). For

the second part: Fixing µ œ µ(�),
⁄ µn

µ

1
‹(µÕ)dµÕ =

⁄ 1

‡n(µ)

gÕ(x)
x

dx

And hence
Œ =

⁄ Œ

µ

1
‹(µÕ)dµÕ = lim

næŒ

⁄ 1

‡n(µ)

gÕ(x)
x

dx

However, ⁄ 1

‡n(µ)

gÕ(x)
x

dx Æ max
[0,1]

gÕ ·
⁄ 1

‡n(µ)

1
x

dx = ln(‡n(µ)) · max
[0,1]

gÕ

For this to converge to Œ, we must have ‡n(µ) æ 0.

E Simple Insurance: Discrete Types

This section proves some of the results for simple insurance markets with discrete types
(Section 3.6).

E.1 Characterization of „k (·)

For each k œ N and each coverage u œ [0, 1], let v = „k(u) denote the unique coverage v <

u such that type ◊k+1 = (µk+1, ‹k+1) is indifferent between contracts (p, x) = (µk+1 · u, u)
and (p, x) = (µk ·v, v), where the second contract is actuarily fair for type ◊k. Such unique
v exists as w◊k+1(x) > µk+1 > µk for all x œ (0, 1).

We now show „k (·) is continuous, strictly increasing, and „k(u) Æ u and „k(u) = u if
and only if u = 0.
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Lemma 6. 0 < „Õ
k Æ 1 in (0, 1). Therefore, „k is strictly increasing (in particular, „k(u) = 0

if and only if u = 0). Moreover, „k is non-expansive (i.e., 1-Lipschitz).

Proof. The definition of „k (·) requires that, for each z œ (0, 1], type k + 1 is indifferent
between (µk+1 · z, z) and(µk · „k(z), „k(z)). This implies

µk+1 · „k(z) + g(„k(z)) · ‹k+1 ≠ µk · „k(z) = µk+1 · z + g(z) · ‹k+1 ≠ µk+1 · z = g(z) · ‹k+1 (25)

where ‹k+1 = ‹(µk+1).
Differentiation gives

„
Õ

k(z) · [µk+1 ≠ µk + gÕ(„k(z)) · ‹k+1] = gÕ(z) · ‹k+1

We then obtain

„
Õ

k(z) = gÕ(z) · ‹k+1
µk+1 ≠ µk + gÕ(„k(z)) · ‹k+1

Æ gÕ(z) · ‹k+1
gÕ(„k(z)) · ‹k+1

= gÕ(z)
gÕ(„k(z)) .

Since we assumed g differentiable, then „k is differentiable and therefore continuous.
Since g is concave, gÕ is decreasing. Moreover, we have shown that „k(z) < z. Therefore,
gÕ(„k(z)) > gÕ(z), which implies „

Õ
k Æ 1.

By the strict monotonicity of the „k (·), for each given k, (xn
k)Œ

n=1 is a strictly decreasing
sequence in n and, since it is bounded below by 0, it converges to xk œ [0, 1) which is the
choice of type k in the limit economy E in the equilibrium we will construct below.

E.2 Uniqueness & Positivity of Coverage

We now prove that, if equilibrium exists on a discrete unbounded type space, equilib-
rium is unique and all types purchase positive levels of coverage (Proposition 4).

Proof. Suppose an equilibrium in which type (µk, ‹k) purchases coverage xk = ‡(µk)
then x1 < x2 < · · · By the equilibrium properties, ‡(µk) = „k(‡(µk+1)), i.e., xk = „k(xk+1).
Inductively, for any n > k

xk := „k(„k+2(· · · („n≠1(xn)) · · · ))

Lemma 6 shows that „k is non-expansive (i.e., 1-Lipschitz), so it follows that

xk := lim
næŒ

„k(„k+2(· · · („n(1)) · · · ))

which defines xk uniquely (note that since each „k is monotonic, the expression the
limit is taken over is decreasing with k but non-negative, so the limit exists).
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To show that all types purchase positive coverage, it suffices to show x1 > 0. By
Proposition 6, full insurance is in the support of the equilibrium distribution, and hence
for some N , xN > 0. But x1 = „1(x2) = · · · = „1(„2(· · · („N≠1(xN)) · · · )), and for each
u > 0 and each k œ N, „k(u) > 0. Therefore, x1 > 0.

E.3 Convergence of pn
and –n

Suppose, as in Section 3.6, that in the truncated economy with types {(µk, ‹k)}, the
unique equilibrium is (pn, –n), where under the allocation –n type (µk, ‹k) purchases
coverage xn

k . Section 3.6 showed that the limit xk := limnæŒ xn
k exists since (xn

k)nØk is
monotonically decreasing and xk > 0 for each k. We have given a heuristic argument
under the summability condition (7) for this but do not formally prove it, as it resembles
the argument in Section H.

Let (p, –) be the candidate equilibrium, as described in Section 3.6. We prove, in the
context of discrete types, that pn æ p uniformly on compact subsets of [0, 1), and –n æ –

weakly.

Proof. Let f : [0, 1] ◊ R+be any continuous and bounded function. Let Pn be the mass
of the n-th type, and Qn

j = Pjq
jÆn

Pj
be the conditional mass in the n-th economy. The

conditional distributions on types converges in norm to the distribution on the infinite
type space. f is continuous, so for each k, f(xn

k) æ f(xk). Hence, by the bounded con-
vergence theorem,

⁄

�◊[0,1]
fd–n =

nÿ

k=1
f(xn

k) · Qk æ
Œÿ

k=1
f(xk) · Pk =

⁄

�◊[0,1]
fd–

and hence –n æ – weakly.
To show pn æ p uniformly on compact subsets of [0, 1), it suffices to show that for

each interval of the form Ik = [xk, xk+1], pn æ p uniformly in Ik. The (pn) are uniformly
Lipschitz in Ik, with Lipschitz constant L = µk+1+‹k+1 ·sup[0,1] gÕ, as xn

k+1 Ø xk+1. Further-
more, since gn

k+1 (as the indifference curve of type k + 1 through xn
k+1) converges point-

wise to gk+1 (as the indifference curve of type k through xn
k), p coincides with gk+1 in Ik,

and pn coincides with gn
k+1 in [xn

k , xn
k+1], we have pn æ p point-wise. But the combination

of point-wise convergence and inform Lipschitz implies uniform convergence.

F Existence via Approximations

This Section provides the most general conditions under which the existence results
of AG extend to settings where cost is unbounded (Section 5). Proposition 1 requires
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knowledge of the equilibrium in the unbounded economy. Proposition 8 does not re-
quire such knowledge but requires additional assumptions on utilities.

F.1 Existence 1

We now prove Proposition 1.
Recall that, given the definition of AG equilibrium in Section 2, we say that ((Xj), (pj, –j), (÷j))

witnesses that (p, –) is an equilibrium.
For each truncated economy En, its equilibrium (pn, –n) is the limit of the weak equi-

libria
1
pn

j , –n
j

2
of a sequence of perturbed economies En

j which have a vanishing mass
of behavioral types, as described in AG. We then consider the sequence of economies
En and show that an appropriate diagonal of weak equilibria

1
pn

jn
, –n

jn

2
converge to an

AG equilibrium of E when n æ Œ. Finally, we modify the equilibria on this diagonal to
include all types, as –n

j only allocates types of �n; due to the behavioral types, this can
be done without changing the price pn

j .

