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Abstract

The use of order flow information by financial firms has come to the forefront of
the regulatory debate. A central question is: Should a dealer who acquires information
by taking client orders be allowed to use or share that information? We explore how
information sharing a↵ects dealers, clients and issuer revenues in U.S. Treasury auc-
tions. Because one cannot observe alternative information regimes, we build a model,
calibrate it to auction results data, and use it to quantify counter-factuals. The model’s
key force is that sharing information reduces uncertainty about future value. With less
uncertainty, risk-averse bidders bid more. We estimate that yearly auction revenues
would be $2.4 billion higher with full-information sharing between clients and dealers.
For investors, the welfare e↵ects of information sharing depend on how information
is shared and whether it increases or decreases asymmetry. The model shows that
investors can benefit when dealers share information with each other, not when they
share more with clients.
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“[B]efore the Treasury holds an auction, salespeople at 22 primary dealers field billions of dollars in bids

for government debt. Traders working at some of these financial institutions have the opportunity to learn

specifics of those bids hours ahead of the auctions [and] also have talked with counterparts at other banks via

online chatrooms [...]. Such conversations, both inside banks and among them, could give traders information

useful for making bets on one of the most powerful drivers of global markets [...].” — Bloomberg (2015),

“As U.S. Probes $12.7 Trillion Treasury Market, Trader Talk Is a Good Place to Start.”

Recent financial market misconduct, involving misuse of information about clients’ orders,

cost the firms involved record fines and lost reputation. It also prompted investigations

and calls for curbing dissemination of order flow information, between and within dealers.

Recent investigations reportedly involve U.S. Treasury auctions (Bloomberg, 2015 above).

But the use of order flow information has been central to our understanding of Treasury

auctions (Hortaçsu and Kastl, 2012), to market making theory generally (Kyle, 1985) and

to market practice for decades. In describing Treasury market pre-auction activities in the

1950s, Robert Roosa (1956) noted that “Dealers sometime talk to each other; and they all

talk to their banks and customers; the banks talk to each other.” Furthermore, sharing

order-flow information–or, colloquially, “market color”–with issuers is even mandatory for

primary dealers both in the U.S. and abroad. Of course, if information sharing leads to

collusion, that has well-known welfare costs. But if collusion could be prevented with

separate remedies, is information sharing in itself problematic? The strong conflicting

views on a seemingly long-established practice raise the question of who gains or loses

when order-flow information is shared.1

Measuring the revenue and welfare e↵ects of information sharing directly would require

data with and without sharing. In the absence of such data, we use a quantitative model.

Our setting is an institutionally-detailed model of U.S. Treasury auctions, which we select

because of the available data, the absence of other dealer functions, and their enormous

economic importance. In the model, dealers observe client orders and may use that in-

formation to inform their own strategy, may share some of the information with clients,

or may exchange information with other dealers. Then all agents submit continuous bid

functions to a uniform-price auction with private values. To quantify the e↵ects of informa-

tion sharing and sign welfare results, we calibrate the model to auction results, including

allotment data, as well as information about post-auction returns using market prices on

the so-called on-the-run premium, or the di↵erential value of a newly-auctioned versus an

1Regulations on information sharing in sovereign auctions vary and are evolving. As of 2011, the UK
Debt Management O�ce sanctioned that UK primary dealers, or Gilt-edged Market Makers, “whilst not
permitted to charge a fee for this service, may use the information content of that bid to its own benefit”
(GEMM Guidebook, 2011). The legality of U.S. primary dealers’ use of client information, including sharing
such information with other clients or dealers is currently being litigated. This paper does not take a view
as to whether the described use of client information with respect to Treasury auction activity is legal or
proper.
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old Treasury security. In this setting, bids reflect risk premia associated with reselling

Treasuries, at an unknown price, in the secondary market. This risk premia informs the

model about how much uncertainty bidders face, and thus, how much information they

have, on average. After estimating the model, we study the model-implied revenue and

bidders’ utilities with exogenously varying degrees and types of information sharing. We

then extend the model to think about how information sharing a↵ects bidders and dealers

incentives to participate in the auction. Finally, we provide some empirical support for key

model assumptions.

The model teaches us that the primary beneficiary of information sharing is the U.S. Trea-

sury. By sharing information, bidders receive more information. More information allows

them to better forecast secondary market prices, reducing their risk, if they need to liq-

uidate in that secondary market. Risk-averse bidders faced with less risk bid more thus

boosting auction revenues. Based on the model parameters, moving from the calibrated

status-quo of a partial information sharing arrangements to full information sharing would

raise Treasury auction revenues by $2.4 billion annually. If instead, all information sharing

were prohibited, revenue would fall by $80 million. While the idea that better-informed

investors bid more is not a new finding, the issue is rarely raised in policy debates, pre-

sumably because the magnitude of the e↵ect is not known.

Our second finding is that dealer information sharing with other dealers and sharing with

clients have opposite e↵ects on investor utility. When all dealers share information with

their clients, it typically makes the clients worse o↵. This is a form of the Hirshleifer (1971)

e↵ect, which arises here because better-informed clients have more heterogeneous beliefs

and therefore share risk less e�ciently. But surprisingly, when dealers share information

with each other and then transmit the same amount of information to their clients, investor

welfare improves. Our model shows that inter-dealer information sharing makes beliefs

more common, and thereby improves risk-sharing and welfare. In essence, information

sharing with clients is similar to providing more private information, while inter-dealer

sharing e↵ectively makes information more public.

More broadly, our findings contribute to our understanding of a symbiotic relationship

between investors and intermediaries: it is the process of intermediating trades that reveals

information to dealers. Information sharing is what induces clients to use intermediaries

and induces large investors to intermediate.2

These findings are not meant to imply that dealers should have carte blanche in using

information in any way they choose. The model assumes that clients know how dealers

2Dealers in Treasury auctions do not diversify or transform risks, do not locate trading counterparties
and cannot monitor issuers because they cannot influence fiscal policy.
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use their information, and that communications are unbiased. Our setting does not clearly

span the range of malpractices that may have been undertaken. In e↵ect, we ask: If dealers

disclose how information is used, what are the costs and benefits of limiting information

sharing?

Treasury auctions are unique in their importance and their complexity. Our model balances

a detailed description with a tractable and transparent model, which highlights insights

that are broadly applicable. To Wang and Zender (2002), we add private values, which

serve as the source of noise in prices, a resale market, which creates the cost and the benefit

to information sharing, and a correlated information structure. Correlated information is

the feature that captures information sharing. But it necessitates a state-space solution

method. As in Wang and Zender (2002), our bidders are fully strategic. They correct for

the winners’ curse, exploit their price impact (bid shading) and bid in such a way as to

optimally manipulate the beliefs of others (signal jamming). Market power is not what

drives the results. If bidders were less strategic, the e↵ects of information sharing would

be qualitatively similar, but larger.

Information sharing occurs because dealers learn from observing bidders’ order flow. The

importance of this channel is supported by Hortaçsu and Kastl (2012). Using data from

Canadian Treasury auctions, they find that order flow is informative about demand and

asset values. They further show that information about order flow accounts for a significant

fraction of dealers’ surplus. In our setting, dealers not only collect this information but

may also share some of it. Our structural equilibrium model allows us to go beyond just

measuring the information, but also to analyze the e↵ect of dealing information sharing,

by using the model to do policy counter-factuals.

In order to match additional institutional features, we model the auction as a “mixed auc-

tion”, meaning that investors can bid indirectly (through a dealer) or directly (without any

intermediary). Finally, we account for minimum bidding requirements of primary dealers,

who have historically been expected to bid “consistently” at all auctions for amounts, which

today, are equal to the pro-rata share of the o↵ered amount.

Contribution to the existing literature. Our contribution is to explore the revenue

and utility e↵ects of pre-auction information sharing, by risk-averse bidders. The main the-

oretical innovation, relative to Kyle (1989) and Wang and Zender (2002), is the information

structure, which allows for a rich set of information sharing possibilities, but requires new

tools to account for the associated covariance in signal noise.

Milgrom and Weber (1982) investigate the optimal auction mechanism in a a�liated-value

auction model, where the seller can share information with the buyers. In contrast to

our setting, any disclosure by the issuer (for example a Treasury announcement) is always
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public information, which cannot widen information asymmetry. Also, their model has no

risk aversion and thus no increase in price from a reduction in risk. Our main ideas are also

connected to a microstructure literature that studies how pre-trade order flow information

contributes to price formation (O’Hara, 1995, Chapter 9), raises bid-ask spreads (Bloom-

field and O’Hara, 1999) and a↵ects utility of informed and uninformed traders (Fishman

and Longsta↵, 1992; Röell, 1990). For example, dealers learn from sequential order flow

in Easley, Kiefer, O’Hara, and Paperman (1996) and leverage asymmetric information and

market power in Kyle (1985) and Medrano and Vives (2004).

We build on the auction design literature3 by studying auction outcomes when dealers may

send signals back to their clients and to other dealers. Also, we explore the incentive of

a bidder to bid directly, or through a dealer. More broadly, our work o↵ers a di↵erent

framework for measurement. We use risk premia and the covariance of prices and payo↵s

to infer how much investors know. Our risk-based estimation approach predicts di↵erent

revenue, market power and utility e↵ects of information. Relative to Hortaçsu and Kastl

(2012) and Hortaçsu, Kastl, and Zhang (2016), our model misses the realism of bids that

are step functions. Instead, we assume demand is continuous and linear. This simplifi-

cation allows for risk-averse utility, secondary markets and asymmetric information. Our

model captures bidders speculating on post-auction appreciation, whereas private values

models better describe buy-and-hold bidders, who receive a known payout at maturity. The

costs and benefits of information sharing depend on this di↵erence. For speculators with

asymmetric information, observing others’ information helps the speculator determine the

future value of the asset more accurately. Speculators worry that sharing their informa-

tion with others will induce others to bid more aggressively because information reduces

their risk. Without risk aversion, this e↵ect disappears. So, while our model compromises

realism in bidding, it enables us to examine new e↵ects of information sharing.4

The idea that intermediary behavior determines the equilibrium price of an asset arises

in He and Krishnamurthy (2013) and Brunnermeier and Sannikov (2014). Their capital-

3Hortaçsu and McAdams (2010) and others studies on how auction design a↵ects revenues, or how it
a↵ects information acquisition (Cole, Neuhann, and Ordonez, 2017) complement our project. Theoretical
work by Chari and Weber (1992), Bikhchandani and Huang (1989), Back and Zender (1993), and Wilson
(1979) considers the merits of uniform-price auctions versus other alternatives. Empirical work by Nyborg
and Sundaresan (1996), Malvey, Archibald, and Flynn (1995) and Malvey and Archibald (1998) compares
revenues from 1992-1998 when the U.S. Treasury used both uniform and discriminatory price auctions.
Armantier and Sbäı (2006) use French Treasury auction bids to structurally estimate the benefits of uniform
price auctions. Similarly, He, Krishnamurthy, and Milbradt (2016) explore why US Treasuries are safe. We
fix the auction format to a uniform-price multi-unit auction, fix the distribution of future Treasury values,
and instead focus on how information sharing a↵ects revenue and surplus.

4Outside of an auction setting, literature in industrial organization has studied incentives for information
sharing among oligopolists (Raith, 1996, among others). This paper focuses on the benefits and costs of
information sharing as opposed to incentives. Vives (1990) discusses the distinction by antitrust authorities
between collusive behavior and sharing of aggregate and anonymous information such as the one considered
in this paper.
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constrained intermediaries provide households with access to risky asset markets and thus

improve risk sharing. In Babus and Parlatore (2015), dealers fragment a market, which

inhibits risk-sharing. In contrast, we explore how information-sharing induces some agents,

who could access markets directly, to choose intermediation.

1 A Treasury auction Model with information sharing

As in Kyle (1989) or Wang and Zender (2002), strategic bidders submit continuous bid

functions for a divisible asset. The novel feature of the model lies in its rich information

structure. We vary the degree of information sharing exogenously, to explore the e↵ect of

policies that prohibit or allow sharing. We do not consider the choice of sharing arrange-

ments because our main choice is a policy question: To what extent should information

sharing be allowed? Pending litigations on this matter reveal a clear desire to share.

Figure 1 summarizes the alternative sharing arrangements that we consider, for a simplified

setting with only a few market participants. Dealers are denoted with the letter “D,”

investors with the letter “I.” Panel a) shows the case of no information sharing (“Chinese

walls”), where each auction participant only observes his private information si.

When information is shared between dealers and customers (panel b), an investor’s infor-

mation set includes both her private signal and the dealer’s; the dealer also observes this

extended information set. With cross-dealer information sharing (panel c), each investor

observes his dealer’s and the other dealer’s information. Investors who bid independently

from the intermediary keep their signal private (panel d) resulting in a more dispersed

information set both for the direct bidder and other bidders.

Of course, auction prices cannot possibly be observed while bids are still being formed.

However, auction theory teaches us that each bidder should avoid the winner’s curse by

choosing a quantity for each price that would be optimal, if he observed that market-

clearing price and included it in his information set. When they choose a quantity at each

price, the bidder asks, “If this were the realized price, what would I infer about what

others know?” Since bidders can set a di↵erent demand for every possible price, they

can condition on the information contained in every possible price; the information set of

investor i is e↵ectively {si, p}.5 Professional bond traders, who systematically fell victim

to the winner’s curse, which is taught to most first-year MBA students, would likely not

be employed for long.

5There is a long history of including market-clearing prices in information sets, including the literature
building on Grossman and Stiglitz (1980), Kyle (1989) and Wang and Zender (2002). If traders fail to make
rational inference from the realized price, Appendix C.8 shows that information sharing has an order of
magnitude larger e↵ect.
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Figure 1: Information sets with alternative sharing assumptions. Letter D de-
notes dealers; I denotes an investor, either bidding through a dealer or directly; p is the
equilibrium price. Dashed lines indicate sets in which information is shared.

(a) No sharing with
customers or dealers
(Chinese Walls)

p

D1 D2

I1 I2

(b) Sharing with cus-
tomers, not with other
dealers

p

D1 D2

I1 I2

(c) Sharing with cus-
tomers and dealers

p

D1 D2

I1 I2

(d) Sharing with cus-
tomers only; one di-
rect bidder

p

D1 I1

I2 I3

While this simplified setting conveys the essence of information sharing, our model is

richer along many dimensions. Most of the model features – heterogeneous preferences and

information precision, private values, dealer bidding requirements, market power – improve

the model quantitative performance. What is conceptually important is risk aversion, since

most of our results work through risk premia, and the presence of a secondary market.

Evidence supporting the importance of the secondary market abounds. The largest auction

bidders, primary dealers, sell almost all of their holdings in the secondary market, within a

week after the auction (Fleming and Jones, 2015b). Primary dealer transaction data reveals

that non-dealers also sell to dealers, shortly after auction. Hedge funds hold securities

only briefly because of their limited capital (Wall Street Journal, 2015). This evidence is

consistent with the well-known fact that newly issued Treasury notes are the world’s most

liquid fixed income securities.6 In addition, we show that buying at auction and re-selling

6See Krishnamurthy and Vissing-Jorgensen (2012); Vayanos and Weill (2008); Krishnamurthy (2002).
U.S. primary dealers report their net positions weekly in the New York Fed’s FR2004 reports Fleming and
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in the secondary market is profitable. It is doubtful that financial actors ignore this fact

when bidding. Finally, auction prices reveal strong evidence of such secondary market

speculation (Section 6).

The model’s secondary market is what makes one bidder’s demand informative to others.

If there were no secondary market, information sharing would be irrelevant. One’s order

would reveal a value that is uncorrelated with any other trader’s value Therefore, informa-

tion sharing would be neither harmful, nor beneficial. The fact that information sharing

is being litigated suggests that some bidders have relevant information that they would

prefer others not to know.

Assets and Secondary Market The model economy lasts for two periods. Agents can

bid for an asset (the newly issued Treasury security) and have a riskless storage technology

with zero net return. The risky asset is auctioned by Treasury in a fixed number of shares

(normalized to 1) using a uniform-price auction with a market-clearing price p.

After the auction closes, a secondary market opens, as in Hortaçsu (2002). Buyers in the

secondary market are a measure-1 continuum of competitive agents who did not participate

in the auction. They buy either zero or 1 unit per capita. Each secondary market buyer

has private values f̃i ⇠ N(f, ⌧�1
x ). The mean of these private secondary market values is

unknown and is distributed f ⇠ N(f̄ , ⌧�1

f ).

Secondary market asset supply comes from auction participants who sell. In the spirit

of Diamond and Dybvig (1983), all auction participants hit by a liquidity shock that

requires them to sell a fraction ↵ of their shares on the secondary market. Since their

expected utility depends on secondary market outcomes, they speculate, or form beliefs

about the secondary market price. The secondary-market-clearing price ps equates demand

and supply.

Bidders To match key features of Treasury auctions, we consider four types of auction

participants: dealers, as well as direct and indirect bidders and “non-competes,” who

submit non-price contingent market orders. Each bidder/dealer can submit a continuous

function that specifies a quantity demanded, for every possible clearing price p. All dealers

and direct bidders place bids directly in the auction. Indirect bidders are speculative

bidders who bid through a dealer, instead of bidding directly. For now, the number of

each type of bidders is fixed. Later, we examine the choice to bid (in)directly. There are

Jones (2015a). Non U.S. sovereign securities, and especially short-dated zero-coupon bill markets such as
those considered in Hortaçsu and Kastl (2012) are quite di↵erent along this dimension. Many bidders in
those auctions hold those securities to maturity. Thus secondary market considerations are not as important
for bills.
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NI indirect bidders, which we index by i = {1, . . . , NI} and NJ direct investors, which we

index by j = {1, . . . , NJ}.

Every bidder has a private value for the Treasury security. For direct and indirect in-

vestors, vj ⇠ i.i.d.N(0, ⌧�1

vJ ) and vi ⇠ i.i.d.N(0, ⌧�1

vI ) per share. There are many reason

why investors may value Treasury issues di↵erently (see Hortaçsu and Kastl, 2012). For

example, a depository institution might address a duration mismatch, a foreign o�cial may

be investing dollar-denominated reserves, or an investor might cover a short position in the

forward Treasury market, known as the when-issued market.7

Each bidder has initial wealth Wi0, and chooses the quantity of the asset to hold, qi(p) at

each price p per share, to maximize his expected utility,8

E[� exp(�⇢(Wi + (1� ↵)qivi))], (1)

where ⇢ denotes absolute risk aversion. The budget constraint dictates that final wealth

is initial wealth, minus amount paid at auction, qip, plus earnings from secondary market

sales of ↵qi shares and price ps:

Wi = Wi0 + qi(↵ps � p). (2)

All bidders internalize the e↵ect they have on market prices. Because they strategically

consider their price impact, they are not perfectly competitive. They maximize their utility

subject to the budget constraint as well as the market clearing condition.

While all other participants submit price-contingent (limit) orders, the non-competes sub-

mit market orders (which, in practice, are relatively small). When we talk about “bidders,”

these non-competes are not included. Non-competes have a private value for the asset, do

not forecast future price, and do not condition their bids on price. Non-price contin-

gent orders are exogenous and random. The aggregate non-price contingent demand is

� ⇠ N(0, ⌧�1

� ).

Dealers There are ND dealers, which we index by d = {1, . . . , ND}. Then N = NI +

NJ + ND is the total number of speculative auction participants. Like investors, dealers

have heterogeneous values and resell a fraction ↵ of their shares in the secondary market.

For dealers, the value may arise, in part, from auctions rules known as “minimum bidding

7Appendix C.9 explores the e↵ect of the pre-auction market, known as the when-issued market and how
its existence a↵ects agents’ information.

8Technically, the price of each Treasury is fixed at par and auction participants bid coupon payments.
Here p is the present discounted value of coupons computed from other outstanding Treasury securities.
CARA utility here serves to make demand linear. One can equivalently write a model with a more general
utility specification and then do a first-order Taylor approximation of the first-order condition.
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requirements.” (See Appendix B for details.) If over time, a dealer is consistently allotted

an insu�cient share, his primary dealer status could be revoked. To capture the essence

of this dynamic requirement in a static model, we give dealers values for each share that

are typically positive, but decreasing in asset shares vd = � + �
qd
, where qd represents

the number of shares awarded to dealer d at the market price. The decreasing value vd

represents the idea that when the dealer’s bid qd is too low, raising that bid reduces the risk

of penalties for the dealer. When the bid is already high and the requirement is satisfied,

additional shares might relax future bidding constraints, but provide diminishing value.

This cost is a stand-in for the shadow cost of a dynamic constraint. Quantitatively, it

allows us to match dealers’ purchased share of the auction. Dealers choose asset demand

functions qd(p) to maximize

E[� exp(�⇢(Wd + qdvd))] where Wd is given by (2). (3)

Describing Information Sets and Updating Beliefs with Correlated Signals

Bidders can observe many possible pieces of information: their own private signal, sig-

nals from others who may share information with them, and their private value vi. The

dealers’ value of the asset is common knowledge as it derives from a common and publicly

known requirement while investors’ values vi are private information. Finally, since 2008,

all non-price contingent bids have been publicly revealed before bidding closes. Therefore,

we assume that � is common knowledge. We explain each in turn. In addition, bidders

can avoid the winners’ curse by conditioning their bids on the information that would be

revealed if each price were realized. This price information just keeps agents rational, but

is not essential, or even favorable to our results. We find qualitatively similar, but quan-

titatively, stronger e↵ects of information sharing when bidders don’t condition on prices.

(See Appendix C.)

