### Sovereign Default Risk and Firm Heterogeneity

Cristina Arellano

Yan Bai

#### Luigi Bocola

Federal Reserve Bank of Minneapolis University of Rochester and NBER Stanford University and NBER

UCL

December 2020

## Motivation

- Government debt crises are typically associated to deep recessions
  - E.g. Southern Europe in 2010-2012
- Why negative relation between sovereign risk and economic activity? Two mechanisms in the literature:
  - 1 Gov't defaults in bad times  $\rightarrow$  Risk of default reflects deterioration of economic fundamentals (Arellano, 2008; Aguiar and Gopinath, 2006)
  - 2 Banks hold Gov't debt  $\rightarrow$  Negative balance sheet effects when sovereign risk increases (Gennaioli, Martin and Rossi, 2014; Bocola, 2016)
- Important to quantify these mechanisms
  - Debate on fiscal austerity during Eurozone crisis

# Measuring aggregate implications of sovereign risk

- Two main approaches to measure aggregate effects of sovereign risk
  - Structural models, fit to aggregate data
    - Drawback: measurement often not transparent
  - Difference-in-differences estimates with firm-bank level data
    - Drawback: not designed to capture aggregate effects
- Our paper aims to combine these two approaches
  - Model of Gov't debt crisis with heterogeneous firms and banks
  - Discipline model with aggregate and micro data

- Sovereign debt model with financial intermediation and production
  - Gov't affects private sector through impact on banks' balance sheet
  - Firms differ in borrowing needs, banks in exposure to Gov't debt

- Sovereign debt model with financial intermediation and production
  - Gov't affects private sector through impact on banks' balance sheet
  - Firms differ in borrowing needs, banks in exposure to Gov't debt
- Effects of sovereign risk are heterogeneous across firms
  - Direct effect, working through firms' borrowing costs
    - Stronger for firms that borrow more/borrow from exposed banks

- Sovereign debt model with financial intermediation and production
  - Gov't affects private sector through impact on banks' balance sheet
  - Firms differ in borrowing needs, banks in exposure to Gov't debt
- Effects of sovereign risk are heterogeneous across firms
  - Direct effect, working through firms' borrowing costs
    - Stronger for firms that borrow more/borrow from exposed banks
  - Indirect effects, working through demand of goods and labor
    - Affects all firms irrespective of whether they borrow or not

- Sovereign debt model with financial intermediation and production
  - Gov't affects private sector through impact on banks' balance sheet
  - Firms differ in borrowing needs, banks in exposure to Gov't debt
- Effects of sovereign risk are heterogeneous across firms
  - Direct effect, working through firms' borrowing costs
    - Stronger for firms that borrow more/borrow from exposed banks
  - Indirect effects, working through demand of goods and labor
    - Affects all firms irrespective of whether they borrow or not
- Show that direct effect is identified from firm/bank level data
  - Difference-in-difference-in-differences (DDD): compare response to sovereign risk between firms with different borrowing needs across banks with different sovereign debt exposure

# Main Results

- Estimate DDD using Italian firm and bank level data (Amadeus and Bankscope)
  - Larger decline for highly levered firms during sovereign crisis, more so if borrow from banks with high sovereign debt exposure
- Fit structural model to firm, bank and aggregate data
  - Infer size/sign of indirect effects
- Use model to interpret the recent crisis
  - 100bp of sovereign spreads leads to 60bp increase in firms' cost of funds and 0.8% fall in GDP
  - Gov't debt crisis accounts for  $\approx 1/3$  of output decline
  - Mostly due to direct effect

## Outline

#### 1 Model

2 Mechanisms and Measurement

3 Empirical Analysis

4 Quantitative Analysis

# Model

- Central Government finances expenditure in public goods
  - Taxes firms  $(\tau)$  and borrow long-term from banks  $(\vartheta)$
  - Can default on debt
- J regions with firms, families, and financial intermediaries
  - Firms produce, face working capital constraints
  - Intermediaries lend to firms and Gov't, face leverage constraints
- Two key sources of heterogeneity
  - Firms differ in working capital requirements. Intermediaries differ in holdings of Gov't debt
- Two aggregate shocks
  - Firms' productivity
  - Government default costs  $(\nu)$

