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Abstract

Does a menu of recommended tips presented with a bill influence how much cus-
tomers tip? Using millions of data on passenger tips in New York City Yellow taxis,
we present quasi-experimental evidence that the decision cost of switching from menu
tip suggestions is about $1.89 (16% of the average taxi fare $12.17). We use a model in
which customers’ choices are based on their beliefs about the social norm. They incur
a psychic cost for deviating from the norm and a cognitive cost from computing a non-
menu tip. We estimate that the social norm tip is 20% of the fare and customers incur
a psychic cost (guilt) from tipping 5% less for $0.42 on average, and the cognitive cost
of calculating a non-menu tip ranges from $1.26 to $1.41. We also find that taxicabs
currently present customers with the tip-maximizing menu, and this menu increases
tips from 17% to 19% on average. Taxicab companies appear to have learned over time
to converge to the tip-maximizing menu.
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1 Introduction

Over the past decade, the introduction of new credit and debit card payment technologies has
influenced tipping practices, increasing the revenue potential of several businesses through
tactical presentations of tip suggestions to consumers. These technologies present a menu of
recommended tips as well as options to leave a custom tip or no tip.

When a customer pays for a NYC Yellow taxicab trip with a credit card, a screen shows
the fare and suggests three possible tip rates and provides the option of given a non-menu
tip (or no tip) instead. We use a new model to measure the effects of presenting customers
with such a menu. In our model, customers have a belief about the social norm tip, incur a
psychic cost from deviating from the social norm, and incur a cognitive cost if they calculate
a non-menu tip. We estimate the social norm, psychic cost, and cognitive cost. In addition,
we assess whether the current menu maximizes the average tip.

We use data from 300 million trips in New York City (NYC) Yellow taxicabs over several
years. There are two key sources of variation in our taxicab data set. First, changes in the
menu of tip options across years provide variation in both the share of passengers who opt
for non-menu tips and the amount of tips received by taxi drivers. Second, Yellow Cabs use
two different credit card technologies with different menus in some years.

We use both a nonparametric approach and a structural model to assess the effects from
using menus. Initially, we use changes in the menu in a nonparametric approach to estimate
the total decision cost, which combines the psychic and cognitive costs. The advantage of
the nonparametric approach is that we are able to estimate bonds on the distribution of
decision costs based on only two fairly innocuous assumptions. However, this approach does
not allow us to decompose the decision cost into its cognitive and psychic cost components.

Using a structural model, we are able to separately identify the psychic and cognitive
costs. The structural model allows us to recover the distribution of people’s personal beliefs
of the tipping norm within the population of taxi passengers.

Using the nonparametric approach, we estimate that the decision cost associated with
tipping averages $1.89 (16% of the average taxi fare $12.17). Using the structural model, we
estimate that the average cognitive cost of computing a non-menu tip is between $1.26 and
$1.42 (about 10% to 12% of the average taxi fare). We estimate that the unobserved tipping
norm is for passengers to tip 20% of the taxi fare, which is around the average tip rate in
the data (19%). The psychic cost associated with deviating from this norm is large relative
to the taxi fare. For instance, a passenger who decides to tip 5% less than their perception
of the norm incurs a psychic cost of about $0.42 (about 3.5% of the average taxi fare).

Finally, we use estimates from the model in counterfactual exercises to find the tip-



maximizing menu. We assess how the potential gains from using the tip-maximizing menu
compares to the various tip menus that were presented to passengers over the study period.

According to the counterfactual exercises, the tip-maximizing menu increases tips from
16.87% to 19% (i.e., a 12.5% increase in the tip rate). Given that only percentage options
are shown, we find that the current menu maximizes the tips received by drivers. However,
that was not always the case. It took a few years of trying various menus before the credit
card vendors who provide the tip menus settled on the tip-maximizing menu. The companies
seem to have learned overtime to converge to the tip-maximizing menu.

Although this study uses taxicab data, it has wide implication as similar menus are
widely used in many other industries as well. Tipping is a major part of economic activity.
According to Shierholz et al. (2017), annual tips from restaurants alone are $37 billion.

In 2007, the NYC Yellow taxicabs began the practice of presenting customers with a
menu (Grynbaum, 2009). In 2009, the tech company “Square” started providing different
establishments with electronic credit card readers that prompt customers to choose from
a menu. Square has since popularized this technology by making these electronic devices
accessible to both small local businesses and large corporations around the United States.
For example, the café chain Starbucks agreed in 2012 to invest $25 million in Square and
converted all its electronic cash registers to the ones offered by Square (Cohan, 2012). The
grocery chain Whole Foods Market followed suit and announced in 2014 that it would roll
out Square registers across some of its stores (Ravindranath, 2014). The use of such menus is
spreading rapidly to include retail outlets that did not traditionally use tips such as bakeries,
flower shops, and ice cream parlors.

Anecdotes suggest that tip menus compel consumers to tip and increases the amount
tipped. Our findings are consistent with these claims. According to a NY Times article, the
tips that taxi drivers receive doubled after the installation of electronic devices that present
passengers with a menu (Grynbaum, 2009). Fast company reported that some companies
who changed to using Square registers saw about 40% to 45% increase in customer tips,
and that Square is on target to accruing about a quarter of a billion dollars annually for its
clients from customer tips alone (Carr, 2013). Clearly, presenting consumers with tip menus
has real consequences for firm revenues.

A large literature discusses how and why menu suggestions and defaults options affect
consumer choice behavior.

According to Thaler and Sunstein, (2003), defaults and menus should have little to no
effect on choices if consumers are fully rational. However, over the past two decades, a
plethora of empirical evidence shows that defaults affect consumers’ behavior. For example,
defaults affect (1) savings behavior: Madrian and Shea (2001); Choi et al. (2002, 2004);



Carroll et al. (2009); DellaVigna (2009); Beshears et al. (2009); Blumenstock et al. (2018);
(2) organ donations: Johnson and Goldstein (2003); Abadie and Gay (2006); (3) contract
choice in health clubs: DellaVigna and Malmendier (2006); (4) tipping behavior: Haggag
and Paci (2014); (5) marketing: Brown and Krishna (2004); Johnson et al. (2002); and (6)
electricity consumption: Fowlie et al. (2017).

The literature suggests several competing hypotheses as to why defaults and menus affect
consumer choice behavior. Some explanations are that the mental effort in actively analyzing
several options or determining the right course of action causes consumers to remain at or
choose a menu option instead. Consumers may also perceive menu or default options as
a source of valuable information indicating how to make choices, or which choices are the
status quo or deemed appropriate (Beshears et al., 2009). Thus, they may find it unsettling
to choose a different option. Some consumers procrastinate on making important decisions
or choices if the benefits to such actions are not immediate. That is, consumers who are
naive and present bias. Thus, such consumers would rather opt of a menu or default option
in the interim and defer active decision-making to some future date instead (O’Donoghue
and Rabin, 1999; O’donoghue and Rabin, 2001).

According to Bernheim et al. (2015), “costly decision making is notoriously difficult to
model” due to competing mechanisms such as behavioral biases, information channels (con-
sumers may assume that menus provide important information about social norms or appro-
priate choices), calculation costs, and others that may be at play during the decision process.
As a consequence, there are mostly no empirical estimates on the economic importance of
the proposed mechanisms in the current literature (Jachimowicz et al., 2019).

Passenger tipping decisions for NYC Yellow taxicab trips provides several advantages for
assessing these various explanations. First, consumers cannot defer tipping to a later date,
thus, self-control problems (e.g., naiveté, present bias, and procrastination) are ruled out
as explanations for the default effect in this context. Another advantage is that different
menus were offered to passengers over the period of this study, which allows us to assess how
passenger tipping changed across menus and which menu extracted the most tips for taxi
drivers.

The study that is most similar to this one is Haggag and Paci (2014). Using a clever
regression discontinuity design, they explore whether menus with higher default tip amounts
induce consumers to tip more. Using NYC Yellow taxi trips from 2009, they found that
higher tip suggestions increase the amount that passengers tip, but may cause passengers to
avoid tipping altogether. Our study differs from the above study in several ways. First, the
authors do not estimate the social norm tip and the psychic cost (guilt) of deviating from

the norm, which we do in this study. Second, we go further to estimate the cost of choosing



and computing a non-menu tip and estimate the tip-maximizing menu as well.

This study contributes to the literature on behavioral industrial organization as well.
Specifically, it measures how consumer-switching costs affect firm profits. That is, the im-
pediments or costs that a consumer faces when switching from one option to another. In
a theoretical exposition, Beggs and Klemperer (1992) showed that competitive firms have
an incentive to exploit switching costs in ways that can increase firm profits. DellaVigna
and Malmendier (2004), also show that some profit-maximizing firms design contracts that
introduce switching costs and back-loaded fees to extract more profits—by taking advan-
tage of consumers with time-inconsistent preferences and naive beliefs. Taxi drivers have an
incentive to obtain a tip menu that will extract the highest tips possible from passengers.
In this paper, these switching costs are the costs involved for switching from a menu to a
non-menu tip.

The rest of the paper proceeds as follows: Section 2 describes the tipping systems used
in NYC Yellow taxicabs and gives a summary of the data used for our analysis. Section
3 lays out a model for tipping in taxicabs. Section 4 presents a non-structural approach
for estimating decision costs and discusses the corresponding results. Section 5 presents
a structural approach to estimating decision costs and provides the corresponding results.
In Section 6, we conduct counterfactual exercises to predict the tip-maximizing menu and
compare the predicted tips from the model to those from the different sets of menus observed

in the data. Section 7 concludes with a discussion of the results and its implications.

2 Taxi Tipping Systems and Data

Virtually all NYC Yellow taxicabs use electronic devices to collect credit and debit card
payments provided by two vendors, Creative Mobile Technologies (CMT) and VeriFone In-
corporation (VTS).! CMT and VTS supply roughly equal shares of the electronic devices.
Their transmission devices record information such as the fare, tip, trip distance, geo codes
of pickup and drop-off locations, date and time of trip, and other trip characteristics.
Because all Yellow taxicabs look similar, a passenger cannot tell which vendor operates
the electronic transmission device within a particular cab. At the end of a ride, a digital
screen in the back of the taxicab shows the trip expenses. A passenger opts to pay with
cash or a credit/debit card on the screen. For credit/debit card payments, passengers are
provided with a menu of suggested tips. The passenger may leave no tip, choose one of the

suggested menu options, manually key in any amount, or provide a separate cash trip.

"'We ignore a third vendor, Digital Dispatch Systems, because it provided less than 5% of the electronic
transmission devices in use between 2009 and August 2010.



Between 2009 and January 2012, CMT and VTS provided passengers with different sets
of menu tip options. Over this period each of the vendors changed their menu options.
Figure 1 shows a typical screen displaying menu tip options and the taxi fare.

