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A Numerical Solution

A.1 Equilibrium conditions

The states of the model are S = [K̃, B̃, P̃, ∆z, g, s, d]. The controls {C̃(S), R(S), α(S), QB(S)}
solve the residual equations

ES

[
β

C̃(S)
C̃(S′)

e−∆z′R(S)
]
− 1 = 0, (A.1)

ES

β
C̃(S)
C̃(S′)

e−∆z′ [(1− ψ) + ψα(S′)]

 (1− δ)QK(S′) + α Ỹ(S′)
K̃′(S) e∆z′

QK(S)

− λµ(S) = 0, (A.2)

ES

{
β

C̃(S)
C̃(S′)

e−∆z′ [(1− ψ) + ψα(S′)]
[
1− d′D

] [π + (1− π) [ι + Qb(S′)]
QB(S)

]}
− λµ(S) = 0, (A.3)

α(S)−
(1− ψ) + ψR(S)ES

[
β

C̃(S)
C̃(S′) e−∆z′α(S′)

]
1− µ(S)

= 0, (A.4)

where equation (A.1) is the Euler equation for households’ savings and the Lagrange
multiplier µ(S) is given by

µ(S) = max

1−

ES

{
β

C̃(S)
C̃(S′) e−∆z′ [(1− ψ) + ψα(S′)]R(S)

}
Ñ(S)

λ[QK(S)K̃′(S) + QB(S)B̃′(S)]

 , 0

 . (A.5)

The endogenous state variables [K̃, B̃, P̃] evolve as follows:

K̃′(S) =
{
(1− δ)K̃ + Φ

[
e∆z
(

Ỹ(S)(1− g)− C̃(S)
K̃

)]
K̃
}

e−∆z, (A.6)
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B̃′(S) =
[1− dD]{π + (1− π)[ι + QB(S)]}B̃e−∆z + Ỹ(S)g−

(
t∗ + γτ B̃e−∆z)

QB(S)
, (A.7)

P̃′(S) = R(S)[QK(S)K̃′(S) + QB(S)B̃′(S)− Ñ(S)]. (A.8)

The state variable P̃ measures the detrended cum interest deposits that bankers pay to
households at the beginning of the period, and is sufficient to keep track of the evolution of
aggregate bankers’ net worth. Indeed, the aggregate net worth of bankers can be expressed
as

Ñ(S) = ψ

{[
(1− δ)QK(S) + α

Ỹ(S)
K̃

e∆z
]

K̃ + [1− dD] [π + (1− π) [ι + QB(S)]] B̃− P̃
}

e−∆z

(A.9)

+ω[QK(S)K̃ + QB(S)B̃]e−∆z.

Using the intratemporal Euler equation of households, we can write detrended output as

Ỹ(S) =
[

χ−1 (K̃e−∆z)α

C̃(S)

] 1−α
α+ν−1

(K̃e−∆z)α. (A.10)

The exogenous state variables [∆z, log(g), s] evolve as follows:

∆z′ = (1− ρz)γ + ρz∆z + σzε′z, (A.11)

log(g′) = (1− ρg)g∗ + ρg log(g) + σgε′g, (A.12)

s′ = (1− ρs)s∗ + ρss + σsε
′
s, (A.13)

while d follows

d′ =

1 with probability exp{s}
1+exp{s}

0 with probability 1− exp{s}
1+exp{s} .

(A.14)

A.2 Algorithm for numerical solution

I approximate the control variables of the model using piecewise smooth functions, parametrized
by γ = {γx

d=0, γx
d=1}x={C̃,α,Qb,R}. The law of motion for a control variable x is described by

x(d, S̃) = (1− d)γx
d=0
′T(S̃) + dγx

d=1
′T(S̃), (A.15)
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where S̃ = [K̃, P̃, B̃, ∆z, g, s] and T(.) is a vector collecting Chebyshev’s polynomials. De-
fine R(γc, {di, S̃i}) to be a 4× 1 vector collecting the left-hand side of the residual equa-
tions (A.1)-(A.4) for the candidate solution γc evaluated at {di, S̃i}. The numerical solu-
tion of the model consists of choosing γc so that R(γc, {di, S̃i}) = 0 for a set of collocation
points {di, S̃i} ∈ {0, 1} × S̃ .

