Motivated by the rich data supplied by the Fermi Large Area Telescope, KIPAC researchers are vigorously pursuing an understanding of the phenomena responsible for acceleration of particles to enormous energies. To expand their view of the universe, KIPAC scientists are busy planning and conducting as radio, X-ray and optical observations of celestial sources of gamma-rays. KIPAC’s search runs the gamut from the exotic — remnants of exploded stars and astrophysical jets — to the seemingly mundane — our own Sun. Once thought to be an ordinary and quite stable star, the Sun is now known to contain very energetic particles. On occasion these particles penetrate the Earth's atmosphere, and can even briefly disrupt transmission of radio and TV signals.
Developing Simulations
Researchers at KIPAC are also engaged in studying the implications of these phenomena based on the analysis of data from various ground- and space-based observatories. Much of this work involves constructing detailed numerical simulations. These simulations suggest that shocks from stellar explosions compress the surrounding matter and ambient magnetic fields. Based on this research, KIPAC researchers have also concluded that magnetic fields are responsible for the collimated jets – straight and narrow flows of energy and matter – emanating from the centers of many galaxies.