Figure 2 shows what the menu options were and when they changed. From 2009-2010,
CMT’s menu options were 15%, 20%, and 25%. It increased these amounts to 20%, 25%,
and 30% starting in 2011. Prior to 2012, VTS offered a menu of dollar amounts for fares
under $15, and choices of 20%, 25%, and 30% for larger fares. From 2012 on, it offered
only the percentage choices. Therefore, the data set contains information on three sets of
menus. The vendors did not inform drivers or riders about these changes, but they could
easily observe the changes.

To take advantage of the menu changes and differences across the two vendors, we use
data from the years 2010, 2011, 2013, and 2014. The Taxi and Limousine Commission (TLC)
compiles all the taxi trip data from the transmission devices in all active taxicabs.

There were 684,192,481 taxi trips over the stated period. However, information on tipping
is available only for credit and debit card transactions, which were used in roughly half of
the trips, 326,841,373. We further limit the sample to rides that began and ended with New
York City, had a standard rate fares with no tolls, and the recorded tip was positive.? As a
result, the sample used covers 285,972,868 trips.

Some taxi screens display menu tip suggestions as only percentages while others show
both the percentages and the corresponding dollar amount. For example, between 2009 and
2012, VTS displayed corresponding dollar amounts for their percentage tip menu but CMT
did not (Haggag and Paci, 2014). Moreover, since 2012, CMT and VTS use menus with the
same three tip options: 20%, 25%, and 30%. However, CMT calculates tips on the total
fare: the sum of the base fare, the MTA tax, the tolls, and the surcharge. In contrast, VTS
calculates tips on only the base fare and the surcharge. To avoid these complications, we
use only CMT’s data except in Section 6.2.

Our data set reports only the dollar amount tipped by passengers. For example, if the
tip percentage is 20% and the fare were $10, the tip would be reported as $2 in the data set.

We convert that dollar amount to a percentage in our analyses.?

2Because passengers often pay for the taxi fare using a credit card but give the driver a cash tip, we
cannot infer that a lack of a credit card tip implies that no tip was given.

3We account for possible rounding errors by considering any tip that falls in the range between 19.99%
and 20.01% as the lowest menu option (20%), tips in the range between 24.99% and 25.01% as the middle
menu option (25%), and tips that fall in the range between 29.99% and 30.01 as the highest menu option
(30%). For standard rate fares, passengers are charged $2.50 upon entering the cab. Thereafter, the travel
rate for every fifth of a mile or for every minute where the cab travels less than 12 mph increases the fare
by an additional $0.40. After September 3, 2012, the Taxi and Limousine Commission (TLC) increased
the travel rate from $0.40 to $0.50. A $0.50 Metropolitan Transportation Authority (MTA) tax was added
to all fares after September 2009. An additional $0.50 night surcharge charge is added for trips between



Table 1 shows summary statistics from the sample of trips in CMT taxicabs only. It shows
trips from January 2010 through January 2011 (column 1), February 2011 to December 2011
(column 2), and trips in 2014 (column 3). Between January 2010 and January 2011, CMT
presented passengers with a menu that showed 15%, 20%, and 25%. Thereafter, the menu
changed to 20%, 25%, and 30%. The major change that occurred between 2011 and 2014
was in 2012, where the TLC increased the taxi fare by about 17%.

Before the menu change (column 1), the average tip amount was about $1.77, which
increased to $1.95 after the change in 2011 (column 2). However, the average taxi fare
remained around $10 from 2010 to 2011. After the CMT menu change, the average tip rate
increased by 8%, from 17.82% before the menu change to 19.19% thereafter. The share of
passengers who choose the menu tips decreased by about one-fifth after the menu change,
from 59.7% to 48.3%. In 2014 the share of passengers who choose menu tips returned
to 60.6%. The fare increase in 2012 resulted in higher average fare of $12.17 by 2014. The

average tip amount increased to $2.27 in 2014 while the average tip rate remained at 19.06%.

3 Model

We model how passengers decide to tip when they are provided with a menu. Passenger ¢
gives a tip (a percentage of the fare) of ¢;. She believes that the social norm is a tip rate of
T; (T; may differ across passengers). If ¢; is less than the social norm, she incurs a psychic
cost. In addition, if ¢; is not one of the menu default options, she incurs a cognitive cost ¢;
to compute the dollar tip amount, ¢; x F;, where F; is the fare. The psychic cost plus the
cognitive cost (if any) is her total decision cost.

We use two different approaches to assess whether the decision cost in our context is
significant: a nonparametric approach and a structural model.

First, we use a nonparametric approach to place monetary bounds on the decision cost.
This approach uses a change in the menu, which caused a change in the share of passengers
who choose non-menu tips. This approach requires two weak assumptions. While this
approach does not require strong assumptions, it does not allow us to separately identify the
psychic and cognitive costs.

In the second approach, we add stronger, structural assumptions, which allow us to

separately identify the psychic and cognitive costs.

8pm—=6am, and a $1 surcharge for trips picked up between 4pm—8pm on weekdays. Fares between Man-
hattan and JFK airport charge a flat rate. Trips outside NYC and other non-standard rate fares are listed
at www.nyc.gov/html/tlc/html/passenger/taxicab_rate.shtml.



4 Nonparametric Estimation of Decision Costs

In 2011, the menu provider CMT changed its menu options from 15%, 20%, and 25% to 20%,
25%, and 30%. Figure 3 (and Table A.1, in appendix section A.1) shows the distribution of
tips before and after CMT’s menu change. There is a clear increase in the share of passengers
choosing non-menu tips below 20% after 15% is removed from the tip menu.

We use this menu change as a natural experiment to estimate bounds on the monetary
cost of deciding to choose a tip different from the menu. The identifying variation for this
exercise is the changes in the share of passengers who choose non-menu tips after the menu
changes. If a passenger chooses a non-menu tip, then she finds it beneficial to incur the costs
associated with deciding to tip at her preferred rate instead of at a menu option.

This approach is nonparametric. Estimating bounds on these decision costs does not
require us to make assumptions about how passengers decide how much to tip. However, we
need to make two assumptions for this exercise:

A1 - Decision costs are similar pre and post menu change.

A2 - One’s perception of the tipping norm 7; is jointly independent of the menu and the
taxi fare.

Assumption Al is innocuous. In order to test A2 we need information on the unobserved
tipping norm 7;. However, we are able to directly test A2 with the aid of a structural model
presented in section 5 below. Details of the test can be found in the appendix section A.2.1.
In addition, we also provide some empirical support for assumption A2 in section A.2.2 of

the appendix.

4.1 Constructing Bounds

By inspecting non-menu tips in figure 3, we find significant increases in passenger tip rates
below 20% after the CMT menu change, however other tips remain unchanged. Therefore,
to compute the bounds for decision costs, we restrict attention to tips at or below 20%.
Thus, the relevant menu options were 15% and 20% before the change and only 20% after
the change.

Assume that passenger ¢ prefers to give a non-menu tip rate ¢; on taxi fare F. For
example, suppose t; is 10% and F' is $10. Now suppose that before the removal of the 15%
menu option, this passenger tipped 15%, but after the 15% option was removed, she chose
a 10% tip instead. Here, a reasonable lower bound for the decision cost of tipping t; = 10%
is |0.15 — 0.10] x $10 = $0.50. If her decision cost were less than $0.50 then we should have
observed her choosing 10% when the 15% menu option was available. Of course, her actual

decision cost could be larger, hence this amount is a lower bound.



Similarly, |0.20 — 0.10| x $10 = $1 is an upper bound of her decision cost of computing a
10% tip. Observe that if the cost of deciding to tip 10% is more than $1, then she benefits
by choosing the 20% menu option. Generally, for a given fare F, the lower and upper
bounds for the decision cost of switching from 15% to some non-menu tip ¢; is given by

[10.15 — | F, 10.20 — ;| F].

4.2 Estimates of Bounds

Our goal is to recover bounds on the distribution of decision costs for all passengers whose
preferred non-menu tip rate is . Let AS(, ry represents the increase in the share of passengers
who choose a non-menu tip ¢ for a taxi fare F' after 15% is removed from the menu. For
each AS(; ), we compute the corresponding bounds as described above. We then combine
the set of computed statistics to construct bounds for the distribution of decision costs for
passengers who tip .

We use the same data as in figure 3, but focus on tip rates that are 20% and below, which
reduces the number of trips by about 20%. Given the reasoning behind how the bounds are
estimated, we should not observe significant changes in the share of passengers who choose
tips above 17.5% after the menu change. For example, after the 15% menu option is removed,
passengers whose preferred tip is 19% should find it more beneficial to pick the 20% menu
option rather than calculating 19%.*

To compute the bounds of decision costs, we proceed in three steps. First, we group taxi
fares into 29 non-overlapping bins of width $2: [$3, $5], ($5, $7], ($7, $9]... ($59, $61], and
then categorize tips into 20 non-overlapping tip rate bins of width one percent: 1%, 2%,
3%...20%. Thus, the 1% bin is the share of all passengers whose tip falls within [0.5%,
1.5%], 2% is the share whose tips fall within (1.5%, 2.5%|, and so forth.

Second, for the subset of the data that falls within a particular fare bin, we compute the
share of tips that belong to each tip bin. For example, figure 4a and 4b show the distribution
of the subset of tips whose corresponding taxi fares falls within bins ($9, $11] and ($21, $23]
respectively. The figures show that higher shares of passengers choose non-menu tip after
15% is removed from the menu. Similar figures that correspond to other fare bins are shown
in figure A.2 in the appendix section.

Third, for each tip bin, we use the midpoint of the fare bin to compute the lower and
upper bounds for decision costs. For example, for all taxi fares that fall within fare bin ($9,
$11], $10 is used to compute the relevant bounds. We then combine the increase in the share

of passengers AS(; py who tip ¢ to construct bounds for the CDF of decision costs. Figures

4This condition is generally satisfied when we exclude round dollar tip amounts. However, our analyses
are unaffected even if we don’t exclude such tips.



5a and 5b show the computed bounds for the CDF of decision cost conditional on tip rates
that are 2% and 10% of the taxi fare respectively. figure A.3 in appendix section A.4 shows
the computed bounds for other tip rates.

Suppose that the midpoint of the estimated bounds of decision costs is similar to the true
decision cost. If so, then we can use the midpoints of all the conditional CDFs in conjunction
with the relevant shares AS(; ) to estimate an unconditional CDF of decision costs. Figure
6 shows the estimated CDF. From this distribution, the average cost of deviating from menu
tips is $1.89 (16% of the average taxi fare $12.17).

As an alternative to the nonparametric approach above, we conduct a novel but comple-
mentary exercise that identifies the distribution of decision costs as well. This alternative
approach uses a different source of variation, data and strategy to estimate decision costs.
Specifically, we employ a semiparametric approach that uses changes in the shares of pas-
sengers who choose non-menu tips as the taxi fare increases to estimate the distribution of
decision costs. Estimates from this semiparametric approach are similar to the nonparamet-
ric approach. In fact, the average decision cost is estimated to be $1.64 (14% of the average
taxi fare $12.17) compared to $1.89 the average from the nonparametric approach. Details of

the semiparametric approach of estimating decision costs is in section A.5 of the appendix.

