Biological sex is commonly studied as a variable in research with humans, but analyzing sex is rare in animal research and rarer still in cell-based research (Beery et al., 2011). This deficiency can represent a lost opportunity to understand basic and developmental biology, and to refine cell-based therapies.
Sex should be analyzed at all levels, from chromosomes and cells to whole organisms. Taking sex into account has led to novel questions about stem cells. Analyzing sex involves:
The Challenge
Gendered Innovation 1: Identifying Sex Differences in Stem Cell Characteristics
Gendered Innovation 2: Understanding Differences Within and Between XX and XY Stem Cells
Method: Analyzing Factors Intersecting with Sex
Gendered Innovation 3: Improving Clinical Guidelines for Stem Cell Therapies
Method: Formulating Research Questions
Conclusions
Next Steps
Taking sex into account can advance basic knowledge regarding stem cells—demonstrating potential sex differences in therapeutic capacity as well as sex differences in receptor-mediated pathways. Basic knowledge of stem cell biology is important to one of the most active areas of stem cell research: inducing pluripotency in cells derived from adult patients and utilizing these cells to repair or reconstruct organs.
Research using sex as a variable has revealed sex differences in the properties of some adult stem cells. Findings include:
These sex differences may be therapeutically relevant—but because many variables besides sex influence cell behavior, and because the traits of an “ideal” cell type differ depending on the therapy in question, such differences do not indicate that cells of a given sex are broadly therapeutically superior to cells of the other sex. In clinical research using stem cells, there is a “lack [of] direct comparisons of different cell types in clearly defined, clinically relevant models of disease” (Zenovich et al., 2007).
Knowing that sex differences exist in stem cells, researchers sought to elucidate the causes of these differences—work that required analysis of additional factors (see Method).
Multivariate studies include sex as one variable among many. It is important to test for interactions between sex and other predictors of the outcome under study. Without such testing, one might attribute variability to sex when that difference is actually dependent on another factor. This misattribution can lead to overemphasis of sex differences. Covariate analysis has shown the following:Method: Intersectional Approaches
Researchers who analyzed sex have observed differences between XX and XY stem cells, but a deeper understanding of stem cell biology requires examination of covariates. Observed sex differences can arise in several ways:
1. Genetics: Female and male stem cells differ in karyotype and therefore differ genetically, but genetic variations also exist between cells of the same sex—not all XX cells or XY cells are alike. Studying the covariates of genotype and investigating both between-sex and within-sex differences is important in stem cell research.
2. Hormonal Environment: Stem cells are sensitive to hormonal environment—often including, but not limited to, the presence of sex hormones. Hormones can have both transient and permanent effects on stem cells, making hormonal environment a necessary covariate to sex (Asselin-Labat et al., 2010).
3. Epigenetics: The DNA sequence of a stem cell is unchanged throughout the cell’s life and is rarely altered by environment. Gene expression, however, can change frequently and dramatically; indeed, such changes account for the ability of genetically identical stem cells to differentiate into functionally distinct somatic cells. These changes are heritable, and so even if cells are cultured in vitro in identical hormonal environments, observed differences cannot be assumed to stem from genetic sequence alone. The environments in which these cells’ ancestors developed may have created epigenetic differences, and they are important covariates (Ohm et al., 2009).
View General Method
When a patient’s own stem cells cannot be used therapeutically, success in stem cell transplantation depends on analyzing the interactions between: 1) the sex of donor cells used; 2) the sex of the host; 3) the type of stem cells transplanted; and 4) the illness being treated (see Method).
Method: Formulating Research Questions
Discoveries about the interactions between species, stem cell sex, recipient sex, and hormonal and immunological variables in animal and in vitro research have prompted researchers to formulate questions relating to stem cell therapies for human patients. Currently, the only stem cell therapy in standard medical practice is hematopoietic stem cell (HSC) transplantation, used primarily to treat malignant disorders but also used in patients with immune deficiency or aplastic anemia (Gratwohl et al., 2010).
View General Method
A study of 1,386 patients undergoing allogeneic HSC transplantation at a single medical center (about 75% for leukemias and the remainder for other conditions) showed that sex matching between donors and recipients correlated with better overall survival, although HSCs from male donors were associated with better long-term survival (Pond et al., 2006).
In pediatric leukemia, HSC transplantation from a female donor to a male recipient produces outcomes that are “unfavorable comparing with all other sex combinations” and “dismal in the presence of an MM (Human Leukocyte Antigen Mismatch).” Donor pregnancy was also found to interact with donor sex and recipient sex; when stem cells are derived from pregnant women donors and given to male patients, the risk of graft-versus-host disease increases (Gustaffson et al., 2004).