Proof. For each n, let (Xn), (Y k
n )kœN, (’k

n)kœN, (qk
n, —k

n)kœN be sequences of Polish spaces
that X is dense in Xn, finite sets of alternatives, of behavioral types, and of weak equi-
libria which witness that (pn, –n) is an equilibrium of the restricted economy n. Note
that qk

n refers to the price function while —k
n refers to the distribution over types and con-

tracts. Note also that Y k
n will in general include points of X which are not in X. Then,

for each n œ N, Xn ™ X, where X is a fixed compactification of X.45

Let (Zj)jœN be a sequence of compact subsets of X with X = fijZj , and for each j œ N,
Zj ™ Z¶

j+1; such exists as X is locally compact and separable. Note that since each pn(·)
is continuous by Lemma 18 of Section I, X is locally compact, and pn æ p uniformly
on compact sets, it follows that p is continuous. Hence, by passing to a subsequence of
(pn, –n), we may assume that:

• For all n œ N and all x œ Zn, |pn(x) ≠ p(x)| < 1
n .

W.lo.g., since each Y n
n is finite and pn æ p on uniformly on compact sets in X, we may

assume by Lemma 19 of Section I there there are indices (kn)n such that (after passing
possibly to a sub-sequence of (pn, –n)):

• For all n œ N and all x œ Y kn
n , |qkn

n (x) ≠ pn(x)| < 1
n .

• For all n œ N, d(—kn
n , –n) < 1

n , where d(·, ·) is a metric for the weak topology.

Now, denote “n = —n
kn

, rn = qkn
n , W n = Y kn

n . Then “n is concentrated on (� fi W n) ◊ W n,
“n æ –, and for all n œ N, |rn(x) ≠ p(x)| < 2

n for all x œ W n fl Zn. We contend that for

45Formally, for each n œ N there is an embedding „n : Xn æ X, which is identity on X.
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each x œ X, and each sequence (xn) in X with xn æ x and xn œ W n for each n œ N,
rn(xn) æ p(x). Indeed, since x œ X there is N s.t. for all n Ø N , xn œ int(Zn); hence
xn œ int(Zn) fl W n, so |rn(xn) ≠ p(xn)| < 2

n , and since p is continuous at x, p(xn) æ p(x);
hence, rn(xn) æ p(x).

The problem, however, is that the marginal of “n on � is P (· | �n), not P ; hence
we must modify it. The idea is after adding the types in �\�n to the distribution “n -
where each type is choosing a utility-maximizing option in W n - price can only go up, as
elements outside �n are more costly than those in it. Hence, by adding some behavioral
types - who have cost 0 - the added cost cancels out. The formal treatment is as follows:

Let fln be a measure on �\�n ◊ Xn ™ � ◊ Xn s.t.

fln

1
(◊, x) œ �\�n ◊ Xn | ’y œ Xn, u(x, ◊, qn(x)) Ø u(y, ◊, qn(y))

2
= P (�\�n)

- i.e., fln-a.s. all agents in � not in �n maximize their utility in Xn at prices qn(·). By
assumption,

E“n+fln [c | x] Ø E“n [c | x] = rn(x), ’x œ W n

with equality if rn(x) < c0, i.e., the types in � which not in �n only increase costs. (Note
that “n + fln may not be normalized; throughout this proof, when ‡ is a non-normalized
measure, E‡[f ] = 1

‡(�)
s

� fd‡.) Define fin(x) Ø 0 s.t.

“n(x) + fln(x)
“n(x) + fln(x) + fin(x)E“n+fln [c | x] = E“n [c | x] = rn(x), ’x œ W n

(By assumption “n(x) > 0 for all x œ W n hence this is well defined.) Hence, since cost of
behavioral types is 0,

Efln+“n+fin [c | x] = E“n [c | x] = rn(x), ’xœW n

Furthermore, fin(x) = 0 if x œ W n and rn(x) < c0, since no types in �\�n purchases
in the domain rn < c0, i.e., fln({(◊, x) | rn(x) < c0}) = 0.We contend that fin(W n) æ 0, as
required of behavioral types. Indeed, by definition,

[fln(x) + “n(x)] · Efln+“n [c | x] = “n(x) · E“n [c | x] + [fin(x) + fln(x)] · rn(x), ’x œ W n

Therefore,

⁄
c · d(“n + fln) =

⁄
c · d“n +

ÿ

xœW n

[fin(x) + fln(x)] · rn(x) =
⁄

c · d“n +
⁄

rn · dfln +
⁄

rndfin
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i.e.,
c0 · fin(W n) Æ

⁄
rndfin =

⁄
(c ≠ rn) · dfln æ 0

where the second term vanishes due to our integrability requirement, and since fln is
supported on �\�n. Hence, denoting ”n = “n + fln + fin (where fin naturally induces
a measure on the diagonal of W n ◊ W n ™ (� fi W n) ◊ W n) shows that the sequences
of subspace (W n)nœN, behavioral types (fin)nœN, and weak equilibrium (rn, ”n)nœN witness
(p, –) being an equilibrium.

F.2 Existence 2

We now prove Proposition 8. Before doing so, we present a useful generalization of the
Arzela-Ascoli theorem. This generalization is found, e.g., Thm 17, Ch 7, of Kelley, “Gen-
eral Topology”. The key generalization in this version visa-a-vis more classical state-
ments is the requirement that X be only locally compact (rather than compact), and
the requirement that the functions f to be point-wise bounded (rather than uniformly
bounded).

Theorem 5. Let X be a locally compact metric space. Given a sequence (fn)Œ
n=1 of real-

valued functions on X, equicontinuous and point-wise bounded, there is a continuous
function f : X æ R and a subsequence of (fn)Œ

n=1 converging to f uniformly on compact
sets.

We now prove Proposition 8:

Proof. The existence of the limit function p(·) with the required first property of p(·)
in Proposition 1 follows from Theorem 5. Furthermore, (–n)Œ

n=1 (or any of its subse-
quences) is tight (since –n(�k ◊X) = P (�k) for all n, k œ N) and hence it w.l.o.g. (passing
to a subsequence) converges weakly to some measure – on � ◊ X.

We now need to show that –(�◊
1
X\X

2
) = 0. Suppose not, set B := –(�◊X\X) > 0.

Fix some y0 œ X, and fix some D > supn pn(yo). (By assumption, such D < Œ ex-
ists.) We note that, by assumption, for each ◊ œ �, and each alternative y œ X, there
is q Ø 0 s.t. u(y0,◊, D) > u(y, ◊, q); by possibly decreasing D slightly, the continuity of
utility in X ◊ � ◊ R+ shows that this statement is true for all y œ X; and finally a stan-
dard continuity argument shows that q may be chosen independent of y œ X (only
dependent on ◊); i.e., flM>0{◊ | ÷y œ X s.t u(y0, ◊, D) Æ u(y, ◊, M)} = ÿ. Fix M s.t.
P (

Ó
◊ | ÷y œ X s.t u(y0, ◊, D) Æ u(y, ◊, M)

Ô
) < 1

2B. By assumption, there is a neighbor-
hood V of X\X such that for all n large enough and all y œ V , pn(y) > M . Therefore,
–n(� ◊ V ) Æ 1

2B for all n large enough. By Portmanteau theorem, however, since V is
open

1
2B Ø lim inf –n(� ◊ V ) Ø –(� ◊ V ) Ø –(� ◊ X\X) = B > 0,
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a contradiction.