The choice of collocation points and the associated Chebyshev’s polynomials follows
the method of Smolyak (Krueger, Kubler, and Malin, 2010), specifically the implementa-
tion proposed by Judd, Maliar, Maliar, and Valero (2014). Conditional expectations when
evaluatingR(γc, {d, S̃}) are calculated following the approach of Judd, Maliar, and Maliar
(2011). To give an example of this latter, suppose we wish to compute Edi,S̃i [y(d′, S̃′)],
where y is an integrand of interest.1 Given a candidate solution γc, we can compute y at
every collocation point using the model’s equilibrium conditions. Next, we can construct
an implied policy function for y, {γy

d=0, γ
y
d=1}, via a Chebyshev’s regression. Using the

law of total probability, the conditional expectation of interest can be expressed as

Edi,S̃i [y(d′, S̃′)] = (1− Prob{d′ = 1|S̃i})ES̃i [γ
y
d=0
′
T(S̃′)] +

(A.16)

Prob{d′ = 1|S̃i}ES̃i [γ
y
d=1
′
T(S̃′)],

where Prob{d′ = 1|S̃i} = esi

1+esi . Judd, Maliar, and Maliar (2011) propose a simple proce-

dure to evaluate integrals of the form ES̃i [γ
y
d=1
′
T(S̃′)]. Proposition 1 of their paper estab-

lishes that, under certain conditions, the expectation of a polynomial can be calculated via
a linear transformation I of the coefficient vector γ

y
d, where I is a function of the deep

parameters of the model. The authors provide general formulas for the transformation I .

The algorithm for the numerical solution of the model is as follows:

Step 0.A: Defining the grid and the polynomials. Set upper and lower bounds
on the state variables S̃ = [K̃, P̃, B̃, ∆z, g, s]. Given these bounds, construct a µ-level
Smolyak grid and the associated Chebyshev’s polynomials T(.) following Judd et al.
(2014).2

Step 0.B: Precomputing integrals. Compute I using the formulas in Judd, Maliar,
and Maliar (2011).

1For example, y could be e−∆z′/C̃(S′) in equation (A.1).
2The grid is constructed on a rotation of K̃ and P̃ in order to account for the tight correlation between

these two variables. The rotation matrix is generated by applying the singular value decomposition to data
simulated from a third-order perturbation of the model without sovereign risk.
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Step 1: Equilibrium conditions at the candidate solution. Start with a guess for
the model’s policy functions γc. For each (di, S̃i), use γc and equation (A.15) to com-
pute the value of control variables {C̃(di, S̃i), α(di, S̃i), QB(di, S̃i), R(di, S̃i)}. Given
the control variables, solve for the endogenous state variables next period using the
model’s equilibrium conditions. Given the value of control and state variables, com-
pute the value of every integrand in equations (A.1)-(A.4) at (di, S̃i). Collect these
integrands in the matrix y.

Step 2: Evaluate conditional expectations. For each d = {0, 1}, run a Chebyshev
regression for the integrand in y, and denote by γ

y
d the implied policy function for

an element y ∈ y. Conditional expectations are calculated using equation (A.16) and
the matrix I .

Step 3: Evaluate residual equations. Given conditional expectations, compute the
Lagrange multiplier using equation (A.5). Evaluate the residuals R(γc, {di, S̃i}) at
every collocation point (di, S̃i). The dimension of the vector of residuals is four times
the cardinality of the state space. Denote by r the Euclidean norm for this vector.

Step 4: Iteration. If r ≤ 10−20, stop the algorithm. If not, update the guess and
repeat Step 1-4. �

The specifics for the algorithm are as follows. The bounds on [∆z, g] are +/- 3 standard
deviations from their mean. The bounds on s are larger and set to [s∗− 4.75, s∗+ 4.75]. The
bounds on the endogenous state variables are set to +/- 3 standard deviations from their
balanced growth values. The standard deviation is calculated by simulating a third-order
perturbation of the model without sovereign risk. For the Smolyak grid, I choose µ = 3,
and I use Gaussian numerical quadrature (15 points) to compute the matrix I . Finally, I
find the zeros of the residual equation using a variant of the Newton algorithm.

