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INTRODUCTION

• Paper asks if models with incomplete markets help explaining the
behavior of exchange rates, and specifically

• Low volatility of exchange rates relative to other asset prices

• Deviations from uncovered interest rate parity

• Low correlation between exchange rates and economic “fundamentals”

• The contribution is to develop an approach to address this question

• Take stochastic properties of SDF as given

• Incomplete markets modeled as a “wedge”

• Characterize restrictions on the wedge due to trading in risk-free bonds

• Paper finds that the wedge, per se, cannot do much
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OVERVIEW OF DISCUSSION

Very useful and clean exercise. It should be thought to PhD’s students

1 Overview of the paper

2 Two main comments

• Incomplete markets and the SDF

• A more formal test?
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COMPLETE MARKETS AND THE EXCHANGE RATE PUZZLES

Under complete markets, and no trading restrictions across countries:

M∗
t+1 = Mt+1

St+1

St

Then, we have:

• vart(∆st+1) = vart(m∗
t+1) + vart(mt+1)− 2covt(m∗

t+1,mt+1)

Volatility puzzle: For plausible values of sdf variances, we have that
vart(∆st+1) >> data, unless mt+1 and m∗

t+1 highly correlated

• r∗t −
(

rt −∆st+1

)
= 1

2

[
vart(mt+1)− vart(m∗

t+1)
]

UIP puzzle: Hard to generate sizable deviations from UIP

• covt(∆st+1,m∗
t+1−mt+1)

vart(∆st+1)
= 1

Backus-Smith puzzle: ∆st+1 orthogonal to ∆c∗t+1 −∆ct+1
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THE INCOMPLETE MARKETS WEDGE

With incomplete markets we have:

M∗
t+1 exp{ηt+1} = Mt+1

St+1

St

Thus

• vart(∆st+1) = vart(m∗
t+1−mt+1)+vart(ηt+1)+2covt(m∗

t+1−mt+1, ηt+1)

To deal with volatility puzzle, we want covt(m∗
t+1 − mt+1, ηt+1) < 0

• r∗t −
(

rt −∆st+1

)
= 1

2

[
vart(mt+1)− vart(m∗

t+1)
]

+ Et[ηt+1]

To deal with UIP puzzle, we want Et[ηt+1] > 0

• covt(∆st+1,m∗
t+1−mt+1)

vart(∆st+1)
=

vart(m∗
t+1−mt+1)+covt(m∗

t+1−mt+1,ηt+1)

vart(m∗
t+1−mt+1)+vart(ηt+1)+2covt(m∗

t+1−mt+1,ηt+1)

To deal with Backus-Smith puzzle, we want covt(m∗
t+1 −mt+1, ηt+1) ≈ 0
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TRADING IN RISK-FREE BONDS

Assuming that risk-free bonds are freely traded across countries, we have

Et[M∗
t+1R?t ] = Et

[
Mt+1

St+1

St
R?t

]
= 1 Et[Mt+1Rt] = Et

[
M?

t+1
St

St+1
Rt

]
= 1

This generates restrictions on {ηt+1}. Specifically, we must have

covt(m∗
t+1 − mt+1, ηt+1) = −vart(ηt),

implying

• vart(∆st+1) = vart(m∗
t+1 − mt+1)− vart(ηt+1)

• r∗t −
(

rt −∆st+1

)
= 1

2

[
vart(mt+1)− vart(m∗

t+1)
]

+ Et[ηt+1]

• covt(∆st+1,m∗
t+1−mt+1)

vart(∆st+1)
= 1
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INCOMPLETE MARKETS AND THE PUZZLES

Main result: incomplete spanning might help in addressing volatility and
UIP puzzle, but it does not help with Backus-Smith puzzle
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COMMENT 1: INCOMPLETE MARKETS AND THE SDF

• The paper takes {mt+1,m?t+1} as given in the exercise. But market
incompleteness modifies the properties of {mt+1,m?t+1}

• In models with segmented and incomplete markets, stochastic discount
factors are typically functions of the leverage of “experts”

• A growing literature documents that leverage-based SDF outperforms
consumption-based SDF in explaining asset prices (Adrian, Etula and
Muir, 2016; Bocola, 2016)

• Would be interesting to know if this holds true for currencies. For
example, how does the Backus-Smith slope looks in the data when using
a leverage-based pricing kernel?
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COMMENT 2: A MORE FORMAL TEST?

• Paper suggests that incomplete markets do not help much fitting the
behavior of exchange rates

• Backus-Smith puzzle

• Need Et[ηt+1] > 0 to deal with UIP puzzle. But this introduces
predictability in exchange rates changes

• It would be nice to have a more formal test. For example, one can use

∆st+1 = m?t+1 − mt+1 + ηt+1

as a measurement equation and compare marginal data densities of the
incomplete market model and the model with ηt+1 = 0

• This would give a more precise answer to the authors’ question
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CONCLUSION

• Very nice paper

• Two comments/questions

• How to think about the implications of incomplete markets for
{m∗

t+1,mt+1}?

• A more formal test of the hypothesis?
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