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A Timing, rollover risk, and crisis zone

In this section, we carefully define the crisis zone in the model. Recall that the timing within
the period is as follows:

• Enter with state S = (B, λ, s);

• The government chooses its new portfolio of debt, (B′, λ′);

• Lenders choose the price for the government bonds, {q(n) (S, B′, λ′)}n, according to the
no-arbitrage conditions (6)

• Finally, the government decides whether to default on its debt. The default decision is
given by δ

(
S, B′, λ′, {q(n)}

)
∈ {0, 1}, with δ = 1 if

U

(
τY (s1)− B +

∞

∑
n=1

q(n)
[
(1− λ′)n−1B′ − (1− λ)nB

])
+ βE[V

(
B′, λ′, s′

)
|S] ≥ V(s1),

and δ = 0 otherwise.

We allow the repayment decision δ to depend on arbitrary debt prices {q(n)} to have the no-
tation for analyzing off-path situations. The problems in (5) and (7) are enough to determine
the default decision along the equilibrium path given the pricing functions.

For notational convenience, it is useful to define the price of a portfolio of ZCB with a
decaying factor λ given that the government’s portfolio is (B′, λ′) as

Q
(
S, B′, λ′|λ

)
=

∞

∑
n=1

(1− λ)n−1q(n)
(
S, B′, λ′

)
.

We denote by Smax the largest region of the state space for which a default is possible.
We can think of Smax as the collection of states in which the government defaults if lenders
choose the worst possible price from the government’s perspective conditional on satisfying
the lenders’ no-arbitrage condition. The next lemma characterizes the set Smax. To this end,
define the maximal value the government can attain if it faces fundamental prices but is
restricted in the current period to have negative net issuances:

Ω (S) ≡ max
B′,λ′

U
(

τY (s1)− B + ∆fund (S, B′, λ′
))

+ βE[V
(

B′, λ′, s′
)
|S] (A.1)

A-1



subject to
∆fund (S, B′, λ′

)
≤ 0.

Lemma 1. Given V (B, λ, s) and Q (S, B′, λ′), S ∈ Smax if and only if

V (s) > Ω(S) (A.2)

Proof. For the necessity part, note that if condition (A.2) does not hold, then the government
will never default when the inherited state is S because it can attain a higher value than the
default value by buying back part of the debt. Imposing the fundamental pricing function –
the highest possible prices – in (A.1) is without loss of generality: because the government
is buying back debt, a lower price will only increase the value of Ω.

Consider now the sufficiency part. First note that S ∈ Smax if for all (B′, λ′) such that
∆fund (S, B′, λ′) ≥ 0 we have

U (τY (s1)− B) + βE[V
(

B′, λ′, s′
)
|S] < V(s1), (A.3)

and for all (B′, λ′) such that ∆fund (S, B′, λ′) < 0 we have

U
(

τY (s1)− B + ∆fund (S, B′, λ′
))

+ βE[V
(

B′, λ′, s′
)
|S] < V(s1). (A.4)

In condition (A.3) we use the fact that when net issuances are positive, ∆fund (S, B′, λ′) ≥ 0,
the worst price for the government is zero. In condition (A.4) we use the fact that when
net issuances are negative, ∆fund (S, B′, λ′) < 0, the worst price for the government is the
fundamental price. If conditions (A.3) and (A.4) are satisfied, it is then rational for lenders
to expect a default and it is optimal for the government to default. We can further simplify
condition (A.3) by noticing that it is sufficient to check such condition only for (B′, λ′) such
that ∆fund (S, B′, λ′) = 0 because the continuation value E[V (B′, λ′, s′) |S] is decreasing in
B′. Combining this simplified condition (A.3) with condition (A.4) implies that S ∈ Smax if
(A.2) holds, proving the claim. Q.E.D.

We can then define the crisis zone as S crisis = Smax \ S f und.

B Three-period model

We consider a three-period version of our model to illustrate in the most transparent way
the key trade-offs that govern the optimal maturity composition of debt. At t = 0 the
government can issue two types of securities: a zero coupon bond maturing in period 1,
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b01 ≥ 0, and a zero coupon bond maturing in period 2, b02 ≥ 0. In period 1, the government
decides whether to default. If there is no default, the government can issue a bond maturing
in period 2, b12. We allow for negative values of b12 and interpret these as buybacks of
outstanding long-term bonds.

It is convenient to present the model starting from the last period. In this appendix, a
subscript on s denotes time. At t = 2, inheriting a state (b02, b12, s2) the government chooses
whether to default on the previously issued debt (δ2 = 0) or not (δ2 = 1) to maximize

V2 (b02 + b12, s2) = max
δ2

δ2U (τY2 − b02 − b12) + (1− δ2)V2.

At t = 1, inheriting a state (b01, b02, s1), the government issues b12 and it decides whether to
default (δ1 = 0). The decision problem at t = 1 is

V1 (b01, b02, s1) = max
δ1,G1,b12

δ1 {U (G1) + βE1[V2 (b02 + b12, s2)]}+ (1− δ1)V1

subject to
G1 + b01 ≤ τY1 (s1) + q12 (b01, b02, s1, b12) b12.

Finally at t = 0 the government issues both short- and long-term debt to solve

V0 (s0) = max
G0,b01,b02

U (G0) + βE0[V1 (b01, b02, s1)]

subject to
G0 + D0 ≤ τY0 + q01 (s0, b01, b02) b01 + q02 (s0, b01, b02) b02,

with D0 being the debt inherited from the past. To avoid issues associated with the dilution
of legacy debt, we assume that the government does not inherit long-term debt. We further
assume that D0 is sufficiently small that the government does not default at t = 0. Price
schedules q01, q02, and q12 must be consistent with lenders’ no-arbitrage condition,

q01 (s0, b01, b02) = E0 [mδ1 (s1, b01, b02)]

q02 (s0, b01, b02) = E0

[
m2δ1 (s1, b01, b02) δ2 (s2, b02 + b01)

]
q12 (b01, b02, s1, b12) = δ1(s1, b01, b02)E1 [mδ2 (s2, b02 + b01)] ,

where for simplicity we assume that lenders are risk neutral: M(s0, s1) = M(s1, s2) = m.
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B.1 Maturity choices and rollover risk

We next show that expectations of rollover crisis generate a preference for the government to
issue long-term bonds at t = 0. In the extreme case in which all default risk at t = 0 reflects
rollover risk, the government at t = 0 issues only long-term debt.

To illustrate the relation between maturity choices and rollover risk, we assume that a
rollover crisis occurs with probability π if the government is in the crisis zone at t = 1.

Proposition 1. In the three-period economy, if there is only rollover risk and fundamental defaults
never happen at t = 1, 2, then b01 = 0 and all debt is long term.

Proof. By way of contradiction, suppose {b01, b02, b12 (s1)} is an equilibrium outcome with
b01 > 0, and in period 1 it is always optimal to repay if the borrower is facing fundamental
prices but a rollover crisis can arise in some states s1 with associated output level Y1 such
that

U(τY1 − b01) + βE1[V2(b02, s2)] < V1 (A.5)

hold.

Consider the following variation: increase b02 by ε/q02 > 0 and decrease b01 by ε/q01 > 0
so that G0 is unchanged at the original price. We next show that under the assumption that
there is no fundamental default risk, the variation can replicate the consumption pattern
(G1, G2) prescribed by the original allocation conditional on not having a rollover crisis. In
fact, since there is no default risk between t = 1 and t = 2, conditional on not having a
rollover crisis at t = 1, we have that q12 = m. Hence, optimality implies that at the original
allocation, the following Euler equation is satisfied:

mU′(G1) = βE1[U′(G2)]. (A.6)

Hence, achieving the same G1 and G2 is optimal and budget feasible if the government
inherits (b01 − ε/q01, b02 + ε/q02) because the government can just decrease b12 by ε/q02 and

Y1 − (b01 − ε/q01) + m(b12 − ε/q02) = Y1 − b01 + mb12 + ε

(
1

q01
− m

q02

)
= Y1 − b01 + mb12 = G1,

where in the second line we used the fact that under our assumptions, q02 = mq01.