A.3 Accuracy of numerical solution

I check the accuracy of the numerical solution by computing the errors of the residual
equations (Judd, 1992). Specifically, I proceed as follows. Let γ∗ denote the solution to the
model. First, I simulate the model forward for 5,000 periods. This gives a simulation for
the state variable of the model {dt, S̃t}5000

t=1 . Second, for each pair (dt, S̃t), I calculate the
errors of the residual equations R(γ∗, {dt, S̃t}). As an example, let us consider equation
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(A.2). Then, the residual error at (dt, S̃t) for this equation is defined as

λµ(dt, S̃t)−Edt,S̃t

β
C̃(dt, S̃t)

C̃(S′)
e−∆z′ [(1− ψ) + ψα(S′)]

 (1− δ)QK(S′) + α
Ỹ(S′)

K̃′(dt,S̃t)
e∆z′

QK(dt, S̃t)

 ,

where the model’s policy functions are used to generate the value for endogenous vari-
ables at (dt, S̃t).3 Following standard practice, I report the decimal log of the absolute
value of these residual errors. Figure A-1 reports the density (histogram) of those errors.

Figure A-1: Residual equation errors
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Notes: The histograms report the residual equation errors in decimal log basis. The dotted line marks the mean residual
equation error.

On average, residual equation errors are on the order of -4 for the risk-free rate, -3.5
for consumption and the price of government securities, and -3 for the marginal value of
wealth. These numbers are comparable to values reported in the literature for models of
similar complexity, and they are still very reasonable.

3By construction, the residual errors are zero at the collocation points. These residual errors provide a
measure of how large are the discrepancies between the decision rule derived from the numerical algorithm
and those implied by the model’s equilibrium conditions in other points of the state space.
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B Empirical Analysis

B.1 Estimating the model without sovereign risk

The model without sovereign risk has five state variables St = [K̂t, P̂t, B̂t, ∆zt, gt]. Let Yt be
a 2× 1 vector of observables collecting output growth and the time series for the Lagrange
multiplier on the leverage constraint. The state-space representation is

Yt = fθ̃(St) + ηt ηt ∼ N (0, Σ) (A.17)

St = gθ̃(St−1, εt) εt ∼ N (0, I). (A.18)

The first equation is the measurement equation, with ηt being a vector of Gaussian
measurement errors. The second equation is the transition equation, which represents the
law of motion for the model’s state variables. The vector εt represents the innovation to
the structural shocks ∆zt and gt. The functions fθ̃(.) and gθ̃(.) are generated using the
numerical procedure described in Appendix A applied to the model without sovereign
risk. I characterize the posterior distribution of θ̃ using Bayesian methods. I denote by
p(θ̃) the prior on θ̃. In what follows, I provide details on the evaluation of the likelihood
function and on the posterior sampler adopted.

B.1.1 Likelihood evaluation

Let Yt = [Y1, . . . , Yt], and denote by p(St|Yt−1; θ) the conditional distribution of the state
vector given observations up to period t− 1. The likelihood function for the state-space
model of interest can be expressed as

L(YT|θ) =
T

∏
t=1

p(Yt|Yt−1; θ) =
T

∏
t=1

[∫
p(Yt|St; θ)p(St|Yt−1; θ)dSt

]
. (A.19)

Although the conditional density of Yt given St is known and Gaussian, there is no
analytical expression for the density p(St|Yt−1, θ). I use the auxiliary particle filter of Pitt
and Shephard (1999) to approximate this density. This approximation is then used to
estimate the likelihood function.

Step 0: Initialization. Set t = 1. Initialize {Si
0, π̃i

0}N
i=1 from the model’s ergodic

distribution and set π̃i
0 = 1

N ∀i.
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Step 1: Prediction. For each i = 1, . . . , N, draw Si
t|t−1 values from the proposal

density g(St|Yt, Si
t−1).

Step 2: Filtering. Assign to each Si
t|t−1 the particle weight

πi
t =

p(Yt|Si
t|t−1; θ)p(St|Si

t|t−1; θ)

g(St|Yt, Si
t−1)

.