F.3 Condition (*) holds in simple insurance

We now show that condition (*), required by Propositions 1 and 8, holds in the context
of simple insurance markets.

Lemma 7. In the framework of insurance markets (i.e., under Assumption 1, Assumption
4, or Assumption 7, and where cost has the form c(◊, x) = µ◊x and w◊ Ø µ◊), the condition
(*) is satisfied when the other conditions of Proposition 1 or Proposition 8 hold.

The intuition is as follows: price p (and hence pn) are at least some c0 > 0 in some
neighborhood of full insurance. Moreover, types with high riskiness (and hence high
willingness to pay) will purchase coverage in this neighborhood.

Proof. Fix some 0 < x0 < 1 for which p(x0) > 0; by the break-even condition and the
continuity of p, such x0 exists. Hence there is c0 > 0, a neighborhood U of p(x0), and N

s.t. if n > N , pn Ø c0 in U ; since each pn is monotonic, this means that there is x1 < x0

such that pn Ø c0 in {x > x1}. Letting µn = inf�n\�n≠1 µ, we have by assumption µn æ Œ
monotonically; fix N s.t. µN Ø p(x0)

x0≠x1
. Suppose by way of contradiction type ◊ œ �\�N

purchases under pn coverage x < x1. Since w◊ Ø µN Ø p(x0)
x0≠x1

> p(x0)≠p(x)
x0≠x , he must strictly

prefer (x0, p(x0)) to (x, p(x)), a contradiction.

G Equilibrium characterization in generalized Insurance

We now prove Theorem 2, or more precisely its generalization Proposition 6, which re-
quires only the weaker Assumptions 7, 6, and 8. Henceforth, fix an equilibrium (p, –) of
such an economy. Recall the notation

w◊(x, p) = ≠ˆu◊

ˆx
(x, p)/ˆu◊

ˆp
(x, p) Ø µ◊

with equality iff x = 1. For this section we will also make repeated use of the pairs of the
functions Â+, Â≠ defined on the support of –X , the projection of the distribution –, to
[0, 1] (recall X = [0, 1) or X = [0, 1]), by (17) and (18) of Section B. Throughout we rely on
the continuity of prices in equilibrium (Lemma 18).
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G.1 Coverage Weakly Increasing in Risk

First we prove that types with higher riskiness purchase strictly higher levels of insur-
ance (except possibly at 0 insurance), and types of same riskiness purchase the same
level. We begin with a weak version.

Lemma 8. It holds –-a.s. that for each pair (◊2, x2), (◊1, x1),

x2 > x1 ∆ µ(◊2) Ø µ(◊1)

This is also true if X Õ ™ X is finite and –Õ is a weak equilibrium of the economy [�fiX Õ, P fi
÷, X Õ], where X Õ refers to behavioral types as well.46

Informally, riskiness is (weakly) increasing in coverage. (This is later improved to
strictly increasing.)

Proof. Suppose not. Then there are open subsets U, V of � ◊ [0, 1] with –X(U) > 0,
–X(V ) > 0, and such that for each (◊1, x1) œ U, (◊2, x2) œ V , x1 > x2 but µ1 = µ(◊1) < µ2 =
µ(◊2). Fix such a pair. Then p(x1) must be above the indifference curve of type ◊2 through
(x2, p(x2)), and p(x2) must be above the indifference curve of type ◊1 through (x1, p(x1)).
Since the latter indifference curve is strictly flatter, this is impossible. Somewhat more
formally, if „j denotes the indifference curve of µj through (xj, pj) for j = 1, 2, then
„1(x1) = p(x1) Æ „2(x1) and „2(x2) = p(x2) Æ „1(x2). However, „Õ

j(x) = wµj (x, „j(x))
for j = 1, 2 a.e. and „1, „2 are absolutely continuous, and furthermore wµ1 < wµ2 are
continuous, hence „1(xÕ) < „2(xÕ) in a neighborhood of xÕ of any point xÕ œ [x1, x2] at
which„1(xÕ) = „2(xÕ), contradiction.

The same logic holds for weak equilibrium with behavioral types on a finite set of
alternatives.

The following corollary proves the following intuitive property. If an agent with risk-
iness at least µ0 purchases a contract with coverage less than x, then the price of x must
be higher than the cost of type µ0 purchasing that contract.

Corollary 5. For x < y < z, we have

Â+(x) Æ Â≠(y) Æ Â+(y) Æ Â≠(z)

This is also true if X Õ ™ X is finite and –Õ is a weak equilibrium of the economy [�fiX Õ, P fi
÷, X Õ].

46The conclusion then holds –Õ(· | �)-a.s., i.e., holds for types in �, not behavioral types for whom µ is
not defined.

50



G.2 Breaking Even

Lemma 9. Â≠ = Â+ in supp(–X) fl (0, 1].

Intuitively, this means there is no pooling of types - different levels of riskiness pur-
chase different levels of coverage.

Proof. It follows from the corollary that for each 0 Æ y < x < z Æ 1, p(y) Æ x · Â≠(x) Æ
x · Â+(x) Æ p(z), as id · Â≠ Æ p Æ id · Â+ –X a.s. by (1). The continuity of prices gives
the lemma for x œ (0, 1). For x = 1, observe that if Â≠(1) < Â+(1), then since Â≠ = Â+

in X fl (0, 1), 1 must be an atom of 1; then by the same continuity of prices (Lemma 18),
p(1) Æ Â≠(1), and yet p must be a strict average of Â≠(1), Â+(1), a contradiction.

Hence, denote Â = Â≠ = Â+. By (1), we have

Lemma 10. –({◊, x | p(x) ”= µ(◊) · x}) = 0, and (equivalently),

p(z) = z · Â(z), ’z œ supp (–X) (26)

G.3 Coverage Strictly Increases with Risk

Lemma 11. Â is strictly increasing in supp(–X) fl (0, 1].

Proof. Suppose not; let a < b be such that Â(a) = Â(b) = µ0. Corollary 5 then implies
that p(x) = µ0 · x for all x œ [a, b]. But since wµ0 > µ0 at all but full insurance, types with
riskiness µ0 would all prefer (b, p(b) = µ0 · b) over (a, p(a) = µ0 · a).

G.4 Coverage Continuous and Increasing in Risk

Corollary 6. There is a mapping ‡ : supp(Pµ) æ [0, 1], strictly increasing and continuous
on supp(Pµ)\‡≠1({0}), s.t. –

Ó
(◊, x) | x = ‡(µ(◊))

Ô
= 1.