Finally, we turn to show that the proposed variation reduces the crisis zone, and so it
increases the prices of debt in period zero and in turn increases consumption in period 0. To
this end, note that under the original allocation, condition (A.5) holds for some states s1 and
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there is no fundamental default risk, so for all s1,

U(τY1 − b01 + mb12) + βE1[V2 (b02 + b12, s2)] ≥ V1.

Condition (A.5) and the equation above imply that the b12 that solves (A.6) is greater than
zero. This observation, (A.6), and concavity of U imply that

q12U′ (τY1 − b01) > βE1[V′2 (b02 + b12, s2)] ⇐⇒
1

q01
U′ (τY1 − b01) >

1
q02

βE1[V′2 (b02 + b12, s2)]

where in the second relation we used the fact that q12 = q02
q01

= m2π Pr(crisis zone)
mπ Pr(crisis zone) . So we have

that

U (τY1 − b01 + ε/q01) + βE1[V2 (b02 + ε/q02, s2)] ≈ {U (τY1 − b01) + βE1[V2 (b02, s2)]}

+

{
1

q01
U′ (τY1 − b01) +

1
q02

βE1[V ′2 (b02, s2)]

}
ε

and so

U (τY1 − b01 + ε/q01) + βE1[V2 (b02 + ε/q02, s2)] > U (τY1 − b01) + βE1[V2 (b02, s2)]. (A.7)

Since under our variation the borrower is in the crisis zone if

U (τY1 − b01 + ε/q01) + βE1[V2 (b02 + ε/q02, s2)] ≤ V1, (A.8)

the inequality (A.7) implies that the probability of being in the crisis zone is smaller under
our variation because (A.8) is satisfied for a lower output level than (A.5). Hence, bond
prices at t = 0, q01 = mπ Pr(crisis zone), and q02 = m2π Pr(crisis zone), increase and the
government can increase consumption in the first period. So the variation increases utility, a
contradiction. Therefore, we must have that b01 = 0. Q.E.D.

B.2 Incentive channel

We now show how the incentive channel discussed in Section 3generates a preference for
the government to issue short-term bonds. Consider now a situation in which there is no
rollover risk, π = 0, and Y0 and Y1 are deterministic. Y2 is the only source of uncertainty,
and the uncertainty is revealed in t = 2. Because output is deterministic at t = 1, issuing
long-term debt at time t = 0 does not entail hedging benefits. Hence, this environment
isolates the incentive channel. The following proposition shows that the government at t = 0
issues only short-term debt.
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Proposition 2. In the three-period economy, if there is no rollover risk and there are no shocks in
t = 1, then the optimal solution must have b02 = 0 if the probability of default in t = 2 is positive.1

Proof.It is helpful to use a primal approach to solve for the equilibrium outcome. In this
proof, we will show that issuing only one-period debt replicates the solution of a more
relaxed problem in which the government in period 0 chooses debt issuances in period 1
subject to a no-default constraint.

To set up the primal problem, note that absent rollover risk and uncertainty in period 1,
if the government plans to default, δ1 = 0, then q01 and q02 equal zero, so the government
cannot raise resources in period zero and it is without loss of generality to set debt issuances
equal to zero. Thus, we can impose δ1 = 1 and the following no-default constraint:

U (G1) + βE1 [max {U (G2 (s2)) , V2 (s2)}] ≥ V1, (A.9)

where the left side is the value along the equilibrium path for the government in period 1.
Note that we imposed that in period 2, the government is defaulting everytime the value
of default is above the value of repaying. This ensures that in period 2, the government’s
incentives to repay are satisfied.

Thus, an equilibrium outcome solves the following programming problem:

max
b01,b02,b12,G0,G1,G2(s2)

U (G0) + βE0 [U (G1) + β max {U (G (s2)) , V2 (s2)}] (A.10)

subject to budget constraints

G0 + D0 ≤ q01b01 + q02b02 + τY0

G1 + b01 ≤ q12b12 + τY1

G2 + b02 + b12 ≤ τY2 (s2)

the no-default constraint (A.9), and the issuance constraint

U (G1) + βE1U (G2 (s2)) ≥ V1 (b01, b02) , (A.11)

where debt prices are given by the pricing equations

q01 = m, q02 = mq12,

q12 = m Pr (U (G (s2)) ≥ V2 (s2)) .

1A sufficient condition for this is that β/m is sufficiently low or D0 sufficiently large.
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It is immediate to verify that an equilibrium outcome solves the above problem and the
converse is also true. The default and issuance constraints capture the sources of time in-
consistency. The default constraint (A.9) captures the fact that the time zero government
cannot choose allocations that attain a value lower than the value of default since future
governments at t = 1 can always choose such an option if it is ex-post optimal. The is-
suance constraint (A.11) captures the fact that the time zero government cannot control debt
issuances of the government in period 1. Such issuances must be optimal from the t = 1
government’s perspective given its inherited state (b01, b02).

It is convenient to replace the issuance constraint with a first-order condition that charac-
terizes the solution to the right side. To this end, notice that starting at

(
b∗01, b∗02

)
in period

t = 1, the optimal b12 chosen by period 1 government is such that

0 =

(
q∗12 +

∂q12

∂b2
b12

)
U′ (τY1 − b∗01 + q12b12)−

∫
Y2(b∗02,b12)

U′ (τY2 (s2)− b∗02 − b12) µ2 (s2) ds2

(A.12)
where q12 = m Pr (U (τY2 − (b∗02 + b∗12)) ≥ V2) and

Y2 (b02, b12) ≡ {s2 : U (τY2 (s2)− (b02 + b12)) ≥ V2 (s2)}

is the set of output levels Y2 (s2) for which the government does not default in period 2. We
can then replace (A.11) with (A.12) in the programming problem (A.10). We will refer to
(A.12) as the issuance constraint in first-order condition form.

We now show that short-term debt is desirable because it relaxes the issuance constraint.
To this end, consider a relaxed version of (A.10) in which we drop the issuance constraint
in first-order condition form (A.12). Such a relaxed problem has a continuum of solutions
because the split between long- and short-term debt issued in period zero is indeterminate.
Let

{
b∗01, b∗02, b∗12, G∗0 , G∗1 , G∗2 (s2)

}
be a generic solution to this relaxed programming problem.

The optimality condition for b12 for this relaxed problem is

0 =
m

1 + λ

∂q12

∂b2
b∗02U′ (G∗0 ) + (A.13)(

q∗12 +
∂q12

∂b2
b∗12

)
U′ (τY1 − b∗01 + q∗12b∗12)−

∫
Y2(b∗02,b∗12)

U′ (τY2 (s2)− b∗02 − b∗12) µ2 (s2) ds2

where λ is the multiplier on the no-default constraint (A.9). The first term on the right side
is the effect of an increase in b12 on the price of long-term debt in period 0, the root of the
time inconsistency problem we are considering here.

We next show that if b∗02 = 0, then the government at t = 0 can achieve the value of
this relaxed problem in the more constrained problem (A.10). To see this, it is sufficient to
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check that the issuance constraint is met. It is immediate that if b∗02 = 0, then the first-order
condition (A.13) implies the issuance constraint in first-order condition form. Hence, the
solution to the relaxed problem can be implemented when b∗02 = 0.

The final step in the proof is to show that b∗02 = 0 is necessary when the solution to (A.10)
is such that there are defaults in t = 2 in some states. Note that (A.13) and (A.12) can be
jointly satisfied if and only if ∂q12

∂b2
b∗02 = 0, so at least one of the following conditions must be

satisfied: i) b∗02 = 0, ii) no default at t = 2 so that ∂q12/∂b2 = 0. Hence, if there are defaults
in t = 2, then b∗02 = 0 is indeed necessary. Q.E.D.

B.3 Insurance channel

We now turn to illustrate the insurance channel. To isolate this channel, we consider an
economy in which there is no rollover risk, π = 0, and the current government can choose
debt issued by future governments so that the incentive channel just described is not opera-
tive. We can think of this as studying the best arrangements where any deviations from the
prescribed path of plays are punished with a reversion to Vt.