5 Parametric Estimation of Decision Costs

The nonparametric approach of estimating decision costs provides evidence that decision
costs are large relative to the taxi fare. However, we are not able to distinguish between the
psychic cost of deviating from the perceived tipping norm and the cognitive cost involved in
computing one’s preferred tip.

It is necessary to account separately for the social pressures that regulate decision-making
versus the effort required to implement one’s final decision independent of social influences.
In fact, consumers may feel obligated to conform to social norms that go against their
personal desires. Thus, in the tipping context, where social norms matter for decision making,
it is important to distinguish between psychic and cognitive costs and quantify their economic
significance as well. To that, we place more structure on our tipping behavior model.

We continue to rely on assumption A2 and add another assumption. We specify a partic-
ular utility or loss function. This extra structure allows us to separately identify the psychic

cost, the cognitive cost, and the social norm across taxi passengers.
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5.1 The Structural Model

At the end of the taxi ride, passenger i chooses a tip to maximize her utility or minimize her

loss represented by

0T~ 10— x 1{t; ¢ D} (1)
Tip paid Psychic cost Cognitive cost

The first term —t;F; is her expenditure from tipping ¢; (a percentage of the fare). The
second term —0 (T; — ti)2 is her psychic cost—disutility for deviating from what she believes
is the social norm—which we assume is quadratic. The scalar € is the marginal disutility for
passengers who do not tip their perceived norm. Of course, passenger ¢ avoids the psychic
cost if she tips 7;. However, if she deviates from tipping 7;, then her psychic cost increases
with the size of the deviation.® The third term, —¢; x 1{t; ¢ D}, is passenger i’s cognitive
cost of computing her preferred tip, where ¢; is a fixed dollar cost of calculating ¢;F;, and
1{t; ¢ D} is an indicator function that equals one if ¢; is not one of the options d; of
j =1,2,3 in tip menu D and zero otherwise.®

The dollar amount of the tip ¢;F; enters linearly into the utility function. Hence the
utility function is quasi-linear in money. This assumption is relatively innocuous given that
tips are a small amount compared to the wealth of customers. We remain agnostic as to how
passenger ¢ determines 7; and assume that all the necessary processes involved including
warm glow are subsumed in passenger i’s formulation of 7;.

To decide on the optimal tip using a two-step process, first, she determines the tip rate
t7 that maximizes her utility, equation (1). Second, she makes a discrete choice of whether
to select an option from the menu or tip at her preferred rate.

Let B; be the benefit from choosing t; ¢ D rather than a (higher) menu default, B; =

®Because the psychic cost of deviating from the norm is symmetric, passenger, would nonetheless experi-
ence a utility loss if she chooses a tip larger than T; . However, it may be intuitive that one would likely feel
ashamed or experience disutility for choosing a tip that is less than T}, but not for a tip equal to or larger
than 7;. We therefore conduct an exercise where passenger; is assumed to face no disutility from choosing a
tip that is larger than her perception of the tipping norm 7;. So passenger,’s disutility from tipping can be
written as

U — —tiF—H(Ti —ti)Q —Cil{ti ¢ D} R ift; <T;
N 3 ,ift, > T

However, using this model does not affect any of our estimates from equation (1) in a significant way.
This is because, in equation (1), the only case where a passenger may tip above T; is if she chooses a menu
tip—larger than T; (which rearly occurs in the model setup). We therefore proceed with equation (1) in our
analysis.

6This model is similar to the one presented in Azar (2004). The main difference is that the current model
takes into account that consumers are presented with a menu, and they incur a cognitive cost when they
don’t choose from the menu.

11



(d; —t*)F,. The cost of doing that is that her psych cost rises from 6 (T; — d,)* to 0 (T} — t;)°.
In addition, she incurs a cognitive cost of ¢;. Thus, she tips at her preferred rate if the benefit

B; of tipping her preferred tip ¢ exceeds the extra cost from not choosing a default tip:

B; = (dj — t;)F; > [0(T; — ,)° — 0(T, — d;)°] +ci (2)

Given that ¢} < d;, it follows that Cigf

one’s ideal tip is larger at higher fares. Therefore, passengers will be more likely to choose

=d; —t7 > 0. That is, the benefit of computing

non-menu tips at higher fares. Figure 7a shows a binned scatter plot of the share of passengers
who choose a menu tip at different levels of the fare. It is clear from the figure that passengers
are less likely to choose from the menu at higher fares. We now solve for the preferred tip by
maximizing equation (1). We ignore the cognitive cost ¢; because of the indicator function
1{t; ¢ D}. From the first-order condition, we find that the optimal tip is
o= TR (3)
‘ 20
According to the first-order condition, passenger i’s preferred tip ¢} is less than her perception
of the social norm 7;. Therefore, when deciding on how much to tip, a passenger tries to
save a little bit by trading off the dollars lost to tipping at the social norm against the guilt
from being a cheapskate.

Another implication of the first-order condition is that the optimal tip rate falls as the

dF
binned scatter plot of the average tip rate across different fare levels, shows that the average

tip rate falls with the fare.”

fare increases (dt: = —% < 0). This observation generally holds in the data. Figure 7b, a

5.1.1 Assumptions

To estimate the parameters in the proposed model (equation (1)), we rely on assumption A2
and an additional assumption, A3.

Again, assumption A2 holds that passenger ¢’s perception of the social norm, T3, is jointly
independent of the taxi fare F; and the tip menu D. The new assumption is:

A3 - The cognitive cost ¢; is jointly independent of the taxi fare F; and one’s preferred
tip t;.

because we do not observe ¢;, there is no straightforward way to test A3. However, we

find the data to be consisted with assumption A3. For example, we do not find a large

"Some passengers use other heuristics such as tipping a fixed dollar amount or rounding off the taxi fare
to a specific dollar amount e.g., a passenger facing a fare of $9 many decide to tip $1 to round of her total
trip expense to $10. We account for this behavior later in our analysis.
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share of passengers tipping at 10% relative to other non-menu tip rates such as 12% and
14%, which are relatively harder to compute. We also find that passengers are no more
likely tip at non-menu tip rates for fares (e.g., fares that are multiples of $10) where tip rate
computations (percent to dollar conversions) may be easier. These empirical observations

are further discussed in section A.6 of the appendix.

5.2 Estimation Procedure

The primitives to be estimated are a passenger’s perception of the social norm 7;, the psychic
cost parameter §—that represents the marginal disutility associated with not tipping rate
T;, —and the cognitive cost ¢; of computing one’s preferred tip ¢} instead of selecting a menu
option.

Given the structure of the utility function, we are able to rely on the first-order condition,
equation (2), to estimate both the unobserved distribution of 7; and 6. This leaves the
distribution of ¢; to be estimated, which we compute via a Minimum Distance Estimator.

Specifically, the first-order condition allows us to empirically to estimate the distribution
of T; and 6. The advantage here is that, we need not make any distributional assumptions
regarding 7;. Second, 6 is directly estimated in the same equation used to recover 7;. In
addition, because this approach allows us to empirical estimate the distribution of 7}, we
can now test assumption A2. We do this by comparing estimates of T; before the CMT tip
menu change to estimates of T} after the CMT menu change and the TLC taxi fare increase.

Details of this exercise can be found in section A.2 of the appendix.

5.2.1 Estimation of 7; and ¢

We estimate equation (3) using an ordinary least squares regression (OLS), where all com-
ponents of the regression equation have structural interpretations linked to the proposed
model. Specifically, the equation to be estimated is the observed tip rate regressed on a

constant term and the taxi fare.

ti = ap + BF; + €, (4)

where t; is the observed tip rate in the data, ap is the constant term, F; is the observed

taxi fare, and ¢; is the residual.® We can interpret ap as the average perceived tipping

8Note that the outcome variable in the equation is the tip rate (i.e., Tafiigam) and the main covariate is
the taxi fare. Thus, division bias might be a concern for estimating equation (4). However, we expect this

bias to be insignificant in our setting for two reasons: 1) there is little to no measurement error in the data
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norm E[T}], B = 21—9, and the residual term e; = T; — ap represents the difference in
passenger ¢’s perception of the tipping norm relative to the average perceived norm in the

population. To recover an estimate of 7; (denoted as TZ), we note that

Thus, the constant term augmented with the residuals is an estimate of the unobserved
distribution of perceptions of tipping norms in the population.

The challenge with estimating equation (4) using all observed tips is that, for passengers
who choose tips from the menu, we do not know what tips they would have given otherwise.
As a result, the coefficient estimates from equation (4) are likely biased in an OLS regression.

However, we observe ¢} for the subsample of passengers who choose non-menu tips. We
focus on this subsample to estimate 6 and the distribution of 7;. We do this by relying on
assumptions A2 and A3, and correcting for the possible sample selection concern for this
subset of tips.

Equation (4) can be rewritten in the regression form as

E[t;|F, 1{t; ¢ D} = arp+ BF;+ Dg|F;, 1{t; ¢ D}]

According to A2, T; L (F;, D), thus ¢; L F;. Now, we need to know the relationship between
g; and 1{t; ¢ D}. Given that A2 implies T; L F, the decision to choose a non-menu tip
depends solely on one’s cognitive cost ¢;. This conclusion follows because the cognitive cost
¢; is what influences a passenger to choose a menu option or otherwise. Therefore, using
the subsample of passengers who choose non-menu tips to estimate equation (3) may be
problematic due to sample selection. For this subsample the regression equation is of the

form
E[t;|F;,c)] = ar+ BF;+ D[e|F;, ¢;]

The concern here is the possibility that Ele;|¢;] # 0. To address this concern, we employ
a 2-step Heckman selection correction approach and compare it side-by-side with the naive
OLS estimates.

on tips and fares, and 2) the lowest taxi fare is a $3—hence the outcome variable (tip rate) does not have a
case where the numerator (tip) is divided by $0 or a very small fare.
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In the first step of the selection model, we use a probit equation to estimate the probability
of choosing a non-menu tip—using the entire sample. The outcome variable is a dummy
variable that equals one if the passenger chooses a non-menu tip and zero otherwise. The
independent variables are the taxi fare and an added instrument, which is the taxi driver’s
report of the number of passengers on each trip. Our reasoning is that, a passenger is more
likely to choose a default tip if they have other co-passengers, yet, that same passenger with
or without co-passengers has an ex-ante identical preferred tip.