Proof. Let W ™ � such that –({◊ œ W}�{x > 0}) = 1, i.e., those types which choose
positive coverage. Let ‡ = Â≠1. ‡ is well-defined Pµ-a.e. on supp((Pµ(· | W )), and by
the previous results in strictly monotonic. Extend ‡ to supp(Pµ(· | �\W )) by 0; by the
previous results, this is well-defined (–-a.s., any types ◊ s.t. µ(◊) œ supp((Pµ(· | W )) fl
supp(Pµ(· | �\W )) choose 0 coverage, i.e., are not in W .)

G.5 Use of Assumption 8

Before continuing with the steps of proof, we bring here a simple result which embodies
our use Assumption 8. First, a lemma:
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Lemma 12. supp(Pµ) = range(µ).

The follows from Assumption 8 together with the continuity of µ : � æ R+.

Proposition 11. The set

{(µ, p, x, q, y) œ supp(Pµ) ◊ R+ ◊ [0, 1] ◊ R+ ◊ [0, 1] | µ strictly prefers (p, x) over (q, y)}

is open.

Proof. Suppose uµ0(p0, x0) > uµ0(q0, y0). Suppose by way of contradiction there are se-
quences µn æ µ0, (pn, xn) æ (p0, x0), (qn, yn) æ (q0, y0) s.t. µn weakly prefers (qn, yn)
over (pn, xn). Let ◊n œ � s.t. µ(◊n) = µn; since {◊ | µ(◊) Æ µ0 + 1} is compact, w.l.o.g.
and by passing to a subsequence, we may assume ◊n æ ◊0 for some ◊0 œ �. Since µ is
continuous, µ(◊0) = µ0. Since

u(◊n, xn, pn) Æ u(◊n, yn, qn).

Taking the limit given by the continuity of utility,

u(◊0, x0, p0) Æ u(◊0, y0, q0),

a contradiction.

G.6 Full insurance is in the Support

Lemma 13. The supremum of the support of –X is full insurance.

Proof. Suppose xú < 1 is the supremum of the support of –X . By Corollary 5 (applied
to a sequence of weak equilibria on finite grids which witness the equilibrium), we have
for each x > xú and each µ œ supp(Pµ), p(x) Ø µ · x. Hence, Pµ is compactly supported;
denote µ = max supp(Pµ). Hence, p(x) Æ µ · x for x Ø xú (price per insurance unit cannot
be more than maximum costliness) and since p is continuous and prices are actuarily
fair, p(xú) = µ · xú; so p(x) = µ · x in [xú, 1].

Fix some z > xú. Now, if µ were an atom of Pµ, then for all ◊ œ µ≠1(µ), we could say
that ◊ strictly prefers (z, p(z) = µ · z) for any to what he actually purchases, (xú, p(xú) =
µ · xú), as w◊ is greater than the slope of the price at all but full insurance, contradiction..
However, µ need not be an atom of Pµ; but by Lemma 12, µ œ range(µ). By Proposition
11, there is a neighborhood V of (xú, µ·xú) and neighborhood U of µ s.t. if (‡(µ), p(‡(µ)) œ
V and µ œ U , type µ prefers (z, p(z)) to what his purchased contract. Since price is
continuous (Lemma 18), we may shrink U s.t. (‡(µ), p(‡(µ)) œ V for all µ œ U . For any
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Proposition 1, Part (5)

0 x1 x2 1

x

0

p(x1)

p(x2)
p(

x)

price of purchased contracts
break-even line for highest 

Figure 7: We consider, by way of contradiction, a hypothetical equilibrium where the
supremum of contracts purchased is x1 < 1. This implies, we show, that µ must be
bounded by some µ, so the price of contracts x > x1 is p (x) = µx. Consider any x2 œ
(x1, 1). We then show that those agents who purchase x close to x1 would prefer x2 (at
the price p (x2) = µx2), a contradiction.

such U , Pµ(U) > 0, hence a positive mass of types would wish to deviate, a contradiction.

The proof is illustrated in Figure 7 below.
The last argument in fact shows something stronger, which we will use later se we

state it here:

Lemma 14. There cannot exist and µ œ supp(Pµ) and z > ‡(µ) s.t. p(z) Æ µ · z and
–X

1
‡(µ), z)

2
= 0

G.7 Lipschitz-Type Property

The fact that L-Lipschitzity of price in [0, x0] if w◊ Æ L in {x Æ x0, p Æ p(x0)} for a.e. types
purchasing coverage up to x0 follows along the lines of Part 3 of Proposition 1 of AG, so
we omit a complete proof. Essentially, the restriction of the economy to those types that
choose coverage up to x0 satisfies the framework and Lipschitz-ness conditions of that
paper. As for the conclusion that p(·) is Lipschitz (for some constant) in [0, x0] without
assuming a bound on w◊, observe that since the coverage function is increasing in µ, and
the willingness to pay in increasing is risk by Assumption 6. Take any ◊ with ‡(µ(◊)) > x0

and set L = max{w◊(x, p) | x Æ x0, p Æ p(x0)}. It follows that w◊ Æ L in {x Æ x0, p Æ p(x0)}
for a.e. all types purchasing coverage up to x0 .
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G.8 Price as Approximate Upper Envelope

Here we prove the final property of equilibrium: Let x œ (0, 1) with p(x) > 0. Let ÷(µ, x)
denote the price at which type ◊ with riskiness µ is indifferent between (‡(µ), p(‡(µ))
and (x, ÷(µ, x)). Then, for every y > x for which –X((x, y]) > 0,

p(x) = ’(x, y) := ess ≠ sup{÷(◊, x) | x < ‡(µ(◊)) Æ y}.

Inequality (Ø) holds, as otherwise there would be a positive mass of types with ‡(µ(◊)) >

x and ÷(◊, x) > p(x), and hence they would prefer (x, p(x)) over their purchased contract,
which would result in a contradiction.

Conversely, suppose for some xú < yú and ” > 0, –X((xú, yú]) > 0 but p(xú) > ’(xú, yú).
Clearly there means we have –X((xú, xú + T ]) = 0 for some T > 0, since otherwise
continuity of prices would give a contradiction. Let µú = ess ≠ inf{µ œ supp(Pµ) |
xú < ‡(µ) Æ yú} be the infimum of all types that purchase insurance above xú but
at most yú, and let µú = ess ≠ sup{µ œ supp(Pµ) | ‡(µ) Æ xú}; then µú < µú, oth-
erwise the continuity of ‡ and of prices would finish the job. Recall by Lemma 12,
µú œ range(µ) = supp(Pµ). Let zú = ‡(µú). We contend µú strictly prefers (zú, p(zú))
to (xú, p(xú)): Fix some ’(xú, yú) < c < p(xú); by assumption, for all Pµ-a.e. µ > µú,
µ (strictly) prefers (‡(µ), p(µ) to (xú, c), and hence by Lemma 11, µú (weakly) prefers
(zú, p(zú)) to (xú, c), which he in turn strictly prefers to (xú, p(xú)).

Let (–n, pn)Œ
n=1 be a sequence of weak equilibria on finite grids (Xn)Œ

n=1 converging to
(–, p) in the appropriate sense.

Lemma 15. For each Á, ” > 0, for n large enough, under –n a positive measure of types
with riskiness in [µú, µú + ”) purchase coverage in (xú ≠ Á, xú + Á).