### Firms

Local labor, financial and intermediate goods markets in each region

1 **Final goods firms**: perfectly competitive, use intermediates to produce

$$Y_{jt} = \left(\int y_{jt}(i)^{\eta} di\right)^{\frac{1}{\eta}}$$

2 **Intermediate good firms**: Produce with capital and labor under monopolistic competition

$$y_{ijt} = \exp\{\tilde{z}_{ijt}\}(k_{ijt}^{\alpha}\ell_{ijt}^{1-\alpha})$$

• Finance  $\lambda_i$  of input costs with loan  $b_{ijt}$  at rate  $R_{jt}$ 

$$b_{ijt}^f = \lambda_i (r_{jt}^k k_{ijt} + w_{jt} \ell_{ijt})$$

• Firm productivity has idiosyncratic and aggregate component

$$\tilde{z}_{ijt} = A_t + z_{ijt}$$

where  $A_t$  and  $z_{ijt}$  are independent Gaussian AR(1)

### Families

- Families consists of workers and bankers
- Decide consumption  $C_{jt}$ , capital  $K_{jt}$ , deposits  $A_{jt}$  and labor  $L_{jt}$  to maximize

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left( C_{jt} - \chi \frac{L_{jt}^{1+\gamma}}{1+\gamma} \right)$$

- Bankers run financial intermediaries for two periods
  - Receive transfer from own family

$$N_{jt} = \bar{n}_j + (1 - D_t)(1 - \vartheta)q_t B_{jt}$$

•  $(\bar{n}_j, B_{jt})$  only degree of heterogeneity across regions

### Financial Intermediaries

- Issue deposits  $(A_{jt})$ , invest in Gov't and firms bonds  $(B_{jt}, \{b_{ijt}^f\})$  $\max_{\substack{A_{jt}, B_{jt+1}, \{b_{ijt}^f\}}} \beta E_t \Big\{ (1 - D_{t+1}) \left[ \vartheta B_{jt+1} + q_{t+1} (1 - \vartheta) B_{jt+1} \right] + R_{jt} \int b_{ijt}^f di - A_{jt} \Big\}$
- Balance sheet and financial constraint

$$\begin{aligned} q_t B_{jt+1} + \int b^f_{ijt} di &\leq N_{jt} + q^a_{jt} A_{jt} \\ q^a_{jt} A_{jt} &\leq \theta \int b^f_{ijt} di + q_t B_{jt+1} \end{aligned}$$

## Financial Intermediaries

- Issue deposits  $(A_{jt})$ , invest in Gov't and firms bonds  $(B_{jt}, \{b_{ijt}^f\})$  $\max_{\substack{A_{jt}, B_{jt+1}, \{b_{ijt}^f\}}} \beta E_t \Big\{ (1 - D_{t+1}) \left[ \vartheta B_{jt+1} + q_{t+1} (1 - \vartheta) B_{jt+1} \right] + R_{jt} \int b_{ijt}^f di - A_{jt} \Big\}$
- Balance sheet and financial constraint

$$\begin{aligned} q_t B_{jt+1} + \int b^f_{ijt} di &\leq N_{jt} + q^a_{jt} A_{jt} \\ &\int b^f_{ijt} di &\leq \frac{N_{jt}}{1-\theta} \quad (\zeta_{jt}) \end{aligned}$$

### Financial Intermediaries

• Issue deposits  $(A_{jt})$ , invest in Gov't and firms bonds  $(B_{jt}, \{b_{ijt}^f\})$ 

$$\max_{A_{jt},B_{jt+1},\left\{b_{ijt}^{f}\right\}} \beta E_{t} \left\{ (1-D_{t+1}) \left[\vartheta B_{jt+1} + q_{t+1}(1-\vartheta)B_{jt+1}\right] + R_{jt} \int b_{ijt}^{f} di - A_{jt} \right\}$$

• Balance sheet and financial constraint

$$\begin{aligned} q_t B_{jt+1} + \int b^f_{ijt} di &\leq N_{jt} + q^a_{jt} A_{jt} \\ &\int b^f_{ijt} di &\leq \frac{N_{jt}}{1-\theta} \quad (\zeta_{jt}) \end{aligned}$$