Before trading, each bidder and dealer gets a signal about the average private value in the

secondary market. This signal could represent a macroeconomic or financial forecast or

some insight about future demand. Signals are unbiased, normally distributed and have

private noise:

si = f + "i,

where "i ⇠ N(0, ⌧�1
" ).

By placing orders through dealers, customers reveal their order flow qi(p) to their dealer,

which in the model is equivalent to sharing their expected value of the security Ei[f ] + vi.

Each dealer d receives orders from NI/ND clients.9 The dealer constructs s̃d, which is an

9It is quite plausible that a dealer might also include his own private signal in the information he
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average of his clients’ expected valuations:

s̃d =
ND

NI

0

@
X

i2Id

Ei[f ] + vi

1

A , (4)

where Id is the set of investors bidding through dealer d.

Dealers, in turn, can share some of this order flow information with their clients. Dealer-

client information sharing takes the form of a noisy signal about s̃d, which is the summary

statistic for everything the dealer learned from client order flow. That noisy signal is

s⇠i = s̃d + ⇠i where ⇠i ⇠ N(0, ⌧�1

⇠ ) is the noise in the dealers’ advice. The noise ⇠i

varies by dealer and by client, but sums to zero for each dealer, in each state. Section 4.4

considers dealers who mislead clients, by not truthfully revealing their information sharing.

Our model captures unbiased, noisy dealer advice, as well as two extreme cases: perfect

information-sharing between dealers and clients (⌧⇠ = 1) and no information-sharing

(⌧⇠ = 0).

In addition, dealers may share information with other dealers. Let  be the size of the

group of dealers who share their information with each other. In other words, each dealer

reveals all of his or her signals to  � 1 other dealers. No sharing between dealers is the

case where  = 1. All information sharing is mutual.

The final piece of information that all agents condition on is the auction-clearing price p.

Let si(p) denote the unbiased signal that agent i constructs from supposing that p is the

auction-clearing price, when choosing each conditional demand q(p). We guess and verify

that (si(p)� f) ⇠ N(0, ⌧�1

pi ), where ⌧pi is a measure of the informativeness of the auction-

clearing settlement price. Recall that direct and indirect bidders have private values that

are private information. Adjusting their price inference for their own valuation, they infer

s(p|vi) or s(p|vj) from a realized price p.

Signal vectors for the three types of agents are as follows: An investor who bids directly

observes a vector of signals Sj = [sj , s(p|vj)]. Investors who bid through dealers observe

the larger signal vector Si = [si, s⇠i, s(p|vi)]. While these investors observe an extra signal,

they also will end up having signals and thus making bids that covary more with price

information. A dealer observes the same signals as an indirect investor, except that he sees

the exact order flows, instead of a noisy signal of them. For dealer d, Sd = [sd, s̃d, s(p)].

Since non-price contingent bids � and dealer valuations vd are common knowledge, we don’t

transmits to clients. However, the policy debate focuses on the e↵ect of dealers’ sharing of client order flow
information. We therefore exclude dealers’ private information from s̃, to isolate e↵ects from the sharing
of order flow information. Note also that dealers’ signals to clients covary with clients’ private and public
information. Our solution method accounts for this covariance.
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include them in S. But every speculative bidder accounts for them.

For every agent, we use Bayes’ law to update beliefs about f . Bayesian updating is com-

plicated by the correlation in the signal errors. Therefore, we use a state-space filtering

method that is not standard in this literature.The following are optimal linear projection

formulas:

E [f |Sj ] = (1� �
01m)f̄ + �

0
Sj where (5)

�j ⌘ V (Sj)
�1Cov (f, Sj) (6)

V [f |Sj ] = V (f)�Cov (f, Sj)
0V (Sj)

�1Cov (f, Sj) ⌘ ⌧̂
�1

j , (7)

where m is the number of signals in the vector Sj , the covariance vector is Cov (f, Sj) =

1m⌧
�1

f and the signal variance-covariance V (Sj), is worked out in Appendix A.2. The vec-

tor �j = [�sj , �⇠j , �pj ] dictates how much weight an agent puts on his signals [sj , s⇠d(j), s(p)]

in his posterior expectation. In a Kalman filtering problem, � is like the Kalman gain.

Equilibrium A Bayesian Nash equilibrium, for a given information sharing arrangement

(⌧⇠,  ) is

1. A bid function by each direct or indirect bidder that maximizes

max
qi(p)

E[� exp(�⇢(Wi + (1� ↵)qivi))|Si] (8)

s.t. Wi = W0,i + qi(↵ps � p) and (12) (9)

The second constraint (12) is the auction clearing condition and reflects that the

speculative bidders choose their quantity, taking into account the e↵ect their demand

has on the equilibrium price.

2. A bid function for each dealer that maximizes

max
qd(p)

E[� exp(�⇢(Wd + qdvd))|Sd] (10)

s.t. Wd = W0,d + qd(↵ps � p) and (12) (11)

3. An auction-clearing (settle) price that equates demand and supply:

NIX

i=1

qi +
NJX

j=1

qj +
NDX

d=1

qd + � = 1. (12)

4. A secondary market price ps that equates demand and supply.

11



2 Solving the Model

Equating demand and supply reveals that the secondary market price is ps = f + g, where

f is the normally-distributed mean of the secondary market private values and g depends

on model parameters. Below, we substitute in this solution for ps and derive optimal

bid schedules of investors and dealers. Finally, we work out the auction equilibrium with

di↵erent, exogenous information-sharing arrangements.

Since all investors’ posterior beliefs about f turn out to be normally distributed, we will use

the properties of a log-normal random variable to evaluate the expectation of each agent’s

objective function. We then substitute the budget constraint in the objective function,

evaluate the expectation and take the log. The investor maximization problem simplifies

to maxqj ,p qj(↵E[f |Sj ]+↵g+(1�↵)vj�p)� 1

2
⇢↵

2
q
2

jV[f |Sj ], subject to the market clearing

condition (12), where the price is not taken as given. The first order condition with respect

to qj reveals that investors bid

qj (p) =
↵E[f |Sj ] + ↵g + (1� ↵)vj � p

⇢↵2V[f |Sj ] + dp/dqj
. (13)

For dealers, the expression is almost identical. The only di↵erence arises from the gap in

signal vector S that the dealer conditions on and the form of the private value vd that

is earned on all shares purchased. Since vdqd = �qd + �, the constant � drops out when

taking the first order condition and the optimal dealer bid is

qd (p) =
↵E[f |Sd] + ↵g + �� p

⇢↵2V[f |Sd] + dp/dqd
. (14)

Equilibrium auction-clearing price In order to understand the implications of dif-

ferent information sharing arrangements, we solve for auction outcomes in the three cases

illustrated in Figure 1: 1) dealers and customers share information; 2) dealers also share

information with other dealers; and 3) no information is shared either with customers or

between dealers.

The no-information-sharing world is one with “Chinese walls,” where dealers cannot use

client information to inform their own or their clients’ purchases. In recent years, a number

of financial firms have reportedly implemented such a separation of brokerage activities

and transactions for their own account. Regulators have also recommended that banks

establish and enforce such internal controls to address potential conflicts of interest.10 In

our Chinese wall specification, each agent sees only their own private signal si and the

price information si(p) which they can condition their bid on, but not any signal from the

10For example, the Financial Stability Board (FSB) 2014 report on “Foreign Exchange Benchmarks.”
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dealer: Si = [si, si(p)].

In the information sharing cases, investors observe the larger signal vector Si = [si, s⇠i, si(p)].

The signal s⇠i includes information from clients and/or information shared across dealers.

In these cases, the investors’ own information will also be shared with others.

The equilibrium auction price is obtained by adding up all investors’ and dealers’ asset

demands as well as the volume of market orders x and equating them with total supply.

As in most models with exponential utility, the price turns out to be a linear function of each

signal. The innovation in this model is that information sharing changes the linear price

weights, which a↵ects utility. To the extent that signals are shared with more investors,

that signal will influence the demand of more investors, and the weight on those signals in

the price function will be greater.

Result 1. Under each of the following three information-sharing regimes:

1. Dealers share information imperfectly with clients, but not with other dealers.

2. Dealers share information with clients and  other dealers.

3. There is no information sharing at all. Dealers cannot use client trades as informa-

tion on which to condition their own bid (Chinese walls).

auction revenues are always a linear function of signals si and investors’ average private

values v̄:

p = A+BI s̄I +BJ s̄J +BDs̄D + CI v̄I + CJ v̄J +D� (15)

where s̄I ⌘ N
�1

I

PNI
i=1

si, s̄J ⌘ N
�1

J

PNJ
i=1

sj and s̄D ⌘ N
�1

D

PND
i=1

sd are the average signals

of indirect bidders (I), direct bidders (J) and dealers (D), and � is the non-price contingent

demand. The equilibrium pricing coe�cients A,BI , BJ , BD, CI , CJ and D di↵er by model

and are reported in Appendix A.

Models of competitive markets often have simple price coe�cient solutions; this is not

true in our setting. The complication is two-fold: 1) there are strategic agents whose

demands are not linear in the coe�cients of the price function and 2) shared signals are

correlated with price information. Both sources of complexity are essential to understand

how information sharing a↵ects auction revenue. Appendix A proves that an equilibrium

exists and is unique in four classes of models: low market power, little information sharing,

widespread information sharing, and su�ciently symmetric bidders. Outside these classes,

we establish existence numerically.

With Chinese walls, when dealers can no longer use the information in their clients’ orders,

the functional di↵erence between indirect and direct bidders and dealers disappears. In

other words, eliminating all information sharing e↵ectively eliminates intermediation as
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well.11

Auction Revenues Information sharing results in more information for the average

investor. By its nature, information reduces uncertainty, or conditional variance. Assets

with less uncertain payo↵s are less risky. One of the most robust findings in finance and

economics is that less risky assets consistently command higher prices. Because the supply

of the Treasury asset is normalized to one, price and auction revenue are the same. Since

private values and non-price contingent bids are both mean zero, from (15), an average

auction’s revenue is : A+ (BI +BJ +BD)(f̄ + g), where (f̄ + g) is the average secondary

market price. The term A < 0 incorporates both the risk premium needed to induce risk

averse buyers to purchase the asset, as well as market power. The term (BI +BJ +BD) is

the sensitivity of the price to changes in secondary market demand. The next result shows

that, in many cases, both A and B rise when information improves.

Result 2. Information sharing raises revenue. For a ball of parameters,

{⌧vI , ⌧vJ , ⌧f , ⌧s,�} 2 ⌥, when bidders and dealers all have weakly more information from

others (weakly lower V [f |S] for all), then auction revenue p weakly rises, on average.

With normally distributed variables and signals, an additional signal always weakly de-

creases conditional variance. In fact, this concept is equivalent to Blackwell’s definition of

“informativeness.” The modifier weakly is there simply because a signal might have no

information content. But if at least one bidder has an informative signal and all others

have no less information, the same proof shows that revenue is strictly higher. This ef-

fect arises because V [f |S] shows up in the denominator of the first order condition (14),

representing the idea that risk-averse bidders bid more for a less risky asset. The proof

further shows that the other term in the denominator dp/dq, representing market power,

also falls. There is less scope for price manipulation when other market participants are

better informed because risk-averse bidders bid more aggressively on mispriced assets when

they are better-informed.

When the model is su�ciently asymmetric (parameters outside ⌥), the market power result

can reverse. In these cases, information sharing among a subset of agents, such as dealers,

can increase market power because it exacerbates information asymmetry. (Section 4.2

o↵ers an example.)

While this type of information-price e↵ect shows up in many imperfect information as-

set pricing models, it has largely been neglected in the policy discourse on information

regulation. Our contribution is to quantify how much revenue it costs.

11The finding that there is no longer any meaningful distinction between a dealer and a non-dealer large
investor is reflected in the fact that in the price formula, if the number of dealers and large investors is
equal and the dealers do not face a minimum bidding requirement, then the coe�cients on the signals of
dealers sd and the signal of large investors sj are equal as well.

14



Expected Utility When all bidders share information, are they collectively better o↵?

This is a distinct question from whether an individual is better o↵ if they alone choose to

share information. The individual’s sharing decision is analyzed in Section 5. The following

result establishes that information sharing can be like a prisoners’ dilemma problem. To

make this point clearly, we examine a situation where each bidder simply gets more infor-

mation. This limiting case is instructive because when one investor gets such information,

this cannot possibly be bad for that individual – there is free disposal of information. But

when all bidders get this additional information, bidders are collectively made worse o↵.

This prisoners’ dilemma e↵ect arises in cases where the information makes beliefs more

heterogeneous, as in the case with additional private signals.

Result 3. Better private information is collectively harmful to bidders. If N is

su�ciently high and � su�ciently low, and either

(a) there is no direct bidder; or

(b) there are direct bidders and ⌧vI 2 B✏v(⌧vJ) and ⌧⇠ 2 B✏v(0) where B✏v(⌧vJ), B✏⇠(0)

are open balls of parameter values; or

(c) there are direct bidders, but
NJ
N is su�ciently low,

then indirect bidders have higher ex-ante expected utility when no bidders have a private

signal si.

This result, similar to Hirshleifer (1971), arises because heterogeneous information un-

dermines risk-sharing. The ex-ante identical bidders’ socially optimal bids should result

in symmetric allocations of the Treasury security. Heterogeneous information encourages

bidders to take larger or smaller positions than their peers, resulting in less symmetric al-

locations and worse risk-sharing. The numerical results show examples where information

sharing functions like better private information, reducing utility, as well as other instances

where the sharing reduces belief heterogeneity, to improve bidder utility.

3 Mapping the Model to the Data

The model has thirteen parameters. We map the model to the data by fixing the number

of agents (three parameters) and then calibrating the remaining nine parameters to twelve

moments from Treasury auction allotments and market pricing data. The rest of this

section provides detail on the calibration. Our sample starts in September 2004 and ends

in June 2014. To study a comparable sample and estimate yield curves, we restrict attention

to 2-, 3-, 5-, 7- and 10-year notes and exclude bills, bonds and TIPS. In 2013 alone, Treasury

issued nearly $8 trillion direct obligations in the form of marketable debt as bills, notes,
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bonds and inflation protected securities (TIPS), in about 270 separate auctions.12

In each auction, price-contingent (called “competitive”) bids specify a quantity and a rate,

or the nominal yield for note securities. “Non-competes” is Treasury-auction parlance for

non-price contingent bidders; they specify a total amount to purchase at the market-

clearing rate. Price-contingent bids can be direct or indirect. To place a direct bid,

investors submit electronic bids to Treasury’s Department of the Public Debt or the Federal

Reserve Bank of New York. Indirect bids are placed on behalf of their clients by depository

institutions or brokers and dealers.

All bids are received prior to the auction close. The auction clears at a uniform price, which

is determined by first accepting all non-price contingent bids, and then price-contingent

bids in ascending yield order. The rate at the auction (or stop-out rate) is then equal to

the interest rate that produces the price closest to, but not above, par when evaluated at

the highest yield, at which bids were accepted.

Using data published by the U.S. Treasury, for each maturity, we compute the mean share of

securities allotted to primary dealers, non-competes, direct and indirect bidders. Primary

dealers bidding for their own account, are the largest bidder category at auctions accounting

for 53% on average of all price-contingent bids. Indirect bidders are the second largest at

about 37%. Direct bids account for about 9% and non-competes about 1%.

The next set of calibration moments are the mean and variance of auction prices and

secondary market values. Measuring prices and payo↵ risk (speculative risk) is central to

our calibration strategy because risk and return help to pin down the precision of bidders’

information.13 When calculating auction prices p, note that, up to rounding, the auction

price clears at par. The stop-out coupon rate is what is uncertain. It is a function of issue-

specific value as well as future interest rates. In our calibration, we focus on issue-specific

fundamentals, or the “on-the-run” value of the issue. Investors can and do hedge interest

rate risk by shorting a portfolio of outstanding securities. To strip out the hedged interest-

rate e↵ects, we assume that the bidder enters the auction with an interest-rate-neutral

portfolio, which holds one unit of the auctioned security and shorts a replicating portfolio

of bonds trading in the secondary market. Thus, price p in our model corresponds to the

auction price, minus the present value of the security’s cash-flows, where future cash flows

12Treasury bills are auctioned at a discount from par, do not carry a coupon and have terms of not more
than one year. Bonds and notes, instead, pay interest in the form of semi-annual coupons. The maturity
of notes range between 1 and 10 years, while the term of bonds is above 10 year.

13Risks faced by speculative Treasury bidders are di↵erent from those faced by investors underwriting
corporate bonds. Because the U.S. sovereign secondary market is deep and liquid, Treasury investors can
hedge issuer-specific risks by shorting already-issued securities. Newly issued government securities do,
however, carry a liquidity premium relative to already-issued securities. Investors’ demand for specific
issues is the key determinant of these liquidity di↵erences. As a result, key underwriting risks for bidders
are issue-specific rather than issuer-specific.
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are discounted using a yield curve. To compute this measure, we estimate a Svensson yield

curve following the implementation details of Gürkaynak, Sack, and Wright (2007) but

using intraday price data as of 1pm, which is when the auction closes (data from Thomson

Reuters TickHistory).

To be consistent, the models’ secondary market value g + f corresponds to the secondary

market value of the interest-rate neutral portfolio on the date when the security is delivered

to the winning bidders, which is when secondary markets open. This delivery date lags the

auction date by an average of 5.5 days with a standard deviation of 2.3 days. The average

revenue from selling a new coupon-bearing security is about 40 basis points higher than

the replicating portfolio formed using outstanding securities. This well-known “on-the-run”

premium (Lou, Yan, and Zhang, 2013; Amihud and Mendelson, 1991; Krishnamurthy, 2002)

is positive across all maturities. Appendix B documents the algorithm to calculate payo↵s

and explores other ways of hedging the interest rate risk.

Table 1: Calibrated parameters. The valuation-related parameters in the Table

(⌧
� 1

2
f ,⌧

� 1
2

" ,⌧
� 1

2
vI ,⌧

� 1
2

vJ ,⌧
� 1

2
⇠ and �) are expressed in basis points. The standard deviation of the non-price

contingent parameter ⌧
� 1

2
� is measured as a share.

↵ f̄ ⌧
� 1

2
f ⌧

� 1
2

" ⌧
� 1

2
vI ⌧

� 1
2

vJ ⌧
� 1

2
⇠ ⌧

� 1
2

d ⇢ � NI NJ ND

0.40 54.81 181.92 5.60 7.45 0.96 1.00 1.00 488.09 42.57 200 50 20

Calibration Table 1 lists the 13 parameters in the model. Six of these parameters can

be matched directly to data. The three parameters that govern the number of market

participants (ND, NI and NJ) are chosen directly to approximate the observed number

of dealers (about 20) and produce 10 clients per dealer. Since indirect bidders take down

almost four times as much of the auction as direct bidders do, we set the number of direct

bidders NJ = NI/4 = 50. Next, the mean and standard deviation of the secondary market

price (f̄ and ⌧�1/2
f ) correspond directly to the first and second moments of the secondary

market buyers’ average valuations, measured in basis points. Note that the mean of the

secondary market value distribution f̄ and the pricing constant g do not a↵ect the auction

solution separately. Therefore, we calibrate their sum, f̄ + g. The sixth directly-measured

parameter is ↵, the probability of secondary market sale. We know that dealers take down

half the auction and sell almost all of their inventory within one week of auction. From

secondary market volumes, we also know that others must also sell holdings. This implies

that at least half the auction changes hands in the first week. More turnover makes the

e↵ects of information sharing stronger. Therefore, we choose a conservative value of 40%

and explore other values as robustness checks.
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Risk aversion closely governs the price of the Treasury and thus auction revenues. For a

given set of other parameters, we can infer the value of risk aversion that matches expected

revenue.14 Thus, for each set of candidate parameters, risk aversion ⇢ is chosen such that

the expected revenue (p) of the auction matches exactly observed data.

Table 2: Calibration targets and model-implied values. Prices and excess revenues
are all expressed in basis points. NI , NJ and Nd are set directly, resulting in three over-
identifying moments.

Data Model

Expected resale value(↵
�
f̄ + g

�
) 40.36 40.36

Stdev resale value (↵⌧�1/2
f ) 72.77 72.77

Expected revenue (p) 36.74 36.74
Stdev revenue 71.97 73.08
Price constant (A) -1.56 -3.55
Price sensitivity to fundamental (B̃) 0.97 1.00
Pricing Error Stdev. (�✏) 30.19 8.03
Indirect share (% ) 36.89 34.83
Dealer share (% ) 53.31 56.53
Volatility of dealer share 14.50 7.39
Direct share (% ) 9.80 8.64
Volatility of direct share 8.56 18.41

We calibrate the remaining six parameters jointly to provide the best fit to the remaining

nine aggregate moments in Table 2. Note that there are more moments than parameters.

Since the model is not an exact representation of reality, it cannot match all the moments.

The over-identifying moments provide extra information to guide parameter calibration

and gauge the fit of the model to the data. The calibration objective function for these

parameters includes the variance of the auction revenue (or the on-the-run premium at the

auction), the mean allotted share to primary dealers (
PND

d=1
qd), indirect bidders (

PNI
i=1

qi),

and to direct bidders as well as the variance of the direct and dealer share. In addition, we

estimate the empirical counterpart of the equilibrium pricing equation (15):

pt = �0 + B̃ ft + ✏t, where B̃ = BI +BJ +BD (16)

where, pt and ft are “on-the-run premiums” at the auction and issuance dates, respectively.