Assuming the lemma (which we prove below) we will derive a contradiction. Let
xn æ xú and zn æ zú with xn, zn œ Xn for each n. Hence, by Proposition 11, there is
Á > 0 s.t. if |µ ≠ µú| < Á for µ œ supp(Pµ), if (pÕ, xÕ) is in an Á-neighborhoud of (xú, p(xú))
and (qÕ, zÕ) is in a Á-neighborhood of (zú, p(zú)) µÕ strictly prefers (qÕ, zÕ) to (pÕ, xÕ). But
by the above lemma, there are types µn æ µú s.t. for n large enough, µn weakly prefers
(xn, pn(xn)) to (zn, pn(zn)), a contradiction since for large enough n, (xn, pn(xn)) and (zn, pn(zn))
are in Á-neighborhoods of (xú, p(xú)) and (zú, p(zú)) respectively.

Now we return to the proof of the lemma: First we show that for each Á > 0 for
large enough n, under –n a positive measure of types with riskiness Ø µú purchase in
IÁ := (xú ≠ Á, xú + Á). If there were such an Á > 0 for which this did not hold, then for all n

large enough, pn(x) Æ µú · x for x œ IÁ; and hence p(x) Æ µú · x for x œ IÁ. So in particular,
there is at least one x œ I := (‡(µú), xú + Á) s.t. p(x) Æ µú · x, and w.l.o.g., Á Æ T so
–X(I) = 0, contradicting Lemma 13. The reason we may choose positive mass of types
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in [µú, µú + ”) if n is large enough is because fixing some µÕ œsupp(Pµ) = (µú, µú + ”) , we
see µÕ (and hence any µ Ø µÕ in supp(Pµ)) strictly prefers rÕ := (‡(µÕ), p(‡(muÕ)) to (xú, pú),
and hence for large enough would strictly prefer an option in Xn near rÕ instead of near
(xú, pú).

G.9 No Purchasing 0 Coverage

We sketch a proof showing that if in addition, Assumption 3 holds, then 0 is –-a.s. never
puchased; the reader can complete the details. If P is discrete, with atoms µ1 < µ2 <

· · · , then for some n, ‡(µn) > 0, and by backward induction using the ’upper-envelope’
property of prices, µk > 0 for all k < n as well. Hence, assume P is continuous, but
assume by way of contradiction that for some µú > µ = inf supp(Pµ), ‡(µú) = 0, and in
particular 0 is an atom of –X , the projection of – to altertives.

First we contend supp(–X) = [0, 1]; by the previous properties, supp(–X) = {0} fi [x, 1]
for some x Ø 0; if x > 0, an imitation of the argument used to prove the upper-envelope
property of price would give a contradiction, as the indifference curve of any type pur-
chasing near x would lie below (0, 0). Next, we contend that Lemma 9 holds in this case
as well, i.e., –X(· | J) for closed J ™ (0, 1) is equivalent to the Lebesgue-measure: In-
deed, the proof goes through nearly verbatim, replacing wx(z) with wx(z, p(z)) where
needed as willingness to pay now depends on prices as well, and relying on the fact that
infµØµú,zœJ wµ(z, p(z)) ≠ µ > 0 , i.e. that the insurance surplus for types with cost Ø µú is
uniformly bounded away from 0 in J , which can be shown using the continuity of w and
Assumption 8. Similarly to the proof Proposition 10, appropriately modified, it follows
that for Lebesgue a.e. x œ (0, ”) for 1 > ” > 0,

pÕ(x) = w·(x)(x, p(x)) = ·(x)+w·(x)(x, p(x))≠·(x) Ø p(x)
x

+inf
xœJ

(w·(x)(x, p(x))≠·(x)) = p(x)
x

+W

for some W > 0. This equation encompasses that the insurance surplus is bounded
away from 0 in the interval (0, ”) uniformly over all types with riskiness at least µú. Hence

(p(x)
x

)Õ = pÕ(x)
x

≠ p(x)
x2 Ø W

x

Hence,
p(”)

”
Ø p(”)

”
≠ lim inf

yæ0

p(y)
y

= W · lim
yæ0

ln(”

y
) = Œ

a contradiction.
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G.10 Weakening Assumption 8

We remark that Proposition 6 would hold if Assumption 8 would be replaced with the
following weaker assumption, although the proof would be somewhat more technical
and lengthy.

Assumption 9. For each µÕ œ supp(Pµ) with µÕ > µ, for each 0 < x1 < x2 < 1, and each
0 < p1 < p2, there is Á > 0 s.t. denoting D = [x1, x2] ◊ [p1, p2] and T = {◊ | µÕ ≠ Á < µ(◊) Æ
µÕ}.

inf
T

min
D

(w◊(x, p) ≠ µ◊) > 0 and inf
T

min
D

ˆu◊

ˆp
< 0

We know for each x < 1 and p œ R, w◊(x, p) ≠ µ◊ > 0. Hence, by continuity, for each
◊ œ � , each 0 < x1 < x2 < 1, and each 0 < p1 < p2, minD(w◊(x, p) ≠ µ◊) > 0. However, we
need this positivity to be uniform over all types whose riskiness µ is close to any given µÕ.
Similarly, we need the sensitivity to price to be bounded away from 0 in such a domain
for all types with riskiness close enough to µÕ.

H Existence in Generalized Insurance

We now prove Theorem 4: equilibrium existence in insurance markets exists under con-
ditions more general than those stated in Section 3.

Fix a sequence of compact subsets �1 ™ �2 ™ · · · � with � = fi�n. Let Mn be the
essential supremum of µ w.r.t. P (· | �n). Then M1 Æ M2 Æ M3 Æ · · · with Mn æ Œ,
Mn œ supp(Pµ) for each n œ N. Let P n = P (· | �n), and X = [0, 1]. By AG, En = [�n, X, P n]
has an equilibrium.

Fix one such equilibrium (–n, pn) for each economy. Proposition 6 implies that in
each of these equilibria, there is a strictly increasing function ‡n : supp(P n

µ ) æ [0, 1] such
that type with riskiness µ œ supp(P n

µ ) purchases coverage ‡n(µ) –n-a.s., with ‡n(Mn) = 1.
We will require the following two results.

Lemma 16. For each µ œ supp(Pµ), lim supnæŒ ‡n(µ) < 1.

The intuition is simple: Fixing µ1 < µ2, then ‡n(µ1) Æ ‡n(µ2) for all n, and if ‡n(µ2)
is close to 1, then ‡n(µ1) should not be more (approximately) than the coverage z that
makes type µ2 indifferent between contract (x = 1, p = µ2) and (z, µ1 · z).

Proof. For each ◊2, ◊1 with µ2 = µ(◊2) > µ1 = µ(◊1) and each u œ [0, 1], let „(µ1, µ2, u)
denote the unique v < u s.t. type ◊2 is indifferent between contracts (µ2 · u, u) and
(µ1 · v, v); such unique v exists as w◊2(x) > µ2 > µ1 for all x œ (0, 1), „ is continuous
on R++ ◊ R++ ◊ [0, 1], and „(µ1, µ2, u) < u for u œ (0, 1].
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Suppose µ1 œ supp(Pµ) with limnæŒ ‡kn(µ1) = 1 for some indices (kn). Fix some
µ2 > µ1 with µ2 œ supp(Pµ), and hence w.l.o.g., µ2 œ supp(P kn

µ ) for all n œ N. For each kn,
‡kn(µ1) Æ „(µ1, µ2, ‡kn(µ2)), as otherwise type ◊ with µ(◊) = µ1 would instead choose
coverage ‡kn(µ2). Then limnæŒ ‡kn(µ2) = 1 as each ‡kn is monotonically increasing.
Hence,

1 = lim
næŒ

‡kn(µ1) Æ lim
næŒ

„(µ1, µ2, ‡kn(µ2)) = „(µ1, µ2, lim
næŒ

‡kn(µ2) = 1) = u(µ1, µ2, 1) < 1

a contradiction.