• Euler equations

$$R_{jt} = \frac{1 + \zeta_{jt}}{\beta}$$
$$q_t = \mathbb{E}_t \left\{ \beta \left[ (1 - D_{t+1}) \left( \vartheta + q_{t+1} (1 - \vartheta) \right) \right] \right\}$$

# Equilibrium

Aggregate state  $s = (A, \nu, B)$ . Given Gov't policies (B', D), a private sector equilibrium is such that

- Firms, families, and financial intermediaries optimize
- Labor, goods, capital, deposits, bond and loan markets clear

# Equilibrium

Aggregate state  $s = (A, \nu, B)$ . Given Gov't policies (B', D), a private sector equilibrium is such that

- Firms, families, and financial intermediaries optimize
- Labor, goods, capital, deposits, bond and loan markets clear
- Focus on private sector equilibrium where  $B'_j = \varphi_j B'$

# Equilibrium

Aggregate state  $s = (A, \nu, B)$ . Given Gov't policies (B', D), a private sector equilibrium is such that

- Firms, families, and financial intermediaries optimize
- Labor, goods, capital, deposits, bond and loan markets clear
- Focus on private sector equilibrium where  $B'_j = \varphi_j B'$

Given  $Y^a(s, D, B')$ , Gov't policies solve recursive problem

• Default decision

$$W(s) = \max_{D=\{0,1\}} \{ (1-D)V(s) + D [V(A,\nu,0) - \nu] \}$$

• The value of repaying solves

$$V(s) = \max_{B'} u_g(G) + \beta_g \mathbb{E} W(s')$$
$$G + \vartheta B = \tau Y^a(s, D, B') + q(s, B') [B' - (1 - \vartheta)B]$$

## Outline

#### 1 Model

2 Mechanisms and Measurement

3 Empirical Analysis

4 Quantitative Analysis

### The Private Sector Equilibrium

The state variables for the private sector equilibrium are  $X_j = [A, N_j]$ 

**Lemma 1.** In a private sector equilibrium,  $R_j \ge \frac{1}{\beta}$  solves

$$\frac{N_j}{(1-\theta)} \ge M_n \overline{\lambda}(X_j) \left[ \exp\{A\}^{\frac{\eta}{1-\eta}} / R_w(R_j) \right]^{\frac{(1-\eta)(1+\gamma)}{\eta(1-\alpha)\gamma}}$$

where  $R_w$  monotonically increases in  $R_j$ 

### The Private Sector Equilibrium

The state variables for the private sector equilibrium are  $X_j = [A, N_j]$ 

**Lemma 1.** In a private sector equilibrium,  $R_j \geq \frac{1}{\beta}$  solves

$$\frac{N_j}{(1-\theta)} \ge M_n \overline{\lambda}(X_j) \left[ \exp\{A\}^{\frac{\eta}{1-\eta}} / R_w(R_j) \right]^{\frac{(1-\eta)(1+\gamma)}{\eta(1-\alpha)\gamma}}$$

where  $R_w$  monotonically increases in  $R_j$ 

• A reduction in  $N_j$  (weakly) raises firms' borrowing costs

### The Private Sector Equilibrium

The state variables for the private sector equilibrium are  $X_j = [A, N_j]$ 

**Lemma 1.** In a private sector equilibrium,  $R_j \geq \frac{1}{\beta}$  solves

$$\frac{N_j}{(1-\theta)} \ge M_n \overline{\lambda}(X_j) \left[ \exp\{A\}^{\frac{\eta}{1-\eta}} / R_w(R_j) \right]^{\frac{(1-\eta)(1+\gamma)}{\eta(1-\alpha)\gamma}}$$

where  $R_w$  monotonically increases in  $R_j$ 

• A reduction in  $N_j$  (weakly) raises firms' borrowing costs

**Lemma 2.** Given  $R_j$  and  $X_j$ ,  $\{Y_j, w_j\}$  solve

$$w_{j} = M_{w} \left[ \frac{\exp\{A\}^{\frac{\eta}{1-\eta}}}{R_{w}(R_{j})} \right]^{\frac{(1-\eta)}{\eta(1-\alpha)}} \quad Y_{j} = M_{y} \frac{\left[ \exp\{A\}^{\frac{\eta}{1-\eta}} / R_{w}(R_{j}) \right]^{\frac{1-\eta+(1-\alpha\eta)\gamma}{\eta(1-\alpha)\gamma}}}{\exp\{A\}^{\frac{\eta}{1-\eta}} / R_{y}(R_{j})}$$