From (15) and (16), we see that excess revenues are positively correlated to the fundamental

value on issue date (B̃ > 0). The estimated value �̂1 = .97 (standard error = .034)

reported in Table 2 suggests that the auction price reflects expectations for secondary

market value, nearly one-for-one. The estimate of �✏ is the variance of the residual from

14Absolute risk aversion looks large. But that is only because we set the supply to one. When we instead
set supply to 100 or 1000, estimated risk aversion is 2-3 orders of magnitude smaller. The higher demand,
associated with this smaller risk aversion, clears the larger market supply.
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that regression.

To reflect the spirit of the minimum bidding requirement, we can set the level of minimum

bids � to be equal to the pro-rata share of the issuance at the expected price. But we do

not list this parameter because it does not a↵ect the demand functions. As a constant, it

drops out of the first order condition. The � parameter does matter: If we set it to 0, but

keep other parameters at the calibrated values, expected revenue is roughly 3 basis points

lower and dealers take down only about 10 percent of the auction.

The model moments are computed by drawing 100,000 realizations of the fundamental f , all

the signals Si, and non-price contingent demands �, and calculating the average equilibrium

outcomes. We solve the model by solving for the equilibrium pricing coe�cients in Result

1. This amounts to solving for a fixed point in a set of twelve non-linear equations (six for

pricing coe�cients, three for demand elasticities, and three for the belief vector of indirect

bidders). We iterate to convergence, using the average violation of the market clearing

condition (12) to ensure that we find the equilibrium pricing coe�cients. At our solution,

the average violation of the market clearing condition is about 10�12. We use multiple

starting points to ensure that the maximum is a global one.

4 Results: E↵ects of Information Sharing

We examine two forms of information sharing. We first study information sharing between

dealers and clients by varying the precision of the dealer signal to their clients, without

allowing dealers to communicate amongst each other. Then, we hold the precision of client

communication fixed and vary the number of other dealers that each dealer shares infor-

mation with. In both cases, we find that information sharing increases auction revenues

as well as revenue volatility. The surprising finding is that investors dislike, as a group,

when dealers share more precise information with them, but sometimes benefit when deal-

ers share information with each other. The intuition for this puzzling finding is that client

information sharing increases information asymmetry and inhibits risk sharing, as in Hir-

shleifer (1971), while inter-dealer talk can reduce information asymmetry and improve risk

sharing.

Since the quantity of auctioned securities is fixed and normalized to 1, the auction price and

auction revenues are the same. In the plots that follow, we study expected excess revenues

varying one exogenous parameter at a time. In each exercise, all parameters other than

the one being varied are held at their calibrated values from Table 1.
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Figure 2: Dealer Information Sharing. Left: dealer information sharing with clients;
right: dealer information sharing with other dealers. In the left panel, the horizontal axis
shows the precision of the dealer signal ⌧⇠ from zero (no information sharing) to infinity
(perfect information sharing).
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4.1 Information Sharing Raises Auction Revenue

Information sharing – of either kind – makes the average bidder better informed, which in

turn makes Treasuries less risky to the average investor, eliciting stronger bids, resulting

in higher auction revenues. However, the quantitative revenue e↵ects of client-sharing

and dealer-sharing are quite di↵erent. The left panel of Figure 2 plots expected auction

revenues, as a function of di↵erent levels of dealer information sharing with clients. The

horizontal axis shows the precision of the dealer signal ⌧⇠ from zero (no information sharing)

to infinity (perfect information sharing). More information sharing means that dealers

reveal their information s̄d with less noise to their clients. In the absence of inter-dealer

talk ( = 1 in left panel), moving from no sharing to perfect information sharing with

clients results in a very small increase in expected revenue of a tenth of a basis point.

The vertical line on the plot represents the amount of client information sharing implied

by the model calibration. This calibrated status quo corresponds to revenues of 36.74

bps. How much can client information sharing raise revenue? Given an annual Treasury

issuance of about $8 trillion, the model implies that going from no sharing to perfect sharing

with clients would increase total auction revenues by a modest $80 million. Furthermore,

the model suggests no revenue gain from encouraging further client information disclosure

compared to the calibrated status-quo. Indeed the revenue curve to the right of the current

level of information sharing is flat. Importantly this result assumes that dealers do not

share information with each other. The model suggests that without dealer sharing, the

benefits of client information sharing are limited.
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The biggest revenue gains arise when both types of information sharing take place as shown

in the right panel of Figure 2. As shown by the brown dashed line, if dealers do not share

information with their clients, the revenue benefits of dealer talk are small, less than 0.5

basis points. In contrast, the combination of inter-dealer sharing and sharing information

with clients is a powerful revenue generator. In the presence of full client information

sharing (solid blue line), increasing the number of dealers with which each dealer shares

information, auction revenues increase by almost 3 basis points.15 Given the current level

of client information sharing implied by our model, the additional revenue from allowing

all dealers to share with four (or more) other dealers amounts to $ 2.4 billion.

In unreported results, we also find that both types of information sharing reduce the

variance of auction revenue, but that this e↵ect is quite small (order of less than a basis

point).16 We also find that when prior uncertainty about the future value of the asset is

high (precision ⌧f is low), or if the variance of non-price contingent bids grows, information

sharing raises revenue by more. The reason is that both make bidders more uncertain ex-

ante. When bidders are more uncertain, there is more scope for information sharing to

reduce risk and raise revenue.

One proposed policy is an open order book. An open book allows all bids to be observed

by all market participants. In our setting, the open order book corresponds to perfect

order information sharing between clients and dealers (⌧⇠ = 1) and perfect interdealer

information sharing ( = ND) but does not imply full sharing of all observed signals.

Because of the strategic bidding, open order book yields slightly lower revenue than full

information sharing. The di↵erence is that when dealers share information, they convey

signals directly. Orders on the order book are bids. Because of private values, bids convey

signals, mixed up with private value information. So bids convey imperfectly what others

know and are more open to manipulation. If instead of a strategic bidder market, this

were a large, competitive market, the benefits of an open order book would rise further to

40.36 basis points. That’s a 3.6 basis point increase over the status quo, corresponding to

an additional $2.9 billions in Treasury revenue.

15Since we assume dealers are symmetric, we need the number of dealers in an information-sharing
collective to be a factor of 20, the calibrated number of dealers. Thus, we stop at 9, which implies that two
groups of 10 dealers each are sharing information with each other. Any more information sharing beyond
this level would be perfect inter-dealer sharing.

16The reason for the small change in variance is because two countervailing e↵ects nearly o↵set each other.
In a model with common values, an increase in information sharing would increase revenue volatility: As
investors put more weight on their more informative signals, the auction clearing price becomes more
sensitive to changes in the fundamental value f. With private values, when information sharing makes the
auction price more responsive to the speculative return, it also becomes less responsive to private values.
The result is small changes in revenue variance.
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The role of minimum bidding requirements Primary dealers are required to be

consistent, active participants in Treasury auctions. While rules have evolved over time,

today, primary dealers are expected to bid at all auctions an amount equal to the pro-rata

share of the o↵ered amount, with bids that are “reasonable” compared to the market. The

inclusion of minimum bidding penalties in dealers’ private values is realistic but also helps

to calibrate the model in a sensible way. Absent a reason for a high private value and given

common risk aversion for all bidders, it would be hard for our model to explain why dealers

bid for so much of the auction. One way to see this is by looking at the estimated level of

� = 55 in Table 1, which is about as large as the standard deviation of the fundamental in

the model (⌧
� 1

2
f = 73). In words, the model needs a private value component for dealers

which is of the same order as the secondary market price, to rationalize the observed shares.

In unreported results we show that the main e↵ect of minimum bidding requirements is

that a higher penalty (�) raises expected revenue by boosting demand by primary dealers,

since dealers are incentivized to bid more aggressively. But bidding requirements leave the

e↵ect of client information-sharing on revenue and utility unchanged.

4.2 Bid Shading and Signal Jamming

Since our bidders have price impact and are strategic, they optimally use their bids to

influence the auction-clearing price (“bid shading”), which is the central focus of Hortaçsu,

Kastl, and Zhang (2016). Our bidders can also influence others’ beliefs, so as to impact

others’ bids (“signal jamming”). In this section, we quantify how much bid shading and

jamming reduce expected revenues. This strategic behavior does suppress revenue, but it

does not interact much with information sharing. Market power has little e↵ect on the cost

and benefit of information sharing, except in the case where dealers share extensively.

Each speculator’s and primary dealer’s bid depends on her expected secondary market

price and private value (numerator of (13)), and on the sensitivity to that expected value

(denominator of (13)). The sensitivity (denominator) has two terms. The first is a risk

aversion ⇢V [f |Si] term. If investor i is more risk averse, then she bids for a smaller position

in the asset. The second term is dp/dqi. This is a strategic e↵ect that captures her ability

to influence the auction price. We break that strategic e↵ect into two parts: bid shading

(BS) and signal jamming (SJ).

If the bidder reduces their demand by one unit, and others’ bidding best responses stayed

fixed, auction-clearing price falls. Bid shading is the part of dp/dqi that would remain,

even if, when an investor reduces his bid, others do not make inference from the lower

price: BS = dp/dqi|�p=0, where �p = 0 means that other bidders place zero weight

on the price signal. The other strategic e↵ect is the ability to influence others’ be-
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Figure 3: Bid Shading and Signal Jamming Revenue E↵ects. This Fig-
ure shows the e↵ect of removing either bid shading (dp/dqi|�p=0) or signal jamming
((dp/dqi)�1�BS

�1) from bidders’ demands, one at a time. Each line represents an average
price (revenue). Left: dealer information sharing with clients; right: dealer information
sharing with other dealers. Formulas for bids without jamming and shading are (131) and
(133) in the Appendix.
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liefs through prices. This is signal jamming: SJ = (dp/dqi)�1 � BS
�1.17 If we let

Ml = (⇢↵2
V [f |sl] + dp/dql)�1, for each type of investor l, and let �lp be the Bayesian

updating weight bidder l puts on price information (from eq. (6)) and B̃ be the combined

e↵ect of all bidders’ signals on price (from eq. (16)), then we can express signal jamming

as SJ = ↵
B̃
(MI(NI � 1)�Ip +MJNJ�Jp +MDND�Dp). The key piece of signal jamming

is that it works through the �p Bayesian weights. Manipulating the price to distort others’

beliefs works to the extent that others make inference from the price they condition on,

which is �p > 0.

Figure 3 shows that, not surprisingly, removing bid shading and signal jamming causes

bidders to bid more boosting expected revenues. But as shown in panel (a), the revenue

curve shifts parallel. This means that information sharing with clients has the same e↵ect

on revenues regardless of market power. When information is shared between dealers (panel

b), bid shading and signal jamming have a much larger e↵ect on expected revenues. For

modest dealer sharing, the shift is again parallel, meaning that market power still does

not interact with information sharing. However, for extensive dealer sharing, the revenue

curves diverge: The revenue benefits of extensive dealer information sharing are larger,

without market power. As more dealers talk, we see that gap in revenue widens to about

2.5 bps, between auctions with and without strategic bids.

In most of our simulations, neither bid shading or signal jamming interacts with the

cost/benefit of information sharing. There are two reasons for this irrelevance. One is

that there are many market participants. The other is that risk swamps the e↵ect of

17Randomizing bids to jam signals is not a credible commitment because there is a unique utility-
maximizing demand.
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market power. Our estimation reveals that the volatile auction clearing price and the ob-

served auction allocations are incompatible with high market power. Panel (c) reveals that

market power is orders of magnitude smaller than risk. (The two terms are added in the

denominator of demand (13)). However, both conditions are weakened when dealer in-

formation sharing is widespread. Widespread dealer sharing substantially reduces dealers’

risk. Being relatively better informed, dealers bid for most of the auction shares. Because

dealers get e↵ectively larger, it is as if there are fewer other market participants. Also,

when risk falls, market power is no longer relatively small (convergence of the two lines

in panel (c)). Thus, extensive dealer sharing is a situation in which market power could

significantly compromise auction revenue.

4.3 Client vs. Dealer Information Sharing: Utility E↵ects

So far, we studied e↵ects of client and dealer information sharing on expected auction rev-

enues. In this section, we study e↵ects on bidders’ welfare. A key insight of the model is

that client and dealer information sharing are quite di↵erent for bidders’ welfare. The rea-

son for this opposite e↵ect lies in how each type of information sharing a↵ects information

asymmetry and risk-sharing.

It would be logical to think that if dealers are passing along more of their information to

their clients, that clients would be happy about that. That turns out not to be the case.

Figure 4 plots investors’ utility levels relative to the “Chinese walls” benchmark of no

information sharing between dealers and customers. Panel (a) shows that bidders’ utility

declines when dealers share more information with them. Information acquisition is like a

prisoners’ dilemma in this setting. Each individual investor would like more of it. But when

they all get more, all are worse o↵. One reason is that better-informed investors bid more

for the asset; by raising prices, they transfer more surplus to the issuer (Treasury).

The other mechanism at work is that sharing information with clients increases information

asymmetry. When dealers share little information with clients, clients’ beliefs are not very

di↵erent. They all average their priors with a heterogeneous, but imprecise, private signal.

Because private information is imprecise, beliefs mostly reflect prior information, which is

common to all investors. When di↵erent dealers transmit di↵erent signals, and investors

get a more precise dealer’s signal, they weigh it more heavily in their beliefs; this makes

investors’ beliefs di↵er. This increase in information asymmetry makes ex-ante similar

investors hold di↵erent amounts of securities ex-post. Asymmetric information pushes the

asset allocation further away from the e�cient diversified benchmark. Because investor

preferences are concave, investment asymmetry hurts average investor utility. In short,

information reduces risk sharing, which reduces utility.
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Figure 4: Clients Lose from Client Information Sharing but Can Gain from
Dealer Talk. Both panels plot the change in clients’ expected utility from information
sharing, as a fraction of the utility each type gets in the Chinese wall (no sharing) equi-
librium. Client information sharing makes allocations more heterogeneous. This reduces
client expected utility. Dealer and client information sharing reduces this asymmetry and
can improve utility.
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One might also expect that when dealers share information with each other, investors are

harmed. When dealers share information with each other and do not pass this better

information on to the clients, clients do su↵er as shown by the blue line in panel (b) of

Figure 4. However, if dealers share what they know with their clients, clients can benefit

from inter-dealer talk as shown by the right side of the dashed line in panel (b). When

only a few dealers talk, the limited dealer talk increases belief and investment dispersion,

just like client information sharing. But when many dealers exchange information, their

information sets become more similar. That is the essence of information sharing. Since

dealers’ beliefs are more similar, the signals that dealers share with their clients also become

more similar. The similarity of these signals o↵set the dispersion increase arising from more

precise information. When dealers share information with four other dealers, belief and

investment dispersion stabilizes. When clients get more precise (shared) information from

their dealers, but do not face the downside of more asymmetric auction outcomes, their

utility rises.

When information is shared, two features of the information environment change simulta-

neously. First, the agents involved have more precise forecasts of post-auction appreciation.

This creates the increase in auction revenues, which is common to both types of information

sharing. Second, there may be more or less market-wide forecast disagreement, depending

on how information is shared. Client (dealer) sharing is like observing a private (public)

signal in a strategic game. Client information sharing is like more private information

because it pushes beliefs further apart. The result that more informative private signals
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can increase information asymmetry and thereby reduce utility is the same force that is

at work in Hirshleifer (1971). In contrast, dealer sharing makes information sets more

similar or more public. A large literature examines the di↵erent e↵ects of public and pri-

vate information in strategic environments. In some of those environments, coordinated

actions are socially costly (Morris and Shin, 2002; Angeletos and Pavan, 2007); therefore,

public signals are bad because they enable this costly coordination. In other environments,

like Lucas (1972) island models, coordination is socially beneficial (Woodford, 2011). In

the island models, like in this model, public information is good: In a way, dealer talk is

equivalent to merging some of Lucas’ islands together.

Profits of non-price contingent bidders Whenever information is shared, speculative

bidders become better informed, surplus is transfered from bidders to the issuer and profits

of non-price contingent bidders decline. Who are these bidders that lose out? Some non-

price contingent bidders are small retail investors. Many are bids placed by the New York

Fed on behalf of foreign and international monetary authorities (FIMA) that hold securities

in custody at the Fed.18

4.4 What if Information Sharing Enabled Collusion?

One reason why some call for curbing information sharing is that dealers who share infor-

mation may also bid collectively to maximize joint utility. We call this collusion. Many

textbook analyses show economic losses associated with collusion. We do not repeat those

arguments here. Instead, we look at how information sharing interacts with the costs of

collusion.

Suppose that every time dealers shared information with each other, that group of dealers

also colluded, meaning that they bid as one dealer, in order to amplify their price impact.

How would this collusion and information sharing jointly a↵ect auction revenue? Without

collusion, dealer information sharing increases expected revenue because of the reduction

in investors’ risk (Figure 2, panel b). With collusion, the e↵ect depends on client informa-

tion sharing. When no information is shared with clients, investors don’t perceive a risk

reduction, and revenue declines as collusion increases. With client information sharing,

there is a small region in which the joint e↵ect of information sharing and collusion is to

increase revenue slightly, before dropping below the “Chinese walls” benchmark (Figure

5).

When expected revenues decline, investors’ utilities are higher, while taxpayers are worse

o↵. In other words, if information enables collusion, the issuer is the main loser. From an

18FIMA customers can place non-competitive bids for up to $100 million per account and $1 billion in
total. Additional bids need to be placed competitively.
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Figure 5: Collusion reduces revenue. Average equilibrium auction revenue, assuming
that when  dealers share information, they also bid as one. These results di↵er from
previous figures because here, varying information-sharing along the x-axis also varies the
extent of collusion.
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auction revenue perspective, this does not necessarily mean that prohibiting information-

sharing would be optimal. If anti-collusion laws could be e↵ectively enforced, without

prohibiting the sharing of information, that would be the best possible outcome for Treasury

revenue.

Lying about dealer talk Perhaps not all investors know that dealers swap order flow

information with other dealers. Of course, one could enforce laws about disclosure of

information practices, without prohibiting information sharing. But agents understanding

of others’ strategies do matter in the results that we have discussed so far. When a set

of dealers share information and collude but others are not aware, auction revenue falls

by more than in Figure 5.19 When inter-dealer information sharing is undisclosed, even if

information is subsequently shared with clients, revenue declines. This is because if clients

are not aware that their information is very precise, they do not bid aggressively. Thus

hidden information sharing fails to raise auction revenue.

5 Choosing Direct or Indirect Bidding

So far, the paper takes information sharing as given. A distinguishing feature of U.S.

Treasury auctions is that they are mixed auctions: Any investor can choose to place an

intermediated bid through a primary dealer, or to bid directly. When choosing how to

bid, information sharing arrangements matter. In order to understand these e↵ects of

information sharing, we explore the choice of a single bidder deciding whether to bid

19Details of this model variation and its results are reported in Appendix C.5.
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directly or indirectly (through a dealer). Once clients have a direct/indirect bidding choice,

it becomes clear why dealers may share some of their information with clients. Absent any

information sharing, clients would have no incentive to bid with them. Similarly, a dealer’s

ability to use client information is what incentivizes them to be dealers.

Model: Choosing to Bid Directly or Indirectly Consider one investor choosing

between bidding directly or indirectly through an intermediary (the dealer). The investor’s

choice of how to bid a↵ects the information structure of that investor, its dealer, other

investors bidding with that same dealer, and the information content of the price s(p).20

If investor i bids indirectly, through dealer d, the model and the signals are as discussed in

the baseline specification. But when the investor chooses to bid directly on his own behalf,

he observes only his own signal, private value and the price information: Si = [si, vi, si(p)].

The order flow signal of the dealer that investor j refused to bid through, now has a signal

based on NI/ND � 1 clients’ order flow signals. This dealer also knows one more piece

of important information: that one investor, an investor who typically bids through him,

decided to bid directly.

Solving the model with an endogenous direct versus indirect bidding decision introduces a

technical challenge. The decision to bid directly or indirectly itself becomes a signal. We

assume that the dealer who would intermediate this trade observes the investor’s bidding

decision and transmits this information to clients, with noise. If the investor bids through

the dealer, the dealer observes his bid, as before. If the investor bids directly, the dealer

learns that the investor’s signal must lie in one of two disjoint regions of the distribution.

This is problematic because doing Bayesian updating of beliefs with truncated normals

would require involved simulation methods. Embedding that updating problem in our

solution would render it intractable.

We circumvent this problem by constructing an approximating normal signal. Through

simulation, we first estimate the mean and variance of the investor’s signal, conditional on

choosing direct bidding. Then, whenever the investor chooses to bid directly, the dealer,

who would have intermediated that trade, makes inference from the direct bidding decision.

That dealer observes a normally distributed signal, sq = f + eq (q for quit) with the same

mean and variance as the signals of the simulated direct bidders. This normal signal is

included in the precision-weighted average signal of dealer d0. In Appendix B we show how

this signal can be used to construct a precision-weighted average signal of dealer d
0 and

derive the updated equilibrium pricing condition.

20There may well be fixed costs associated with bidding directly for large investors, such as registering
with the online direct bidding system known as TAAPSLink for large investors or setting up one’s own
trading desk. We abstract from such costs because they are di�cult to quantify and do not change the
main price asymmetry result.
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Client Information Sharing and the Direct/Indirect Bidding Decision Examin-

ing expected utility in our model clarifies the incentives to bid directly and indirectly. Our

results reveal how information sharing a↵ects bidders’ utility of bidding through dealers.

This, in turn, helps to explain why information sharing with clients takes place.