Notice that Lemma (16) does not rely on on the condition given in Equation (14).
Lemma 17 however, crucially, does:

Lemma 17. For each 0 < m < 1, there is M > 0 such that if µ > M and n œ N is such that
µ œ supp(P n

µ ), then ‡n(µ) > m.

The idea is to make observe types purchasing a sequence of riskinesses µ1 < µ2 <

· · · , and bound the differences between the coverages chosen by two adjacent types in
this sequence. (It is tempting to think we are making a reduction to the discrete case,
but since the utility has a more general form that in Section 3.6, the arguments have to
be slightly less direct.)

Proof. Fix types ◊ÕÕ, ◊Õ and denote µÕÕ := µ(◊ÕÕ) > µÕ := µ(◊Õ), xÕÕ := ‡(µÕÕ) > xÕ := ‡(µÕ) Ø
1 ≠ ” , and ‹ ÕÕ := ‹”(◊ÕÕ), ‹ Õ := ‹”(◊Õ). Denote

�µ = µÕÕ ≠ µÕ

�x = xÕÕ ≠ xÕ

�p = p(xÕÕ) ≠ p(xÕ) = µÕÕ · xÕÕ ≠ µÕ · xÕ = µÕ · �x + xÕÕ · �µ

It follows from Lemma 1 of Section A that

�p Ø �x ·
Ë
µÕ + ‹ Õ · (1 ≠ xÕ + xÕÕ

2 )
È

(27)

Combining these,

xÕÕ · �µ Ø �x · ‹ Õ · (1 ≠ xÕ + xÕÕ

2 ) æ �x Æ �µ

‹ Õ (1 ≠ xÕ + xÕÕ

2 )≠1

Hence,

�x Æ �µ

‹ Õ · 2
2 ≠ xÕ ≠ xÕÕ <

�µ

‹ Õ · 1
1 ≠ xÕÕ
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Also, since 2 ≠ xÕ ≠ xÕÕ Ø xÕÕ ≠ xÕ = �x,

�x Æ �µ

‹ Õ · 2
�x

æ �x Æ
Û

2 · �µ

‹ Õ

Now, by (14), there exists a sequence of types (◊j) such that, denoting µj = µ(◊j), we
have µ1 < µ2 < · · · , and such that denoting ‹n = ‹”(◊n),

Œÿ

n=1

µn+1 ≠ µn

‹n
< Œ

Fix m, ÷ > 0 with m < 1 ≠ 4÷ < 1, and choose K such that

Œÿ

n=K

µn+1 ≠ µn

‹n
< ÷2

Each term is hence also less than ÷2. Suppose by way of contradiction, ‡(◊K) Æ m. Then
for each n Ø K, if xn+1 > 1 ≠ ÷ we can say

xn+1 ≠ xn Æ
Ò

2 · ÷2 < 2÷

while if xn+1 Æ 1 ≠ ÷, we can say

xn+1 ≠ xn Æ 1
÷

· µn+1 ≠ µn

‹n

From the first of these, we see that there is N > K such that 1 ≠ 3÷ < xN < 1 ≠ ÷.
Then,

xN ≠ xK Æ 1
÷

Nÿ

n=K

µn+1 ≠ µn

‹n
Æ 1

÷
· ÷2 æ xK Ø xN ≠ ÷ > (1 ≠ 3÷) ≠ ÷ > m

a contradiction. Hence, we may take M = µK .

As a result, the conditions of Proposition 8 hold: As remarked there, Assumption
1 - in particular, the quasi-linearity of utility in prices - implies that for every two al-
ternatives x, y œ X, price p Ø 0, and type ◊ œ �, there is price q high enough s.t.
u(◊, x, p) > u(◊, y, q). As for the required properties of the equilibria (pn, –n)Œ

n=1:

1. First we show that if [0, m] ™ [0, 1), then (pn) is point-wise (in fact, uniformly)
bounded and equicontinuous on [0, m]: Choose some ◊0 œ � such that, denot-
ing µ0 = µ(◊0), ‡n(µ0) > m whenever µ0 œ supp(P n

µ ). Such ◊0 exists by Lemma 17.
Then for all such n and all x Æ m, pn(x) Æ pn(m) Æ µ0 · m, so we have the bound-
edness in [0, m]. Denote w © w◊0 . Then for –-a.e. type ◊ that choose coverage in
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[0, m], ‡(µ(◊)) Æ ‡(µ0) = ‡(µ(◊0)) so by Assumption 3, w◊ Æ w◊0 , and each type has
Lipschitz utility (with the same Lipschitz constant as w◊0 .)

2. Next we verify that for each M œ R, there is a compact K ™ [0, 1), s.t. for large
enough n, infx/œK pn(x) Ø M . Fix M > 0 and some µ œ supp(Pµ) with µ > 2M , let
N œ N and 1

2 < t < 1 be such that ‡n(µ) < t for all n > N ; such N, t are guaranteed
by Lemma 16. By the monoticity of each ‡n and pn, for n > N and x /œ K := [0, t],

pn(x) > pn(t) Ø pn(‡n(µ)) = ‡n(µ) · µ Ø t · 2M > M

3. Lemma 7 shows that the requirement (*) of Proposition 8 holds.

Hence, an equilibrium (p, –) of the economy [X, �, P ] exists.

I Generalized Equilibrium Properties

This section shows that several properties of equilibrium derived by AG also hold in set-
tings where costs are unbounded. (Note that Lemma 18 is used in the proof of Theorem
2, or more precisely its generalization Proposition 6.) Proposition 12 is used implicitely
throughout, in particular the fact that in equilibrium, a.e. agent is selecting an optimal
contract.

I.1 Continuity

The continuity (and in fact Lipschitz-ness) of prices was proven in AG (for the bounded
environments they consider). Here, we prove the continuity of prices in generic un-
bounded settings. 47

Lemma 18. If (p, –) is an AG-equilibrium, then p is continuous.

Proof. Suppose xn æ x in X, and let (pn, –n)Œ
n=1 be the approximating sequence of weak

equilibria with alternatives (Xn)Œ
n=1. By passing to a subsequence of (pn, –n), we may

assume that for each n, there is yn œ Xn such that

|yn ≠ xn| <
1
n

and |pn(yn) ≠ p(xn)| <
1
n

Hence, yn æ x. Therefore, since (pn, –n)Œ
n=1 witnesses that (p, –) is an equilibrium,

pn(yn) æ p(x). By the second inequality, p(xn) æ p(x), as required.
47The continuity of prices in the particular case of the utility functions of insurance markets discussed

in this paper, as introduced in Section 5.1, follow from Lemma 3. 18 holds in a much more general setup.
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I.2 Equilibrium is Weak Equilibrium

AG shows under their weaker assumptions that equilibria are, in particular, weak-equilibrium.
This will also be true in our case although, to prove it, we need the following auxiliary
result.