When passengers are shown the tip screen at the end of the trip, they may not want to
delay other co-passengers by taking the time to deliberate on how much to tip. In addition,
they may also like to impress their co-passengers by choosing a high default tip amount
or if their preferred tip is lower than the menu options they may feel guilty tipping that
amount in view of other co-passengers. Lastly, it is important to note that the number of
co-passengers does not enter the utility function defined in equation (1). Thus, the number
of co-passengers is an excluded instrument with respect to the structure of the model. Table
A.3 column (2) in section A.2.1 of the appendix shows the results from the first step probit
estimation of the Heckman selection correction model.

In the second step, we estimate equation (4) using the subsample of passengers who
choose non-menu tips while including the estimated inverse Mills ratio from the first-step

probit regression to correct for possible selection bias.

5.2.2 Estimates of 7; and 0

Generally, we find that the average perceived norm 7T; across all passengers is to tip around
20% of the taxi fare and tipping 5% less than the norm results in a psychic cost of about
$0.42 (3.5% of the average taxi fare $12.17). We also find that the selection concerns about
using the subsample of non-menu tips does not have a significant impact on estimating 6
and the distribution of 7T;.

Table 2 Panel A compares estimates of equation (4) using OLS in column (1) to estimates
from the Heckman selection correction model in column (2). Both columns shows the same
statistically significant coefficient estimate on the taxi fare 3 = 0.003. This estimate implies
that 6 = i ~ 166.7. The constant shows an estimate of the average perceived tipping
norm across all passengers. The OLS estimate of the average perceived norm of the tip rate
is 0.198, while the selection model estimate is 0.205. These two estimates are similar but
statistically different. The coefficient on the Mills ratio term in column (2) is very small

0.005 but statistically different from zero. The similarity in estimates across the two models

is comforting. We take this to mean that sample selection concerns is inconsequential when
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using non-menu tips to estimate 6 and the distribution of 7;.°

Note that the units of 8 are dollars per percent squared (8/%2). Therefore, the dollar value
of the psychic cost for tipping 5% less than the norm (20%) is 166.7 x (0.20—0.15)% = $0.42.

Using the results from Table 2 column (1), figures 8a compares the reduced-form estimate
of the distribution of the perceived tipping norm 7; and the implied preferred tip ¢} against
the observed tip t; in the data. The figure shows that the distribution of the perceived tipping
norm (solid line) is approximately uniformly distributed between 12% and 21%. Very little
to no mass of the distribution is observed beyond the stated range.

With 7} and 0 in hand, we can compute the preferred tip tA;-* using equation (3). We depict
this as an un-shaded bar graph in figure 8a. The majority of passengers’ preferred tip rates
below 20%. Figures 8b shows an analogous figure using the Heckman selection correction

model. The two figures are more or less the same.

5.2.3 Estimating Cognitive Cost ¢;

Given T} and 9, the final parameter left to be estimated is the cognitive cost ¢;. We assume
¢; to be exponentially distributed with rate parameter . The choice of an exponential
distribution for cognitive cost is inspired by the nonparametric distribution of decision costs
estimated in figure 6.

The passenger’s objective is to give a tip that maximizes her utility. However, there is
no analytical solution to equation (1) and hence no corresponding closed-form expression.
This is because the derivative of the indicator function 1{¢; ¢ D} is not well defined. We
circumvent this problem by using a Monte Carlo procedure of an algorithm that solves
a discrete choice problem of choosing one of the menu options or a non-menu tip. The

algorithm follows these steps:

e Step 1: For each observed taxi fare F;, there is a random draw of T, from the distribution
estimated in the section above and a draw of a corresponding ¢; from an exponential

distribution with rate parameter \.

e Step 2: tA;-“ is then computed as defined in equation (3) using £}, T;, and 0.

9We find that some passengers provide tips that are round-dollar amounts and this creates mass points in
the empirical distribution of the dollar value of tips. These passengers may possibly be using some heuristic
that may not be captured in our model and thus might affect the estimate of the distribution of the perceived
tipping norm 7T;. We control for this round-number bunching by including an indicator variable for round
number tips in our regression equations to capture the rounding effects. So that when we estimate T;, we
omit the contribution of the round-number indicator. This approach is similar to what Kleven and Waseem
(2013) used to capture the effect of self-employed workers who report round-number income amounts for tax
purposes. However, our estimates do not change even if we do not control for round-dollar tip amounts.

10We choose 5% because the average non-menu tip rate is around 15%.
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e Step 3: The utility levels for tipping a non-menu tip t}(U tA*), and anyone of the menu
tips: U (dy = 20%), U (dy = 25%), and U (d3 = 30%) are then computed via
equation (1).

e Step 4: The algorithm then chooses the tip that results in the highest utility by com-
paring the four levels from the step 3.

To find a value of A such that the model (equation (1)) predicts a realization of tips that
matches the observed data as closely as possible, we match a vector of model predicted
moments to those computed from the observed data.

As a primary set of moments used to identify A\, we construct sample statistics by dividing
tip rates into 50 non-overlapping one percent bins, namely 1%, 2%, 3%...50%. Each statistic
is defined as the share of passengers whose tip falls within a particular bin. For example,
the estimated moment for passengers who tip 10% of the taxi fare is defined as the share of
passengers who gives a tip that is between 9.5% and 10.5% of their taxi fare.

We use a minimum distance estimator (MDE) to estimate A\. We proceed as follows: let
g(\[T;,0) = [ — m(A|T},0)] be a vector of moment conditions, where 7 is the vector of
sample statistics (empirical moments from the data) and m(\|7},6) is the model analogue
of m. Therefore, the MDE minimizes the criterion function Q()\|T,,é) = ¢'Wg, where W
is some positive-definite weight matrix that is a function of the realized data. Effectively,
when minimizing the criterion function Q(A|Ti, é), we match the sample statistics to their
simulated analogues under the model.

We employ a two-step procedure to compute the model parameters. In the first step, an
identity matrix is used as a preliminary weight matrix to compute A—denoted as A . In the
second step, A is used to predict a set of realized tips via equation (1). Next, the predicted
tips are used to compute m()\|TZ~, é)—the model analogue of the empirical moments m. We
then calculate the vector of moment conditions as g(A|T},6) = [ —m(\|T},0)] . We assume
independence across the moments so that the covariance between the moment conditions is
set to zero. In the final stage of step 2, the diagonal of the inverted variance-covariance matrix
of the moment conditions is used as a weight matrix (i.e., W = [diag{gg’}]”") to compute the
final parameter estimates.!! Therefore, the MDE in the second step minimizes the squared
distance between the empirical and the model predicted moments using a metric that is
determined by the estimated weight matrix.

Generally, A is identified off the share of passengers who choose menu tips, that is,

passengers who fall within tip bins 20%, 25%, and 30%. Note that, if there is no cognitive cost

HThe theory suggests that, the best choice of a weight matrix is the inverse of the covariance of the
moment conditions
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for computing one’s preferred tip, then we should not find a significant share of passengers
choosing from the menu relative to other tip rates. Thus, the shares of passengers at the
20%, 25%, and 30% tip bins (i.e., the share of passengers who choose menu tips) identifies
A and hence ¢;.

We use the “optim” package that is implemented in the R statistical software as the nu-
merical optimization algorithm to compute . This algorithm finds the parameter estimates
that minimize the criterion function Q()\|ﬁ,é) To avoid selecting a local minimum, we
search for the model parameter estimates over 500 iterations of the algorithm and choose
the estimate that result in the smallest minimized value of Q(A|T}, 6). We compute standard
errors using a bootstrapped procedure where 1000 independent draws of tips are constructed
by a random resampling of tips generated via equation (1). The standard error is defined
as the standard deviation of the distribution of parameter estimate computed from all 1000

bootstrap samples.

5.2.4 Estimates of Cognitive Cost ¢;

Table 2, Panel C, shows the MDE estimates of ¢;. We find that the average cognitive cost
cost of deciding on one’s preferred tip rate and computing the corresponding dollar amount
is $1.26 (10% of the average taxi fare $12.17) when we use the OLS estimates, and $1.42

(12% of the average taxi fare) when we use the selection correction model estimates instead.

5.2.5 Model Performance

Figures 9a and 9b compares the observed data to the model predicted distribution of tips that
correspond to using estimates from the OLS and the selection correction model respectively.
Both models perform well by mimicking the point masses at all the three default options.
Generally, the predicted non-menu tips are distributed similarly to the observed data as well.
Visually both approaches work well in predicting the realized data. The y? goodness of fit
test supports what we observe in the figure. Between the data and model predictions shown
in figure 9a the statistics from the test are y? = 0.17598 and a P-value of 0.99 and for figure
9b x? = 0.22752 and a P-value of 0.99. Thus, there is no significant difference between the
observed tips and the tips predicted by the model.

The average decision cost for tipping obtained from adding the estimates of the psychic
costs of tipping 5% less than the norm ($0.48) and the cognitive cost (between $1.26 and
1.41) is between $1.68 and $1.83 (14% to 15% of the average taxi fare $12.17). This amount
is similar to our estimate from the non-parametric approach $1.89 (16% of the average taxi

fare).
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6 Analysis of Menu Tips

Given the proposed model and estimated parameters, we conduct counterfactual exercises
to find the menu of tips that will maximize the tips that drivers receive from passengers.
This exercise is of interest for two separate reasons that go beyond the context of tipping in
taxicabs.

First, for workers who receive a tipped wage'? or depend on tips to supplement their
income, we may want to construct a menu that will extract high enough tips in order to
raise their earnings.

Second, If we consider a cab driver as a one person firm (sole proprietor), then imple-
menting a set of menu options that maximizes tips directly impacts firm profits. Thus, this
exercise is relevant for firms where tips are a direct source of revenue. Nevertheless, in the
contexts of tipping in taxicabs, the two reasons stated above are identical since drivers keep

all the earnings (taxi fares + tips) from driving.

6.1 Tip-Maximizing Menu of Tips

To find the tip-maximizing menu, we need to know two things: (1) the number of menu
options to show passengers, and (2) the corresponding tip rate for each option. It is important
to note that this exercise is a computation of the tip-maximizing menu given a menu that
presents customers with percentage tip options—as is currently presented to taxi passengers.
Thus, this is not a the full characterization of the tip-maximizing menu which may include
but not limited to presenting some combination of dollar tip amounts and percentages.

We proceed by setting the model parameters to estimates from table 2 Panels A and
B, and then comparing predictions from the OLS model in column (1) to those from the
Heckman selection correction model in column (2). We present the results in the Panel C of
table (2).

Our procedure is to estimate equation (1) by fixing the model primitives and then setting
menu tip options as the free parameters to be evaluated for values that maximize the average
tip. Given that our model parameters were estimated using data from 2014 only, we also
conduct this exercise using data from the 2010 when the menu of tips were different. Doing
this helps us to gauge the sensitivity of our results to using different samples.

To fix ideas, we first consider the case where drivers are restricted to show passengers a
single menu tip option. We then search over a grid of tip rates between 0% and 100% to find

the tip rate that our model predicts as increasing the average tip the most. We then proceed

12This is a base wage below the minimum wage that is paid to employees who receive a substantial portion
of their earnings from tips.
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to search for the two menu tip options that will maximize the tips received by drivers. There
are detailed discriptions of these two case in section A.7 of the appendix.