When the investor chooses whether to invest through a dealer, he has seen his private

signal si. In addition, the bidder knows his private value vi. Thus the intermediation

choice maximizes expected utility, with an additional expectation over the information

that the investor has not yet observed. Computing the expectation over possible price

realizations and dealer signals, but conditioning on an investor’s private signal, we find

that expected utility of any bidder i is21

EUi = � exp(⇢W0i)(1 + 2✓i�Vi)
� 1

2 exp

✓
� µ

2

ri

✓
�1

i + 2�Vi

◆
. (17)

The intermediation decision a↵ects utility in three ways: through the expected profit per

unit allotted µri, the sensitivity of demand to expected profit ✓i, and through the ex-ante

variance of expected profit �Vi. These three terms are:

µri ⌘ E{↵E[f |Si] + (1� ↵)vi � p|si}, (18)

✓i ⌘ ⇢[⇢↵2V[f |Si] + dp/dqi]
�1

⇣
1� 1

2
⇢[⇢↵2V[f |Si] + dp/dqi]

�1
↵
2V[f |Si]

⌘
, (19)

�Vi ⌘ ↵
2V{E[f |Si] + (1� ↵)vi � p|si} = V[↵f � p|si]� ↵

2V[f |Si]. (20)

The first term µri embodies the main cost of intermediation: It reveals some of one’s private

information si to others. This e↵ect shows up as a reduction in µri, the ex-ante expected

profit per share, after all signals are observed. Information sharing reduces µri because it

raises price p (Result 1). Reducing the risk premium (�A in the price equation (15)) raises

the price, bringing it closer to expected value: ↵E[f |Si] + (1� ↵)vi.

The second term ✓i captures the main advantage of intermediation: Dealers give their

clients an additional signal, s⇠i, which makes them better informed, lowering V [f |S]. Ap-
pendix A shows that ✓i is positive and strictly increasing in the posterior precision of the

asset payo↵ V[f |Si]�1. Thus, intermediation improves the investor’s information, which de-

creases variance V[f |Si], increases ✓i, and (holding all other terms equal) increases expected

utility.

The third e↵ect of intermediation operates through ex-ante variance �Vi. Theoretically,

information sharing has an ambiguous e↵ect. In our estimated model, this term turns out

to be quantitatively unimportant.

21See Appendix C.6 for derivation.
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Client information sharing and the existence of dealers This utility expression

reveals why information sharing is so integral to the primary dealer system. If dealers

shared no information with clients, the cost of using a dealer, a reduction in µri, would still

be present because the dealer observes the client’s order and may trade on this information.

That is costly because it reduces the client’s expected speculative profit. However, the

benefit of using a dealer disappears. If clients get no information from dealers, the signal

set Si and thus the speculative risk Vi do not change. In such an environment with only

costs and no benefits to indirect bidding, primary dealers would cease to exist.

Of course, one could prohibit primary dealers from trading on clients’ information, which is

the “Chinese wall” solution we examined before. But this would also not support a dealer

system. First, investors would now be indi↵erent between bidding directly and indirectly

in the sense that both µri and ✓i would be una↵ected. Second, there are costs to being

a dealer, in the form of regulatory or minimum bidding constraints. In sum, while we

do not explicitly model dealers’ and bidders’ participation decision, these results suggest

that information sharing is what induces bidders to bid through dealers, and dealers to

participate in the primary dealer system. In this sense, information sharing is at the core

of the primary dealer system.

6 Supporting Evidence: Secondary Market Resale and In-

formed Bidders

This section presents evidence supporting three key features of the model: that bids in-

corporate information about secondary market prices, the private value assumption and

that bids of investors with more precise signals are more informative about future market

values. While we do not access confidential bidder-level data, our modeling strategy allows

us to infer values and information from publicly available data on the volatility of awarded

shares as well as the covariance of those shares and of auction prices with secondary market

outcomes. The key idea is that those bidders that bid more when post-auction appreci-

ation is positive must be better informed about future resale values. Importantly this is

the case even if an omitted variable a↵ects both auction and resale prices: under profit

maximization, a bid of an investor that covaries more positively with the secondary market

value must have observed a more precise signal. We use these ideas to form three model

predictions.

Prediction 1. If signals si are informative about the secondary market demand f, then

the auction clearing price p is positively correlated with the secondary market price ps.

In the model, the liquidity shock (↵ > 0) triggers secondary market resale. The expectation

of this resale is what causes the auction clearing price to be correlated with the secondary
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market price. In equilibrium, this correlation implies positive price coe�cients on secondary

market signals, or BI +BJ + SBD in equation (15).

In reality, the prediction that bids reflect expected secondary market outcomes can be

justified in three ways. First, it is profitable. Treasury securities appreciate post-auction

(Lou, Yan, and Zhang, 2013), and it would be unusual for many investors not to attempt

to exploit these profits. Second, data on inventory holdings of primary dealers, which are

the largest participants in Treasury auctions, suggest that they typically resell all of their

holdings within the first week of trading (Fleming and Jones, 2015b). Third, any investor

who bids in the auction has the option to wait. When expectations about ps are low even

a buy-and-hold investor would be better o↵ not bidding at the auction and purchase in the

secondary market, lowering demand and therefore price at the auction.

The next result is that volatile private values lower the correlation of bidders’ bids with

the secondary market price ps and secondary market demand f .

Prediction 2. Consider an investor k for whom the private value is less variable than for

other investors, or ⌧
�1

vk < ⌧
�1

vJ , ⌧
�1

vI . Then the higher share qk allotted to that investor, at

any given price p̄, the higher post-auction appreciation ps � p.

From the first order condition (13) the quantity qj(p) demanded by each bidder is propor-

tional to the sum of the expected return E[f |Sj ] � p and the private value vj . If agent k

has a less volatile private value vk component, she is more of a speculator. Then k’s first

order condition implies a lower correlation (or regression loading) of post-auction returns

E[f |Sk]� p and allotted shares qk.

Prediction 3. Consider an investor k that has a more precise signal Sk about secondary

market demand f . Then the higher allotted share qk, the higher post-auction appreciation

ps � p.

When the signal s is informative about the secondary market demand f , the correlation

between realized f � p and the expected E[f � p|Si] rises. Information aligns beliefs with

outcomes. The quantity qi, demanded by any bidder is a linear function of E[f � p|Si].

Thus, the covariance of qi and f � p is higher. Since the expected secondary market price

ps is linear in secondary market demand f , the covariance of qi and ps � p is higher for a

better informed investor.

Supporting evidence Evidence supporting Prediction 1 was provided in Table 2. In-

deed to calibrate the B parameters in the price equation (Proposition 1), we estimated the

regression (equation 16) of p on ps. Consistent with speculation on post-auction appre-

ciation, we find a highly statistically significant coe�cient of 0.97. In words, the auction

price p moves (on average) nearly one-for-one with the secondary market price ps. This
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Table 3: Speculative bidders and dealers bid more when profits (ps � p) will be
high.. The dependent variable is the post-auction appreciation measured as the di↵erence
between the value of the interest-rate neutral portfolio on issue date (ps) and on auction
date (p) expressed in basis points units. The speculative bidders are bids by primary dealers
and direct/indirect bids of domestic investors. Non-PD speculative shares is domestic
bidders except primary dealers. All shares are measured in percent. Robust standard
errors reported in square brackets. *** significant at 1%, ** significant at 5%, *significant
at 10%.

(1) (2) (3) (4)

Spec Share 0.77⇤⇤⇤ 0.92⇤⇤⇤

[0.21] [0.26]
PD Share 0.97⇤⇤⇤

[0.26]
non-PD Spec Share 0.70⇤⇤

[0.30]
Const 2.71⇤⇤ -57.63⇤⇤⇤ -73.59⇤⇤⇤ -2.01

[1.36] [16.05] [21.56] [13.38]

Adj. R2 0.00 0.05 0.24 0.24
Obs. 494 494 494 494
Month FEs? No No Yes Yes
Tenor FEs? No No Yes Yes

covariance would be impossible if most investors were not highly attuned to indicators of

secondary market conditions.

Prediction 2 requires identifying bidders with less private value motives and more specu-

lative motives for bidding. Dealers are one such group. Since we know they sell almost

all their purchases within a week, secondary market prices feature prominently in their

payo↵s. The other, broader, group is what we call the speculative share: all bidders except

the non-competes (non-price-contingent bidders). The non-competes are largely o�cial in-

vestors, who hold Treasuries to manage their foreign exchange policies and their respective

domestic economic conditions.22

We therefore estimate the relationship between this speculative share and (f � p), the

post-auction appreciation of the hedged portfolio from the time of the auction close to

the issue date. As shown in the first column of Table 3, the value of the newly issued

security appreciates on average 2.7 basis points between the auction date and the issue

date (column 1).23 As shown in the second column, this appreciation is higher when

22Bernanke, Reinhart, and Sack (2004) and Warnock and Warnock (2009) claim that foreign o�cial pur-
chases of Treasuries are completely exogenous to U.S. economic and market conditions. Krishnamurthy and
Vissing-Jorgensen (2012) provide supporting evidence for this hypothesis in the context of the convenience
yield.

23This average post-auction appreciation estimate is consistent with the findings of Lou, Yan, and Zhang
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the share of speculative bids is higher (column 2), with a highly statistically significant

coe�cient (t-stat = 3.5, column 2). The point estimate of 0.77 implies that a 10% increase

in the speculative share (Std. Dev. = 9.1%) is associated with a sizable positive e↵ect of

7.7% in f � p (Std. Dev = 30%). This empirical result is stronger after including month

and tenor fixed e↵ects (column 3), which supports Prediction 2.

Prediction 3 pertains to dealers. Prior literature (for example Hortaçsu and Kastl, 2012,

in the context of Canadian auctions) find that dealers are at an informational advantage.

This is also true in our model in which dealers share a noisier signal with clients meaning

that dealers are better informed about f. Consistent with Prediction 3, post-auction ap-

preciation is increasing with the allotted share to primary dealers, which display a larger

coe�cient vis-a-vis other speculative bidders. The coe�cient on the primary dealer share

is 0.97 versus a coe�cient of 0.70 on the speculative share excluding primary dealers (p-

val=.11).

Importantly neither the speculative bidders nor the primary dealer results in Table 3 are

the mechanical result from higher demand. When speculative demand is high, the price is

lower on average, relative to the payo↵. It is that low price relative to fundamental value

that induces informed investors and speculators to buy more securities.

7 Conclusion

Recent news about dealers sharing clients’ order flow information with other clients or

dealers has prompted calls to restrict financial intermediaries’ use of order flow information.

The need to prohibit collusion and misleading clients about information sharing are quite

clear. But when collusion does not occur and information sharing is common knowledge,

the gains and losses of information sharing are not as apparent. Using data from U.S.

Treasury auctions, we calibrate a structural auction model, with a secondary market, to

quantify the costs and benefits of information sharing both between dealers as well as

between dealers and customers.

To analyze the impact of information sharing, this paper brings a new feature to empiri-

cal auction models: information sharing. Instead of relying on bid-level dispersion, whose

measurement relies on confidential data, we back out bidders’ uncertainty and average

bidders’ information from measured risk premia. This new approach is essential to under-

standing information sharing. If valuations are private, then by observing order flow one

only learns about other bidders’ demand. When bidders care about resale value, order

flow is informative about everyone’s future valuation of the asset. With this perspective

(2013). See Data Appendix for a full set of summary statistics on these variables.
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in mind, one can understand our main results. We find that the way in which information

is shared matters. Dealers sharing information with other dealers about future demand

makes bidders’ beliefs more correlated. On the opposite, dealer sharing information with

clients makes beliefs about future demand more dispersed. Beliefs about the secondary

market demand are the heart of our utility results. Without the uncertain future demand,

this e↵ect, as we describe it, would not be present.

The model also shows that information sharing raises auction revenues by making bidders

better informed. Dealer talk benefits issuers by raising auction revenues, but also can

improve risk sharing by lowering asymmetric information. These results assume full disclo-

sure about how information is used and no collusion; model extensions show that these can

overturn the welfare e↵ect. While our model does not detect whether collusion and mis-

representation occurs, it suggests di↵erent remedies to enforce disclosure and anti-collusion

laws, perhaps without prohibiting information sharing.

Against a backdrop of policy initiatives aimed at curbing information sharing, other novel

features of our model – investors’ choice to bid directly or through dealers and dealers’

minimum bidding requirements – highlight that information sharing is an integral part

of Treasury auctions and the primary dealer system. Without client information sharing,

clients would not want to bid through dealers. At the same time, prohibiting dealer use

of client order flow data, while imposing bidding requirements on dealers, arguably creates

a dealer system with large costs but limited benefits. Information sharing may not be

optimal, depending on feasible alternatives and social welfare criterion. But it has upsides,

as well as downsides.
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A Solution and Proofs

This section shows how to solve the model. The solution method involves backwards
induction. We start with the last period, the secondary market, and then work backwards
to belief formation, optimal bids at auction and auction revenue.

A.1 Secondary Market Price Solution

Each secondary market buyer buys one unit if their private value f̃i � p. Thus, the demand
is the mass of f̃i’s, above p. If we let �(·) denote a standard normal cumulative density

function, and f and ⌧
�1/2
x are the mean and standard deviation of f̃i, then demand is

1� �(
p
⌧x(p� f)).

Since the total amount auctioned is normalized to 1 and a fraction ↵ of auctioned shares
are sold in the secondary market, the secondary market supply is ↵. Equating demand
with the supply yields

1� �(
p
⌧x(p� f)) = ↵ (21)

�(
p
⌧x(p� f)) = 1� ↵ (22)

p
⌧x(p� f) = ��1(1� ↵) (23)

p = f + ⌧
�1/2
x ��1(1� ↵). (24)

Thus, the constant g in the secondary market price is g = ⌧
�1/2
x ��1(1�↵), where � is the

standard normal cdf.

A.2 Incorporating Information in Beliefs

In many ways, this is a standard auction, or noisy rational expectations model. But
what distinguishes this model from others, and what complicates its solution, is that there
are many sources of correlated information. Accounting for the correlation in beliefs is
essential for correctly characterizing the costs and benefits of information sharing. Doing
this requires recasting the problem in a state-space representation, where all signals and
the auction price are linear combinations of orthogonal, underlying shocks. Given this
representation, we can apply optimal linear projection theorems to form Bayesian posterior
beliefs about the secondary market demand. The following subsection uses these beliefs to
form asset demands and determine the auction-clearing price.

Define v̄I and v̄J to be the average private value of indirect and direct bidders:

1

NI

NIX

i=1

vi ⌘ v̄I (25)

1

NJ

NJX

j=1

vj ⌘ v̄J (26)

If vi ⇠ iidN(0, ⌧�1

vI ) and vj ⇠ iidN(0, ⌧�1

vJ ), then var(v̄I) = 1/ND⌧
�1

vI ⌘ ⌧
�1

v̄I and var(v̄J) =
1/NJ⌧

�1

vJ ⌘ ⌧
�1

v̄J . These ⌧v̄ terms are the noise in prices.
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We conjecture a linear price function p:

p = A+BI s̄I +BJ s̄J +BDs̄D + CI v̄I + CJ v̄J+D� (27)

where s̄I = 1

NI

P
i si, s̄J = 1

NJ

P
j sj , and s̄D = 1

ND

PND
d=1

sd.24

The price signal for dealers is:

s(p) =
p�A�D�

BI +BJ +BD
(28)

Note that since non-price contingent bids are common knowledge, the dealer and all other
bidders simply subtract this from this price signal. It is not a source of price noise.

Investors have private information about price noise v̄. Investors can subtract the e↵ect of
their own private value from v̄ and obtain a slightly more precise estimate of the noise, and
thus extract a slightly more precise signal from prices. Indirect investor i faces residual
price noise from indirect investors of v̄I �E[v̄I |vi]. For a direct investor, the residual direct
investor price noise is v̄J � E[v̄J |vj ]. Note that dealers have no private value information.
Their vd values are known to all and get incorporated in the price constant term A. Thus,
the price signals for indirect and direct investors are:

s(p|vi) =
p�A� CIvi/NI�D�

BI +BJ +BD
(29)

s(p|vj) =
p�A� CJvj/NJ�D�

BI +BJ +BD
(30)

The next steps construct conditional expectations of f for indirect, direct investors, and
dealers: E[f |si, s⇠i, s(p|vi)], E[f |sj , s(p|vj)], and E[f |s̃d, s(p)].

Give all signals a state-space representation: The vector of orthogonal shocks Z is a column
vector of size NZ = N + 2NI +NJ + 1, where

Z = [✏1, . . . , ✏N , v1, . . . , vNI+NJ , ⇠1, . . . , ⇠NI , �]
0 (31)

and the variance matrix of Z is

var(Z) = diag([⌧�1

✏ 1N, ⌧
�1

vI 1NI , ⌧
�1

vJ 1NJ , ⌧
�1

⇠ 1NI , ⌧
�1

� ]) (32)

where 1N is a vector of 1s of size N . Let �i be a vector of size NZ of zeros with
one 1 in ith position. For example, �3 = [0, 0, 1, 0, . . . , 0]. Then si = f + �iZ and
s̃d = f + ND

NI+ND

P
i2d(i) �iZ. Here, ND

NI+ND
means the number of clients per dealer.

Dealers’ price signal. How do we represent price signals in state space? Recall that
B̃ = BI +BJ +BD, which is the sum of the price coe�cients on signals. For a dealer, the

24Why isn’t dealer signal noise ⇠i in the price? Because each dealer is assumed to transmit unbiased
signals with zero signal noise, on average, to his clients, it implies that dealer signal noise realizations ⇠d,
have no e↵ect on the market-clearing price. Note that each ⇠ is equally-weighted in demand by each client
i. For the purpose of solving the price, we can drop the ⇠d in demand (but not it’s precision ⌧⇠).
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price signal is

s(p) =
p�A�D�

B̃
=

BI s̄I +BJ s̄J +BDs̄D

B̃
+

CI

B̃
v̄I +

CJ

B̃
v̄J . (33)

To represent v̄, we need a 1⇥NZ vector �vI that is N zeros, followed by NI ones, followed
by NJ +NI zeros:

�vI = [0N,1NI ,0NJ ,0NI+1] (34)

�vJ = [0N,0NI ,1NJ ,0NI+1] (35)

These vectors select out the private values of I or J investors from Z. Then v̄I =
(1/NI)�vI · Z and v̄J = (1/NJ)�vJ · Z.

Next, we define binary vectors that select from Z the signal noise of all indirect investors,
all direct investors, or all dealers:

�✏I = [1NI ,0NZ�NI ] (36)

�✏J = [0NI ,1NJ ,0NZ�NI�NJ ] (37)

�✏D = [0NI+NJ ,1ND ,0NZ�N]. (38)

Finally, we define binary vectors that select from Z the signal noise ✏ or the private value
vi of all clients of a given dealer d:

�̃✏d0(i) = 1 if d
0 = d(i) and 0 otherwise. (39)

�̃vd0(N + i) = 1 if d
0 = d(i) and 0 otherwise. (40)

Then dealers’ price signal is

s(p) =
p�A�D�

B̃
= f+

BI

B̃NI
�✏I ·Z+

BJ

B̃NJ
�✏J ·Z+

BD

B̃ND
�✏D·Z+

CI

NIB̃
�vI ·Z+

CJ

NJ B̃
�vJ ·Z ⌘ f+⇡pZ

(41)

Dealers’ information from indirect bids. The dealer observes the bid function (13) of each
indirect investor i that bids through the dealer: i : d(i) = d. The dealer can multiply the
bid by ⇢V [f |Si] + dp/dqi, which all depend on known parameters, to infer E[f |si] + vi � p,
for each value p. The dealer can add p back in to infer E[f |si] + vi. Recall from (5) that
the conditional expectation is (1� �

01m)f̄ + �
0
Si. The dealer knows the prior belief f̄ and

can thus subtract that to infer �0Si + vi. Breaking out the signal vector in its component
parts yields �Issi + �I⇠s⇠i + �Ip(s(p)� CI/(B̃NI)vi) + vi. Note that the indirect bidder’s
private value a↵ects his bid in two ways, once directly a↵ecting demand, and once by
changing the way he interprets the price. The dealer can again take out the known terms
�Ips(p) and �I⇠s⇠i, which the dealer knows since he sent that signal to his client. Thus,
the known component of beliefs that each dealer subtracts from average client valuations is
spublic = (1��01m)f̄ +�Ips(p)+�I⇠s⇠i. That leaves �Issi+(1��IpCI/(B̃NI))vi. Dividing
by �Is, we obtain the unbiased signal that a dealer can infer from each of his NI/ND clients
indirect bids. Since each of these signals is equally precise, the dealer optimally averages
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them to yield:

s̃d = f +
ND

NI

X

i2d(i)

✏i + �
�1

Is

✓
1� �IpCI

B̃NI

◆
ND

NI

X

i2d(i)

vi (42)

So a dealer’s 3 signals can be represented as

2

4
sd

s̃d

s(p)

3

5 =

2

4
f

f

f

3

5+

2

4
�i

⇡d

⇡p

3

5 · Z (43)

where

⇡d =
ND

NI
�̃✏d + �

�1

Is

✓
1� �IpCI

B̃NI

◆
ND

NI
�̃vd.

Indirect and direct bidders’ price signals: Indirect and direct investors remove the e↵ect of
their own private valuations from the price when they condition on it. Their signals are
the same as the dealers’ price signal s(p), minus all the terms that load on vi or vj for that
investor:

s(p|vi) = s(p)� CI

NIB̃
�N+i · Z (44)

s(p|vj) = s(p)� CJ

NJ B̃
�N+NI+j · Z (45)

Note that �N+i has a 1 in the position that corresponds to vi in Z and �N+NJ+j has a 1
in the position that corresponds to vj for direct investor j.