Donor and recipient sex also interact with the covariate of disease type—for example, when HSC transplantation is used to treat multiple myeloma, cells from female donors may produce better outcomes. Women patients who receive female HSCs have lower mortality than women patients treated with male HSCs. For men patients with multiple myeloma, the sex of donor cells did not significantly influence overall mortality, but did influence modes of mortality: Men patients treated with male HSCs were more likely to die from myeloma relapse, whereas men patients treated with female HSCs were more likely to die from non-relapse-related causes, such as graft-versus-host disease (Gahrton et al., 2005).
Systems for matching patients to donors for allogeneic HSC transplants now take donor sex and patient sex into account, along with numerous other variables, in order to optimize outcomes (Lee et al., 2007).
Researchers who reported and analyzed sex at the cellular level have identified sex differences in cell behavior that may be of relevance in developing therapeutics. These findings led researchers to investigate the causes of sex differences and discover both hormonal and genetic factors that govern stem cell behavior. In hematopoietic stem cell transplantation—the only stem cell therapy in widespread clinical use—clinicians have gathered data about interactions between donor sex, recipient sex, and other covariates in order to optimize donor-patient matching for allografts.
In basic research, scientists should be aware of the importance of sex as a variable and, in turn, identify the karyotype of cells used when reporting their research results. Results and null results should be reported (see Analyzing Sex). Reporting cell karyotype is important whether or not sex-based differences exist because this information permits secondary research reviews and meta-analyses. Granting agencies and journal editors can encourage such reporting through grant and publication guidelines.
Asselin-Labat, M., Vaillant, F., Sheridan, J., Pal, B., Simpson, E., Yasuda, H., Smyth, G., Martin, T., Lindeman, G., & Visvader, J. (2010). Control of Mammary Stem Cell Function by Steroid Hormone Signaling. Nature, 465 (7299), 798-802.
Beery, A., & Zucker, I. (2011). Sex Bias in Neuroscience and Biomedical Research. Neuroscience and Biobehavioral Reviews, 35 (3), 565-572.
Cowan, C., Klimanskaya, I., McMahon, J., Atienza, J., Witmyer, J., Zucker, J., Wang, S., Morton, C., McMahon, A., Powers, D., & Melton, D. (2004). Derivation of Embryonic Stem-Cell Lines from Human Blastocysts. New England Journal of Medicine, 350 (13), 1353-1356.
Crisostomo, P., Markel, T., Wang, M., Lahm, T., Lillemoe, K., & Meldrum, D. (2007). In the Adult Mesenchymal Stem Cell Population, Source Gender Is a Biologically Relevant Aspect of Protective Power. Surgery, 142 (2), 215-221.
Deasy, B., Lu, A., Rubin, R., Huard, J., Tebbets, J., Feduska, J., Schugar, R., Pollett, J., Sun, B., Urish, K., Gharaibeh, B., & Coo, B. (2007). A Role for Cell Sex in Stem Cell-Mediated Skeletal Muscle Regeneration: Female Cells Have Higher Muscle Regeneration Efficiency. The Journal of Cell Biology, 177 (1), 73-86.
Gahrton, G., Iacobelli, S., Apperley, J., Bandini, G., Björkstrand, B., Bladé, J., Boiron, J., Cavo, M., Cornelissen, J., Corradini, P., Kröger, N., Ljungman, P., Michallet, M., Russell, N., Samson, D., Schattenberg, A., Sirohi, B., Verdonck, L., Volin, L., Zander, A., & Niederwieser, D. (2005). The Impact of Donor Gender on Outcome of Allogeneic Hematopoietic Stem Cell Transplantation for Multiple Myeloma: Reduced Relapse Risk in Female to Male Transplants. Bone Marrow Transplantation, 35 (6), 609-617.
Gratwohl, A., Baldomero, H., Aljurm, M., Pasquini, M., Bouzas, L., Yoshimi, A., Szer, J., Lipton, J., Schwendener, A., Gratwohl, M., Frauendorfer, K., Niederwieser, D., Horowitz, M., & Kodera, Y. (2010). Hematopoietic Stem Cell Transplantation: A Global Perspective. Journal of the American Medical Association, 303 (16), 1617-1624.
Gustaffson, Å., Remberger, M., Ringdén, O., & Winiarski, J. (2004). Risk Factors in Pediatric Stem Cell Transplantation for Leukemia. Pediatric Transplantation, 8 (5), 464-474.