Step 3: Sampling. Rescale the particles {πi
t} so that they add up to unity, and denote

these rescaled values by {π̃i
t}. Sample N values for the state vector with replacement

from {Si
t|t−1, π̃i

t}N
i=1. Call each draw {Si

t}, and set π̃i
t =

1
N . If t < T, set t = t + 1 and

go to Step 1. If not, stop. �

The likelihood function of the model is then approximated as

L(YT|θ) ≈
(

T

∏
t=1

[
1
N

N

∑
i=1

p(Yt|Si
t|t−1; θ)

])
.

Regarding the tuning of the filter, I set N = 100000. The matrix Σ is diagonal, and the
diagonal elements equal 25% of the variance of the observable variables. The choice for
the proposal density g(St|Yt, Si

t−1) is more involved. I sample the structural innovations
εt from N (mt, I). Then, I use the model’s transition equation (A.18) to obtain Si

t|t−1. The
center for the proposal distribution for εt is generated as follows. Let St−1 be the mean
for {Si

t−1} over i. Then, mt is the vector of innovations ε solving the program

argminε

{
[Yt − fθ̃(gθ̃(St−1, ε))]′[Yt − fθ̃(gθ̃(St−1, ε))] + ε′Σ−1ε

}
.

The first part of the objective function pushes ε toward values that can rationalize the
observation Yt. The second part imposes a penalty for shocks that are far away from 0,
their unconditional mean.

B.1.2 Posterior sampler

I characterize the posterior density of θ̃ using a Random Walk Metropolis Hastings with
proposal density given by

q(θ̃p|θ̃m−1) ∼ N (θ̃m−1, cH).

The sequence of draws {θ̃m} is generated as follows:

1. Initialize the chain at θ̃1.
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2. For m = 2, . . . , M, draw θ̃p from q(θ̃p|θ̃m−1). The jump from θ̃m−1 to θ̃p is accepted
(θ̃m = θ̃p) with probability min{1, r(θ̃m−1, θ̃p|YT)}, and rejected otherwise (θ̃m =

θ̃m−1). The probability of accepting the draw is

r(θ̃m−1, θ̃p|YT) =
L(YT|θ̃p)p(θ̃p)

L(YT|θ̃m−1)p(θ̃m−1)
.

First, I run the chain for M = 10, 000 with H being the identity matrix and c = 0.001.
The chain is initialized at the prior mean. I drop the first 5,000 draws, and I use the
remaining draws to initialize a second chain and to construct a new candidate density.
This second chain is initialized at the mean of the 5,000 draws. Moreover, the variance-
covariance matrix H is set to the empirical variance-covariance matrix of these 5,000 draws.
The parameter c is fine-tuned to obtain an acceptance rate of roughly 60%. I run the second
chain for M = 60, 000. Posterior statistics are based on the latter 10,000 draws.

B.2 Approximating Et[Λ̂t,t+1|dt+1 = 1]

I approximate Et[Λ̂t,t+1|dt+1 = 1] as follows:

Et[Λ̂t,t+1|dt+1 = 1] ≈ Et[Λ̂t,t+1] + κVart[Λ̂t,t+1]
1
2 , (A.20)

where κ > 0 is a hyperparameter. The idea of equation (A.20) is that the marginal value
of wealth for bankers is above average in a sovereign default because they are more likely
to face funding constraints: κ parameterizes the number of standard deviations by which
Et[Λ̂t,t+1|dt+1 = 1] is greater than Et[Λ̂t,t+1].

I use the model restrictions to generate the terms {Et[Λ̂t,t+1], Vart[Λ̂t,t+1]
1
2}. Specifically,

we can write Λ̂t,t+1 as a function of observables and of model parameters estimated in the
first step

Λ̂t,t+1 = βe−∆ log(ct+1)[(1− ψ) + ψλlevt+1], (A.21)

where ∆ct+1 is the growth rate of real personal consumption expenditure and levt+1 is
the leverage of financial intermediaries. Conditional on the posterior mean of [β, ψ, λ], I
generate a time series for Λ̂t,t+1. The time series {Et[Λ̂t,t+1], Vart[Λ̂t,t+1]

1
2} are generated

by fitting an AR(1) on log
(
Λ̂t,t+1

)
. Next, I use {Et[Λ̂t,t+1], Vart[Λ̂t,t+1]