The following lemma, stated in greater generality than needed, may be of indepen-
dent interest.

Lemma 19. Let X be a locally compact separable metric space, (Xn) a sequence of finite
subsets, p : X æ R continuous and for each n œ N, pn : Xn æ R, s.t. if (xn) is a sequence
in X with xn æ x œ X s.t. xn œ Xn for each n œ N, then pn(xn) æ p(x).

Then there are extensions of the pn to continuous functions p̃n : X æ R+ s.t. p̃n æ p

uniformly on compact sets. In particular, if X is compact, then ’Á > 0, there is N œ N, s.t.
’n > N and’x œ Xn, |pn(x) ≠ p(x)| < Á.

The latter conclusion, for the case of compact X, follows from the first part. We note,
however, that the latter conclusion actually already follows from the first step in the
proof.

Proof. Let (Kj)Œ
j=1 be an increasing sequence of compact sets with X = fijKj and Kj ™

K¶
j+1; such exists as X is locally compact and separable metric. Fix J œ N: We contend

that ’Á > 0, there is N œ N, s.t. ’n > N and’x œ Xn fl KJ , |pn(x) ≠ p(x)| < Á. Indeed,
if not, there is Á > 0, a sequence n1 < n2 < · · · of indices, a sequence (xj) with xj œ
Xnj fl KJ , |pnj (xj) ≠ p(xj)| Ø Á, and such that (xj) converges; denote the limit x œ KJ .
Hence, pnj (xj) æ p(x) by assumption. Since p is continuous by Lemma 18, p(xj) æ p(x).
Together, these give a contradiction.

Hence, define qn : Xn æ R by qn = pn ≠ p. Denote Yn = Xn fl Kn, Án = maxxœYn |qn|.
By the last paragraph, Án æ 0. The Tietze extension theorem implies, for each n œ N, the
existence of a continuous extension q̃n of qn to X satisfying Án = maxKn |q̃n|. (Formally,
first extend the restriction of qn to Yn to a function q̃n on Kn satisfying Án = maxKn |q̃n|
via Tietze’s theorem, and then extend it to a function on X agreeing with qn on Xn in
an arbitrary continuous way, again via Tietze’s theorem.) Defining p̃n = q̃n + p for each
n œ N give the required extensions, since for any compact subset K ™ X, there is J s.t.
for all j > J , K ™ Kj .

Now, the proof of Proposition 12 follows along lines similar to the corresponding
Proposition in AG, with some care required since our setup allows for unbounded cost.

Proposition 12. An equilibrium is also a weak equilibrium.

Proof. Take a sequence (Xn, pn, –n) of weak equilibria on finite subsets Xn ™ X which
witnesses that (p, –) is an equilibrium. Let (p̃n) correspond to (pn), (Xn), and p as in
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Lemma 18. For any continuous function f : X æ R with compact support, since the
p̃n are uniformly bounded on compact sets (p is continuous and p̃n æ p uniformly on
compact sets), and since p̃n(x) = pn(x) = E–n [c | x] for all x œ supp(–n),

⁄

�◊X
f ·p·d– = lim

næŒ

⁄

�◊X
f ·p·d–n = lim

næŒ

⁄

�◊X
f · p̃n ·d–n = lim

næŒ

⁄

�◊X
f(x)·c(x, ◊)d–n(x, ◊)

Now denoting by K ™ X the compact support of f , we know that for each Á > 0, there
is compactly support gÁ : � æ [0, 1] s.t.

s
�(1 ≠ gÁ(◊)) maxxœK c(x, ◊)dP (◊) < Á. Clearly,

⁄

�◊X
f(x)·c(x, ◊)d–n(x, ◊) =

⁄

�◊X
f(x)gÁ(◊)·c(x, ◊)d–n(x, ◊)+

⁄

�◊X
f(x)(1≠gÁ(◊))·c(x, ◊)d–n(x, ◊)

⁄

�◊X
f(x)·c(x, ◊)d–(x, ◊) =

⁄

�◊X
f(x)gÁ(◊)·c(x, ◊)d–(x, ◊)+

⁄

�◊X
f(x)(1≠gÁ(◊))·c(x, ◊)d–(x, ◊)

Now,

limnæŒ

⁄

�◊X
f(x)gÁ(◊) · c(x, ◊)d–n(x, ◊) =

⁄

�◊X
f(x)gÁ(◊) · c(x, ◊)d–(x, ◊)

and the errors terms are at most Á · sup |f |, and Á > 0 was arbitrary. Hence,

⁄

�◊X
f · p · d– =

⁄

�◊X
f(x) · c(x, ◊)d–(x, ◊)

and this was for any f : X æ R compactly supported. Hence, p(x) = E–[c(x, ◊) | x] –-a.s.
Now, let „ : R æ R be a strictly monotonically increasing continuous funding with

bounded range, e.g., „(x) = arctan(x) or „(x) = x
1+|x| . Since –n is a weak equilibrium, it

holds
u(◊, p̃n(x), x) = sup

xÕœXn

u(◊, p̃n(xÕ), xÕ), for –n ≠ a.e.(◊, x) œ � ◊ Xn

Hence, it is also true that, denoting v = „ ¶ u

v(◊, p̃n(x), x) = sup
xÕœXn

v(◊, p̃n(xÕ), xÕ), for –n ≠ a.e.(◊, x) œ � ◊ Xn

Let –Õ be a ’deviation to –’ - i.e., a measure on � ◊ X whose projection to � is P , and
letting (–Õ

n) be a sequence of measures on (�fiX)◊X, with –Õ
n supported on (�fiXn)◊Xn

and –Õ
n æ – weakly, we have since (pn, –n) is a weak equilibrium,

⁄

�◊X
v(◊, p̃n(x), x)d–n Ø

⁄

�◊X
v(◊, p̃n(x), x)d–Õ

n

–n æ –, –Õ
n æ –Õ , so the families (–n) and (–Õ

n) are tight, and v is bounded. Hence, for
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each Á > 0, there is ’Á : � ◊ X æ [0, 1] continuous and compactly supported, such that

⁄

�◊X
(1 ≠ ’Á(x, ◊)) · |v(◊, p̃n(x), x)|d— < Á, for — = –n, –, –Õ

n, –Õ, n œ N

Since p̃n æ p uniformly on the support of ’Á,

⁄

�◊X
’Á(x, ◊)v(◊, p̃n(x), x)d–n æ

⁄

�◊X
’Á(x, ◊)v(◊, p(x), x)d–

and ⁄

�◊X
’Á(x, ◊)v(◊, p̃n(x), x)d–Õ

n æ
⁄

�◊X
’Á(x, ◊)v(◊, p(x), x)d–Õ

Since this was for any compactly supported ’Á, it follows that

⁄

�◊X
v(◊, p(x), x)d– Ø

⁄

�◊X
v(◊, p(x), x)d–Õ

Since this was for any measure –Õ on � ◊ X whose projection to � is P ,

v(◊, p(x), x) = sup
xÕœX

v(◊, p(xÕ), xÕ), for – ≠ a.e.(◊, x) œ � ◊ X

and therefore

u(◊, p(x), x) = sup
xÕœX

u(◊, p(xÕ), xÕ), for – ≠ a.e.(◊, x) œ � ◊ X

J Discrete types: Direct Construction

In this Section we provide a “direct” construction of the AG equilibrium for a simple
insurance economy with discrete types, without using Proposition 1.