To illustrate that long-term debt is a better instrument than short term debt to provide
insurance absent outright default, we consider a minimalistic stochastic structure. In period
t = 1, s1 ∈ {sL, sH} with Y1 (sL) < Y1 (sH). The output at time 2 is again distributed in
a continuous fashion, as in the previous example. Let µ2 (s2) be the associated probability
distribution. We assume that the realization of s1 does not affect the distribution of s2 and
µ2 (s2)Y2 (s2) is increasing.2 This last assumption is a sufficient condition for the debt Laffer
curve in period 1 to be concave.

The equilibrium outcome solves a problem similar to the one considered in the previ-
ous subsection without the issuance constraint. Moreover, we will assume that V1 (s1) is
sufficiently small and it is not optimal to default in period 1, so the no-default constraint

U (G1 (s1)) + β
∫

max {U (G2 (s1, s2)) , V2 (s2)} µ2 (s2) ds2 ≥ V1 (s1) (A.14)

is slack for all s1. Thus, an outcome x = {b01, b02, b12, G0, G1 (s1) , G2 (s1, s2)} solves

max
x

U (G0) + β ∑
s1

µ (s1)

[
U (G1 (s1)) + β

∫
max {U (G2 (s1, s2)) , V2 (s2)} µ2 (s2) ds2

]
(A.15)

2Of course this is satisfied if output in period 2 is distributed uniformly.
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subject to budget constraints

G0 + D0 ≤ q01b01 + q02b02 + τY0

G1 (s1) + b01 ≤ q12 (s) b12 (s) + τY1 (s1)

G2 (s1, s2) + b02 + b12 (s) ≤ τY2 (s2) ,

where debt prices are given by

q01 = m, q02 = m ∑
s1∈{sL,sH}

µ (s1) q12 (s1) ,

q12 (s1) = ∑
s1

µ (s1)Pr (U (G2 (s1, s2)) ≥ V2 (s2) |s1) .

Proposition 3. In the three-period economy described above, if there is no rollover risk, no default in
period 1, and default in some states in period 2, then the government at time 0 issues only long-term
debt and b01 = 0.

Proof. Assuming there is no default in period t = 1 (and so the default constraint at t = 1 is
slack), the solution of problem (A.15) must satisfy the first-order necessary conditions with
respect to b01,b02 ,and b12 (s1):

0 = U′ (G0)m− β ∑s1∈{sL,sH} µ (s1)U′ (G1 (s1)) + η01 (A.16)

0 = U′ (G0)

[
q02 +

∂q02

∂b02
b02

]
+ (A.17)

∑
s1∈{sL,sH}

µ (s1)

[
∂q12 (s1)

∂b02
b12 (s1) βU′ (G1 (s1))−

∫
Y2(b02,b12(s1))

β2U′ (G2 (s1, s2)) µ2 (s2) ds2

]

0 = m
∂q12 (s1)

∂b2
b02U′ (G0) + (A.18)(

q12 (s1) +
∂q12 (s1)

∂b2
b12 (s1)

)
βU′ (G1(s1))−

∫
Y2(b02,b12(s))

β2U′ (G2 (s1, s2)) µ2 (s2) ds2

where η01 is the multiplier on the non-negativity constraint for b01 and we used the fact
that q02 = m ∑s1

µ (s1) q12 (s1). Combining (A.17) with (A.18) and using the fact that q02 =

m ∑s1
µ (s1) q12 (s1), we obtain

0 = U′ (G0)m− β ∑
s1∈{sL,sH}

µ(s1)U′ (G1 (s1))
q12 (s1)

∑s1∈{sL,sH} µ(s1)q12 (s1)
. (A.19)
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There can be two cases: either G1 (s1) is not constant across s1 or G1 (s1) is constant across
s1. We consider the first case and later show that the second case cannot arise.

Suppose by way of contradiction that G1 (s1) is not constant and b01 > 0, and so the
multiplier η01 in (A.16) equals zero. Combining (A.16) with (A.19) and using η01 = 0, we
obtain

0 = ∑
s1∈{sL,sH}

µ(s1)U′ (G1 (s1))

[
1− q12 (s1)

∑s1∈{sL,sH} µ(s1)q12 (s1)

]

= Cov

(
U′ (G1 (s1)) ,

q12 (s1)

∑s1∈{sL,sH} µ(s1)q12 (s1)

)
. (A.20)

Since G1 (s1) is not constant by assumption, for the covariance above to be zero, we need the
condition that

q12 (s1) = m Pr (U (τY2 − b02 − b12 (s1)) ≥ V2)

does not depend on s1, which is equivalent to having the condition that b12(s1) does not
depend on s1. Then, all the terms in (A.18) other than G1 (s‘) do not depend on s1. Hence,
for (A.18) to hold at sL and sH, it must also be that G1(s1) does not depend on s1. This is a
contradiction.

We now turn to show that we cannot attain perfect insurance in that G1 (s1) cannot be
constant across s1. Suppose by way of contradiction that G1 (s1) = G1 for all s1. So from the
government budget constraint in period 1, it must be that

0 < τ [Y1 (sH)−Y1 (sL)] = q12 (sL) b12 (sL)− q12 (sH) b12 (sH) .

Hence, since it is always optimal to choose debt levels on the increasing side of the “debt
Laffer curve,” it must be that b12 (sL) > b12 (sH). Consider now the first-order conditions for
debt issuance in period 1, (A.18), in state sH and sL. They can be combined to obtain

βU′ (G1)

[(
q12 (sL) +

∂q12 (sL)

∂b2
b12 (sL)

)
−
(

q12 (sH) +
∂q12 (sH)

∂b2
b12 (sH)

)]
(A.21)

=

[∫
Y2(b02,b12(sL))

β2U′ (G2 (sL, s2)) µ2 (s2) ds2 −
∫
Y2(b02,b12(sH))

β2U′ (G2 (sH, s2)) µ2 (s2) ds2

]
,

where we used (A.16) to substitute for G0. Since b12 (sL) > b12 (sH) and the Laffer curve is
concave given our assumption about µ2 (s2), the left side of (A.21) negative. But the left side
of (A.21) is positive because b12 (sL) > b12 (sH). Thus, we reached a contradiction. Therefore,
we must be in the first case in which G1 (sH) 6= G1 (sL) and b01 = 0 and all debt issued at
t = 0 is long term. Q.E.D.
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C Data appendix

Real gross domestic product (GDP). OECD Quarterly National Accounts, GDP expenditure
approach, volume estimates (reference year 2010), 2000:Q1-2013:Q4.

Debt-to-output ratio. Debt is the face value of outstanding debt securities of the central
government obtained from OECD Quarterly Public Sector Debt, expressed in millions of euros
at current prices. We obtain this series for the period 2000:Q1-2013:Q4, seasonally adjust it,
and scale it by GDP at current prices.3

Debt maturity. We use detailed information on outstanding bonds issued by the Italian cen-
tral government to construct an indicator of debt maturity for the 2008:Q1-2013:Q4 period.
Every quarter, the Italian Treasury publishes a list of all outstanding bonds issued by the
central government.4 We can classify these bonds into four main categories: i) Buoni ordinari
del Tesoro (BOT); ii) Certificati del Tesoro Zero Coupon (CTZ); iii) Buoni del Tesoro poliannuali
(BTP); iv) Certificati di credito del Tesoro (CCT).

The first two categories are zero coupon bonds with a maturity of up to two years. BTP
are fixed coupon bonds, with a scheduled payment occurring every six months. CCT are
variable coupon bonds, with a scheduled payment occurring every six months. The coupon
per unit of principal is computed as a deterministic function of the prevailing yield on BOT.
Specifically, letting rBOT to be the annualized yield on the last auction of a BOT. The coupon
on the CCT is rBOT× 0.5 + spread, where the spread is specified in the contract (typically 15
basis points).

At a given quarter t, we use this information to construct a sequence of payments (prin-
cipal and coupons) that the government has promised to make for any future date. We
denote by C(1)

t the payments due within a year, C(2)
t those due between 1 and 2 years, etc.

This calculation does not require an approximation for BOT, CTZ and BTP, because we have
information on the principal due at maturity and the series of coupons that each instrument
pays over its life. For CTZ, instead, we need to infer the prevailing yield on BOT at future
dates in order to compute future coupon payments. We approximate those yields using the
time t yield on BOTs with a residual maturity of 1 year.