Indirect bidders’ information from dealers: The dealer takes all the information collected
from all his clients s̃d, adds noise ⇠i to it for each bidder i and transmits the resulting s⇠i

signal to his client. This signal has the same state space representation as the dealer’s
signal s̃d, with one additional term �NZ�ND+i that adds the signal noise ⇠i:

s⇠i = f + (⇡d + �NZ�ND+i)Z. (46)

Signals for indirect investors are:

2

4
si

s⇠i

s(p|vi)

3

5 =

2

4
f

f

f

3

5+

2

64
�i

⇡d + �NZ�ND+i

⇡p � CI

NI B̃
�N+i

3

75 · Z (47)

Direct bidders’ signals: The signal vector for direct investors is:


sj

s(p|vj)

�
=


f

f

�
+

"
�i

⇡p � CJ

NJ B̃
�N+NI+j

#
· Z (48)

In sum the 3⇥1 signal loading matrix of a dealer’s signals, an indirect bidder’s signals and
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a direct bidder’s signals can be written as:

⇧D,d ⌘
⇥
�i ⇡d ⇡p

⇤0
(49)

⇧I,i ⌘
h
�i ⇡d(i) + �NZ�ND+i ⇡p � CI

NI B̃
�N+i

i0
(50)

⇧J,j ⌘
h
�i ⇡p � CJ

NJ B̃
�N+NI+j

i0
(51)

Given this state space representation, we just apply (5),(6), and (7) to form conditional
expectations and variance. v(Sj) = ⌧

�1

f 110 +⇧jv(z)⇧0
j delivers �,E[f |S], and V[f |S]. Let

�I ,�J ,�D be the weights on signals given by (6) for each type of market participant. Then
we can express the conditional expectation of the payo↵ as E[f |Si] = (1 � �

01)f̄ + �
0
Si.

Let �I = [�Is,�I⇠,�Ip]0 and define �J and �D components analogously.

A.3 Auction Price Solution

Next, we use agents’ beliefs about the secondary market to form their asset demands and
solve for the uniform price that clears the auction.

Define MI ,MJ , and MD as follows.

MI =

✓
⇢↵

2V[f |Si] +
dp

dqi

◆�1

for indirect investors (52)

MJ =

✓
⇢↵

2V[f |Sj ] +
dp

dqj

◆�1

for direct investors (53)

MD =

✓
⇢↵

2V[f |Sd] +
dp

dqd

◆�1

for dealers (54)

Using the first-order conditions (13) and (14) and the definition of M from (52), (53) and
(54), we rewrite the market clearing condition as:

PNI
i=1

(↵E(f |Si) + ↵g + (1� ↵)vi � p)MI +
PNJ

j=1
(↵E(f |Sj) + ↵g + (1� ↵)vj � p)MJ

+
PND

d=1
(↵E(f |Sd) + ↵g + �� p)MD+� = 1 (55)

Substituting in the state space representation of conditional expectations:

1 = ↵MI [
NIX

i=1

(1� �
0
I1

0)f̄ + �
0
ISi] + (1� ↵)NIMI v̄I

+ ↵MJ [
NJX

j=1

(1� �
0
J1

0)f̄ + �
0
JSj ] + (1� ↵)NJMJ v̄J

+ ↵MD[
NDX

d=1

(1� �
0
D1

0)f̄ + �
0
DSd] +NDMD�+� + ↵M̃g � M̃p, (56)

where M̃ = NIMI + NJMJ + NDMD. Next, we break out the signal vectors into their
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constituent parts.

1 = Ã+ ↵NIMI(�Iss̄I + �I⇠ s̄⇠ + �Ips̄(p|vi))
+ ↵NJMJ(�Jss̄J + �Jps̄(p|vj)) + ↵NDMD(�Dss̄D + �D⇠ s̄⇠ + �Dps(p))

� M̃p+ (1� ↵)NIMI v̄I + (1� ↵)NJMJ v̄J +NDMD�+� (57)

where Ã is a collection of all f̄ + g terms Ã = ↵MINI(1� �
0
I1

0)f̄ + ↵MJNJ(1� �
0
J1

0)f̄ +
↵MDND(1� �

0
D1

0)f̄ + ↵M̃g.

Define the average signal transmitted by a dealer to clients as: s̄⇠ = (1/NI)
PNI

i=1
s⇠i. Note

that this is the same as the average order flow information observed by dealers because
we have assumed that dealer signal noise averages to zero. From the analysis of dealer’s
information from indirect bids, we showed that this order flow information is a weighted
sum of indirect bidders’ signals and their private values. Averaging this signal yields
s̄⇠ = s̄I + �

�1

Is (1� �IpCI/(B̃NI))v̄I .

Substitute in the conditional price signals to get:

1 = Ã+↵MINI(�Iss̄I+�I⇠ s̄⇠+�Ip(s(p)�
CI

NIB̃
v̄I))+↵MJNJ(�Jss̄J+�Jp(s(p)�

CJ

NJ B̃
v̄J))

+↵MDND(�Dss̄D+�D⇠ s̄⇠+�Dps(p))�M̃p+(1�↵)MINI v̄I+(1�↵)MJNJ v̄J+NDMD�+�
(58)

Using s(p) = (p�A�D�)/B̃, we can gather coe�cients of p. Then let Q̃ ⌘ M̃�(NIMI�Ip+
NJMJ�Jp +NDMD�Dp)

↵
B̃
.

Gathering terms in p and then matching A to all constants:

A =
1

Q̃

h
Ã� 1 +A(Q̃� M̃) +NDMD�

i
(59)

=
1

M̃

h
Ã� 1 +NDMD�

i
(60)

where the second line comes from collecting terms in A. Note that Ã does not contain A

terms.

Substituting in A, s(p), and s̄⇠, and rearranging the market clearing equation yields,

Q̃p = AQ̃+ (1� ↵)(MINI v̄I +MJNJ v̄J) + ↵MINI�Iss̄I + ↵MJNJ�Jss̄J

+ ↵(MINI�I⇠ +MDND�D⇠)(s̄I + �
�1

Is (1� �Ip
CI

NIB̃
)v̄I) + ↵MDND�Dss̄D

� ↵MI�Ip
CI

B̃
v̄I � ↵MJ�Jp

CJ

B̃
v̄J�(Q̃� M̃)D� + � (61)

Matching coe�cients, gives us the solution for equilibrium prices, in terms of pricing impact
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M :

BI = ↵
Q̃
[MINI�Is + (MINI�I⇠ +MDND�D⇠)] (62)

BJ = ↵
Q̃
MJNJ�Js (63)

BD = ↵
Q̃
MDND�Ds (64)

CI = 1

Q̃
MINI

⇣
1� ↵� ↵�Ip

CI

NI B̃

⌘
+ ↵

Q̃
(MINI�I⇠ +MDND�D⇠)�

�1

Is

⇣
1� �Ip

CI

NI B̃

⌘
(65)

CJ = 1

Q̃
MJNJ

⇣
1� ↵� ↵�Jp

CJ

NJ B̃

⌘
. (66)

D = 1

2Q̃�M̃
(67)

A.4 Price Impact and Market Power

One last piece of the solution is needed to determine bidders’ bid functions. That missing
piece is price impact, also called market power. To solve for dp/dqj , start with market-
clearing in (58) but write one indirect investor’s demand as an exogenous amount q1:

1 = Ã+ ↵MI(NI � 1)(�Iss̄I + �I⇠ s̄DI + �Ip(s(p)�
CI

(NI � 1)B̃
v̄I))

+ ↵MJNJ(�Jss̄J + �Jp(s(p)�
CJ

NJ B̃
v̄J)) + ↵MDND(�Dss̄DI + �Dps(p))

� (M̃ �MI)p+ (1� ↵)MI(NI � 1)v̄I + (1� ↵)MJNJ v̄J+� + q1 +NDMD� (68)

Recall that ds(p)/dp = 1/B̃. Then use the implicit function theorem to solve for

dp

dqI
=


M̃ �MI �

↵

B̃
(MI(NI � 1)�Ip +MJNJ�Jp +MDND�Dp)

��1

(69)

Similarly, for direct bidders,

dp

dqJ
=


M̃ �MJ � ↵

B̃
(MINI�Ip +MJ(NJ � 1)�Jp +MDND�Dp)

��1

(70)

and for dealers,

dp

dqD
=


M̃ �MD � ↵

B̃
(MINI�Ip +MJNJ�Jp +MD(ND � 1)�Dp)

��1

(71)

Then the model solution is characterized jointly by the M ’s, the price coe�cients and the
updating formulas.

A.5 Result 1: Linear Auction Revenue

This result has three cases. We consider each separately.

Case 1: Only Dealer-Client Information Sharing The set of equations (62)-(66),
along with (69)-(71) substituted into MD, MI and MJ constitute a set of 8 equations
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in 8 unknowns. The fact that we could impose optimality, budget and market clearing
conditions and then write price as a linear function of s̄I , s̄J , s̄D, v̄I and v̄J , proves the
linear price conjecture.

Case 2: Dealer-Dealer information sharing In this setup, dealers share information
with clients using the same noisy signal as before, but they also share information with
 � 1 other dealers. Then  is the size of the dealer chat room. Dealer-dealer sharing is
symmetric, which requires that the number of dealers in an information-sharing collective
be a factor of 20. We also require that  6= 20, as that would imply perfect inter-dealer
sharing. Thus, we only consider  2 {1, 2, 4, 5, 10}.

It would be repetitive to re-derive each part of the preceding analysis when most of it can
be preserved. So, rather than do that, we simply point out the piece of the solution that
is di↵erent.

First, define a set of dealers who share information with any given dealer d. Let chat(d) =
{d0, d00, . . .} such that dealers d

0, d00 and d share information. Information sharing means
observing the order flow of the clients of all the dealers in chat(d). Since all investor order
flow signals are equally informative, all dealers in a chat group average all the order flow
signals they see in the same way. Each dealer now sees a new, more precise composite
order flow signal which is:

s̃d = f +
ND

 NI

X

d02chat(d(i))

X

i2d0
si + �

�1

Is

✓
1� �IpCI

B̃NI

◆
ND

 NI

X

d02chat(d(i))

X

i2d0
vi (72)

Thus the dealer’s signals have the same state space representation as in (43), except that we
redefine ⇡d, the weight the order flow information puts on the underlying shocks, as

⇡d =
ND

 NI

X

d02chat(d(i))

�̃✏d0 + �
�1

Is

✓
1� �IpCI

B̃NI

◆
ND

 NI

X

d02chat(d(i))

�̃vd0 .

For indirect bidders, the signals are the same, except that ⇡d is redefined, as above. For
direct bidders, there is no change in the signal vector. Of course, information sharing will
change bids and thus change the variance and covariance of auction-clearing price. But
all these e↵ects will show up through the change in the signal vector, represented by the
change in ⇡d.

This change in the model does not change the linearity of the price in s̄I , s̄J , s̄D, v̄I and
v̄J . The equations (62)-(66), along with (69)-(71) substituted into MD, MI and MJ still
characterize the solution to the model.

Case 3: No Information Sharing (“Chinese walls”) In this model, dealers do not
use or share any information derived from client order flow. Practically speaking, it is as if
each type of investor submits bids on their own behalf, rather than through an intermediary.
Each investor’s information set is therefore a 2⇥1 vector Si = [si, si(p)], comprised of their
private signal si and the counterfactual price signal si(p). In this regime, the only di↵erence
between dealers and non-dealer large investors is that dealers are subject to a minimum
bidding penalty, while investors have private values that are private information.
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We can solve this model by simply changing the signal vector weights on each of the
underlying shocks. In sum the 2⇥ 1 signal loading matrix of a dealer’s signals, an indirect
bidder’s signals and a direct bidder’s signals now becomes:

⇧D,d ⌘
⇥
�i ⇡p

⇤0
(73)

⇧I,i ⌘
h
�i ⇡p � CMI

B̃
�N+i

i0
(74)

⇧J,j ⌘
h
�i ⇡p � CMJ

B̃
�N+j

i0
(75)

Once we adjust the signal structure, the rest of the solution method goes through un-
changed. In the price coe�cient solutions (62)-(66), this change implies that the weight
put on dealers’ order flow signals (now no longer existent) �I⇠ and �D⇠ are both 0. Pricing
simplifies to:

BI = 1

Q̃
MINI�Is (76)

BJ = 1

Q̃
MJNJ�Js (77)

BD = 1

Q̃
MDND�Ds (78)

CI = 1

Q̃
MINI

⇣
1� �Ip

CI

NI B̃

⌘
(79)

CJ = 1

Q̃
MJNJ

⇣
1� �Jp

CJ

NJ B̃

⌘
. (80)

The existence of a set of coe�cients verifies the price conjecture. Since the supply of the
asset is one, auction revenue is the price of the asset. The solution to this model is a joint
solution to (69)-(71) substituted into MD, MI and MJ and the price coe�cient equations
above.

B Measuring Treasury Payo↵s

This appendix provides additional detail about how payo↵s are calculated. Because of lags
between trade and settlement dates, the appendix also provides detail on funding costs.
We begin by reporting summary statistics of post-auction appreciation and the speculative
(competitive) share (Table 4). Then, we go into detail about how these variables are
constructed and what alternative methods yield. The first subsection describes what those
terms are and argues that they are small and stable. The second subsection discusses an
alternative hedging strategy, known as a coupon roll. The third explains why information
from the when-issued-market (or WIs) is not relevant in our setting.

Note that we exclude amounts allotted to the Fed’s own portfolio through roll-overs of
maturing securities, which are an add-on to the auction.

Funding position. In the model, winning bids pay p and the common fundamental
value is f . In Treasury auctions bidders bid a coupon rate rather than a price. The price is
always set to $100 up to rounding, which we rescale to $1 for the purposes of this discussion.
To assess auction results from the issuer perspective we discount future interest payments
using a yield curve estimated on outstanding Treasury securities. Economically this means
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Table 4: Summary statistics for Table 3. Shares are in percent; post-auction appre-
ciation (f � p) is measured in basis points.

Post-auction appreciation (f � p) Spec. share PD share non-PD Spec. share
Mean 2.7 78.8 53.3 25.5
P25 -8.6 74.1 42.2 14.2
P50 -1.0 79.9 51.2 25.8
P75 10.8 84.5 63.7 34.8
Stdev 30.2 9.1 14.4 13.4
Obs 494 494 494 494

that we measure issuance cost relative to other debt outstanding at the time of the auction.
Newly issued Treasury securities are typically valued more than older securities because of
their better liquidity, a phenomenon known as the on-the-run premium (see e.g., Vayanos
and Weill 2008). As a result of the on-the-run premium, the discounted value of Treasury’s
future interest and principal payments is smaller than the price at which the security sells
($1), and we define net auction revenue as the gap between the two:

R̂a = 1�
 

TX

t=0

Za(t)C + Za(T )

!
, (81)

where C is the coupon determined at the auction, T is the maturity, Za(j) = exp(�i⇥ya(j))
is the price at the time of the auction of a zero-coupon bond maturing at i, y(j) is the jth
maturity yield from the yield curve estimated on outstanding securities at the time of the
auction.

Trades in the secondary Treasury market settle on the business day following a trade,
meaning that securities are delivered and cash is paid a day after a transaction is agreed
upon. In Treasury auctions, instead, investors pay bids to Treasury and receive securities
on the issuance date, which occurs one to 14 days following the date of the auction. This
di↵erent settlement rule is the source of extra funding cost/income in our setting.

We measure f as the market price of the security on the issuance date, which is when
the security is first available to investors. The value of f depends on the general level of
interest rates and the on-the-run premium. While fluctuations in interest rates between
auction and issuance date create risk for investors, this risk can be hedged with other
outstanding Treasuries. We assume that investors hedge interest rate risk optimally by
selling a replicating portfolio of other Treasury securities. On the auction date, the investor
buys the new security and shorts the replicating portfolio of o↵-the-run issues. On the
issuance date, the investor reverses by selling the new security and covering the short in
older securities. The per-unit value of the hedged portfolio at auction is equal to �R̂a, and
to:

f̂i =

 
TX

t=0

Zi(t)C + Zi(T )

!
� Pi, (82)

on the issuance date, where Pi is the market price of the new security on that date. Detailed
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steps in the investment strategy are:

1. Auction date:

(a) Place bid

(b) For each unit of successful bid alloted, sell T zero coupon bond each priced at
Za(t) and in amounts equal to C for t < T and 1+C for t = T. The zero coupon
bonds could either be stripped Treasuries (as in Fleckenstein, Longsta↵, and
Lustig, 2014) or proxied with a combination of coupon securities.

2. Post-auction date:

(a) Borrow (to post-issuance date) the amount Za =
PT

t=0
Za(t)C + Za(T ) paying

the per-diem unsecured rate rb.

(b) Borrow zero-coupon bonds with reverse repos (to post-issuance date) and receive
the per-diem repo rate rr. Deliver the T zero coupons to the auction-date buyer.

3. Issuance date:

(a) Borrow $1 at rate rb. Receive new issue from, and pay $1, to Treasury; sell issue
in the secondary market

(b) Buy portfolio of T zero-coupon bonds at Zissuance

4. Post-issuance date:

(a) Receive payment of pi and repay the issuance-date loan

(b) Receive T zero-coupon bonds and deliver into the reverse repo;

(c) Receive payment of Za from reverse-repo and pay Zi to settle the issue-date
purchase; Repay post-auction date loan

The cash flows from this position at the post-issue date are:

(Pi � 1) + (Za � Zi) +
(datei � datea)

360
⇥ (rr � rb)⇥ Za �

rb

360
⇥ 1 (83)

In our calculations we disregard the two funding terms because they are small and don’t
vary much when rr ⇡ rb. The repo rate for old issues, which are being funded between the
post-auction and post-issue date, typically trades within a few basis points to the unsecured
rate rb, so the funding terms are small. For example (see e.g. Du�e, 1996), reports that
first o↵-the-runs repo rates around about 25 basis points below the (general collateral)
repo rate. This di↵erence has only a minimal impact on the payo↵ as the position is only
held between the auction and issue dates. Furthermore, o↵-the-run securities rarely go “on
special” as indirectly observed in the Federal Reserve’s securities loan auctions (Fleming
and Garbade, 2007a). Instead, repo rates for new (or first-o↵-the-run) securities can trade
far o↵ from uncollateralized rates and be volatile because funding rates balance the supply
and demand of new securities, which can be in high demand to take short position in
interest rates (see e.g. Du�e, 1996; Jordan and Jordan, 1997). As per the detailed steps
above the new issue is never shorted or funded, as it is sold as soon as it is received by
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the investor. Thus fluctuations in the special-repo rate do not a↵ect the returns in our
position.

Coupon roll An investor could achieve approximately the same hedged position by
shorting only the previously on-the-run (same maturity) security. This strategy is fairly
common around Treasury auctions as discussed by Fleming and Garbade (2007b). While
this would be a preferred approach in practice, the paper focuses on a OTR strategy for two
reasons. First, interest hedging with the former on-the-run is imperfect because maturities
are not matched and additional accrued interest calculations would need to be accounted
for. Second, the repo rate for recently issued securities can trade “special,” that is at a
significant gap to the rb so that the funding terms would become more important. At the
same time historical special repo rates are not readily available, so we focus on OTR for
which these terms are not important.

Minimum Bidding Requirement Details In the current design of the primary dealer
system, dealers are expected to bid for a pro-rata share of the auction at “reasonably
competitive” prices Federal Reserve Bank of New York (2016). Prior to 1992, an active
primary dealer had to be a “consistent and meaningful participant” in Treasury auctions
by submitting bids roughly commensurate with the dealer’s capacity. See appendix E in
Brady, Breeden, and Greenspan (1992). In 1997, the New York Fed instituted an explicit
counterparty performance scorecard and dealers were evaluated based on the volume of
allotted securities (FOMC, November 2007). In 2010 the NY Fed clarified their primary
dealer operating policies and strengthened the requirements (Federal Reserve Bank of New
York, 2016).

C Existence, Extensions and Robustness

This section contains additional theoretical and numerical analysis that is not needed
to understand the results in the main text. It provides additional proof, context and
robustness.

C.1 Equilibrium Existence and Uniqueness

We prove equilibrium existence and uniqueness for various classes of models. One class of
models are ones with little market power, because any one or more of the following is true:
the number of bidders NJ , NI , or ND is su�ciently high, risk aversion (⇢) is low, because
resale is infrequent (low ↵), or because secondary market prices are su�ciently predictable
(⌧f su�ciently high). A second class of models is one with su�ciently symmetric bidders
and little information sharing. A third class of models is one with su�ciently symmetric
bidders and abundant sharing between dealers and their clients. A fourth class of models
is one where bidders are su�ciently symmetric and the probability of secondary market
resale is high. In any one of these classes, the equilibrium exists and is unique.

The role of these assumptions is to preserve as much tractability as possible. Without
them, the number of terms in the pricing equation multiplies and it becomes impossible to
characterize the model’s solution with one equation.
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Existence and uniqueness in class 1: Low market power. We start by proving
that low ⇢,↵ or high ⌧f makes dp/dq arbitrarily close to zero. Market power goes away
in these settings. Recall that we defined the demand sensitivity to price to be Mj , where
1/Mj = ⇢↵

2
V [f |Sj ]+dp/dqj for any type of bidder j. From (70)-(72), we see that (dp/dq)�1

is a weighted sum of these Mj terms for all investors.