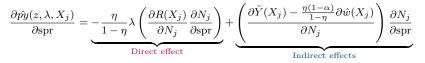
Firms' log sales are

$$\hat{py}(z,\lambda,X_j) = c + \frac{\eta}{1-\eta}(A+z) - \frac{\eta}{1-\eta}\lambda_i R(X_j) + \hat{Y}(X_j) - \frac{\eta(1-\alpha)}{1-\eta}\hat{w}(X_j)$$

Firms' log sales are

$$\hat{py}(z,\lambda,X_j) = c + \frac{\eta}{1-\eta}(A+z) - \frac{\eta}{1-\eta}\lambda_i R(X_j) + \hat{Y}(X_j) - \frac{\eta(1-\alpha)}{1-\eta}\hat{w}(X_j)$$

Thus, we have



Firms' log sales are

$$\hat{py}(z,\lambda,X_j) = c + \frac{\eta}{1-\eta}(A+z) - \frac{\eta}{1-\eta}\lambda_i R(X_j) + \hat{Y}(X_j) - \frac{\eta(1-\alpha)}{1-\eta}\hat{w}(X_j)$$

Thus, we have

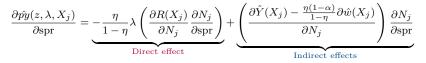


- Direct effect: change in borrowing rates  $R(X_j)$ 
  - Larger effect for high  $\lambda$  firms/high  $\varphi$  regions

Firms' log sales are

$$\hat{py}(z,\lambda,X_j) = c + \frac{\eta}{1-\eta}(A+z) - \frac{\eta}{1-\eta}\lambda_i R(X_j) + \hat{Y}(X_j) - \frac{\eta(1-\alpha)}{1-\eta}\hat{w}(X_j)$$

Thus, we have



- Direct effect: change in borrowing rates  $R(X_j)$ 
  - Larger effect for high  $\lambda$  firms/high  $\varphi$  regions
- Indirect effects: change in demand  $Y_{jt}$  and wages  $w_{jt}$ 
  - Effects homogeneous across firms, different across regions

### Measuring Direct and Indirect Effects

**Proposition.** Up to a first order, the log-sales of firm i equal

$$\hat{py}_{\iota,j,k,t} = \alpha_i + \beta_1(\operatorname{spr}_t \times \varphi_j) + \beta_2(\operatorname{spr}_t \times \varphi_j \times \lambda_\iota) + \beta_3 A_t + \beta_4(A_t \times \lambda_\iota)$$
  
+  $\beta_5(B_t \times \varphi_j) + \beta_6(B_t \times \varphi_j \times \lambda_\iota) + \frac{\eta}{1-\eta} z_{k,t},$ 

- $\beta_1 \varphi_j$  are the indirect effects in region j
- $\beta_2 \lambda_\iota \varphi_j$  is the direct effect for a firm with working capital need  $\lambda_\iota$  in region j

### Measuring Direct and Indirect Effects

**Proposition.** Up to a first order, the log-sales of firm i equal

$$\hat{py}_{\iota,j,k,t} = \alpha_i + \beta_1(\operatorname{spr}_t \times \varphi_j) + \beta_2(\operatorname{spr}_t \times \varphi_j \times \lambda_\iota) + \beta_3 A_t + \beta_4(A_t \times \lambda_\iota)$$
  
+  $\beta_5(B_t \times \varphi_j) + \beta_6(B_t \times \varphi_j \times \lambda_\iota) + \frac{\eta}{1-\eta} z_{k,t},$ 