3To seasonally adjust the series, we estimate a linear regression

bt = γt +
4

∑
j=1

δj,t + et,

where bj,t is outstanding debt (in logs) at time t quarter j, and δj,t are quarterly dummies. The seasonally
adjusted series is then B̃t = exp{bt} − exp{∑4

j=1 δj,t}.
4The list can be downloaded at http://www.dt.tesoro.it/en/debito_pubblico/dati_statistici/

scadenze_titoli_suddivise_anno/index.html.
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After computing the sequence of payments we calculate the weighted average life of prin-
cipal and coupon payments as

N

∑
n=1

n
C(n)

t
Ct

,

where Ct = ∑N
n=1 C(n)

t . This indicator maps exactly to 1/λt in our model.

We can also use these data to construct the average maturity of new issuances. Specifically,
we can define net issuances between period t and t + 1 for a given maturity n as ∆(n)

t =

C(n)
t+1 − C(n+1)

t , and the average maturity of new issuances is then

N

∑
n=1

n
∆(n)

t
∆t

,

where ∆t = ∑N
n=1 ∆(n)

t .

Term structure of Italian interest rates. Data on the term structure of Italian government
bonds is obtained from Datastream. Datastream provides an estimate of the Italian yield
curve by fitting a polynomial on the yields on several government securities that differ by
residual maturity.5 We use the parameters of this curve to generate nominal bond yields
for all maturities between n = 1 and n = 80 quarters for the 2000:M1-2013:M12 period. We
convert yields into bond prices, and construct Qita

t (λ) using equation (??).

Term structure of German interest rates. Data on the term structure of ZCB for German
federal government securities is obtained from the Bundesbank online database. We collect
monthly data on the parameters of the Nelson and Siegel (1987) and Svensson (1994) model
for the period 1973:M1-2013:M12, and we generate nominal bond yields for all maturities
between n = 1 and n = 80 quarters. These data are used to estimate the stochastic discount
factor, and to construct Qger

t (λ) as explained in Section ??.

5In the Italian case, Datastream uses BTP with a maturity of up to 30 years. The fitting curve is a polynomial
of 3rd degree, estimated by OLS on daily data. The series mnemonic are GVIL03(CM05) for a bond with
residual maturity of 5 years, GVIL03(CM10) for a bond with residual maturity of 10 years, etc.
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D The lenders’ stochastic discount factor

The real stochastic discount factor Mt,t+1 = exp{mt,t+1} follows the process

mt,t+1 = −(φ0 + φ1χt)−
1
2

κ2
t σ2

χ + κtεχ,t+1,

χt+1 = ρχχt + εχ,t+1 εχ,t+1 ∼ N (0, 1), (A.22)

κt = κ0 + κ1χt.

The parameters we need to estimate are θsdf = [φ0, φ1, κ0, κ1, ρχ]. We estimate θsdf by fitting
(A.22) to the German nominal yield curve. Toward this end, we first enrich Mt,t+1 with a
process for inflation and use the lenders’ Euler equation to express nominal bond prices as
a function of deep parameters and state variables. We can then estimate the joint process for
inflation and for the stochastic discount factor using the method of simulated moments.

The process for inflation is a standard first-order autoregressive,

∆pt+1 = µp(1− ρp) + ρp∆pt + εp,t+1 εp,t+1 ∼ N (0, σ2
p), (A.23)

where ∆pt+1 is the first difference in log CPI. Further, we assume that ∆pt+1 and mt,t+1 are
potentially correlated, as the innovations [εχ,t, εp,t] are jointly normal, with covariance given
by ρχ,pσp.

We now proceed by characterizing the behavior of nominal bond prices under the as-
sumed process for (mt,t+1, ∆pt+1) and by explaining the estimation procedure.

D.1 Bond prices, yields, and expected excess returns

Let qe,(n)
t be the price of a risk-free nominal ZCB maturing in n quarters. These prices satisfy

the recursion
qe,(n)

t = Et

[
Mt,t+1 exp{−∆pt+1}q

e,(n−1)
t+1

]
, (A.24)

with initial condition qe,(0)
t = 1.

We can use equations (A.22), (A.23), and (A.24) to express the prices of nominal zero
coupon bonds as a function of the model parameters and the state variables [χt, ∆pt]. Specif-
ically, and following the steps in Ang and Piazzesi (2003), we can show that {qe,(n)

t } satisfies

log
(

qe,(n)
t

)
= An + Bnχt + Cn∆pt, (A.25)
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where An, Bn, and Cn can be recursively computed:

An+1 = −φ0 + An + Bn

[
µχ(1− ρχ) +

(
κ0 +

Bn

2

)
σ2

χ

]
+[Cn − 1]

[
(1− ρp)µp + [Cn − 1]

σ2
p

2
+ (κ0 + Bn)ρχ,pσp

]
,

Bn+1 = −φ1 + Bn(ρχ + κ1σ2
χ) + κ1[Cn − 1]ρχ,pσp, (A.26)

Cn+1 = (Cn − 1)ρp,

with initial conditions A0 = B0 = C0 = 0.

Given equation (A.25) and the coefficients in (A.26), we can compute key moments of the
yield curve.

For example, log-yields on a nominal bond maturing in one quarter are re,(1)
t = − log

(
qe,(1)

t

)
.

Given our representation for prices, we have

re,(1)
t =

{
φ0 +

[
µp(1− ρp)−

σ2
p

2
+ κ0ρχ,pσp

]}
+
[
φ1 + κ1ρχ,pσp

]
χt + ρp∆pt. (A.27)

We can then express the mean and the variance of re,(1)
t as a function of the model param-

eters:
E[re,(1)

t ] = (φ0 + µp)−
σp

2
+ κ0ρχ,pσp, (A.28)

var[re,(1)
t ] =

(φ1 + κ1ρχ,pσp)2

1− ρ2
χ

+
ρ2

pσ2
p

1− ρ2
p
+

(φ1 + κ1ρχ,pσp)ρpρχ,pσp

1− ρχρp
, (A.29)

We can also express holding period excess log-returns on a ZCB maturing in n periods.
By definition, this is equal to

rxe,(n)
t+1 = log

qe,(n−1)
t+1

qe,(n)
t

+ log
(

qe,(1)
t

)
.

This object compares the realized returns from purchasing a bond maturing in n periods
at time t and selling it at t+ 1 relative to the return one obtains from purchasing a bond with
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Table A-1: Summary statistics: inflation, yields and holding period returns

Mean Standard deviation Sharpe Ratio

∆pt 2.59 2.35

re,(1)
t − ∆pt 2.15 2.38

re,(20)
t − ∆pt 2.92 2.26

rxe,(4)
t+1 0.22 1.92 0.12

rxe,(8)
t+1 0.92 3.96 0.23

rxe,(12)
t+1 1.49 5.71 0.26

rxe,(16)
t+1 1.95 7.23 0.27

rxe,(20)
t+1 2.31 8.57 0.27

Notes: The sample period is 1973:Q1-2013:Q4. The inflation rate is first difference in log CPI. Variables are

reported as annualized percentages.

a one-period maturity at time t. Substituting for log prices, we can rewrite this object as

rxe,(n)
t+1 = [An−1 − An + A1 + Cn−1µp(1− ρp)]︸ ︷︷ ︸

Ãn

+ (Bn−1ρχ − Bn + B1)︸ ︷︷ ︸
B̃n

χt +

+ (Cn−1ρp − Cn + C1)︸ ︷︷ ︸
C̃n

∆pt + Bn−1εχ,t+1 + Cn−1εp,t+1. (A.30)

Taking conditional expectations on both sides, we obtain

Et[rxe,(n)
t+1 ] = Ãn + B̃nχt, (A.31)

as C̃n = 0 given our assumptions on the process for ∆pt+1.

This equation shows that expected excess returns on long-term bonds are linear functions
of χt. Our empirical strategy consists of estimating the parameters of the stochastic discount
factor so that our model is consistent with the behavior of an empirical counterpart for
Et[rxe,(20)

t+1 ] and with the behavior of yields on short-term bonds. We now explain the details
of our empirical strategy.

