Professor Hema Karunadasa works with colleagues in materials science, earth science, and applied physics to drive the discovery of new materials with applications in clean energy. Using the tools of synthetic chemistry, her group designs materials that couple the structural tunability of organic molecules with the diverse electronic and optical properties of extended inorganic solids. This research targets materials such as sorbents for capturing environmental pollutants, phosphors for solid-state lighting, and absorbers for solar cells.
Hemamala Karunadasa studied chemistry and materials science at Princeton University (A.B. with high honors 2003; Certificate in Materials Science and Engineering 2003), where her undergraduate thesis project with Professor Robert J. Cava examined geometric magnetic frustration in metal oxides. She moved from solid-state chemistry to solution-state chemistry for her doctoral studies in inorganic chemistry at the University of California, Berkeley (Ph.D. 2009) with Professor Jeffrey R. Long. Her thesis focused on heavy atom building units for magnetic molecules and molecular catalysts for generating hydrogen from water. She continued to study molecular electrocatalysts for water splitting during postdoctoral research with Berkeley Professors Christopher J. Chang and Jeffrey R. Long at the Lawrence Berkeley National Lab. She further explored molecular catalysts for hydrocarbon oxidation as a postdoc at the California Institute of Technology with Professor Harry B. Gray. She joined the Stanford Chemistry Department faculty in September 2012. Her research explores solution-state routes to new solid-state materials.
Professor Karunadasa’s lab at Stanford takes a molecular approach to extended solids. Lab members gain expertise in solution- and solid-state synthetic techniques and structure determination through powder- and single-crystal x-ray diffraction. Lab tools also include a host of spectroscopic and electrochemical probes, imaging methods, and film deposition techniques. Group members further characterize their materials under extreme environments and in operating devices to tune new materials for diverse applications in renewable energy.
Please visit the lab website for more details and recent news.
Slavney, A. H., Hu, T., Lindenberg, A. M., & Karunadasa, H. I. (2016). A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. Journal of the American Chemical Society, 138(7), 2138–41.
Smith, I. C., Hoke, E. T., Solis-Ibarra, D., McGehee, M. D., & Karunadasa, H. I. (2014). A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 53(42), 11232–11235.
Slavney, A. H., Connor, B. A., Leppert, L., & Karunadasa, H. (2019). A pencil-and-paper method for elucidating halide double perovskite band structures. CHEMICAL SCIENCE, 10(48), 11041–53.
Connor, B. A., Smaha, R. W., Li, J., Gold-Parker, A., Heyer, A. J., Toney, M. F., … Karunadasa, H. I. (2021). Alloying a single and a double perovskite: a Cu+/2+ mixed-valence layered halide perovskite with strong optical absorption. CHEMICAL SCIENCE.
Smith, I. C., Smith, M. D., Jaffe, A., Lin, Y., & Karunadasa, H. I. (2017). Between the sheets: Post-synthetic transformations in hybrid perovskites. Chemistry of Materials, 29.
Smith, I. C., Smith, M. D., Jaffe, A., Lin, Y., & Karunadasa, H. I. (2017). Between the Sheets: Postsynthetic Transformations in Hybrid Perovskites. CHEMISTRY OF MATERIALS, 29(5), 1868–84.
Clayman, N. E., Manumpil, M. A., Umeyama, D., Rudenko, A. E., Karunadasa, H. I., & Waymouth, R. M. (2018). Carving Out Pores in Redox-Active One-Dimensional Coordination Polymers. Angewandte Chemie (International Ed. in English).
Slayney, A. H., Smaha, R. W., Smith, I. C., Jaffe, A., Umeyama, D., & Karunadasa, H. I. (2017). Chemical Approaches to Addressing the Instability and Toxicity of Lead-Halide Perovskite Absorbers. INORGANIC CHEMISTRY, 56(1), 46–55.
Slavney, A. H., Smaha, R. W., Smith, I. C., Jaffe, A., Umeyama, D., & Karunadasa, H. I. (2016). Chemical approaches to addressing the instability and toxicity of lead-halide perovskite absorbers. Inorganic Chemistry.
Smith, M. D., Pedesseau, L., Kepenekian, M., Smith, I. C., Katan, C., Even, J., & Karunadasa, H. I. (2017). Decreasing the electronic confinement in layered perovskites through intercalation. CHEMICAL SCIENCE, 8(3), 1960–68.