- $\beta_1 \varphi_j$  are the indirect effects in region j
- $\beta_2 \lambda_\iota \varphi_j$  is the direct effect for a firm with working capital need  $\lambda_\iota$  in region j

**Insight**: Direct and indirect effects can be identified from this regression, given proxies for  $\lambda_{\iota}$  and  $\varphi_{j}$  and aggregate data

• It works b/c the distribution of  $z_{k,t}$  does not depend on  $\lambda_{\iota}$  and  $\varphi_{j}$ 

## Difference-in-differences interpretation

Consider two periods with  $\Delta \text{spr}_t > 0$ , two regions  $\{\varphi_L, \varphi_H\}$  and two leverage types  $\{\lambda_L, \lambda_H\}$  with  $\lambda_L = 0$ 

### Difference-in-differences interpretation

Consider two periods with  $\Delta \text{spr}_t > 0$ , two regions  $\{\varphi_L, \varphi_H\}$  and two leverage types  $\{\lambda_L, \lambda_H\}$  with  $\lambda_L = 0$ 

•  $\beta_1$  identified by comparing relative sales growth for "zero-leverage" firms across regions

$$\mathbb{E}_t \left[ \Delta \left( \hat{py}_{\lambda_L, \varphi_H, k, t} - \hat{py}_{\lambda_L, \varphi_L, k, t} \right) \right] = \beta_1 [\varphi_H - \varphi_L] \Delta spr_t,$$

• "Zero-leverage" not impacted by changes in borrowing rate

### Difference-in-differences interpretation

Consider two periods with  $\Delta \text{spr}_t > 0$ , two regions  $\{\varphi_L, \varphi_H\}$  and two leverage types  $\{\lambda_L, \lambda_H\}$  with  $\lambda_L = 0$ 

•  $\beta_1$  identified by comparing relative sales growth for "zero-leverage" firms across regions

$$\mathbb{E}_t \left[ \Delta \left( \hat{py}_{\lambda_L, \varphi_H, k, t} - \hat{py}_{\lambda_L, \varphi_L, k, t} \right) \right] = \beta_1 [\varphi_H - \varphi_L] \Delta spr_t,$$

- "Zero-leverage" not impacted by changes in borrowing rate
- $\beta_2$  identified by comparing relative sales growth between high-low  $\lambda$  firms, differenced out across regions

$$\mathbb{E}_{t} \left[ \Delta \left( \hat{p} \hat{y}_{\lambda_{H},\varphi_{H},k,t} - \hat{p} \hat{y}_{\lambda_{L},\varphi_{H},k,t} \right) \right] - \mathbb{E}_{t} \left[ \Delta \left( \hat{p} \hat{y}_{\lambda_{H},\varphi_{L},k,t} - \hat{p} \hat{y}_{\lambda_{L},\varphi_{L},k,t} \right) \right] \\ = \beta_{2} [\varphi_{H} - \varphi_{L}] \lambda_{H} \Delta spr_{t}.$$

## Identification issues and measurement strategy

What if orthogonality condition violated? Suppose we add error term

$$\varepsilon_{\iota,j,t} = \gamma_{\iota}\xi_t + \eta_j\xi_t + \zeta_{\iota,j}\xi_t,$$

with  $\xi_t$  potentially correlated with  $\operatorname{spr}_t$ 

## Identification issues and measurement strategy

What if orthogonality condition violated? Suppose we add error term

$$\varepsilon_{\iota,j,t} = \gamma_{\iota}\xi_t + \eta_j\xi_t + \zeta_{\iota,j}\xi_t,$$

with  $\xi_t$  potentially correlated with  $\operatorname{spr}_t$ 

- Indirect effects not identified if  $\eta_{\varphi_H} \neq \eta_{\varphi_L}$  or  $\zeta_{\lambda_L,\varphi_H} \neq \zeta_{\lambda_L,\varphi_L}$
- Direct effect identified as long as differential effects between high and low  $\lambda$  firms similar across regions

$$\zeta_{\lambda_H,\varphi_H} - \zeta_{\lambda_L,\varphi_H} = \zeta_{\lambda_H,\varphi_L} - \zeta_{\lambda_L,\varphi_L}$$