D.2 Estimation of θsdf

We estimate the parameters θsdf and the parameters of the inflation process, [µp, ρp, σp, ρχ,p]

using data on the term structure of nominal ZCB and inflation for Germany. The sample
period is 1973:Q1-2013:Q4. Table A-1 reports summary statistics on inflation, nominal yields,
and realized excess log returns as a function of n.
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The yield curve slopes up on average: yields on five-year bonds are, on average, 80 basis
points higher than yields on bonds maturing next quarter. We can also see that long-term
bonds earn a positive excess return on average. For example, holding a five-year bond and
selling it off next quarter earns, on average, an annualized premium of 2.40% relative to
investing in a bond that matures next quarter. Excess returns on long-term bonds increase
monotonically with n, and so does their Sharpe ratio.

We first estimate an AR(1) process for inflation and set [µp, ρp, σp] to the estimated values.6

The remaining parameters, [θsdf, ρχ,p], are jointly estimated to fit the following:

• The mean and variance of yields on bonds with a one-quarter maturity, re,(1)
t − ∆pt;

• The correlation between re,(1)
t − ∆pt and ∆pt;

• The statistical properties of an estimate of Et[rxe,(20)
t+1 ].

We estimate Et[rxe,(20)
t+1 ] using the procedure developed in Cochrane and Piazzesi (2005)

and routinely used in the literature. This procedure consists first in estimating an OLS
regression of rxet+1 = ∑n rxe,(n)

t+1 on a vector of log-forward rates,

rxet+1 = γ0 + γ′ft + ηt, (A.32)

and then estimating by OLS the following regression:

rxe,(n)
t+1 = αn + bn(γ̂0 + γ̂′ft) + ηn

t . (A.33)

The proxies for E[rxe,(n)
t+1 ] are then the fitted values of equation (A.33).

In implementing this procedure, we average excess log returns across n = 4, 8, 12, 16, 20,
and the vector ft includes the risk-free rate and the log forward rates for these five maturities.
The top panel of Table A-2 reports the results for the estimation of equation (A.32), while
the bottom panel reports the estimates of equation (A.33) for n = 4, 8, 12, 16, 20.

Relative to the analysis of Cochrane and Piazzesi (2005) on U.S. data, excess returns are
less predictable, as measured from the R2 of the above regressions: in U.S. data, the R2 varies
between 0.31 and 0.37 while in our case it varies between 0.10 and 0.19. This result mirrors
Dahlquist and Hasseltoft (2013), who also estimated the Cochrane and Piazzesi (2005) re-
gressions using German bonds. In that paper, the authors argue that the performance of the
Cochrane and Piazzesi (2005) factor in forecasting excess returns is significantly higher than
that of other factors used in the literature. Similar to Cochrane and Piazzesi (2005), we find
that the sensitivity of excess returns to their factor (the estimated bn’s) increases with the
maturity of the bonds.

6When fitting equation (A.23) to German data we find that µ̂p = 0.006, ρ̂p = 0.470 and σ̂p = 0.005.
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Table A-2: Cochrane and Piazzesi (2005) regressions

γ0 γ1 γ2 γ3 γ4 γ5 γ6 R2

Estimates of equation (A.32)
-0.001 -1.65 5.02 -21.95 48.01 -46.17 16.95 0.12
(-0.29) (-3.18) (2.94) (-2.02) (1.57) (-1.22) (1.01)

an bn R2

Estimates of equation (A.33)

4 -0.001 0.45 0.19
(-2.40) (6.26)

8 -0.000 0.77 0.13
(-0.38) (4.93)

12 0.000 1.03 0.11
(0.15) (4.54)

16 0.000 1.27 0.11
(0.30) (4.42)

20 0.001 1.49 0.10
(0.34) (4.36)

We summarize this information by including [â20, b̂20, σ̂η20 ] in the targets of the method of
simulated moments, along with the parameters of an AR(1) model estimated on the first-
stage factor, xt = γ̂0 + γ̂′ft.

The parameters [θsdf, ρχ,p] are then estimated by simulated method of moments. That
is, we choose [θsdf, ρχ,p] to minimize a weighted distance between these moments and the
corresponding statistics computed in model-simulated data. The weighting matrix is diago-
nal, with the inverse of each sample moment (in absolute value) on the main diagonal. The
model-implied statistics are computed on a long simulation (T = 20000).7 Table A-3 reports
the estimated parameters along with measures of the in-sample fit.

E Numerical solution

It is convenient to simplify the objects of the recursive equilibrium. First, let us drop ξ from
the state vector and record the face value of debt, B̂ = B/λ, instead of the debt coming due
next period, B, and have S = [B̂, λ, y, χ, π] and s = [y, χ, π]. As we shall see momentarily, S

7In simulations, we add small measurement errors to the forward rates in order to avoid multicollinearity
when estimating the Cochrane and Piazzesi (2005) first-stage regression.
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Table A-3: Estimated parameters and model fit

Parameters φ0 φ1 κ0 κ1 ρχ ρχ,p

0.005 0.002 0.161 0.374 0.513 0.676
Moment Data Model

Mean(re,(1)
t − ∆pt) 2.148 2.153

Stdev(re,(1)
t − ∆pt) 2.381 1.059

Corr(re,(1)
t − ∆pt,∆pt) -0.2729 -0.2783

âx 0.002 0.002
ρ̂x 0.490 0.521
σ̂x 0.004 0.010
â20 0.001 0.000
b̂20 1.485 1.339
σ̂η20 0.020 0.032

Notes: The moments (âx , ρ̂x , σ̂x) are the estimates of an AR(1) process for the fitted values of equation

(A.32). Yields are reported as annualized percentages.

will be enough to solve for the recursive equilibrium. Second, we can represent the decision
problem of the government as choosing the face value B̂ and the decay parameter λ rather
than choosing the entire portfolio of ZCB. We denote the pricing schedule for a portfolio
with decay parameter λ, given that the realization of the exogenous state is s and given the
choices (B̂′, λ′) for the government to be

Q
(
S, B̂′, λ′|λ

)
=

∞

∑
n=1

λ(1− λ)n−1q(n)
(
S, B̂′, λ′

)
.

Note that we need to price an arbitrary λ portfolio, given government choices (B̂′, λ′), in
order to know the market value of the portfolio repurchased by the government.8 We can
verify that the pricing schedule solves the recursion

Q
(
s, B̂′, λ′|λ

)
= E

{
M
(
s1, s′1

)
δ
(
S′, ξ ′

) [
λ + (1− λ)Q

(
s′, B̂′′, λ′′|λ

)]
|S
}

, (A.34)

with B̂′′ = B̂′
(
s′, B̂′, λ′

)
and λ′′ = λ′

(
s′, B̂′, λ′

)
.

Under this formulation, and assuming that the government is not defaulting today given
S and ξ, we can write the net issuances of bonds as

∆
(
S, B̂′, λ′

)
= Q

(
s, B̂′, λ′|λ′

)
B̂′ −Q

(
s, B̂′, λ′|λ

)
(1− λ)B̂. (A.35)

8See Sánchez, Sapriza, and Yurdagul (2018) for a discussion of this issue.
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With this notation, we can write the decision problem for the government using three
simple sub-problems. We define the value of repaying conditional on lenders rolling over
the debt, VR

roll(S), as follows:

VR
roll(S) = max

B̂′,λ′

{
U(τY− λB̂ + ∆

(
S, B̂′, λ′

)
) + βE[V(B̂′, λ′, s′)|S]

}
, (A.36)

where ∆
(
S, B̂′, λ′

)
is defined in equation (A.35) and Y = exp{y}. The value of repaying

conditional on lenders not rolling over the debt, VR
no roll(S), is

VR
no roll(S) =

{
U(τY− λB̂) + βE[V(B̂(1− λ), λ, s′)|S]

}
, (A.37)

while the value of defaulting, VD(y, χ), is

VD(y, χ) =
{

U(τY[1− d(Y)]) + β{ψE[V(0, λ, y′, χ′, π′)|S] + (1− ψ)E[VD(y′, χ′)|S]}
}

. (A.38)

Note that VD(.) does not depend on π because this process is iid. The value function of the
government can then be written as

V(S, ξ) =


VR

roll(S) if VR
no roll(S) ≥ VD(y, χ)

VR
roll(S) if VR

no roll(S) < VD(y, χ) and ξ = 0

VD(y, χ) if VR
no roll(S) < VD(y, χ) and ξ = 1.