Following the procedure in the last paragraph, we continue to increase the number of
menu tip options until the average tip cannot be maximized any further. Figures 10a and
10b plots the average tip across all observed fares as the number of menu tip options in-
crease—both for estimates that corresponds to the OLS approach and the Heckman selection
correction model respectively. The figure 10a shows that the average tip increases no fur-
ther than about 19% after showing three or more tip-maximizing menu options (using the
OLS approach). We therefore conclude that, showing three menu options is tip maximizing
and the corresponding predicted tip rates from the OLS approach are 21%, 27%, and 33%
(table 2, Panel C, column (1)). Estimates from the Heckman selection model are similar to
results from the OLS approach (Figure 10b, and table 2 Panel C column (2)).

It is important to note that the tip-maximizing menu proposed by our model (21%, 27%,
and 33%) is very similar to the menu currently offered to passengers (20%, 25%, and 30%).
We find similar results when we used data from 2010 to predict the tip-maximizing menu
(table 2, Panel C, row-2010 trips). Another main insight from this exercise is that certain
choice combinations of menu tip options is revenue decreasing. That is, there are some menu
tip options that drive tips below what passengers would have given absent the menu (see

section A.7 in the appendix for details).

6.2 Evolution of Menu Tip Options

We examine differences in the average tip rate across the various tip menus presented by the
two electronic credit card machine vendors in NYC Yellow taxicabs between 2010 and 2014.
We then assess which of the menus induced passengers to tip more and how they compare
to the model suggested tip-maximizing menu.

For each period where different sets of tip menus were presented to passengers, we use
our model to predict an analogous set of tips where the tip menu is set to the model tip-
maximizing menu (21%, 27%, and 33%). The model predictions are made using data from
the relevant period.

We consider three main periods in this analysis (period 1: January 2010 - January 2011,
period 2: February 2011-December 2011, and period 3: 2014). In the first two periods, the
two taxi vendors CMT and VTS provided passengers with different menus, and in the last
period, both vendors provided the same set of menus. Details of the menus are presented in
figure 2.

For this analysis, Table 3 presents three panels (A, B, and C) that correspond to the
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three periods being considered. Each panel has three columns that report the average tip
rate for CMT rides (column (1)), VTS rides (column (2)), and model prediction (column
(3)). Panel A corresponds to the first period where CMT presented 15%, 20%, and 30%.
VTS on the other hand presented a different set of tips for fares under $15 than for higher
fares. Specifically, for fares under $15, passengers saw three options in dollar amounts ($2,
$3, and $4) and for fares $15 and above, passengers were presented with three percentages
20%, 25%, and 30%. Panel A shows that on average, passengers tip at higher rates in VTS
cabs (20.68%) relative to CMT cabs (17.81%). Our model predicts that the tip-maximizing
menu would have result in an average tip rate of (19.56%). Compared to both VTS and the
model, CMT used an inferior menu.

In period 2, CMT taxicabs changed their tip menu to show 20%, 25%, and 30% and VTS
cabs maintained the same menu as in the first period. Panel 2 shows that the CMT menu
change increased the average CMT tip rate by about 7.5% (from 17.81% to 19.16%). The
average tip rate remained the same for both VTS and the model prediction.

In period (3), both CMT and VTS cabs presented passengers with the same menu of tip
options (20%, 25%, and 30%). Panel C shows that the average tip rate in VTS cabs dropped
by two percentage points (from 20.66% to 18.55%). The average tip rate remained about
the same as in period 2 for both CMT and the model prediction in this period.

With respect to presenting passengers with a menu that show percentages as options, the
similarity across the data and model in the third period suggests that taxicabs are currently
showing the tip-maximizing menu. The evolution over time of the menu of fares is consistent

with taxi companies learning to converge to a menu that maximizes tips.

7 Conclusion

Firms find that menu suggestions are powerful tools to influence consumers’ behavior. Many
influential studies have also examined their use in setting policy. However, relatively few
studies have examined the mechanisms at work.

This study focuses on how tipping suggestions in NYC taxicabs affect consumers’ be-
havior. The advantage of restricting our study to tipping is that we avoid a number of
complications that vexed previous researchers. For example, because customers cannot de-
lay choosing a tip, we do not have to consider behavioral biases due to naiveté, present bias,
and procrastination.

We develop a model that allows us to empirically estimate the unobserved social norm
tip, the psychic cost of deviating from the social norm, and the cognitive cost of calculating

a non-menu tip.
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We present both a nonparametric and a structural analysis of tipping behavior. These
two analyses provide consistent results. Our nonparametric estimate of the average decision
cost—the combination of the psychic and cognitive costs—is about $1.89 (16% of the average
taxi fare $12.17).

To disentangle the psychic and cognitive costs we add structure to our model of decision-
making. We estimate that the social norm tip is 20% of the taxi fare, which almost exactly
equals the average observed tip. The estimated psychic cost of deviating from one’s percep-
tion of the social norm varies with the size of the deviation. For example, tipping 5% less
than the norm imposes a psychic cost of $0.42 (3.5% of the average taxi fare). The estimated
cognitive cost of calculating a non-menu tip ranges from $1.26 to $1.41 (10% to 12% of the
average taxi fare).

We use the structural model to investigate a number of what-if questions. For example,
our simulations suggest that compared to a world where passengers are not presented with a
menu of recommended tips, the current menu increases the amount of tips received by 12.5%.
The simulations also show that the current number and level of menu options in NYC Yellow
taxicabs maximizes tips. Thus, the two Yellow taxi credit card machine vendors (CMT and
VTS) appear to have converged over time to present passengers with the tip-maximizing
menu.

We believe that our findings are not limited to tipping in taxicabs. Obviously the tip
analysis applies to other service industries such as restaurants, delivery services, bars, and
hotels. Our results that the size of psychic and cognitive costs are relatively large may also be
useful in considering more general “nudges,” such as those that are widely used by business

and policy makers.
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Figures

Figure 1: NYC Yellow Taxi Payment Screen with Menu Tip Options

Select or enter tip amount
Use Membership Rewards™
points for this taxi fare.

Swipe your Amarican E
then chopsa “LISE POIN

S

Daiste

Fara Tatal:
Tip Amaunt:

TOTAL:

Notes: This is an example of a taxi screen displaying a menu of tip options and the taxi fare at
the end of a taxi trip.

Figure 2: Changes in Menu Tip Options Over Time by Vendor

2008 - 2010 _ _
15% 20% 25%
CMT
20% 25% 30%
2011- 2014
: : )' Fare
$2.50 515
2009 - 2011 _ _
$2, 83, 54 ‘ ‘ 20% 25% 30% ‘
VTS
20% 25% 30% ‘

2012 - 2014

Notes: This figure illustrates the changes in the menu of tips presented to passengers between 2009
and the present by the two main NYC Yellow taxi credit card machine provider (CMT and VTS).
The figure also shows if the provider presented different tip menus for different levels of the fare.
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Figure 3: Distribution of Tips Before and After CMT Tip Menu Change
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Notes: This figure shows the distribution of tips before and after CMT—a New York City Yellow taxi electronic credit card machine
vendor—changed the menu of tips that is presented to taxi passengers in 2011. CMT presented customers with three tip options in
percentages (15%, 20%, and 25%) before the menu change. After, CMT removed the lowest tip option (15%) and added a higher
percentage option (30%), so that it offered 20%, 25%, and 30%. The shaded bars present the distribution of tips one year before the
menu change, and the un-shaded bars shows the distribution of tips about a year after the menu change. The bars in this figure are
non-overlapping bins of width 1% for tips between 0.5% and 35.5% of the taxi fare. The tips rates are truncated at 35.5% where the share
becomes essentially zero. The data used for this figure are from 2010 and 2011 standard rate taxi fares paid for via a CMT credit card
machine along with a positive tip.
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Figure 4: Distribution of Tips Before and After CMT Tip Menu Change for Tips < 20%
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Notes: Figures 4a and 4b shows the distribution of positive tips truncated at the tip rate 19.5% for the subset of taxi trips whose fare falls
within the ranges of (39, $11] and ($21, $23| respectively. The figures show the distribution of tips before and after CMT—a New York
City taxi credit card machine vendor—changed the menu of tips that is presented to taxi passengers in 2011. CMT presented customers
with three tip options in percentages (15%, 20%, and 25%) before the menu change. After, CMT removed the lowest tip option (15%)
and added a higher percentage option (30%), so that it offered 20%, 25%, and 30%. The shaded bars present the distribution of tips one
year before the menu change, and the un-shaded bars shows the distribution of tips about a year after the change. Data from 2010 and
2011 standard rate taxi trips paid via a CMT credit card machine are used in this figure.
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Figure 5: Bounds on the Conditional CDFs of Decision Costs
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Notes: Figures 5a and 5b show the lower and upper bounds for the CDF of decision costs computed for passengers whose tip rates fall
within the ranges of (1.5%, 2.5%| and (9.5%, 10.5%]| respectively. The computation of these bounds relies on CMT’s (a New York City
taxi credit card machine vendor) change in the menu of tips that is presented to taxi passengers in 2011. CMT presented customers with
three tip options in percentages (15%, 20%, and 25%) before the menu change. After, CMT removed the lowest tip option (15%) and
added a higher percentage option (30%), so that it offered 20%, 25%, and 30%. These bounds are computed using the increase in the
share of passengers who tip at the 2% and 10% respectively at different levels of the taxi fare. Generally, for a given fare ' and tip rate t <
20%, the lower and upper bounds for the decision cost of switching from 15% to some non-menu tip ti is given by [|0.15 — ¢|F,|0.20 — t| F].
Data from 2010 and 2011 standard rate taxi trips paid via a CMT credit card machine along with a positive non-menu tips that are not

round-number dollar amounts are used in this figure.