### Identification issues and measurement strategy

What if orthogonality condition violated? Suppose we add error term

$$\varepsilon_{\iota,j,t} = \gamma_{\iota}\xi_t + \eta_j\xi_t + \zeta_{\iota,j}\xi_t,$$

with  $\xi_t$  potentially correlated with  $\operatorname{spr}_t$ 

- Indirect effects not identified if  $\eta_{\varphi_H} \neq \eta_{\varphi_L}$  or  $\zeta_{\lambda_L,\varphi_H} \neq \zeta_{\lambda_L,\varphi_L}$
- Direct effect identified as long as differential effects between high and low  $\lambda$  firms similar across regions

$$\zeta_{\lambda_H,\varphi_H} - \zeta_{\lambda_L,\varphi_H} = \zeta_{\lambda_H,\varphi_L} - \zeta_{\lambda_L,\varphi_L}$$

Our measurement strategy: focus on direct effect

- Use micro data to estimate direct effect
- Infer indirect effects using structural model (Chodorow-Reich, 2014)

## Outline

#### 1 Model

2 Mechanisms and Measurement

3 Empirical Analysis

4 Quantitative Analysis

## **Empirical Analysis**

- Merge Amadeus with Bankscope at the geographic level
  - Balance-sheet observations on Italian firms
  - Balance-sheet observations on Italian banks
  - BoI data on # of bank branches by geographic unit ("Regioni")
- Balanced panel of 300k+ firms per year
- Partition firms in four groups, depending on
  - Debt-to-asset ratio high/low leverage (lev<sub>i</sub>  $\in \{0, 1\}$ )
  - Location: headquartered in regions with high/low banks' exposure to sovereign debt  $(\exp_i \in \{0,1\})$
- Partition done using 2007 data. Firm-level regressions estimated over 2008-2015 period

## Firms' summary statistics in 2007

|                     | Obs.        | Mean  | P25  | P50  | P75   |
|---------------------|-------------|-------|------|------|-------|
| Number of employees | $123,\!514$ | 27    | 3    | 7    | 18    |
| Operating revenues  | $336,\!047$ | 40543 | 1118 | 5083 | 17972 |
| Total assets        | $336,\!047$ | 44273 | 2635 | 7465 | 21239 |
| Debt                | 336,047     | 8680  | 0    | 342  | 3623  |
| Accounts receivable | $336,\!047$ | 7842  | 35   | 657  | 3518  |
| Leverage            | $336,\!047$ | 0.38  | 0.07 | 0.37 | 0.63  |

The median firm is small

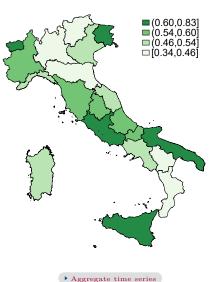
• 7 employees, operating revenues of 5m euros, leverage ratio of 37%

## Banks' exposure to sovereign debt in 2007

- Exposure: Gov't debt to equity in 2007
- Construct a regional indicator by weighting banks' debt holdings and equity by their # branches in the region
- Regions in different exposure groups have similar characteristics

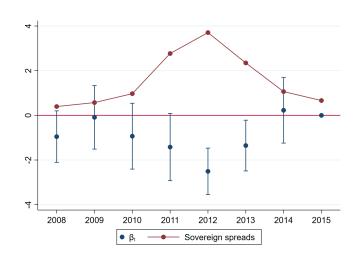


Distribution of firms



#### Pre-trend analysis

 $\hat{py}_{i,t} = \alpha_i + \tau_{1,t} + \tau_{2,t} \exp_i + \tau_{3,t} \operatorname{lev}_i + \beta_t \left( \operatorname{lev}_i \times \exp_i \right) + \delta' \Gamma_{i,t} + \varepsilon_{i,t}$ 