This value function, its associated policy functions, and the pricing function in equation
(A.34) are enough to determine the equilibrium outcome path.9

The numerical solution of the model consists of approximating the pricing schedule Q
and the value functions {VR

roll(S), VR
no roll(S), VD(y, χ)}. We approximate the value functions

using a mixture of projection and discrete state space methods. We let Λ = {λ1, λ2, . . . , λNλ
}

and B = {B1, . . . , BNB} be the set of decaying factors and debt levels over which we approx-
imate the value function. The value functions are approximated using piece-wise smooth
functions. That is, VR

roll(.) is approximated as follows:

VR
roll(λj, Bk, s) = γR

roll,(λj,Bk)

′
T(s),

where s = [y, χ, π] ∈ S is a realization of the exogenous state variables from a set of points S ,
γR

roll,(λj,Bk)
is a vector of coefficients, and T(.) is a vector collecting Chebyshev’s polynomials.

The value of repaying conditional on the lenders not rolling over the debt and the value

9On the outcome path, the price of a bond portfolio is either zero – in the case of a fundamental default or
a rollover crisis – or equal to the price defined in (A.34) if there is repayment in the current period.
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of defaulting are defined in a similar fashion, and we denote by γR
no roll,(λj,Bk)

and γD the
coefficients that parametrize those values. The pricing schedule Q in equation (A.34) is
approximated on a grid. Specifically, let B̃ = {B̃1, . . . , B̃NB̃

} be the set of debt levels that the
government can choose. The pricing schedule is then approximated on B̃ ×Λ×Λ×Sq. We
allow the grid for the exogenous state variables and the one for debt choices to be different
from the one used in the approximation of the value function. This degree of flexibility
allows us to have finer grids for the pricing schedule than for value functions, which is
helpful because the former are typically highly nonlinear in sovereign debt models.

We index the numerical solution by [Γ, Q], with Γ = {[γR
roll,(λj,Bk)

, γR
no roll,(λj,Bk)

]j,k, γD}
collecting the coefficients that parametrize the value functions. The numerical solution is
obtained via value function iteration. The algorithm is as follows:

Step 0: Defining the state space and the polynomials. Specify the set of values in
B, Λ, B̃. Set upper and lower bounds for the exogenous state variables (y, χ, π) and
construct individual grids for each exogenous state. Construct a tensor grid S for the
exogenous state variables and the associated Chebyshev’s polynomials T(.). These are
used for the approximation of the value functions. Construct a tensor grid Sq for the
approximation of the pricing schedule.

Step 1: Update value functions. Start with a guess for the value and pricing functions,
(Γc, Qc). For each point in B ×Λ×S , update the value functions using the definitions
in equations (A.36)-(A.38). Denote by Γu the updated guess and by [rR

roll, rR
no roll, rD] the

distance between the initial guess and its update.

Step 2: Update pricing function. For each exogenous state s in Sq and for each
(B′, λ′, λ) ∈ B̃ ×Λ×Λ, evaluate the right-hand side of equation (A.34) using (Γc, Qc)

and the policy functions associated with Γc. Denote this value by Q̂u(s, B′, λ′|λ), and
let rQ be the distance between Qc and Q̂u. Update the pricing schedule as

Qu(.) = aQ̂u(.) + (1− a)Qc(.) a ∈ (0, 1).

Step 3: Iteration. If max{rR
roll, rR

no roll, rD} ≤ c1 and rQ ≤ c2, stop the algorithm. If not,
set (Γu, qu) as the new guess and repeat Steps 1-2. �

Regarding the specifics of the algorithm, we set the upper and lower bounds for y and
χ to be equal to +/- 3 standard deviations of the stochastic processes, while the grid for
π is between 0 and 3.5 standard deviations. We select 5 equally spaced points between
these bounds for the approximation of the value function. The set S , therefore, contains 125
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distinct points. For the approximation of the pricing function, instead, we consider 51 points
on the y dimension, and 5 points on the χ and π dimension. The set Sq contains, therefore,
1275 distinct points. The upper and lower bounds for B are [0, 16]. When approximating the
value function, we construct B using 81 equally spaced points in this interval. The grid for
λ contains 11 equally spaced values within the interval [1/(4× 8), 1/(4× 5)]. This interval
implies a range of +/− 8 standard deviations around an observed maturity of 6.5 years, the
Italian pre-crisis level. The grid for debt choices over which the pricing schedule is defined,
B̃, consists of 650 points in the [0, 16] interval. The grid has 50 equally spaced points on the
[0, 6) segment, 500 points on the [6, 12) segment, and 100 points on the [12, 16] segment.

When updating the guess for the value and pricing functions, we compute expectations
over future outcomes using Gauss-Hermite quadrature, with n = 5 points on each random
variable. We use the polynomial approximation to compute the value functions associated to
states that are not on our grid, while we use linear interpolation for bond prices and policy
functions. Finally, we compute the distance for the value functions using the sup norm in
logs. For the pricing function, we compute the sup norm for equilibrium prices and square
it. The value functions converge at 0.00006 level while equilibrium prices at 0.000001.

A simulation of the model consists in obtaining the default decision, δt, the character-
istics of the new debt portfolio, (B̂t+1, λt+1), and the equilibrium price of a portfolio of
type λ, Qt(λ) for a given realization {yt, χt, πt, ξt}T

t=1 and initial conditions (B̂0, λ0).10 Let
{yt, χt, πt, ξt} be the time t realization of the stochastic process and let (B̂t, λt) be the initial
condition for the face value and decaying parameter of the debt portfolio inherited by the
government. Assuming that the government is not currently in default, we can obtain the
value for {δt, B̂t+1, λt+1, Qt(λ)} as follows

1. Given the state variables St = [B̂t, λt, yt, χt, πt], we compute VR
roll(St), VR

no roll(St) and
VD(yt, χt) using Γ. We use the Chebyshev’s polynomials and linear interpolation across
the Bt and λt dimensions to evaluate these value functions at a point St that is not in
our grid.

2. If Vroll(St) < VD(yt, χt), or if Vno roll(St) < VD(yt, χt) ≤ Vroll(St) and ξt = 1, then the
government enters a default state. In such a case, we set δt = 0, B̂t+1 = 0, λt+1 = λ̄,
and Qt(λ) = NaN.

3. If the government is not in a default state, we set δt = 1. The choices for (B̂t+1, λt+1)

and equilibrium prices Qt(λ) are obtained by linearly interpolating the policy functions
at St and the pricing schedule at (B̂t+1, λt+1, yt, χt, πt).

10To obtain a simulation for ξt, we draw a random variable ut ∼ Uniform(0, 1). We set ξt = 0 if ut ≥ πt−1,
and ξt = 1 otherwise.
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If the government is currently in default, we draw a random variable vt ∼ Uniform(0, 1).
If vt > ψ, then the government remains in default and we set δt = 0, B̂t+1 = 0 and λt+1 = λ̄

and Qt(λ) = NaN. Else, the government exits a default state, and the simulation is obtained
by following step 1-3 above.

F Details of the counterfactual experiment

We now detail the counterfactual experiment of Section 5. First, we explain how we use the
particle filter to extract information on the sequence of {πt}. Second, we discuss how we
generate the decomposition of Figure 5.

F.1 Particle filtering

From Section 5 we have that the state-space representation of the model is

Yt = g(St) + ηt

St = f(St−1, εt).

The first equation is the measurement equation, with ηt being a vector of iid Gaussian errors
with a variance-covariance matrix equal to Σ. The second equation is the transition equa-
tion, describing the law of motion for the model’s state variables. The vector εt collects the
innovations to the structural shocks yt, χt, and πt. The functions g(.) and f (.) are generated
using the numerical procedure previously described.

Let Yt = [Y1, . . . , Yt], and denote by p(St|Yt) the conditional distribution of the state
vector given observations up to period t. Although the conditional density of Yt given St is
known and Gaussian, there is no analytical expression for the density p(St|Yt). We use the
particle filter to approximate this density for each t. The approximation is done via a set of
pairs {Si

t, w̃i
t}N

i=1, in the sense that

1
N

N

∑
i=1

f (Si
t)w̃

i
t

a.s.→ E[ f (St)|Yt],

and it is used to obtain the (mean) trajectory of the state vector over the sample. We refer
to Si

t as a particle and to w̃i
t as its weight. The algorithm used to approximate {p(St|Yt)}t

builds on Kitagawa (1996), and it goes as follows:

Step 0: Initialization. Set t = 1. Initialize {Si
0, w̃i

0}N
i=1 and set w̃i

0 = 1 ∀i.
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Step 1: Prediction. For each i = 1, . . . , N, obtain a realization for the state vector Si
t|t−1

given Si
t−1 using the simulation procedure described in online Appendix E.