Figure 6: Unconditional CDF of Decision Costs
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Notes: This figure shows the distribution of decision costs. In this figure, we assume that the
midpoints of the estimated bounds of decision costs across all tip rates are similar to the true
decision costs. We construct the CDF using information from the estimated conditional CDFs of
decision costs (section 4). Data from 2010 and 2011 standard rate taxi trips paid for via a CMT
credit card machine along with a positive non-menu tips that are not round-number dollar amounts
are used in this figure.
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Figure 7

a. Share of Menu Tips by Taxi Fare b. Average Tip by Taxi Fare
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Notes: Figures 7a is a binned scatter plot that illustrates the relationship between the share of
passengers who choose any one of the suggested menu tips presented at the end of a taxi ride at
different levels of the taxi fare. Figures 7b is a binned scatter plot that illustrates the average tip
rate at different levels of the taxi fare.The data used in both figures are from 2014 standard rate
taxi trips paid for via a CMT credit card machine along with a positive tip amount.
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Figure 8: Estimated Distribution of the Tipping Norm 7;
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Notes: Figures 8a and 8b depict the empirical estimates—via our structural model—of the distribution of the perceived tipping norm
T; and the implied distribution of the preferred tip ¢; within the population of the taxi passengers. These distributions are compared to
the observed tips (shaded bars). Figure 8a shows estimates of T; recovered from an OLS regression of the observed non-menu tip rates
regressed on a constant term and the taxi fare. Figure 8b accounts for possible sample selection and shows estimates of T; recovered
from a 2-step Heckman selection correction model. The data used are from 2014 standard rate taxi trips paid for via a CMT credit card
machine along with a positive non-menu tip. The bars in this figure are non-overlapping bins of width 1% for tips between 0.5% and
35.5% of the taxi fare. The tips rates are truncated at 35.5% where the share becomes essentially zero.
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Figure 9: Model Fit
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Notes: These figures illustrates how our structural model fits the observed data by depicting the distribution of the observed tips versus
the distribution of tips predicted by our model. Figures 9a show the fit of the model when model estimates are computed using the
perceived tipping norm 7; and 6 (the marginal disutility for deviation from the norm) recovered from an OLS regression. The statistics
from a chi-square goodness of fit test for figure 9a are x2 = 0.17598 and a P-value of 0.99. Figure 9b is analogous to figure 9a but shows
the model fit when we use the estimate of T; and 6 from the 2-step Heckman selection correction model. The statistics from a chi-square
goodness of fit test for figure 9b are x2 = 0.22752 and a P-value of 0.99. The data used are from 2014 standard rate taxi trips paid for
via a CMT credit card machine along with a positive non-menu tip. The bars in this figure are non-overlapping bins of width 1% for tips
between 0.5% and 35.5% of the taxi fare. The tips rates are truncated at 35.5% where the share becomes essentially zero.



(43

Figure 10: Average Tip by Number of Tip-Maximizing Menu Tip Options
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Notes: Given a menu that presents customers with percentage tip options, Figures 10a and 10b plots the average tip rate predicted by
the model for showing the tip-maximizing menu as the number of menu options increases. 10a corresponds to case where tipping norm
T; and 6 (the marginal disutility for deviation from the norm) are recovered from an OLS regression, and 10b corresponds to the case
where tipping norm 7; and 6 recovered from a 2-stage Heckman selection correction model. The data used are from 2014 standard rate
taxi trips paid for via a CMT credit card machine along with a positive tip.



Tables

Table 1: CMT Taxi Trip Characteristics, Mean (Standard Deviation)

Before Tip Menu Change

After Tip Menu Change

Jan 2010 - Jan 2011 Feb 2011 - Dec 2011 2014
(1) (2) (3)

Menu of Tips [15%, 20%, 25%) [20%, 25%, 30%]
Tip $1.77 $1.95 $2.27

($1.88) ($1.23) ($1.51)
Taxi Fare $10.22 $10.42 $12.17

($5.33) ($5.24) ($6.69)
100 x pr®_ 17.82% 19.19% 19.06%

(7.77%) (8.59%) (7.01%)
Share of Menu Tips 59.7% 48.3% 60.6%
Obscrvations 28,305,969 31,227,439 41,620,454

Notes: This table reports the summary statistics of standard rate NYC Yellow taxi trips paid via
a CMT credit card machine along with a positive non-menu tip. It shows the differences in trip
characteristics before and after CMT changed the menu of tips that is presented to taxi passengers.
Column (1) present trip characteristics one year before the menu change, and column (2) presents
trip characteristics about a year after the change. Column (3) present trip characteristics four years
after CMT’s menu change.
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Table 2: Structural Model Estimates (Panels A & B) and Counterfactual Exercises (Panel C)

OLS Selection Correction
Panel A (1) (2)
Estimates of ar and ¢

Dependent Variable: Tip Rate

Taxi Fare (B - ;) —0.003**(0.00001) —0.003"*(0.00001)
Constant (ar) 0.205**(0.0001) 0.198"*(0.0001)
(=) 166.667 166.667
Inverse Mills Ratio 0.005**(0.0003)
p 0.028
15-Stage Added Instrument # of Passengers
1(Round Number Tip) YES YES
N. obs. 16,394,858 16,394,858
Panel B
Minimum Distance Estimates of ¢;
Ave. Cognitive Cost ($) ¢; = 1/A 1.26™*(0.000) 1.41*(0.000)
N. obs. 41,620,454 41,620,454
Panel C
Counterfactual Excercise
2014 Data Tip-Maximizing Menu [21%, 27%, 33%] [21%, 27%, 32%]
N.obs. 41,620,454 41,620,454
2010 Data Tip-Maximizing Menu [21%, 27%, 32%] [20%, 26%, 32%)]
N. obs. 25,091,514 25,091,514

Notes: In this table, panels A and B report estimates from the structural model of passenger tipping behavior—discussed in section
5. Panel C reports counterfactual estimates of the tip-maximizing menu using trips from both 2014 and those from 2010.—discussed in
Section 6.1. Only standard rate taxi trips paid via a CMT credit card machine along with a positive tip are used in this table. Columns
(1) reports estimates that corresponds to recovering the tip norm T; and # (the marginal disutility for deviation from the norm) using the
subsample of trips with non-menu tips in a OLS regression that does not account for sample selection bias. Column (2) is analogous to
column (1) but, reports estimates of the T; and 6 from the second step of the 2-step Heckman selection correction model. Panel A uses
the subsample of trips with non-menu tips from trips in 2014 and report reduced-form estimates of the average tip norm 7; and 6 for
the population of taxi passengers. Panel B reports estimates using the sample of all taxi tips in a minimum distance estimation of the
distribution of cognitive costs incurred by passengers who opt to compute their preferred non-menu tip. *p<0.1, **p<0.05, ***p<0.001.
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Table 3: Evolution of the Menu Tip Options

Model
CMT VTS Prediction
0 @ )
Panel A: Trips from Jan 2010 - Jan 2011
Tip menu for taxi fare < $15 [$2, $3, $4]

Tip menu for taxi fare > $15

[15%, 20%, 25%]

[20%, 25%, 30%]

[21%, 27%, 33%|

Average tip for all fares 17.81% 20.68% 19.56%
Average tip for fare < $15 18.00% 21.19% 20.09
Average tip for fare > $15 17.51% 16.61% 16.25
N. obs. 27,574,410 28,658,477 56,232,887
Panel B: Trips from Feb 2011 - Dec 2011
Tip menu for taxi fare < $15 [$2, $3, $4]

Tip menu for taxi fare > $15

[20%, 25%, 30%|

[20%, 25%, 30%]

[21%, 27%, 33%|

Average tip for all fares 19.16% 20.66% 19.50%

Average tip for fare < $15 19.37% 21.21% 20.05%

Average tip for fare > $15 18.00% 17.66% 16.39%
N. obs. 31,960,044 30,339,659 62,299,703

Panel C: Trips from 2013 - 2014
Tip Menu for all taxi fares

[20%, 25%, 30%|

[20%, 25%, 30%|

[21%, 27%, 33%]

Average tip for all fares 19.07% 18.55% 19.50%

Average tip for fare < $15 19.42% 18.74% 19.91%

Average tip for fare > $15 17.96% 17.93% 16.01%
N. obs. 83,107,354 84,332,924 167,440,278

Notes: This table reports the average tip rate across the different menus of tips presented to passengers in NYC Yellow taxis over time.
Panels A through C correspond to one of three periods where at least one of the two Yellow tax credit card machine providers (CMT
and VTS) changed the menu of tips presented to passengers. Column (1) shows the average tip rate offered by passengers in CMT cabs.
Column (2) is analogous to column (1) but for passengers in VTS cabs. Column (3) shows the average tip rate predicted by our model
if the tip-maximizing menu were presented to passengers. Each panel also reports the average tip rate separately for trips where the
taxi fare is less than $15 than for fares above. Only standard rate taxi trips paid for via a credit card machine where passengers leave a
positive tip are used in this table.



Appendix

A.1 Tips Before and After CMT Tip Menu Change

Table A.1 shows changes in distribution of tips before and after one of the NYC Yellow
taxi electronic credit card machine vendors (CMT) changed its menu of tip options that is
presented to taxi passengers. Until 2010, CMT presented customers with 15%, 20%, and
25% as tip suggestions and later changed the menu to show 20%, 25%, and 30%. The table
shows that major changes in the distribution of tips occurred at tip rates 20% and below.
There were also significant changes in the share of passengers who choose menu options as

well.

Table A.1: Share of Tips Before and After Change in CMT Tip Menu

Tip Bin Share Before (%)  Share After (%) Difference (%)
[0.5%, 10%] 7.02 8.03 ~1.01
(10%, 14.5%] 12.67 15.89 3.3

(14.5%, 15.5%] 30.00 3.74 26.26

(15.5%, 19.5%] 7.87 10.53 2,66

(19.5%, 20.5%) 26.25 38.84 —12.59

(20.5%, 24.5%] 3.76 4.23 047

(24.5%, 25.5%) 7.14 10.26 —3.12

(25.5%, 29.5%] 1.84 1.90 ~0.05

(29.5%, 30.5%] 0.50 3.79 ~3.29

> 30.5% 2.96 2.79 0.17

Note: The data in this table is from 2010 and 2011 standard rate taxi trips
paid for via a CMT credit card machine along with a positive tip.

A.2 A Test for Assumption A2

Assumption A2 - One’s perception of the tipping norm 7; is jointly independent of the

menu and the taxi fare.

A.2.1 Using A Structrual Approach to Tests Assumption A2

To assess the validity of assumption A2, we compare estimates of the distribution of tipping

norms before CMT (a Yellow taxi electronic credit card machine vendor) changed its menu
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of tips to estimates of the tipping norms after the menu change and after the Taxi and
limousine Commission increased the taxi fare by about 17%.

Specifically, with our structural model outlined in section 5, we compare the estimated
distribution of tipping norms using taxi trips in CMT taxicabs from 2010 to the estimated
distribution of tipping norms using taxi trips in CMT taxicabs in 2014. In 2010, passengers
riding in CMT taxicabs were presented with a tip menu that showed 15%, 20%, and 30%.
However, in 2014 CMT taxicabs presented passengers with a tip menu that showed passengers
20%, 25%, and 30%. In addition, the TLC increased the taxi fare by about 17% in 2012.
Therefore, passengers in CMT taxicabs both faced a new menu of tips suggestions and higher
fares in 2014. Thus, comparing the distribution of tipping norms in 2010 to that in 2014
serves as test for assumption A2.

The data we use are standard rate NYC Yellow taxi trips in CMT taxis from 2010 and
from 2014. The trips are limited to fares paid for using a credit/debit card, has no tolls, and
passengers leave a positive tip. We use the same approach as outlined in section 5.2.1 for
this exercise. That is, we estimate equation (4) using OLS, and for comparison we estimate
a Heckman selection correction model to account for possible sample selection concerns.