If ↵ ! 0 or ⇢ ! 0, the first term of 1/Mj goes to zero. Similarly, if ⌧f ! 1, then
f has no variance, so V [f |S] ! 0. If ⇢↵2

V [f |Sj ] ! 0, then 1/Mj ! dp/dqj . We
can rewrite (70)-(72) in the form (dp/dqj)�1 = zIMI + zJMJ + zDMD, where zI , zJ ,
zD are combinations of parameters. Substituting 1/Mj ⇡ dp/dqj , we get (dp/dqj)�1 =
zI(dp/dqI)�1 + zJ(dp/dqJ)�1 + zD(dp/dqD)�1. The solution is that Mj = (dp/dqj)�1 = 0
for all bidders j.

If market power is su�ciently low, then the existence and uniqueness of equilibrium, for
arbitrary information structures has been proven by Lou, Parsa, Ray, Li, and Wang (2019).
Ozsoylev and Walden (2011) prove that this existence extends to settings with finite agents,
with small amounts of market power as well.

Existence and uniqueness in class 2: Little information sharing. Consider the fol-
lowing reference model. (At the end, we consider a broader set of nearby models.) Assume
that NI = l ND = lN/ (l + 1) and NJ = 0. We further assume that the minimum bidding
requirement cost � is heterogeneous, private information, and has the same distribution as
vi. We call it vd.

In this reference model, all investors get the same information content, but di↵erent signal
realizations. Thus, they all put the same weight on each signal when they form their beliefs.
Identical signal precision implies that MJ = MD = M . Therefore, the price conjecture and
price signal can be written as:

p = A+Bs̄+ Cv̄ (84)

si(p) =
p�A� Cvi

B
= f + ✏̄+

N � 1

N

C

B
v̄

Under no information sharing, we have that Si = Sd = [si, si(p)] and the market clearing
condition is:

lN/(l+1)X

i=1

(↵E[f |Si] + ↵g + (1� ↵)vi � p)M +

N/(l+1)X

d=1

(↵E[f |Sd] + ↵g + �� p)M = 1 (85)

where l is the number of clients per dealer. Replacing E[f |S] with (5), summing and
dividing by MN yields: ↵

⇥
f̄(1��s��p)+�ss̄+�ps̄(p)

⇤
+↵g+ l

l+1
(1�↵)v̄+ 1

l+1
��p = 1

MN

where s̄(p) = p�A
B � C

BN v̄. Solving out for p:

p(1�↵�pB�1) = ↵
⇥
f̄(1��s��p)�A�pB

�1
⇤
�(MN)�1+↵�ss̄+

✓
l (1� ↵)

l + 1
� ↵�pC

BN

◆
v̄+

�

l + 1
+↵g
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Matching coe�cients we get:

A =
↵[f̄(1� �s � �p)�A�pB

�1] + ↵g + 1

l+1
�� (MN)�1

1� ↵�pB
�1

(86)

B =
↵�s

1� ↵�pB
�1

(87)

C =
l(1� ↵)/ (l + 1)� ↵�pB

�1
C/N

1� ↵�pB
�1

(88)

The signals’ weight in the optimal linear predictor are � = V [S]�11m⌧
�1

f . In this case,

V [S] from the Bayesian updating equation has diagonal elements ⌧�1

f + ⌧�1
s and ⌧�1

f + ⌧�1
p

and o↵-diagonal covariance ⌧�1

f + ⌧
�1
s /N .

V [S]�1 =
1

(⌧�1

f + ⌧
�1
s )(⌧�1

f + ⌧
�1
p )� (⌧�1

f + ⌧
�1
s /N)2

"
⌧
�1

f + ⌧
�1
p �(⌧�1

f + ⌧
�1
s /N)

�(⌧�1

f + ⌧
�1
s /N) ⌧

�1

f + ⌧
�1
s

#

The denominator of the fraction above can be rearranged as ⌧�1

f [⌧�1
p �⌧�1

s /N ]+⌧�1

f [⌧�1
s �

⌧
�1
s /N ] + ⌧

�1
s [⌧�1

p � ⌧
�1
s /N

2]. Following (6), we obtain the Bayesian updating weight � by

multiplying the precision matrix V [S]�1 by the covariance vector 1m⌧
�1

f : Multiplying the

numerator and denominator by ⌧sN/(N � 1)⌧f [⌧�1
p � ⌧

�1
s /N ]�1 yields:

�s =
⌧sN/(N � 1)

⌧sN/(N � 1) + [⌧�1
p � ⌧

�1
s /N ]�1 + ⌧

�1

f N/(N � 1)[⌧�1
p � ⌧

�1
s /N2][⌧�1

p � ⌧
�1
s /N ]�1

Finally, we replace ⌧
�1
p = ⌧�1

s
N +

�
C
B

�2 N�1

N
⌧�1
v
N to get �s and follow exactly the same

procedure for the second row of �, to get �p:

�s =
⌧s

⌧s + (B/C)2N⌧v + ⌧f [1 + (B/C)2⌧v/⌧s]
(89)

�p =
(B/C)2N⌧v

⌧s + (B/C)2N⌧v + ⌧f [1 + (B/C)2⌧v/⌧s]
(90)

With the vector � solved, we can solve for the posterior variance, ⌧̂�1 = ⌧
�1

f �10m⌧
�1

f �:

⌧̂
�1 =

1 + (B/C)2⌧v/⌧s
⌧s + (B/C)2N⌧v + ⌧f [1 + (B/C)2⌧v/⌧s]

(91)

In order to complete the characterization of the equilibrium, we need to compute the price
impact to obtain M . To compute the price impact of a single bid, we need to pull out one

bidder’s demand, as q. The market clearing condition becomes
PlN/(l+1)�1

i=1
(↵E[f |Si] +

ag+ (1�↵)vi � p)M +
PN/(l+1)

d=1
(↵E[f |Sd] +↵g+�� p)M + q = 1. Replacing E[f |S] and
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dividing by M(N � 1), with one exogenous demand q yields:

p(1� ↵�pB
�1) = ↵

⇥
f̄(1� �s � �p)�A�pB

�1
⇤
� (M(N � 1))�1 + ↵�ss̄

+

✓
lN/(l + 1)� 1

N � 1
(1� ↵)� ↵�p

C

BN

◆
v̄ + q(M(N � 1))�1 + ↵g +

N/(l + 1)

N � 1
�.

(92)

Thus, dp(1 � ↵�pB
�1) = dq(M(N � 1))�1, and we obtain dp/dq = (M(N � 1))�1(1 �

↵�pB
�1)�1. Using the definition of M , we have that M�1 = ⇢↵

2
⌧̂
�1 +M

�1(N � 1)�1(1�
↵�pB

�1)�1.

Thus, the full characterization of the equilibrium is: (86) - (91) and

M =
1� (N � 1)�1(1� ↵�pB

�1)�1

⇢↵2⌧̂�1
(93)

Note that �s and �p only depend on C/B, so C and B do not depend on A or M . Also,
since �s and �p are positive, it is easy to see that B and C are positive as well.

We need to prove that the closed system given by the equations for B and C plus the
definitions of �s and �p has a solution. First, we divide the expressions for B and C:

B/C = ↵(�s+�p)
h
1� ↵

N�1

N
�p

�s+�p

i
, which simplifies to B/C = ↵[�s+(1�↵(N�1)/N)�p].

Substituting in the definitions of �s and �p yields

B

C
=

↵[⌧s + ((1� ↵)N + ↵)(B/C)2⌧v]

⌧s + (B/C)2N⌧v + ⌧f [1 + (B/C)2⌧v/⌧s]

The idea of the proof is that while the left hand side is increasing in (B/C), the right
hand side (RHS) is decreasing (since B and C are positive, we can use the derivative with
respect to (B/C)2). To see this, let x = (B/C)2, then:

@RHS

@x
=

↵

(⌧s + xN⌧v + ⌧f [1 + x⌧v/⌧s])2
⇥

h
[(1� ↵)N + ↵]⌧v[⌧s + xN⌧v + ⌧f + x⌧f⌧v/⌧s]� [x⌧v[(1� ↵)N + ↵] + ⌧s][N⌧v + ⌧f⌧v/⌧s]

i

=
↵

(⌧s + xN⌧v + ⌧f [1 + x⌧v/⌧s])2

h
↵(1�N)⌧s⌧v + (1� ↵)(N � 1)⌧v⌧f

i
.

To show existence, we use the intermediate value theorem. To do this, we need to show
that there exists a value for (B/C) such that (B/C) < RHS and another value such that
(B/C) > RHS. For (B/C) = 0, we have that RHS = ↵⌧s/(⌧s + ⌧f ) > 0. For (B/C) = 1,
we have that RHS = ↵(⌧s + [(1� ↵)N + ↵]⌧v)/(⌧s +N⌧v + ⌧f [1 + ⌧v/⌧s]) < 1. Then, since
the function is continuous, there exists an equilibrium value for (B/C) between 0 and 1.

Furthermore, since the RHS is montonically, strictly decreasing, and the left side B/C
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is monotonically strictly increasing in B/C, there is a single crossing and thus a unique
solution.

Given the equilibrium value for (B/C), equations (89) ,(90) give us the values for �s and
�p. Substitution yields the equilibrium values for the rest of the variables.

Finally, note that the derivative is a strict inequality and a continuous function of all the
(positive) parameters, including the number of agents and their information precisions.
Therefore, by continuity there exists a ball of models with parameters near the reference
model, for which the inequality still holds. For this collection of models, the equilibrium
exists and is unique.

Class 3: Widespread information sharing. Under the same bidder symmetry as-
sumptions as above and perfect information sharing, a dealer observes the signal of each
client and shares that information with the other clients. With NI = lND, every agent
observe l + 1 signals and every signal is observed by l + 1 agents. Let s̄l+1 =

P
i2d(i) si,

then we have that all agents have the same information set Si = {s̄l+1, s(p)}.

Since agents give the same weight to each of the three private signals they observe, the
market clearing condition is the same as before. Thus, the equilibrium conditions we found
for the Chinese wall still holds, but for di↵erent �’s. In particular, the unconditional
variance now is:

V [S] =

"
⌧
�1

f + ⌧
�1
s /(l + 1) ⌧

�1

f + ⌧
�1
s /N

⌧
�1

f + ⌧
�1
s /N ⌧

�1

f + ⌧
�1
p

#
.

Then, using the same steps as in the Chinese wall case, we get:

�s =
⌧s

⌧s +
N�1

N�l�1
(B/C)2N⌧v + ⌧f [1 + (B/C)2⌧v/⌧s]

(94)

�p =
N�1

N�l�1
(B/C)2N⌧v

⌧s +
N�1

N�l�1
(B/C)2N⌧v + ⌧f [1 + (B/C)2⌧v/⌧s]

(95)

These modifications do not a↵ect any part of the proof. Now, the equation for (B/C)
is:

B

C
= ↵

⌧s +
N�1

N�l�1
[(1� ↵)N + ↵](B/C)2⌧v

⌧s +
N�1

N�l�1
(B/C)2N⌧v + ⌧f [1 + (B/C)2⌧v/⌧s]| {z }

RHS

where
@RHS

@x
=↵

N�1

N�l�1
⌧v⌧s(1�N)↵+ ⌧v⌧f (

N�1

N�l�1
[(1� ↵)N + ↵]� 1)

(⌧s + x
N�1

N�l�1
N⌧v + ⌧f [1 + x⌧v/⌧s])2

.

By the intermediate value theorem, for all B/C > 0, a solution exists. By strict mono-
tonicity, it is unique, just as in the previous case. For the special case, (B/C) = 0, we
have that RHS = ↵⌧s/(⌧s + ⌧f ) > 0. For (B/C) = 1, we have that RHS = ↵(⌧s +
N�1

N�l�1
[(1� ↵)N + ↵]⌧v)/(⌧s +

N�1

N�l�1
N⌧v + ⌧f [1 + ⌧v/⌧s]) < 1. Then, there exists a unique
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equilibrium with perfect information sharing. Since both the left and right hand sides are
continuous functions of the amount of information sharing by dealers, there exists a range
of su�ciently-symmetric, high-sharing models where the inequality still holds and thus the
equilibrium still exists and is unique.

Class 4: Su�ciently symmetric Let⌥ be the set of parameters � = {⌧vI , ⌧vJ , ⌧f , ⌧s,�}
such that

(a) 9 an open ball B✏(V(f | SJ)) such that V(f | SI),V(f | SD) 2 B✏(V(f | SJ));

(b) 9 open balls B✏�p(�Jp) and B✏�s(�Js) such that �Ip,�Dp 2 B✏�p(�Jp) and �Is,�Ds 2
B✏�s(�Js);

(c) �I⇠,�D⇠ ⌧ min{�Is,�Js,�Ds}.

If (a), (b) and (c) hold, then we say that bidders are “su�ciently symmetric.”

If the probability of resale ↵ is high, then the private value drops out for all agents. The
resale price acts as a common value. If, in addition, there are fully symmetric bidders,
the model becomes isomorphic to Kyle (1989) and Wang and Zender (2002). Since the
equilibrium exists and is a unique linear equilibrium in that setting, the same is true here
for full symmetry. Since the inequality that establishes symmetry is continuous in the
mean and variance of beliefs, there must exist a ball of parameters � 2 ⌥ such that the
inequality still holds and existence and uniqueness are established.

C.2 Information Sharing, Risk and Revenue

Theorem C.2.1. If {⌧vI , ⌧vJ , ⌧f , ⌧s,�} 2 ⌥ (defined in previous result, class 4), and in-

formation sharing reduces V[f |Si], i 2 {I, J,D} weakly for all agents, then market power

dp/dqi falls and revenue p rises.

Proof. Step 1: Prove that �p  1 and �s  1 element by element.
Start with (6) which defines �’s.

Cov(f, Sj) = 1m⌧
�1

f , (96)

V(Sj) = ⌧
�1

f 1m10m + positive term, (97)

where the positive term is strictly positive if all shocks have positive variance. Therefore,
we have

�j = V(S)�1Cov(f, Sj)  1 (98)

element by element.

Step 2: Suppose that there are NJ direct bidders, and no dealers or indirect bidders, i.e.
NI = ND = 0. For this simple case, we show that if V[f | Sj ] decreases, then market power
dp/dqJ falls and revenue p rises.

To show p rises, it su�ces to show that qJ(p) rises for a given p, because qJ(p) decreases
in p, so p must then rise to clear the market.
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By the expectations martingale theorem (Doob, 1953), more precise information does not
change E[f | Sj ] on average. Therefore, it cannot change any term in the numerator of
qJ(p). For the denominator, recall that M

�1

J = ⇢↵
2V[f | Sj ] + dp/dqJ . By the definition

of more precise information, V[f | Sj ] falls. Then the key question becomes how does a
change in V[f | Sj ] a↵ect dp/dqJ .

With NI = ND = 0, we can simplify M̃ = NIMJ , and (71) collapses to

dp

dqJ
=
h
(NJ � 1)MJ � ↵

BJ
MJ(NJ � 1)�Jp

i�1

=
1

MJ(NJ � 1)

h
1� ↵�Jp

BJ

i�1

. (99)

Similarly, the formula for Q̃ just after (59) simplifies to

Q̃ = M̃ � ↵

B̃
NJMJ�Jp = NJMJ(1�

↵�Jp

BJ
), (100)

Substituting this Q̃ expression into (64) yields BJ = ↵(1� ↵�Jp

BJ
)�1

�Js = ↵(
BJ�↵�Jp

BJ
)�1

�Js.
Multiplying BJ � ↵�Jp on both sides and rearranging, we have

BJ = ↵(�Jp + �Js). (101)

Then plug (101) into (99),

dp

dqJ
=

1

MJ(NJ � 1)

h
1� ↵

BJ
�Jp

i�1

(102)

=
1

MJ(NJ � 1)

�Jp + �Js

�Js
. (103)

By assumption, we know that ↵ < 1. From Step 1, we know that �Jp < 1. Thus,

C̄J ⌘ �Jp+�Js

(NJ�1)�Js
> 0 Then,

dp

dqJ
=

C̄J

MJ
= C̄J(⇢↵

2V[f | Sj ] +
dp

dqJ
) (104)

=) dp

dqJ
=

C̄J

1� C̄J
⇢↵

2V[f | Sj ] (105)

To determine if market power falls when information sharing reduces uncertainty, we need
to determine if C̄J

1�C̄J
> 0. That is true if and only if 0 < C̄J < 1. Since we know that

C̄J > 0, this requires (�Jp+�Js)/((NJ�1)�Js) < 1. The necessary and su�cient condition
for that is

NJ >2 +
�Jp

�Js
. (106)

If NJ is big enough, this holds and thus dp
dqJ

> 0. If information decreases variance V[f | Sj ],
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then market power dp
dqJ

falls, MJ , demand, and price rise.

Step 3: When bidders are su�ciently symmetric, it means we are close to a reference
model where �Ip = �Jp = �Dp ⌘ �p, �Is = �Js = �Ds ⌘ �s, V(f | Si) = V(f | Sj) = V(f |
Sd) ⌘ V(f | S), and �I⇠,�D⇠ ⌧ �s. The next step proves that, in such a reference model,
market power dp/dq falls and revenue p rises when V[f | S] decreases. We show this in a
similar way to the previous step and then broaden the result to a nearby class of models.

Recall that Q̃ = M̃ � ↵
B̃
(NIMI�Ip +NJMJ�Jp +NDMD�Dp). With �Ip = �Jp = �Dp ⌘

�p, Q̃ simplifies to

Q̃ = M̃

✓
1� ↵�p

B̃

◆
. (107)

Recall also that B̃ = BI +BJ +BD. With �Is = �Js = �Ds ⌘ �s, B̃ simplifies to

B̃ =
↵

Q̃

h
M̃�s +MINI�I⇠ +MDND�D⇠

i
⇡ ↵

Q̃
M̃�s. (108)

Plug (107) into (108), we have

B̃ = ↵�s

✓
1� ↵�p

B̃

◆�1

. (109)

Multiplying
⇣
1� ↵�p

B̃

⌘
on both sides and rearranging, we have

B̃ ⇡ ↵(�p + �s). (110)

Plug (110) into dp/dqJ , we have

dp

dqJ
=


M̃ �MJ � ↵�p

B̃

⇣
M̃ �MJ

⌘��1

=
1

M̃ �MJ


1� ↵�p

B̃

��1

⇡ 1

M̃ �MJ

�p + �s

�s
.

With V(f | Si) = V(f | Sj) = V(f | Sd), we can further write out dp/dqI , dp/dqJ and
dp/dqD as

dp

dqI
⇡


NI � 1

⇢↵2V(f | S) + dp/dqI
+

NJ

⇢↵2V(f | S) + dp/dqJ
+

ND

⇢↵2V(f | S) + dp/dqD

��1
�p + �s

�s
,

dp

dqJ
⇡


NI

⇢↵2V(f | S) + dp/dqI
+

NJ � 1

⇢↵2V(f | S) + dp/dqJ
+

ND

⇢↵2V(f | S) + dp/dqD

��1
�p + �s

�s
,

dp

dqD
⇡


NI

⇢↵2V(f | S) + dp/dqI
+

NJ

⇢↵2V(f | S) + dp/dqJ
+

ND � 1

⇢↵2V(f | S) + dp/dqD

��1
�p + �s

�s
.

These expressions reveal that dp/dqI , dp/dqJ and dp/dqD are approximately equal. There-
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fore, we drop the subscript for q. Then

dp

dq
=

�p + �s

(N � 1)�s


⇢↵

2V (f | S) + dp

dq

�
(111)

Define C̄ = �p+�s
(N�1)�s

, we have

dp

dq
= C̄(⇢↵2V[f | S] + dp

dq
) (112)

=) dp

dq
=

C̄

1� C̄
⇢↵

2V[f | S]. (113)

To determine if market power falls with information sharing, we need to determine the
sign of C̄

1�C̄
. By the same argument as in step 2, we find that C̄/(1 � C̄) > 0 ()

N > 2 + �p/�s. When there are many market participants (high N), this condition N is
satisfied. Therefore, dp/dq falls with V(f | S), meaning that information sharing reduces
market power.

Step 4:

Since market power dp/dqi, i 2 {I, J,D} and revenue p are continuous functions, then
the same strict inequality holds for open balls of nearby parameters. Thus, if bidders
are su�ciently symmetric ((a), (b) and (c) hold), then N > 2 + �p/�s still ensures that
C̄/(1� C̄) > 0. So, market power dp/dqi falls and revenue p rises when V[f | Si], V[f | Sj ]
and V[f | Sd] decrease symmetrically for all bidders.

This result holds for di↵erent sets of parameters, for any NI , NJ , ND, a set of param-
eters {⌧vI , ⌧vJ ,�, ⌧f , ⌧s}, as long as they make bidders su�ciently symmetric, satisfying
conditions (a)-(c).

C.3 Welfare and the Information Prisoners’ Dilemma

Theorem C.3.1. (Bidders prefer no private information)

(1) If there is no direct bidder, then for su�ciently high N and low �, indirect bidders

have higher ex-ante expected utility when no private signal si is available.

(2) If there are direct bidders, then for su�ciently high N and low �, there 9 open balls

B✏v(⌧vJ), B✏⇠(0) and B✏N (0) , such that if

(a) ⌧vI 2 B✏v(⌧vJ) and ⌧⇠ 2 B✏v(0); or

(b)
NJ
N 2 B✏N (0),

then indirect bidders have higher ex-ante expected utility when no private signal si is

available.

Proof.