J.1 Equilibrium in bounded economies

We now show that, for a truncated economy En, the allocation described in Proposition
4 is indeed an AG equilibrium.

Proof. Since utilities are quasi-linear and p > 0 on (0, 1),48 it is enough to approximate
(p, –), in the same manner described in Section 1, but on X Õ = (x0, 1) instead of [0, 1) (as
p © 0 in (0, x0)) and with ÷n not necessarily strictly positive on the behavioral types X

n;
afterwards the weight of the behavioral types could be increased slightly to be strictly

48p(0) = 0, but ’n, X
n ™ (0, 1) in our construction to follow, so p is positive on X

n
.
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positive in such a way that the price goes down by the same amount for each alternative
in X

n.
We will also index the sequence of economies by n. For each n, let X

n be the set

X
n = {xij | i = 1, . . . , n, j = 1, . . . , n} fi {x1, . . . , xn}.

The contracts x1, . . . , xn are obtained as in Section 3.6, the contracts purchased by the
first n types. That is, economy n has only the first n contracts x1, . . . , xn. Moreover, to
each contract i are associated n behavioral types xi1, . . . , xin are distributed (e.g., evenly)
strictly between xi≠1 and xi. (Recall that x0 is the right-most point s.t. p(x0) = 0, i.e.,
where type 1 is indifferent between (0, x0) and (p1, x1).) The mass of agents at each xij

(which denote ÷n) is defined below.
As in AG, the behavioral agents in X

n have riskiness µ = 0, i.e., zero cost. We set
prices pn © p for contracts on X

n. Moreover, we set the distribution of the weak equilib-
rium (–n) such that

–n({µi, xi}) = Pi

5
1 ≠ 1

n

6
, ’i = 1, . . . , n

–n({µi+1, xij}) = Pi+1
1
n2 , ’i, j = 1, . . . , n

That is, of the original mass Pi of “regular” types µi, all but a 1
n-fraction choose xi, while

the rest evenly spread themselves between the contracts xi,1, . . . , xi,n, such that the mass
of type µi in each of these contracts is a share 1

n2 of the total mass Pi. Recall that xi≠1 <

xi1 < . . . < xi,n < xi and moreover p (x) is defined so that types µi are indifferent between
all these contracts.

We also construct the distribution –n such that, all types k > n (each with mass Pk)
purchase the highest coverage available (xn):

–n({µk, xn}) = Pk, ’k > n.

Since µn, ‹n increasing, this maximizes their utility when contracts xk for k > n are not
available. This construction of –n is illustrated by Figure 8.

We then define –n({(xij, xij)}) = ÷n({xij}) for all i, j to be the mass of behavioral
types who purchase contract xij (which, recall, will also be purchased by some mass of
types µi). We define ÷n(xij) to satisfy

gi(xij) = xijµi
Pi · 1

n2

Pi · 1
n2 + ÷n(xij)

Æ 1.
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X1	 X2	X2,2	X2,1	

Mass	of	regular	consumers		

Mass	of	behavioral	consumers		

½	P1		

X1,1	

¼	P2	
¼	P2	

η2,2	
η2,1	

½	P2		

P3	+	
P4	+	
P5	+	
…   	

η1,2	

¼	P1	

X1,2	

η1,1	

¼	P1	

Figure 8: Illustration of –n used in Section E. Specifically, the figure illustrates the second
perturbation, –3.

This will imply that each contracts xij breaks even:

E–n [µ·x | xij] = xijµi+1·
–n(µi, xij)

–n(µi, xij) + ÷n(xi,j)
+0 = xijµi+1·

Pi · 1
n2

Pi · 1
n2 + ÷n(xi,j)

= gi(xij) = p(xij)
(28)

Moreover, since xi≠1 Æ xij Æ xi, we also have

gi(xi≠1)
xiµi

Æ
Pi · 1

n2

Pi · 1
n2 + ÷n(xij)

and therefore, as n æ Œ, we have supxij
÷n(xij) æ 0.

We also assume that, in economy n, there are no behavioral types purchasing con-
tracts xi for i Æ n ≠ 1:

÷n(xi) = 0, i = 1, . . . , n ≠ 1

Regarding the top contract xn, the mass of behavioral types ÷n(xn) is defined such that

µn = p(xn)
xn

= E–n [µ | xn] = µnPn
n≠1

n + q
j>n µjPj

Pn
n≠1

n + q
j>n Pj + ÷n(xn)

i.e., ÷n(xn) is chosen such that although the riskiest agents all choose the top contract, its
price nonetheless satisfies µn = p(xn)

xn
. The fact that

q
n Pnµn < Œ implies limnæŒ ÷n(xn) =

0.
In this way, for each i, the break even condition E–n [µx | xi] = pn(xi) = p(xi) holds

for each i = 1, . . . , n in (pn, –n); indeed, for each i = 1, . . . , n ≠ 1, only types µi purchase
xi, while for i = n this results from our definition of pn(xn) = p(xn) and by (28).
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J.2 Convergence to equilibrium of unbounded economy

We now prove that the equilibria described above for each truncated economy En con-
verge to the equilibrium of E .

Proof. We claim that the sequence (pn, –n) demonstrates that (p, –) is an equilibrium. ,
pn © p on X

n and X
n æ X Õ = [x0, 1) in the sense of Haussdorf.

Moreover, –n æ – weakly: Notice –n is concentrated on the set of types {(µk, ‹k)}kœN

and the behavioral types, with –n(µk, ‹k) = –(µk, ‹k) = Pk . Define Ik,m = 1 {k = m} be
an indicator function. Then,

–n(µk, xm) = Ik,m · Pm

5
1 ≠ 1

n

6
æ Ik,m · Pm = –(µk, xm)

and for each m œ N,

–n({x œ (xm≠1, xm)}) = Pm
1
n

æ 0 = –({x œ (xm≠1, xm)}).

Hence for each ” < 1, –n(· | {x Æ ”}) æ –(· | {x Æ ”}) converges in total variation norm.
This implies that –n æ – weakly.

Furthermore, –n-a.s. the original agents {(µn, ‹n)}Œ
n=1 are utility maximizing: agents

of type i Æ n are utility maximizing since they either choose the same option xi in
X

n ™ X = [0, 1), at the same price pn(xi) = p(xi), as they do when they can choose
any alternative in X, or they choose an alternative xi,1, . . . , xi,n which delivers the same
utility as xi at prices pn © p. Agents of type k > n are utility maximizing since their
willingness to pay for x is higher than that of type n, who (weakly) prefers the contract
xn = max

Ë
X

n
È

to any other alternative in X
n at prices pn © p. Therefore, each (pn, –n) is

a weak equilibrium, so (p, –) is an equilibrium.
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