Generally, we find that the estimated distribution of the tipping norm is not influenced by
either a change in the presented menu of tips or the change in the taxi fare. This observation
is true for both the OLS estimates and the Heckman selection model estimates.

Table A.2 columns (1) and (2) present the OLS estimates of equation (4) for trips from
2010 and 2014 respectively. The coefficient estimates are practically the same across the
two different years. Figure A.la compares the estimated distribution of tipping norms from
2010 to 2014 using the estimates from Table A.2. The two distributions look similar and
a chi-squared goodness of fit tests supports our observations in the table with test statistic
Y2 = 3.6472e73° and P-value 0.99.

We find similar results using the Heckman selection model as well. Table A.3 presents
results from the first step probit estimation of the Heckman selection model and Table A .4
shows the second step of the selection model. Again, all estimates corresponding to the data
from 2010 are similar to that of 2014. Figure A.1b depicts the comparison of the estimated
distribution of tipping norms from 2010 and 2014. The two distributions are similar and a
chi-squared goodness of fit test supports this as well with test statistics y? = 3.6472¢73? and
P-value 0.99.
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Table A.2: OLS Estimates of a7 and # from Taxi Trips in 2010 and 2014

Dependent Variable: Tip Rate

2010 2014
(1) (2)
Fare —0.005*** —0.003***
(0.00001) (0.00001)
Constant (ar) 0.211%* 0.205***
(0.0001) (0.0001)
0 100 166.667
1(Round Number Tip) Yes Yes
Observations 10,072,185 16,394,858
R? 0.051 0.016

Note: The data are standard rate NYC Yellow taxi trips in CMT taxicabs from
2010 and 2014. The trips are limited to fares paid for using a credit/debit card,
has no tolls, and passengers leave a non-menu tip greater than zero. *p<0.1;
p<0.05; **p<0.01

Table A.3: Probit Estimation of First Step Heckman Selection Model

Dependent Variable: 1(Tip = Non-Menu Tip)

2010 2014
(1) (2)
Taxi Fare —0.047*** —0.029***
(0.0001) (0.00004)
Number of Passengers —0.354*** —0.442%**
(0.001) (0.0004)
1(Round Number Tip) Yes Yes
Outcomes correctly predicted 78% 79%
Observations 25,091,456 41,620,454
Log Likelihood —8,430,077.000 —14,436,474.000
Akaike Inf. Crit. 16,860,160.000 28,872,954.000

Note: The data are standard rate NYC Yellow taxi trips in CMT taxicabs from
2010 and 2014. The trips are limited to fares paid for using a credit/debit card,
has no tolls, and passengers leave a positive tip. The added instrument this
estimation is the number passengers in the taxicab ride as reported by the taxi
driver. *p<0.1; **p<0.05; **p<0.01
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Table A.4: Heckman Selection Estimates of o and 6

Dependent Variable: Tip Rate

2010 2014
(1) (2)
Fare —0.005"** —0.003***
(0.00001) (0.00001)
Constant (ar) 0.196*** 0.198***
(0.0004) (0.0005)
0 100 166.667
1(Round Number Tip) Yes Yes
Observations 25,091,456 41,620,454
o 0.101 0.028

Inverse Mills Ratio

0.011*** (0.0003)

0.005"* (0.0003)

Note: The data are standard rate NYC Yellow taxi trips in CMT taxicabs from
2010 and 2014. The trips are limited to fares paid for using a credit/debit card,
has no tolls, and passengers leave a non-menu tip greater than zero. *p<0.1;

*p<0.05; **p<0.01

Figure A.1: Estimated Distribution of Tipping Norms 7; (2010 vs. 2014 )
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Notes: This figure illustrates the estimates of the distribution of tipping norms using our structural
model for trips in CMT taxicabs from 2010 versus trips from 2014. Figures A.la and A.1b show
the distributions of tipping norms as estimated via OLS and via the Heckman selection model
respectively. The test statistics from a chi-squared goodness of fit test for figure A.la are x? =
3.6472¢73 and P-value 0.99 and for figure A.1b are x? = 3.6472¢73" and P-value 0.99. The
data used are from 2010 and 2014 standard rate taxi trips paid for via a CMT credit card machine
along with a positive non-menu tip. The tip rate is are truncated at 35.5% beyond which the shares

become essentially zero.
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A.2.2 Empirical Evidence for Assumptions A2

While we cannot formally test assumption A2 without the structural model, we examine
whether the observed tip rate ¢; is independent of the menu of tip options D. Specifically,
we compare tipping decisions under two different tip menus D; and D, where some of the
options in Dy are higher than the options in D;.

Suppose a passenger’s preferred tip is ¢;, which is not in either of the menus. She tips t; if
her decision cost is low enough not to benefit from choosing a menu tip option. Let H(¢;| D)
and H (t;|Ds) be the distribution functions of tips when passengers are shown D; and Dy
respectively. If ¢; depends on the menu, then H(t;|D;) and H(t;| D) will differ across the
entire support of ¢;. We expect that H(¢;|Dy) will be shifted to the right of the distribution of
tips under the menu with lower tip options H (¢;|D,) . However, if ¢; L D, then H(t;|D;) and
H(t;]Ds) will differ only around the neighborhood of the tip options across the two menus.

We use the CMT’s tip menu change to assess whether ¢; is independent of D by comparing
the distribution of tips before and after the change. Figure 3 shows the distribution of tips
before and after CMT’s menu change. The figure shows stark differences in the share of
passengers who choose menu options and for tips within the neighborhood of the menu
options. However, the two distributions remain relatively similar for non-menu tips. Table

A.1 echoes this observation as well. We take this as indirect evidence in support of A2.

A.3 Tips Before & After CMT Tip Menu Change

Figure A.2 below show the distribution of positive tips (truncated at the tip rate of 19.5%)
before and after CMT—a New York City taxi credit card machine vendor—changed the menu
of tips that is presented to taxi passengers in 2011. The figures correspond to the subset of
taxi trips whose fare falls within different ranges of the taxi fares. CMT presented customers
with three tip options in percentages (15%, 20%, and 25%) before the menu change. After,
CMT removed the lowest tip option (15%) and added a higher percentage option (30%), so
that it offered 20%, 25%, and 30%. The shaded bars present the distribution of tips one
year before the menu change, and the un-shaded bars shows the distribution of tips about
a year after the change. Data from 2010 and 2011 standard rate taxi trips paid via a CMT

credit card machine are used in these figure.
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Figure A.2: Distribution of Tips Before and After CMT Tip Menu Change
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A.4 Bounds On the Conditional CDFs of Decision Costs

Figure A.3 show the lower and upper bounds for the CDF of decision costs computed for
passengers whose tip at rates less than 18%. The computation of these bounds relies on
CMT’s (a New York City taxi credit card machine vendor) change in the menu of tips that
is presented to taxi passengers in 2011. CMT presented customers with three tip options in
percentages (15%, 20%, and 25%) before the menu change. After, CMT removed the lowest
tip option (15%) and added a higher percentage option (30%), so that it offered 20%, 25%,
and 30%. These bounds are computed using the increase in the share of passengers who
tip at a particular tip rate at different levels of the taxi fare. Generally, for a given fare F
and tip rate ¢ < 20%, the lower and upper bounds for the decision cost of switching from 15% to
some non-menu tip ¢ is given by [|0.15 — ¢|F,[0.20 — ¢|F]. Data from 2010 and 2011 standard rate
taxi trips paid via a CMT credit card machine along with a positive non-menu tips (that are not

round-number dollar amounts) are used in this figure.

46



Figure A.3: Conditional CDFs of Decision Costs
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A.5 A Semiparametric Approach of Estimating Decision
Costs

In this section, we use a novel approach complementary to the nonparametric approach from
section 4 to estimate decision costs. There are three main innovations: (1) we use changes
in the share of passengers who choose non-menu tips as the taxi fare increases to identify
decision costs, (2) to compute decision costs, we use a semiparametric strategy, and (3)
we use taxi trip data from a different time period (2014) for the estimation. This semi-
parametric approach of estimating decision costs provides an alternative estimate that can
be compared to the nonparametric approach in section 4.

We reason that, if a passenger chooses a tip different from the menu tip options, then
she reveals a preference for her tip relative to the menu options. According to the model in
section 3, such a passenger deems it economical to incur the decision costs associated with
offering her preferred tip instead of choosing a menu option.

For this analysis, we restrict attention to taxi trips in CMT cabs from 2014 where passen-
gers tipped 20% of the taxi fare or less. In 2014, all taxicabs presented 20%, 25%, and 30%
to passengers as the menu of tip options. We maintain assumptions A2 and A3. For trips
where passengers tip less than 20% of the taxi fare, we assume that 20% (the lowest menu
tip option) is what a passenger will choose had she decided to choose a menu tip option.
It therefore follows from equation (2) that the benefit (B;) for a passenger choosing to tip
ti < d; =20%1is B; = (0.20—t;) x F'. Recall that, ¢, is the observed tip in the data, d; = 20%
is the relevant menu option, and F' is the taxi fare. Hence, a passenger who tips t; < 20%
reveals that her benefit B; from tipping ¢; is greater than her decision costs (denoted by K;)
associated with computing ¢;. Notice that, for a passenger who is on the margin of choosing
to tip ¢; or d; = 20%, B; ~ K.

From figure 7a, we know that passengers are more likely to choose non-menu tips as
the taxi fare increases. With this observation in mind, denote Pr(t;|F,d; = 20%) as the
probability of choosing a tip ¢; conditional on both the taxi fare ' and the menu tip option
d; = 20%. Suppose that F' increases by AF, then it follows from equation (2) that

AP = Pr(ti|F+ AF, dj = 20%) — Pr(ti|F, dj = 20%) >0

So AP is the change in the probability of choosing one’s preferred tip relative to the menu
tip option when F' increases by AF. When AF' is small (a marginal increase in the fare),
then AP represents the share of passengers who reveal that their benefit from giving their
preferred tip is approximately equal to their cost of deliberating and computing their tip
(i.e,, B; = (0.20 — t;) x (FF+ AF) = K;). Therefore, for each t; < 20%, we can use the
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changes in the share of passengers AP who choose to tip ¢ as the fare increases to estimate
the corresponding K. With all the estimated “Ks” and “APs” in hand, we have all the
necessary pieces to construct the distribution of decision cost for passengers who tip less
than 20% of the taxi fare.