Step 1: calculating the general formula of ex-ante utility with signals.
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Let EUj be the expected utility conditional on Sj for the direct bidders (same algebra
applies to indirect bidders, and for dealers only small modification is needed). Then

EUj = E
h
�e

�⇢(W0,j+qj(↵ps�p)+(1�↵)qjvj)
i

=� e
�⇢W0,jE

h
e
�⇢qj(↵E[f |Sj ]+↵g�p+(1�↵)vj)+ 1

2⇢
2↵2q2jV[f |Sj ]

i
. (114)

Let C̄J ⌘ �Jp+�Js

(NJ�1)�Js
> 0, then

dp

dqj
=

C̄J

1� C̄J
⇢↵

2V[f | Sj ]. (115)

Plugging dp/dq into the optimal bid schedule (13), we have

qj(p) =
�
1� C̄J

� ↵E [f | Sj ] + ↵g + (1� ↵)vj � p

⇢↵2V [f | Sj ]
.

Plug it back into (114):

EUj = �e
�⇢W0,je

� 1�C̄2
J

2↵2
1

V[f |Sj]
(↵E[f |Sj ]+↵g+(1�↵)vj�p)2

. (116)

Let FJ ⌘ E [↵E [f | Sj ] + ↵g + (1� ↵)vj � p] , (117)

⌃J ⌘ V [↵E [f | Sj ] + ↵g + (1� ↵)vj � p] , (118)

zj ⌘
↵E [f | Sj ] + ↵g + (1� ↵)vj � pp

⌃J
.

For dealers, the analogous expressions are: FD ⌘ E [↵E [f | Sd] + ↵g + �� p], ⌃D ⌘
V [↵E [f | Sd] + ↵g + �� p], and zd ⌘ (↵E [f | Sd] + ↵g + �� p)/

p
⌃D.

Ex-ante, zj ⇠ N( FJp
⌃J

, 1). We can rewrite the conditional expected utility as

EUj = �e
�⇢W0,je

� 1�C̄2
J

2↵2
1

V[f |Sj]
⌃Jz2j

.

Notice that z
2

j has a non-central chi-square distribution. Using its moment-generating
function, we have

EU = E [EUj ] = �e
�⇢W0,j

exp

8
<

:

� 1�C̄2
J

2↵2
F2
J

V[f |Sj]
1+

⌃J
V[f |Sj ]

9
=

;
q

1 + ⌃J
V[f |Sj ]

,
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or re-normalizing by dividing by �e
⇢W0 and taking log:

VJ ⌘ �2 ln


�EU

e�⇢W0

�
=

1� C̄
2

J

↵2

F
2

J

V[f | Sj ] + ⌃J
+ ln


V[f | Sj ] + ⌃J

V[f | Sj ]

�
. (119)

Step 2: Assume that NI = lND = lN/(l + 1), NJ = 0 and � = 0. We then compare EU

under no information sharing with and without private signals.

With no information sharing, our signal vector is Si = Sd = [si, si(p)]. For simplicity, we
drop subscript i, d, I or D whenever no ambiguity is created. We denote the case with
private signal with superscript I and the case without private signal U .

Case 1: Bidders have a private signal si. Using the formula for ex-ante expected payo↵
(117), we get

F
I = E [↵E [f | Si] + ↵g + (1� ↵)vi � p]

= E

↵ (1� �s � �p) f̄ + ↵�ssi + ↵�p

✓
p�A

B
� C

BN
v̄I

◆
+ ↵g � p

�

= ↵ (1� �s � �p) f̄ + ↵�sf̄ � ↵�p
A

B
+ ↵g �

�
A+Bf̄

�✓
1� ↵�p

B

◆

= ↵ (1� �s � �p) f̄ + [↵ (�s + �p)�B] f̄ + ↵g �A.

From (86) and (101), recall that in this case the pricing coe�cients areA = ↵f̄ (1� �s � �p)�
(M I

N)�1+↵g+ 1

l+1
� and B = ↵(�s+�p). Plugging them into F

I , we can further simplify
it to

F
I =

�
M

I
N
��1 � 1

l + 1
�.

Using (118), the conditional payo↵ variance with private signals is

⌃I = V [↵E [f | Si] + ↵g + (1� ↵)vi � p]

= V

↵ (1� �s � �p) f̄ + ↵�ssi + ↵�p

✓
p�A

B
� C

BN
v̄I

◆
+ ↵g + (1� ↵)vi � p

�

= V

↵�ssi � ↵�p

C

BN
v̄I + (1� ↵)vi � (Bs̄+ Cv̄)

✓
1� ↵�p

B

◆�

= V
✓
↵�s �

✓
B

N
� ↵�p

N

◆◆
si

�
+ V

✓
1� ↵�

✓
C

NI
� ↵�pC

BNI
+

↵�pC

BNNI

◆◆
vi

�

+V

2

4�
X

i0 6=i

si0

✓
B

N
� ↵�p

N

◆
�
X

i0 6=i

vi0

✓
C

NI
� ↵�pC

BNI
+

↵�pC

BNNI

◆3

5

= V

N � 1

N
↵�s✏i

�
+ V

✓
1� ↵� l + 1

lN

◆
vi

�
+ V

2

4� l + 1

lN

X

i0 6=i

vi0

3

5

=

✓
N � 1

N

◆
2

↵
2
�
2

s⌧
�1

✏ +


(1� ↵)2 � (l + 1) (1� 2↵)

lN

�
⌧
�1

v
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Case 2: Bidders have no private signals. Therefore, the price does not contain any
information. The market clearing condition is

lN/(l+1)X

i=1

(↵E[f ] + ↵g + (1� ↵)vi � p)MU +

N/(l+1)X

d=1

(↵E[f ] + ↵g + �� p)MU = 1 (120)

Replacing E[f ] and dividing by M
U
N we have:

↵f̄ + ↵g +
l

l + 1
(1� ↵)v̄ +

1

l + 1
�� p =

1

MUN

=) p = ↵f̄ � (MU
N)�1 +

l(1� ↵)

l + 1
v̄ +

1

l + 1
�+ ↵g

Matching coe�cients we get:

A = ↵f̄ � (MU
N)�1 + ↵g +

1

l + 1
� (121)

C =
l(1� ↵)

l + 1
. (122)

To determine price impact, we replace one bidder’s demand with q, impose market clearing
and then apply the implicit function theorem.

1 = ↵M̃g + ↵

⇣
M̃ �MI

⌘
f̄ �

⇣
M̃ �MI

⌘
p+ (1� ↵)MI(NI � 1)v̄I +MDND�+ q1

=) dp

dqI
=
⇣
M̃ �MI

⌘�1

=
1

MU (N � 1)
=

C̄
U

MU
, .

where C̄
U = 1

N�1
. Recall that

�
M

U
��1

= ⇢↵
2V[f ] + dp

dqI
= ⇢↵

2
⌧
�1

f +
�
M

U
��1

C̄
U

=) M
U =

1� C̄
U

⇢↵2⌧
�1

f

.

We adapt (117) and (118) for the no-signal case to get

F
U = E [↵E [f ] + ↵g + (1� ↵)vi � p]

= E
⇥
↵f̄ + ↵g �A� Cv̄

⇤

= ↵f̄ + ↵g �A

= (MU
N)�1 � 1

l + 1
�,
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and

⌃U = V
⇥
↵f̄ + ↵g + (1� ↵)vi � p

⇤

= V [(1� ↵)vi �A� Cv̄]

= V
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1� ↵� 1� ↵

N

◆
vi �

1� ↵

N
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i0 6=i
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3

5

=
N � l+2

l+1

N
(1� ↵)2⌧�1

v .

Now, we are ready to compare ex-ante utilities with and without private signals. We take
their di↵erence and compute it in two parts.

First term Define

�1 ⌘
1�

�
C̄

I
I

�2

↵2

�
F

I
�2

⌧̂�1 + ⌃I
�
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U
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�2
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�
F

U
�2

⌧
�1

f + ⌃U

to be the di↵ence in the first term of (119) for markets with and without signals. Then
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U
�2

⌧
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Recall that M I = 1�C̄I

⇢↵2⌧̂�1 , then if � is su�ciently small, we have

F
I ⇡

�
M

I
N
��1

=
⇢↵

2
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�1

�
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�
N
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F
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U
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��1

=
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2
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�
1� C̄U

�
N

.

Then

�1 < 0 () 1 + C̄
I

1� C̄I

⇢
2
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<

1 + C̄
U

1� C̄U

⇢
2
↵
4
⌧
�2

f

N2

⇣
⌧
�1

f + ⌃I
⌘

() 1 + C̄
I

1� C̄I

⌧̂
�2

1 + ⌃I ⌧̂
<

1 + C̄
U

1� C̄U

⌧
�2

f

1 + ⌃U⌧f

xxiv



Notice that C̄I = 1

N�1

⇣
1 + �p

�s

⌘
and C̄

U = 1

N�1
. Thus

1 + C̄
U

1� C̄U
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N

N � 2
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1 + C̄
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1� C̄I
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N + �p
�s

N � 2� �p
�s

.

If additionally N is su�ciently large, we have 1+C̄I

1�C̄I ⇡ N
N�2

. Therefore it boils down to

find parameter regions where ⌧̂�2

⌧�2
f

<
1+⌃

I ⌧̂
1+⌃U ⌧f

holds. Notice that ⌧̂�2

⌧�2
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condition would be
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v ⌧f

(123)

When N is su�ciently large, 1+xN⌧v/⌧✏
1+x⌧v/⌧✏

⇡ N . Then (123) simplifies to

h
↵
2
�
2

s⌧
�1

✏ + (1� ↵)2 ⌧�1

v

i
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✏ N⌧✏ + (1� ↵)2⌧�1

v N⌧✏ > 0, (124)

which is always true. Therefore, when N is su�ciently large and � su�ciently small,
�1 < 0 holds.

Second term Define

�2 ⌘ ln
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�1 + ⌃I
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to be the di↵erence in the second term of (119) for markets with and without signals. Then

�2 < 0 () ⌃I

⌧̂�1
<

⌃U

⌧
�1

f

()
✓
N � 1

N

◆
2

↵
2
�
2

s⌧
�1

✏ ⌧f +


(1� ↵)2 � (l + 1)(1� 2↵)

lN

�
⌧
�1

v ⌧f

<
N � l+2

l+1

N
(1� ↵)2 ⌧�1

v


⌧f +

⌧✏ + xN⌧v

1 + x⌧v/⌧✏

�
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Again, when N is su�ciently large, the above condition simplifies to

↵
2
�
2

s⌧
�1

✏ ⌧f < (1� ↵)2 ⌧�1

v N⌧✏, (125)

which is satisfied when N >
↵2⌧f ⌧v

(1�↵)2⌧2✏
since 0 < �s  1.
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Therefore, when N is su�ciently large and � su�ciently small and there is no information
sharing, EU

I�EU
U = �1+�2 < 0, that is with private signal about f , the ex-ante utility

of indirect bidders is lower.

Step 3: Assume that NI = lND = lN/(l + 1), NI = 0 and � = 0. We then compare
EU under perfect information sharing with and without private signals. Under perfect
information sharing, all agents have the same information Si = [s̄l+1, s(p)].

Price coe�cients and M are the same as in Step 2. We have di↵erent expressions for
�s,�p,

B
C and ⌧̂�1. Now,

⌧̂ = ⌧f +
1 + N�1

N�l�1
xN⌧v/⌧✏

1 + x⌧v/⌧✏
⌧✏.

When N is large enough, we still have ⌧̂ ⇡ ⌧f+N⌧✏. We also have 0 < �s  1. Thus we can
replicate the previous step with little change. Therefore, when N is su�ciently large and
� su�ciently small and there is perfect information sharing, EU

I �EU
U = �1 +�2 < 0,

that is with private signal about f , the ex-ante utility of indirect bidders is lower.

Step 4: Generalizing to imperfect information sharing and three types of agents.

When ⌧�1

⇠ is arbitrarily close to 0, that is the information shared by dealers to the indirect
bidders is very precise, then indirect bidders will have information sets that are arbitrarily
close to those of the dealers. Then the results from the perfect information case apply. If
there is su�ciently small proportion of direct bidders, that is NJ

N su�ciently small, or if
indirect and direct bidders are su�ciently symmetric, that is ⌧vI and ⌧vJ are su�ciently
close, and ⌧⇠ su�ciently small, then by continuity, inequalities (124) and (125) still hold,
and the results can be extended to include direct bidders.

C.4 Bid Shading and Signal Jamming

The term M for each investor type measures the bid sensitivity to changes in expected
returns. Since expected returns are typically positive (this is a compensation for the risk
of the uncertain common value), a larger value of M denotes a smaller average bid and a
lower average equilibrium price.

From (52), (53) and (54), we know that the sensitivity M for each of the three types of
bidders is the inverse of a sum of ⇢↵2

V [f |S] term that measures risk aversion and risk,
plus a dp/dq term that arises because strategic bidders internalize the impact they have
on price. Bid shading and signal jamming are about this strategic dp/dq term.

The inverse of this price impact term is the sum of a direct e↵ect, which is bid shading,
and an indirect e↵ect, which works through its e↵ect on the beliefs of others:

✓
dp

dqI

◆�1

= M̃ �MI �
↵

B̃
(MI(NI � 1)�Ip +MJNJ�Jp +MDND�Dp)

✓
dp

dqJ

◆�1

= M̃ �MJ � ↵

B̃
(MINI�Ip +MJ (NJ � 1)�Jp +MDND�Dp)

✓
dp

dqD

◆�1

= M̃ �MD � ↵

B̃
(MINI�Ip +MJNJ�Jp +MD (ND � 1)�Dp)
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The first two terms of each expression capture the direct e↵ect of one bidder’s demand on
the price. M̃ is the sum of every bidder’s demand sensitivity to return. The more sensitive
demand is to return, the less the return needs to change to clear the market. This sum
represents the inverse price elasticity to a change in demand. The higher it is, the larger
the price impact of a change in bids. But if one bidder changes their demand, they do
not absorb their own change in demand. Thus, bid shading is the price impact when all
bidders, except one bidder of type I (or J or D), adjust their bids to the new equilibrium
price:

SI = M̃ �MI ; SJ = M̃ �MJ ; SD = M̃ �MD (126)

The large term on the right describes how the price change a↵ects others’ demands through
their beliefs. �Ip is the sensitivity of bidder type I’s beliefs to a one-unit change in the
price p. The sum in the parentheses is the sum of all the e↵ects on beliefs of every bidder,
except the one changing their demand (they do not fool themself). The final term B̃ maps
these changes in beliefs to a change in price. Thus, signal jamming is defined as

SJI =
dp

dqI
� SI ; SJJ =

dp

dqJ
� SJ ; SJD =

dp

dqD
� SD (127)

HKZ measure of bid shading Hortacsu, Kastl and Zhang (2017) define bid shading
as the quantity-weighted expected di↵erence between the bidder’s marginal valuation for
the last unit awarded and the price paid. In our notation:

B(vi, Si) =
E[qi

⇣
@EU
@qi

� p

⌘
]

E[qi]
(128)

Our model has two key di↵erences. First, in HKZ, the uncertainty is about the realized
price. Valuations are known. In our setting, bidders’ uncertainty is about the payo↵. So,
we use marginal expected utility, in place of HKZ’s marginal utility.

The second key di↵erence is that our utility is not quasi-linear in bid payments. Instead,
there is a risk-averse utility function over the value of the asset (itself a financial value)
net of the payment. There are two possible ways to deal with this

1. Instead of taking marginal utility of the payment, then subtracting the price (MU(f)�
p), a natural adaption would be to compute the expected marginal value of the asset,
net of payment(MEU(f�p)). In other words, we bring the price paid inside the util-
ity function because that’s internally consistent with our model. Log expected utility
(from text just before eqn (14)) is qj(↵E[f |Sj ]+↵g+(1�↵)vj � p)� 1

2
⇢↵

2
q
2

jV[f |Sj ].
The associated marginal utility is:

@EU

@qi
= ↵E[f |Sj ] + ↵g + (1� ↵)vj � p� qj

dp

dqj
� ⇢↵

2
qjV[f |Sj ]. (129)

Marginal utility (without the log) is just a rescaling: @EU
@qi

⇥ E[U ]. The problem is
that this quantity is always zero. Why? Because it’s our first order condition. Bid
for more qi until the marginal additional unit yields zero marginal utility.

2. However, we could instead be more true to the HKZ definition by keeping the price
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Figure 6: A Price Impact Measure of Bid Shading. This plots bid shading, as
defined in (131).
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out of the marginal utility. We compute marginal utility, as if price were zero, and
then subtract the price. We get

@EU

@qi

����
p=0

� p = qi
@p

@qi
(130)

In our model, the price impact term @p
@qi

is a function of parameters, not of random
variables. So, we can pull it out of the expectation. When we substitute this into
(128), the E[qi] terms cancel and we get

B(vi, Si) =
@p

@qi
. (131)

This measure is plotted below in Figure 6. It shows that information sharing, of
either kind, reduces bid shading. The fact that only one line is visible indicates that,
in this model, the price impact of a dealer trade, a client trade or a direct bidder
trade are indistinguishable.

Since the main question of the paper is about how information sharing a↵ects auction
revenue, our primary measure of bid sharing is how much revenue is lost to bid shading
(and signal jamming), and how that interacts with information sharing. To compute this
revenue loss, we simply turn o↵ some or all of the dp/dq term in the first-order condition.
This term is the only piece of demand that di↵ers from the demand of a fully competitive,
measure-zero bidder. When we set dp/dq = 0 and re-solve the model (agents are aware that
others are not strategic and correctly infer di↵erent information from the auction-clearing
price), we capture all lost revenue due to strategic bidding. Then, we break up that lost
revenue into two pieces: bid shading and signal jamming as follows.

Signal jamming Signal jamming is the revenue lost because bidders try to influence
each others’ beliefs. We compute optimal signal jamming now, both analytically and
quantitatively. We compare its magnitude to price impact more generally and to the
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magnitude of bid shading. Equation (67) shows that the price impact of an indirect investor
(for example, other classes of agents have analogous expressions) is:

dp

dqI
=


M̃ �MI �

↵

B̃
(MI(NI � 1)�Ip +MJNJ�Jp +MDND�Dp)

��1

(132)

where M̃ �MI represents the price elasticity of all other market participants collectively.
This is the direct e↵ect of one unit of additional demand from one I investor on the market
price. The long last term is signal jamming:

Signal Jamming =
↵

B̃
(MI(NI � 1)�Ip +MJNJ�Jp +MDND�Dp) (133)

The �Ip, �Jp, and �Dp terms measure how much a change in the price a↵ects other indirect,
direct investor’ and dealers’ beliefs. Investors in our model consider how their bids a↵ect
the information transmitted by the price and they are optimally adjusting their bid to
distort that price signal.

C.5 Auction price with dealer collusion

When dealers collude, they share information and then bid in order to maximize their
joint utility. From an information point of view, if collusion takes place in pairs (each
dealer shares information and bids jointly with 1 other dealer), it is as if there are ND/2
dealers, each with twice as many orders as before. If collusion takes place in groups of
size  , the information structure is as if there are ND/ dealers. The only di↵erence
between the collusion model and the reduced-number of dealers model is that the demand
of each collusive group is larger than it would be if there were only 1 dealer. Two colluding
bidders bid have a larger appetite for risk. One can think of collusion as a contractual
arrangement whereby each dealer commits to give half his profits to the other dealer and
thereby internalizes his e↵ect on the other dealer.

The portfolio optimization problem of colluding dealers is

max
qd,qd0 ,p

E

� exp

✓
�⇢1

2
((Wd + qdvd) + (Wd0 + qd0vd0))

◆
|Sd

�
(134)

s.t. Wd = W0,d + qd(↵ps � p), and Wd0 = W0,d0 + qd0(↵ps � p) (135)

NIX

i=1

qi +
NJX

j=1

qj +
NDX

d=1

qd = 1. (136)

Taking the expected value of the lognormal yields

� exp

✓
const� ⇢

1

2
((qd + qd0)(↵E[f |Sd]� p+ ↵g + �)) +

⇢
2
↵
2

8
(q2d + q

2

d0 + 2qdqd0)V[f |Sd]

◆

where const is the constant that depends on initial wealth. Then computing the first order
condition with respect to qd reveals that

qd (p) + qd0 (p) = 2 · ↵E[f |Sd] + ↵g + �� p

⇢↵2V[f |Sd] + 2dp/dqd
. (137)
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So, the two colluding dealers jointly bid for twice as much of the asset, but adjusted for
twice the price impact. This is the same formula as that which would hold for one dealer
who has 1/2 the risk aversion. Therefore, we numerically solve the collusion model by
reducing the number of dealers from ND to ND/ and reducing each dealer’s risk aversion
from ⇢ to ⇢/ for  � 1.

Figure 7: Lying about Dealer Talk Reduces Revenue. Figure plots average
equilibrium auction revenue, against the number of other dealers that share information.
We assume here that when dealers share information, no one else knows.
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Lying about Dealer Talk A related issue is that in practice, not all market participants
may know that dealers are swapping order flow information. Of course, this also has
a separate legal remedy. One can enforce laws about disclosure of information practices,
without prohibiting the information sharing. But our results on what happens when others
are not aware highlights the importance of the assumption that agents understand others’
strategies.

When a set of dealers share information and others are not aware, auction revenue falls.
This is true even if the information is shared with clients. If the clients are not aware that
their information is very precise, they do not bid as if they are better informed. By not
bidding aggressively, these clients fail to push up auction revenue as they do in the baseline
case. Just as with collusion, when revenue declines, bidder utilities rise. All bidders are
better o↵ because prices are lower. But taxpayers are left to foot the bill.