1
2} and equation

(A.20) to approximate Et[Λ̂t,t+1|dt+1 = 1]. The hyperparameter κ is selected with the
help of the structural model. I consider a set of values κi ∈ {1, 3, 5} and I select the
value that minimizes, in model simulated data, average root mean square errors for the
approximation of Et[Λ̂t,t+1|dt+1 = 1]. This gives a value of κ = 3.
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C Refinancing Operations

It is instructive to first consider the stationary problem. The government allows bankers
to borrow up to m at the fixed interest rate Rm, and this intervention is financed through
lump-sum taxation. Moreover, these loans are not subject to limited enforcement prob-
lems. The decision problem of the banker becomes

vb(n; S) = max
aB,aK ,b,m

ES

{
Λ(S′, S)

[
(1− ψ)n′ + ψvb(n′; S′)

]}
,

n′ = ∑
j={B,K}

[Rj(S′, S)− R(S)]Qj(S)aj + [Rm − R(S)]m− R(S)b,

λ

 ∑
j={B,K}

Qj(S)aj −m

 ≤ vb(n; S),

m ∈ [0, m],

S′ = Γ(S).

Assuming that m ≥ 0 does not bind, the first-order condition with respect to m is

Es

{
Λ(S′, S)

[
(1− ψ) + ψ

∂vb(n′; S)
∂n′

]}
[R(S)− Rm] + λµ(S) = χ(S)

It can be shown, following the logic of Proposition 1, that vb(n; S) = α(S)n+ x(S), with
x(S) ≥ 0. The leverage constraint becomes

∑j Qj(S)aj

n
≤ α(S) + x(S)

λ
+ m.

Note that refinancing operations have two main effects on bankers. First, to the extent that
Rm < R(S), they represent an implicit transfer to banks and they contribute to an increase
in their net worth. Second, the policy relaxes the incentive constraint of bankers. This
happens because of two distinct reasons: i) the loan from the government is not subject
to the limited enforcement problem, and ii) the value function of bankers increases as a
result of the subsidized loan.

The longer term refinancing operations (LTROs) are a nonstationary version of the refi-
nancing operations described above. The government allows bankers to borrow up to m in
period t = 1, and it receives the principal and interest in a later period T. I assume that the
policy was unexpected by agents. At time t = 1, agents are perfectly informed about the
time path of the loans, and they believe that the policy will not be implemented in the fu-
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ture. Note that the decision rules under LTROs are time dependent: the dynamics at t = 1
will be different from those at t = T− 1, since in the latter case, bankers are getting closer
to the repayment stage and will display a different behavior. In order to solve for the path
of model’s decision rules, I follow a backward induction procedure. From period t = T + 1
onward, the decision rules are those in the absence of policy. Thus, at t = T, agents use
those decision rules to form expectations. By solving the equilibrium in this scenario, we
can obtain decision rules for C̃T(S), RT(S), αT(S), QB,T(S). At t = T− 1 we proceed in the
same way, this time using C̃T(S), RT(S), αT(S), QB,T(S) to form expectations. More specif-
ically, the policy functions in the transition {C̃t(S), Rt(S), αt(S), QB,t(S)}T

t=1, are derived
as follows:

1. Period T: Solve the model using {C̃(S), R(S), α(S), QB(S)} to form expectations.
The Lagrange multiplier is modified as follows:

µT(S) = max

{
1− ES{Λ̂T+1(S′, S)}RT(S)(NT(S)−m)

λ
[
QB,T(S)B′T(S) + QK,T(S)K′T(S)

] , 0

}

Denote the solution by {C̃T(S), RT(S), αT(S), QB,T(S)}.

2. Period t = T− 1, . . . , 1: Solve the model using {C̃t+1(S), Rt+1(S), αt+1(S), QB,t+1(S)}
to form expectations. The Lagrange multiplier is modified as follows:

µt(S) = max

{
λ [TAt(S)−m1t=1]−ES{Λ̂t+1(S′, S)}Rt(S)(Nt(S) + m1t=1)− ψES[Λt+1(S′)αt+1(S′)xt+1(S′)]

λ [QB,t(S)B′t(S) + QK,t(S)K′t(S)−m1t=1]
, 0

}
,

where xt follows the recursion xt(S) =
λmµt(S)+ψES[Λt+1(S′)αt+1(S′)xt+1(S′)]

1−µt(S)
and TAt(S)

is the market value of total assets. The initial condition of this recursion is xT(S) =
−αT(S)m. Store the solution. �

In order to simulate the effect of the policy for a given initial condition S, I use the
following algorithm

Simulating LTROs: Let {γltro
t )}T

t=1 be the model solution under LTROs, and let γ∗ be the
solution in absence of the policy.