Step 2: Filtering. Assign to each particle Si
t|t−1 the weight

wi
t = p(Yt|Si

t|t−1)w̃
i
t−1.

Step 3: Resampling. Rescale the weights {wi
t} so that they add up to unity, and denote

these rescaled values by {w̃i
t}. Sample N values for the state vector with replacement

from {Si
t|t−1, w̃i

t}N
i=1, and denote these draws by {Si

t}i. Set w̃i
t = 1 ∀i. If t < T, set

t = t + 1 and go to Step 1. If not, stop. �

In our exercise, the measurement equation includes yt and χt, and the variance of the
measurement error associated to these variables is set to zero. Thus, at every prediction
step of the filter, we set the innovations εi

y,t and εi
χ,t so that yi

t and χi
t are equivalent to

their empirical counterpart. The non-trivial part of the algorithm consists in filtering πt.
Regarding the tuning of the filter, we set N = 100, 000.

F.2 Counterfactual experiment

We now discuss how we use the approximation to {p(St|Yt)}2012:Q2
t=2008:Q1 along with the struc-

tural model to generate the decomposition presented in Figure 5.

Let sprdata
t be the interest rate spread at time t, and let ˆsprmodel

t be

ˆsprmodel
t =

N

∑
i=1

gspr(Si
t)w̃

i
t,

where gspr(.) is the policy function for equilibrium interest rate spreads. The measurement
error component in Figure 5 is defined as sprdata

t − ˆsprmodel
t .

The fundamental component of interest rate spreads is generated as follows. For each Si
t,

and given the choices Bi
t+1, λi

t+1, evaluate the interest rate spread on a λ-type portfolio by
setting πt = 0,

spri,fund
t (λ) =

λ[1−Q(Bi
t+1, λi

t+1, yi
t, χi

t, 0|λ)]
Q(Bi

t+1, λi
t+1, yi

t, χi
t, 0|λ)

− rrisk free
t (λ).

Given {spri,fund
t }i∈N,t∈T, we next construct, for each t,

ˆsprfund
t =

1
N

N

∑
i=1

spri,fund
t w̃i

t ≈ E[sprfund
t |Yt].
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This is the (average) interest rate spread implied by the model under the assumption that πt

was zero over the 2008:Q1-2012:Q2 period, and it is the fundamental component of interest
rate spreads in Figure 5. The non-fundamental component of the spreads is then defined as

ˆsprmodel
t − ˆsprfund

t for each t.

G Sensitivity

In this section we perform a sensitivity analysis with the aim of assessing the robustness of
our results.

Welfare gains from lengthening debt maturity. In the first experiment, we use the struc-
tural model to measure the welfare gains from lengthening debt maturity under the hy-
pothesis that rollover risk was a key determinant of interest rate spreads during the Italian
debt crisis. This exercise checks the robustness of our results with respect to model’s mis-
specification. Small welfare gains would indicate that the results in the previous section
could be easily overturned by determinants of debt maturity that have been neglected in
our analysis. Large welfare gains would imply that our results are more robust to model’s
misspecification.

To this end, we set the state variables (λt, yt, χt) to their empirical counterpart in 2011:Q4,
and we fix λt+1 to the observed debt maturity at the end of the quarter. We then choose a
combination of (Bt, Bt+1, πt) that delivers a government deficit of 3.5% of GDP, the level of
interest rate spreads observed in 2011:Q4, and the highest probability of a rollover crisis next
period. By doing so, the model replicates the key features of the Italian economy in 2011:Q4
and generates a sizable role for rollover risk. Given these states and choices, we can compute
the certainty equivalent government spending G∗t ,

1
1− β

(G?
t − G)1−σ

1− σ
= Vt,

where Vt is the value for the government given the state variables selected above and the
choices (Bt+1, λt+1). Because (Bt+1, λt+1) are not chosen optimally in this experiment, there
are welfare gains/losses from changing them. Our focus is to measure the welfare gains that
the government would obtain by changing λt+1.

Figure A-1 reports the certainty equivalent government spending for different values of
λt+1 in percentage deviations from the benchmark G∗t .11 By construction, this measure

11When changing λt+1 we adjust Bt+1 so that government spending is the same as in the benchmark.
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Figure A-1: Gains from lenghtening debt maturity in presence of high rollover risk
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equals zero for the maturity level observed in 2011:Q4. We can see that welfare is increas-
ing in debt maturity. By lengthening the maturity of the stock of debt from 6.7 years to 8,
for example, the government would increase its certainty equivalent consumption by 1.25%.
This is sizable number, especially when compared to the welfare costs of business cycle
fluctuations documented in the literature.

This analysis shows that if rollover risk was sizable at the peak of the crisis, then the
government would have strong incentives to lengthen maturity relative to what we have
observed in the data. The reason why the model produces such large welfare gains can be
explained as follows. First, in the above experiment π equals 0.22. Thus, a government
falling in the crisis zone faces a substantial risk of a rollover crisis. Second, the model
needs large output costs of default (roughly 8% of GDP in our parametrization) in order to
reproduce the large debt-to-output ratio of the Italian economy. This makes rollover crises
particularly costly from the perspective of the government. Third, lengthening debt maturity
from 6.7 years to 8 years reduces the probability of falling in the crisis zone next quarter, thus
having a first order effect on welfare.

Thus, we conclude that our our main results are robust to model misspecification, in the
sense that small perturbations of our environment will not lead to a different conclusion
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Figure A-2: Rollover risk and debt maturity: sensitivity to the parameter α
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regarding the importance of rollover risk in our sample.

Sensitivity on utility costs of changing maturity. We now assess the robustness of our
main result to the parameters of the utility costs of changing maturity. For this purpose, we
solve the model for two alternative parametrizations. In the first parametrization we set α

to 0.2, which implies a reduction of 50% in the costs of adjusting maturity relative to our
benchmark of α = 0.4. In the second parametrization, we solve the model by setting α to 0.6.
In both experiments, we keep all remaining parameters to their value in Table 1. We then
repeat the exercise of Section 5 under these two alternative parametrizations of the model.

Panel (a) of Figure A-2 reports the rollover risk component of interest rate spreads in
these two parametrizations and compares them to our benchmark results. We can verify
that the measured rollover risk component does not vary substantially when varying α,
which implies that our decomposition is robust to alternative values for the cost of changing
maturity.

H OMT in the model

We model OMT as follows. At the beginning of each period, after all uncertainty is realized,
the government can ask for assistance. In such case, the central bank (CB) commits to buying

A-26



government bonds in secondary markets at a price q(n)CB (S) that may depend on the state of
the economy, S. The CB assistance is conditional on the face value of government debt
at the end of the period, B′, being below a limit B̄CB (S, λ′) < ∞, also set by the CB. The
limit can depend on the state of the economy and on the maturity of the stock of the debt
portfolio, and it captures the conditionality of the assistance in the secondary markets. OMT
is therefore fully characterized by a policy rule

(
q(n)CB (S) , B̄CB(S,λ′)

)
. We assume that

the CB finances bond purchases with a lump-sum tax levied on the lenders, and that such
transfers are small enough that they do not affect the stochastic discount factor Mt,t+1.

The problem for the government described in (6) changes as follows. Letting a ∈ {0, 1} be
the decision to request CB assistance, with a = 1 for the case in which assistance is requested,
the government problem is

V (S) = max
δ∈{0,1},B′,λ′,G,a∈{0,1}

δ
{

U(G) + βE[V
(
S′
)
|S]
}
+ (1− δ)V (s1) (A.39)

subject to

G + B ≤ τY(s1) + ∆
(
S, a, B′, λ′

)
,

∆
(
S, a, B′, λ′

)
=

∞

∑
n=1

q(n)
(
S, a, B′, λ′

)
[(1− λ′)n−1B′ − (1− λ)nB]

B′ ≤ B̄CB
(
S,λ′

)
if a = 1.