Jankowski, R., Deasy, B., & Huard, J. (2002). Muscle-Derived Stem Cells. Gene Therapy, 9 (10), 642-647.
Lee, S., Klein, J., Haagenson, M., Baxter-Lowe, L., Confer, D., Eapen, M., Fernandez-Vina, M., Flomenberg, N., Horowitz, M., Hurley, C., Noreen, H., Oudshoorn, M., Petersdorm, E., Setterholm, M., Spellman, S., Weisdorf, D., Williams, T., & Anasetti, C. (2007). High-Resolution Donor-Recipient HLA (Human Leukocyte Antigen) Matching Contributes to the Success of Unrelated Donor Marrow Transplantation. Blood, 110 (13), 4576-4583.
Ohm, J., & Baylin, S. (2009). Stem Cell Epigenetics. In Rajasekhar, V., & Vemuri, M. (Eds.), Regulatory Networks in Stem Cells, Volume III: Stem Cell Biology and Regenerative Medicine, pp. 235-246. Berlin: Springer Science and Business Media.
Oreffo, R., Cooper, C., Mason, C., & Clements, M. (2005). Mesenchymal Stem Cells: Lineage, Plasticity, and Skeletal Therapeutic Potential. Stem Cell Reviews, 1 (2), 169-178.
Osafune, K., Caron, L., Borowiak, M., Martinez, R., Fitz-Gerals, C., Sato, Y., Cowan, C., Chien, K., & Melton, D. (2008). Marked Differences in Differentiation Propensity among Human Embryonic Stem Cell Lines. Nature Biotechnology, 26 (3), 313-315.
Pond, G., Lipton, J., & Messner, H. (2006). Long-Term Survival after Blood and Marrow Transplantation: Comparison with an Age- and Gender-Matched Normative Population. Biology of Blood and Marrow Transplantation, 12 (4), 422-429.
Ray, R., Novotny, N., Crisostomo, P., Lahm, T., Abaranell, A., & Meldrum, D. (2008). Sex Steroids and Stem Cell Function. Molecular Medicine, 14 (7), 493-501.
Tchieu, J., Kuoy, E., Chin, M., Trinh, H., Patterson, M., Sherman, S., Amiuwu, O., Lindgren, A., Hakimian, S., Zack, J., Clark, A., Pyle, A., Lowry, W., & Plath, K. (2010). Female Human Induced Pluripotent Stem Cells (iPSCs) Retain an Inactive X Chromosome. Cell, 7 (3), 329-342.
Zeller, C., Wang, Y., Markel, T., Weil, B., Abarbanell, A., Herrmann, J., Kelly, M., Coffey, A., & Meldrum, D. (2009). Role of Tumor Necrosis Factor Receptor 1 in Sex Differences of Stem-Cell-Mediated Cardioprotection. Annals of Thoracic Surgery, 87 (3), 812-819.
Zenovich, A., Davis, B., & Taylor, D. (2007). Comparison of Intracardiac Cell Transplantation: Autologous Skeletal Myoblasts versus Bone Marrow Cells. In Kauser, K., & Zeiher, A. (Eds.), Bone Marrow-Derived Progenitors, pp. 117-165. Berlin: Springer Verlag.
A 2011 study at Mayo Clinic showed that the sex of the cell is not reported in most basic research (see chart). Not analyzing the sex of cells is money wasted. It is research lost to future meta-analysis.
Stem cell therapies hold great promise for treating debilitating diseases, such as Parkinson's disease and muscular dystrophy. Not taking the sex of the cells into account can lead to life-threatening consequences and leave researchers with unsolved puzzles. Take for example the problems an international collaboration between labs in Norway and Australia encountered working with bone marrow stem cells in mice. Researchers in the labs appropriately used both male and female mice (excellent research design), but they used all female stem cells without considering why. This is an unconscious decision that does not reflect best scientific practice. The result was that their male mice died, and they did not understand why.
Research has documented potential sex differences in the therapeutic capacity of stem cells. Muscle-derived stem cells, for example, show variability in proliferation and differentiation. Researchers found that XX cells showed a higher regenerative capacity than XY cells. This may constitute an important clinical finding, but requires further investigation.
Researchers should consider all combinations of donor/recipient sex interaction before ruling out sex as a variable. This type of donor/recipient analysis is also important in human organ transplant.
Gendered InnovationOnce the Norwegian and Australian labs considered all possible combinations of sex in donor/recipient interaction, they had greater success with their experiments. But research can't stop there. Other variables, such as stem cell type, the disease being treated, and hormonal and environmental factors, interact with sex to impact outcomes.