1. Draw N simulations for the structural shocks, {εt}T
t=1(n).

2. For each {εt}T
t=1(n), compute the path for outcome variable x using the model so-

lution {γltro
t )}T

t=1 and initializing the simulations at S. Denote this sequence by
{xltro}T

t=1(n). Repeat the same procedure for the model without LTROs, γ∗. Denote
this sequence by {xno ltro}T

t=1(n).
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3. For each n, compute {xltro
t (n)− xno ltro

t (n)}T
t=1, and average over n. �

D Sensitivity to “Appendix C: Evidence from the Cross

Section of Italian Stock Returns"

This section reports the results for three alternative specifications of the asset pricing
model estimated in Appendix C of the paper. Specifically, I consider three variations: i)
the cross-sectional regression is estimated using only the first set of portfolios, ii) the cross-
sectional regression is estimated using only the second set of portfolios, and iii) two pass
estimates are computed using the full sample 1999:Q1-2011:Q3. The results are reported,
respectively, in Table A-1, Table A-2 and Table A-3.

We can verify that the results in the benchmark specification are robust to the set of
portfolios we use in the cross-sectional regression. When including the crisis period in
the sample, though, the fit deteriorates and the intercept is estimated to be negative. This
reflects the extremely negative realized returns observed over the 2008-2011 period.

Table A-1: Cross-sectional regression, 15 portfolios by industry and size

Benchmark CAPM Three-factor FF No Leverage
Intercept 0.51 22.23 25.86 -0.49

(0.33) (1.50) (2.38) (0.41)
βΛ̂ 16.24

(3.91)
βMKT -20.70 -24.40

(5.82) (6.04)
βSMB 3.02

(3.66)
βHML 3.61

(3.92)
βΛ̂,ψ=0 0.08

(0.26)

R2 0.53 0.39 0.40 0.00
MAPE 4.81 5.16 5.23 6.27
T2(χ2) 9.32 10.21 9.15 13.96
p-value 0.81 0.75 0.69 0.45

Notes: The dependent variable is the sample mean of annualized excess returns for the 15 portfolios constructed by
sorting stocks by industry and size. See the note to Table A-3 in the paper for details on the statistics reported.
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Table A-2: Cross-sectional regression, 10 portfolios by betas

Benchmark CAPM Three-factor FF No Leverage
Intercept 0.29 5.21 2.66 4.21

(0.33) (0.59) (0.47) (0.25)
βΛ̂ 12.66

(3.93)
βMKT -2.56 -1.34

(5.68) (5.67)
βSMB 5.88

(3.61)
βHML 10.64

(3.85)
βΛ̂,ψ=0 0.10

(0.25)

R2 0.42 0.07 0.65 0.02
MAPE 4.29 3.28 3.85 3.69
T2(χ2) 6.90 8.95 6.80 8.96
p-value 0.65 0.44 0.45 0.44

Notes: The dependent variable is the sample mean of annualized excess returns for the 10 portfolios constructed by
sorting stocks by their estimated betas. See the note to Table A-3 in the paper for details on the statistics reported.

Table A-3: Cross-sectional regression, 1999:Q1-2011:Q3 sample

Benchmark CAPM Three-factor FF No Leverage
Intercept -9.28 -0.85 -2.51 -6.60

(0.26) (0.66) (0.66) (0.31)
βΛ̂ 12.33

(3.37)
βMKT -6.43 -4.67

(6.06) (6.09)
βSMB 0.31

(3.06)
βHML 5.14

(3.15)
βΛ̂,ψ=0 -0.05

(0.25)

R2 0.27 0.07 0.20 0.00
MAPE 5.23 3.94 4.25 4.37
T2(χ2) 18.86 23.48 22.57 23.98
p-value 0.76 0.49 0.43 0.46

Notes: The dependent variable is the sample mean of annualized excess returns for the 25 portfolios. The sample period
is 1999:Q1-2011:Q4. See the note to Table A-3 in the paper for details on the statistics reported.
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