To implement the procedure above, we estimate an ordered logistic regression where
the outcome variable is the tip rate categorized into 20 non-overlapping bins of width one
percent (namely 1%, 2%, 3%...20%) regressed on the fare and other trip characteristics and
covariates. Each category of the outcome variable for example 15% is defined as the share
of passengers whose tip fall within the range of 14.5% and 15.5%. Figure A.4 illustrates the
estimated predicted probabilities for choosing a non-menu tip for each tip rate as functions
of the taxi fare. The figure shows that the probability of choosing any of the non-menu
tips is increasing as the fares increases. In contrast, figure A.5 show that the probability of
choosing the menu tip option 20% is decreasing as the fare increases. The support of the
fare is restricted to the $3 - $30. This is because $3 is the lowest taxi fare, and $3 - $30
is the range within which the change in the predicted probabilities (AP) is nonnegative for
all non-menu tips. The restricted support of the fare results in a censored support of the
estimated decision cost K for each tip rate t.

From the estimated predicted probabilities for each of the non-menu tips, we compute
K and AP using the tip and fare combinations. We use this information to construct the
unconditional CDF of decision costs.

The dashed line in figure A.6 shows the estimated CDF of decision costs K using the
approach detailed above. The average decision cost is estimated to be $1.64 (14% of the
average taxi fare $12.17). Note that, this average decision cost is similar to what we estimated
using the nonparametric approach in section 4 ($1.89)-Shown as a solid line in figure A.6.

The semiparametric approach has four main limitations. First, we are not able to recover
the full distribution of decision costs, since the sample is limited to passengers who tip less
than 20%. Second, we assume that the relevant menu option is 20%. If this is not the case,
then the estimated distribution of decision costs is a lower bound for passengers who tip less
than 20%. Third, the support of the estimated decision costs is censored because only fares
within the range of $3 - $30 are used in this exercise. Fourth, this approach lumps the two

sources of decision costs (psychic and cognitive costs) together.
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Figure A.4: Predicted Probabilities by Level of Taxi Fare of Choosing Tips < 20%
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Note: This figure shows the estimated predicted probabilities for non-menu tip rates below 20% as functions of the fare. The probabilities
are computed from an ordered logistic regression using data limited to trips with tip rates 20% or less and selected from CMT taxi trips
in 2014. The range of fares used in this analysis is between $3 and $30.



Figure A.5: Predicted Probability by Level of Taxi Fare for Choosing a 20% Tip
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Note: This figure shows the estimated predicted probabilities for the menu tip rate 20% as functions
of the fare. The probabilities are computed from an ordered logistic regression using data limited
to trips with tip rates 20% or less and selected from CMT taxi trips in 2014. The range of fares
used in this analysis is between $3 and $30.

Figure A.6: Estimate of the Unconditional CDF of Decision Costs: Semiparametric Vs.
Nonparametric Approach

o
Ol e e —— ——— —
—i
Lo
™~
o
[J)
s 3 :
s —Nonparametric Approach: Mean = $1.89
n —Semiparametric Approach: Mean = $1.64

0.25

0.00

0o 1 2 3 4 5 6 7 8 9 10 11
Decision Cost ($)

Note: This figure shows the CDF of decision costs estimated using the semiparametric and non-
parametric approach respectively. The dashed line is the estimated CDF from the semiparametric
approach and the solid line is the CDF from the nonparametric approach.
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A.6 Evidence for Assumption A3

Assumption A3 - The cognitive cost ¢; is jointly independent of the taxi fare F; and one’s

preferred tip ¢;.

Because we do not observe ¢;, there is no straightforward way to test A3. Therefore, we
check first for for evidence that ¢; is independent of one’s preferred tip ¢7. Then, we check

for evidence that ¢; is independent of the taxi fare F'.

A.6.1 ¢; is Independent of One’s Preferred Tip ¢!

Because we do not observe ¢;, we cannot directly measure ¢; for all possible tip rates ;.
However, if we postulate that tips are smooth across all fares (that is, the distribution of ¢;
does not have point masses or holes), then we can check to see if cases where t; seem
relatively easy to compute creates point masses in the distribution of tips. More formally,
suppose that the distribution of tips is smooth across all fares and a 10% tip rate (and
possibly a 15% tip rate) is fairly easy to compute, then there should be a point mass at
10% (and possibly at 15%) in the distribution of tip rates.

We use data from 2014 and restrict attention to tips less than 20% of taxi fare. We check
for point masses at 10% and 15% in the distribution of tips. If a 10% and 15% are fairly
easy to compute, then a notably large share of passengers should be concentrated at these
two rates relatively to other tips. Figure A.7 shows a bar graph of the shares of passengers
whose tips fall in non-overlapping bins of width 1%. Most tips are concentrated between 8%
and 18%. However, the shares of tips in bins that include 10% and 15% are not anymore
higher than majority of the other tip bins. In fact, the highest concentration of tips is rather
at 12%. While this evidence is not a formal test of assumption A3, the data are consistent

with this assumption.
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Figure A.7: Distribution of Tips < 20%
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Note: This plot shows the distribution of tips in non-overlapping bins of width 1% between
0.5% and 19.5% tip rate using data from CMT taxi trips in 2014.

A.6.2 ¢; is Independent of the Taxi Fare F

The cognitive cost ¢; associated with computing ones final tip is independent of the taxi
fare. There is no straightforward way to test this assumption, because we do not observe
c;. However, we find it reasonable to assume that passengers find it easy to compute the
dollar amount of their tip rate if the taxi fare is a multiple of $10. Thus, if percent to dollar
conversions are relatively easier for fares that are multiples of $10, then passengers should
be less likely to choose a menu tip options for these fares.

To test the previous statement, we regress a dummy variable that equals one if the tip
is a menu tip option and zero otherwise on a set of dummies that indicate fares that are
multiples of $10. If it is significantly easier to calculate tips when the fare is a multiple of
$10, then ¢; will be notably lower, and passengers will be less likely to choose menu tips.
Hence, we should observe a negative coefficient on the dummy variable for fares that are
multiples of $10.

Table A.5 shows estimates from this regression. The coefficients on the dummy variables
for fares that are a multiple of $10 are all positive or not statistically significantly distin-
guishable from zero. This suggests that passengers are at just as likely if not more likely to
choose a menu tip option when the fare is a multiple of $10 than otherwise. This is rather in
direct opposition to what we predicted. Although, this observation is not sufficient evidence

to establish assumption A3, it does suggest that the data seems consistent with it.
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Table A.5: Evidence for Assumption A3

Dependent variable:

1(Tip = Menu Tip)

1(Taxi Fare = $10) 0.104***
(0.0004)
1(Taxi Fare = $20) 0.050%**
(0.001)
1(Taxi Fare = $30) 0.037***
(0.002)
1(Taxi Fare = $40) 0.056%**
(0.004)
1(Taxi Fare = $50) 0.038***
(0.007)
1(Taxi Fare = $60) 0.005
(0.013)
1(Taxi Fare = $70) —0.003
(0.026)
1(Taxi Fare = $80) —0.065
(0.076)
Constant 0.601***
(0.0001)
Observations 41,620,454
R? 0.002

Note: The data are standard rate NYC Yellow taxi trips in CMT
taxi cabs from 2014. The trips are limited to fares paid for using
a credit/debit card, has no tolls, and passengers leave a positive
tip. *p<0.1; **p<0.05; ***p<0.01
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A.7 Grid Search for Tip-Maximizing Menu Tip Options

Figures A.8 and A.9 below depicts the process involved in estimating the tip-maximizing
menu of tips. Specifically, the figures detail how to we estimate the tip-maximizing menu for
(1) the case where drivers are restricted to show passengers a single menu tip option, and
(2) the case where drivers are restricted to show passengers two menu tip options.

For the case where drivers are restricted to showing passengers a single menu tip option.
We search over a grid of tip rates between 0% and 100% to find the tip rate that our model
predicts as increasing the average tip rate the most. Using the parameter estimates from
table 2 column (1) (OLS results from Panels A and B), figure A.8.al and A.8.a2 shows the
results from the exercise above.

The average tip rate when passengers are not shown a menu is about 16.87%—shown
as a horizontal dashed line in figure A.8.al. Our model predicts that the average tip rate
is maximized when passengers are shown 22% as the sole menu option (shown as a dotted
vertical line in figure A.8.al). Figure A.8.a2 is a bar graph that shows the model predicted
distribution of tips when 22% is presented to passengers as a menu tip (displayed as shaded
bars) versus the distribution of preferred tips (displayed as overlaid un-shaded bars). With
the 22% menu tip option, the average tip rate is 18.64%. This is an 11% increase in the
average tip. Figure A.8.al shows that choosing a menu tip below 13% depresses the average
tip rate. In sum, the choice of a menu tip presented to passengers can have either positive
or negative consequences.

Figures A.8.b1 and A.8.b2 show a similar exercise as in figures A.8.al and A.8.a2. Here,
we search for the two menu tips that will maximize tips received. Figure A.8.b1 shows a
three-dimensional surface that characterizes the average tip from the different combinations
of two menu tips between 0% and 50%. Our model predicts that showing 21% and 28% as
menu tips maximizes tips. These two menu tips increase the average tip to 18.9%—a 12.4
% increase compared to the average preferred tip rate. An inspection of figure A.8.bl also
suggests that certain choice combinations of the two options can either increase or decrease
tips.

We find very similar results when we conduct this exercise using estimates from the
Heckman selection correction model estimates from table 2 column (2) (Panels A and B).

Figure A.9 shows a panel of polts that are analogous to figure A.S.
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Figure A.8: OLS Results: Grid Search for Tip-Maximizing Menu Tip Options and Model Predicted Tips
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Notes: Given a menu that presents customers with percentage tips, figures A.8a and A.8b show results from computing the tip-maximizing
menu that show one and two menu options respectively. Panel A.8.al plots the results from the grid search for a single menu tip option
that will maximize the average tip. Panel A.8.a2 shows the model prediction of the distribution of tips when the tip-maximizing menu
option from panel A.8.al is presented as a menu tip versus the model predicted preferred tips when passengers are not presented with a
menu. Panels A.8.b1 and A.8.b2 are analogous to panels A.8.al and A.8.a2 but for the case of choosing a menu that presents two menu
options. The data used are from 2014 standard rate taxi trips paid for via a CMT credit card machine along with a positive tip amount.

1Y



Figure A.9: Selection Model Results: Grid Search for Tip-Maximizing Menu Tip Options and Model Predicted Tips
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bl. Grid Search for Two Menu Tip Options b2. Predicted Tips (Two Menu Options)
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Notes: Given a menu that presents customers with percentage tips, figures A.9a and A.9b show results from computing the tip-maximizing
menu that show one and two menu options respectively. Panel A.9.al plots the results from the grid search for a single menu tip option
that will maximize the average tip. Panel A.9.a2 shows the model prediction of the distribution of tips when the tip-maximizing menu
option from panel A.9.al is presented as a menu tip versus the model predicted preferred tips when passengers are not presented with a
menu. Panels A.9.b1 and A.9.b2 are analogous to panels A.9.al and A.9.a2 but for the case of choosing a menu that presents two menu
options. The data used are from 2014 standard rate taxi trips paid for via a CMT credit card machine along with a positive tip amount.
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