## Empirical specification

• The estimate the following relation

 $\hat{py}_{i,t} = \alpha_i + \hat{\beta} \left( \operatorname{spr}_t \times \operatorname{lev}_i \times \operatorname{exp}_i \right) + \delta' \Gamma_{i,t} + \varepsilon_{i,t}$ 

where  $\Gamma_{i,t}$  include

- Region × time fixed effects that vary by firms' characteristic bins (industry, size, profitability, volatility)
- $\operatorname{spr}_t \times \operatorname{lev}_i$ ,  $\operatorname{TFP}_t \times \operatorname{lev}_i$ ,  $\operatorname{TFP}_t \times \operatorname{lev}_i \times \exp_i$
- Group-specific linear time trend
- $\hat{\beta}$ : Differential sensitivity of sales to sovereign spreads between high/low leverage firms differenced across regions  $\rightarrow$  Direct effect
- The indirect effects absorbed by region  $\times$  time fixed effects

## Results

|                                                               | Model implied | Baseline  |
|---------------------------------------------------------------|---------------|-----------|
| $\hat{eta}$                                                   | -0.771        | -0.723    |
| p                                                             | (0.077)       | (0.043)   |
| $\mathrm{TFP}_t \times \mathrm{lev}_i$                        | yes           | yes       |
| $\operatorname{spr}_t \times \operatorname{lev}_i$            | yes           | yes       |
| $\mathrm{TFP}_t \times \mathrm{lev}_i \times \exp_i$          | yes           | yes       |
| Group-specific linear time trends                             | yes           | yes       |
| Firms FE                                                      | yes           | yes       |
| Time $\times$ region FE                                       | yes           | no        |
| Time $\times$ region $\times$ industry $\times$ firms' bin FE | no            | yes       |
| $R^2$                                                         | 0.87          | 0.88      |
| Obs.                                                          | 2,589,772     | 2,578,355 |

Standard errors clustered at region/year level

Sensitivity

## Outline

#### 1 Model

2 Mechanisms and Measurement

3 Empirical Analysis

4 Quantitative Analysis

#### Model Parametrization

- Two regions/two leverage groups
- Process for  $A_t$  estimated using TFP data
- Set some parameters to conventional values  $\alpha = .30, \beta = .98, \delta = .10, \varphi = .15, \eta = .75, \sigma = 2, \tau = .20, \vartheta = .05$
- Set Frisch elasticity  $(1/\gamma)$  to 0.75
- Moment matching
  - Parameters:  $\{\bar{n}_j/(1-\theta), \varphi_j/(1-\theta), \lambda_{\text{low}}, \lambda_{\text{high}}, \sigma_z, \sigma_\nu, \rho_\nu, \bar{\nu}, \beta_g\}$
  - Moments: Distribution of firms' leverage and banks' exposure,  $\hat{\beta}$ , Stdev $(\hat{py}_{i,t})$ , Moments of sovereign spreads distribution

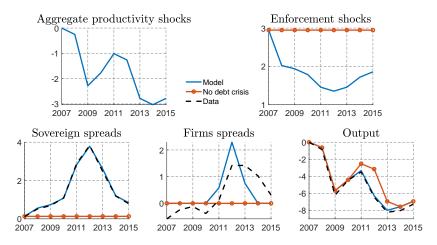
## Calibration Targets and Out of Sample Fit

|                                                                                       | Data       | Model      |
|---------------------------------------------------------------------------------------|------------|------------|
| Targeted moments                                                                      |            |            |
| $\text{Stdev}(\hat{py}_{it})$                                                         | 0.52       | 0.55       |
| Firms' leverage                                                                       | [.0 .51]   | [.0,.51]   |
| Banks' exposure                                                                       | [.45 . 62] | [.45 . 62] |
| $\hat{eta}$                                                                           | -0.72      | -0.77      |
| $Mean(spr_t)$                                                                         | 1.0        | 1.1        |
| $\mathrm{Stdev}(\mathrm{spr}_t)$                                                      | 1.2        | 1.1        |
| $Acorr(spr_t)$                                                                        | 0.8        | 0.8        |
| $Skewness(spr_t)$                                                                     | 1.2        | 1.0        |
| $\operatorname{Corr}(\operatorname{spr}_t, \hat{Y}_t)$                                | -0.36      | -0.60      |
| Out of sample moments                                                                 |            |            |
| $Mean(firm spr_t)$                                                                    | 0.33       | 0.41       |
| $Stdev(firm spr_t)$                                                                   | 0.77       | 0.77       |
| $Acorr(firm spr_t)$                                                                   | 0.53       | 0.37       |
| $Skewness(firm spr_t)$                                                                | 0.73       | 2.21       |
| $\operatorname{Corr}(\operatorname{spr}_t, \operatorname{firm} \operatorname{spr}_t)$ | 0.89       | 0.90       |
| $\operatorname{Corr}(\hat{Y}_{L,t}, \hat{Y}_{H,t})$                                   | 0.98       | 0.99       |
| $\operatorname{Mean}_{\operatorname{crisis}}(\hat{Y}_{H,t} - \hat{Y}_{L,t})$          | -0.56      | -0.56      |