The lenders no-arbitrage condition requires that for n ≥ 1,

q(n)
(
S, a, B′, λ′

)
= max{aq(n)CB (S) I{B′≤B̄CB(S,λ′)}; δ (S)E

{
M
(
s1, s′1

)
δ
(
S′
)

q(n−1)′|S
}

, (A.40)

where q(n−1)′ = q(n−1) (s′, B′′, λ′′) with B′′ = B′ (s′, B′, λ′), λ′′ = λ′ (s′, B′, λ′), a′ = a (s′, B′, λ′),
and the convention q′0 = 1. The max operator on the right side of equation (A.40) reflects the
option that lenders now have to sell the bond to CB at the price q(n)CB in case the govern-
ment asks for assistance (a = 1). Because of that, pricing schedules now depend on current
and future decisions of the government to activate OMTs. Given a policy rule

(
q(n)CB , B̄CB

)
,

the recursive competitive equilibrium with OMT is defined as in Section 2.

We now turn to showing that an appropriately designed policy rule can uniquely imple-
ment the equilibrium outcome that would arise in the absence of rollover risk, that is, if
πt = 0 for all possible histories. We refer to such an outcome as the fundamental equilibrium
outcome and denote the objects of a recursive competitive equilibrium associated with it with
a superscript asterisk. The fundamental equilibrium outcome is our normative benchmark.12

12We abstract from policy interventions that aim to ameliorate inefficiencies arising from incomplete markets

A-27



Proposition 4. The OMT rule can be chosen such that the fundamental equilibrium outcome is
uniquely implemented and assistance is never activated along the path. In such case, the equilibrium
with OMT is a weak Pareto improvement relative to the equilibrium without it, strict if the equilibrium
outcome without OMT does not coincide with the fundamental equilibrium.

Proof. Given V∗ and q(n),∗, let Scrisis(V∗) be the crisis zone associated with the funda-
mental equilibrium value function. Construct the policy rule

(
q(n)CB , B̄CB

)
so that for all

S ∈ Scrisis(V∗) there exists at least one (B′, λ′) with B′ ≤ B̄CB (S, λ′) such that if the govern-
ment asks for assistance, then it prefers to repay rather than default:

U

(
τY− B + ∑

n
q(n)CB (S) [

(
1− λ′

)n−1 B′ − (1− λ)n B]

)
+ βE

[
V∗
(

B′, λ′, s′
)
|S
]
≥ V (s1) ,

(A.41)
and the fundamental equilibrium is always preferable than asking for assistance, in that for
all (B′, λ′) such that B′ ≤ B̄CB (S, λ′),

U

(
τY− B + ∑

n
q(n)CB (S) [

(
1− λ′

)n−1 B′ − (1− λ)n B]

)
+ βE

[
V∗
(

B′, λ′, s′
)
|S
]
≤ V∗ (S) .

(A.42)
Clearly it is possible to find policy rules that satisfy (A.41) and (A.42). An obvious example
is to set q(n)CB (S) = q(n)

∗ (
s, B′(S), λ∗′(S)

)
and B̄CB (S, λ) = B∗′ (S) if λ = λ∗′ (S) and zero

otherwise.

Under (A.41) and (A.42), no self-fulfilling run is possible, the optimal B′ and λ′ are the
same that arise in the fundamental equilibrium, and the government has no incentives to
activate OMT along the equilibrium path. Hence, given a policy rule that satisfies (A.41)
and (A.42), there exists a recursive equilibrium with OMT that implements the fundamental
equilibrium outcome for any sunspot process {s2t}.13 Q.E.D.

I Rollover risk and public debt management in 1980s Italy

This section documents in details an example of a government extending the maturity of its
debt while facing rollover problems. Using a narrative approach, we analyze the experience
of the Italian Treasury department in the early 1980s.

and consider OMT rules targeted at eliminating “bad" equilibria. Such features will also survive in models with
complete markets or in environments where some notion of constrained efficiency can be achieved as in Dovis
(2019).

13We cannot establish that given a policy rule that satisfies (A.41) and (A.42), the fundamental equilibrium is
the unique recursive equilibrium with OMT. This is because there may be multiple fixed point of the operator
that defines a recursive equilibrium. Hence, the fact that (V∗, q∗) is a fixed point of such an operator for an
arbitrary sunspot process does not necessarily imply that there is not another fixed point (V, q).
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Two main factors at the beginning of the 1980s contributed to placing the Italian govern-
ment at risk of a rollover crisis. First, the Italian government needed to refinance almost its
entire debt, which was roughly 60% of GDP at the time, within the span of a year. Following
the chronic inflation of the 1970s, in fact, investors became discouraged from holding long
duration bonds that were unprotected from inflation risk, and the average residual maturity
of Italian debt went from a peak value of 9.2 years in 1972 to 1.1 years in 1980 (Pagano,
1988). Second, and in an effort to increase the independence of the central bank, a major
institutional reform freed the Bank of Italy from the obligation of buying unsold public debt
in auctions.14

The short residual life of government debt coupled with the loss of central bank financing
meant that the Italian government had to use primary markets to refinance its maturing
debt. However, these markets were not well developed at the time, and private demand for
government bonds was weak and volatile (Campanaro and Vittas, 2004). The left panel of
Figure A-3 reports statistics regarding the placement of Italian Treasury securities during
the 1981-1982 period. The solid line plots the private bid-to-cover ratio for Italian Treasury
securities. This ratio averaged only 0.65 over this period, with a standard deviation of 0.25.
The dashed line reports the ratio between the quantity sold and the Treasury’s target. Until
July 1981, this ratio was equal to 1 because of the statutory requirement for the central bank
to buy unsold bonds. Following the reform of the central bank, though, the Treasury became
exposed to variation in the private demand of bonds.

The possibility that rollover problems may eventually lead to a debt crisis became evident
in the last quarter of 1982. On the auction of October 15, private demand covered only
46% of the Treasury’s needs, and the central bank decided not to purchase unsold bonds.
The Treasury was thus forced to use the overdraft account it had with the Bank of Italy to
cover its financing needs, reaching the statutory limit. This led to a budgetary crisis, which
further depressed private demand of bonds out of fears of a debt restructuring.15 While the
Parliament later voted in a law that allowed a temporal overshoot of the overdraft account
(Scarpelli, 2001), these events exposed to policymakers the risks implicit in refinancing large
amounts of debt in short periods of time.

The response of the Italian government to these events is consistent with the logic of our
identification strategy. As documented in Alesina, Prati, and Tabellini (1989) and in Scarpelli

14Starting from 1975, the Bank of Italy was required to act as a residual buyer of all the public debt that was
unsold in the auctions. This resulted in a massive increase in the share of public debt held by the Bank of Italy,
reaching a maximum of 40% in 1976. See Tabellini (1988) for a discussion of the historical context underlying
the “divorce" between the Bank of Italy and the Italian Treasury.

15These fears were not without motivation. Rino Formica, ministry of Finance at the time, publicly called for
an agreement with bondholders that would allow the Treasury to reimburse only part of its debt. Beniamino
Andreatta, ministry of the Treasury, strongly opposed this view. This controversy, known in the public debate
as “lite delle comari," eventually led to the fall of the Italian government on December 1, 1982.
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Figure A-3: Rollover risk and public debt management: Italy in the early 1980s
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(2001), the Treasury actively pursued a policy to extend the life of its public debt. Financial
innovation was the main tool used for this purpose, with the introduction of new types of
bonds whose interest payments were indexed to the prevailing nominal rate. These Certificati
di Credito del Tesoro (CCT) were palatable to investors because they offered protection from
inflation risk, and at the same time they had longer maturity than the Buoni Ordinari del
Tesoro (BOT), the prevailing form of bond financing at the time.16 The right panel of Figure
A-3 reports the composition of the outstanding Italian debt (bars) along with its residual
average life during the 1982-1986 period. We can see that the Treasury quickly replaced
BOTs with CCTs as the main source of public financing. The efforts of the Treasury were
successful in increasing the maturity of outstanding debt, with its residual average life more
than tripling within the span of four years.
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