To compute the revenue in Figure 7, we simulated a version of our model where a set of  
dealers share information and bid collusively on that more precise information. We vary
the size of the set of dealers. But every other bidder and dealer bids using the no-dealer-
sharing bid functions. The idea is that if they are unaware of the information sharing,
then their strategy should be unchanged by it. For each  , we resolved for the equilibrium
pricing coe�cients and then computed the average auction revenue.
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C.6 Intermediation Choice: Solution with one bidder who switches

Our objective is to illustrate the properties of the intermediation decision of a client. To
do that, we simplify the model by assuming that all participants in the auction (including
dealers) have private values drawn from vi ⇠ N

�
0, ⌧�1

v

�
and focusing on the model without

demand shocks. We focus on the case where dealers share information perferctly with their
clients and study, instead, how the intermediation decision changes when dealers share
information with each other. Without loss of generality, we assume that client 1 of dealer
1 is the agent making the intermediation decision.

If one bidder switches from being an indirect bidder through a dealer to a direct bidder
through Treasury Direct, how does the signal structure for bidders and dealers change? If
the dealer did not make any inference from the direct bidding choice of the client, then
the solution would be the same as before, only adjusting the number of indirect and direct
bidders. But a rational dealer who observes a regular client not showing up infers that the
client’s signal must be in a particular range. We propose a solution method that includes
that inferred information.

Define a conglomerate to be the set of dealers that share information with each other,
as well as all their clients. Without loss, let conglomerate 1 be the conglomerate that
the marginal bidder would be bid through, if he decided to bid through a dealer. This
is the group of agents that learn from seeing bidder 1 bid directly or indirectly. The
intermediation decision of the client depends on both the client’s signal and private value.
The key to our solution method is that we approximate the truncated normal signal that
can be extracted from the intermediation choice with a normal signal sq = f+mq+eq, with
the same mean mq and variance ⌧�1

q as the true signal. Denote also by pq the probability
of the client choosing to bid directly.

If bidder 1 chooses to bid through the dealer, the dealer sees the intermediation decision,
which reveals that bidder 1’s order flow must be in a range. But the intermediating dealer
also sees exactly what bidder 1’s order flow is. The additional information from seeing the
choice to bid indirectly is redundant. Thus, in this case, we do not need to construct an
approximated dealer signal from the intermediation decision. Just seeing the order flow
contains all the relevant information.

In cases where the bidder bids indirectly, we solve the model using an approximating normal
signal. The normal signal is included in the precision-weighted average signal of dealer d0.

s̃d0 = ◆

0

@ 1

NI/ND � 1

0

@
X

i2Id

Ei[f ] + vi

1

A� spublic

1

A+ (1� ◆)sq, (138)

where Id is the reduced set of investors bidding through dealer d – excluding the direct
bidder – and spublic is solved for in Appendix B. The dealer is constructing s̃d from an
average of his clients’ expected valuations plus private values, minus a term spublic that
includes all public information in Ei[f ], and from the information sq inferred from the
direct bidding decision. If investor j bids through the dealer, the problem and the solution
are the same as in the baseline model.

The equilibrium price if bidder 1 chooses to bid indirectly (through the dealer) can be
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expressed as

p = A+BI
⌫I � 1

NI +ND
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sj ; v̄J =
1

NJ + 1

NJ+1X

j=1

vj ,

and ⌫I = ( (NI +ND))/ND.

If bidder 1 chooses to bid directly, conglomerate 1 learns from that decisions, and all the
other agents observe that decision but do not learn from the truncated normal signal, we
can express the equilibrium price as

p = Ad +BI1s̄I1 +BI2s̄I2 +
BJ,d

NJ + 1
s1 +

BJ,dNJ

NJ + 1
s̄J (140)

+ CI1v̄I1 + CI2v̄I2 +
CJ,d

NJ + 1
v1 +

CJ,dNJ

NJ + 1
v̄J + Fsq. (141)

Notice that, in this case, we have one more direct bidder, and dealer conglomerate 1 has
one less client than all the other conglomerates.

In this model, the price signal for dealers and their clients in conglomerate 1 is now

s (p| vi) =
p�Ad � CI1vi/(⌫I � 1)� Fmq

B̃
,

for dealers and their clients in all other conglomerates is

s (p| vi) =
p�Ad � CI2vi/(ND +NI � ⌫I)

B̃
,

and for direct bidders

s (p| vj) =
p�Ad � CJvj/(NJ + 1)

B̃
,

where B̃ = BI1 +BI2 +BJ + F .
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The vector of orthogonal shocks Z is a column vector of size NZ = 2 ⇤N + 1, where

Z = [✏1, . . . , ✏N , v1, . . . , vN , eq] ,

and the variance matrix of Z is

var (Z) = diag
�⇥
⌧
�1

✏ 1N , ⌧
�1

v 1N , ⌧
�1

q

⇤�
.

Consider now representing the price signals. Let

�vI,1 =
⇥
0N , 0,1 NI/ND�1,0NI� NI/ND

,0NJ ,1 ,0ND� , 0
⇤

�vI,2 =
⇥
0N , 0,0 NI/ND�1,1NI� NI/ND

,0NJ ,0 ,1ND� , 0
⇤

�vJ = [0N , 1,0NI�1,1NJ ,0ND , 0]

be the vectors that select the private values of dealers and their clients and of direct bidders,
respectively. Then, v̄I1 = (1/ (⌫I � 1))�vI,1 · Z, v̄I2 = (1/ (NI +ND � ⌫I))�vI,2 · Z and
v̄I = (1/(NJ + 1))�vJ · Z. Similarly, the vectors that select the signal noise are given by

�✏I,1 =
⇥
0,1 NI/ND�1,0NI� NI/ND

,0NJ ,1 ,0ND� ,0N , 0
⇤

�✏I,2 =
⇥
0,0 NI/ND�1,1NI� NI/ND

,0NJ ,0 ,1ND� ,0N , 0
⇤

�✏J = [1,0NI�1,1NJ ,0ND ,0N , 0] .

Thus, the price can be represented as

p = Ad + B̃f +
BI1

⌫I � 1
�✏I,1 · Z +

BI2

ND +NI � ⌫I
�✏I,2 · Z +

BJ

NJ + 1
�✏J · Z

+
CI1

⌫I � 1
�vI,1 · Z +

CI2

ND +NI � ⌫I
�vI,2 · Z +

CJ

NJ + 1
�vJ · Z + F�q · Z

⌘ Ad + B̃f + B̃⇡pZ.

With this representation of the equilibrium price, the information that a dealer or one of
its clients in conglomerate 1 extracts from the price is

s (p| vi) =
p�Ad � Fmq

B̃
� CI1

(⌫I � 1) B̃
�N+i · Z ⌘ s (p)� F

B̃
mq �

CI1

(⌫I � 1) B̃
�N+i · Z,

in any other conglomerate, a dealer or one of its clients extracts

s (p| vi) = s (p)� CI2

(NI +ND � ⌫I) B̃
�N+i · Z,

and the signal that a direct investor extracts from the price is

s (p| vj) = s (p)� CJ

(NJ + 1) B̃
�N+NI+j · Z.

It now remains to determine how dealers aggregate their own signals together with the
signals they get from their clients (and other dealers). Similarly to the belief weighting in
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the no intermediation choice model, a dealer in conglomerate 1 optimally averages all the
signals to yeild

s̃d1 = f +
1

⌫I � 1

X

i2d (i)

✏i + �
�1

Is,1

✓
1� �Ip,1CI1

B̃ (⌫I � 1)

◆
1

⌫I � 1

X

i2d (i)

vi,

and a dealer belonging to any other conglomerate optimally averages all the signals to yeild

s̃d2 = f +
1

⌫I

X

i2d (i)

✏i + �
�1

Is

✓
1� �IpCI2

B̃ (NI +ND � ⌫I)

◆
1

⌫I

X

i2d (i)

vi.

Thus, the signals for the indirect investors and dealers in conglomerate 1 are given by

2

664

si

s⇠i

s (p|vi)
sq

3

775 =

2

664

f

f

f

f

3

775+

2

6664

�i

⇡d1

⇡p � CI1

(⌫I�1)B̃
�N+i

�q

3

7775
· Z,

where

⇡d1 =
1

⌫I � 1
�̃✏d,1 + �

�1

Is,1

✓
1� �Ip,1CI1

B̃ (⌫I � 1)

◆
1

⌫I
�̃vd,1.

Thus, the signals for the indirect investors and dealers in any other conglomerate are given
by

2

4
si

s⇠i

s (p|vi)

3

5 =

2

4
f

f

f

3

5+

2

64
�i

⇡d2

⇡p � CI2

(NI+ND�⌫I)B̃
�N+i

3

75 · Z,

where

⇡d2 =
1

⌫I
�̃✏d,2 + �

�1

Is,2

✓
1� �Ip,2CI2

B̃ (NI +ND � ⌫I)

◆
1

⌫I
�̃vd,2.

The signals for the direct dealers are given by


sj

s (p|vj)

�
=


f

f

�
+

"
�j

⇡p � CJ

(NJ+1)B̃
�N+NI+j

#
· Z.

Using the first-order conditions and this belief representation, we can now rewrite the
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market clearing condition as:

1 = MI,1

 NI/NDX

i=2

(↵E [f |Si] + ↵g + (1� ↵)vi � p) +MI,2

NIX

i= NI/ND+1

(↵E [f |Si] + ↵g + (1� ↵)vi � p)

+MJ

NJ+1X

j=1

(↵E [f |Sj ] + ↵g + (1� ↵)vj � p)

+MI,1

 X

d=1

(↵E [f |Sd] + ↵g + �� p) +MI,2

NDX

d= +1

(↵E [f |Sd] + ↵g + �� p)

= MI,1

 NI/NDX

i=2

⇥
↵(
�
1� �

0
I11

0�
f̄ + �

0
I1Si)� p

⇤
+MI,2

NIX

i= NI/ND+1

⇥
↵
��
1� �

0
I21

0�
f̄ + �

0
I2Si

�
� p
⇤

+MJ

NJ+1X

j=1

⇥
↵
��
1� �

0
J1

0�
f̄ + �

0
JSi
�
� p
⇤
+ (1� ↵)MJ (NJ + 1) v̄J

+MI,1

 X

d=1

⇥
↵
��
1� �

0
I11

0�
f̄ + �

0
I1Sd

�
� p
⇤
+MI,2

NDX

d= +1

⇥
↵
��
1� �

0
I21

0�
f̄ + �

0
I2Sd

�
� p
⇤

+ (1� ↵) (⌫I � 1)MI,1v̄I1 + (1� ↵) (ND +NI � ⌫I)MI,2v̄I2 + ↵M̃g.

Define M̃ = (⌫I � 1)MI1 + (NI +ND � ⌫I)MI2 + (NJ + 1)MJ . Breaking out the signal
vectors into the individual components, we obtain

1 = Ã+ ↵ (⌫I � 1)MI1

✓
�Is,1s̄I1 + �I⇠,1 (⌫I � 1) s̃d1 + �Ip,1

✓
s (p)� CI1

(⌫I � 1) B̃
v̄I1 �

F

B̃
mq

◆
+ �qsq

◆

+ ↵ (NI +ND � ⌫I)MI2

✓
�Is,2s̄I2 + �I⇠,2 (NI +ND � ⌫I) s̃d2 + �Ip,2

✓
s (p)� CI2

(NI +ND � ⌫I) B̃
v̄I2

◆◆

+ ↵ (NJ + 1)MJ

✓
�Jss̄J + �Jp

✓
s (p)� CJ

(NJ + 1) B̃
v̄J

◆◆
� M̃p

+ (1� ↵) [MJ (NJ + 1) v̄J + (⌫I � 1)MI,1v̄I1 + (ND +NI � ⌫I)MI,2v̄I2] ,

where

Ã = ↵

h
(⌫I � 1)MI1

�
1� �

0
I11

0�
f̄ + (NI +ND � ⌫I)MI2

�
1� �

0
I21

0�
f̄ +MJ (NJ + 1)

�
1� �

0
J1

0�
f̄ + M̃g

i
.
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Using s(p) = (p�A)/B̃, we can collect terms in p to obtain

Q̃p = Ã� 1 +Ad

⇣
Q̃� M̃

⌘
� ↵MI1 (⌫I � 1)�Ip,1

F

B̃
mq + ↵MI1 (⌫I � 1) (�Is,1 + �I⇠,1) s̄I1

+ ↵MI2 (NI +ND � ⌫I) (�Is,2 + �I⇠,2) s̄I2 + ↵MJ (NJ + 1)�Jss̄J

+MI1 (⌫I � 1)

✓
1� ↵+ ↵

�I⇠,1

�Is,1
� ↵

✓
1 +

�I⇠,1

�Is,1

◆
CI1�Ip,1

B̃ (⌫I � 1)

◆
v̄I1

+MI2 (NI +ND � ⌫I)

✓
1� ↵+ ↵

�I⇠,2

�Is,2
� ↵

✓
1 +

�I⇠,2

�Is,2

◆
CI2�Ip,2

B̃ (NI +ND � ⌫I)

◆
v̄I2

+MJ (NJ + 1)

✓
1� ↵� ↵

CJ�Jp

B̃ (NJ + 1)

◆
v̄J + (⌫1 � 1)MI1�qsq

where Q̃ = B̃
�1

⇣
MI1 (⌫I � 1)

⇣
B̃ � �Ip,1

⌘
+MI2 (NI +ND � ⌫I)

⇣
B̃ � �Ip,2

⌘
+MJ (NJ + 1)

⇣
B̃ � �Jp

⌘⌘
.

Matching coe�cients to the price equation, we obtain

Ad =
1

M̃

✓
Ã� 1� ↵MI1 (⌫I � 1)�Ip,1

F

B̃
mq

◆

BI1 =
↵

Q̃
MI1 (⌫I � 1) (�Is,1 + �I⇠,1)

BI2 =
↵

Q̃
MI2 (NI +ND � ⌫I) (�Is,2 + �I⇠,2)

BJ =
↵

Q̃
MJ (NJ + 1)�Js

CI1 =
1

Q̃
MI1 (⌫I � 1)

✓
1� ↵+ ↵

�I⇠,1

�Is,1
� ↵

✓
1 +

�I⇠,1

�Is,1

◆
CI1�Ip,1

B̃ (⌫I � 1)

◆

CI2 =
1

Q̃
MI2 (NI +ND � ⌫I)

✓
1� ↵+ ↵

�I⇠,2

�Is,2
� ↵

✓
1 +

�I⇠,2

�Is,2

◆
CI2�Ip,2

B̃ (NI +ND � ⌫I)

◆

CJ =
1

Q̃
MJ (NJ + 1)

✓
1� ↵� ↵

CJ�Jp

B̃ (NJ + 1)

◆

F =
↵

Q̃
MI1 (⌫1 � 1)�q.

Finally, analogously to the no intermediation choice model, the price impact of indirect
bidders and dealers in conglomerate 1 is given by

dp

dqI1
=


M̃ �MI1 �

↵

B̃
(MI1 (⌫I � 2)�Ip,1 +MI2 (ND +NI � ⌫I)�Ip,2 +MJ (NJ + 1)�Jp)

��1

,

the price impact of indirect bidders and dealers in any other conglomerate by

dp

dqI2
=


M̃ �MI2 �

↵

B̃
(MI1 (⌫I � 1)�Ip,1 +MI2 (ND +NI � ⌫I � 1)�Ip,2 +MJ (NJ + 1)�Jp)

��1

,
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and the price impact of direct bidders by

dp

dqJ
=


M̃ �MJ � ↵

B̃
(MI1 (⌫I � 1)�Ip,1 +MI2 (ND +NI � ⌫I)�Ip,2 +MJNJ�Jp)

��1

.

Agents outside of conglomerate 1 do not observe the intermediation decision. That is, they
perceive the price to be a probability-weighted average of the pricing coe�cients in (139)
and (140):

p = Ā+ B̄I1s̄I1 + B̄I2s̄I2 + B̄J1s1 + B̄J2s̄J + C̄I1v̄I1 + C̄I2v̄I2 + C̄J1v1 + C̄J2v̄J + F̄ sq,

(142)

where

Ā = (1� pq)A+ pqAd; B̄I1 = (1� pq)BI
⌫I � 1

NI +ND
+ pqBI1;

B̄I2 = (1� pq)BI
ND +NI � ⌫I

ND +NI
+ pqBI2; B̄J1 = (1� pq)

BI

ND +NI
+ pq

BJ,d

NJ + 1
;

B̄J2 = (1� pq)BJ + pq
BJ,dNJ

NJ + 1
; C̄I1 = (1� pq)CI

⌫I � 1

NI +ND
+ pqCI1;

C̄I2 = (1� pq)CI
ND +NI � ⌫I

ND +NI
+ pqCI2; C̄J1 = (1� pq)

CI

ND +NI
+ pq

CJ,d

NJ + 1
;

C̄J2 = (1� pq)CJ + pq
CJ,dNJ

NJ + 1
; F̄ = pqF.

Dealers and clients of conglomerate 1, on the other hand, know the intermediation choice
made by client 1, and perceive the price to be di↵erent conditional on the intermediation
choice.

C.7 The Role of Risk Aversion

Since risk aversion is always a di�cult parameter to identify with aggregate data, we show
results with risk aversion that is 50% higher and 50% lower than our baseline value of 448.
Table 5 shows that while the exact revenue and utility numbers change, the ordering and
magnitudes are quite stable.

C.8 Bidders who do not condition on price information

This section presents results for a model that is identical to the model in the main paper,
except that bidders do not adjust for the winner’s curse. When forming their bids, they
do not ask themselves: “If this price were realized, what would I learn about what others
know?” We implement this model by simply forcing agents, when the update beliefs, to
put zero weight on the information in price (�p = 0).

What Figures 8 and 9 reveal is that the predictions of the main model are qualitatively
similar. Information sharing still increases revenue. Dealer information sharing still has a
non-monotonic e↵ect on bidder utility. The main di↵erence is the magnitudes. Information
sharing has much larger e↵ects on revenue and utility when price information is not used.
This is simply because, when information is more scarce, additional information is more
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Figure 8: Revenue with bidders who do not condition on price information.
Parameter values listed in Table 2. On the left graph, we assume dealers are not sharing order data.
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Figure 9: Bidder utility with bidders who do not condition on price information.
Parameter values listed in Table 2.
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Table 5: The Role of Risk Aversion.

Baseline ⌧⇠ Chinese wall Open order book

Auction Revenue
Baseline 36.740 32.884 39.311
1.5⇢ 38.831 36.014 40.708
⇢/1.5 36.616 32.699 39.227

Bidder Utility
Baseline 0.810 1.915 0.975
1.5⇢ 1.457 1.709 0.923
⇢/1.5 1.436 1.925 0.983

valuable. So if one believes that auction participants often fall victim to the winner’s curse,
then the arguments about information sharing remain the same, but the consequences
become an order of magnitude larger.

C.9 The Role of the When-Issued Market

Before each Treasury auction, investors can bet on the auction-clearing price by transacting
in the when-issued (often called “WI”) market. WI is an over-the-counter forward market.
In a way, purchasing WI contracts is like direct bidding: An investor who bids in the WI
market does not learn from a dealer’s signal, implying a lower ✓i. At the same time, the
investor does not reveal her order flow to a dealer who shares that information with others
(implying a higher µri). Of course, the person with whom the investor transacts will know
the order and the market price will reflect it.

The decision of an investor to bid in the WI market, as opposed to the actual auction,
depends on risk preferences and on information sharing. Investors who purchase securities
in the WI market limit auction uncertainty by purchasing newly-issued securities at a
predetermined price. But this price will reflect in equilibrium risk compensation on the
part of the sellers. Indeed, securities outstanding in the WI market are in zero net supply,
meaning that whenever an investor is long in a WI, another will be short. The other feature
that di↵erentiates WI from auction bidding is that the opportunity to bid through a dealer
allows an investor to benefit from information sharing.

WI activity may also a↵ect the benefits of information sharing. WI market commitments
a↵ect investors’ private values. When private values are more important, shared informa-
tion about secondary market prices is less important. One might think that, because the
WI market is often an accurate forecast of the auction-clearing price, this would matter as
well. However, since our model allows bidders to condition on every possible price, they
have no use for a price forecast. They simply form bids by asking the question, if p were
the auction clearing price, what would I learn and how would I want to bid? Continuous
price-contingent bids make price forecasts redundant.
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Figure 10: Expected revenue without aggregate uncertainty. This figure plots
expected revenue as a function of information sharing under the assumption that average
secondary market private value is known.
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C.10 The Role of the Secondary Bond Market

The secondary bond market risk is essential to our results. Without the secondary market,
or without its results being uncertain, information sharing will have zero e↵ect on revenue
or utility. Figure 10 illustrates this point. The reason secondary markets are so essential
is that they make one agent’s information relevant to others. Information about private
values, without any uncertain resale possibility or common value, does not a↵ect any
bidder’s optimal bidding strategy. The auction will still function. But information sharing
will have neither harm nor benefit to any bidder. The ongoing lawsuits where plainti↵s
allege great harm from the sharing of their information suggest that this indi↵erence is not
a relevant case.

To compute these results, we set the average (only) secondary market price to be f̄ = 0.
But fixing it at any other level also results in flat lines. Changing the secondary market
value just shifts auction revenue up or down by a fixed amount. Without the risk in
secondary market, the answer to our main question would be trivial.
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