# Event Analysis

- Choose  $\{A_t, \nu_t\}$  to match output and sovereign spreads in the event
- Counterfactual to measure macroeconomic spillovers of debt crisis
  - What would have happened without increase in sovereign risk?
- Counterfactual path: hold  $\nu_t$  at its 2007 level

#### Event



- Counterfactual paths: no change in sovereign and private sector interest rates and higher output
- "Pass-through" of  $\approx 0.6 \ (2.2/3.9)$

## Output losses from sovereign risk

|                                   | 2011 | 2012 | 2013 | Average $(11-13)$ |  |  |
|-----------------------------------|------|------|------|-------------------|--|--|
| Output, baseline                  | -3.3 | -6.3 | -8.0 | -5.9              |  |  |
| Output, no debt crisis            | -2.5 | -3.2 | -6.9 | -4.2              |  |  |
| Output losses from sovereign risk |      |      |      |                   |  |  |
| Total                             | -0.8 | -3.1 | -1.1 | -1.7              |  |  |
| Direct effect                     | -1.6 | -6.1 | -2.1 | -3.2              |  |  |
| Indirect effect                   | 0.8  | 3.0  | 1.0  | 1.5               |  |  |

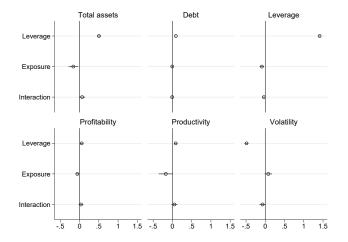
- Average output losses of  $1.7\% \ (\approx 1/3 \text{ of total})$
- Overall effects mostly due to direct effect
- In the paper: sensitivity to indirect effects/model with firm default

### Conclusions

- Sovereign debt model with heterogenous firms and banks
- Firm-level data useful to identify macroeconomic spillovers of Gov't debt crisis
- Similar methodology can be used to measure other output costs of sovereign risk

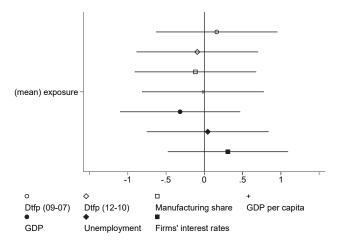
# Additional Material

## Firms' characteristics by leverage/exposure group



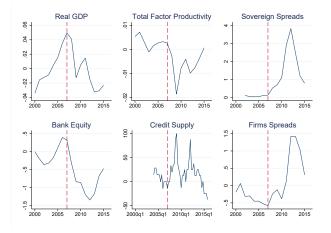
Return

#### Regional characteristics by exposure group



Return

Aggregate Time Series



Two recessions:

- 2008-2009 financial crisis not associated to sovereign risk
- 2011-2013 associated to increase in sovereign risk

# Sensitivity analysis

|             | Region            | No long-          | Continuous        | Unbalanced        | 2008-2011         | RJ                |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | controls          | term debt         | variables         | panel             | subsample         | index             |
| $\hat{eta}$ | -0.886            | -0.507            | -2.271            | -0.464            | -0.493            | -1.947            |
|             | (0.049)           | (0.024)           | (1.162)           | (0.133)           | (0.007)           | (0.550)           |
| $R^2$ Obs.  | 0.88<br>2,578,355 | 0.88<br>2,578,355 | 0.88<br>2,578,355 | 0.87<br>3,002,873 | $0.92 \\ 1285990$ | $0.93 \\ 440,850$ |

Return