A broad range of fundamental scientific questions must be addressed to consider implementation of large-scale projects of geological CO2 storage and sequestration within the next several decades. Building upon the successful CO2 storage research undertaken over the past eight years in the Global Climate and Energy Project, twelve Stanford professors from the Departments of Energy Resources Engineering, Geological and Environmental Sciences and Geophysics have established a new research consortium: The Stanford Center for Carbon Storage (SCCS) investigates questions related to sequestration in saline aquifers and shale and coal formations, as well as in mature or depleted oil and gas reservoirs as part of enhanced recovery/sequestration/storage projects. This collaborative and multidisciplinary effort addresses critical questions related to flow physics and chemistry, simulation of the transport and fate of CO2 in geologic media, rock physics, geophysical monitoring, and geomechanics.
SCRF was initiated in 1988 to further the development of techniques for forecasting reservoir performance and for integrating geological, geophysical and reservoir engineering data. The SCRF group performs paradigm-changing research in the field of geostatistics and numerical reservoir modeling. We are not bound by the limited extent of project-based research with its short-term deadlines and limited scope. This long-term perspective has lead to revolutionary changes in reservoir modeling, amongst which: the introduction of stochastic simulation in reservoir modeling, GSLIB as a standard geostatistical software package, the advent of multiple-point geostatistics, practical solutions for large-scale inverse problems with geological constraints, an open-source software termed S-GEMS, and techniques for modeling uncertainty. The funding mechanism of SCRF has created a long-term think-tank where a group of faculty, post-doctoral researchers, graduate students, visiting scholars and industry experts come together to tackle problems of first-order importance in quantitative modeling of space-time varying phenomena and their applications in reservoir modeling.
Our aim in SFC is to develop efficient software tools for the optimization of oil field development and operations. This includes a wide range of algorithms for optimization, data assimilation and model updating (history matching), fast flow simulation, and handling uncertainty. Techniques being developed by our group are essential for the success of smart fields, also known in industry as i-fields, e-fields, integrated operations, field of the future, etc. Traditional approaches for developing and operating oil and gas fields are rarely optimal, and the gains achieved by deploying these new technologies can be very significant for both existing and new fields. The computational techniques developed in SFC are also applicable for optimizing geological carbon storage operations as well as large-scale integrated energy systems.
Additional Affiliated Faculty: Victor Pereyra, Michael Saunders, Benjamin Van Roy, Yinyu Ye
The research of SUPRI-A is relevant to so-called unconventional resources that are hard to produce with conventional techniques. Unconventional resources of current interest to the group are heavy and viscous oils and fractured, heterogeneous porous media containing hydrocarbons. With respect to the future significant new effort is envisioned. In addition to the dynamics of unstable flows, we plan an examination of the role of noncondensable gases on the gravity drainage of viscous oil from heterogeneous media. We will continue our efforts to develop cost-effective methods to produce oil and gas from tight rocks, such as diatomite, siliceous shale, and coal as well as consider the use of polymers and surfactants to enable cold production.
Reservoir simulation entails the development and implementation of efficient computational techniques for the accurate numerical solution of the equations governing multicomponent, multiphase flow in porous subsurface formations. It also includes the detailed modeling of wellbore flow, accurate representation of advanced wells, and integration of the reservoir model with production facilities. Our recent research additionally targets the development of capabilities required for modeling long-term carbon storage and in-situ upgrading of energy resources. We work in virtually all aspects of reservoir simulation, and our research program is constantly evolving to meet current challenges and student interests of.
Innovative well test interpretation techniques that can make use of the new measurements and new computer capabilities now available have already been shown to provide more reliable results and less expensive tests. We aim to explore new ways to improve further on these successes, and to investigate novel approaches in the interpretation of oil, gas, geothermal and water well tests.