Background
Missed evidence-based monitoring in high-risk conditions (e.g., cancer) leads to delayed diagnosis. Current technological solutions fail to close this safety gap. In response, we aim to demonstrate a novel method to identify common vulnerabilities across clinics and generate attributes for context-flexible population-level monitoring solutions for widespread implementation to improve quality.
Results
We identified five high-risk situations for potentially consequential diagnostic delays arising from suboptimal patient monitoring. All situations related to detection of cancer (head and neck, lung, prostate, breast, and colorectal). With clinic participants we created 5 journey maps, each representing specialty clinic workflow directed at evidence-based monitoring. System vulnerabilities common to the different clinics included challenges with: data systems, communications handoffs, population-level tracking, and patient activities. Clinic staff ranked 13 design seeds (e.g., keep patient list up to date, use triggered notifications) addressing these vulnerabilities. Each design seed has unique evaluation criteria for the usefulness of potential solutions developed from the seed.